
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

4-21-2009

A Browser-Based Collaborative Multimedia Messaging System A Browser-Based Collaborative Multimedia Messaging System

Susan Gayle Gentner

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gentner, Susan Gayle, "A Browser-Based Collaborative Multimedia Messaging System." Thesis, Georgia
State University, 2009.
doi: https://doi.org/10.57709/1059408

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059408
mailto:scholarworks@gsu.edu

A BROWSER-BASED COLLABORATIVE MULTIMEDIA MESSAGING SYSTEM

by

SUSAN GENTNER

Under the Direction of Xiaolin Hu

ABSTRACT

Making a communication tool easier for people to operate can have profound

and positive effects on its popularity and on the users themselves. This

thesis is about making it easier for people to publish web-based documents

that have sound, video and text. Readily available software and hardware

are employed in an attempt to achieve the goal of providing a software

service that enables users to compose audio-video documents with text.

INDEX WORDS: Applet, Communication tools, Internet, Java, Software as
a service, Multimedia, Web Cam, Web Service

A BROWSER-BASED COLLABORATIVE MULTIMEDIA MESSAGING SYSTEM

by

SUSAN GENTNER

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
of

Master of Science

in the College of Arts and Sciences

Georgia State University

2009

Copyright by

Susan Gentner

2009

A BROWSER-BASED COLLABORATIVE MULTIMEDIA MESSAGING SYSTEM

by

SUSAN GENTNER

Committee Chair: Xiaolin Hu

Committee: Anu Bourgeois
 Michael Weeks

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences

Georgia State University
May 2009

iv

DEDICATION

This goes out to my aunts Barbara and Martha, whose warm and
steady love gives me strength even when I am lonely in my
search to build and learn.

v

ACKNOWLEDGEMENTS

My husband Matt gave me guidance and love that has gotten me
to this point in my career. He is always there to lend a helping
hand, to give me encouragement when I need it, and to look out
for me even when I am stubborn.

Next, my advisor and committee, Dr. Hu, Dr. Bourgeois, and Dr.
Weeks. It goes without saying they taught me much but they
also inspired me to learn and to seek what I was interested in.

Last, but certainly not least, are my best friends and fellow
academics Stefanie Markham and Mary Hudacheck-Buswell.
They help me in numerous simple ways like going to lunch and
commiserating with me about various topics. They have and
always will hold a special place in my life.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...v

LIST OF FIGURES...ix

1. INTRODUCTION...1

1.1 Background...1

1.1.1 Participation Grows..1

1.1.2 An Aesthetic Mosaic...1

1.2 Problem Definition..4

1.2.1 Awkward Composition Process...5

1.2.2 Clogged Transport Medium..6

1.2.3 Configuration Mismanagement...6

1.3 Alternative Methods ...8

1.3.1 Publishing Beats Sending..8

1.3.2 No System is Perfect..9

2. APPROACH AND CHALLENGES...11

2.1 Approach...11

2.2 Challenges...13

2.3 Concepts...16

2.4 Related Technologies...17

2.4.1 Webmail...17

2.4.2 Transport Layer Security...18

vii

2.4.3 Spam Control..20

2.4.4 Automatic Updates...21

2.5 Related Work..22

2.5.1 Multimedia..22

2.5.2 Collaboration...23

2.5.3 Architecture..24

3. SYSTEM DESIGN AND ARCHITECTURE..27

3.1 Design Overview...27

3.2 Architecture...28

4. DESCRIPTION OF PROTOTYPE..32

4.1 Send a Moment..32

4.1.1 Capture the Video Portion..33

4.1.2 Compose the Moment...33

4.1.3 Send the Moment...33

4.2 Receive a Moment...34

4.2.1 Select a Moment..34

4.2.2 View a Moment..35

4.2.3 Save a Moment..36

4.3 Environment and Hardware Notes...36

4.3.1 Mac Mini...37

4.3.2 Logitech UVC Webcam..38

5. CONCLUSION AND FUTURE WORK..41

viii

5.1 Future Work...41

5.2 Development Environment...42

BIBLIOGRAPHY...48

APPENDIX: SOURCE CODE LISTING..52

ix

LIST OF FIGURES

Figure 1: Firefox peeks from beneath the text-only Lynx web browser.........2

Figure 2: A graph of early web usage data from [1]..................................3

Figure 3: Something is missing on Bob's end...7

Figure 4: Viewer in my MomentShare desktop application from 2006........13

Figure 5: Browser-based moment viewer with better video in 2009...........14

Figure 6: A browser warning about an untrusted certificate signature........19

Figure 7: PushToShow has a three-tier architecture................................27

Figure 8: Class Diagram of the Client Side...29

Figure 9: Web Service Classes...30

Figure 10: Record moment sequence diagram..30

Figure 11: Send moment sequence diagram..31

Figure 12: The ShareMoment web page..32

Figure 13: The ListMoments web page ...34

Figure 14: The TakeMoment web page ...35

Figure 15: A PushToShow workstation..37

Figure 16: Some cameras did not perform as advertised.........................39

Figure 17: PushToShow achieves high video quality................................40

Figure 18: The pgAdmin3 database management tool.............................43

Figure 19: The NetBeans IDE..44

Figure 20: Applet class diagram...52

x

Figure 21: CapturePanel class..54

Figure 22: FileUploader class...58

Figure 23: Moment class...60

Figure 24: MomentUploader class..63

Figure 25: MomentUploadSvc class..65

Figure 26: VideoUploadSvc class..68

Figure 27: WebCam class..71

1

1. INTRODUCTION

This thesis is about making it easier for people to publish web-based

documents that have sound, video and text.

1.1 Background

The main motivation for this work is that making a communication tool

easier for people to operate can have profound and positive effects on its

popularity and on the users themselves. A more elegant tool that requires

fewer steps to use is easier to learn and will return some emphasis from

limits of technology to the vastness of users' creativity.

1.1.1 Participation Grows

Sometimes a little difference can mean a lot. When web pages could be

viewed with stylized text flowing around colorful in-line images, Internet

content began to grow exponentially and the number of web pages doubled

every three months. And the same functional power of publishing and

linking live documents from all over the Earth that was still there.

1.1.2 An Aesthetic Mosaic

To users in 1993, the Mosaic graphical web browser made it much easier on

their eyes to read web pages than the text-based Lynx web browser, created

just one year earlier. Mosaic was received like a dazzling new theater in

2

towns and cities across the globe. Its HTML audience grew wildly, and, as

more was given to users, they frequently got the itch to give back. Figure 1

illustrates the visual differences between a text-only and graphical web

browsers. And figure 2 shows the increase in HTTP traffic of web pages after

the introduction of the graphical Mosaic web browser in 1993 [1].

Figure 1: Firefox peeks from beneath the text-only Lynx web browser

3

In retrospect, the move from text-only to graphical web browsers seems like

an obvious change that might also have been an easy change. For a dozen

years prior, Tim Berners-Lee and countless others had spent millions of

hours (and billions of dollars) to do the “heavy lifting” while building the

world wide web. In American history, it is the railroads' and interstate

highways' completions that we still celebrate today, more than specific

models of locomotives and automobiles.

Figure 2: A graph of early web usage data from [1].

May 93 Aug 93 Dec 93 Mar 94 Jun 94 Sep 94 Jan 95
0

5

10

15

20

25

30

35

40

45
NSFNET Backbone Usage 1993-1995

% FTP % telnet % netnews % email % HTTP
Date

%
 o

f
w

eb
 u

sa
ge

4

In figure 2, I have graphed some per-protocol traffic measurements slightly

before and after the debut of Mosaic. It is probably for the simple reason

that Mosaic could graphically display the multimedia of web pages that the

audience for hypertext transfer protocol (HTTP) began to grow, usurping the

file transfer protocol (FTP) in early 1995 as the most-used category of

Internet traffic. Users really appreciate elegance in their tools, and Mosaic

changed the way that most people worked on the Internet.

The graphical Mosaic browser was built by two guys in just six months; just

two! [2] That does not seem to be enough time to create a single folk song

like those sung by the teams that were working on the railroad. And yet

their achievement is stunning nonetheless. When Marc Andreessen and Eric

Bina created Mosaic, they brought a tremendous amount of new technology

to bear fruit from a simple vision. The small dare between Marc and Eric

produced an elegant tool that made such a big and positive difference. It

would be thrilling for me to achieve one millionth of the public service that

Marc Andreessen and Eric Bina brought to us, by creating Mosaic.

1.2 Problem Definition

Part of the challenge here is seeking an “ideal” elegance, similar to reducing

a complex and verbose mathematical proof. Often, the first impression that

a user gets with document creation software is a lengthy installation process

5

that consumes part of their computing device. And after a customary

reboot, the user braces herself to descend into a new “confusopoly” [3] that

she has just committed to, and begin the complex and esoteric process of

creating her first multimedia document. The logistics involved in sharing her

art with its intended recipients are another unsavory challenge, but she

keeps her mind clear to focus on what should be simple: creating a message

that has some video and text.

1.2.1 Awkward Composition Process

When Alice bought her laptop, she was thinking ahead and she picked a

model that included a built-in web cam. Her friend Bob was stationed in Iraq

then, and now Bob is fighting in Afghanistan. Since the camera was already

attached and staring back at her, Alice assumed that there would be some

easy software included that would help her to share a moment with Bob that

was comprised of some sound, video, and text. She wanted to send

something personal just for Bob, that would remind him about the great

home he had to return to someday.

For her Microsoft Windows-based laptop, Alice found a free Microsoft

download for something called MovieMaker that helped her to make a fun

15-minute home movie. The movie was ready and Alice was proud of it, so

she attached it to an e-mail message and sent it off to Bob. Instead of any

6

thanks from Bob on the next day, Alice found a cryptic error message that

indicated her home-movie e-mail message to Bob had been rejected

because it “exceeded his incoming e-mail message size limit(s).”

1.2.2 Clogged Transport Medium

Luckily for Alice, the MovieMaker tool had video editing features that she

learned to use to pare down her home movie to just the juicy highlights.

The movie for Bob was a small fraction of its original length and size, and

Alice used zip compression to shrink the movie another 12% before

attempting to re-send it as an e-mail attachment to Bob.

This time Bob received the message from Alice. He called Alice on the phone

while her message, bigger than most, was being retrieved from the e-mail

server. Bob apologized that he would need to delete the message from his

inbox after it was safely on his Mac, because he needed inbox space to

receive other e-mail that might come.

1.2.3 Configuration Mismanagement

Bob was an Army man, good at following instructions. So he quickly and

carefully followed the instructions in Alice's e-mail to:

1. save the attached movie,

2. note its location on his file system,

7

3. unzip the compressed file to get at the real movie that Alice had sent,

4. and delete the zipped clutter to save some disk space.

Now Bob was starting to feel some suspense because he had been growing

to like Alice more during his lonely missions overseas. It made Bob feel

great that Alice had sent this special treat.

Bob was curious and uncertain as to what he would see, but he was

positively certain that he would enjoy the home movie from Alice and be

watching it frequently until she sent the next movie. When the file was done

being decompressed, Bob used Finder on his Mac PowerBook to Open the

movie file. Yet instead of Alice's smiling face, a terse error message

appeared that read:

Figure 3: Something is missing on Bob's end

8

1.3 Alternative Methods

Soon Alice was back to square #1 with a different approach. She would

make a third movie, this time less personal. And she would revise the

written note to be less personal too. Then Alice would upload the movie with

the message to YouTube and e-mail the URL to Bob.

Alice and Bob were grateful that this YouTube approach worked pretty well.

Alice did not get everything she originally wanted in her movie to Bob, and it

was still awkward and time-consuming to capture the video, edit a movie

and upload her final cut. But YouTube had helped to solve the codec and

transport problems they had had at first, so Alice and Bob could feel better

connected despite being apart.

1.3.1 Publishing Beats Sending

The publishing and distribution method seemed cohesive, and the codec

mismatch problem was solved in one fell swoop. And, assuming the sender

already had a video capture tool installed, there was no required software

except for a Flash-enabled web browser. All Alice needed to do was to

register for a YouTube account and use her web browser to upload her video

moment, complete with sound and with text. This software as a service

(SaaS) freed Alice and Bob from some obstacles that are side-effects of

proprietary software. But, was this a trade-off into other forms of lock-in?

9

Although the original intended audience was just Bob, Alice needed to edit

her home video because YouTube does not have fine-grained security and

most video is more or less public. Once Alice uploads her home movie, it

becomes transcoded into a proprietary Adobe Flash codec and that version is

held as content owned by YouTube. It is likely that keyword matching is

done by the parent company Google to arrange advertisements in and

around Alice's home movie. So Bob sees a few sidebar gift ideas for Alice

along with the moment that she originally intended to share.

1.3.2 No System is Perfect

Being centralized and proprietary were key business aspects to protecting

the investors first and then later Google as the parent company of YouTube.

This seems prudent and fair because YouTube cost hundreds of millions of

dollars to launch, plus about a million dollars per day for bandwidth costs.

After 18 months, Google announced that it had bought YouTube for $1.65

billion- which serves as a ballpark figure of the startup cost for the new

video sharing website. But when founders of YouTube Chad Hurley, Steve

Chen and Jawed Karim launched their website in February of 2005, they

eliminated most of the obstacles that Alice and Bob had encountered.

Part of the motivation of this work is to explore the feasibility of restoring

privacy and freedom to a medium that is similar to YouTube in convenience

10

to users, but less encumbered with proprietary modification and ownership

restrictions. Rather than an ending, I see that there has been an exciting

new opportunity for building helpful software. Instead of a “killer”

application that might lock-out developers, I see a fascinating new range of

ways that I might be able to serve users by helping to make it quicker and

easier to publish their new creations.

The central question of this thesis is whether it is feasible to make it easier

for people to record and exchange moments with current commodity

personal computing hardware. To answer this, in the next chapters I

describe my understanding of the technical challenges. Then I detail an

approach to meet these challenges with a system design and an

implementation that demonstrate success for the most difficult challenges.

My PushToShow prototype is included as an original part of this thesis work,

and this prototype will prove that browser-based web pages today can “see”

and “hear” their end-user's scenario. This state of the art in web pages may

be easily and precisely controlled by casual users to capture and share

important moments from their time and space with others.

11

2. APPROACH AND CHALLENGES

The approach that I took was to build a prototype that could be used to

effectively demonstrate my concept of an easy tool for people to create

messages with sound, video and text.

2.1 Approach

This thesis has an emphasis on development because Murphy's Law seems

to be the only law when it comes to building a browser-based multimedia

creation and exchange prototype. Without trying some techniques by

building and testing bits of software together, I anticipated that my planning

and research would seem to have little meaning because, as Murphy states,

“Whatever can go wrong WILL go wrong.” So I set to work to build a

working prototype with four main attributes:

1. ease of use

2. browser-based

3. great video quality

4. use free or cheap components

Ideally, I hope that my prototype will grow to a stage where it may be

adopted for incubation into an open source project that students and

volunteers will enjoy benefiting-from and contributing-to. So I have tried to

use free or cheap hardware and software components. The ease of use and

12

browser-based goals were intended to greatly help me in demonstrating the

prototype, which itself is meant to promote the feasibility of concepts for

improvement in this thesis. And the browser-based goal also brings a tacit

advantage in that the prototype will be a web application; that there will be

no lengthy installation for end users, and that it may be extensible with

standard off-the-shelf security enhancements.

My skepticism for planning too far out (without a prototype) comes from a

term project that I built three years ago during a course called “Digital

Signal Processing” taught by Dr. Michael Weeks. In a way, that term project

was a prototype for this prototype (figures 4 and 5 respectively); at that

time called “MomentShare.” It succeeded in showing that it is feasible to

build a Java desktop application that will capture from a web cam and help a

user to send the “moment” with text over an e-mail transport. And it

showed that there were two big areas of improvement:

1. browser-based instead of desktop installation

2. web publishing instead of message sending

In the time since I built my MomentShare prototype, an unrelated website

for sharing family photos [4] has been established on the Internet. So

although I still refer to my new message type as a “moment,” I refer to my

new browser-based prototype as PushToShow.

13

2.2 Challenges

The goal of great video quality comes from the typical “how fast can it go?”

curiosity that I share with other software developers. But it also stems from

a probable future requirement that users will want their moments to look

good, even when the video portion of each moment is presented in full

screen mode. I wanted the moments to have a fast frame rate that keeps

recorded motions fluid and with a high resolution that approaches

conventional NTSC analog TV (640x480@25hz) to keep image shapes crisp

and clear. So during a summertime of trial and error I was able to find a

configuration that captured 15 frames per second at VGA resolution

Figure 4: Viewer in my MomentShare desktop application from 2006

mailto:720x480@30hz
mailto:720x480@30hz
mailto:640x480@15hz

14

(640x480@15hz) and still keep CPU utilization down to 25% and affordable

compressed bit-rate bandwidth of barely 1 megabit per second.

I found that there are copious quantities of published research in a myriad of

topics that pertain to the “signs of aging” that e-mail is exhibiting [5] [6].

The main problems seem to be related to lack of security. For decades now,

billions of people have learned first-hand that it is too easy for attackers to

get fixed e-mail addresses and that leaving the door open to one's mailbox is

not a sustainable option.

Figure 5: Browser-based moment viewer with better video in 2009

mailto:640x480@15hz

15

Billions of people have also been suffering unsolicited postal mail for decades

as well. And although their postal addresses are fixed, there seem to be far

fewer concerns about security of people's postal mailboxes.

If we try to compare an e-mail inbox to a U.S. Postal mailbox, then senders

need to pay postage for each postal message and federal law prohibits

anyone other than an official mail carrier to put things into someone's

mailbox. Although recipients often disdain the deluge junk mail received,

their suffering would be much worse if it were free to send junk mail. Here,

another small difference means a lot: a small 20-cent bulk mail rate IS a

cost, and this cost makes senders more eloquent. If the public were allowed

to physically deposit whatever we liked into people's mailboxes for free, then

sadly the term “junk mail” would take on greater scale and a whole new

meaning. But that is the case with e-mail. After senders get an e-mail

address, they may attempt to send whatever they like; directly to the

recipient and without any postage paid.

To attach video files to this antiquated medium would resemble the “pig in a

python” metaphor and make a bad situation even worse. Even with

compression, video files are much bigger than today's typical e-mail

message, by two or three orders of magnitude. Here web-mail and RSS

technologies have helped to show that, at a minimum, the user must be

given a chance to see the sender's identification, the subject line, and

16

message date prior to requesting the rest of the message. And, that when it

comes to giving the user some features to inspect attachments prior to

downloading them: the more, the merrier.

2.3 Concepts

Today we have so many new multimedia tools! There are person to person

aids that range from instant-messaging clients to VoIP and video streaming

tools including AIM, Skype, and Ekiga. Audio-enabled remote desktop

sharing tools such as Microsoft Remote Desktop (RDP) Virtual Network

Computing (VNC) and LiveMeeting. And also we have browser-based

collaborative tools such as YouTube and Wiki knowledge bases.

If we pick one or more of these tools for substitution, then some valid

questions might take the form “why not use X instead of PushToShow?” So

here are some attempts to answer those permutations with some hasty

generalizations. Instant messengers are interpersonal with an emphasis on

text-based exchange, and media other-than text are handled as

attachments. VoIP is interpersonal and session-based, with an emphasis on

audio exchange. The RDP and VNC tools work well to interact with a remote

GUI desktop but the video quality during capture and/or playback is low in

terms of resolution, color depth and frame rate. YouTube and Wikis are very

close, in that they allow authors to easily publish multimedia documents

17

which include video. But they tend to be role-based rather than

interpersonal and do little to help capture video for a shared moment, the

way webmail helps writers to compose an e-mail in an integrated editor. So

(to me) the current technology that is most related seems to be webmail.

2.4 Related Technologies

Webmail helps to retract the transmission cost from the recipient's terminal

workstation to somewhere closer to the recipient's e-mail server. This is

subtle but evident in that the recipient can peruse her inbox, mark her spam

for deletion, view and respond to her good mail- all without saving any

residue to the workstation she is using. Rather than dumping each message

on each recipient's workstation before a message preview is available, the

recipient may get her work done at arm's length and may opt to download

mail pieces of particular interest after quick and careful scrutiny of their

sizes and types. With webmail, she gets the meta data first to help her

decide whether she wants to get her hands dirty with the complete

message's details. Still, candy from strangers might be flung into her bag,

but with webmail she can run a series of taste-tests without toxic risk.

2.4.1 Webmail

Some specific examples webmail that have great features and security are:

Google Gmail, Yahoo! Mail, and the open-source SquirrelMail project.

18

In terms of security, webmail often shines with the following features:

1. identity management

2. transport layer security

3. collaborative spam control

4. freedom from software installation

5. automatic vulnerability patching

The first two items are configurable and standards-based and they are

optional features that come along with any browser-based web application.

First, the configurable options for identity management in web applications

are plentiful these days, reminiscent of the pluggable authentication

management (PAM) framework for UNIX logins.

2.4.2 Transport Layer Security

Second, transport layer security (TLS) now has a new name since it has

succeeded the patented [7] Netscape secure sockets layer (SSL) protocol ten

years ago. But TLS is rock-solid, familiar to users, and has enormous

industry support. TLS version 1 came from SSL version 3 with a

handshaking protocol so advanced that checksum and cipher algorithms may

be relaxed or made stronger on-the-fly within an established session. But

casual users would hardly know that the attributes of their cipher suite are

being re-negotiated and instead, another “small change” is probably one

that has had greater meaning to end users.

19

From a more practical point of view, the default lists of recognized certificate

authorities that browsers and the Java runtime keystore come with has

grown. As a specific example, ten years ago a website administrator may

have been asked to pay over $800 to have her web server's certificate

signed by a VeriSign [8] CA, or over $600 for a Thawte [9] signature. But

today she can get an equivalent GoDaddy signature for $100 [10]. Her

users will enjoy the same benefits of secure TLS and they will not be made

nervous by any “Untrusted Certificate” warnings from their web browsers.

Figure 6: A browser warning about an untrusted certificate signature

20

Technical users may often know how to manage their registries of trusted

CAs and they will comfortably navigate a browser warning with confidence.

Yet casual non-technical users are likely to be confused, unsettled, annoyed

or otherwise dissuaded from continuing to a website whose certificate is

signed by a CA that their browser does not recognize. Figure 6 shows an

example of the type of warning a user may get when a certificate is not

recognized. This is a small security-related configuration change that has

been ironed-out over the years. The browser's trusted CA lists continue to

grow and improve for users, and these improvements are another important

incentive enjoyed by secure browser-based web applications.

2.4.3 Spam Control

Collaborative spam control (#3) in webmail is an innovative way for peer

users to submit instant feedback that identifies spam and cooperate in

reducing its damage to webmail systems. This supplies critical early warning

value to a webmail system that is similar to Google Flu Trends [11], a site

that geocodes web search queries for influenza-related answers and

estimates the current risk of flu outbreaks for a given geographic region.

These are modern “complaint boxes” that can record details during the onset

of an attack instantly and from the front line.

21

2.4.4 Automatic Updates

The webmail security features listed #4 (freedom from software installation)

and #5 (automatic vulnerability patching) are also small differences that

were touched upon in chapter 1. Software installation and patching are

obstacles to end-users' adoption for three main reasons.

They are obstacles first because they are annoying; installation procedures

interrupt productivity, they are time consuming and they may require the

user to save all work and then reboot. Second- because astute users have

been conditioned over time to suspect side-effects to installation and

patching: that they might not easily be able to un-install, that something

else that they have may be broken, that their system will be slower, and/or

that they might be admitting a trojan horse or “spyware” onto their system.

And third, they might not be allowed to install or patch software on a public

or shared workstation because their account lacks sufficient permission; or

they may work daily with diverse systems such as Linux, FreeBSD and/or

Solaris for which the installations and/or patches are not available.

Browser-based web applications help users to enjoy effortless security

enhancements and automatic vulnerability patching at a few levels that are

worthy of some mention here. The web application may be improved

incrementally on its server-side, such that the user gets the latest and

22

greatest version each time she logs-in to get webmail. The built-in web

browsers that come bundled with operating systems are automatically

updated since they are considered system components. And some third-

party web browsers such as Firefox are beginning to include their own

integrated and automatic update mechanism for the core browser and any

installed plug-ins. For example, the Java runtime and applet plug-in has its

own update manager that may be automatic on Microsoft Windows or

manual (push-button) on other operating systems [12].

2.5 Related Work

Here I have listed some works that are related to this thesis topic and can be

grouped into three main areas: multimedia, collaborative systems, and

multimedia architectures.

2.5.1 Multimedia

A system called PECOLE provides portability by using Java and JXTA to keep

systems compatible and well-performing on the widest range of devices

[13]. Second, PECOLE eases on-line teleconferencing and topic presentation

with a layered and peer to peer architecture. Third, PECOLE assists in

locating peers, maintaining sessions, and in locating (or providing)

translations for multilingual content.

23

Separately, author W. L. Yeung describes some of the current strengths of

wiki technology as 1.) students already use wikis and accept wikis as great

tools to create and explore content, and as such 2.) the use of wikis by

students has been growing quickly. Wikis have potential for accelerated

growth through integration of multimedia content including instant

messaging and video conferencing to help in holding wiki users' attention

[14].

In [15] a detailed description is provided for a system called “mc3” which

makes multimedia publishing tasks quicker and easier. First, mc3 helps

promote reuse of previous and related publications. Second, mc3 enables

on-line access to a search-able and growing collection of learning modules.

Third, mc3 facilitates federation between institutions to examine, exchange

and enrich research and learning materials. The learning materials

apparently tend to be in multimedia, and the mc3 services are designed to

help teachers to collaborate. This leads to the next section, where I have

listed some works whose primary emphasis seems to be on aiding-in users'

collaboration while working with multimedia documents.

2.5.2 Collaboration

Anupam and Bajaj describe their work to support cooperative and

accelerated application-level work-group development [16]. They call their

24

system “Shastra” and it has been documented to coordinate and serialize

concurrent substrate transactions which contribute to group-wise scientific

and engineering design. The heart of their system is a generic Shastra layer

that is extensible and supports a wide variety of collaborative applications.

Mobile generation and representation of multimedia content is provided by a

system built by Prabhu and Gadh [17]. One key to their design was a

unified file format with delivery via message queue middle-ware. The

middle-ware described in their work is intended to help direct migration from

desktop collaborative systems toward mobile collaborative systems.

A work that explores both collaborative and architectural aspects of a

multimedia system is described in [18]. Their methods for creation, revision

and collaborative exchange of multimedia documents with high performance

are kept flexible by developing a Jabber service oriented architecture (SOA).

The article elaborates on an emphasis for keeping the multimedia document

state consistent, and in keeping concurrent document changes coherent in

their appearance for up to six concurrent end users.

2.5.3 Architecture

Requirements traceability during design, implementation and maintenance of

large scale systems may be aided by adopting a SOA service strategy

25

planning space, which helps to map problems to solutions [19]. In their

perspective, there seems to be a conceptual problem space above the

service strategy planning space which contains a domain area, a context,

and one or more business drivers. Below the service strategy planning

space, their solution space contains engineering, business, and operations

aspects of a SOA. Their interesting “service strategy” seems to be a set of

functions that relate a domain of problems to a range of solutions in a

traceable way that will succinctly indicate precise service changes required to

accommodate healthy changes in the problem and solution spaces.

Separation of concerns for authoring services and publishing services of

multimedia content is exemplified in the LimSee3 platform architecture [20].

According to Mikáč, Roisin, and Le Duc, adoption of new technologies is

simplified and deployment of authoring services is facilitated by having an

intermediate export format. This separation of concerns helps to insulate

authoring tools from document formats and makes it easier to tailor

authoring services to users' custom needs.

An experimental media sharing application for mobile phones called

“Sandboxes” seeks to promote interactivity, flexibility, and cohesiveness for

mobile authors of multimedia [21]. Sandboxes allow users to compose

26

messages that mix multiple media into a single document. The Sandboxes

creators refer to this as a “multimedia collage on a shared 2D canvas.”

These advances in multimedia, collaborative, and architectural technologies

would help to sustain and entice a user base that is eager to create and

exchange multimedia about their lives. So the Internet continues to grow

with more personal computers and hand-held devices being added each

minute. Now there are new possibilities opened to bring last mile broadband

to subscribers with government help. Rural wireless "third pipes" that are

both fat and cheap over 802.11n or 802.11y may spur growth of green

shoots on grass roots networks that are fed by ubiquitous and instant

authors of community home grown content [22][23].

27

3. SYSTEM DESIGN AND ARCHITECTURE

Some of the technologies planned for use in my approved thesis proposal

were found to be unfit for one reason or another. And some goals proved to

be too optimistic for my pace of development in the time that I had. My

prototype still has a lot of growing to do if it will become an everyday tool.

Both the design and implementation of the PushToShow have been kept as

small and simple as possible in order to make it easier for adoption by others

in their work.

3.1 Design Overview

The PushToShow prototype was built with a simple three-tier architecture

that consists of a server-side with an application server and database that

supports browser-based clients over HTTP:

Figure 7: PushToShow has a three-tier architecture

28

As figure 7 shows, on the client-side there are three web pages to list

moments, view moments, and capture moments. These HTML pages

incorporate JavaScript, the QuickTime and Java plug-ins respectively. The

ListMoments page uses JavaScript to open a new tab to view each moment

that is clicked. The TakeMoment page uses the QuickTime plug-in to play

the video portion of each moment. And the ShareMoment page uses the

Java plug-in to capture, compress, and upload new moments.

All end-user features are browser-based, and all of the traffic between the

client and server is over HTTP. Displayed output is downloaded over HTTP as

HTML, images and video. Newly created moments are uploaded from the

end-user's browser to the server over HTTP by using multi-part upload for

the video portion and object serialization for the textual portions of shared

moments. The term moment is used here to describe a new type of audio-

visual document which is composed and published by a PushToShow author,

such that a PushToShow recipient may then view the moment upon request.

3.2 Architecture

The following figures 8 and 9 show the UML class diagrams for the

PushToShow Applet and web services.

29

Figure 8: Class Diagram of the Client Side

30

The following figures 10 and 11 show UML sequence diagrams for recording

and sending a moment.

Figure 9: Web Service Classes

Figure 10: Record moment sequence diagram

31

Figure 11: Send moment sequence diagram

32

4. DESCRIPTION OF PROTOTYPE

This chapter describes ordinary use cases for the PushToShow prototype,

how to setup its development environment, and an overview of its design.

4.1 Send a Moment

A moment is like an e-mail message that includes sound and video. And like

e-mail messages, moments must be composed and sent. PushToShow

makes composing moments easier with a browser-based WYSIWYG

authoring tool that includes a real-time graphical web-cam “mirror:”

Figure 12: The ShareMoment web page

It has a large web-cam mirror and is used to compose and send moments.

33

4.1.1 Capture the Video Portion

Here are the steps to capture your moment with PushToShow:

1. Browse to http://localhost:8080/pss/ShareMoment.jsp

2. Verify video input, compression type, and audio input settings

3. Click the “Record” button to begin video capture

4. Click the “Stop” button when finished with a video “take”

4.1.2 Compose the Moment

Life's best moments must be composed with care. With PushToShow, it is

easy to retry video takes and add a little side note to your moment:

1. The last take is the take that counts

2. Video takes are saved to the home directory with a time-stamp in the

form psv_YYYYMMDD_hhmmss.mov

3. It is easy to edit the video portion with QuickTime Pro before sending

4. Type a caption or text message into the large text area on the right-

hand side of the ShareMoment page

4.1.3 Send the Moment

It is time to share the moment that you have captured and composed:

1. Address the recipient

2. Enter the subject line

3. Click the “Send” button

http://localhost:8080/pss/ShareMoment.jsp

34

4.2 Receive a Moment

It is fun and easy to take a moment with PushToShow, and saving moments

locally is the same as saving ordinary web pages:

4.2.1 Select a Moment

1. Browse to http://localhost:8080/pss/ListMoments.jsp?recipient=alice

2. Moments are listed chronologically with sender ID and subject line

(see figure 13)

3. Click an entry to view a moment

Figure 13: The ListMoments web page

This page shows links to the moments for the recipient Bob.

http://localhost:8080/pss/ListMoments.jsp?recipient=alice

35

4.2.2 View a Moment

The viewer has plain text fields for meta-data and each URL is of the form:

http://localhost:8080/pss/TakeMoment.jsp?id=123573625140463

Beneath the image, the compact video playback controls may be used to:

1. adjust sound volume,

2. start or pause playback,

3. scan through frames of video,

4. single-step forward or backward,

5. and save the video portion of the moment to disk.

Figure 14: The TakeMoment web page

This page displays the moment and has compact video playback controls.

http://localhost:8080/pss/TakeMoment.jsp?id=123573625140463

36

4.2.3 Save a Moment

Each moment is an ordinary web page, and may be saved to disk locally:

1. Use your built-in browser “Save page as..” feature

2. Keep your locally saved moments organized with browser bookmarks

4.3 Environment and Hardware Notes

Faster computers today have more storage and gigabit network connections

that helped to make this prototype feasible. Providing video capture with

compression and a simulcast viewing window each add up to a computing

cost that has recently become affordable, even for video quality that

approaches that of analog television.

The PushToShow prototype was built with many free and open source tools.

And PushToShow is designed to work on any modern Mac. But here I want

to quickly list my hardware and software suggestions for great video and low

cost. Here is a parts list with early 2009 price estimates:

Item Description Cost

1 22-inch DVI monitor $250.00

2 Logitech QuickCam Vision Pro $150.00

3 Apple Mac Mini $900.00

4 USB Mouse Controller $20.00

5 USB Keyboard $30.00

6 QuickTime Pro (video editing software) $35.00

37

4.3.1 Mac Mini

PushToShow was developed-on and tested-with “Mac Mini” PCs from Apple,

purchased new in August of 2007. This version of the Mac Mini has a 64-bit

1.8GHz Intel Core 2 Duo processor which has 2GB of memory and a front-

side bus frequency of 667MHz. While testing PushToShow, I found that

moments occupied about 1GB per hour of recorded video and that

PushToShow uses about one megabit of network bandwidth per user.

Figure 15: A PushToShow workstation

38

The Mac Mini is the cheapest Mac offered by Apple, and it is the most

versatile. By “versatile,” I mean that the Mac Mini is compatible with PC

hardware and can run Microsoft Windows or Linux in a dual-boot method

with a new Mac OS 10.5 feature called “boot camp.” The Mac Mini's small

size and light weight make it portable between school, work, and home; the

Mini has very low power consumption and it is virtually silent. The tamper-

resistant case for the Mac Mini is wrapped with a heat-sink which helps keep

required airflow (and dust) minimal and acts as a tough aluminum “bumper.”

Also the legendary security of Mac OS 10.5 helps to keep the Mac Mini safe

against attack and “student resistant” to damage. So I think that these

attributes make the Mac Mini a good PC for a classroom environment.

4.3.2 Logitech UVC Webcam

The Mac laptop models from Apple come with a built-in camera positioned

just above the screen. But in my showroom testing (at BestBuy) they only

seemed to capture about 4 frames per second at a resolution of 640x480

pixels. Still, those built-in cameras performed better than most of the

external USB web-cams that I tested. Because in my testing I found that

the performance specifications listed on the side of each box were wildly

overstated. Often the cameras could not be set at the resolutions that were

claimed, and rarely did I get the frame rates that were promised. Luckily

they are quite cheap though and I was able to test quite a few cameras.

39

The Logitech QuickCam Vision Pro is a new Universal Serial Bus Video Class

(UVC) camera that debuted about twelve months ago, in March of 2008. It

is the only UVC camera that Apple would permit an Apple-logo for, from

Logitech. I found that the QuickCam Vision Pro captures 15 frames per

second of 640x480 (VGA) resolution video, about three time more video

than any other USB camera that I tried; and it is compatible with both

Microsoft Windows and Mac. This is the first and only UVC camera that I

tried, since it lived up to its advertised performance. It would be interesting

to try some other UVC cameras because this first UVC camera works so well.

Figure 16: Some cameras did not perform as advertised

40

The details of a movie that was captured using PushToShow with the

Logitech QuickCam Vision Pro are shown in figure 17.

Figure 17: PushToShow achieves high video quality

41

5. CONCLUSION AND FUTURE WORK

For this thesis I designed and built a prototype of a small tool that might

help users to express themselves. My research and development took about

ten months and I found several ideas for features that did not seem to work

yet, but they might pan-out in later revisions. The video capture portion

seemed more difficult than imagined and the web-cam “mirror” is the part

that I am most proud of.

The questions that I intended to explore are centered around how pleasant

this chore could be made for users. And the PushToShow prototype is

roughly as pleasant as I can imagine in that it is easy to use and it produces

the best quality moments feasible with ordinary consumer equipment. The

PushToShow prototype is clearly a big step forward from my earlier

MomentShare project, both in terms of performance and ease of use.

5.1 Future Work

With another iteration this prototype will be ready for incubation as an open

source project with educational value. After the PushToShow project is

opened up for collaborative scrutiny and development then I believe that

some features may be added to make PushToShow fit for an enterprise

setting.

42

Priority number one will be to configure PushToShow to work with a web-

based single sign-on authentication package like OpenSSO. This will give

the senders of moments identity. With TLS and OpenSSO, PushToShow will

have enterprise-class authentication and transport layer security that is easy

for end-users, especially if they are already authenticated with another

OpenID friendly web application. Other future work should include efforts to

make PushToShow portable to Microsoft Windows and Linux by using the

Java Media Framework (JMF) for which there are free native “performance

packs” available to download and distribute from Sun Microsystems. Also,

some usability features ought to be added such as better status messages

and progress bars where applicable. And it would make PushToShow more

practical if it were a drag-n-drop target for end-users' external home-made

videos and/or screen-casts in addition to capturing video from their web-

cams.

5.2 Development Environment

I am hopeful that others will gain interest in PushToShow and so for due

diligence here I would like to describe how to set up its development

environment. The development environment consists of a NetBeans IDE

workspace with three projects, a designated directory to store video files and

a small PostgreSQL database.

43

All of the application-layer source code is contained in the three small

NetBeans projects, named with the three-lettered acronyms (TLAs) psa
(applet) pss (servlets) and psv (video store.) There is a minimal source

Figure 18: The pgAdmin3 database management tool

44

code base consisting of three JSPs and eight Java files, with a pair of

deployment descriptors for the pss and psv web applications. The psv
multipart upload service and video store was separated from the pss web

application because I kept accidentally deleting movies that were in the

video store when I performed a “clean” task. With the psv code separated

from pss, I only need to backup my video files when I make changes to the

VideoUploadSvc.java source code file. Most of the Java code is for the

PushToShow applet, and runs in the end-user's web browser when she visits

the ShareMoment.jsp web page to capture a new moment. And to simplify

Figure 19: The NetBeans IDE

45

the NetBeans workspace, all eight of the Java source code files are gathered

into the edu.gsu.cs.ps package, which is located in the psa project.

The PushToShow database schema is also made to be about as simple as I

could have imagined, with just one table to hold the moments, a pair if

indices, and three simple stored procedures. The indices are on two table

columns that appear in query WHERE and ORDER BY clauses, for recipients

and sent-time. Three stored procedures SELECT moments for the

ListMoments and ViewMoment web pages, and INSERT moments for the

ShareMoment page. Database performance is improved by cheaper record

lookups with the indices and by reducing SQL parsing time with the stored

procedures. Also, the stored procedures were added because (as

parameterized queries) they reduce web application exposure to SQL-

injection style attacks and serve as security precautions.

To work with the PushToShow project on Mac OS 10.5 developers need to

install three free and open-source tools, download the PushToShow source

code, create the database and open the NetBeans workspace. The tools

required are NetBeans IDE version 6.5 (figure 19), the PostgreSQL version

8.2 relational database management system (RDBMS) and the PgAdmin III

graphical database client utility (figure 18).

46

Each of these tools has an intuitive installation procedure and their websites

are well documented, so their download and installation should only take

about an hour of time. In my experience, the only “gotcha” I had was that

my Mac needed to be restarted for PostgreSQL to be started as a new

service. Since then, PostgreSQL has automatically started every time I have

booted my Mac PC. When the tools are installed, developers should

download the PushToShow source code from:

 http://codd.cs.gsu.edu/~swatson13/thesis/PushToShowSrc.zip

or

 http://www.pushtoshow.net

After unpacking the project source code file there will be two files called

“readme.txt” and “PushToShow.sql” and a subdirectory called “ps.” It

should only take about and hour to browse the “readme.txt” file, load the

“PushToShow.sql” database DDL file into a PostgreSQL database, and open

the three small Java projects in the “ps” directory with the NetBeans IDE.

Then the deployment descriptors (called web.xml) will need to be reviewed

and maybe edited in the pss and psv projects, to revise database

connection settings and designate a directory for storing moments' video

files. This will also be detailed in the readme.txt file and should just take a

few minutes to do. Finally, the three projects may be highlighted in

http://www.pushtoshow.net/
http://codd.cs.gsu.edu/~swatson13/thesis/PushToShowSrc.zip

47

NetBeans IDE and a “clean and build” task invoked. When the pss and psv
projects are highlighted and at last their “run” or “debug” tasks are invoked,

the ShareMoment and LisMoments pages should be available at:

 http://localhost:8080/pss/ShareMoment.jsp

and

 http://localhost:8080/pss/ListMoments.jsp

This project comes from me watching scenes of people receiving important

messages that they watched and listened-to on screens or as holograms in

futuristic science-fiction movies. It comes from my understanding of

previous and current attempts to make communication quicker, easier, and

more accurate for ordinary people. And it comes from my practice in

learning dozens of tiny elements of modern computing science over the past

four years in Atlanta at Georgia State University.

It would mean the most to me if I could string together the little pieces of

my understanding to organize a voluntary and educational project whose

free and open-source software products help people to communicate and

record their experiences. And this thesis came from my desire to be

someday recognized for serving others by contributing to some slow sweet

progress for the human race.

http://localhost:8080/pss/ListMoments.jsp
http://localhost:8080/pss/ShareMoment.jsp

48

BIBLIOGRAPHY

[1] Matthew Gray, "Web Growth Summary", Internet Statistics Growth and

Usage of the Web and the Internet, 1996,

http://www.mit.edu/~mkgray/net/web-growth-summary.html

[2] Mosaic -- The First Global Web Browser,

http://www.livinginternet.com/w/wi_mosaic.htm

[3] Scott Adams, "Confusopolies", The Scott Adams Blog, 2008-12,

http://www.dilbert.com/blog/entry/confusopolies/

[4] Unrelated MomentShare, http://www.momentshare.com/

[5] Randall Stross, "Struggling to Evade the E-Mail Tsunami", New York

Times, 2008,

http://www.nytimes.com/2008/04/20/technology/20digi.html

[6] Chris Wand, "Did Darwin Skip Over Email?", FoundryGroup Blog, 2008,

http://www.foundrygroup.com/blog/archives/2008/04/did-darwin-

skip-over-email.php

[7] Elgamal, et al., "Secure socket layer application program apparatus and

method", United States Patent, 1997,

http://patft.uspto.gov/netacgi/nph-Parser?

Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO

%2Fsrchnum.htm&r=1&f=G&l=50&s1=5657390.PN.&OS=PN/5657390

&RS=PN/5657390

49

[8] Compare All SSL Certificates, VeriSign, http://www.verisign.com/ssl/buy-

ssl-certificates/secure-site-services/index.html

[9] Pricing, Thawte, https://www.thawte.com/pricing/

[10] Choose your SSL Certificate!, GoDaddy,

http://www.godaddy.com/gdshop/ssl/ssl.asp?ci=9039

[11] Google Flu Trends, http://www.google.org/flutrends/

[12] Java Control Panel,

http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-

guide/jcp.html

[13] Abdulmotaleb El Saddik, Abdur Rahman, Souhail Abdala, and Bogdan

Solomon, "PECOLE: P2P multimedia collaborative environment",

Multimedia Tools and Applications, 2007

[14] W. L. Yeung, "Supplementing Wikis with Multimedia Collaboration

Support", International Conference on Hybrid Learning 2008, August

13-15, 2008, Hong Kong, China

[15] Gerd Kortemeyer and Wolfgang Bauer, "Multimedia Collaborative

Content Creation (mc³)- the MSU LectureOnline System", Frontiers in

Education Conference, FIE '98. 28th Annual, November 4-7, 1998,

Tempe, AZ, USA

[16] Vinod Anupam and Chandrajit L. Bajaj, "Shastra: Multimedia

Collaborative Design Environment", IEEE MultiMedia , 1994, Vol. 1, Pg.

39-49

50

[17] Xiaoyong Su, B. S. Prabhu, Chi-Cheng Chu, and Rajit Gadh,

"Middleware for Multimedia Mobile Collaborative System", Wireless

Telecommunications Symposium (WTS 2004), May 14-15, 2004,

CalPoly Pomona, Pomona, California, USA

[18] Andrew Roczniak, Salinah Janmohamed, Christian Roch, Abdulmotaleb

El Saddik and Pierre L´evy, "SOA-based Collaborative Multimedia

Authoring", MCETECH 2006, May 17-19, 2006, Montreal, Quebec,

Canada

[19] K. Kontogiannis, G. A. Lewis, D. B. Smith, M. Litoiu, H. Muller, S.

Schuster, and E. Stroulia, "The Landscape of Service-Oriented

Systems: A Research Perspective", International Workshop on

Systems Development in SOA Environments (SDSOA'07), May 21,

2007, Minneapolis, MN, USA

[20] Jan Mikáč, Cécile Roisin, and Bao Le Duc, "An Export Architecture for a

Multimedia Authoring Environment", DocEng ’08, September 16-19,

2008, São Paulo, Brazil

[21] David Fono and Scott Counts, "Sandboxes: Supporting Social Play

through Collaborative Multimedia Composition on Mobile Phones",

Computer Supported Cooperative Work, November 4-8, 2006, Banff,

Alberta, Canada

51

[22] Wally Bowen, "Local Network Cookbook: A Recipe for Launching a Local

Broadband Wireless Network", MAIN - Mountain Area Information

Network, 2009, http://main.nc.us/lan-recipe/

[23] The American Recovery and Reinvestment Act of 2009,

http://www.baller.com/pdfs/Baller_Herbst_Stimulus_2-19-09.pdf

52

APPENDIX: SOURCE CODE LISTING

The Applet class is the main point of entry

for the PushToShow application's

ShareMoment page.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import javax.swing.*;
 9 import java.awt.Component;
 10
 11 import quicktime.*;
 12
 13 public class Applet extends JApplet
 14 {
 15 protected WebCam camera;
 16 protected final String className;
 17 protected CapturePanel capturePanel;
 18
 19 public Applet()
 20 {
 21 className = this.getClass().getName();
 22 System.out.println((new java.util.Date()).toString() + " - " +
 23 className + ".Applet() called.");
 24 try
 25 {
 26 QTSession.open();
 27 }
 28 catch (QTException ex)
 29 {
 30 ex.printStackTrace();
 31 }
 32
 33 System.out.println((new java.util.Date()).toString() + " - " +
 34 " QTSession.open() called.");
 35
 36 System.out.println((new java.util.Date()).toString() + " - " +
 37 " QTSession.canDoFullScreen() = " +
 38 QTSession.canDoFullScreen());
 39
 40 System.out.println((new java.util.Date()).toString() + " - " +
 41 " QTSession.hasSecurityRestrictions() = " +
 42 QTSession.hasSecurityRestrictions() + "\n");
 43 }
 44
 45 public void init()

Figure 20: Applet class diagram

53

 46 {
 47 System.out.println((new java.util.Date()).toString() + " - " +
 48 className + ".init() called.");
 49 try
 50 {
 51 camera = new WebCam();
 52 camera.setPreview();
 53 camera.startCapture();
 54 camera.setPreview();
 55 camera.startCapture();
 56 camera.popDeviceSelections();
 57 camera.popCodecs();
 58 camera.setMsgUploadURL(getParameter("MsgUploadServletURL"));
 59 camera.setFileUploadURL(getParameter("FileUploadServletURL"));
 60 System.out.println("camera.getFileUploadURL()= '" +
 61 camera.getFileUploadURL() + "'");
 62 System.out.println("camera.getMsgUploadURL= '" +
 63 camera.getMsgUploadURL() + "'\n");
 64
 65 Component imageComponent = camera.getMirror();
 66 capturePanel = camera.getCapturePanel();
 67 capturePanel.setImageComponent(imageComponent);
 68 }
 69 catch(Exception e)
 70 {
 71 e.printStackTrace();
 72 }
 73
 74 this.setBackground(new java.awt.Color(255, 255, 255));
 75 this.setSize(1005, 600);
 76 this.getContentPane().add(capturePanel);
 77 }
 78
 79 public void stop()
 80 {
 81 System.out.println((new java.util.Date()).toString() + " - " +
 82 className + ".stop() called.");
 83
 84 camera.stopGrabbing();
 85 System.out.println((new java.util.Date()).toString() + " - " +
 86 " WebCam.stopGrabbing() called.\n");
 87 }
 88
 89 public void destroy()
 90 {
 91 System.out.println((new java.util.Date()).toString() + " - " +
 92 className + ".destroy() called.");
 93
 94 QTSession.exitMovies();
 95 System.out.println((new java.util.Date()).toString() + " - " +
 96 " QTSession.exitMovies() called.");
 97
 98 QTSession.close();
 99 System.out.println((new java.util.Date()).toString() + " - " +
100 " QTSession.close() called.\n");
101 }
102 }

54

CapturePanel is the main GUI

component in the ShareMoment web

page.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.awt.*;
 9 import javax.swing.*;
 10 import java.util.Date;
 11 import java.text.SimpleDateFormat;
 12 import java.awt.event.ActionListener;
 13 import org.netbeans.lib.awtextra.*;
 14
 15 public class CapturePanel
 16 extends JPanel
 17 {
 18 protected final JButton btnSend;
 19 protected final JPanel imagePanel;
 20 protected final JLabel lblPostage;
 21 protected final JLabel lblAudioInput;
 22 protected final JLabel lblDateSent;
 23 protected final JLabel lblRecipient;
 24 protected final JLabel lblSubject;
 25 protected final JLabel lblVideoInput;
 26 protected final JTextArea taBodyText;
 27 protected final JTextField tfSubject;
 28 protected final CardLayout cardLayout;
 29 protected final JTextField tfRecipient;
 30 protected final JScrollPane spBodyText;
 31 protected final JToggleButton btnRecord;
 32 protected final JComboBox cboAudioInput;
 33 protected final JComboBox cboVideoInput;
 34 protected final JLabel lblVideoCompression;
 35 protected final JComboBox cboVideoCompression;
 36 protected final SimpleDateFormat simpleDateFormat;
 37
 38 public CapturePanel()
 39 {

Figure 21: CapturePanel class

55

 40 lblVideoInput = new JLabel();
 41 lblAudioInput = new JLabel();
 42 cboVideoInput = new JComboBox();
 43 cboAudioInput = new JComboBox();
 44 lblVideoCompression = new JLabel();
 45 cboVideoCompression = new JComboBox();
 46 spBodyText = new JScrollPane();
 47 taBodyText = new JTextArea();
 48 tfRecipient = new JTextField();
 49 lblRecipient = new JLabel();
 50 lblSubject = new JLabel();
 51 tfSubject = new JTextField();
 52 btnSend = new JButton();
 53 btnRecord = new JToggleButton();
 54 lblDateSent = new JLabel();
 55 lblPostage = new JLabel();
 56 cardLayout = new CardLayout();
 57 imagePanel = new JPanel(cardLayout);
 58 simpleDateFormat =
 59 new SimpleDateFormat("h:mm a z E dd MMM, yyyy");
 60
 61 setBackground(new Color(255, 255, 255));
 62 setMinimumSize(new Dimension(920, 560));
 63 setPreferredSize(new Dimension(930, 560));
 64 setLayout(new AbsoluteLayout());
 65
 66 lblVideoInput.setBackground(new Color(255, 255, 255));
 67 lblVideoInput.setText("Video Input:");
 68 add(lblVideoInput, new AbsoluteConstraints(177, 510, -1, -1));
 69
 70 lblAudioInput.setBackground(new Color(255, 255, 255));
 71 lblAudioInput.setText("Audio Input:");
 72 add(lblAudioInput, new AbsoluteConstraints(745, 510, -1, -1));
 73
 74 cboVideoInput.setBackground(new Color(255, 255, 255));
 75 add(cboVideoInput, new AbsoluteConstraints(259, 505, -1, -1));
 76
 77 cboAudioInput.setBackground(new Color(255, 255, 255));
 78 add(cboAudioInput, new AbsoluteConstraints(827, 505, -1, -1));
 79
 80 lblVideoCompression.setBackground(new Color(255, 255, 255));
 81 lblVideoCompression.setText("Compression:");
 82 add(lblVideoCompression,
 83 new AbsoluteConstraints(461, 510, -1, -1));
 84
 85 cboVideoCompression.setBackground(new Color(255, 255, 255));
 86 add(cboVideoCompression,
 87 new AbsoluteConstraints(553, 505, -1, -1));
 88
 89 spBodyText.setPreferredSize(new Dimension(100, 84));
 90 taBodyText.setColumns(20);
 91 taBodyText.setRows(5);
 92 taBodyText.setPreferredSize(new Dimension(100, 80));
 93 taBodyText.setLineWrap(true);
 94 spBodyText.setViewportView(taBodyText);
 95 add(spBodyText, new AbsoluteConstraints(645, 190, 335, 290));
 96

56

 97 tfRecipient.setText("bob");
 98 add(tfRecipient,
 99 new AbsoluteConstraints(740, 130, 240, -1));
100
101 lblRecipient.setBackground(new Color(255, 255, 255));
102 lblRecipient.setHorizontalAlignment(SwingConstants.RIGHT);
103 lblRecipient.setText("To:");
104 lblRecipient.setHorizontalTextPosition(SwingConstants.RIGHT);
105 add(lblRecipient,
106 new AbsoluteConstraints(710, 130, -1, 20));
107
108 lblSubject.setBackground(new Color(255, 255, 255));
109 lblSubject.setHorizontalAlignment(SwingConstants.RIGHT);
110 lblSubject.setText("Subject:");
111 lblSubject.setToolTipText("Subject");
112 lblSubject.setHorizontalTextPosition(SwingConstants.RIGHT);
113 add(lblSubject,
114 new AbsoluteConstraints(680, 160, -1, -1));
115
116 tfSubject.setText("sharing a moment with ya...");
117 add(tfSubject,
118 new AbsoluteConstraints(740, 160, 240, -1));
119
120 btnRecord.setBackground(new Color(255, 255, 255));
121 btnRecord.setText("Record");
122 btnRecord.setToolTipText("Record a video clip");
123 add(btnRecord,
124 new AbsoluteConstraints(0, 505, -1, -1));
125
126 btnSend.setBackground(new Color(255, 255, 255));
127 btnSend.setText("Send");
128 btnSend.setToolTipText("Send the complete message");
129 add(btnSend,
130 new AbsoluteConstraints(90, 505, -1, -1));
131
132 lblDateSent.setBackground(new Color(255, 255, 255));
133 lblDateSent.setHorizontalAlignment(SwingConstants.RIGHT);
134
135 lblDateSent.setText(simpleDateFormat.format(new Date()));
136 add(lblDateSent,
137 new AbsoluteConstraints(740, 70, 240, 80));
138
139 ImageIcon keyFrame =
140 new ImageIcon(getClass().getResource("Postage.jpg"));
141 lblPostage.setIcon(keyFrame);
142 add(lblPostage,
143 new AbsoluteConstraints(640, 5, 343, 104));
144
145 add(imagePanel,
146 new AbsoluteConstraints(0, 0, 640, 480));
147 }
148
149 public void addActionListener(final ActionListener actionListener)
150 {
151 btnRecord.addActionListener(actionListener);
152 btnSend.addActionListener(actionListener);
153 cboAudioInput.addActionListener(actionListener);

57

154 cboVideoInput.addActionListener(actionListener);
155 cboVideoCompression.addActionListener(actionListener);
156 }
157
158 public void setImageComponent(final Component imageComponent)
159 {
160 imagePanel.add(imageComponent, "capture");
161 }
162
163 public JToggleButton getRecordButton()
164 {
165 return btnRecord;
166 }
167
168 public JComboBox getCboAudioInput()
169 {
170 return cboAudioInput;
171 }
172
173 public JComboBox getCboVideoInput()
174 {
175 return cboVideoInput;
176 }
177
178 public JComboBox getCboVideoCompression()
179 {
180 return cboVideoCompression;
181 }
182
183 public JButton getSendButton()
184 {
185 return btnSend;
186 }
187
188 public JTextArea getTaBodyText()
189 {
190 return taBodyText;
191 }
192
193 public JTextField getTfRecipient()
194 {
195 return tfRecipient;
196 }
197
198 public JTextField getTfSubject()
199 {
200 return tfSubject;
201 }
202
203 public JPanel getImagePanel()
204 {
205 return imagePanel;
206 }
207 }
208

58

FileUploader is used by the

applet to upload the video

portion of the moment.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.io.File;
 9 import org.apache.commons.httpclient.*;
10 import org.apache.commons.httpclient.methods.PostMethod;
11 import org.apache.commons.httpclient.methods.multipart.*;
12 import org.apache.commons.httpclient.params.HttpMethodParams;
13
14 public class FileUploader implements Runnable
15 {
16 protected final String targetURL;
17 protected final String fileName;
18
19 public FileUploader(final String _fileName,
20 final String _targetURL)
21 {
22 fileName = _fileName;
23 targetURL = _targetURL;
24 }
25
26 public void run()
27 {
28 System.out.println("Transferring File: '" +
29 fileName + "' \n\n");
30 try
31 {
32 File transferfile = new File(fileName);
33 PostMethod filePost = new PostMethod(targetURL);
34 filePost.getParams().setBooleanParameter(
35 HttpMethodParams.USE_EXPECT_CONTINUE, false);
36 try
37 {
38 final Part[] parts =
39 {
40 new FilePart("userfile", transferfile)
41 };
42
43 filePost.setRequestEntity(
44 new MultipartRequestEntity(parts,
45 filePost.getParams()));
46
47 final HttpClient client = new HttpClient();
48 client.getHttpConnectionManager().
49 getParams().setConnectionTimeout(5000);

Figure 22: FileUploader class

59

50 int status = client.executeMethod(filePost);
51
52 if(status == HttpStatus.SC_OK)
53 {
54 System.out.println("'" + fileName +
55 "' - Upload complete, " +
56 "response=" +
57 filePost.getResponseBodyAsString()
58);
59 System.out.println("Transfer resulted: " +
60 filePost.getResponseBodyAsString()
61 + "\n\n");
62 }
63
64 else
65 {
66 System.out.println("'" + fileName +
67 "' - Upload failed, response=" +
68 HttpStatus.getStatusText(status)
69);
70 System.out.println("Transfer resulted: " +
71 HttpStatus.getStatusText(status)
72 + "\n\n");
73 }
74 }
75 catch(Exception ex)
76 {
77 System.out.println("ERROR: " + ex.getClass().getName() +
78 " " + ex.getMessage());
79 ex.printStackTrace();
80 }
81 finally
82 {
83 filePost.releaseConnection();
84 }
85 System.out.println("Transfer complete.\n\n");
86 System.out.println("Drop files here.");
87
88 return;
89 }
90 catch(Exception e)
91 {
92 e.printStackTrace();
93 }
94 }
95 }
96

60

Moment is the metadata for a

PushToShow moment, it does not

include the video portion but it does

have the video file name.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.util.Date;
 9 import java.io.Serializable;
 10 import java.sql.ResultSet;
 11 import java.sql.SQLException;
 12
 13 public class Moment
 14 implements Serializable
 15 {
 16 protected long id;
 17 protected long sentTime;
 18 protected String senderName;
 19 protected String recipients;
 20 protected String subject;
 21 protected String bodyText;
 22 protected String videoName;
 23
 24 public Moment()
 25 {
 26 }
 27
 28 public Moment(final ResultSet rs) throws SQLException
 29 {
 30 id = rs.getLong("id");
 31 sentTime = rs.getLong("sentTime");
 32 senderName = rs.getString("senderName");
 33 recipients = rs.getString("recipients");
 34 subject = rs.getString("subject");
 35 bodyText = rs.getString("bodyText");
 36 videoName = rs.getString("videoName");
 37 }
 38
 39 public String toString()
 40 {
 41 return("id = " + id +
 42 ", sentTime = '" + (new Date(sentTime)).toString() +
 43 ", senderName = '" + senderName +
 44 "', recipients = '" + recipients +
 45 "', subject = '" + subject +
 46 "', bodyText = '" + bodyText +

Figure 23: Moment class

61

 47 "', videoName = '" + videoName + "'"
 48);
 49 }
 50
 51 public String getRecipients()
 52 {
 53 return recipients;
 54 }
 55
 56 public void setRecipients(String recipients)
 57 {
 58 this.recipients = recipients;
 59 }
 60
 61 public String getSubject()
 62 {
 63 return subject;
 64 }
 65
 66 public void setSubject(String subject)
 67 {
 68 this.subject = subject;
 69 }
 70
 71 public String getBody()
 72 {
 73 return bodyText;
 74 }
 75
 76 public void setBody(String body)
 77 {
 78 this.bodyText = body;
 79 }
 80
 81 public String getVideoName()
 82 {
 83 return videoName;
 84 }
 85
 86 public void setVideoName(String videoName)
 87 {
 88 this.videoName = videoName;
 89 }
 90
 91 public long getId()
 92 {
 93 return id;
 94 }
 95
 96 public void setId(long id)
 97 {
 98 this.id = id;
 99 }
100
101 public long getSentTime()
102 {
103 return sentTime;

62

104 }
105
106 public void setSentTime(long sentTime)
107 {
108 this.sentTime = sentTime;
109 }
110
111 public String getSenderName()
112 {
113 return senderName;
114 }
115
116 public void setSenderName(String senderName)
117 {
118 this.senderName = senderName;
119 }
120 }
121

63

MomentUploader uploads the moments to the server.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.net.URL;
 9 import java.io.IOException;
10 import com.oreilly.servlet.HttpMessage;
11
12 public class MomentUploader implements Runnable
13 {
14 protected final Moment moment;
15 protected final String msgUploadURL;
16 protected final String fileUploadURL;
17 protected final FileUploader fileUploader;
18
19 public MomentUploader(final Moment _moment,
20 final String _msgUploadURL,
21 final String _fileName,
22 final String _fileUploadURL)
23 {
24 moment = _moment;
25 msgUploadURL = _msgUploadURL;
26 fileUploadURL = _fileUploadURL;
27 fileUploader = new FileUploader(_fileName, _fileUploadURL);
28 }
29
30 public void run()
31 {
32 System.out.println("Uploading moment with subject line '" +
33 moment.getSubject() + "' \n\t to URL '" +
34 fileUploadURL + "'");
35 try
36 {
37 System.out.println("Starting to upload the file");
38 fileUploader.run();
39 System.out.println("No exceptions after upload.");
40
41 URL url = new URL(msgUploadURL);
42 HttpMessage msg = new HttpMessage(url);

Figure 24: MomentUploader class

64

43 msg.sendPostMessage(moment);
44 }
45 catch(IOException e)
46 {
47 e.printStackTrace();
48 }
49
50 System.out.println("Done uploading moment with subject line '" +
51 moment.getSubject() + "'");
52 }
53 }
54

65

MomentUploadSvc - This class implements a web service that receives new

moment meta-data by object serialization over HTTP. As each new moment

is received, a matching record is created in the “moments” database table.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.io.*;
 9 import java.sql.*;
 10 import javax.servlet.*;
 11 import javax.servlet.http.*;
 12 import javax.sql.DataSource;
 13 import javax.naming.InitialContext;
 14
 15 public class MomentUploadSvc extends HttpServlet
 16 {
 17 protected void processRequest(final HttpServletRequest request,
 18 final HttpServletResponse response)
 19 throws ServletException, IOException
 20 {
 21 System.out.println("In MomentUploadSvc.processRequest() ...");
 22
 23 Connection cxn = null;
 24 CallableStatement stmt = null;
 25 final String senderName = "pounce@cs.gsu.edu";
 26 final long id = System.nanoTime();
 27 final long sentTime = System.nanoTime();
 28
 29 try
 30 {
 31 final ObjectInputStream inputStream =
 32 new ObjectInputStream(request.getInputStream());
 33
 34 final Moment moment = ((Moment)inputStream.readObject());
 35 final String recipients = moment.getRecipients();
 36 final String subject = moment.getSubject();

Figure 25: MomentUploadSvc class

66

 37 final String body = moment.getBody();
 38 final String videoName =
 39 moment.getVideoName().substring(
 40 moment.getVideoName().lastIndexOf("/")+1);
 41
 42 final DataSource dataSource =
 43 (DataSource)((new InitialContext()).lookup(
 44 "java:/comp/env/jdbc/postgres"));
 45
 46 cxn = dataSource.getConnection();
 47 stmt = cxn.prepareCall("{ call add_moment(" +
 48 "?, ?, ?, ?, " +
 49 "?, ?, ?) }");
 50
 51 stmt.setLong(1, id);
 52 stmt.setLong(2, sentTime);
 53 stmt.setString(3, senderName);
 54 stmt.setString(4, recipients);
 55 stmt.setString(5, subject);
 56 stmt.setString(6, body);
 57 stmt.setString(7, videoName);
 58
 59 System.out.println("recordsUpdated = " +
 60 stmt.executeUpdate());
 61 }
 62 catch(Exception e)
 63 {
 64 e.printStackTrace();
 65 }
 66
 67 finally
 68 {
 69 try
 70 {
 71 if(stmt != null)
 72 {
 73 stmt.close();
 74 stmt = null;
 75 }
 76 }
 77 catch(SQLException e)
 78 {
 79 }
 80
 81 try
 82 {
 83 if(cxn != null)
 84 {
 85 cxn.close();
 86 cxn = null;
 87 }
 88 }
 89 catch(SQLException e)
 90 {
 91 }
 92 }
 93 }

67

 94
 95 protected void doGet(final HttpServletRequest request,
 96 final HttpServletResponse response)
 97 throws ServletException, IOException
 98 {
 99 processRequest(request, response);
100 }
101
102 protected void doPost(final HttpServletRequest request,
103 final HttpServletResponse response)
104 throws ServletException, IOException
105 {
106 processRequest(request, response);
107 }
108
109 public String getServletInfo()
110 {
111 return "A web service to receive moment meta-data";
112 }
113 }
114

68

VideoUploadSvc – This class implements a web service that receives the

video portion of a new moment from the end-user's web browser, and saves

the video file to disk on the server-side. The new video files are received by

multi-part upload method over HTTP.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.io.*;
 9 import java.util.*;
 10 import javax.servlet.*;
 11 import javax.servlet.http.*;
 12 import org.apache.commons.fileupload.FileItem;
 13 import org.apache.commons.fileupload.FileUploadException;
 14 import org.apache.commons.fileupload.disk.DiskFileItemFactory;
 15 import org.apache.commons.fileupload.servlet.ServletFileUpload;
 16
 17 public class VideoUploadSvc extends HttpServlet
 18 {
 19 protected void processRequest(final HttpServletRequest request,
 20 final HttpServletResponse response)
 21 throws ServletException, IOException
 22 {
 23 response.setContentType("text/html;charset=UTF-8");
 24
 25 final PrintWriter out = response.getWriter();
 26 out.println("<html>");
 27 out.println("<head>");
 28 out.println("<title>Multipart File Upload Servlet Test</title>");
 29 out.println("</head>");
 30 out.println("<body>");
 31 out.println("<h1>Multipart File Upload Servlet Test Results " +
 32 "from " + request.getContextPath () + "</h1>");
 33 try

Figure 26: VideoUploadSvc class

69

 34 {
 35 final ServletContext servletContext = getServletContext();
 36 final String msgsDirectory =
 37 servletContext.getRealPath("/" +
 38 servletContext.getInitParameter("VideosDir"));
 39
 40 out.println("Server-side real path to upload directory is '"
 41 + msgsDirectory + "'
");
 42 out.println("Acquiring an iterator for the uploaded file(s) "
 43 +"
");
 44
 45 final DiskFileItemFactory factory =
 46 new DiskFileItemFactory();
 47 final ServletFileUpload upload =
 48 new ServletFileUpload(factory);
 49 final List fileItems = upload.parseRequest(request);
 50 final Iterator files = fileItems.iterator();
 51
 52 out.println("Now, to receive each file..
");
 53 while(files.hasNext())
 54 {
 55 final FileItem fileItem = ((FileItem)files.next());
 56 final String fileName = fileItem.getName();
 57 final InputStream fileInputStream =
 58 fileItem.getInputStream();
 59 final File newFile = new File(msgsDirectory, fileName);
 60 final FileOutputStream fileOutputStream =
 61 new FileOutputStream(newFile);
 62 final BufferedOutputStream bufferedStream =
 63 new BufferedOutputStream(fileOutputStream);
 64
 65 long fileByteSize = 0;
 66 int fileByte = fileInputStream.read();
 67 final long fileStartTime = System.currentTimeMillis();
 68 while(fileByte > -1)
 69 {
 70 fileByteSize++;
 71 bufferedStream.write(fileByte);
 72 fileByte = fileInputStream.read();
 73 }
 74
 75 final long elapsedMillis =
 76 System.currentTimeMillis()
 77 - fileStartTime;
 78 final long byteRate =
 79 fileByteSize * 1000L / elapsedMillis;
 80
 81 out.print(" ");
 82 out.println("Received file '" + fileName +
 83 "' in " + elapsedMillis + " mS, " +
 84 fileByteSize + " bytes, " +
 85 byteRate/1024 + " KB/sec.
");
 86
 87 bufferedStream.flush();
 88 bufferedStream.close();
 89 fileInputStream.close();
 90 }

70

 91
 92 out.println("Done receiving file(s)
");
 93 }
 94 catch(FileUploadException e)
 95 {
 96 e.printStackTrace(out);
 97 }
 98 finally
 99 {
100 out.println("</body>");
101 out.println("</html>");
102 out.flush();
103 out.close();
104 }
105 }
106
107 protected void doGet(final HttpServletRequest request,
108 final HttpServletResponse response)
109 throws ServletException, IOException
110 {
111 processRequest(request, response);
112 }
113
114 protected void doPost(final HttpServletRequest request,
115 final HttpServletResponse response)
116 throws ServletException, IOException
117 {
118 processRequest(request, response);
119 }
120
121 public String getServletInfo()
122 {
123 return "A web service to receive the video protion of a moment";
124 }
125 }
126

71

WebCam – This class initializes and

receives video from the attached web-

cam on the end-user's PC.

 1 /* Susan Gentner
 2 * PushToShow Masters Thesis
 3 * Georgia State University
 4 * March 2009
 5 */
 6 package edu.gsu.cs.ps;
 7
 8 import java.awt.*;
 9 import javax.swing.*;
 10 import java.awt.event.*;
 11 import java.awt.image.*;
 12 import java.util.Date;
 13 import java.text.SimpleDateFormat;
 14 import quicktime.*;
 15 import quicktime.qd.*;
 16 import quicktime.io.*;
 17 import quicktime.std.*;
 18 import quicktime.std.sg.*;
 19 import quicktime.std.image.CodecNameList;
 20
 21 public class WebCam implements ActionListener
 22 {
 23 protected int[] pixelData;
 24 protected boolean grabbing;
 25 protected String fileName;
 26 protected String msgUploadURL;
 27 protected String fileUploadURL;
 28 protected BufferedImage image;
 29 protected QDRect cameraImageSize;
 30 protected QDGraphics qdGraphics;
 31 protected SGVideoChannel videoChannel;
 32 protected SGSoundChannel soundChannel;
 33 protected MomentUploader momentUploader;
 34 protected final CapturePanel capturePanel;
 35 protected final SequenceGrabber seqGrabber;
 36 protected final SimpleDateFormat simpleDateFormat;

Figure 27: WebCam class

72

 37
 38 public WebCam() throws Exception
 39 {
 40 capturePanel = new CapturePanel();
 41 seqGrabber = new SequenceGrabber();
 42 capturePanel.addActionListener(this);
 43 simpleDateFormat = new SimpleDateFormat("yyyyMMdd_HHmmss");
 44
 45 initSequenceGrabber();
 46 initBufferedImage();
 47 }
 48
 49 private void initSequenceGrabber() throws Exception
 50 {
 51
 52 soundChannel = new SGSoundChannel(seqGrabber);
 53 soundChannel.setUsage(StdQTConstants.seqGrabPreview |
 54 StdQTConstants.seqGrabRecord);
 55
 56 videoChannel = new SGVideoChannel(seqGrabber);
 57 videoChannel.setCompressorType(1483297896);
 58 cameraImageSize = new QDRect(640, 480);
 59 qdGraphics = new QDGraphics(cameraImageSize);
 60 seqGrabber.setGWorld(qdGraphics, null);
 61
 62 videoChannel.setBounds(cameraImageSize);
 63 videoChannel.setUsage(quicktime.std.StdQTConstants.seqGrabRecord|
 64 quicktime.std.StdQTConstants.seqGrabPreview |
 65 quicktime.std.StdQTConstants.seqGrabPlayDuringRecord);
 66
 67 videoChannel.setFrameRate(0);
 68 }
 69
 70 private void initBufferedImage() throws Exception
 71 {
 72 final int intsPerRow =
 73 qdGraphics.getPixMap().getPixelData().getRowBytes() / 4;
 74 final int size = intsPerRow * cameraImageSize.getHeight();
 75
 76 pixelData = new int[size];
 77 final DataBuffer dataBuffer = new DataBufferInt(pixelData, size);
 78 final ColorModel colorModel = new DirectColorModel(32,
 79 0x00ff0000,
 80 0x0000ff00,
 81 0x000000ff);
 82
 83 final int[] masks = {0x00ff0000, 0x0000ff00, 0x000000ff};
 84 final WritableRaster raster = Raster.createPackedRaster(
 85 dataBuffer,
 86 cameraImageSize.getWidth(),
 87 cameraImageSize.getHeight(),
 88 intsPerRow, masks, null);
 89
 90 image = new BufferedImage(colorModel, raster, false, null);
 91 }
 92
 93 public String getFileUploadURL()

73

 94 {
 95 return fileUploadURL;
 96 }
 97
 98 public void setFileUploadURL(String _fileUploadURL)
 99 {
100 fileUploadURL = _fileUploadURL;
101 }
102
103 public String getMsgUploadURL()
104 {
105 return msgUploadURL;
106 }
107
108 public void setMsgUploadURL(String _msgUploadURL)
109 {
110 msgUploadURL = _msgUploadURL;
111 }
112
113 public CapturePanel getCapturePanel()
114 {
115 return capturePanel;
116 }
117
118 public boolean isAvailable(final SGDeviceName deviceName)
119 {
120 return((deviceName.getFlags() &
121 StdQTConstants.sgDeviceNameFlagDeviceUnavailable) == 0);
122 }
123
124 public void setPreview() throws QTException
125 {
126 seqGrabber.setDataOutput(null,
127 StdQTConstants.seqGrabDontMakeMovie);
128 }
129
130 public int numberAvailableDevices(final SGDeviceList sgDeviceList)
131 throws QTException
132 {
133 int numDevsAvailable = 0;
134 for(int i=0; i<sgDeviceList.getCount(); i++)
135 {
136 if(isAvailable(sgDeviceList.getDeviceName(i)))
137 numDevsAvailable++;
138 }
139
140 return numDevsAvailable;
141 }
142
143 public void setRecord() throws QTException
144 {
145 fileName = System.getProperty("user.home") +
146 "/psv_" + simpleDateFormat.format(new Date()) +
147 ".mov";
148
149 System.out.println("Movie file is called '" + fileName + "'");
150 final java.io.File javaFile = new java.io.File(fileName);

74

151 javaFile.deleteOnExit();
152 QTFile movieFile = new QTFile(javaFile);
153
154 seqGrabber.setDataOutput(movieFile,
155 StdQTConstants.seqGrabToDisk);
156 }
157
158 public void startCapture() throws StdQTException
159 {
160 seqGrabber.prepare(false, true);
161 seqGrabber.startRecord();
162 grabbing = true;
163
164 Runnable idleCamera = new Runnable()
165 {
166 public void run()
167 {
168 try
169 {
170 while(grabbing)
171 {
172 Thread.sleep(25);
173 synchronized(seqGrabber)
174 {
175 seqGrabber.idle();
176 seqGrabber.update(null);
177 }
178 }
179 }
180 catch(Exception ex)
181 {
182 ex.printStackTrace();
183 }
184 }
185 };
186 (new Thread(idleCamera)).start();
187 }
188
189 public void stopGrabbing()
190 {
191 try
192 {
193 grabbing = false;
194
195 if(seqGrabber != null)
196 seqGrabber.stop();
197 }
198 catch(StdQTException e)
199 {
200 e.printStackTrace();
201 }
202 }
203
204 public Component getMirror()
205 {
206 final Component component = new Component()
207 {

75

208 public void paint(Graphics g)
209 {
210 super.paint(g);
211 g.drawImage(image, 0, 0, this);
212 }
213 ;
214 };
215
216 final Runnable imageUpdate = new Runnable()
217 {
218 public void run()
219 {
220 try
221 {
222 while(true)
223 {
224 synchronized(seqGrabber)
225 {
226 qdGraphics.getPixMap().getPixelData().
227 copyToArray(0, pixelData,
228 0, pixelData.length);
229
230 component.repaint();
231 }
232 Thread.sleep(10);
233 }
234 }
235 catch(Exception ex)
236 {
237 ex.printStackTrace();
238 }
239 }
240 };
241 (new Thread(imageUpdate)).start();
242
243 return component;
244 }
245
246 public void popDeviceSelections()
247 {
248 try
249 {
250 int i = 0;
251 int numAvailableDevices = 0;
252 String defaultSelection = null;
253 final SGDeviceList audioDevList =
254 soundChannel.getDeviceList(0);
255 final int numAudioDeviceNames = audioDevList.getCount();
256 final int numAudioDevicesAvail =
257 numberAvailableDevices(audioDevList);
258 String[] audioDevNames = new String[numAudioDevicesAvail];
259
260 for(i = 0; i < numAudioDeviceNames; i++)
261 {
262 final String deviceName =
263 audioDevList.getDeviceName(i).getName();
264

76

265 if(isAvailable(audioDevList.getDeviceName(i)))
266 {
267 if(deviceName != null)
268 {
269 System.out.print("audio #" + i + " is '" +
270 deviceName + "'");
271
272 if(deviceName.contains("Camera"))
273 {
274 defaultSelection = deviceName;
275 System.out.println(" <-- SELECTED ");
276 }
277 else
278 {
279 System.out.println("");
280 }
281 audioDevNames[numAvailableDevices++] =
282 audioDevList.getDeviceName(i).
283 getName();
284 }
285 }
286 }
287
288 capturePanel.getCboAudioInput().setModel(
289 new DefaultComboBoxModel(audioDevNames));
290
291 if(defaultSelection != null)
292 {
293 capturePanel.getCboAudioInput().setSelectedItem(
294 defaultSelection);
295
296 System.out.println("Set soundChannel device to: '" +
297 defaultSelection + "'");
298 }
299
300 numAvailableDevices = 0;
301 defaultSelection = null;
302 SGDeviceList videoDevList = videoChannel.getDeviceList(0);
303
304 final int numVideoDeviceNames = videoDevList.getCount();
305 final int numVideoDevicesAvail =
306 numberAvailableDevices(videoDevList);
307
308 String[] videoDevNames = new String[numVideoDevicesAvail];
309 for(i = 0; i < numVideoDeviceNames; i++)
310 {
311 final String deviceName =
312 videoDevList.getDeviceName(i).getName();
313 if(isAvailable(videoDevList.getDeviceName(i)))
314 {
315 if(deviceName != null) // usually print this
316 {
317 System.out.print("video #" + i + " is '" +
318 deviceName + "'");
319 if(deviceName.contains("USB"))
320 {
321 defaultSelection = deviceName;

77

322 System.out.println(" <-- SELECTED ");
323 }
324 else
325 {
326 System.out.println("");
327 }
328 videoDevNames[numAvailableDevices++] =
329 videoDevList.getDeviceName(i).getName();
330 }
331 }
332 }
333
334 capturePanel.getCboVideoInput().setModel(
335 new DefaultComboBoxModel(videoDevNames));
336
337 if(defaultSelection != null)
338 {
339 capturePanel.getCboVideoInput().
340 setSelectedItem(defaultSelection);
341 System.out.println("Set videoChannel device to: '" +
342 defaultSelection + "'");
343 }
344 }
345 catch(QTException qte)
346 {
347 qte.printStackTrace();
348 }
349 }
350
351 public void popCodecs()
352 {
353 try
354 {
355 CodecNameList codecNameList = new CodecNameList(0);
356 String[] codecNames = new String[codecNameList.getCount()];
357 String defaultSelection = null;
358
359 for(int i = 0; i < codecNameList.getCount(); i++)
360 {
361 final String codecName =
362 codecNameList.getNth(i).getTypeName();
363
364 if(codecName.contains("Xiph"))
365 {
366 defaultSelection = codecName;
367 System.out.println("codec algorithm #" + i + " is '"
368 + defaultSelection +
369 "' <-- SELECTED ");
370 }
371 else
372 {
373 System.out.println("codec algorithm #" + i + " is '"
374 + codecName + "'");
375 }
376 codecNames[i] = codecName;
377 }
378 capturePanel.getCboVideoCompression().setModel(

78

379 new DefaultComboBoxModel(codecNames));
380
381 if(defaultSelection != null)
382 {
383 capturePanel.getCboVideoCompression().
384 setSelectedItem(defaultSelection);
385 }
386 }
387 catch(QTException qte)
388 {
389 qte.printStackTrace();
390 }
391 }
392
393 public void actionPerformed(ActionEvent e)
394 {
395 if(e.getSource() == capturePanel.getRecordButton())
396 {
397 stopGrabbing();
398 try
399 {
400 if(capturePanel.getRecordButton().getText().
401 equals("Record"))
402 {
403 grabbing = true;
404 capturePanel.getRecordButton().setText("Stop");
405 capturePanel.getCboAudioInput().setEnabled(false);
406 capturePanel.getCboVideoInput().setEnabled(false);
407 capturePanel.getCboVideoCompression().
408 setEnabled(false);
409 capturePanel.getSendButton().setEnabled(false);
410 setRecord();
411 }
412
413 else if(capturePanel.getRecordButton().getText().
414 equals("Stop"))
415 {
416 grabbing = false;
417 capturePanel.getRecordButton().setText("Record");
418 capturePanel.getCboAudioInput().setEnabled(true);
419 capturePanel.getCboVideoInput().setEnabled(true);
420 capturePanel.getCboVideoCompression().
421 setEnabled(true);
422 capturePanel.getSendButton().setEnabled(true);
423 setPreview();
424 }
425
426 startCapture();
427 }
428 catch(QTException e1)
429 {
430 e1.printStackTrace();
431 }
432 }
433
434 else if(e.getSource() == capturePanel.getCboAudioInput())
435 {

79

436 System.out.println("cboAudioInput changed to : '" +
437 capturePanel.getCboAudioInput().
438 getSelectedItem().toString() + "'");
439 try
440 {
441 if(seqGrabber.isPreviewMode()||seqGrabber.isRecordMode())
442 stopGrabbing();
443
444 soundChannel.setDevice(capturePanel.getCboAudioInput().
445 getSelectedItem().toString());
446 startCapture();
447 }
448 catch(Exception ex)
449 {
450 System.out.println("Cound not set the sound device");
451 ex.printStackTrace();
452 }
453 }
454
455 else if(e.getSource() == capturePanel.getCboVideoInput())
456 {
457 System.out.println("cboVideoInput changed to : '" +
458 capturePanel.getCboVideoInput().
459 getSelectedItem().toString() + "'");
460
461 try
462 {
463 if(seqGrabber.isPreviewMode()||seqGrabber.isRecordMode())
464 stopGrabbing();
465
466 videoChannel.setDevice(capturePanel.getCboVideoInput().
467 getSelectedItem().toString());
468 startCapture();
469 }
470 catch(Exception ex)
471 {
472 System.out.println("Cound not set the video device");
473 ex.printStackTrace();
474 }
475 }
476
477 else if(e.getSource() == capturePanel.getCboVideoCompression())
478 {
479 System.out.println("cboVideoCompression changed to : '" +
480 capturePanel.getCboVideoCompression().
481 getSelectedItem().toString()
482 + "'");
483
484 try
485 {
486 final CodecNameList codecNameList = new CodecNameList(0);
487 final int ctype =
488 codecNameList.getNth(capturePanel.
489 getCboVideoCompression().
490 getSelectedIndex()).
491 getCType();
492

80

493 if(seqGrabber.isPreviewMode()||seqGrabber.isRecordMode())
494 stopGrabbing();
495
496 videoChannel.setCompressorType(ctype);
497 startCapture();
498 }
499 catch(Exception ex)
500 {
501 ex.printStackTrace();
502 }
503 }
504
505 else if(e.getSource() == capturePanel.getSendButton())
506 {
507 System.out.println("Send button was clicked.");
508
509 final Moment moment = new Moment();
510 moment.setSenderName("pounce@cs.gsu.edu");
511 moment.setRecipients(capturePanel.getTfRecipient().
512 getText());
513 moment.setSubject(capturePanel.getTfSubject().
514 getText());
515 moment.setBody(capturePanel.getTaBodyText().
516 getText());
517 moment.setVideoName(fileName);
518 momentUploader = new MomentUploader(moment, msgUploadURL,
519 fileName, fileUploadURL);
520
521 (new Thread(momentUploader)).start();
522 System.out.println("Started thread to upload message with "+
523 "subject line '" +
524 moment.getSubject() + "'");
525 }
526
527 else if(grabbing)
528 {
529 try
530 {
531 seqGrabber.idle();
532 seqGrabber.update(null);
533 }
534 catch(QTException qte)
535 {
536 qte.printStackTrace();
537 }
538 }
539 }
540
541 }
542

81

ListMoments.jsp – This web page lists all moments that are addressed to a

specified recipient. The moments are presented in an HTML table that has

click-able rows. When the user clicks a row, a new tab will be opened in the

web browser with a matching ViewMoment page for the moment entry that

was clicked.

 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TRANSITIONAL//EN">
 2
 3 <!--
 4 Susan Gentner
 5 PushToShow Masters Thesis
 6 Georgia State University
 7 March 2009
 8 -->
 9
 10 <%@ page import="java.sql.*" %>
 11 <%@ page import="java.text.SimpleDateFormat" %>
 12 <%@ page import="javax.sql.DataSource" %>
 13 <%@ page import="javax.naming.InitialContext" %>
 14
 15 <html>
 16 <head>
 17 <meta http-equiv="content-type" content="text/html; charset=UTF-8">
 18 <title> PushToShow Inbox </title>
 19 <link rel='stylesheet' type='text/css' href='sample.css' />
 20 </head>
 21 <body>
 22 <form>
 23 <center>
 24 <table width="1005px" height="550px" border="6px" cellpadding="1px">
 25 <tr valign="top"><td>
 26 <table border="1px" width="100%">
 27 <thead>
 28 <tr>
 29 <th width="20%">Date</th>
 30 <th width="20%">Sender</th>
 31 <th>Subject</th>
 32 </tr>
 33 </thead>
 34 <tbody>
 35
 36 <%
 37 Connection cxn = null;
 38 String recipient = null;
 39 ResultSet rs = null;
 40 String takeMomentURL = null;
 41 PreparedStatement pstmt = null;
 42 final SimpleDateFormat simpleDateFormat =
 43 new SimpleDateFormat("h:mm a E dd MMM, yyyy");
 44 String shareUrl = null;

82

 45 try
 46 {
 47
 48 final ServletContext servletContext = this.getServletContext();
 49 final int serverPort = request.getServerPort();
 50 final String serverName = request.getServerName();
 51 final String path = request.getServletPath();
 52 takeMomentURL = "http://"+serverName+":" + serverPort +
 53 servletContext.getContextPath() +
 54 "/TakeMoment.jsp?id=";
 55 shareUrl = "http://"+serverName+":" + serverPort +
 56 servletContext.getContextPath() +
 57 "/ShareMoment.jsp";
 58 recipient = request.getParameter("recipient");
 59
 60 DataSource dataSource = (DataSource)((new InitialContext()).
 61 lookup("java:/comp/env/jdbc/postgres"));
 62 cxn = dataSource.getConnection();
 63
 64 pstmt = cxn.prepareStatement("SELECT * FROM list_moments('" +
 65 recipient + "')");
 66 rs = pstmt.executeQuery();
 67
 68 while(rs != null && rs.next())
 69 {
 70 out.println("<tr onmouseover='this.style.color=\"red\";" +
 71 "style.cursor=\"pointer\";this.style.background"+
 72 "=\"lightblue\"' onMouseOut ='this.style.color="+
 73 "\"black\";this.style.background=\"white\"' "+
 74 "onclick=\"window.open('"+ takeMomentURL +
 75 rs.getString("id")+"');return false;\">");
 76 out.println("<td>" + simpleDateFormat.
 77 format(new Date(Long.parseLong(
 78 rs.getString("senttime"))/1000000)) +
 79 "</td>");
 80 out.println("<td>" + rs.getString("sendername") + "</td>");
 81 out.println("<td>" + rs.getString("subject") + "</td>");
 82 out.println("</tr>");
 83 }
 84 }
 85 catch(SQLException e)
 86 {
 87 e.printStackTrace();
 88 }
 89
 90 finally
 91 {
 92 try
 93 {
 94 if(rs != null)
 95 rs.close();
 96 }
 97 catch(SQLException e)
 98 {
 99 }
100
101 try

83

102 {
103 if(pstmt != null)
104 pstmt.close();
105 }
106 catch(SQLException e)
107 {
108 }
109
110 try
111 {
112 if(cxn != null)
113 cxn.close();
114 }
115 catch(SQLException e)
116 {
117 }
118 }
119 %>
120 </tbody>
121 </table>
122 </td></tr>
123 </table>
124
125 <p>
126 <%= new java.util.Date() %>
127 <% if(shareUrl != null){ %>
128 <input type = "button" name="compose" value="Compose New Moment"
129 onClick='window.open("<%=shareUrl%>");'>
130 <%}%>
131 </p>
132 </center>
133 </form>
134 </body>
135 </html>
136

84

ShareMoment.jsp – This web page allows the end user to capture, compose,

and send a moment with just a couple of quick mouse clicks.

 1 <%@page contentType="text/html" pageEncoding="UTF-8"%>
 2 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 3 "http://www.w3.org/TR/html4/loose.dtd">
 4
 5 <!--
 6 Susan Gentner
 7 PushToShow Masters Thesis
 8 Georgia State University
 9 March 2009
10 -->
11
12 <html>
13 <head>
14 <meta http-equiv="Content-Type"
15 content="text/html; charset=UTF-8">
16 <title>Push to Show Applet</title>
17 </head>
18 <body>
19 <center>
20 <table width="1005px" border="6px"cellpadding="1px">
21 <tr><td>
22 <table>
23 <tr>
24 <td>
25 <%
26 String userAgent = request.getHeader("user-agent");
27 boolean isMac = userAgent.toLowerCase().
28 contains("mac os x");
29 if(isMac)
30 {
31 %>
32 <applet archive="psa.jar"
33 code="edu.gsu.cs.ps.Applet"
34 width="1000"
35 height="550" >
36
37 <param NAME="FileUploadServletURL"
38 VALUE="http://<%= request.getServerName()
39 + ':'
40 + request.getServerPort()
41 %>/psv/VideoUploadSvc">
42 <param NAME="MsgUploadServletURL"
43 VALUE="http://<%= request.getServerName()
44 + ':'
45 + request.getServerPort()
46 %>/pss/MomentUploadSvc">
47
48 This application needs a Java-enabled browser to run.
49 </applet>
50 <%
51 }

85

52 else
53 {
54 %>
55 Sorry this application is currenty Mac only.
56 <%}%>
57 </td>
58 </tr>
59 </table>
60 </td></tr>
61 </table>
62 <p>
63 <%= new java.util.Date() %>
64 </p>
65 </center>
66 </body>
67 </html>
68

86

TakeMoment.jsp – This web page displays a moment for a recipient.

 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TRANSITIONAL//EN">
 2
 3 <!--
 4 Susan Gentner
 5 PushToShow Masters Thesis
 6 Georgia State University
 7 March 2009
 8 -->
 9
 10 <%@ page import="java.sql.*" %>
 11 <%@ page import="javax.sql.DataSource" %>
 12 <%@ page import="javax.naming.InitialContext" %>
 13 <%@ page import="edu.gsu.cs.ps.Moment" %>
 14
 15
 16 <%
 17 Connection cxn = null;
 18 PreparedStatement pstmt = null;
 19
 20 Statement stmt = null;
 21 Moment moment = null;
 22 ResultSet rs = null;
 23 String senderName = null;
 24 String recipients = null;
 25 String subject = null;
 26 String body = null;
 27 String videoName = null;
 28
 29
 30 try
 31 {
 32 final ServletContext servletContext = this.getServletContext();
 33 final long id = Long.valueOf(request.getParameter("id"));
 34
 35 DataSource dataSource = (DataSource)((new InitialContext()).
 36 lookup("java:/comp/env/jdbc/postgres"));
 37 cxn = dataSource.getConnection();
 38
 39 pstmt = cxn.prepareStatement("SELECT * FROM get_moment(" +
 40 id + ");");
 41 rs = pstmt.executeQuery();
 42
 43 if(rs.next())
 44 {
 45 moment = new Moment(rs);
 46 senderName = moment.getSenderName();
 47 recipients = moment.getRecipients();
 48 subject = moment.getSubject();
 49 body = moment.getBody();
 50 videoName = moment.getVideoName();
 51
 52 if(body.contains("\n"))
 53 body = body.replaceAll("\n", "
");
 54 }

87

 55 }
 56 catch(SQLException e)
 57 {
 58 e.printStackTrace();
 59 }
 60
 61 finally
 62 {
 63 try
 64 {
 65 if(rs != null)
 66 rs.close();
 67 }
 68 catch(SQLException e)
 69 {
 70 }
 71
 72 try
 73 {
 74 if(pstmt != null)
 75 pstmt.close();
 76 }
 77 catch(SQLException e)
 78 {
 79 }
 80 try
 81 {
 82 if(cxn != null)
 83 cxn.close();
 84 }
 85 catch(SQLException e)
 86 {
 87 }
 88 }
 89 %>
 90 <html>
 91 <head>
 92 <meta http-equiv="content-type"
 93 content="text/html; charset=UTF-8">
 94 <title><%= moment.getSubject() %></title>
 95 <link rel='stylesheet' type='text/css' href='sample.css' />
 96 </head>
 97 <body>
 98 <form>
 99 <center>
100
101 <table width="1005px" border="6px"cellpadding="1px">
102 <tr><td>
103 <table border="1px" width="100%">
104 <tr>
105 <td rowspan="5" width="640">
106 <div class="classname">
107 <object classid=
108 "clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
109 width="640" height="490"
110 codebase=
111 "http://www.apple.com/qtactivex/qtplugin.cab">

88

112 <param name="autoplay" VALUE="false"/>
113 <param name="controller" VALUE=true/>
114 <embed src="<%= "http://" + request.getServerName() +
115 ":" + request.getServerPort() +
116 "/psv/msgs/" +
117 videoName%>"
118 width="640" height="500"
119 controller="true" fullscreen="full">
120 </embed>
121 </object>
122 </div>
123 </td>
124 <td valign="top" colspan="2" height="104" align="center">
125 <img src="Postage.jpg" width="343"
126 height="104" align="top">
127 </td>
128 </tr>
129 <tr height ="25px">
130 <td align="right">Subject:</td>
131 <td> <%= subject %> </td>
132 </tr>
133 <tr height ="25px">
134 <td align="right">From:</td>
135 <td> <%= senderName %> </td>
136 </tr>
137 <tr height ="25px">
138 <td align="right">To:</td>
139 <td> <%= recipients %> </td>
140 </tr>
141 <tr>
142 <td colspan="2" valign="top">
143 <%= body %>
144 </td>
145 </tr>
146 </table>
147 </td>
148 </tr>
149 </table>
150
151 <p>
152 <%= new java.util.Date() %>
153 </p>
154 </center>
155 </form>
156 </body>
157
158 </html>
159

89

SQL to create the moments table and indexes

-- Table: moments

CREATE TABLE moments

(

 id bigint NOT NULL,

 senttime bigint NOT NULL,

 sendername character varying NOT NULL,

 recipients character varying NOT NULL,

 subject character varying NOT NULL,

 bodytext character varying NOT NULL,

 videoname character varying NOT NULL,

 CONSTRAINT messages_pkey PRIMARY KEY (id)

)

WITH (OIDS=FALSE);

ALTER TABLE moments OWNER TO postgres;

-- Index: recipients_idx

CREATE INDEX recipients_idx

 ON moments

 USING btree

 (recipients);

-- Index: senttime_idx

CREATE INDEX senttime_idx

 ON moments

 USING btree

 (senttime);

90

web.xml is a deployment descriptor for the pss web application.

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 5 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 6
 7 <session-config>
 8 <session-timeout>30</session-timeout>
 9 </session-config>
10
11 <servlet>
12 <servlet-name>MomentUploadSvc</servlet-name>
13 <servlet-class>edu.gsu.cs.ps.MomentUploadSvc</servlet-class>
14 </servlet>
15
16 <servlet-mapping>
17 <servlet-name>MomentUploadSvc</servlet-name>
18 <url-pattern>/MomentUploadSvc</url-pattern>
19 </servlet-mapping>
20
21 <resource-ref>
22 <description>PostgreSQL Datasource example</description>
23 <res-ref-name>jdbc/postgres</res-ref-name>
24 <res-type>javax.sql.DataSource</res-type>
25 <res-auth>Container</res-auth>
26 </resource-ref>
27
28 <welcome-file-list>
29 <welcome-file>ListMoments.jsp</welcome-file>
30 </welcome-file-list>
31
32 </web-app>
33

91

web.xml is a deployment descriptor for the psv web application.

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 5 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 6
 7 <context-param>
 8 <description>Video upload directory</description>
 9 <param-name>VideosDir</param-name>
10 <param-value>msgs</param-value>
11 </context-param>
12
13 <servlet>
14 <servlet-name>VideoUploadSvc</servlet-name>
15 <servlet-class>edu.gsu.cs.ps.VideoUploadSvc</servlet-class>
16 </servlet>
17 <servlet-mapping>
18 <servlet-name>VideoUploadSvc</servlet-name>
19 <url-pattern>/VideoUploadSvc</url-pattern>
20 </servlet-mapping>
21
22 <session-config>
23 <session-timeout>
24 30
25 </session-timeout>
26 </session-config>
27 <welcome-file-list>
28 <welcome-file>index.jsp</welcome-file>
29 </welcome-file-list>
30
31 </web-app>
32

	A Browser-Based Collaborative Multimedia Messaging System
	Recommended Citation

	ACKNOWLEDGEMENTS
	List of Figures
	1. INTRODUCTION
	1.1 Background
	1.1.1 Participation Grows
	1.1.2 An Aesthetic Mosaic

	1.2 Problem Definition
	1.2.1 Awkward Composition Process
	1.2.2 Clogged Transport Medium
	1.2.3 Configuration Mismanagement

	1.3 Alternative Methods
	1.3.1 Publishing Beats Sending
	1.3.2 No System is Perfect

	2. APPROACH AND CHALLENGES
	2.1 Approach
	2.2 Challenges
	2.3 Concepts
	2.4 Related Technologies
	2.4.1 Webmail
	2.4.2 Transport Layer Security
	2.4.3 Spam Control
	2.4.4 Automatic Updates

	2.5 Related Work
	2.5.1 Multimedia
	2.5.2 Collaboration
	2.5.3 Architecture

	3. System Design and Architecture
	3.1 Design Overview
	3.2 Architecture

	4. DESCRIPTION OF PROTOTYPE
	4.1 Send a Moment
	4.1.1 Capture the Video Portion
	4.1.2 Compose the Moment
	4.1.3 Send the Moment

	4.2 Receive a Moment
	4.2.1 Select a Moment
	4.2.2 View a Moment
	4.2.3 Save a Moment

	4.3 Environment and Hardware Notes
	4.3.1 Mac Mini
	4.3.2 Logitech UVC Webcam

	5. CONCLUSION AND FUTURE WORK
	5.1 Future Work
	5.2 Development Environment

	Bibliography
	Appendix: Source Code Listing

