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ABSTRACT. 

We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief
elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery
procedure works robustly to induce risk neutrality when subjects are given one risk task defined over
objective probabilities. Drawing a sample from the same subject population, we find evidence that
the binary lottery procedure induces linear utility in a subjective probability elicitation task using the
Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation
of subjective probabilities in subjects with certain Non-Expected Utility preference representations
that satisfy weak conditions that we identify.
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The notion of subjective probabilities as prices at which one is willing to trade is due to de

Finetti [1937][1970] and Savage [1970], who propose bets as one operational procedure to both

define and elicit subjective probabilities. Their central point is that subjective probabilities of events

are marginal rates of substitution between contingent claims that obey certain rules of coherence. 

This literature relies on the assumption that subjects behave as if they are risk neutral, which

is considered plausible a priori if the stakes used in the elicitation procedure are sufficiently small.

However, there is systematic evidence that subjects behave as if they are risk averse even when

facing the relatively small stakes normally used in the laboratory. Therefore, it is intuitively obvious,

and also well known in the literature (e.g., Winkler and Murphy [1970] and Kadane and Winkler

[1988]), that risk attitudes will affect the incentive to directly report one’s subjective probability. 

Consider a scoring rule to elicit subjective probabilities. A sufficiently risk averse agent is

going to be drawn to a report of ½, since this equalizes earnings under each state of nature, at least

for the most popular scoring rules. Varying degrees of risk aversion will cause varying distortions in

reports from true latent subjective probabilities. If we knew the form of the utility function of the

subjects, and their degree of risk aversion, we could infer back from any report what subjective

probability they must have had. The need to do this jointly is in fact central to the operational

definition of subjective probability provided by Savage [1954]: under certain postulates, he showed

that there existed a subjective probability and a utility function that could rationalize observable

choices. Andersen, Fountain, Harrison and Rutström [2010] illustrate how joint estimation of risk

attitudes and subjective beliefs, using structural maximum likelihood, can be used to make the

necessary calibration to recover the latent subjective probability.  

An alternative and operationally meaningful approach is to use proper scoring rules

combined with the Binary Lottery Procedure (BLP) to induce linear utility in subjects. The

theoretical prediction is that, under certain conditions, this approach allows the researcher to directly
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elicit the subjective probability without further statistical corrections for risk attitudes.

Procedures to induce linear utility functions have a long history, with the major

contributions being Smith [1961], Roth and Malouf [1979] and Berg, Daley, Dickhaut and O’Brien

[1986]. The consensus appears to be that these “binary lottery procedures” may be fine in theory,

but behaviorally they just do not work as advertized. However, Harrison, Martínez-Correa and

Swarthout [2013] show that the BLP works when contaminating factors such as strategic equilibrium

concepts and traditionally used payment protocols are avoided. They find that the BLP works

robustly to induce risk neutrality when subjects are given one binary lottery choice, and that it also

works well when subjects are given more than one binary choice. Of course, this does not imply that

BLP for all samples from different populations or that it can be systematically applied to any setting,

since it is often the “contaminating factors” of interest in some designs that can dilute the power of

BLP to induce risk neutrality. 

Our central focus in this paper is to determine whether the result that the BLP induces risk

neutrality in simple binary choices defined over objective probabilities found by Harrison, Martínez-

Correa and Swarthout [2012] also extends to subjective probability elicitation tasks. In particular, we

study the ability of the Quadratic Scoring Rule (QSR), combined with the BLP, to directly elicit

subjective probabilities without controlling for risk attitudes. The first statements of this mechanism,

joining the QSR and the BLP, appear to be Allen [1987] and McKelvey and Page [1990]. Schlag and

ven der Weel [2009] and Hossain and Okui [2012] examine the same extension of the QSR, along

with certain generalizations, calling it a “randomized QSR” and “probabilistic scoring rule”

respectively.

There exist other mechanisms for eliciting subjective probabilities without correcting for risk

attitudes, such as the procedures proposed by Grether [1992], Köszegi and Rabin [2008; p.199],

Offerman, Sonnemans, van de Kuilen and Wakker [2009],  Karni [2009], and Holt and Smith [2009].
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Thus there is no shortage of theoretical procedures to elicit subjective probabilities, and the issue

becomes which generates them most reliably from a behavioral perspective. For example,

Trautmann and van de Kuilen [2011] compare several incentivized procedures in the context of

eliciting own-beliefs in a two-person game, and find few differences between the procedures. That

elicitation context, while important, is complex, as stressed by Rutström and Wilcox [2009].

Two aspects of elicitation concern us in operationalizing these procedures. The first is the

use of procedures that assume the validity of the Becker, De Groot and Marschak [1964] procedure

for eliciting certainty-equivalents; Harrison [1992] explains the concerns. The second is the use of

payment protocols over multiple choices that assume the validity of the (compound or mixture)

independence axiom; Harrison and Swarthout [2012] explain the concerns. We avoid both of these

in our tests.

Using non-parametric statistical tests we find evidence that the BLP mitigates the distortion

in reports introduced by risk aversion. Inferred subjective probabilities under the BLP robustly shift

in the direction predicted under the assumption that subjects are risk averse and that the BLP

reduces the contaminating factor of risk aversion. Structural econometric estimations support these

findings since the risk-attitudes-adjusted underlying subjective probabilities of subjects not exposed to

the BLP are equal to the raw average reports of subjects exposed to the BLP.1

In section 1 we review the theory of scoring rules and explain the benefits of using the BLP

in belief elicitation tasks. In section 2 we present our experimental design, in section 3 we evaluate

the results, and in section 4 we conclude.

1 In this respect, tests of the BLP with lotteries defined over objective probabilities are much easier.
Hossain and Okui [2012; §3.1] use the QSR with and without the BLP to test if elicited beliefs are the same as
objective probabilities when one uses the BLP, and find that they are indeed closer when one uses the BLP.
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1. Theoretical Issues

A. Binary Scoring Rules for Subjective Probabilities

A binary scoring rule is defined over some binary event, which is either true or false. A

binary scoring rule asks the subject to make some report θ, and then defines how an elicitor pays a

subject depending on the report and the outcome of the event. This framework for eliciting

subjective probabilities can be formally viewed from the perspective of a trading game between two

agents: you give me a report, and I agree to pay you $X if one outcome occurs and $Y if the other

outcome occurs. The scoring rule defines the terms of the exchange quantitatively, explaining how

the elicitor converts the report from the subject into a lottery defined over the subjective probability

of the subject.2 We use the terminology “report” because we want to view this formally as a

mechanism, and want to emphasize the idea that the report may or may not be the subjective

probability π of the subject.  When the report is equal to subjective probability of the individual, we

say that the scoring rule is a direct mechanism, following standard methodology. 

The popular QSR for binary events is defined in terms of two positive parameters, α and β,

that determine a fixed reward the subject gets and a penalty for error. Assume that the possible

outcomes are A or B, where B is the complement of A, that θ is the reported probability for A, and

that Θ is the true binary-valued outcome for A. Hence Θ=1 if A occurs, and Θ=0 if B occurs. The

subject is paid S(θ|A) = α - β(Θ-θ)2 = α - β(1-θ)2 if event A occurs and S(θ|B) = α - β(Θ-θ)2 = α -

β(0-θ)2 if B occurs. The score or payment penalizes the subject by the squared deviation of the

report from the true binary-valued outcome, Θ. An omniscient seer would obviously set θ= Θ. The

2 The elicitor or experimenter does not need to know the latent subjective probability in order to
define and pose a lottery that uses it. For instance, if I tell you that you can bet on whether you have gained or
lost weight overnight, and that you get $100 if you are correct and $0 otherwise, I have defined a lottery
whose valuation depends on your subjective probability about having gained weight. Your response to this
single question will only tell me the sign of your subjective probability, not its value. For that one needs
several well-defined lotteries, determined by appropriate scoring rules.
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fixed reward is a convenience3 to ensure that subjects are willing to play this trading game, and the

penalty function accentuates the penalty from not responding with what the subject thinks an

omniscient seer would respond. It can be shown that a risk neutral decision maker will report his

subjective probability truthfully. For example, assume α = 1 and β = 1 so that the subject could earn

up to 1 or as little as 0. If they reported 1 they earned 1 if event A occurred or 0 if event B occurred;

if they reported ¾ they earned 0.9375 or 0.4375; and if they reported ½ they earned 0.75 no matter

the realized event.

B. Subjective Belief Elicitation with Scoring Rules and the Binary Lottery Procedure

Our strategy is to rely on the BLP to induce linear utility functions in subjects, which implies

that the QSR should provide incentives to subjects to report their subjective probabilities truthfully.

The central insight is to define the payoffs in the QSR as points that define the probability of

winning either a high or a low amount of money in some subsequent binary lottery. We explain

below the conditions under which this combination of BLP and the QSR provides incentives to

individuals to directly report “truthfully” their unobserved subjective probabilities. 

For example, set the high and the low payoff of this binary lottery to be $50 and $0. In

theory the BLP induces subjects to report the true subjective probability of some event

independently of the shape of the utility function and, under some weak conditions, independently

of the shape of the probability weighting function. For exposition purposes, take first the case of a

Subjective Expected Utility (SEU) maximizer that is given a QSR task defined over points using the

BLP to convert those points into money. 

 Assume that there are two events: a ball drawn from a Bingo Cage is either Red (R) or

3 In the language of mechanism design, it can be chosen to satisfy the participation constraint. This
requires that α $ β.
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White (W). A subject betting on event R might estimate that it happens with subjective probability

πR, and that W will happen with subjective probability πW = (1-πR). Additionally, set the parameters

of the QSR to be α = β = 100. 

If event R is realized and a subject reports θ, he wins an amount of points defined by S(θ|R)

= 100 - 100(1-θ/100)2. For simplicity, the report can be any number between 1 and 100, although

for practical purposes we can think of reports in increments of single percentage points. Similarly, if

event W is realized and a subject reports θ, he wins an amount of points given by S(θ|W) = 100 -

100(0-θ/100)2. Suppose a subject reports θ=30. This implies that he would win 51 points if event R

is realized and 91 points if event W is realized. The BLP implies that a subject would then play a

binary lottery where the probabilities of winning are defined by the points earned. If the realized

event is R, then the individual would play a lottery that pays $50 with 51% and $0 with 49%. Define

pR(θ)= S(θ|R)/100 as the objective probability of winning $50 in the binary lottery induced by the

points earned in the scoring rule task when the report is equal to θ and event R is realized. The

objective probability pW(θ)= S(θ|W)/100 is similarly defined for event W. In the example above, 

pR(30) = 51% and pW(30)= 91%. Figure 1 represents graphically the subjective compound lottery and

the actuarially-equivalent simple lottery induced by report θ = 30. 

In the QSR a subject may choose any possible Subjective Compound Lotteries (SCL) of the

type depicted in Figure 1. In these SCLs, the first stage involves subjective probabilities while the

second stage involves objective probabilities defined by the points earned in the first stage. The

structure of these SCL are explicitly described below:

SCL(θ): pays simple lottery (pR(θ), $50; 1-pR(θ), $0) with subjective probability πR, and pays
simple lottery (pW(θ), $50; 1-pW(θ), $0) with subjective probability πW = (1-πR )
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where θ is any number in the interval [0, 100].4

If the subject maximizes SEU, and therefore satisfies the Reduction of Compound Lotteries

(ROCL) axiom, the valuation of each report θ will be given by 

SEU(θ) = πR×{pR(θ)×U($50) + (1-pR(θ))×U($0)} 

                                                   + (1- πR)×{pW(θ)×U($50) + (1-pW(θ)×U($0)}                        (1)

and the subject chooses the report θ* that maximizes (1) conditional on the subjective belief πR.

Because U(.) is unique up to an affine positive transformation under SEU we can normalize

U($50)=1 and U($0)=0. Thus the SEU(θ) in (1) can be simplified to

                                         SEU(θ) =  πR×pR(θ) + (1- πR)×pW(θ) = Q(θ).                                       (1N)

We rename SEU(θ) as Q(θ) to emphasize that the subject’s valuation of the SCL induced by θ can be

interpreted as the subjective average probability Q(θ) of winning the high $50 amount in the binary

lottery. Given that the state space of the report is a continuum such that θ 0 [0, 100], a SEU

maximizer would make a report θ* that maximizes the subjective expected probability Q(.) of

winning the binary lottery. Taking the first order condition with respect to report θ we obtain 

 SEUN(θ) = QN(θ) = πR×pRN(θ) + (1- πR)×pWN(θ) = 0

                                 = πR×[2×(1-θ/100)] + (1- πR)×[2×(0-θ/100)] = 0                              (2)

The report that maximizes (1N) is θ* =  πR×100, which implies that the QSR combined with the BLP

provides incentives to report the true subjective probability directly. The existence of a unique

maximum is guaranteed because the function Q(.) is strictly concave in θ given that it is a linear

combination of two strictly concave functions, pR(θ) and pW(θ). Note that the strict concavity of

these functions is determined by the QSR because these objective probabilities are a function of the

4 For simplicity, in our experiments subjects are only allowed to choose integer numbers in
this interval which implies that they can choose between 101 SCL.
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scoring rule.5

For comparison purposes suppose a simple QSR with payouts defined directly in dollars.

Refer to the score in this case as $S(.). The subject would choose a report θ that maximizes the

following valuation

                             SEU(θ, U(.)) =  πR×U( $S(θ|R) ) + (1- πR)×U( $S(θ|W) )                             (3)

Assume a simple power function with risk aversion parameter equal to 0.57 and a subjective

probability of πR = 0.3. In this case the optimal report would be θ* = 34. Conversely, if πR =0 .7, the

optimal report would be θ* = 66. Notice that a sufficiently risk averse individual would be drawn to

make a report of 50, independent of his subjective probability, because this report provides the same

payoff under each event. 

A proper scoring rule provides incentives to subjects to optimally choose one distinct report.

The uniqueness of the optimal report can be achieved by guaranteeing that the scoring rule induces

strict concavity in the subject’s valuation of choices in the belief elicitation task. In the case of the

scoring rule without BLP, the subject’s valuation SEU(θ, U(.)) is a concave function of θ, assuming

only weak monotonicity of U(.). Under SEU this concavity is immediately guaranteed by the

concavity of the utility function.6

5 In the present example,  pR(θ) and pW(θ) are strictly concave because  pRO(θ) = pWO(θ) = -2/100<0.
6 A Linear Scoring Rule (LSR) defines the scores for events A and B as S(θ|A) = α - β|1-θ| if event

A occurs and S(θ|B) = α - β|0-θ| if B occurs. Therefore a LSR also results in a subject’s valuation that is
concave in the report if the utility function is concave. Andersen, Fountain, Harrison and Rutström [2010]
show how one can infer true subjective probabilities with the LSR if one also knows the risk attitudes of
subjects. However, if subjects are risk neutral the LSR does not allow one to directly identify subjective
probabilities from reports because the optimal report would be either 0 or 100, depending on whether the
true latent subjective probability was less than ½ or greater than ½, respectively. This result is immediately
relevant if one wants to induce risk neutrality with the BLP. Consequently, if we rely on risk neutrality being
induced by the BLP, any scoring rule that we use must be concave in the report that subjects can make for all
weakly concave utility functions, and not just for strictly concave utility functions.
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C. Non-Expected Utility Theory Preference Representations

The incentive-compatibility of the QSR is normally developed theoretically in the context of

Expected Utility Theory (EUT), and specifically SEU, whether or not one uses the BLP. When

implemented with the BLP, can the QSR be a proper scoring rule for subjects that have non-EUT

preference representations? The answer to this question depends on the specific non-EUT

preference representation.

A subject who follows the Rank-Dependent Utility model  (RDU) will report his subjective

probability under relatively weak conditions. Assume that the decision maker is a RDU maximizer

with a strictly increasing probability weighting function. Then the higher prize receives decision

weight w(p), where p is the probability of the higher prize, and the lower prize receives decision

weight 1-w(p). SEU is violated in this case, but none of the axioms needed for the BLP to induce

linear utility are violated. For the BLP to directly elicit the subjective probability from a RDU

maximizer we need the following assumptions must hold: (1) uniqueness of U(.) up to an affine

positive transformation and U(.) increasing, (2) probabilistic sophistication as defined by Machina

and Schmeidler [1992][1995], (3) ROCL for binary lotteries, (4) a strictly increasing probability

weighting function, and (5) a strictly concave scoring rule. We formally derive below the conditions

under which a non-EUT subject would optimally report his true subjective belief.

An individual with RDU preferences will have a QSR valuation of the subjective compound

lottery induced by a report θ given by

RDU(θ) = w(Q(θ)) ×U($50) + (1-w(Q(θ))) ×U($0)        (4)

Binary ROCL implies that the probability weighting is done on the reduced compound probability

Q(θ). Since U(.) is unique up to an affine positive transformation in the RDU model, we can also

normalize U($50)=1 and U($0)=0 and the valuation of the individual becomes RDU(θ) = w(q(θ)).

An RDU maximizer and a SEU maximizer, each with subjective probability πR = 0.3 for example,
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would have incentives to make exactly the same optimal report, θ* = πR,× 100= 30. This is easily

seen by taking the first order condition on the subject’s valuation of report θ,

RDUN(θ) = wN(Q(θ)) × QN(θ) =0,

which is satisfied when QN(θ)=0, exactly equal to the first order condition of an SEU maximizer,

because the probability weighting function is assumed to be strictly increasing (i.e., wN(Q(θ))>0).

Therefore the RDU maximizer would optimally make the same report as a SEU maximizer with the

same beliefs, and both would have incentives to directly report their true subjective probability. To

guarantee the uniqueness of the optimal report we rely on two assumptions: (1) the scoring rule is

strictly concave because Q(θ) is a linear combination of strictly concave functions that depend on

the scoring rule (i.e., pR(θ)= S(θ|R)/100 and pW(θ)= S(θ|W)/100 ); and (2) the probability weighting

function is strictly increasing, guaranteeing that w(Q(θ)) is strictly quasi-concave,  which implies that

there is a unique global maximum.

Proposition 1. If F(.) is strictly increasing and f(.) is strictly concave, then F(f(.)) is strictly quasi-

concave. 

We want to show this result so the uniqueness of the optimal report is guaranteed in the

scoring rule task with certain non-EUT preference representations.

Proof. Suppose F is strictly increasing and f is strictly concave. We define g(.) to be strictly

quasi-concave if g(λx+(1-λ)x* ) > min{g(x),g(x*  )}for λ ε (0,1). 

Since f(.) is strictly concave then f(λx+(1-λ)x* )>λf(x)+(1-λ)f(x* ); and since F is strictly

increasing then F(f(λx+(1-λ)x* ))>F(λf(x)+(1-λ)f(x* )). 

Because λ ε (0,1), then λf(x)+(1-λ)f(x* )>min{f(x),f(x* )} and since F is increasing we have

that

F(λf(x)+(1-λ)f(x* )) > min{F(f(x)),F(f(x* ))}. 

These results imply that F(f(λx+(1-λ)x* ))>F(λf(x)+(1-λ)f(x* )) > min{F(f(x)),F(f(x* ))}. Therefore, 
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F(f(λx+(1-λ)x* )) > min{F(f(x)),F(f(x* ))} for any λ ε (0,1). This is the definition of a strictly quasi-

concave function, so F(f(.)) is a strictly quasi-concave function. ~

Hossain and Okui [2012] independently prove the same result with respect to RDU, but our

proof is arguably more instructive because it points to a general mechanism-design principle to show

how to make the incentives for the scoring rule more powerful. By recognizing that the strict quasi-

concavity of w(Q(θ)) is needed to ensure that the scoring rule is proper, we can identify ways to

design scoring rules that have better properties in certain regions of θ. This issue is an important one

when trying to elicit subjective beliefs with respect to extremely small probabilities, as occurs almost

all of the time when designing insurance contracts for low-probability, but high cost, events.

2. Experiment

A. Experimental Design

Our experiment elicits beliefs from subjects over the composition of a Bingo cage containing

both red and white Ping-Pong balls.  Subjects did not know with certainty the proportion of red and

white balls, but they did receive a noisy signal from which to form beliefs.  There were no other

salient tasks, before or after a subject’s choices, affecting the outcome.  Table 1 summarizes our

experimental design for each of four sessions, and the sample size of subjects in each treatment per

session. 

Upon arrival at the laboratory, each subject drew a number from a box which determined

random seating position within the laboratory.  After being seated and signing the informed consent

document, subjects were given printed introductory instructions and allowed sufficient time to read

these instructions.7 Then a Verifier was selected at random among subjects solely for the purpose of

7 Appendix A provides complete subject instructions.
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verifying that the procedures of the experiment were carried out according to the instructions. The

Verifier was paid a fixed amount for this task and did not participate in the decision-making task.

Each subject was assigned to one of two treatments depending on whether her seat number

was even or odd. One of the treatment groups was then taken out of the lab for a few minutes,

always under the supervision of an experimenter. The other group remained in the laboratory and

went over the treatment-specific instructions with an experimenter. Simultaneously, subjects waiting

outside were given instructions to read individually. Then the groups swapped places and the

experimenter read the treatment-specific instructions designed for the other group. Once all

instructions were finished, and both groups were brought together in the room again, and we

proceeded with the remainder of the experiment. 

We implement the two between-subjects treatments within each session so that both groups

are presented with the same realized session-specific stimuli (i.e., the particular composition of the

bingo cage) in any given session.  In treatment M, subjects are presented with only one belief

elicitation question using the QSR with monetary scores. In treatment P, subjects are also presented

with only one belief elicitation question using the QSR, but the scores are denominated in points

that subsequently determined the objective probability of winning a binary lottery. We did not

want to explain P-specific instructions in the presence of M subjects and tell them not to pay

attention, and vice versa. Subjects are told the reason for this step using the following language:

Part of this experiment is to test different computer screens. Therefore, we will
divide you into two groups, and each group will be presented with a slightly different
instructions and computer screens. If you are sitting in a computer station that has
an odd number on it, you are part of the Odd group. If you are sitting in a computer
station that has an even number on it, you are part of the Even group.

An important reason to assign subjects to treatments according to their station number in the

laboratory is to avoid potential confounds due to subjects in each treatment having very different

vantage points from which to observe the stimuli. By mapping even or odd station numbers to
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treatment M or P, we ensure that if there exist any difference in subjects’ vantage point, this

difference was the same across treatments.

We used two bingo cages: Bingo Cage 1 and Bingo Cage 2.  Bingo Cage 1 was loaded with

balls numbered 1 to 99 in front of everyone.8 A numbered ball was drawn from Bingo Cage 1, but

the draw took place behind a divider. The outcome of this draw was not verified in front of subjects

until the very end of the experiment, after their decisions had been made. The number on the

chosen ball from Bingo Cage 1 was used to construct Bingo Cage 2 behind the divider. The total

number of balls in Bingo Cage 2 was always 100: the number of red balls matched the number

drawn from Bingo Cage 1, and the number of white balls was 100 minus the number of red balls.

Since the actual composition of Bingo Cage 2 was only revealed and verified in front of everybody at

the end of the experiment, the Verifier’s role was to confirm that the experimenter constructed

Bingo Cage 2 according to the randomly chosen numbered ball. Once Bingo Cage 2 was

constructed, the experimenter put the chosen numbered ball in an envelope and affixed it to the

front wall of the laboratory.

Bingo Cage 2 was then covered and placed on a platform in the front of the room. Bingo

Cage 2 was then uncovered for subjects to see, spun for 10 turns, and covered again. Subjects then

made their decisions about the number of red and white balls in Bingo Cage 2. After choices were

made and subjects completed a non-salient demographic survey, the experimenter drew a ball from

Bingo Cage 2. The sealed envelope was opened and the chosen numbered ball was shown to

everyone, and the experimenter publicly counted the number of red and white balls in Bingo Cage 2. 

The final step during the session was to determine individual earnings.  An experimenter

8 When shown in public, Bingo Cage 1 and 2, were always displayed always in front of the laboratory
where everyone could see them. We also used a high resolution video camera to display the bingo cages on
three flat screen TVs distributed throughout the laboratory, and on the projection screen at the front of the
room. Our intention was for everyone to have a generally equivalent view of the bingo cages.
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approached each subject and recorded earnings according to the betting choices made and the ball

drawn from Bingo Cage 2. If subjects were part of treatment M, their earnings were determined by

the report and the corresponding score in dollars of the QSR. If subjects were in treatment P, the

number of points they earned in the belief elicitation task was recorded. Then subjects rolled two

10-sided dice, and if the outcome was less or equal to the number of points earned they won $50,

otherwise they earned $0 in the task. Finally, subjects left the laboratory and were privately paid their

earnings: a $7.50 participation payment in addition to the monetary outcome of the belief elicitation

task. The Verifiers were paid a flat $25 fee plus the participation fee. Subjects on average earned

approximately $45.60 including the participation payment.

Several of our procedures are designed specifically to avoid trust issues the subjects may

have with the experimenter, which can be source of significant confounds in belief elicitation tasks. 

In particular, our random selection of a verifier makes it transparent to the subjects that any one of

them could have been selected, and thus we are not employing a confederate.  Further, by taking the

time at the end of the session to publicly verify the previous private random draws, we are able to

more credibly emphasize in the instructions that any composition of Bingo Cage 2 is equally likely,

thus minimizing any prior beliefs that particular compositions may be more likely.

We used software we created in Visual Basic .NET to present the QSR to subjects and record

their  choices. Figures 2 and 3 illustrate the scoring rule task faced by subjects in treatments M and

B, respectively, which are variants on the “slider interface” proposed by Andersen, Fountain,

Harrison and Rutström [2010]. Subjects can move one or other of two sliders, and the other slider

changes automatically so that 100 tokens are allocated. The main difference between the figures is

that the payoffs of the scoring rule are denominated in dollars in the case of Figure 2, and

determined in points in Figure 3. Subjects can earn up to $50 in treatment M and either $50 or $0 in

-14-



treatment P.

B. Evaluation of Hypothesis

We want to test if the BLP induces linear utility, providing incentives for subjects to report

truthfully and directly their underlying subjective probability. In our tests we assume that the

distributions of risk attitudes and subjective probabilities are the same across subjects in the two

treatments. Therefore any observed difference in reports would be a result of BLP affecting

subjects’ behavior. We have three ways of testing our hypothesis: the first two are non-parametric

statistical tests that are designed to find treatment effects, and the third is a structural econometric

approach that recovers the underlying subjective probabilities of M subjects that are then compared

with the raw reports of P subjects. 

One way of testing our hypothesis is to compare observed behavior across the two

treatments. We take advantage of the implications of observed behavior in scoring rules of risk

averse individuals versus behavior of risk neutral individuals.  If subjects are indeed risk averse and

the BLP does induce linear utility, then subjects in treatment M should be drawn on average to make

reports closer to 50 than subjects in treatment P. This implies that, depending on the true underlying

subjective probability, the average report in treatment M would be smaller or greater than in

treatment B in such a manner that the former is always closer to 50. To make this test operational,

we calculate a measure of distance between each report and the middle of the report interval. For

example, if a subject made a report of 30 for red balls, then the measure of report distance is the

absolute value of the difference which is 20 ( = |30-50|). If the underlying subjective probability is

close to 50%, there would be an identification problem because subjects in both treatments have

strong incentives to make a report close to 50. This might be very likely in situations where Bingo

Cage 2 has a composition of red and white balls close to 50/50, which was indeed the case in one of
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our sessions. Similarly, if the underlying subjective probability is close to 0% or 100% we would

have an identification problem. This did not happen in any of the sessions, but was a risk in this

design, of course the risk was just wasted subject fees and time. 

An ideal test of our hypothesis would involve comparing the reports in treatment P with the

underlying subjective probabilities of subjects in treatment M, and we do this in the structural

econometric test. However, since subjective probability is an unobserved latent variable, we can use

for now the true proportion of red balls in the Bingo Cage 2 that subjects actually faced in each

session as a proxy for the underlying subjective probability.9 If the BLP does induce linear utility

(and subjects are risk averse), subjects in treatment P should make reports on average that are closer

to the true number of red balls in Bingo Cage 2 than subjects in treatment M. To operationalize this

test, we use also a measure of distance, but instead of using 50 as a point of reference we use the

true number of red balls in the Bingo Cage 2 each subject faced. We also refer to this measure of

distance as a report distance. For example, if a subject made a report of 30 and the correct number

of red balls in the Bingo Cage 2 he faced was 25, then the measure of report distance is the absolute

value of the difference which is 5 ( = |30-25|). The comparison across treatments of this measure

of distance also provides a test of the relative accuracy of reports.  Even though it is interesting in its

own right, it is not our primary objective to assess perceptual accuracy of subjects.10

We pool data across sessions, but also analyze data from each individual session. We apply

non-parametric tests to the distance measures to test if there is support for our main hypothesis that

the BLP induces linear utility in the belief elicitation task.

Finally, we estimate a structural model that jointly estimates risk attitudes and the underlying

9 This assumption implies that on average subjects have the right idea about the number of red balls
in Bingo Cage 2. In the absence of an estimate, this is a natural proxy for the underlying subjective probability.

10 In fact there might be some visual saliency of red balls that might have induced subjects to make
reports higher than if we had used balls of different colors.
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subjective probabilities of subjects in treatment M, and then we compare them with the reports in

treatment P. If the BLP does induce linear utility then the risk-attitudes-adjusted subjective

probabilities in the M treatment should be equal to the average report of subjects in treatment P.

The reason is that if BLP does induce risk neutrality in the P subjects, they should directly report

their true underlying subjective probability which should be equal to the underlying estimated

probabilities for M subjects.

  

3. Results

A. Does the BLP Mitigate the Effects of Risk Aversion?

We find evidence of a treatment effect which supports the hypothesis that the BLP induces

linear utility in our belief elicitation tasks. Our sample size is almost evenly distributed among

treatments: pooling across sessions, there were 68 subjects in treatment M and 70 in treatment P.

Figure 4 shows the frequency of reports in each treatment, by session. Figure 5 displays, again by

session, the estimated densities of the reports, the correct number of red balls in Bingo Cage 2, and

the mean report in each treatment. In session 1 the average reports for treatments M and P are 34.2

and 30.8, respectively. Excluding a subject who gave an idiosyncratic report of 100 red balls, the

average report for treatment P in session 1 is decreased to 26.8.11 The average reports from

treatments M and P are 59.7 and 65.8, respectively, for session 2. The panels for sessions 1 and 2 in

Figure 5 are illustrative of the treatment effect consistent with risk aversion: the mass of the

estimated densities for treatment M is closer to the middle of the report interval than for the case of

11 Although this subject’s reporting behavior was certainly puzzling and idiosyncratic, it can still be
rationalized by non-EU preferences. In particular, an appropriate combination of probability weighting
function that violates the assumptions outline in section 1 and subjective beliefs can provide incentives to
subjects to make a report close to 100. A more simple explanation is that the subject had a strong preference
for color red that was not related to the actual configuration of Bingo Cage 2.
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treatment P. This feature is not readily seen in the case of sessions 3 and 4, but one can use non-

parametric statistics to test the statistical significance of this treatment effect across sessions.

We find evidence that subjects in treatment M tend to make reports closer to 50 than

subjects in treatment P. Across all sessions, the average of the absolute value of the difference

between reports and 50 is 14.2 and 18.7 for treatments M and P, respectively. A one-sided Fisher-

Pitman permutation test for difference in means results in a p-value of 0.02, which suggests that on

average subjects in treatment M tend to make reports closer to 50. Session 3 had a Bingo Cage 2

with a composition of red and white balls close to 50/50, precisely where we predict this treatment

effect test would have low power. Thus we present non-parametric test results on distributions with

and without this session included. Figure 6 shows the empirical cumulative distribution of our

measure of distance of reports from 50 for sessions 1, 2 and 4 and for all sessions. There is a

perceptible difference between the distributions of treatments M and P, especially when only

sessions 1,2 and 4 are considered. When we exclude session 3, the one-sided Kolmogorov-Smirnov

test results in a p-value of 0.02, which supports the hypothesis that subjects in treatment M tend to

provide reports closer to 50. When we pool all the sessions, the p-value increases to 0.23, which was

expected given that this test of the hypothesis has low power in cases where the composition of the

Bingo cage is close to 50/50.

B. Does the BLP Improve Accuracy?

We find evidence that subjects from treatment P tend to make reports closer to the correct

number of red balls in Bingo Cage 2, supporting the hypothesis that the BLP induces linear utility in

our belief elicitation task. There were 68 subjects in treatment M whose average report distance was

15.2, while there were 70 subjects in treatment P whose average report distance was 12.8. Figure 7

shows the empirical distribution of the absolute value of differences between reports and the correct
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number of red balls, pooling over all sessions. We see how the cumulative distribution of treatment

P is dominated by the distribution of treatment M, which implies that distances are smaller in

treatment P. The one-sided Kolmogorov-Smirnov test for two samples results in a p-value of 0.04,

which supports the hypothesis that distances of reports from the correct number of red balls in

treatment P are smaller than in treatment M. Under the assumption that the correct number of red

balls in Bingo Cage 2 is a good proxy for the average underlying subjective probability, we find that

subjects tend to make reports closer to the correct number of red balls. This could be interpreted as

better accuracy from the part of subjects in treatment P. However we interpret this observed

behavior as a result of the BLP: this procedure induces linear utility in subjects and provides

incentive to reveal the true latent subjective probability, thus mitigating the distortion in reports

introduced by risk attitudes.

C. Do Subjects Report their Underlying Subjective Probabilities with the BLP?  

We follow Andersen, Fountain, Harrison and Rutström [2010] and develop a structural

econometric model to estimate the underlying subjective probabilities of subjects in the M

treatment. We then compare these estimates with the raw reports of subjects in the P treatment. If

BLP does induce linear utility, the estimated (risk-attitudes adjusted) subjective probabilities for M

subjects should be equal to the average reports of P subjects. We find that once we control for risk

attitudes, the underlying subjective probabilities of M subjects are statistically equal to the mean

reports of P subjects. 

 The objective of the structural estimation is to jointly estimate risk attitudes and the

underlying subjective probabilities in the M treatment. We use choices from a binary lottery choice
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task under risk 12 to identify risk attitudes, and the reports of subjects in the M treatment in the belief

elicitation task to then identify the subjective probabilities. Conditional on EUT and the assumption

of a CRRA utility function being the model that characterizes individual decision under risk in our

sample,13 we maximize the joint likelihood of observed choices in the risk task and the belief

elicitation task. The solution to this maximization yields the values of the risk attitudes parameter

and subjective probabilities that best explain observed choices in the belief elicitation task as well as

observed choices in the lottery tasks.14

In sessions 1 and 4 the estimated subjective probabilities were, respectively, equal to 30.2%

with a p-value of 0.01 and 70.8% with p-value less than 0.001.15 Each of these estimates is statistically

equal to the average raw reports of P subjects. In session 1 (4) a test for the null hypothesis that the

probability estimate is equal to the average report of M subjects of 26.8% (75.8%) results in a p-value

equal to 0.77 (0.67).  Similarly, in session 2 a test for the hypotheses that the estimated subjective

probability of 62% for M subjects is equal to the P subjects’ average report of 65.8 P results in a p-

value equal to 0.82. Finally, the p-value for the equivalent null hypothesis for session 3 is equal to

0.82; however, although consistent with our overall conclusions, the choices from this session are

12 We use choices from other two experiments (Harrison and Swarthout [2012] and Harrison,
Martínez-Correa Swarthout [2012]) that collect responses to binary choices between lotteries with objective
probabilities. As in our belief elicitation task, subjects in these two studies made one, and only one, choice and
was paid for it. Subjects in all tasks were sample from the same population. Payoffs were roughly the same.

13 Our objective is simply to find a way of characterizing risk attitudes to illustrate how the estimated
and risk-attitudes adjusted subjective probabilities in the M treatment compare to the average raw elicited
reports in the P treatment. We can therefore remain agnostic as to the “true” model of behavior towards risk.

14 Appendix B provides a more detailed explanation of the estimation procedures and Appendix C
shows the estimations. We estimate two models, one for sessions 1 and 4 and another for sessions 2 and 3. In
sessions 1 and 4 the stimuli was closer to 0 and 100, respectively, while in sessions 2 and 3 the stimuli was
clearly closer to 50. The estimated risk aversion parameter was virtually the same in both models and equal to
0.61 with p-values on the hypothesis of risk-neutrality less than 0.001. 

15 For the estimation we drop two subjects from session 1, where the number of red balls in the
Bingo Cage was 17. One of the subjects was from the M treatment who made a report of 60, and the other
was from the P treatment and made a report of 100. Our overall conclusions are not affected by dropping
these outliers.
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not informative because subjects in both treatments had strong incentives to make a report of 50

given that the stimuli was very close to this number.

4. Conclusions

Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure

works robustly to induce risk neutrality when subjects are given one risk task defined over objective

probabilities and the evaluation of the hypothesis does not depend on the assumed validity of any

strategic equilibrium behavior, or even the customary independence axiom. Using individuals

sampled from the same pool of subjects, we find evidence that the Binary Lottery Procedure induces

linear utility in a belief elicitation task when using the Quadratic Scoring Rule and presenting only

one question.

First, we observe that subjects who do not use the BLP tend on average to make reports

closer to the middle of the report interval, which reduces the uncertainty involved in the belief

elicitation task. Second, we also see that subjects who do use the BLP tend to make reports closer to

the correct number of red balls in Bingo Cage 2. Finally, we econometrically control for risk

attitudes and recover the underlying subjective probabilities of subjects who were not exposed to the

BLP and find that they equal to the raw average reports of subjects exposed to the BLP. We

interpret these findings as evidence that the BLP induces linear utility in subjects, thus mitigating the

distortion in reports introduced by risk attitudes.

An important feature of the BLP is that it theoretically provides incentives for subjects to

directly report their underlying latent subjective probability. This applies for individuals with

subjective expected utility representations and, under certain weak conditions, for individuals with

certain non-EU preference representations as well. In particular, the BLP theoretically works for
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individuals who follows Rank-Dependent Utility theory.

There are two important extensions of our approach left for future work. First, a natural

extension of our approach would be to test if the BLP works with more general scoring rules

designed to elicit full distributions for continuous events, such as the generalization of the QSR

proposed by Mathieson and Winkler [1976]. Second, the procedures we develop here can be used to

test the validity of the reduction of compound lotteries axiom defined over subjective beliefs. This

important direction entails some subtle extensions in the experimental design, building on the design

employed here.
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Figure 1: Binary Scoring Rule Using the Binary Lottery Procedure
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Table 1: Experimental Design

Treatment M Treatment P Total

Session 1 17 18 35

Session 2 16 17 33

Session 3 17 16 33

Session 4 18 19 37

Total 68 70 138
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Figure 2: Subject Display for Treatment M

Figure 3: Subject Display for Treatment P
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Figure 4: Frequency of Reports by Session
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Figure 5: Estimated Densities of Reports by Session
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Figure 6: Empirical Cumulative Distribution of Distance of Reports from 5
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Figure 7: Empirical Cumulative Distribution of Distance Pooling Data From All Sessions
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Appendix A: Instructions (NOT FOR PUBLICATION)

A. Introductory Instructions

sub-rocl

Introductory Instructions

You are now participating in a decision-making experiment. Based on your decisions in this
experiment, you can earn money that will be paid to you in cash today. It is important that you
understand all instructions before making your choices in this experiment. 

Please turn to silent, and put away, your cell phone, laptop computer, or any other device
you may have brought with you.  Please do not talk with others seated nearby for the duration of the
experiment. If at any point you have a question, please raise your hand and we will answer you as
soon as possible. 

The experiment consists of one decision-making task and a demographics survey.  You have
already earned $7.50 for agreeing to participate in the experiment, which will be paid in cash at the
end of the session.  In addition to this show-up fee, you may earn considerably more from your
choices in the decision-making task.  This task and the potential earnings from it will be explained in
detail as we proceed through the session.  

This experiment requires us to do some things out of your sight.  However, at the end of the
experiment we will prove to you that we followed the procedures described in the instructions. 
Additionally, we will select one of you at random solely for the purpose of verifying that the steps of
this experiment are done exactly as described in the instructions. As we proceed in the experiment,
we will outline clearly the steps that this Verifier has to verify. In a moment we will select the
Verifier by drawing a random number and matching the outcome with the appropriate seat number. 
The Verifier will be paid $25 for this job on top of the $7.50 show-up fee, and will not make any
decisions in the experiment. The Verifier will join the experimenter, observe the procedures, and
confirm that we are following the procedures explained in these instructions. The Verifier must not
communicate with anyone in the room except the experimenter. Failure to do so will result in that
person losing the promised amount, another person being chosen as Verifier, and a restart of the
experiment.

Part of this experiment is to test different computer screens. Therefore, we will divide you
into two groups, and each group will be presented with a slightly different instructions and computer
screens. If you are sitting in a computer station that has an odd number on it, you are part of the
Odd group. If you are sitting in a computer station that has an even number on it, you are part of
the Even group. 

Once the Verifier is chosen and joins the experimenter at the front of the room, we will
hand out the rest of the instructions. We will then have one of the two groups leave the room for a
few minutes, so that an experimenter can read the instructions aloud to the remaining group and
answer any questions if necessary. Then the groups will swap places and an experimenter will read
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instructions to the other group and answer any questions if necessary.  There will always be some
experimenters guiding you to get in or out of the room at the right moment.

Once all instructions are finished, and both groups are together in the room again, we will
proceed with the experiment.  Please remain silent during the experiment, and simply raise your
hand if you have any question so that an experimenter will come to you.
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B. Instructions for Treatment M

2m

Your Beliefs

This is a task where you will be paid according to how accurate your beliefs are about certain
things. You will be presented with one and only one question of the type we will explain below. You
will actually get the chance to play the question presented to you, so you should think carefully about
your answer to the question.

You will make decisions about the color of a ball to be drawn from a bingo cage. This bingo
cage will contain 100 balls colored red and white.  The exact mix of red and white balls will be
unknown to you, but you will receive information about the mixture.  The following instructions
explain in more detail how this experiment will work.

We have selected a Verifier at random solely for the purpose of verifying that we follow the
process described in the instructions. When the time comes we will display a summary of the steps
the Verifier will have to verify. We remind you that the Verifier must not communicate with anyone
in the lab except the experimenter. Failure to do so will result in that person losing the promised
amount, another person being chosen as verifier, and a restart of the experiment.

We have two bingo cages: Bingo Cage 1 and Bingo Cage 2.  We will load Bingo Cage 1 with
balls numbered 1 to 99.  You will watch us do this, and be able to verify yourself that Bingo Cage 1
is loaded with the correct numbered balls.  We will then draw a numbered ball from Bingo Cage 1. 
However, the draw of a numbered ball from Bingo Cage 1 will take place behind a divider, and you
will not know the outcome of this draw until the very end of the experiment, after you have made
your decisions.  Any number between 1 and 99 is equally likely.

The number on the chosen ball from Bingo Cage 1 will be used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 will always be 100:  the number of red
balls will match the number drawn from Bingo Cage 1, and the number of white balls will be 100
minus the number of red balls.  Since the actual composition of the Bingo Cage 2 will only be
revealed and verified in front of everybody at the end of the experiment, the Verifier will confirm
that the experimenter constructs Bingo Cage 2 according to the randomly chosen numbered ball.
Once Bingo Cage 2 is constructed, the experimenter will put the chosen numbered ball in an
envelope and affix it to the front wall above the white board. 

Next, Bingo Cage 2 will be covered and placed on the platform in the front of the lab. 
Then, Bingo Cage 2 will be uncovered for you to see and spun for 10 turns.  After this, we will again
cover Bingo Cage 2.  You will then make your decisions about the number of red and white balls in
Bingo Cage 2.  After you have made your choices, we will draw a ball from Bingo Cage 2 and your
winnings will depend on your choices and the outcome of this draw. Finally, the sealed envelope will
be opened and we will show the chosen numbered ball to everyone, and we will also publicly count
the number of red and white balls in Bingo Cage 2. We go through with this verification process so
that you can believe that the experiment will take place exactly as we describe in the instructions.
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Now we will explain how you will actually make your choices.  To make your choices, you
will use a computer screen like the one shown below.

The display on your computer will be larger and easier to read. You have 2 sliders to adjust,
shown at the bottom of the screen. Each slider allows you to allocate tokens to reflect your belief
about the answer to this question. You must allocate all 100 tokens in order to submit your decision,
and we always start with 50 tokens being allocated to each slider. The dollar payoffs shown on the
screen only apply when you allocate all 100 tokens. As you allocate tokens, by adjusting sliders, the
dollar payoffs displayed on the screen will change. Your earnings are based on the payoffs that are
displayed after you have allocated all 100 tokens.

You can earn up to $50 in this task.

Where you position each slider depends on your beliefs about the color of the Ping-Pong
ball to be drawn from the bingo cage. The tokens you allocate to each bar will naturally reflect your
beliefs about the number of red and white balls in Bingo Cage 2. The bar on the left depends on
your beliefs that the ball to be drawn will be red and the bar on the right depends on your beliefs
that the ball to be drawn will be white. Each bar shows the amount of money you earn if the ball
drawn from the bingo cage is red or white.

To illustrate how you use these sliders, suppose you think there is a fair chance that there are
less red balls than white balls in Bingo Cage 2. Then you might allocate 30 tokens to the first bar, as
shown below. Notice that the second bar will be automatically adjusted depending on the number of
tokens you allocated on the first bar. Therefore, by allocating 30 tokens to the first bar you are
allocating 70 tokens to the second. So you can see that if indeed the ball drawn is red you would
now earn $25.50. If the ball drawn is white instead you would earn $45.50. 

-36-



The above pictures show someone who allocated 30 tokens to red Ping-Pong balls and 70
tokens to white Ping-Pong balls. You can adjust this as much as you want to best reflect your
personal beliefs about the composition of the bingo cage.

Your earnings depend on your reported beliefs and, of course, the ball drawn. Suppose that
a red ball was drawn from Bingo Cage 2 and you reported the beliefs shown above.  You would
have earned $25.50.
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What if instead you had put all of your eggs in one basket, and allocated all 100 tokens to the
draw of a red ball? Then you would have faced the earnings outcomes shown below.

      

Note the “good news” and “bad news” here. If the chosen ball is red, you can earn the
maximum payoff, shown here as $50. But if a white ball is chosen, then you would have earned
nothing in this task. 

It is up to you to balance the strength of your personal beliefs with the risk of them being
wrong. There are three important points for you to keep in mind when making your decisions:

 Your belief about the chances of each outcome is a personal judgment that depends
on the information you have about the different events.  Remember that you will have
the chance to see Bingo Cage 2 being spun for ten turns before it is covered again.  This is
the information you will have to make your choices.

 Depending on your choices and the ball drawn from Bingo Cage 2 you can earn up to
$50.

 Your choices might also depend on your willingness to take risks or to gamble. 
There is no right choice for everyone. For example, in a horse race you might want to bet on
the long shot since it will bring you more money if it wins. On the other hand, you might
want to bet on the favorite since it is more likely to win something.

The decisions you make are a matter of personal choice. Please work silently, and make your
choices by thinking carefully about the task you are presented with.
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When you are happy with your decisions, you should click on the Submit button and
confirm your choices. When everyone is finished we will uncover and spin Bingo Cage 2, and
pickone ball at random in front of you. Then an experimenter will come to you and record your
earnings according to the color of the ball that was picked and the choices you made.

All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Are there any questions?
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C. Instructions for Treatment P

2p

Your Beliefs

This is a task where you will be paid according to how accurate your beliefs are about certain
things. You will be presented with one and only one question of the type we will explain below. You
will actually get the chance to play the question presented to you, so you should think carefully about
your answer to the question.

You will make decisions about the color of a ball to be drawn from a bingo cage. This bingo
cage will contain 100 balls colored red and white.  The exact mix of red and white balls will be
unknown to you, but you will receive information about the mixture.  The following instructions
explain in more detail how this experiment will work.

We have selected a Verifier at random solely for the purpose of verifying that we follow the
process described in the instructions. When the time comes we will display a summary of the steps
the Verifier will have to verify. We remind you that the Verifier must not communicate with anyone
in the lab except the experimenter. Failure to do so will result in that person losing the promised
amount, another person being chosen as verifier, and a restart of the experiment.

We have two bingo cages: Bingo Cage 1 and Bingo Cage 2.  We will load Bingo Cage 1 with
balls numbered 1 to 99.  You will watch us do this, and be able to verify yourself that Bingo Cage 1
is loaded with the correct numbered balls.  We will then draw a numbered ball from Bingo Cage 1. 
However, the draw of a numbered ball from Bingo Cage 1 will take place behind a divider, and you
will not know the outcome of this draw until the very end of the experiment, after you have made
your decisions.  Any number between 1 and 99 is equally likely.

 The number on the chosen ball from Bingo Cage 1 will be used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 will always be 100:  the number of red
balls will match the number drawn from Bingo Cage 1, and the number of white balls will be 100
minus the number of red balls.  Since the actual composition of the Bingo Cage 2 will only be
revealed and verified in front of everybody at the end of the experiment, the Verifier will confirm
that the experimenter constructs Bingo Cage 2 according to the randomly chosen numbered ball.
Once Bingo Cage 2 is constructed, the experimenter will put the chosen numbered ball in an
envelope and affix it to the front wall above the white board. 

Next, Bingo Cage 2 will be covered and placed on the platform in the front of the lab. 
Then, Bingo Cage 2 will be uncovered for you to see and spun for 10 turns.  After this, we will again
cover Bingo Cage 2.  You will then make your decisions about the number of red and white balls in
Bingo Cage 2.  After you have made your choices, we will draw a ball from Bingo Cage 2 and your
winnings will depend on your choices and the outcome of this draw. Finally, the sealed envelope will
be opened and we will show the chosen numbered ball to everyone, and we will also publicly count
the number of red and white balls in Bingo Cage 2. We go through with this verification process so
that you can believe that the experiment will take place exactly as we describe in the instructions.
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Now we will explain how you will actually make your choices.  To make your choices, you
will use a computer screen like the one shown below.

The display on your computer will be larger and easier to read. You have 2 sliders to adjust,
shown at the bottom of the screen. Each slider allows you to allocate tokens to reflect your belief
about the answer to this question. You must allocate all 100 tokens in order to submit your decision,
and we always start with 50 tokens being allocated to each slider. The point payoffs shown on the
screen only apply when you allocate all 100 tokens. As you allocate tokens, by adjusting sliders, the
point payoffs displayed on the screen will change. Your earnings are based on the payoffs that are
displayed after you have allocated all 100 tokens.

You earn points in this task. Every point that you earn gives you a greater chance of being
paid $50. To be paid for this task you will roll two 10-sided dice, with every outcome between 1 and
100 equally likely. If you roll a number that is less than or equal to your earned points, you earn $50;
otherwise you earn $0. 

Where you position each slider depends on your beliefs about the color of the Ping-Pong
ball to be drawn from the bingo cage. The tokens you allocate to each bar will naturally reflect your
beliefs about the number of red and white balls in Bingo Cage 2. The bar on the left depends on
your beliefs that the ball to be drawn will be red and the bar on the right depends on your beliefs
that the ball to be drawn will be white. Each bar shows the amount of points you earn if the ball
drawn from the bingo cage is red or white.
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To illustrate how you use these sliders, suppose you think there is a fair chance that there are
less red balls than white balls in Bingo Cage 2. Then you might allocate 30 tokens to the first bar, as
shown below. Notice that the second bar will be automatically adjusted depending on the number of
tokens you allocated on the first bar. Therefore, by allocating 30 tokens to the first bar you are
allocating 70 tokens to the second. So you can see that if indeed the ball drawn is red you would
now earn 51 points. If the ball drawn is white instead you would earn 91 points.

The above pictures show someone who allocated 30 tokens to red Ping-Pong balls and 70
tokens to white Ping-Pong balls. You can adjust this as much as you want to best reflect your
personal beliefs about the composition of the bingo cage.

For instance, suppose you allocated your tokens as in the figure shown above. If a
red ball is drawn from Bingo Cage 2, then you would earn 51 points. Then suppose that you rolled a
40 with the two 10-sided dice. In this case, you would be paid $50 since your dice roll is less than or
equal to your earned points.  However, if your dice roll was some number greater than 51, say 60,
you earn $0.  If you earn 100 points then you will earn $50 for sure, since every outcome of your
dice roll would result in a number less than or equal to 100. 

If you do not earn $50 you receive nothing from this task, but of course get to keep
your show-up fee. Again, the more points you earn in the correct bar the greater your chance of
getting $50 in this task.
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What if instead you had put all of your eggs in one basket, and allocated all 100 tokens to the
draw of a red ball? Then you would have faced the earnings outcomes shown below.

     

Note the “good news” and “bad news” here. If the chosen ball is red, you can earn the
maximum payoff, shown here as 100 points. But if a white ball is chosen, then you would have
earned nothing in this task. 

It is up to you to balance the strength of your personal beliefs with the risk of them being
wrong. There are three important points for you to keep in mind when making your decisions:

 Your belief about the chances of each outcome is a personal judgment that depends
on the information you have about the different events.  Remember that you will have
the chance to see Bingo Cage 2 being spun for ten turns before it is covered again.  This is
the information you will have to make your choices.

 Depending on your choices and the ball drawn from Bingo Cage 2 you can only earn
either $50 or $0.

 More points increase your chance of being paid $50. The points you earn will be
compared with the outcome of the roll of the two 10-sided dice to determine whether you
win $50 or $0.

The decisions you make are a matter of personal choice. Please work silently, and make your
choices by thinking carefully about the task you are presented with.
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When you are happy with your decisions, you should click on the Submit button and
confirm your choices. When everyone is finished we will uncover and spin Bingo Cage 2, and pick
one ball at random in front of you. Then an experimenter will come to you and record your earnings
according to the color of the ball that was picked and the choices you made.

All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Are there any questions?
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Appendix B: Structural Estimation of Subjective Probabilities (NOT FOR
PUBLICATION)

We follow Andersen, Fountain, Harrison and Rutström [2010] and develop a structural
econometric model to be estimated in two stages. The objective is to jointly estimate risk attitudes
and the underlying subjective probabilities in the M treatment. We use choices from a risk task16 to
identify risk attitudes, and the reports of subjects in the M treatment in the belief elicitation to then
identify the subjective probabilities.

First we present the specification of risk attitudes assuming an EUT model of latent choice,
where risk attitudes are entirely captured by the concavity of the estimated utility function. Second,
we consider the joint estimation of risk attitudes and subjective probability, conditional on the EUT
specification.17

Estimation of Risk Attitudes

We assume the following constant relative risk aversion (CRRA) utility function  

  U(x) = x(1-r)/(1-r) (1)

Risk neutrality is characterized by r equal to zero, risk aversion is characterized by positive values of
r, and risk loving behavior by negative values of r. The parameter in the utility function (1) can be
estimated by maximum likelihood estimators and a latent EUT structural model of choice. The
functional form of utility employed here is of no importance, and any monotonic increasing
function of U(.) could have been implemented.

Let there be K possible outcomes in a lottery; in our lottery choice task K#4. Under EUT
the probabilities for each outcome k in the lottery choice task, pk, are those that are induced by the
experimenter, so expected utility is simply the probability weighted utility of each outcome in each
lottery i:

EUi = 3k=1,K [ pk × Uk ]. (2)

The EU for each lottery pair is calculated for a candidate estimate of r, and the following latent
index is calculated:

LEU = EUR -EUL  (3)

and where EUL is the “left” lottery and EUR is the “right” lottery, as displayed to the subject in the
risk binary choice task. This latent index, based on latent EUT preferences, is then linked to
observed choices using a function Φ(LEU). We assume this to be a "logit" function that takes any

16 We use choices from other two experiments (Harrison and Swarthout [2012] and Harrison,
Martínez-Correa Swarthout [2012]) that collect responses to binary choices between lotteries with objective
probabilities. As in our belief elicitation task, subjects in these two studies made one, and only one, choice and
was paid for it. Subjects in all tasks were sample from the same population. Payoffs were roughly the same.

17 Our objective is simply to find a way of characterizing risk attitudes to illustrate how the estimated
and risk-attitudes adjusted subjective probabilities in the M treatment compare to the average raw elicited
reports in the P treatment. We can therefore remain agnostic as to the “true” model of behavior towards risk.
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argument between ±4 and transforms it into a number between 0 and 1. Thus we have the probit
link function,

prob (choose right lottery) = Φ(LEU)                                            (4)

Thus the likelihood of the observed responses, conditional on the EUT and CRRA specifications
being true, depends on the estimates of r  given the above statistical specification and the observed
choices. If we ignore responses that reflect indifference18 the log-likelihood is then

ln L(r; y, X)  = 3i [ (ln (LEU)×I(yi = 1)) + (ln (1-LEU)×I(yi = !1)) ] (5)

where I(@) is the indicator function, yi =1(!1) denotes the choice of the Option R (L) lottery in risk
aversion task i, and X is a vector of individual characteristics.

Even though this “link function” is common in econometrics texts, it forms the critical
statistical link between observed binary choices, the latent structure generating the index LEU, and
the probability of that index being observed. The index defined by (3) is linked to the observed
choices by specifying that the right lottery is chosen when Φ(LEU)>½, which is implied by (4).
Therefore, the purpose of this link function is to model the possibility that the subject might commit
errors when comparing the expected utility of any two given route choices. If there were no errors
from the perspective of EUT, this function would be a step function equal to zero when LEU < 0 
and equal to one when LEU>0 . Thus, if there were no errors, for any infinitesimal difference
between the subject's expected utility evaluations of two given choices, the subject would be able to
discern which of the two alternatives is better for him with complete certainty.

An important extension of the core model is to allow for subjects to make some errors. The
notion of error is one that has already been encountered in the form of the statistical assumption (4)
that the probability of choosing a lottery is not 1 when the EU of that lottery exceeds the EU of the
other lottery.19 By varying the shape of the link function implicit in (4), one can informally imagine
subjects that are more sensitive to a given difference in the index LEU and subjects that are not so
sensitive. We use the contextual error specification proposed by Wilcox [2011]. It posits the latent
index

LEU = ((EUR -EULi)/ν)/μ, (4N)

18 In our lottery experiments the subjects are told at the outset that any expression of indifference
would mean that the experimenter would toss a fair coin to make the decision for them if that choice was
selected to be played out. Hence one can modify the likelihood to take these responses into account either by
recognizing this is a third option, the compound lottery of the two lotteries, or alternatively that such choices
imply a 50:50 mixture of the likelihood of choosing either lottery, as illustrated by Harrison and Rutström
[2008; p.71]. We do not consider indifference here because it was an extremely rare event.

19 This assumption is clear in the use of a link function from the difference between the EU of each
option to the probability of picking one or other lottery; in the case of the logistic CDF that is implied by our
approach in (3), this link function is Λ(EUR - EUL). If the subject exhibited no errors from the perspective of
EUT, this link function would instead be a step function: zero for all values of (EUR - EUL)<0, anywhere
between 0 and 1 for (EUR - EUL)=0, and 1 for all values of (EUR - EUL)>0. Harrison [2008; p.326] illustrates
the implied CDF, referring to it as the CDF of a “Hardnose Theorist.”
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instead of (4), where ν is a normalizing term for each lottery pair L and R, and μ>0 is a structural
“noise parameter” used to allow some errors from the perspective of the deterministic EUT model.
The normalizing term ν is defined as the maximum utility over all prizes in this lottery pair minus the
minimum utility over all prizes in this lottery pair, and ensures that the normalized EU difference
[(EUR - EUL)/ν] remains in the unit interval. As μ 6 4 this specification collapses LEU to 0 for any
values of EUR and EUL, so the probability of either choice converges to ½. So a larger μ means that
the difference in the EU of the two lotteries, conditional on the estimate of r, has less predictive
effect on choices. Thus μ can be viewed as a parameter that flattens out, or “sharpens,” the link
functions implicit in (4). This is just one of several different types of error story that could be used,
and Wilcox [2008] provides a masterful review of the implications of the strengths and weaknesses
of the major alternatives.

Thus we extend the likelihood specification to include the noise parameter μ and maximize
ln L(r, μ; y, X) by estimating r and μ, given observations on y and X.20 Additional details of the
estimation methods used, including corrections for “clustered” errors when we pool choices over
subjects and tasks, is provided by Harrison and Rutström [2008; p.69ff].

Estimation of Subjective Probabilities

To estimate the subjective probability π that each subject holds from the responses in the
belief elicitation task we have to assume something about how subjects make decisions under risk.
We assume for simplicity that risk attitudes are characterized by EUT. In this model objective
probabilities and subjective probabilities are treated equally. This means that by observing choices
over lotteries with objective probabilities, we can identify the utility function that a subject would
use in lotteries with subjective probabilities, the domain we are interested in for inferring subjective
probabilities. We then jointly estimate the subjective probability and the parameters of the EUT
model. 

The subject that selects a report θ for the number of red balls in the Bingo Cage receives the
following SEU

                                           SEUθ =  πR×U( $S(θ|R) ) + (1- πR)×U( $S(θ|W) )                          (5)

This report can take 101 different integer values from 0 to 100. Then we can calculate the likelihood
of that choice given values of r, πR, ν and μ, where the likelihood is the multinomial analogue of the
logit specification for the link function used for lottery choices in the risk task. We define

euΘ = exp[(SEUθ/ν)/μ] (6)

for any report  θ, and then

LEU = euθ/(eu0 + eu1 + ÿ + eu100) (7)

for the specific report θ observed, analogously to (4').

We need r to evaluate the utility function in (5), we need πA to calculate the EUθ in (5) for
each possible report  θ  in {0, 1, 2, ÿ, 100} once we know the utility values, and we need μ to calculate

20 The normalizing term ν is given by the value of r and the lottery parameters, which are part of X.
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the latent indices (6) and (7) that generate the subjective probability of observing the choice of
specific report θ when we allow for some noise in that process. The joint maximum likelihood
problem is to find the values of these parameters that best explain observed choices in the belief
elicitation tasks as well as observed choices in the lottery tasks.

For numerical reasons we constrain the estimates for session 1 to lie in the interval (0, 0.5),
for session 5 to lie in the interval (0.5, 1), and for sessions 2 and 3 to lie in the interval (0.25, 0.75).
These intervals span the vast majority of responses. Results are essentially unchanged if we delete
the few outliers from these intervals.
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Appendix C: Estimates of Subjective Probabilities (NOT FOR PUBLICATION)

Estimates for Sessions 1 and 4

                                                  Number of obs   =        194
                                                  Wald chi2(0)    =          .
Log likelihood = -254.66619                       Prob > chi2     =          .

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
r            |
       _cons |   .6068863   .1085074     5.59   0.000     .3942157    .8195568
-------------+----------------------------------------------------------------
muRA         |
       _cons |   .2260858   .0683509     3.31   0.001     .0921204    .3600512
-------------+----------------------------------------------------------------
sprob_1      |
       _cons |  -.4235414    .998688    -0.42   0.671    -2.380934    1.533851
-------------+----------------------------------------------------------------
sprob_4      |
       _cons |   .3460463   .9740016     0.36   0.722    -1.562962    2.255054
------------------------------------------------------------------------------

. nlcom (sprob1: 0.5/(1+exp([sprob_1]_cons)))         
(sprob4:0.5+(0.5/(1+exp([sprob_4]_cons)))) 
        (sprob1d: 0.5/(1+exp([sprob_1]_cons))-`sp_points_1') 
        (sprob4d: 0.5+(0.5/(1+exp([sprob_4]_cons)))-`sp_points_4')

      sprob1:  0.5/(1+exp([sprob_1]_cons))
      sprob4:  0.5+(0.5/(1+exp([sprob_4]_cons)))
     sprob1d:  0.5/(1+exp([sprob_1]_cons))-.2676470588235294
     sprob4d:  0.5+(0.5/(1+exp([sprob_4]_cons)))-.758421052631579

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      sprob1 |   .3021652   .1194007     2.53   0.011      .068144    .5361863
      sprob4 |   .7071708   .1181769     5.98   0.000     .4755483    .9387932
     sprob1d |   .0345181   .1194007     0.29   0.773     -.199503    .2685393
     sprob4d |  -.0512503   .1181769    -0.43   0.665    -.2828727    .1803722
------------------------------------------------------------------------------
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Estimates for Sessions 2 and 3

                                                  Number of obs   =        193
                                                  Wald chi2(0)    =          .
Log likelihood = -257.17834                       Prob > chi2     =          .

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
r            |
       _cons |   .6097245   .1204072     5.06   0.000     .3737307    .8457183
-------------+----------------------------------------------------------------
muRA         |
       _cons |   .2571174   .0852141     3.02   0.003     .0901008     .424134
-------------+----------------------------------------------------------------
sprob_2      |
       _cons |  -.4922544   .4694209    -1.05   0.294    -1.412302    .4277937
-------------+----------------------------------------------------------------
sprob_3      |
       _cons |  -.0687132   .3751789    -0.18   0.855    -.8040502    .6666238
------------------------------------------------------------------------------

. nlcom (sprob2: 1/(1+exp([sprob_2]_cons))) 
        (sprob3: 1/(1+exp([sprob_3]_cons))) 
        (sprob2d: 1/(1+exp([sprob_2]_cons))-`sp_points_2') 
        (sprob3: 1/(1+exp([sprob_3]_cons))-`sp_points_3') 

      sprob2:  1/(1+exp([sprob_2]_cons))
      sprob3:  1/(1+exp([sprob_3]_cons))
     sprob2d:  1/(1+exp([sprob_2]_cons))-.6576470588235294
      sprob3:  1/(1+exp([sprob_3]_cons))-.53625

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      sprob2 |   .6206374   .1105236     5.62   0.000     .4040152    .8372596
      sprob3 |   .5171715   .0936841     5.52   0.000     .3335541     .700789
     sprob2d |  -.0370097   .1105236    -0.33   0.738    -.2536319    .1796125
      sprob3 |  -.0190785   .0936841    -0.20   0.839    -.2026959     .164539
------------------------------------------------------------------------------
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