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SUMMARY

Frailty is a common geriatric syndrome characterized by decreased adaptability to

stressors and increased vulnerability to adverse health outcomes. Frailty is not simply

about ageing, but is where ageing has taken its toll. The risk of becoming frail, thus, is

regulated by genetic and environmental factors via epigenetic mechanisms. This makes

the older population considerably heterogeneous concerning frailty. Therefore,

understanding frailty profiles and frailty trajectories is helpful for tailoring ageing health

policies and interventions.

The dissertation consists of two studies to present complementary perspectives of frailty

trajectories in the European older population. The studies conducted secondary analyses on

data extracted from the Survey of Health, Ageing, and Retirement in Europe (SHARE). The

first study compared frailty trajectories of older adults across eleven European countries

and found universal parabolic age trends and country-specific cohort effects. The second

study took a latent-class modeling approach to model the heterogeneity of frailty in the

elderly population. The study found four distinct health profiles in the study population

and a predominant tendency for state stability or dying over time. Noteworthily, there

was a relatively noticeable proportion of transitions to a better health state, highlighting

the potential for frailty reversal. In considering the gender effect, the two studies together

reflect the long-described male-female health-survival paradox.

While the first study provides the population-level perspective of frailty trends, the

second one examines the individual-level progression of frailty. The former provides a big

picture of frailty trends, which can help assess and plan interventions. The latter can find

its application in clinical practice, ageing research as well as policy applications. Given

that data were drawn from nationally representative samples, our findings are greatly

generalizable.

xii



CHAPTER 1

INTRODUCTION

1.1 Background

The world’s older population is growing dramatically, both in its size and share. The 60+

age group comprised 13 percent (about 962 million people) of the global population in

2017 and is growing at an estimated rate of 3 percent per year, faster than all younger age

groups [1]. Population ageing has economic and social implications for public and private

interests. The shrinking working population would directly impact the economic growth;

but fiscal and political challenges regarding public systems of healthcare and welfare to

accommodate the needs of such a growing older population are more pressing [1]. For

private interests, the increasing dependency, in any aspects, of older persons may affect

their quality of life and cause psychological, social and health consequences to their

families and caregivers [2]. Therefore, a lot of attention has been paid to ageing heath

research in recent decades, with frailty being one of important topics.

Frailty is a critical condition in ageing process where an individual’s overall

well-being and ability to function independently are reduced. Frailty results from

cumulative loss of physiological reserves. Specifically, many organ systems, in a healthy

state, are able to produce more materials than the amount needed for survival, providing

physiological reserves necessary to repair disease-related or age-related changes [3]. As

molecular and cellular damages accumulate with age, reserve capacity diminishes

gradually. When age-related deficits reach a certain aggregated level [4], the depletion of

physiological reserves is accelerated, leading to the failure of homoeostasis mechanisms

[5, 6]. Consequently, frail individuals are less able to cope with stressors - i.e., even a

minor stressor can trigger rapid and dramatic health decline [7, 8]. Indeed, frailty has been
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associated with impairments in many organ systems, increased disability and elevated

mortality risk in the older population.

1.1.1 Frailty clinical progression

Frailty is often regarded as a medical syndrome and the progression of frailty is a

reversible process involving three states, i.e. non-frail, pre-frail and frail [9, 10, 11, 12, 13,

14]. When the multi-system reduction in physical reserve capacity reaches or past a

threshold of symptomatic clinical failures, health conditions in many organs would occur

[7]. Bandeen-Roche et al. identified the co-occurrence of the five frailty-defining criteria

in the phenotype model. Among subsets of people with similar profiles of criteria

co-occurrence, they observed the prevalence of each criterion increased with the frailty

severity of subsets [9]. This provides evidence to consider frailty as a syndrome and

justification for categorizing frailty into three groups [14]. Specifically, pre-frailty

identifies a subgroup of high risk progressing to frail, with a lower level of structural and

functional damage and fewer clinical signs [14]. The transitions between frailty states

were studied by Gill et al., on a sample of 755 participants during three consecutive

18-month intervals [11]. 58% of the sample had at least one transition between two

different states; 38% of all transitions were from a less frail state to a more frail one, but

recovery from frail to non-frail was extremely rare [11]. This reversibility property of

frailty is fundamental to interventions of frailty rehabilitation and healthy aging

promotion.

Frailty displays symptoms in many organs, but several common functional changes in

daily life are considered as clinical precursors of frailty. Although not specific to frailty,

extreme fatigue, weight loss and frequent infections are commonly the first warning

signals [8, 15]. More specific signs are falls, delirium and unstable disability. Falls occur

due to reduced postural balance that fails to maintain gait integrity. Especially, in severe

frailty, with the simultaneous reduction of vital postural systems (e.g. vision, balance,
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strength), safe navigation capability no longer responds properly to demanding

environment, spontaneous falls often occur repeatedly [8]. This, even worse, causes fear

of falls, which limits individuals’ mobility and life space [16, 17]. Delirium is

characterized by acute onset and fluctuating courses of confusion and impaired cognition

[18, 19]. A review of human and animal models has postulated that delirium is a cognitive

harbinger of frailty [20]. Moreover, due to physiological reserves decline, body functions

of a frail individual are compromised by minor external events and fluctuates markedly

[7], which gives rise to unstable and intermittent disability [8].

Structural and functional changes of systems in frailty are regulated by genetic factors

and environmental factors through epigenetic mechanisms. Previous studies have

identified many genes that play a crucial role in frailty, especially in inflammatory

pathway and cellular response to stress [21, 22, 23]. Besides, social and environmental

factors such as childhood experiences, social support, economic hardship have been

associated with frailty [24, 25, 26]. Social determinants probably have the largest

contribution to frailty, moderating the effect of genetic factors [13]. By targeting on

modifiable environmental determinants, interventions could potentially reverse or

decelerate the progression of frailty [13, 27]. For instance, nutrition and physical activity

interventions seem effectively prevent and ‘treat’ frailty [27].

1.1.2 Measurements of frailty

Clinical signs and symptoms make frailty clinically recognizable, but operationally

defining frailty remains a challenge. Two main approaches corresponding to its clinical

presentations and pathophysiology are the phenotype model and the cumulative deficits

model, respectively.

The frailty phenotype model has been established by Fried et al. [28] with five variables

indicating compromised energetics: unintentional weight loss, self-reported exhaustion,

low energy expenditure, slow gait speed, and weak grip strength. The presence of three out
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of five criteria defines frailty, while meeting one or two criteria denotes a pre-frail stage

[28]. This model ties closely to clinical presentations, suggesting that it can be a basis for

diagnosis in routine care. However, it omits common and important features of frailty such

as declined cognition and increased disability.

The cumulative deficit model defines frailty as the cumulative effect of individual

deficits. Although every single deficit may carry no obvious threat, deficits cumulatively

contribute to the progress towards adverse health outcomes and death. An included deficit

can be any age-related symptom or abnormality. A typical measure based on this model is

the 70-item frail index (FI) coined by Rockwood et al., which includes 70 deficits in

physical health, ability in activities in daily living (ADLs), cognitive function and mental

health [29]. FI is calculated as the number of deficits present divided by the number of

deficits measured, and ranges from 0 to 1. FI assigns old people into 7 categories: very fit,

well, well with treated comorbid disease, apparently vulnerable, mildly frail, moderately

frail and severely frail.

In short, the phenotype model considers frailty as a state, while the cumulative deficit

model looks at frailty as a medical syndrome. Although conceptually different, the models

have shown an overlap in frailty identification and statistical convergence [30, 31]. This

is demonstrated by the convergent predictive validity of adverse health outcomes between

the two models. To date, several adaptations have been developed, which fall into the

spectrum between the two approaches [32]. Some widely used, validated measures include

Edmonton Frail Scale, FRAIL scale, Tilburg Frailty Indicator, Groningen Frailty Indicator,

frailty index based on a Comprehensive Geriatric Assessment (FI-CGA). However, these

instruments focus on variability in the total number of health deficits but not on specific

patterns of deficits combination.
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1.1.3 Gender differences in frailty

The literature of health-related gender inequality has long described the ‘male-female

health survival paradox’ (also known as ‘gender paradox’) in which women experience

more medical conditions but live longer than men [33]. As a multidimensional measure of

health status of the elderly, frailty reflects similar gender differences - despite being more

frail, females have survival advantage. To be specific, previous studies have shown that

females, at all ages, have higher frailty scores [34, 35, 36, 37], and that females have a

lower mortality rate at any level of frailty [34, 38]. The disparities result from a variety of

gender differences in biological factors (e.g., genetic and physiology) as well as

behavioral and social characteristics (e.g., risk-related behaviors and social roles). The

pathogenesis of the gender paradox , however, remains unclear; and several hypotheses

have been proposed, such as (i) females are more likely to have chronic diseases with low

mortality [39], (ii) females have more physiological reserves [40], (iii) males and females

have different failure thresholds due to different evolutionary designs [41, 42], or (iv)

health measures currently used, including frailty, do not adequately capture deficits in

males [43, 44].

In summary, the growing older population pose pressing challenges to improve quality

and quantity of social and health care services. As frailty is associated with poor health

outcomes, such as increased dependency, hospitalization, institutionalization and death,

frailty places large burdens on the public systems as well as family and friend caregivers.

However, increased use of healthcare resources does not necessarily improve health

outcomes or quality of care of the elderly. To be effective, heath care interventions should

be tailored to individuals or targeted subgroups. Therefore, it is important to continue to

explore classification of older individuals into pragmatically meaningful groups as well as

trajectories, stability and change of frailty construct during the late life.
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1.2 Dissertation aims

The primary goal of this dissertation is to explore frail trajectories in the European older

population. The secondary goal is to explore gender differences in frailty trajectories.

This dissertation addresses the following research objectives:

1. To explore how levels of dependency in the elderly vary across birth cohorts by

examining differences in frailty trajectories, including stratification by gender

(Chapter 2).

2. To explore frailty classes and their evolution over time, as well as gender differences

in the frailty progression (Chapter 3).

1.3 Overview of dissertation chapters

Following this introductory chapter (Chapter 1), there are three dissertation chapters.

Chapter 2 addresses the first objective of this dissertation. The study takes the

age-period-cohort (APC) approach to decompose frailty trends into temporal component

(biological age, period and birth cohort), and provides a comparison of APC effects across

European countries of interest. Frailty trajectories are stratified by gender to investigate

gender disparity in frailty across ages and cohorts. This chapter provides insights of

ageing health trends in studied countries, which is useful for localization of ageing

policies.

Chapter 3 addresses the second objective of this dissertation, using a latent class

modeling framework. The study first categorize individuals to frailty classes based on

patterns of associations among a set of observed variables by latent class analysis.

Subsequently, the study examine transitions across frailty classes and to death over time

by latent transition analysis. Gender differences in transition patterns are also examined.

The chapter presents some means to differentiate individuals into more homogenous

subgroups and underscores the dynamic of older people health and social needs.
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Finally, chapter 4 summarizes the findings and concludes with recommendations for

future research.
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CHAPTER 2

CROSS-NATIONAL COMPARISON OF FRAILTY TRAJECTORIES AMONG

OLDER PEOPLE IN EUROPEAN COUNTRIES BETWEEN 2004 AND 2017: AN

AGE-PERIOD-COHORT ANALYSIS

2.1 Introduction

Global population ageing has profound social and economic consequences for public and

private interests [1]. Healthy ageing, hence, becomes the pivotal aim of eldercare in order to

allow older adults to maximize the number of years of productive and quality life free from

disease and disability. Epidemiological investigation into ageing trajectories is informative

for social policy development and resource distribution, which are important in meeting

changing needs of eldercare. Compared with trends in other health outcomes, trends in

frailty would provide a more comprehensive perspective of the ageing population, as frailty

encompasses age-related declines in multiple systems and is predictive of adverse health

outcomes such as increased dependency, disability, hospitalization, institutionalization, and

mortality.

Being home to the world’s oldest population, Europe bears an onerous burden of

ageing health problems, including frailty. In this study, we take APC approach to compare

frailty trajectories among the community-dwelling elderly across nine European countries

during the 2004-2016 period, including stratification by gender. Although a previous work

examined the impact of socio-economic positions on frailty trajectories in European

countries [45], the study took cohort effect into account only in all-country model but not

country-specific models . Without decomposing secular trends into temporal components

(biological age, period and birth cohort), it is largely unclear whether the trends were

driven solely by the biological ageing process or also by intergenerational differences.

8



Moreover, cohort effects are expected to be dependent on population-specific factors.

European countries, though sharing cultural and social similarities, have many differences

in historical and socio-economic contexts, so cohort effects may represent idiosyncrasies

for countries. A comparison of APC effects among European countries will provide

valuable contributions to the advancement of ageing health trends documented in

scientific literature as well as to localization of ageing policies.

In addition, health-related gender inequality has been widely documented to reveal the

‘male-female health-survival paradox’, in which women have longer age-specific life

expectancy but shorter healthy life expectancy [33]. The greater burden of morbidity and

disability in women result from a variety of biological, psychological and socio-economic

differences between men and women [46, 47, 48, 42, 49]; especially, women are primary

providers of informal care for spouses and relatives [48]. Regarding frailty, gender

differences in frailty incidences and determinants have been observed in many populations

[50, 51]. By stratifying frailty trajectories by gender, our aim is to investigate gender

disparity in frailty across ages and birth cohorts amongst studied countries.

2.2 Methods

2.2.1 Data

Study sample

Data were extracted from the Survey of Health, Ageing, and Retirement in Europe

(SHARE), a cross-national panel survey targeting to non-institutionalized individuals aged

50 or over and their spouse in participating countries. SHARE started in 2004 and then

has been conducted biannually since the second wave in 2007. In general,

population-based samples were drawn, mostly via multi-stage sampling. All SHARE

respondents in any previous waves are included in the longitudinal sample. From Wave 2

onward, in order to ensure the sample’s representativeness, refreshment samples were
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recruited to include subjects who newly became age-eligible and compensate panel

attrition. Descriptions of sampling and data collection procedures can be found in [52, 53,

54].

Wave 3, administered in 2009 and referred as the SHARELIFE module, focuses on life

history and did not include frailty measure; therefore, this was excluded from our analysis.

Until now, twenty-eight European countries and Israel have joined SHARE, with some

variation in participation in each data collection wave [53]. Nine countries that

participated in all waves (i.e. the 2004, 2007, 2011, 2013, 2015, and 2017 waves), namely

Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, Italy, and Sweden

were included.

Frailty index (FI) construction

Frailty status, the outcome of this study, was measured by the frailty index of accumulated

deficits (FI-CD) [31]. FI construction follows the standard protocol proposed by Searle

and colleagues [55]. Specifically, deficits were only included to FI calculation if satisfying

criteria: (1) available in all study waves, (2) health-related, (3) age-associated, (4) neither

too common (present in ≥ 80% people aged 80 and older), nor too uncommon (present

in ≤ 1% of the study population); and finally, the deficits must cover a range of systems

when considered as a whole [55]. Variable selection for FI construction was guided by

additional published studies [56, 57, 58]. A detailed list of 49 indicators for FI construction

is presented in Study 1: Items used to construct frailty index in the SHARE.

Frailty index was calculated as the proportion of the number of deficits present among

those measured, potentially ranging from 0 to 1. In instances where data were missing for

some indicators, FI was calculated with reduced denominator. Because an inverse

relationship between FI and health was found when at least 30 deficits were included in FI

construction [59], we only included individuals if they had at least non-missing values for

30 or more indicators.
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Predictors and covariates

Age and cohort were the main predictors of frailty index in our analysis. We derived seven

distinct birth cohorts - before 1925 (reference group), 1925-1929, 1930-1934, 1935-1939,

1940-1944, 1945-1949 and 1950-1954. Gender was also included in the model as a

covariate.

2.2.2 Modeling

Beta regression model

There are several possible choices for modeling a response variable naturally bounded

between 0 and 1 (i.e., 0 ≤ y ≤ 1). A suitable candidate of model is beta regression. Beta

regression models the response variable at its original scale, producing less biased

estimates and more straightforward statistical inference than transformation-based

solutions [60, 61, 62].

The use of beta regression is based on the assumption that frailty index is beta

distributed. Beta density is given by:

f(y;α, β) =
Γ(α + β)

Γ(α)Γ(β)
y(α−1)(1− y)(β−1)

where y ∈ (0, 1), α > 0, β > 0 and Γ(.) denotes the gamma function. “Shape” parameters

α and β pull density toward 0 and 1 respectively [60], allowing beta distribution to flexibly

take different shapes. Beta distribution can be inflated at 0 and/or 1, meaning that the

dependent variable can take value 0s and/or 1s [63]. Response variable is modeled as a

mixture of Bernoulli and beta distributions. To make the two parameters more meaningful

in a regression framework, several possible methods of parametrization in terms of mean

and precision are available and applied in statistical packages (see [63], [64], [65] for more

details).
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The age-cohort-period (APC) model

The response variable, frailty index, in our sample has a right-skewed distribution

bounded in the range [0, 1), with a decent number of 0s, in all countries (see Figure 2.1).

Therefore, we employed zero-inflated beta regression for analysis. Two sub-models were

conducted simultaneously: i) a zero-inflated model (logistic regression) that predicts the

probability of frailty index taking a value of 0, and ii) beta regression model that predicts

the value of frailty index. We analyzed repeated-measures data using a hierarchical

modeling framework, which accounts for dependencies among observations, handles

subject’s missing data points, and allows unequal time intervals.

Following Yang and Land (2006), and Bell and Jones (2014) [66, 67], we modeled age

effect with linear and quadratic terms, with the linear term specified as random to capture

individual variation besides the universal effect of the biological ageing process. The

cohort effect was specified as fixed because of unique lifetime health-related exposures of

each birth cohort, which would not be appropriately represented by a random component

assumed to be normally distributed. We constrained the period linear trend to zero,

assuming that period effects were absorbed partly by age and cohort effects and the

remaining was reflected by period residual term. Specifying the period effect as random is

reasonable because there is no reason to believe that any of the four years of survey have

had a unique effect on frailty status. However, the period residual term was estimated at an

extremely small estimate (≈ e−10) and the inclusion of this term did not improve model

fit (i.e., no decline in the Akaike information criterion (AIC) and the Baysian information

criterion (BIC)). Hence, the period residual term was dropped in the final model.

We fitted a series of zero-inflated beta regression models. Beta regression part was

specified as a multi-level model, with logit link function, given by:

Micro-level model (within individual):

FIti = β0i + β1iageti + β2iage
2
ti + eit

12



Figure 2.1: Distribution of frailty index
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Macro-level model (between individuals):

β0i = γ00 + γ01cohorti + u0i

β1i = γ10 + γ11cohorti + u1i

eit ∼ N(0, σ2
e), u0i ∼ N(0, σ2

0), u1i ∼ N(0, σ2
1),

where FIti is frailty index of an individual i measured at occasion t, and cohorti is the

cohort membership of individual i, treated as a continuous variable. By adding cohorti and

random term u1i in the formula of slope β1i, we allowed differential age effects between

cohorts and between individuals. For the ease of model estimability and interpretability,

we rescaled age by subtracting 50 from age and then dividing by 10. Cohort was treated as

a categorical variable, with the before-1925 cohort being reference group.

In zero-inflated part, we initially specified a model with the same terms as in the beta

regression part. However, the inclusion of too many terms in the zero-inflated part caused

model non-convergence for some countries. As the objective of the current work is for a

cross-national comparison, the same model specification for all studied countries is

required. Therefore, we finally included the linear term of age as the only predictor in the

zero-inflated part.

Occasions

Period Individual

Cohort

HH
HH

HY

��
��
�*

6

Figure 2.2: The hierarchical structure of panel data in APC analysis. Adapted from [67]

Subsequently, we included gender and its interaction terms with age and cohort into
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beta regression model, and added a corresponding term into zero-inflated model. With

gender included, macro-level model in beta regression was modified to:

β0i = γ00 + γ01cohorti + γ02genderi + γ03cohorti ∗ genderi + u0i

β1i = γ10 + γ11cohorti + γ12genderi + u1i

Analyses were conducted for each country separately with glmmTMB package [68] and

ggeffects [69] in R 3.5.1 [70].

2.3 Results

A total sample of 51,354 participants from nine countries with sufficient non-missing

indicators for FI construction were included into our analysis. The dataset has an average

of 2.95 observations per individual (out of a possible total of six). A summary of sample

characteristics for each country is presented in Table 2.1. Female participants accounted

for a larger proportion in the samples of Austria and France (57.24% and

54.92%,respectively), while the sex ratio in other countries’ samples was reasonably

balanced. Frailty index tended to increase slightly across the waves of survey, with the

difference between two consecutive periods being no more than 0.2 points.

Table 2.2 - 2.10 provides results of zero-beta regression models predicting frailty

index. Across countries, the odds of being frailty-free statistically significantly decrease

with age (in zero-inflated sub-models: βAge < 0, p < 0.001). Regarding the level of frailty

index, Figure 2.3 - 2.5, constructed from estimated coefficients, provide graphic

representation of frailty trajectories, age and cohort effects. Figure 2.3 illustrates overall

frailty trajectories, in which each line represents frailty trajectory of a particular cohort

starting from the middle age in 2004 and tracking changes until 2017, and shade region

denotes 95% prediction interval. An overall parabolic age trend of frailty, and cohort

differences at overlapping ages can be seen from the figure.
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Figure 2.4 displays conditional age effects, stratified by gender. The parabolic age trend

is clear, with an accelerating increase in frailty level after the age of 75. The growth rate

of frailty level after 75 years old in Italy, Germany and Switzerland is slower than in other

countries. Whilst females generally have higher frailty level than males, gender-specific

age trends are approximately parallel (except in Belgium), indicating the gender gap in

frailty levels holds through life course. The frailty gender gap is quite noticeable in Spain,

Italy, and Belgium but is negligible in other countries. Interestingly, the gender difference

in Denmark reverse after the age of 75, though the gap is just minimal.

Figure 2.5 presents age-adjusted frailty level by birth cohort, stratified by gender.

Across countries, frailty level is typically lowest in cohorts born before 1930, followed by

a marked increase in the 1930s birth cohorts. Except in Italy and Spain, frailty level

remains relatively stable in the 1935-1939 birth cohort and thereafter. Cohort effects

appear to matter more for males than females (i.e. more between-cohort differences in

males); and gender differentials in frailty attenuate in recent cohorts.

Apart from the similarities shared by all, three distinct patterns of conditional cohort

effects emerge from studied countries. First, the Swiss, Swedish and Danish ageing

populations appear the healthiest, with the overall age-adjusted frailty levels stable around

or below 0.10 across cohorts. Frailty gender differentials are basically narrow. Second, the

samples of Belgium, France, Germany and Austria follow very similar patterns, but the

overall frail levels are higher (though staying under 0.15). Third, the elderly in Spain and

Italy, in contrast, seem the least healthy, with the overall frailty levels exceeding 0.15.

Cohort trend of Spain and Italy has a hill shape, with its peak being around the 1930-1934

and 1935-1939 cohorts, where frailty-related gender gap is also at the maximum. Gender

differences in frailty level are persistently broad, though significantly narrowing after the

peak. It is worth-noting that cohort-specific age-adjusted frailty levels of countries diverge

for earlier cohorts but pretty much converge for most recent cohorts whose frailty level of

Italy and Spain being similar to that of Austria, Belgium, Germany, and France.
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Table 2.1: Sample characteristics across countries and time periods.

Austria Belgium Denmark France Germany Italy Spain Sweden Switzerland

n % n % n % n % n % n % n % n % n %

Birth cohort
Before 1925 246 4.85 460 6.71 261 6.52 483 7.73 296 4.42 292 4.58 545 7.73 406 6.90 198 5.61
1925-1929 350 6.91 556 8.11 293 7.32 576 9.22 507 7.57 400 6.27 669 9.49 449 7.64 260 7.36
1930-1934 478 9.43 789 11.51 413 10.32 779 12.47 647 9.66 755 11.84 985 13.97 603 10.26 391 11.07
1935-1939 818 16.14 930 13.57 501 12.52 810 12.97 1169 17.46 1057 16.57 992 14.07 875 14.88 507 14.35
1940-1944 1106 21.82 1019 14.87 717 17.91 893 14.30 1318 19.68 1230 19.29 1168 16.56 1142 19.42 651 18.43
1945-1949 1025 20.22 1477 21.55 928 23.18 1273 20.38 1228 18.34 1424 22.33 1292 18.32 1328 22.59 764 21.63
1950-1954 1045 20.62 1622 23.67 890 22.23 1431 22.91 1531 22.86 1220 19.13 1401 19.87 1077 18.32 761 21.55

Gender
Male 2162 42.66 3230 47.13 1918 47.91 2815 45.08 3243 48.43 3028 47.48 3340 47.36 2819 47.94 1681 47.59
Female 2906 57.34 3623 52.87 2085 52.09 3430 54.92 3453 51.57 3350 52.52 3712 52.64 3061 52.06 1851 52.41

Frailty index, Mean (SD)
Wave 1 (2004) 0.13 0.11 0.14 0.11 0.12 0.11 0.14 0.12 0.13 0.11 0.16 0.12 0.20 0.14 0.11 0.11 0.10 0.08
Wave 2 (2007) 0.15 0.12 0.15 0.12 0.12 0.11 0.15 0.12 0.13 0.12 0.18 0.14 0.20 0.15 0.12 0.11 0.10 0.09
Wave 4 (2011) 0.14 0.13 0.17 0.13 0.12 0.11 0.16 0.13 0.15 0.13 0.18 0.14 0.22 0.17 0.13 0.12 0.10 0.09
Wave 5 (2013) 0.15 0.14 0.17 0.14 0.13 0.12 0.16 0.13 0.15 0.13 0.19 0.15 0.20 0.17 0.12 0.11 0.10 0.09
Wave 6 (2015) 0.16 0.15 0.17 0.14 0.13 0.12 0.17 0.14 0.15 0.13 0.17 0.15 0.20 0.16 0.12 0.10 0.11 0.10
Wave 7 (2017) 0.17 0.15 0.18 0.14 0.13 0.12 0.17 0.14 0.16 0.13 0.18 0.15 0.21 0.17 0.13 0.11 0.11 0.10
All waves 0.15 0.14 0.16 0.13 0.12 0.12 0.16 0.13 0.14 0.12 0.18 0.14 0.20 0.16 0.12 0.11 0.10 0.09



Figure 2.3: Predicted frailty index by age and birth cohort
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Figure 2.4: Conditional age effects, stratified by gender
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Figure 2.5: Conditional cohort effects, stratified by gender 1
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Table 2.2: Results of zero-inflated beta regression models for Austria

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -2.71 0.48*** -2.99 0.58***
Age -0.29 0.22 -0.34 0.23
Age2 0.20 0.03*** 0.20 0.03***
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 -0.32 0.34 -0.27 0.46
1930-1934 0.31 0.35 0.16 0.46
1935-1939 0.58 0.38 0.71 0.47
1940-1944 0.42 0.41 0.66 0.50
1945-1949 0.46 0.44 0.75 0.53
1950-1954 0.29 0.46 0.80 0.55

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 0.18 0.10 0.18 0.10
1930-1934 0.03 0.10 0.04 0.10
1935-1939 -0.08 0.12 -0.08 0.11
1940-1944 0.02 0.13 0.02 0.13
1945-1949 -0.03 0.15 -0.03 0.15
1950-1954 0.08 0.18 0.08 0.17

Female 0.15 0.19
Cohort*Female

Before 1925 (Ref) 0
1925-1929 -0.02 0.18
1930-1934 0.10 0.17
1935-1939 -0.06 0.16
1940-1944 -0.14 0.16
1945-1949 -0.17 0.17
1950-1954 -0.31 0.17

Age*Female 0.04 0.03

Zero inflated model
Intercept -3.81 0.20*** -3.81 0.20***
Age -0.41 0.10*** -0.41 0.10***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.3: Results of zero-inflated beta regression models for Belgium

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -2.38 0.28*** -2.76 0.33***
Age -0.07 0.13 -0.16 0.14
Age2 0.13 0.02*** 0.13*** 0.02
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.09 0.20 0.28 0.26
1930-1934 0.09 0.20 0.32 0.26
1935-1939 0.15 0.22 0.23 0.27
1940-1944 0.16 0.24 0.41 0.29
1945-1949 0.06 0.26 0.39 0.31
1950-1954 -0.09 0.28 0.20 0.32

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.01 0.06 -0.00 0.06
1930-1934 -0.00 0.06 0.01 0.06
1935-1939 -0.01 0.07 0.00 0.07
1940-1944 -0.03 0.08 -0.02 0.08
1945-1949 0.02 0.09 0.03 0.09
1950-1954 0.17 0.11 0.19 0.11

Female 0.26 0.11*
Cohort*Female

Before 1925 (Ref) 0
1925-1929 -0.13 0.11
1930-1934 -0.16 0.11
1935-1939 -0.06 0.10
1940-1944 -0.17 0.10
1945-1949 -0.22 0.10*
1950-1954 -0.20 0.11

Age*Female 0.05 0.02**

Zero inflated model
Intercept -4.39 0.22*** -4.39 0.22***
Age -0.71 0.14*** -0.71 0.14***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.4: Results of zero-inflated beta regression models for Denmark

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -2.81 0.41*** -3.66 0.50***
Age -0.13 0.20 0.01 0.20
Age2 0.16 0.02*** 0.16 0.02***
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.15 0.29 0.14 0.41
1930-1934 0.25 0.29 0.64 0.40
1935-1939 0.37 0.32 0.86 0.41*
1940-1944 0.32 0.35 0.98 0.44*
1945-1949 0.21 0.38 0.75 0.46
1950-1954 -0.00 0.40 0.60 0.48

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.02 0.09 -0.01 0.09
1930-1934 -0.04 0.09 -0.04 0.09
1935-1939 -0.09 0.10 -0.10 0.10
1940-1944 -0.06 0.12 -0.06 0.12
1945-1949 -0.01 0.14 -0.00 0.14
1950-1954 0.15 0.16 0.15 0.16

Female 0.54 0.17**
Cohort*Female

Before 1925 (Ref) 0
1925-1929 -0.00 0.18
1930-1934 -0.23 0.17
1935-1939 -0.30 0.16
1940-1944 -0.41 0.16*
1945-1949 -0.34 0.16*
1950-1954 -0.38 0.17

Age*Female -0.09 0.03**

Zero inflated model
Intercep -3.17 0.15*** -3.17 0.15***
Age -0.59 0.09*** -0.59 0.09***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.5: Results of zero-inflated beta regression models for France

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -3.23 0.31*** -3.59 0.37***
Age 0.28 0.15 0.28 0.15
Age2 0.09 0.02*** 0.10 0.02***
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.58 0.20** 0.77 0.27**
1930-1934 0.86 0.21*** 0.96 0.27***
1935-1939 0.81 0.24*** 0.97 0.29***
1940-1944 0.79 0.26** 1.05 0.31***
1945-1949 0.73 0.29* 1.00 0.34**
1950-1954 0.75 0.30* 0.96 0.35**

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.13 0.06* -0.13 0.06*
1930-1934 -0.21 0.06*** -0.21 0.06***
1935-1939 -0.21 0.07** -0.21 0.07**
1940-1944 -0.20 0.09* -0.20 0.09*
1945-1949 -0.19 0.10 -0.19 0.10
1950-1954 -0.18 0.12 -0.18 0.12

Female 0.22 0.11
Cohort*Female

Before 1925 (Ref) 0
1925-1929 -0.11 0.11
1930-1934 -0.05 0.10
1935-1939 -0.09 0.10
1940-1944 -0.16 0.10
1945-1949 -0.16 0.10
1950-1954 -0.12 0.11

Age*Female -0.00 0.02

Zero inflated model
Intercept -4.19 0.22*** -4.19 0.22***
Age -0.79 0.14*** -0.79 0.14***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.6: Results of zero-inflated beta regression models for Germany

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -3.68 0.41*** -4.04 0.49***
Age 0.59 0.19** 0.61 0.19**
Age2 0.05 0.02* 0.05 0.02*
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.53 0.33 0.47 0.41
1930-1934 0.61 0.33 0.57 0.41
1935-1939 0.87 0.34* 1.03 0.42*
1940-1944 1.09 0.36** 1.26 0.44**
1945-1949 1.04 0.39** 1.35 0.46**
1950-1954 0.94 0.40* 1.32 0.48**

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.15 0.10 -0.15 0.10
1930-1934 -0.15 0.10 -0.15 0.10
1935-1939 -0.27 0.10** -0.27 0.10**
1940-1944 -0.39 0.12*** -0.39 0.12**
1945-1949 -0.36 0.13** -0.36 0.13**
1950-1954 -0.27 0.15 -0.27 0.15

Female 0.22 0.16
Cohort*Female

Before 1925 (Ref) 0
1925-1929 0.08 0.15
1930-1934 0.04 0.14
1935-1939 -0.08 0.14
1940-1944 -0.09 0.14
1945-1949 -0.19 0.14
1950-1954 -0.23 0.15

Age*Female -0.01 0.03

Zero inflated model
Intercept -4.13 0.24*** -4.13 0.24***
Age -0.76 0.15*** -0.76 0.15***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.7: Results of zero-inflated beta regression models for Italy

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -4.09 0.39*** -4.56 0.46***
Age 0.81 0.18*** 0.78 0.18***
Age2 0.03 0.02 0.03 0.02
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 1.00 0.29*** 0.85 0.37*
1930-1934 1.64 0.29*** 1.62 0.36***
1935-1939 1.87 0.31*** 1.96 0.38***
1940-1944 2.00 0.34*** 2.07 0.40***
1945-1949 1.84 0.36*** 2.07 0.42***
1950-1954 1.71 0.38*** 1.91 0.44***

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.24 0.08** -0.23 0.08**
1930-1934 -0.45 0.08*** -0.44 0.08***
1935-1939 -0.57 0.10*** -0.56 0.09***
1940-1944 -0.70 0.11*** -0.68 0.11***
1945-1949 -0.66 0.13*** -0.65 0.13***
1950-1954 -0.72 0.15*** -0.70 0.15***

Female 0.32 0.14*
Cohort*Female

Before 1925 (Ref) 0
1925-1929 0.10 0.15
1930-1934 0.02 0.13
1935-1939 -0.07 0.13
1940-1944 -0.06 0.13
1945-1949 -0.16 0.13
1950-1954 -0.14 0.14

Age*Female 0.01 0.02

Zero inflated model
Intercept -4.54 0.30*** -4.54 0.30***
Age -0.71 0.17*** -0.71 0.17***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.8: Results of zero-inflated beta regression models for Sweden

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -4.06 0.36*** -4.47 0.41***
Age 0.48 0.17** 0.51 0.17**
Age2 0.09 0.02*** 0.09 0.02***
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.75 0.25** 0.77 0.31*
1930-1934 1.56 0.26*** 1.61 0.32***
1935-1939 1.21 0.29*** 1.41 0.33***
1940-1944 1.36 0.31*** 1.70 0.36***
1945-1949 1.27 0.34*** 1.60 0.38***
1950-1954 1.19 0.36*** 1.49 0.40***

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.21 0.07** -0.20 0.07**
1930-1934 -0.47 0.08*** -0.46 0.08***
1935-1939 -0.37 0.09*** -0.37 0.09***
1940-1944 -0.43 0.10*** -0.42 0.10***
1945-1949 -0.39 0.12*** -0.39 0.12**
1950-1954 -0.34 0.14* -0.33 0.14*

Female 0.28 0.13*
Cohort*Female

Before 1925 (Ref) 0
1925-1929 -0.03 0.13
1930-1934 -0.04 0.12
1935-1939 -0.15 0.11
1940-1944 -0.24 0.11*
1945-1949 -0.23 0.12*
1950-1954 -0.21 0.12

Age*Female -0.02 0.02

Zero inflated model
Intercept -3.10 0.14*** -3.10 0.14***
Age -0.61 0.08*** -0.61 0.08***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.

27



Table 2.9: Results of zero-inflated beta regression models for Spain

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -2.88 0.39*** -3.42 0.44***
Age 0.27 0.18 0.35 0.19
Age2 0.09 0.02*** 0.09 0.02***
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 0.45 0.25 0.34 0.30
1930-1934 0.90 0.26*** 0.90 0.31**
1935-1939 1.11 0.30*** 0.98 0.34**
1940-1944 1.17 0.33*** 1.30 0.37***
1945-1949 1.01 0.36** 1.19 0.40**
1950-1954 0.73 0.38 1.07 0.42**

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.12 0.07 -0.13 0.07
1930-1934 -0.26 0.07*** -0.28 0.07***
1935-1939 -0.35 0.09*** -0.36 0.09***
1940-1944 -0.44 0.11*** -0.47 0.11***
1945-1949 -0.41 0.13** -0.44 0.13***
1950-1954 -0.33 0.15* -0.36 0.15*

Female 0.28 0.12*
Cohort*Female

Before 1925 (Ref) 0
1925-1929 0.10 0.10
1930-1934 0.05 0.09
1935-1939 0.14 0.10
1940-1944 -0.02 0.10
1945-1949 -0.05 0.10
1950-1954 -0.15 0.11

Age*Female -0.02 0.02

Zero inflated model
Intercept -4.38 0.30*** -4.38 0.30***
Age -0.89 0.18*** -0.89 0.18***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.
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Table 2.10: Results of zero-inflated beta regression models for Switzerland

Parameter Estimate SE Estimate SE

Model 1 Model 2

Beta model (logit link function)
Fixed part coefficient estimates

Intercept -4.07 0.52*** -3.92 0.58***
Age 0.35 0.24 0.36 0.24
Age2 0.09 0.03** 0.09 0.03**
Birth cohort

Before 1925 (Ref) 0 0
1925-1929 1.30 0.36*** 0.73 0.44
1930-1934 1.11 0.37** 0.98 0.43*
1935-1939 1.29 0.41** 1.16 0.46*
1940-1944 1.30 0.45** 0.96 0.50
1945-1949 1.20 0.48* 1.14 0.53*
1950-1954 1.07 0.51* 0.99 0.56

Cohort*Age
Before 1925 (Ref) 0 0
1925-1929 -0.32 0.10** -0.32 0.10**
1930-1934 -0.25 0.11* -0.26 0.11*
1935-1939 -0.32 0.12** -0.33 0.12**
1940-1944 -0.35 0.14* -0.36 0.14*
1945-1949 -0.28 0.16 -0.29 0.16
1950-1954 -0.26 0.19 -0.27 0.19

Female -0.11 0.17
Cohort*Female

Before 1925 (Ref) 0
1925-1929 0.36 0.16*
1930-1934 0.09 0.15
1935-1939 0.10 0.15
1940-1944 0.23 0.15
1945-1949 0.05 0.15
1950-1954 0.07 0.16

Age*Female 0.00 0.03

Zero inflated model
Intercept -3.07 0.20*** -3.07 0.20***
Age -0.85 0.12*** -0.85 0.12***

Note: *p < 0.05; **p < 0.01; ***p < 0.001
Age is in 10-year unit.

29



2.4 Discussion

Using a six-wave dataset spanning 13 years from the SHARE, the present work extends and

complements current understanding of frailty trajectories in nine European countries by

decomposing frailty trajectories into age and cohort effects. Our analyses reveal consistent

parabolic age trends across countries, whereas patterns of cohort effects were more country-

specific. Throughout old age, women were inclined to be more frail than their counterparts;

and gender differentials in frailty narrowed substantially in successively younger cohorts.

Our finding of the upward parabolic shape of age trends is consistent with the findings

of previous studies [57, 71, 72], further supporting the idea of accelerated accumulation of

deficits with age [6, 5]. Additionally, this phenomenon might be a life-course outcome of

advances in living conditions and healthcare that increase survival of frail individuals, with

the impact being most pronounced at the oldest ages where the risk of frailty is greatest

[71]. This, however, casts a gloom over prolonged life expectancy, as it is associated with

additional years spent in frailty and greater healthcare costs. From another perspective, the

disproportionate speed-up of frailty progression starting from the age of 75 might reflect

biases in ageing health policy and practice that are largely concerned with the “young-old”

rather than the “old-old” in European countries [73]. Although the driving forces behind

the slower after-75-year-old growth rate of frailty level in Italy, Germany and Switzerland

are not well-understood, one can speculate that it is partly attributed to the better inclusion

of the “old-old” in active ageing policy and ageing-friendly environment, enabling them to

be more proactive, resilient and capable. It is interesting to note that the eldercare in Italy is

characterized by familistic orientation more than in other European countries. In close-knit

families rooted in Italian culture, seniors would receive mental and physical support from

family members [74].

The present study showed lower age-adjusted frailty levels of the cohorts born before

1930 compared with recent cohorts across countries. This result is in accord with other
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studies which examined cohort-specific frailty trajectories in the U.S., England and

Hongkong and reported lower frailty levels in early cohorts compared to recent cohorts

[71, 72, 75]. Similar findings were also observed in Hongkong for cohort-specific

trajectories of multimorbidity [76]. It is possibly due to healthy survivor effect, in which

respondents in earlier cohorts are healthier individuals who can live long enough to be

surveyed.

In addition, our finding of markedly higher age-adjusted frailty levels in the cohorts

born from 1930 and thereafter may demonstrate a real deterioration in late-life health of

generations who spent their in utero stage and formative years during the Great

Depression, the World War II (WW2) , and the subsequent economic recovery period.

This is in agreement with the literature on the impact of economic hardship and wartime

exposure during in utero period and childhood on later life health [77, 78, 79, 80, 81, 82,

83, 84, 85, 86, 87, 88]. Malnutrition, starvation, and trauma are major problems during the

Great Depression and WW2 [80, 81, 89] that may have long-term health effects. In

epidemiology studies of famines, fetal undernutrition has been found associated with a

broad spectrum of health consequences in adulthood, including lower self-reported health

[82], heart disease [82], and adult antisocial personality disorders [83], diabetes [84] and

schizophrenia [84, 85]. An analysis of the Seige of Leningrad evidenced the association

between starvation and war trauma in childhood or adolescence and elevated risk of

cardiovascular disease, breast cancer, and higher blood pressure at middle age [86]. Of the

SHARE sample, respondents experiencing war were found to have an increased

probability of suffering from lower self-rated health, heart disease, diabetes, and

depression as a result of hunger, dispossession, persecution, and having an absent father

[81]. However, a US-based study of the 1930s birth cohort found little evidence of the

effect of in utero economic hardship on late-life health [90]. This suggests that long-term

health effects of the Great Depression and the World War II may vary greatly from

country to country, depending on its unique conditions.
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Our analyses revealed contrasting patterns of age-adjusted frailty levels across the

cohorts born from 1935 and thereafter amongst countries - specifically, a noticeable

downtrend was observed in Italy and Spain, whereas there was no substantial difference

across cohorts in the others. A possible explanation for age-adjusted cohort differences in

Italy and Spain might be their welfare regime. Although cohorts born between 1940 and

1955 were generally more income-privileged than previous cohorts, such generational

inequalities were stronger in conservative welfare states2, especially in Italy and Spain

[93]. Lower income, in turn, has been found associated with worse health outcomes,

including frailty [94, 95, 96]. The association between income and health would be

amplified by Southern European welfare regime3, which is characterized by a fragmented

system of welfare provision and a healthcare with partial and limited coverage [98].

Correspondingly, in Italy and Spain, the 1930s cohorts had higher frailty levels than

successively younger cohorts. On the other hand, the lack of evidence for cohort

differences in other countries is in line with the result from a British analysis, which also

found little evidence of differences in frailty levels across recent cohorts (aged 50 to 70 in

2002) [71]. In a recent study of grip strength trajectories in Germany, Sweden, and Spain,

using data from the SHARE, no clear pattern of cohort effects was detected for Sweden,

and an increasing trend across late birth cohorts was reported for Spain [99]. These

findings agree with our results, as an inverse relationship between grip strength and frailty

is expected. However, the study reported a hill-shaped pattern with the highest grip

strength in the 1940-1945 cohort for Germany, which disagrees with our results. This

illustrates the potential for variability in cohort differences across different domains of

health.
2Esping-Andersen’s typology classifies welfare states into three regime types (Liberal, Conservative,

Social Democratic). Of our studied countries, Austria, Belgium, Germany, France, Italy, and Spain
are classified as conservative welfare states; Denmark and Sweden as social democratic welfare states;
Switzerland as a liberal welfare state [91, 92].

3Ferrera’s four-fold typology makes a distinction between the Scandinavian (Social Democratic), Anglo-
Saxon (Liberal), Bismarckian (Conservative) and Southern European countries. Of our studied countries,
Italy and Spain are classified as Southern European welfare states instead of Bismarckian (conservative) ones
as in Esping-Andersen’s typology [97].
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We observed a variation in overall age-adjusted frailty levels across countries: (i)

lowest in Denmark, Sweden, and Switzerland; (ii) higher in Austria, Belgium, Germany,

and France; (iii) and highest in Italy and Spain; however, in recent cohorts, frailty level of

Italy and Spain were similar to that of Austria, Belgium, Germany, and France. In

accordance with the present results, previous cross-sectional studies of self-reported

health outcomes on the SHARE sample have demonstrated that Scandinavian respondents

were the healthiest and respondents living in Southern Europe were the least healthy [100,

101, 102]. This cross-country discrepancy could be attributed to idiosyncrasies in

historical development of each country, especially regarding the Great Depression and

WW2. In WW2, Denmark, Sweden, and Switzerland adopted a neutral position and were

not or little afflicted by war4 [104, 105]. Despite some economic slowdowns due to the

Great Depression and WW2, generally these countries experienced a consistent economic

growth, as reflected by GDP per capita (see Appendix B). Conversely, the economic

impact of WW2 was much more destructive for the countries involved, and the Great

Depression also hit these countries harder, especially for Italy with a stagnant economic

growth until post-war period (see Appendix B). As for Spain, the 1936-1945 period

witnessed a disastrous civil war, and subsequent fierce oppression and economic slump

[106]. Spanish economy remained sluggish until late 1950s, while other countries’

post-WW2 economy recovered strongly thanks to financial aid under the Marshall Plan

[107] (see Appendix B). Further, among war-afflicted countries, age-adjusted frailty levels

vary from country to country for earlier cohorts but converge to similar levels for post-war

cohorts, suggesting historical milestones as a key driver of cross-country differences in

frailty levels. Without catastrophic, traumatic events that affected countries differently

such as the Great Depression and wars, cohort effects would be rather similar across the

countries.

Moreover, cultural differences in health perception and response styles may contribute

4“Although mainland Denmark was under German occupation from April 1940 to the end of WW2, it was
never affected by major war events” [103]
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to the cross-country variations observed. It has ben shown that respondents from Denmark

and Sweden had tendency to largely over-rate their health whereas Germans tend to under-

rate their health [100]. If differences in reporting styles are taken into account, cross-

national variations in frailty levels would be reduced but not eliminated.

We further explored gender-stratified frailty trajectories and found higher frailty levels

in women than in men, which corroborates the findings of a great deal of previous works

in the ‘male-female health-survival paradox’ [42, 101, 102, 108, 37, 109]. Nevertheless,

except in Italy and Spain, gender differential in cohort-adjusted frailty levels was

relatively small. The wider gender gap seen for Southern European countries might be

attributed to their welfare system, which is often criticized for worsening women position

and health [110, 111]. The ‘age gradient’ of frailty progression was similar for men and

women in most countries, except Belgium where frailty gender gap was widening with

age. This reflects cumulative disadvantages of women over life-course [112], but also

suggests that the ‘cumulative disadvantage’ effect would vary between countries.

Furthermore, our analysis revealed that across countries, gender inequality in age-adjusted

frailty levels was attenuated progressively in recent cohorts, which appears to be

encouraging for the global effort to close gender gap. However, for several countries, this

seemingly improving trend was at the expense of increased frailty score for males. A

possible explanation is that the more pronounced increase in life expectancy of men in

recent cohorts makes stronger healthy survivor effect in men. Yet the reasons behind the

phenomenon of men losing their health advantage remain unclear and call for future

research.

Our study is subject to some limitations. First, as in other cross-national comparative

studies, an important concern is the incomparability of available data due to translation

and adaptation of instruments [113]. It is not always possible to find words in different

languages that can convey the exact meaning of a construct [114]; and different modes of

survey administration can have an effect on responses [113]. Second, the inherent limitation
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of APC analysis is that for model identification, it is logically infeasible to completely tease

age, period and cohort effects apart. As shown in Bell and Jones (2014) [67], age and

cohort effects could be overestimated if there is a period trend. Another limitation pertains

to selection bias, as healthier individuals may be more likely to respond to the survey.

2.5 Conclusion

Using an age-cohort-period approach, this study compared frailty trajectories of older

adults across a sample European countries, teasing apart age and cohort effects in frailty

trends. The study found universal parabolic age trends, but country-specific cohort effects.

Women were generally more frail than men at any age, and the gender gap was narrowed

in more recent cohorts. Our research adds a new cross-nationally comparative perspective

about frailty trends to the literature.
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CHAPTER 3

HEALTH STATUS TRANSITIONS AMONG COMMUNITY-LIVING ELDERLY

IN EUROPE: A LATENT TRANSITION ANALYSIS

3.1 Introduction

The global population is ageing, posing increasing challenges in the eldercare to

governments, families, and health service providers. This requires care interventions

tailored to individuals’ problems and needs. For this purpose, frailty, a dynamic state

involving the interaction of different functioning domains, was introduced as a proxy for

the severity of the ageing process and has become a critically important health problem in

late-life care. Frailty is associated with, but distinct from, morbidities and disabilities

[115]. Thus, frailty provides a conceptual framework for moving away from the organ-

and disease-based approaches towards a health-based, integrative approach [116].

However, in the absence of a gold standard, the conceptualization and

operationalization of frailty remain debatable. Most frailty definitions greatly emphasize

physical deficiencies, with characteristics such as unintentional weight loss, slowness, or

morbidities. From a broader approach, which sees human beings as ‘more than the sum of

their parts’, researchers have also explored social and psychological domains of frailty

[117]. These domains are characterized by cognitive impairments, mood changes, or

social factors. Such an integral definition of frailty, corresponding to the definition of

health of the World Health Organization (WHO), is: “Frailty is a dynamic state affecting

an individual who experiences losses in one or more domains of human functioning

(physical, psychological, social), which is caused by the influence of a range of variables

and which increases the risk of adverse outcomes" [116].

Frailty might be conceptualized as a continuum between non-frail and frail (e.g.,
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Frailty Index [31]), or as categories (e.g., Frailty phenotype [28]). While the former

captures the dynamic nature of frailty, where the actual state of a frail older person can be

positioned along this continuum, the latter sets boundaries to distinguish between different

levels of frailty severity. Nevertheless, because of the interaction between domains [117],

their combinations would create considerable heterogeneity in the group of people labeled

frail, and it remains unclear which specific combinations lead to adverse health outcomes.

Differentiating those people into more homogenous subgroups would facilitate

interventions more targeted to underlying problems.

Specifying older people to frailty subgroups based on severity or deficit domains,

however, is questionable. Severity-based classification typically relies on the total score of

considered deficits, which assumes that all deficits equivalently measure frailty severity.

Domain-based classification appears to ignore evidence showing that deficits in different

domains are highly correlated and that many older adults suffer from deficits in multiple

domains.

To uncover unobserved subgroups of frailty within our study sample, we choose a

latent class modeling framework, which is person-centered analyses. Individuals are

categorized based on patterns of associations among a set of observed variables. While

there have been a number of studies using latent class models for exploring frailty

topologies and trajectories, few have considered social functioning domain and examined

changes in membership over time [118, 119]. Of interest in this current study are whether

there are meaningful subgroups of European older people who present similar

constellations of health problems, and how individuals change their membership over

time. Two aims of the research are: i) to identify distinct frailty classes, with

socio-psychological domains taken into account, at each time point by latent class

analysis, and ii) to study transitions across frailty classes and to death over three time

points by latent transition analysis.

37



3.2 Methods

LTA requires a step-wise approach to appropriately capture transitions in health status over

time. In this section, we first provide a brief overview of LCA and LTA, followed by an

application to the data derived from the Survey of Health, Ageing and Retirement in Europe

(SHARE) to answer our research questions.

3.2.1 Overview of LCA and LTA framework

Latent class analysis (LCA) LCA is a model-based clustering method. Unobserved

subgroups of a population are explored based on the conditional probabilities of response

patterns to a set of observable indicators given a postulated latent class model. Data for

the analysis are the pairs of a response pattern and its frequency count. With all indicators

being categorical in LCA, the multinomial distribution of the data arises naturally, and the

general unrestricted LCA model takes the form of a multinomial probability model [120,

121]. Two sets of parameters specify the model: i) the γ parameters represent the overall

probabilities of cluster membership, and ii) the ρ parameters represent the probabilities of

observing a given response conditional on cluster membership [120]. The classical LCA

approach relies on three assumptions as follows:

• A1. The population is partitioned into exhaustive and mutually exclusive subgroups.

• A2. Latent classes are uniquely characterized by the conditional probabilities of

response patterns ρ′s . The quantities fully define latent classes and distinguish them

from each other.

• A3. Within a class, the observed indicators are statistically independent of each other

(i.e., local/conditional independence).

Violation of the local independence assumption (i.e., the existence of locally dependent

item pairs) would be the main cause of model misfit, which is picked up by overall fit
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statistics and information criteria. The assumption violation can be remedied simply by

including additional classes to account for the local dependence. However, this assumption

is too restrictive and can be unrealistic in many practical applications [122]. For example,

when searching for distinct syndromes, for each pair of symptoms, it seems unlikely that the

occurrence of any one symptom will be unrelated to the other for any diagnostic category

[123]. The pursuant additional latent classes would be spurious and/or of no scientific

interest, so a model with fewer classes is preferred [124, 125]. Therefore, relaxing the

local independence assumption may be necessary to obtain substantive and interpretable

subgroups.

Class enumeration is based on the compromise of standard fit statistics, classification

diagnostics, interpretability, and parsimony [126, 127, 128]. First, a series of LCA models

is conducted by sequentially adding classes until a model fits data well, as indicated by

absolute and relative fit statistics. Overall model fit of a particular model is often evaluated

with likelihood ratio Chi-square goodness-of-fit test, where an insignificant result shows

model-data consistency. Chi-square test, however, is well-known for being sensitive to a

negligible, inconsequential model misfit in large samples [126, 129]. It is suggested that a

closer inspection of standardized residuals (stdres) could assess whether a model is close

enough to a good fit. Specifically, a well-fitting model is expected to have a small

proportion (i.e., less than 5%) of response patterns with large standardized residuals (i.e.,

|stdres| ≥ 3) [126]. Also, this test is not appropriate with large sparse tables - a particular

concern of a mixture model with many categorical indicators, since the test statistic

(denoted as G2) deviates from the asymptotic Chi-square distribution [130]. Even in cases

appropriate for its use, the Chi-square goodness-of-fit test indicates the overall model

misfit but does not help detect the source of the misfit. In addition to global model fit, a

local fit measure called bivariate residual (BVR) can be used to detect local dependencies

between item pairs [124]. The BVR has the same form as Pearson residual, and some

rules of thumb are available for the use of BVR - for example, one rule suggests a value of
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greater than 3.84 as an indication of significant misfit, while another rule recommends a

cut-off at 1.0 [131]. However, for reasons of model stability and identifiability, it is not

advisable to relax all local dependencies [132]. When local dependencies present between

multiple item pairs, the most severe violations, as guided by BVRs, should be freed [132,

133].

Relative fit statistics are used for comparison between two or more competing models,

which include the Akaike information criterion (AIC) [134], the Bayesian information

criterion (BIC) [135], sample size adjusted BIC (ssaBIC) [135], the Lo-Mendell-Rubin

likelihood ratio test (LMR-LRT) [136], the adjusted version of LMR-LRT (aLMR-LRT)

[136], and the bootstrapped likelihood ratio test (BLRT) [137, 138]. Smaller values of

information criteria indicate better model fit; hence, a model with the lowest AIC or BIC

among the set of considered models is preferred. However, there is no guarantee that

information criteria will arrive at a single lowest value before reaching the maximum

number of classes considered. In such cases, exploring the marginal gains in model fit via

‘elbow’ plots of these indices can guide class enumeration [126]. LRT tests provide a

comparison of two nested models, with p < 0.05 suggesting the k-class model fits

significantly better than the (k-1)-class model. However, as with other statistical tests,

these LRT tests depend on sample size [139]. A statistically significant test result does not

necessarily mean a practical difference in model fit in very large samples.

Despite the exploratory nature of LCA, the model selected by statistical analysis is

useful only if it can supply theoretically interpretable latent classes [128]. The selection

of the final model should be guided by the conceptual meaningfulness and plausibility

of classes. Latent classes are interpreted and labeled on the basis of the probabilities of

responses to each observed variable for each class (ρ’s). It is qualitative and quantitative

differences between latent classes that characterize the latent variable.

After selecting the best-fitting model, it is critical to evaluate how well the candidate

model has assigned individuals into latent classes [126]. Class assignment for each
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individual is not definite, but the probabilities of being in each of the latent classes are

estimated by the model and are often called estimated posterior class probabilities. A

widely used index summarizing the overall accuracy of membership classification for the

whole sample across all latent classes is entropy, given by:

EN = −
N∑
i=1

J∑
j=1

αijlogαij

, where N denotes the number of observations, and J denotes the number of classes.

Entropy is bounded in [0,+∞), where a higher value indicates a larger amount of

uncertainty in classification. Relative entropy is a rescaled version of entropy:

REN = 1− EN

NlogJ

, ranging from 0 to 1 where a higher value indicates a better classification [140]. Although

there is no clear cut-off of REN, Clark and Muthén suggested values of 0.80, 0.60, and

0.40 representing high, medium, and low entropy, respectively [141]. Two indices of

class-specific assignment quality are average posterior class probability (AvePP) and odds

of correct classification (OCC). Latent classes with AvePP ≥ 0.70 and OCC ≥ 5.0 are

considered well-separated and adequately accurate [142]. These diagnostics should not be

used to evaluate model fit but are more relevant to the utility of latent class membership in

subsequent analyses [126]. An entropy level of 0.60 or higher has been found sufficiently

good class separation in a multistage classify-analyze approach, and the analysis is

expected to work as efficiently as the 1-step approach [141, 143].

Latent transition analysis (LTA)

LTA is a latent Markov model, estimating membership transition patterns of dynamic

constructs over time. Stage membership is not observed but is identified by a set of

observed variables. Thus, LTA consists of a measurement component (usually LCA) that
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captures latent classes and a structural component where the latent class variable at time

(t+ 1) is auto-regressed on the latent class variable at time t.

Measurement invariance (MI): MI refers to the stability of a latent class solution,

characterized by equality of conditional item probabilities across time. Specifications of

MI vary from full MI to partial MI and full measurement non-invariance. Full MI is often

assumed in LTA applications since it indicates latent classes at different time points are

defined identically, allowing a straightforward interpretation of transition probabilities

[144]. However, depending on the nature of the construct, observed variables measuring

it, and considered timeframe, full MI may not be plausible. Thus, both theoretical and

practical reasons determine whether measurement invariance should be assumed.

Statistically, MI can be checked by comparing fit indices (i.e., AIC, BIC, ssaBIC) of

models with and without MI. MI can also be formally tested using a likelihood ratio test,

with a significant test result rejecting MI [145].

Analysis strategy: The standard one-step LTA simultaneously estimates its

measurement and structural components by a joint model. This approach efficiently

incorporates classification uncertainties into the regression analysis. However, the

involvement of autocorrelations and/or auxiliary variables could alter the structure and

meaning of latent classes if the associations between latent classes and indicator variables

are not sufficiently strong [143, 146]. Conversely, the two-step classify-analyze approach

frees latent class formation the influence of structural model and/or auxiliary variables, but

treating latent classes as true states (i.e., ignore measurement errors in classifications) can

lead to biased estimates in subsequent analyses [141]. The two-step approach, hence, is no

longer recommended [147].

The three-step approach offers a separate treatment of measurement and structural

models while taking the inherent uncertainty in classification estimates into account. First,

the unconditional latent class structure is estimated independently from the structural
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model to create a variable N for each observation’s most likely latent class. Second, the

measurement error for the variable N is computed from the estimated posterior class

probabilities. Third, the structural model is estimated with the latent class variable

measured by N with uncertainty rates prefixed at the values obtained from step two [143].

This approach is an improvement over the two-step approach because of the adjustment

for classification uncertainties and is expected to work as efficiently as the one-step

approach with an entropy level of 0.60 or higher. More details about the three-step LTA

procedure can be found in [143, 148].

Despite its advantages over the one-step approach, the three-step relies on the

assumption of no direct effects of auxiliary variables on the indicators used in the

measurement model, which is often violated in practice [149]. Ignoring such direct effects

has been shown to lead to biased parameter estimates and alter the intended meaning of

the latent class [143]. One possible solution is to include direct effects in the measurement

model in Step 1 [143, 150]. This approach, however, still leaves a certain amount of bias

[151]. Hence, Vermunt and Magidson recently proposed a modification of the three-step

approach, characterized by the inclusion of covariates with direct effects in the step-one

model and the classification error correction matrix in step three [151]. Specifically, the

step-one model should contain relevant direct effects as well as the effects of the included

covariates on the latent classes; and in step three, the classification error correction matrix

is allowed to differ across categories of the covariates with direct effects (see [151] for

more details).

3.2.2 Application to SHARE data

Data

Secondary data analysis was conducted on data from wave 4 to wave 6 of the Survey of

Health, Ageing and Retirement in Europe (SHARE)[53]. Description of the SHARE was

provided in Chapter 2. We limited our analysis to individuals aged 60 or older in 2011
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(interview year of wave 4) in twelve countries - Austria, Germany, Sweden, Spain, Italy,

France, Denmark, Switzerland, Belgium, Czech Republic, Slovenia, and Estonia.

Measures

We included categorical indicators belonging to six domains as described below. These

indicators, if treated as continuous variables, show an apparent floor effect, which leads

to a non-meaningful and non-discriminatory classification with a giant, dominant class,

regardless the number of classes fitted. Therefore, the indicators were categorized based

on levels commonly accepted in the clinical setting.

• Self-rated health was measured by a single item about how the individual would

say about his/her health at present, ranging from 1 (Excellent) to 5 (Poor), with a

higher score indicating worse self-rated health. Responses were recoded into three

categories: Good or better, Fair and Poor.

• Cognitive functioning was captured through cognition tests of performance in

verbal fluency, immediate recall, and delayed recall were used, as they are sensitive

measures for discriminating between cognitively healthy individuals and those with

MCI or dementia [152, 153, 154]. Threshold performance scores for impairment

were set in relation to scores previously shown to be indicative of MCI or AD, as

follows: verbal fluency scores < 15; immediate recall scores < 5; and delayed recall

scores < 4 [153, 154]. A single indicator assessing memory functioning is coded as

‘Impaired’ if at least one of the recall tests indicates impairment.

• Social functioning was assessed by asking respondents whether they performed any

of the following five activities in the last month: i) doing voluntary or charity work,

ii) attending an educational or training course, iii) visiting a sport, social, or other

kinds of club, iv) participating in a political or community-related activity, and v)

play cards or games like chess . If at least one activity was undertaken almost every
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week or two activities were undertaken almost every month, social functioning is

coded as ‘Good’.

• Mental health was measured by the EURO-D scale as a binary indicator [155]. The

EURO-D scale includes 12 items about recent moods, where having four or more

symptoms denotes clinically-verified depression [155].

• Morbidity status was based on self-reported information about chronic diseases

(cardiovascular disease, hypertension, high blood cholesterol, stroke or cerebral

vascular disease, diabetes, chronic lung disease, arthritis, and stomach or duodenal

ulcer). The variable is recoded to ‘None’, ‘1 disease’, and ‘≥ 2 diseases’.

• Functional limitation was measured using the Global Activity Limitation Indicator

(GALI), the Activities of Daily Living Index (ADL), and Instrumental Activities of

Daily Living Index (IADL). GALI is a single-item measure of activity limitation in

the last six months, with three possible responses - ‘Not limited’, ‘Limited, but not

severely’, and ‘Severely limited’ [156]. ADL is a binary indicator adapted from the

Katz ADL scale [157], indicating whether a subject had any limitations in

performing ‘dressing’, ‘bathing/showering’, ‘eating, cutting up food’, ‘walking

across a room’ and ‘getting in or out of bed’. IADL is another binary indicator

adapted from the Lawton IADL scale [158], indicating whether a subject had any

limitations in performing ‘telephone calls’, ‘taking medications’, ‘managing

money’, ‘shopping for groceries and ‘preparing a hot meal’.

If all items constructing the indicator were missing, the indicator was assigned a missing

value. Otherwise, missing values in items were imputed as 0.

Analysis plan

Using Latent GOLD 5.1, we conducted latent transition analyses using the three-step

approach, following the model-building strategy described in [151]. First, we started with
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an exploration of measurement model alternatives for cross-sectional data. LCA models

with 1 to 9 classes were successively fitted to data at each occasion T1, T2, T3. The optimal

number of classes was first selected using standard relative fit statistics. The chosen model

was then checked for local and global fit by examining BVRs and Chi-square

goodness-of-fit. Local independence assumption was relaxed by stepwise adding

log-linear local dependency terms of the violated pairs of indicators. Local dependency

terms were added one at a time, followed by re-checking local independence. The process

was repeated until the adequate global and local model fit was achieved. Although several

pairs of items had a violation for model identifiability, only the most severe violations of

local independence were relaxed [132, 133] (also see Appendix). Based on the patterns of

the probabilities of item endorsement, we examined if each class is meaningful and

interpretable. The quality of classification was then evaluated using REN and AvePP.

Once an appropriate unconditional latent class model was identified, two covariates

(baseline age and gender) were included in the analysis to validate emergent classes. Each

covariate was included in the model one at a time and determined whether it had direct

effects on the indicators based on BVRs. Subsequently, covariates with direct effects were

simultaneously in the model, where not only the identified direct effects but also the effects

of the covariates on the latent classes were specified.

Step three in the model-building strategy proposed by Vermunt and Magidson [151]

requires a special option DIF, which has yet to be available in the currently released Latent

GOLD version 1. Therefore, following Nylund-Gibson et al. [148], if the emergent latent

classes and the relative size of classes remained stable across the LCA model with and

without covariates, covariate results from the three-step approach did not differ much from

the one-step approach and we proceeded with the usual three-step approach.

In the next step, we assessed the implausibility of MI across time points and conducted

three-step LTAs. The models were estimated using the long data format and including

1Option DIF is made available in Latent GOLD version 6 [151]. The most recently released version at the
time of writing this manuscript is version 5.
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death and lost to follow-up (LTF) as known classes, which minimizes attrition bias. MI was

checked by comparing fit indices and an LRT between models with and without allowing

latent class parameters to vary across time 2. In the third step of LTA, we specified a first-

order autoregression model, estimating the probabilities of transitioning between latent

classes and to death or LTF over the study period. We first fitted an LTA model without

covariates and then a model with baseline age and gender.

Under the assumption of missing completely at random (MCAR) or missing at random

(MAR), missing latent class indicators were modeled by full information maximum

likelihood (FIML). Conversely, case-wise deletion was used for missing covariates in the

regression steps. LATENT GOLD syntax is provided in Appendices.

3.3 Results

3.3.1 Sample Description

The baseline sample consists of 33,330 respondents between 60 to 104 years old, with the

mean age of 71.27 (SD: 8.09) and 55.84% females. The distribution of observed

indicators shown in Table 3.1 reveals a great heterogeneity in the sample. There are

negligible differences in the distribution of demographic variables and health indicators on

three occasions, suggesting that for observed variables, individuals who died or were lost

to follow-up were similar to those remaining in the study. Given the low proportions of

missingness (less or slightly greater than 5%), the assumption of MAR is reasonable.

3.3.2 Frailty profiles

Table 3.2 and Figure 3.1 present fit statistics of 1-class to 9-class models. For each time

point, the elbow plot of BIC indicates that the most substantial reduction in the

information criteria had occurred by the number of class equal 4 (k=4) and flattened out

2In testing MI, LATENT GOLD requires users to specify parameters that vary across time points, whereas
Mplus requires users to indicate which parameters are the same across time points.
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afterward, even though these fit statistics had the lowest values at k=8 (BIC) or higher

(AIC and SSAIC). Inconsistent with information criteria, the LRTs were significant for all

estimated models, which is not unexpected for our huge sample. The lack of consensus

among model fit measures, however, is not uncommon. In such a case, it is advisable to

compromise between statistical fit and interpretability in the model selection [128].

Therefore, we considered the number of latent classes k=4 for subsequent steps.

The local independence 4-class model M0 appears to be a model misfit. As our sample

size is very large, a significant G2 test result does not necessarily mean significant and

consequential model misfit. Unfortunately, standardized residuals are not available in

Latent GOLD for a closer inspection as Masyn (2013) suggested [126]; hence, we relied

on BVRs to evaluate absolute model fit. BVRs calculated under M0 are displayed in

Table 3.3. It can be seen that BVRs were substantially large for the local dependencies

between two pairs of indicators - (1) cognitive functioning and social functioning, and (2)

cognitive functioning and self-rated health. Based on this, we formulated a model M1

allowing the log-linear local dependence parameters corresponding to the two indicator

pairs to be freely estimated. BVRs under model M1 reflected great improvement in model

fit over model M0, as presented in Table 3.3 presents.

Table 3.4 and Figure 3.2 show class-specific health indicators probabilities for the four

classes after relaxing local dependencies in M1. The four emergent classes were

remarkably similar in structure but differed in their probabilities of item endorsement. In

general, the probabilities of impairment in health indicators were increasing across

classes, and the two most impaired classes were best distinguished by the high

probabilities of ADL and IADL. Thus, the classes differentiated individuals’ frailty

conditions based on degree rather than type. The classes were labeled to reflect this

feature.

Health indicators at T1 clustered into the four following classes:

1. The Relative Healthy class (39%)consists of individuals with good self-rated health
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who reported relatively low probabilities of chronic diseases (i.e., morbidities and

depression) and manifested low probabilities of cognitive disorders, functional

limitations, and disability.

2. The Pre-frail class (38%) comprises people who reported a moderate probability of

fair self-rated health and had comparatively higher probabilities of chronic diseases,

cognitive disorders, and activity limitations but were unlikely to be disabled.

3. The Independent Frail class (12%) consists of people with fair or poor self-rated

health who reported even higher probabilities of chronic diseases (especially with

co-morbidity), cognitive disorders, and activity limitations. The likelihood for them

to present with ADL or IADL disability was minimal.

4. The Dependent Frail class (10%) comprises individuals with fair or poor self-rated

health who reported the highest probabilities of impairments in health indicators of

interest. They differ from those in the Independent Frail class in terms of the

substantially high probabilities of functional limitations and disability.

The structure of classes was reproduced for T2 and T3, and the distribution of classes did not

differ significantly. At all three times, the classification derived from M1 is of good quality

with medium entropy (REN=0.72, 0.72, and 0.73 respectively) and all AvePPs well above

70%, as shown in Table 3.5. This warrants the use of a three-step procedure in subsequent

LTA.
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Figure 3.1: Elbow plot of BIC index of LCA models at each time point.
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Table 3.1: Sample description at each time point

Variable (Label)
T1 (N = 33330) T2 (N=25485) T3 (N=20496)

n % n % n %

Self-rate health
Male 14719 44.16 11080 43.48 8764 42.76
Female 18611 55.84 14405 56.52 11732 57.24

Baseline age, Mean (SD) 71.27 8.09 70.80 7.71 70.36 7.41
Self-rate health

Good or better (0) 18158 54.47 13773 54.04 10897 53.17
Fair 10561 31.69 8157 32.01 6874 33.54
Poor 4579 13.74 3541 13.89 2721 13.28
Missing 32 0.09 14 0.05 4 0.02

Social functioning
Good 8435 25.31 6623 25.99 5409 26.39
Poor 24322 72.97 18252 71.62 14040 69.50
Missing 573 1.72 610 2.4 1047 5.11

Cognitive functioning
None impaired 12813 38.43 10608 41.62 8815 43.01
Fluency OR memory impaired 12143 34.43 8747 34.32 6804 33.20
Fluency & memory impaired 7212 21.64 5187 20.35 3903 19.04
Missing 1162 3.48 943 3.70 974 4.75

ADL limitations
No 28471 85.42 21494 84.34 17161 83.73
Yes 4819 14.46 3979 15.61 3321 16.20
Missing 40 0.12 12 0.05 14 0.07

IADL limitations
No 29349 88.06 22111 86.76 17638 86.06
Yes 3941 11.82 3362 13.19 28.44 13.87
Missing 40 0.12 12 0.05 14 0.07

GALI
Not limited 15566 46.70 12127 47.58 9341 45.57
Limited but not severe 11671 35.02 8544 22.53 7075 34.52
Severely limited 6075 18.23 4802 18.84 4076 19.89
Missing 18 0.05 12 0.05 4 0.02

Chronic diseases
None 8195 24.59 6091 23.90 4671 22.79
1 disease 10307 30.92 8048 31.58 6241 30.45
≥ 2 diseases 14791 44.38 11300 44.34 9572 46.70
Missing 37 0.11 46 0.18 12 0.06

Depression
No 22726 68.18 17547 68.85 14105 68.82
Yes 9509 28.53 7094 27.84 5416 26.42
Missing 1095 3.28 844 3.31 975 4.7651



Table 3.2: Model fit statistics of LCA at each time point

Model Log-likelihood AIC BIC SSABIC G2 df G2 p-value
Baseline T1

1-class LCA -200737 401499 401600 401561 52862 7596 <0.0001
2-class LCA -182316 364682 364892 364812 16019 7583 <0.0001
3-class LCA -178891 357858 358178 358057 9170 7570 <0.0001
4-class LCA -178157 356417 356846 356684 7702 7557 0.12
5-class LCA -177749 355626 356165 355961 6886 7544 1.0
6-class LCA -177449 355051 355699 355454 6285 7531 1.0
7-class LCA -177256 354691 355449 355162 5898 7518 1.0
8-class LCA -177177 354559 355426 355098 5740 7505 1.0
9-class LCA -177114 354459 355436 355862 5615 7492 1.0
4-class LCA-RC -177732 355574 356036 355862 6851 7553 1.0

Two-year follow-up T2
1-class LCA -154394 308811 308909 308871 44654 6627 <0.0001
2-class LCA -138955 277960 278164 278085 13777 6614 <0.0001
3-class LCA -136155 272386 272696 272575 8177 6601 <0.0001
4-class LCA -135640 271382 271798 271636 7147 6588 <0.0001
5-class LCA -135284 270696 271218 271015 6435 6575 0.89
6-class LCA -135042 270239 270866 270621 5951 6562 1.0
7-class LCA -134893 269967 270700 270414 5653 6549 1.0
8-class LCA -134826 269859 270698 270370 5519 6536 1.0
9-class LCA -134772 269776 270721 270353 5411 6523 1.0
4-class LCA-RC -135278 270666 271114 270939 6423 6584 0.92

Four-year follow-up T3
1-class LCA -123752 247527 247623 247585 34765 5709 <0.0001
2-class LCA -112265 224579 224778 224698 11792 5696 <0.0001
3-class LCA -110108 220291 220593 220472 7478 5683 <0.0001
4-class LCA -109699 219500 219905 219743 6661 5670 <0.0001
5-class LCA -109357 218878 219386 219182 6012 5657 0.0005
6-class LCA -109158 218469 219080 218835 5578 5644 0.74
7-class LCA -109201 218223 218936 218650 5305 5631 1.0
8-class LCA -108947 218101 218918 218590 5157 5618 1.0
9-class LCA -108897 218026 218945 218576 5056 5605 1.0
4-class LCA-RC -109371 218851 219288 219113 6004 5666 0.0009

*All likelihood ratio tests for comparing k-class model to (k-1)-class model are statistically significant.
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Figure 3.2: Latent classes at each time point
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Table 3.3: Bivariate residuals under M0 and M1 at three time points

Item pair
T1 T2 T3

M0 M1 M0 M1 M0 M1

Self-rated health←→ Social functioning 8.19 18.62 5.79 15.35 11.63 24.11
Self-rated health←→ Cognitive functioning 0.78 4.98 0.62 4.54 0.23 2.60
Self-rated health←→ ADL 11.49 11.91 4.53 5.01 9.27 10.08
Self-rated health←→ IADL 1.16 0.72 1.94 1.58 1.64 1.28
Self-rated health←→ GALI 14.90 11.91 14.66 11.66 14.92 12.30
Self-rated health←→Morbidity 2.27 2.15 1.51 1.49 2.20 2.19
Self-rated health←→ Depression 6.25 8.46 11.27 13.35 8.94 10.82
Social functioning←→ Cognitive functioning 293.76 0.03 232.81 0.03 199.93 0.00
Social functioning←→ ADL 9.14 3.88 11.23 5.67 18.25 11.04
Social functioning←→ IADL 3.18 7.27 0.82 3.62 0.61 3.05
Social functioning←→ GALI 17.62 9.80 11.20 5.65 21.84 13.71
Social functioning←→Morbidity 20.67 13.83 10.65 6.24 8.57 5.07
Social functioning←→ Depression 1.68 1.38 0.64 0.76 0.00 0.24
Cognitive functioning←→ ADL 1.53 0.65 2.22 0.67 2.23 0.85
Cognitive functioning←→ IADL 16.94 20.44 14.09 16.97 11.92 14.86
Cognitive functioning←→ GALI 21.59 13.63 14.93 8.21 19.12 11.56
Cognitive functioning←→Morbidity 8.85 5.40 9.72 6.60 4.40 2.39
Cognitive functioning←→ Depression 26.42 0.10 21.88 0.09 34.08 0.04
ADL←→ IADL 7.06 5.62 5.97 4.68 3.90 3.14
ADL←→ GALI 16.57 14.44 7.38 5.80 9.98 7.90
ADL←→Morbidity 2.94 2.68 1.72 1.36 2.75 2.07
ADL←→ Depression 3.61 5.52 2.48 3.81 0.06 0.35
IADL←→ GALI 1.74 1.60 1.22 0.88 1.51 1.26
IADL←→Morbidity 2.69 2.37 1.66 1.56 1.39 1.37
IADL←→ Depression 0.67 1.77 0.09 0.66 0.36 1.37
GALI←→Morbidity 17.30 12.89 19.65 14.74 13.42 9.88
GALI←→ Depression 0.83 0.66 2.30 1.98 1.97 1.81
Morbidity←→ Depression 7.20 7.58 3.85 4.20 0.08 0.10
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Table 3.4: Probabilities of health indicators per frailty profiles obtained from unconditional LCA model M1

Relatively Healthy Pre-frail Independent frail Dependent frail

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Class Size 0.39 0.40 0.41 0.38 0.37 0.38 0.13 0.11 0.10 0.10 0.11 0.12

Self-rate health
Good or better 0.96 0.96 0.95 0.41 0.39 0.36 0.00 0.00 0.00 0.08 0.09 0.09
Fair 0.03 0.04 0.05 0.58 0.59 0.62 0.42 0.43 0.41 0.30 0.31 0.34
Poor 0.00 0.00 0.00 0.01 0.02 0.02 0.57 0.57 0.59 0.62 0.61 0.57

Social functioning
Good 0.40 0.42 0.42 0.21 0.20 0.22 0.11 0.10 0.11 0.03 0.04 0.05
Poor 0.60 0.58 0.58 0.79 0.80 0.78 0.89 0.90 0.89 0.97 0.96 0.95

Cognitive functioning
No impairment 0.54 0.58 0.60 0.36 0.38 0.39 0.26 0.29 0.34 0.11 0.12 0.15
One impairment 0.35 0.33 0.30 0.41 0.39 0.40 0.42 0.40 0.39 0.29 0.28 0.31
Two impairments 0.11 0.09 0.10 0.23 0.22 0.21 0.32 0.30 0.27 0.61 0.59 0.54

ADL limitations
No 0.99 0.99 0.99 0.91 0.91 0.90 0.76 0.74 0.76 0.18 0.16 0.19
Yes 0.01 0.01 0.01 0.09 0.09 0.10 0.24 0.26 0.24 0.82 0.84 0.81

IADL limitations
No 0.99 1.00 0.99 0.95 0.94 0.94 0.93 0.91 0.95 0.09 0.08 0.08
Yes 0.01 0.00 0.01 0.05 0.06 0.06 0.07 0.09 0.05 0.91 0.92 0.92

GALI
Not limited 0.85 0.86 0.84 0.32 0.33 0.29 0.04 0.02 0.03 0.02 0.02 0.03
Limited but not severe 0.14 0.13 0.15 0.59 0.57 0.59 0.41 0.42 0.39 0.19 0.18 0.20
Severely limited 0.01 0.01 0.01 0.09 0.09 0.12 0.55 0.56 0.58 0.78 0.80 0.77

Morbidity
None 0.45 0.41 0.39 0.13 0.14 0.13 0.07 0.07 0.06 0.11 0.12 0.12
1 disease 0.35 0.37 0.36 0.33 0.33 0.30 0.18 0.18 0.19 0.22 0.23 0.23
≥ 2 diseases 0.20 0.22 0.25 0.53 0.54 0.56 0.76 0.75 0.76 0.67 0.65 0.66

Depression
No 0.90 0.91 0.91 0.70 0.70 0.70 0.39 0.37 0.37 0.27 0.28 0.32
Yes 0.10 0.09 0.09 0.30 0.30 0.30 0.61 0.63 0.63 0.73 0.72 0.68



Table 3.5: Quality of classification obtained from unconditional LCA model M1

T1 T2 T3

AvePP (%)1

Relatively Healthy 82.58 87.34 88.72
Pre-frail 86.96 80.33 79.32
Independent Frail 80.22 78.45 86.33
Dependent Frail 91.35 90.38 92.56
Relative entropy 0.72 0.72 0.73

1 Average posterior class probability.
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Table 3.6: Bivariate residuals for the covariates obtained by including one at a time in the M1 model

Time Independent Self-rate health Social functioning Cognitive functioning ADL IADL GALI Morbidity Depression

T1
Age 16.26 2.73 184.09 2.54 53.02 8.33 7.71 7.32
Gender 8.10 4.83 89.81 3.32 0.03 9.65 1.31 495.27

T2
Age 10.59 7.94 139.89 0.08 24.56 11.12 6.42 0.01
Gender 5.49 0.05 66.70 3.13 0.02 9.29 2.06 371.63

T3
Age 10.29 5.29 90.42 0.74 34.57 4.66 2.09 3.58
Gender 4.08 2.42 56.89 1.66 0.50 3.78 1.65 289.03
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Table 3.7: Conditional probabilities of health indicators per frailty profiles in the LCA model including direct effects of covariates on
indicators M2.

Relatively Healthy Pre-frail Independent frail Dependent frail

T0 T1 T2 T1 T2 T3 T1 T2 T3 T1 T2 T3

Class Size 0.40 0.40 0.41 0.39 0.38 0.38 0.13 0.12 0.10 0.09 0.10 0.11

Self-rate health
Good or better 0.96 0.95 0.94 0.41 0.41 0.35 0.01 0.00 0.00 0.08 0.09 0.08
Fair 0.04 0.05 0.06 0.57 0.57 0.62 0.40 0.43 0.37 0.29 0.30 0.34
Poor 0.00 0.00 0.00 0.02 0.02 0.02 0.59 0.56 0.63 0.63 0.61 0.58

Social functioning
Good 0.38 0.41 0.40 0.22 0.22 0.23 0.11 0.10 0.10 0.03 0.05 0.06
Poor 0.62 0.59 0.60 0.78 0.78 0.77 0.89 0.90 0.90 0.97 0.95 0.94

Cognitive functioning
No impairment 0.53 0.57 0.59 0.37 0.40 0.41 0.26 0.29 0.33 0.11 0.13 0.16
One impairment 0.35 0.33 0.31 0.41 0.38 0.39 0.42 0.40 0.39 0.29 0.29 0.31
Two impairments 0.12 0.10 0.11 0.22 0.21 0.21 0.33 0.31 0.28 0.60 0.59 0.53

ADL limitations
No 0.99 0.99 0.99 0.91 0.91 0.89 0.72 0.73 0.70 0.17 0.14 0.19
Yes 0.01 0.01 0.01 0.09 0.09 0.11 0.28 0.27 0.30 0.83 0.86 0.81

IADL limitations
No 0.99 1.00 0.99 0.95 0.94 0.93 0.92 0.88 0.97 0.01 0.07 0.00
Yes 0.01 0.00 0.01 0.05 0.06 0.07 0.08 0.12 0.03 0.99 0.94 1.00

GALI
Not limited 0.86 0.88 0.85 0.31 0.32 0.26 0.04 0.02 0.02 0.02 0.01 0.02
Limited but not severe 0.13 0.11 0.14 0.61 0.59 0.61 0.39 0.41 0.35 0.18 0.17 0.20
Severely limited 0.01 0.01 0.01 0.09 0.09 0.13 0.58 0.57 0.63 0.80 0.81 0.78

Morbidity
None 0.45 0.42 0.39 0.12 0.13 0.12 0.07 0.07 0.06 0.11 0.12 0.12
1 disease 0.35 0.37 0.36 0.33 0.33 0.30 0.18 0.18 0.19 0.22 0.23 0.22
≥ 2 diseases 0.20 0.21 0.25 0.55 0.54 0.58 0.76 0.75 0.75 0.67 0.65 0.66

Depression
No 0.90 0.91 0.91 0.70 0.71 0.70 0.38 0.37 0.35 0.27 0.28 0.32
Yes 0.10 0.09 0.09 0.30 0.29 0.30 0.62 0.63 0.65 0.73 0.72 0.68



Table 3.8: Covariate effects (odds ratio (OR)) in the LCA model with direct effects M2.

Covariate Latent class T1 T2 T3

Age

Relatively Healthy (ref) 1.00 1.00 1.00
Pre-frail 1.07 1.07 1.06
Independent Frail 1.09 1.09 1.08
Dependent Frail 1.17 1.18 1.18

Female

Relatively Healthy (ref) 1.00 1.00 1.00
Pre-frail 1.33 1.33 1.33
Independent Frail 1.33 1.37 1.27
Dependent Frail 1.51 1.55 1.61

All p-values of Wald tests < 0.0001.

Table 3.9: Fit indices of measurement invariance testing

Log-likelihood BIC AIC SABIC

Measurement invariance -485092 971116 970345 970858
Measurement non-invariance -474269 951243 949007 950496
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Table 3.10: Transition probabilities based on unconditional model

T2 latent class
Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased LTF 1

T1 latent class
Relatively Healthy 0.721 0.077 0.005 0.004 0.014 0.179
Pre-frail 0.049 0.628 0.054 0.047 0.039 0.183
Independent Frail 0.002 0.132 0.460 0.139 0.094 0.173
Dependent Frail 0.001 0.012 0.050 0.508 0.232 0.197

T3 latent class
Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased LTF

T2 latent class
Relatively Healthy 0.750 0.085 0.003 0.004 0.014 0.144
Pre-frail 0.032 0.697 0.063 0.041 0.037 0.129
Independent Frail 0 0.103 0.495 0.168 0.088 0.146
Dependent Frail 0 0.041 0.047 0.515 0.253 0.145

1 Lost to follow-up.
2 Death and LTF are absorbing states.
3 Values in diagonal (in bold) present the probabilities of stayers. Values in the upper triangular represent the probabilities of

progressing to a more frail and disabled class. Values in the lower triangular represent the probabilities of reversing to a better
health class.
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Table 3.11: Transition probabilities from T1 to T3 based on unconditional model

With LTF included
T3 latent class

Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased LTF 1

T1 latent class
Relatively Healthy 0.543 0.116 0.010 0.009 0.028 0.294
Pre-frail 0.057 0.449 0.069 0.059 0.080 0.286
Independent Frail 0.006 0.145 0.243 0.154 0.175 0.277
Dependent Frail 0.001 0.034 0.049 0.271 0.365 0.280

With LTF excluded
T3 latent class

Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased
T1 latent class
Relatively Healthy 0.769 0.164 0.014 0.013 0.040
Pre-frail 0.080 0.629 0.097 0.083 0.112
Independent Frail 0.008 0.201 0.336 0.213 0.242
Dependent Frail 0.001 0.047 0.068 0.376 0.507

1 Lost to follow-up.
2 Values in diagonal (in bold) present the probabilities of stayers. Values in the upper triangular represent the probabilities of progressing to a

more frail and disabled class. Values in the lower triangular represent the probabilities of reversing to a better health class.
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Table 3.12: Covariate effects (odds ratio (OR)) on the transition to a state versus staying in the same state

Covariate Latent class at time T Latent class at time T+1

Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased LTF 1

Age

Relatively Healthy 1.00 1.08* 0.98 1.20* 1.10* 0.99
Pre-frail 0.95* 1.00 1.02* 1.15* 1.13* 1.01*
Independent Frail 1.02 0.98* 1.00 1.08* 1.05* 1.01
Dependent Frail 1.13 1.01 0.93* 1.00 1.07* 1.01

Female

Relatively Healthy 1.00 0.93 0.63 0.85 0.61* 0.92*
Pre-frail 0.92 1.00 0.90 1.02 0.66* 0.93
Independent Frail 0.03 0.97 1.00 1.03 0.35* 0.89
Dependent Frail 0.01 1.06 2.04* 1.00 0.48* 0.96

1 Lost to follow-up.
2 Reference class varies with the origin state (in bold).
3 *p < 0.05

Table 3.13: Overall transition probabilities, adjusting for time-heterogeneity, baseline age and gender

Latent class at time T Latent class at time T+1

Relatively Healthy Pre-frail Independent Frail Dependent Frail Deceased LTF 1

Relatively Healthy 0.742 0.071 0.005 0.004 0.014 0.164
Pre-frail 0.059 0.654 0.044 0.045 0.038 0.159
Independent Frail 0.000 0.145 0.443 0.154 0.091 0.165
Dependent Frail 0.001 0.029 0.045 0.509 0.244 0.171

1 Lost to follow-up.
2 Death and LTF are absorbing states.
3 Values in diagonal (in bold) present the probabilities of stayers. Values in the upper triangular represent the probabilities of progressing

to a more frail and disabled class. Values in the lower triangular represent the probabilities of reversing to a better health class.



3.3.3 Covariates in LCA

Table 3.6 reports BVRs for baseline age and gender obtained by including one at a time in

the M1 model. It shows that age has direct effects on cognitive functioning and IADL, and

gender has direct effects on cognitive function and depression, as corresponding BVRs are

substantially larger than the rest. Consequently, we specified and estimated a model (M2)

with baseline age and gender as covariates and included the encountered direct effects. For

all three occasions, comparing the solutions of M1 and M2, there are no significant shifts

in the classes once covariates are included. Thus, because of the stability of the emergent

classes, accompanied by good quality of classification, we proceeded with the three-step

LTA in a usual way and used the classification obtained from M1. Table 3.6 reports BVRs

for baseline age and gender obtained by including one at a time in the M1 model. It shows

that age has direct effects on cognitive functioning and IADL, and gender has direct effects

on cognitive function and depression, as corresponding BVRs are substantially larger than

the rest. Consequently, we specified and estimated a model (M2) with baseline age and

gender as covariates and included the encountered direct effects. For all three occasions,

comparing the solutions of M1 and M2, there are no significant shifts in the classes once

covariates are included. Thus, because of the stability of the emergent classes, accompanied

by good quality of classification, we proceeded with the three-step LTA in a usual way and

used the classification obtained from M1.

Baseline age and gender consistently proved to be significant predictors of a class

assignment (see Table 3.8). Older individuals were more likely to be in a more

compromised health state. Gender differentiated Dependent Frail from other classes, with

females more likely to be in Dependent Frail state. No clear gender differences were

found between Pre-frail and Dependent Frail; however, females were about 1.3 times

more likely to be in these classes instead of the Relatively Healthy class.
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3.3.4 LTA

A comparison of fit statistics of models with and without measurement invariance is

shown in Table 3.9. Results indicate the model with uniform DIF significantly improved

model fit. This implies the item probabilities of the four classes may be different across

time. However, given the remarkable consistency in the item profile plots across time, it is

reasonable to assume measurement invariance for practical applications [144].

Table 3.10 presents the transition probabilities describing patterns of changes from T1

to T2, and from T2 to T3 based on the unconditional LTA model. Overall, the results

indicate that the Relative Healthy individuals were very unlikely to progress to Frail states

(i.e., Independent Frail and Dependent Frail), and individuals in Frail states were also

improbable to reverse to Relative Healthy states (less than 0.5%). The probability of dying

within two years positively correlated with the severity of frailty, while the LTF rate after

two years was roughly equivalent across all classes. Specifically, from T1 to T2, 50.8% of

the individuals in the Dependent Frail class were predicted to remain in that state, 23.2%

were predicted to die within two years, and about 6% transitioned to less disabled states:

5.0% to Independent Frail and 1.2% to Pre-frail. Among the Independent Frail

individuals, 46.0% were expected to remain in the state, 13.2% reversed to Pre-frail,

13.9% transitioned to Dependent Frail, and 9.4% died. For the individuals in the Pre-frail

class, 62.8% were predicted to stay in the same state, 3.9% died, and the probabilities of

transitioning to other states were relatively equivalent, around 5%. The Relative Healthy

individuals had a high probability (72.1%) of remaining healthy and a probability of 7.7%

to progress to Pre-frail, and only 1.4% of them died within two years.

Frailty progression from T2 to T3 has similar patterns, with quantitative differences.

Individuals were more likely to stay in the origin state or transition to a more compromised

health state, and were less likely to reverse to an improved health state, except among

the Dependent Frail individuals whose probability of transitioning to Pre-frail increased to

4.1% (as opposed to 1.2% from T1 to T2). In addition, the mortality rate of the Dependent
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Frail individuals increased 25.3%. These differences must be considered in light of the

decreased completing risk of being LTF.

The transition probabilities from T1 to T3 were obtained by multiplying transition

matrices T1T2 and T2T3, and is presented in Table 3.11. The 4-year transition exhibited a

similar but more pronounced pattern. After 4 years, about one-third of participants in each

class were lost to follow up. Transition probabilities of those remaining in the study is also

provided in the lower part of the table. Most strikingly, the Dependent Frail individuals

had very poor 4-year prognosis, with 50.7% deceasing and 37.6% staying in the same

class. The Independent Frail class also demonstrated undesirable progression (24.2% died

and 21.3% transitioned to Dependent Frail); however, 20.9% reversed to a better health

state, although only 0.8% returned to the Relatively Healthy class.

Table 3.12 and 3.13 show the effects of covariates on the transition probabilities

between states and the overall covariate-adjusted transition probabilities in the LTA

model, including age and gender. There was a consistent effect of age for all classes,

indicating that older people were significantly more likely to transition to more disabled

states and death (ORs > 1, p < 0.05) and were significantly less likely to transition to less

disabled states (ORs < 1, p < 0.05). Females in all classes were significantly less likely to

die within two years (ORs < 1, p < 0.05), and females in the Dependent Frail class were

significantly more likely to reverse to the Independent Frail class (OR=2.04, p < 0.05).

Age and gender, in general, had no or minor effects on the probability of being LTF.

3.4 Discussion

By considering frailty as an unobserved, latent variable, this study aimed to explore whether

distinct frailty profiles exist in the community-dwelling individuals aged 60 or older and

whether there were meaningful transitions among the profiles over time. Results showed

that four probable subgroups with stable underlying structures sufficiently captured the

heterogeneity of frailty in our sample while maintaining stability and interpretability, and
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that individuals’ health states were sensitive to change over three occasions two years apart.

The same four frailty profiles emerged across all three studied occasions, and they are

better described according to the degree, rather than type, of frailty. Our ordinal

classification of frailty is consonant with Fried’s frailty phenotype [28], with frail state

further classified into two subgroups based on the degree of disability. Being disabled and

dependent can be an outcome of frailty as well as a manifestation of severe frailty,

indicating the need for long-term care. In general population samples, previous works

using LCA have revealed various frailty typologies with 3-7 classes [14, 118, 119, 159,

160], but the relative ordering of classes is consonant with our solution. Especially,

despite using different indicators, the four frailty classes characterized in this study had

very similar meanings to those identified by Liu and colleagues [161].

To evaluate the validity of emergent classes, the study incorporated age and gender as

covariates. The inclusion of these covariates in the model is justified by the definition of

frailty as an age-related deterioration syndrome, and the well-documented male-female

health-survival paradox [33]. In line with these justifications, our results indicate that

females and older individuals were more likely to be in more compromised health states.

Further, the 2-year mortality risk has been shown to increase with the severity of

compromised states in the LTA results. Taken together, the emergent latent classes are

clinically valid and meaningful.

Latent class analysis of transition patterns between occasions two years apart revealed

a predominant tendency for state stability or dying. Across all latent classes, a greater

portion of individuals (at least 46% ) stayed in the same class they were two years ago;

especially, up to about 70% of the Relative Healthy continued to maintain healthy.

Nevertheless, relatively high probabilities of transitions were found. Consistent with prior

works [11, 14], most transitions occurred between adjacent states - specifically, the

likelihood of transitioning between Relatively Health and Frail states (i.e., Independent

Frail and Dependent Frail) was extremely rare. This marks Pre-frail as the transition
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threshold in the final pathway to frailty. In addition, we found pretty noticeable

probabilities of transitioning to a better health state, which is in agreement with the theory

of frailty reversibility [11, 27, 162, 163].

However, the transition patterns are not stationary - as the study sample got older, the

probabilities of deteriorating transitions increased, and the probabilities of ameliorating

transitions generally decreased. In addition, the model with covariates showed that the

older individuals were, the more likely they progressed to compromised health states or

death. Together, these results suggest the acceleration of physiological reserves depletion

in the ageing process and the resultant failure of homeostatic mechanism [5, 6]. The

exception of the increased probability converting from Dependent Frail to Pre-Frail

(T2→T3 in comparison with T1→T2) remains an open question but can be partly explained

by attrition bias, in which healthier people were more likely to stay in the survey.

The classification provides more prognostic value on a longer time frame. The

Dependent Frail class appears had very poor prognosis, appearing as end-of-life health

state. Half of the Dependent Frail individuals dying within 4 years and the majority of

survivors remaining in this class. Although the Independent Frail individuals also had

undesirable prognosis with high probabilities of mortality and progressing to Dependent

Frail, there was a considerable likelihood of transitioning to an improved health state

(about 21%, mostly to the Pre-Frail class). The differences in transition patterns of the

Dependent Frail and Independent Frail classes suggest that functional limitation has

significant prognostic value of the elder’s health.

Females exhibited better tolerance to health problems than their male counterparts

with a lower 2-year mortality risk for all latent classes, indicative of the survival part of

the gender paradox [33]. Especially, we observed a higher likelihood of the reversal from

Dependent Frail to Independent Frail in females. Although the driving forces behind the

reversal are unclear, this gender difference can be explained by the theory that females

have greater physiological reserves [40], making them more resilient in the face of severe
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frailty. Another possible explanation is differences in social assets and health-related

behaviors between males and females. Females have been shown to be more active in

help-seeking and healthcare utilization [164, 165], and experience a slower decline in

social connectedness [166]; hence, they may receive more medical and non-medical

supports for health recovery.

The current study provides empirical evidence supporting the ordinal classification of

frailty embedded in the Fried’s phenotype model but also highlights that three states are

not sufficient to capture the heterogeneity of frailty. Although the underlying nature of an

ordinal classification basically is continuous, it offers discriminatory power for old adults

with different risk levels of homeostasis failure and poor health outcomes. Thus, in

longitudinal trajectory of frailty, the ordinal classification is particularly useful in

capturing critical changes in individuals’ health state which can disproportionately cause

adverse health outcomes. Furthermore, to our best knowledge, this is the first study to

explore transition patterns of frailty in the community-dwelling population aged 60 or

older, revealing the potential of frailty reversal and the effects of age and gender. As the

study analyzed data from nationally representative samples of twelve European countries,

its findings are generalizable to the general population of these countries.

Nevertheless, it is also crucial to keep in mind the limitations of the study. First, our

findings must be interpreted in consideration of the inherent drawbacks of LCA and LTA

models. Model selection in mixture models is a challenging task, as little is known about

the statistical power of those models. For very large samples as in our study, available fit

statistics may be ineffective in measuring and comparing models’ fit, and model selection is

best conducted if emphasis is placed on model interpretability [128]. In addition, although a

new feature in Latent GOLD accounting for differential item functioning (DIF) in the three-

step LTA model was introduced in a recent article [151], the feature has yet to be available

in the currently released version. Without accounting for DIF, our analysis left a certain

possibility for bias in the results. Another limitation pertains to attrition. Unable to control
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for other individual effects other than age and gender, we can not exclude selection bias.

However, the proportions of LTF individuals in frailty profiles did not differ significantly

and capturing LTF individuals in LTA as absorbing states allowed us to limit attrition bias.

3.5 Conclusion

Within a person-centered framework, this study encompassed multiple dimensions of heath

into a small number of health profiles that can explain the inter-relationships between health

dimensions. Our classification of individuals into pragmatically meaningful groups can

be useful for clinical practice, ageing research, and policy applications. In addition, the

study demonstrated a transition pattern between resultant profiles over time, highlighting

the potential for frailty reversal. Future studies, however, are necessary to shed light on

the frailty reversal mechanism. Gender-related difference in frailty progression was also

found, reflecting the well-documented male-female health-survival paradox.
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CHAPTER 4

CONCLUSION

Frailty is a common geriatric syndrome, characterized by decreased adaptability to

stressors and increased vulnerability to adverse health outcomes. Frailty is not simply

about ageing, but is where ageing has taken its toll. The risk of becoming frail, thus, is

regulated by genetic and environmental factors via epigenetic mechanisms. This makes

the older population greatly heterogenous with respect to frailty. Therefore, understanding

of frailty profiles as well as frailty trajectories is useful for tailoring ageing health policies

and interventions.

The first study (Chapter 2) compared frailty trajectories of older adults across eleven

European countries. The study took an age-cohort-period approach to decompose frailty

trends to age and cohort effects. We found universal parabolic age trends, with an

accelerating increase in frailty level after the age of 75. The growth rate of frailty level in

Italy, Germany and Switzerland is slower than in other countries. The cohort effects,

however, are country-specific. The Swiss, Swedish and Danish elderly appeared the

healthiest, followed by the older population in Belgium, France, Germany and Austria; the

elderly in Spain and Italy seemed the least healthy. With respect to gender effect, women

were found more frail than men at any age, and the gender gap was narrowed in more

recent cohorts. Our findings add new insights of a cross-national comparison of frailty

trend over ages and of frailty trend over birth cohorts. The findings are useful in

evaluating country-specific contextual effects on frailty trend, which allows better

localization of ageing health policies and interventions.

The second study (Chapter 3) took a latent-class modeling approach to model the

heterogeneity of frailty in the elderly population. Latent class analysis allowed us to

encompass multiple dimensions of heath into four health profiles that can explain the
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inter-relationships between health dimensions. Our classification is based on the degree of

frailty rather than the type of frailty, and yields pragmatically meaningful groups. The

classification can be useful for clinical practice, ageing research as well as policy

applications. Subsequently, latent transition analysis demonstrated a transition pattern

between resultant profiles over time. There was a predominant tendency for state stability

or dying. Most of transitions were made between adjacent states, with transitions between

non-adjacent states being extremely rare. Noteworthily, we found a quite noticeable

proportion of transitioning to better states, highlighting the potential for frailty reversal.

Regarding gender effect, women showed better tolerance to poor health and greater

likelihood of frail reversal.

Overall, the two studies present complementary perspectives of frailty trajectories in

the European older population. While the first study considers population-level frailty

trends , the second one examines the individual-level progression of frailty. The former

provides a big picture of frailty trends, which can be helpful in assessing and planning

interventions. The latter can find its application in clinical practice, ageing research as

well as policy applications. In considering gender effect, the two studies together reflect

the long described male-female health-survival paradox. Given that data were drawn from

nationally representative samples, our findings are greatly generalizable.

Several questions raised by our studies are worth exploring in future studies. In the

first study, we observed that gender differentials in frailty attenuated in younger successive

cohorts at the expense of men of recent cohorts having higher frailty scores. Despite of our

attempt to explain it by survivor healthy effect, the observation calls for future studies. In

addition, the second study found a decent proportion of transitions to better health states.

It will be of great importance to explore determinants and mechanisms of frailty reversal.
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APPENDIX A

STUDY 1: ITEMS USED TO CONSTRUCT FRAILTY INDEX IN THE SHARE

Topic/Variable Response cut-off point

General health:

Self-perceived health Excellent = 0, Very good = 0.25, Good = 0.5,

Fair = 0.75, Poor = 1

Physical measures:

BMI: weight/height2 (Kg/m2) 18.5 ≤ BMI ≤ 25 = 0 (Normal)

25 < BMI < 30 = 0.5 (Overweight)

BMI < 18.5 = 1 (Underweight)

BMI ≥ 30 = 1 (Obese)

Grip strength (Kg):

(Left + Right hand)/2

Men:

BMI ≤ 24 and strength ≤ 29 = 1

BMI 24.1–26 and strength ≤ 30 = 1

BMI 26.1–28 and strength ≤ 30 = 1

BMI >28 and strength ≤ 32 = 1

Women:

BMI ≤ 23 and strength ≤ 17 = 1

BMI 23.1–26 and strength ≤ 17.3 = 1

BMI 26.1–29 and strength ≤ 18 = 1

BMI >29 and strength ≤ 21 = 1

Comorbidities:

Chronic lung disease Yes = 1, No = 0

Osteoporosis Yes = 1, No = 0

Parkinson’s disease Yes = 1, No = 0
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Diabetes mellitus or high blood sugar Yes = 1, No = 0

Asthma Yes = 1, No = 0

Cancer Yes = 1, No = 0

Cataracts Yes = 1, No = 0

High blood cholesterol Yes = 1, No = 0

Heart attack Yes = 1, No = 0

Stroke or CVD Yes = 1, No = 0

High blood pressure Yes = 1, No = 0

Arthritis Yes = 1, No = 0

Stomach or duodenal ulcer Yes = 1, No = 0

Hip or femoral fracture Yes = 1, No = 0

Mobility Limitations:

Climbing several flights of stairs Yes = 1, No = 0

Walking 100 m Yes = 1, No = 0

Sitting for about 2 hours Yes = 1, No = 0

Getting up from a chair Yes = 1, No = 0

Climbing several flights of stairs without resting Yes = 1, No = 0

Climbing one flight of stairs without resting Yes = 1, No = 0

Stooping/kneeling/crouching Yes = 1, No = 0

Reaching or extending arms Yes = 1, No = 0

Pulling/pushing large objects Yes = 1, No = 0

Lifting/carrying weights >5 kg Yes = 1, No = 0

Picking up a small coin from table Yes = 1, No = 0

Functional Limitations:

Dressing, including shoes and socks Yes = 1, No = 0

Walking across a room Yes = 1, No = 0

Bathing/showering Yes = 1, No = 0
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Eating, such as cutting up your food Yes = 1, No = 0

Getting in or out of bed Yes = 1, No = 0

Using the toilet, including getting up or down Yes = 1, No = 0

Using a map to figure out how to get around in

a strange place

Yes = 1, No = 0

Preparing a hot meal Yes = 1, No = 0

Shopping for groceries Yes = 1, No = 0

Making telephone calls Yes = 1, No = 0

Taking medications Yes = 1, No = 0

Doing work around house/garden Yes = 1, No = 0

Managing money, such as paying bills and

keeping track of expenses

Yes = 1, No = 0

Signs/symtomps:

Eyesight for seeing things at a distance Excellent = 0, Very good = 0.25, Good = 0.5,

Fair = 0.75, Poor = 1

Hearing problems Excellent = 0, Very good = 0.25, Good = 0.5,

Fair = 0.75, Poor = 1

Bothered by: falling down Yes = 1, No = 0

Bothered by: fear of falling down Yes = 1, No = 0

Bothered by: dizziness, faints or blackouts Yes = 1, No = 0

Cognition:

Orientation score < 2/4 = 1

Mathematical performance score < 3/4 =1

Immediate recall test score < 5 = 1

Delayed recall test score < 4 =1

Verbal fluency test score < 15 =1

Mentality:
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EURO-D score score ≥ 4 = 1
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APPENDIX B

STUDY 1: GDP PER CAPITA DURING THE 1920-1960 PERIOD
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GDP per capita during the 1920-1960 period

Source: The Maddison Project. Retrieved from: http://www.ggdc.net/maddison/historical_statistics/horizontal-file_03-2007.xls
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APPENDIX C

STUDY 2: LATENT GOLD SYNTAX FOR LCA

Input: Cross-sectional data at each time point.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent; /*to evoke FMIL*/

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals estimatedvalues=model

reorderclasses;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal,

adl nominal, iadl nominal, gali nominal, morbidity nominal,

depress nominal;

latent

Cluster nominal 4;

equations

Cluster <- 1;

sph <- 1 + Cluster;
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socialfunc <- 1 + Cluster;

cogfunc <- 1 + Cluster;

adl <- 1 + Cluster;

iadl <- 1 + Cluster;

gali <- 1 + Cluster;

morbidity <- 1 + Cluster;

depress <- 1 + Cluster;
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APPENDIX D

STUDY 2: LATENT GOLD SYNTAX FOR LCA, RELAXING LOCAL

INDEPENDENCE ASSUMPTION

Input: Cross-sectional data at each time point.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent;

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals classification estimatedvalues=model

reorderclasses;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal,

adl nominal, iadl nominal, gali nominal, morbidity nominal,

depress nominal;

latent

Cluster nominal 4;

equations

Cluster <- 1;
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sph <- 1 + Cluster;

socialfunc <- 1 + Cluster;

cogfunc <- 1 + Cluster;

adl <- 1 + Cluster;

iadl <- 1 + Cluster;

gali <- 1 + Cluster;

morbidity <- 1 + Cluster;

depress <- 1 + Cluster;

cogfunc <-> socialfunc;

depress <-> cogfunc; /* adding residual correlation */
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APPENDIX E

STUDY 2: LATENT GOLD SYNTAX FOR LCA, RELAXING LOCAL

INDEPENDENCE ASSUMPTION. CHECKING DIF WITH COVARIATE.

Input: Cross-sectional data at each time point.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent;

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals classification estimatedvalues=model

reorderclasses;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal,

adl nominal, iadl nominal, gali nominal, morbidity nominal,

depress nominal;

independent age;

latent

Cluster nominal 4;

equations
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Cluster <- 1 + age;

sph <- 1 + Cluster;

socialfunc <- 1 + Cluster;

cogfunc <- 1 + Cluster;

adl <- 1 + Cluster;

iadl <- 1 + Cluster;

gali <- 1 + Cluster;

morbidity <- 1 + Cluster;

depress <- 1 + Cluster;

cogfunc <-> socialfunc;

depress <-> cogfunc;
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APPENDIX F

STUDY 2: LATENT GOLD SYNTAX FOR LCA, RELAXING LOCAL

INDEPENDENCE ASSUMPTION AND INCLUDING COVARIATES WITH

DIRECT EFFECTS.

Input: Cross-sectional data at each time point.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=250 tolerance=1e-005 iterations=1000;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent;

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals classification estimatedvalues=model

reorderclasses;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal,

adl nominal, iadl nominal, gali nominal, morbidity nominal,

depress nominal;

independent age, gender;

latent

Cluster nominal 4;
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equations

Cluster <- 1 + age + gender;

sph <- 1 + Cluster;

socialfunc <- 1 + Cluster;

cogfunc <- 1 + Cluster +age + gender;

adl <- 1 + Cluster;

iadl <- 1 + Cluster + age;

gali <- 1 + Cluster;

morbidity <- 1 + Cluster;

depress <- 1 + Cluster + gender;

cogfunc <-> socialfunc;

depress <-> cogfunc;
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APPENDIX G

STUDY 2: LATENT GOLD SYNTAX FOR STEP 1 AND 2 OF LTA, ASSUMING

MEASUREMENT INVARIANCE

Input: All-wave data is presented in long-table format.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent;

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals estimatedvalues=model reorderclasses;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal, adl nominal,

iadl nominal, gali nominal, morbidity nominal,

depress nominal;

latent

Cluster nominal 6 knownclass=survival(0: 0 0 1 1 1 1, 1: 1 0 0 0 0 0,

2: 0 1 0 0 0 0);

/*absorbing states modeled by specifying as known classes */

equations
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Cluster <- 1;

sph <- 1 + Cluster;

socialfunc <- 1 + Cluster;

cogfunc <- 1 + Cluster;

adl <- 1 + Cluster;

iadl <- 1 + Cluster;

gali <- 1 + Cluster;

morbidity <- 1 + Cluster;

depress <- 1 + Cluster;

cogfunc <-> socialfunc;

depress <-> cogfunc;
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APPENDIX H

STUDY 2: LATENT GOLD SYNTAX FOR STEP 1 AND 2 OF LTA, ASSUMING

MEASUREMENT NON-INVARIANCE

Input: All-wave data presented in long-table format.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includedependent;

output

parameters=first

betaopts=wl standarderrors profile probmeans=posterior

loadings bivariateresiduals estimatedvalues=model reorderclasses;

outfile

’frailty_classification.sav’ /*to save classification for Step 3 analysis*/

classification keep id, gender, age;

variables

dependent sph nominal, socialfunc nominal, cogfunc nominal, adl nominal,

iadl nominal, gali nominal, morbidity nominal,

depress nominal;

independent time nominal;

latent
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Cluster nominal 6 knownclass=survival(0: 0 0 1 1 1 1, 1: 1 0 0 0 0 0,

2: 0 1 0 0 0 0);

equations

Cluster <- 1 + time;

sph <- 1 + Cluster + time + Cluster*time;

socialfunc <- 1 + Cluster + time + Cluster*time;

cogfunc <- 1 + Cluster + time + Cluster*time;

adl <- 1 + Cluster + time + Cluster*time;

iadl <- 1 + Cluster + time + Cluster*time;

gali <- 1 + Cluster + time + Cluster*time;

morbidity <- 1 + Cluster + time + Cluster*time;

depress <- 1 + Cluster + time + Cluster*time;

cogfunc <-> socialfunc;

depress <-> cogfunc;
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APPENDIX I

STUDY 2: LATENT GOLD SYNTAX FOR STEP 3 OF LTA, ASSUMING A

STATIONARY MARKOV MODEL.

Input: Output file from Step 1 and 2 of LTA.

options

maxthreads=6;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=50 tolerance=1e-005 iterations=200;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing includeall;

output

parameters=first standarderrors profile estimatedvalues=model;

step3 modal ml;

variables

caseid id;

independent time nominal, age, gender;

latent

State dynamic nominal posterior = ( Cluster#1 Cluster#2 Cluster#3

Cluster#4 Cluster#5 Cluster#6 ) ;

equations

State[=0] <- 1 + age + gender;

State <- (~tra) 1 | State[-1] + (~tra) time|State[-1] + (~tra) age|State[-1]

+ (~tra) gender|State[-1];
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