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TRANSFORMATION GROUPS AND DUALITY IN THE ANALYSIS OF MUSICAL

STRUCTURE

by

JANINE DU PLESSIS

Under the Direction of Dr. Mariana Montiel

ABSTRACT

One goal of music theory is to describe the resources of a pitch system.
Traditionally, the study of pitch intervals was done using frequency ratios of the powers
of small integers. Modern mathematical music theory offers an independent way of
understanding the pitch system by considering intervals as transformations. This thesis
takes advantage of the historical emergence of algebraic structures in musicology and,
in the spirit of transformational theory, treats operations that form mathematical groups.
Aspects of Neo-Riemannian theory are explored and developed, in particular the T/l and
PLR groups as dual. Pitch class spaces, such as 7Z 1, can also be defined as torsors.

In addition to surveying the group theoretical tools for music analysis, this thesis
provides detailed proofs of many claims that are proposed but seldom supported.
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1. INTRODUCTION

The mere thought of a connection between mathematics and music has been
accepted throughout history, and the scope of that connection has been significantly
expanded since it was first exposed by Pythagoras of Samos [4]. This Greek
mathematician from the 6th century B.C. defined the "consonant" acoustic relationships
between strings of proportional lengths [28]. As the start of the 18" century celebrated
the arrival of the first English Dictionary [20] and the first pianoforte [14], it was quivering
with a low-bubbling excitement born from a handful of fundamental discoveries made by
Leonhard Euler that served as the basic building blocks of Mathematical Music Theory
[9]. The musical significance of this early work was sadly overlooked since it was for
“musicians too mathematical and for mathematicians too musical” [9]. Since then,
scholars of science, mathematics, and music have paved the way for many
opportunities to analyze music with math. Of these many pioneers of mathematical
music theory, a select few have inspired the subject of this thesis, which is based on the

transformational nature of music.

1.1. General Overview and History

In particular, the foundation of this study can be attributed to David Lewin who
developed transformational theory [11], and gave rise to a new form of music theory
designed to analyze modern music. This new theory is known as neo-Riemannian
theory or modern music theory. The spring board for this alternative theory was musical

set theory, which gave musicians a way of analyzing music by observing the intervallic



relationships among pitches instead of relating each pitch or musical event to a
governing tone of an entire piece (known as tonality) [27].

Neo-Riemannian theory was inspired by the German music theorist, Hugo
Riemann, who contributed much to the efforts of forming coherent relationships
between pitches and intervals in the absence of tonality. The need for this change was
born out of the industrial, political, and social changes occurring at the turn of the 19™
century. It was inevitable that there would be a substantial effect on the music of the
time, and these changes were often expressed via adventurous modulation, innovative
chord progressions, atypical dissonance and resolution, and in general, much less
preparation for sharp changes in the music. These radical changes gave way, in music,
to post-romanticism and eventually to atonality and post-tonality. Music that did not
follow all the conformities of tonal music was considered atonal or post-tonal. Naturally,
tonal music theory could no longer fulfill its responsibility and new tools had to be
constructed in order to analyze and explain this evolving music - hence, the birth of
Riemannian theory [18].

While Riemann was primarily interested in substituting the current labeling
system of chords and musical events, Lewin saw the potential for these labels to rather
describe the motion between these musical events. Lewin’s work takes shape in his
extensive contribution to the definition of operations that describe musical motion (i.e.
transformational theory), and goes further by applying group theory to music [23]. Not
only do these sets of transformations form groups, but they are isomorphic to each
other and to the dihedral group. Furthermore, they satisfy various properties that allow

us to conclude duality (as defined in [13]). In the midst of all these remarkable



deductions, we can also observe relationships with the torus (as shown by Riemann
[13] and Balzano [5]), and with forsors (as seen in Hook [22]). The scope of group
theory that is tapped into causes the same problem as with Euler's work, where many
scholars of music are not equipped with the training that would enable them to read the
group theory aspects with depth and understanding. As a result, much of the work that
revolves around neo-Riemannian theory introduces and makes use of group theoretic
structures without substantiating them. Herein lies the primary goal of this thesis, which
is to provide detailed proofs of these unsupported claims. All the proofs, figures and
tables in this thesis are the work of the author with the following exceptions. Theorem
5.1.15 and Theorem 5.3.4 are provided in [13] with some alterations. All figures and
tables are original work or have been reconstructed except for figure 6.1 [21]. In
addition to offering comprehensive explanations of mathematical concepts, this thesis
provides concrete examples that can be added to the mathematical repertoire of group

theory.

1.2. Musical Background

The twelve pitches of our modern day, 12-tone music system are labeled using
the first 7 letters of the alphabet. Each different letter represents a different frequency,
and the letters repeat when the frequency of a pitch or letter is doubled. The range of
pitches from the start of one frequency to the double of the same frequency is known as
an octave. Since the octave is divided into 12 equal frequencies, each pitch is 212
times the note below it. This is known as equal tempered tuning. Prior to equal

temperament, musicians used just intonation which is a system with notes having
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frequencies that are related by ratids of whole numbers. The difference in frequency
between each pitch is called a semitone or half step. With only 7 letters and twelve
notes to label, the symbol # (know as sharp) is used to denote a pitch that is a semitone
above the current pitch and the symbol b (known as flaf) is used to denote a pitch that
is a semitone below the current pitch. For example, if we are talking about the pitch G,
then the note a half step up would be G#, and a half step below would be Gb . The
entire set of twelve notes is called the chromatic scale and is musically denoted as
follows

C,C#,D,D# E, F, F#, G, G#, A, A#,B
As mentioned before, each note differs by a semitone so where we previously took a
semitone above G to be G#, it is also a semitone below A, which can be denoted as
A b . The property of any note having multiple names is known as enharmonic

equivalence. This is displayed, along with the frequency values of each pitch, in table

1.1.

Table 1.1 Frequencies corresponding to notes

Note Frequency (Hz) Note Frequency (Hz)
C 261.63 F#/G b 369.99
C#/D b 277.18 G 392.00
D 293.66 Ab /G 415.30
Eb /D 311.1 A 440.00
E 329.63 Bb/Ag 466.16
F 349.23 B 493.88




Since all the multiples of a certain frequency are represented by the same letter,
it makes it very convenient to mathematically represent this set of 12 notes by the set of
equivalence classes modulo 12 (Z 1), where each element is a class and represents an
infinite set of numbers. In keeping with the literature on Mathematical Music Theory, we

will assign the following numbers with the corresponding letters.

Middle C
+262Hz

C-0 |D-2 | E-4

Figure 1.1 Notes assigned to numbers in Z 1,

This assignment is not set in stone, so it is perfectly alright to let any one of the
12 notes begin with zero. This is one of the attributes that make this set a good

candidate for torsors, but more on that later.

1.3. Notation Used in Mathematical Music Theory
For the purpose of this thesis, we are interested in notes that are played
simultaneously. These sets of simultaneously played notes are referred to as chords.

In particular, we will concentrate on the group of chords know as triads, which means

12
that only 3 notes are being played simultaneously. Now, there are [ 3} or 220

combinations of 3 note sets from the entire 12 note set, but we will limit the number of 3



element sets to include only those that are known as major and minor chords. The
three notes in a triad are respectively known as the root, the third and the fifth where
each triad is named after its root. We define the major and minor triads mathematically

as follows:

Definition 1.3.1 Let <a,b,c> be a major chord, thenb =a + 4, and ¢ = a + 7 where a,

b,CE Zm.

Major chords in this form are said to be in root position and are generally denoted by
upper case letters, such as G# = <8,0,3>. Recall that the triad is made of a root, third

and fifth. In the case of G#, the root is G# = 8, the third is B# = 0, and the fifth is D# = 3.

Definition 1.3.2 Let <a,b,c> be a minor chord, thenb =a + 3, and c = a + 7 where a,

b,CE 212.

Minor chords in this form are said to be in root position and are generally denoted by
lower case letters, such as f = <5,8,0>.

Now that we have defined the elements, we will refer to them as pitch class triads
and will denote the set of these 24 major and minor triads to be M. The entire set is
displayed in Table 1.2 and can also be seen as

M = {<x,x+3,x+7> and <X, X+4,X+7> | x, X € Z 12}
It is important to note that the 3-element sets are not necessarily ordered. In other

words, the f-minor chord <5,8,0> is the same set as <0,8,5>. Musically the f-minor



chord is formed by playing the notes F, A b, and C simultaneously. If we take <0,8,5>
we are still indicating that the notes C, A b, and F be played together, which would

indicate that we intend to play the f-minor chord. So the root position of the chord, as in
definitions 1.3.1 and 1.3.2 shows the speliing of the chord and is more of an algorithm
for obtaining the elements of the set of all major and minor triads. The individual notes |
may be distributed in multiple ways without changing the identity of the chord.

It is common in the current literature to see the triads displayed in a different
order to that of table 1.2. This is relevant only when working with the P, L and R

transformations described later. There will be a reminder about this when it becomes

important.

Table 1.2 Set of all major and minor triads

Major Chords Minor Chords
C <0,4,7> C <0,3,7>
C#/D b <1,5,8> cg/d b <1,4,8>
D <2,6,9> D <2,5,9>

Eb/Dg | <3,7,10> |eb/dg| <3,6,10>
E <4,8,11> E <4,7,11>
F <5,9,0> F <5,8,0>
F4/Gb | <6,10,1> | fd/gb <6,9,1>
G <7,11,2> G <7,10,2>
Ab/Gg| <8,03> |ab/g#| <8,11,3>
A <9,1,4> A <9,0,4>
Bb/Ag | <10,255> |bb/ag| <10,1,5>
B <11,3,6> B <11,2,6>




The term pitch class triad draws our attention to a subtle yet important distinction
that must be made. We must be very clear about what elements we are working with,
because up to now we have referred to a pitch class triad simply as a triad. An element
x in M is a triad, where x = <a,b,c>, and where a, b, c € Z 5. This notation however, is
used for convenience and simplicity, but to be more precise we must remember that

7,12 is a set of classes.

Z12={0], [1], ..., [11]}, where [0]=1{..., -24, -12,0, 12, 24, ..}

[11]={...,-13,-1, 11,23, ...}
So, whenyouread a, b, c e Z 1, itis actually [a], [b], [c] € Z 1o. We call these classes,
pitch classes because (as mentioned before) every note from a to g represents all the
pitches which are a multiple of it - much the same way that each class in Z 1
represents all the numbers modulo 12 that are multiples. So, when you read x =
<a,b,c>, it is actually [x] = <[a],[bl,[c]>. Therefore we extend this idea of pitch classes to
pitch class triads where all the elements in M are also classes. As an example, let's
take the C-major chord x = <0,4,7>. If we look at C-major as a triad class, we should
represent it in the following way:

C =[x] = <[0],[4],[7]> ={..., <-12,-8,-5>, <0,4,7>, <12,16,19>, ...}

Now that we have clarified the distinction between basic elements and classes, for

simplicity, we will continue to denote [x] simply as x.



2. T/ AND PLR TRANSFORMATIONS

A musical piece is much more than just a combination of pitches and durations of
pitches. The entire musical experience is substantiated by rhythm, texture, timbre,
dynamics and the other elements with which pitches are bound up. All these properties
of music allow for vast amounts of possibilities, but with our 12 tone system the range of
choices (albeit large) is still limited. Fortunately, there are ways of manipulating music
through transformations which vastly expand the means with which music can entice
tone, excite curiosity and surpass expectation. Amongst the multitude of techniques
used to create variation in music, fransposition, inversion, parallel, relative, and leading
tone exchange transformations are of particular interest.

Onan elémentary level, we know a transformation to be a mapping from a set of
elements to another set of elements. These mappings or functions subject the domain
elements to certain rules or conditions, and in altering the original elements the range of
the function is formed. Musical actions and tools perform in much the same way. The
entire set of pitches and chords are simply manipulated in various ways in order to form
more pitches and chords in altered states. The domain and range of our functions then,
very conveniently turn out to be one and the same. Following are the definitions of the
transposition, inversion, parallel, relative, and leading tone exchange transformations.
Our domain and codomain for these functions is the set M, which has been previously

defined.
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2.1. The T and | Transformations

Transposition in music theory refers to the process of moving a pitch or éet of
pitches up or down by a constant interval. Whether it is one musician transposing
another musician’s work to fit within their own vocal range or two musicians performing
together at different pitches to create a harmony, transposition is a very common tool in
music. Conveniently, the musical definition of this transformation translates directly into

mathematical transformation [13].

Definition 2.1.1 Let x e M, where x = <a,b,c>. A transposition, denoted T, is a
bijective mapping Tn: M — M, such that

Tn(X) = X + n = <a+n,b+n,c+n> foraline Z

There are only 24 elements (triads) in M to apply T, to, but we have an infinite
amount of transpositions of any triad since n € Z, however after having transposed any
triad 12 times, we get the same sequence of triads again. For example

To(C) = To(<0,4,7>) =<0,4,7>

T1(C) = T1(<O,4,7>) =<1 ,5,8>

T12(C) = T12(<0,4,7>) = <O,4,7> = TO(C)
T13(C) = T13(<O,4,7>) =<1 ,5,8> = T1(C)
We see then that T, behaves like the identity function, and for each triad there are no

more than 12 distinct transpositions.
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Geometrically we can see transpositions as rotations of a triangle through 12
equally spaced points on a circle. The three vertices of the triangle represents the
pitches of that triad and below we see the example of the C-major cord <0,4,7> being
rotated one vertex or pitch at a time to the right. In other words, we see an illustration in

figure 2.1 of T,(<0,4,7>), for all 0<n<12.

11 1

8

T1(<0,4,7>)

Te(<0,4,7>) T+(<0,4,7>) Ts(<0,4,7>)



Tg(<0,4,7>) T1Q(<0,4,7>) T11(<0,4,7>)

Figure 2.1 All 12 transpositions of the C-major triad <0,4,7>

Since translations maintain the relation between all three digits in the chord, we
see that T maps all major and minor chords to major and minor respectively. Inversions
also map the entire set M to itself, yet major chords are mapped to minor chords and
vice versa. The musical definition of inversion does not correspond to the mathematical
definition quite in the same way that transposition does, however the algebraic definition
of inversion is used by the music theorists of mathematical music theory. Musically, an
inversion of a chord is a rearrangement of the pitches in a chord. For example, when
the root of a triad is moved from the front of a triad to the last position of the triad it is
known as first inversion. The first inversion of C-major <0,4,7> would then be <4,7,0>.
In this study, the term inversion has been used in the algebraic sense, and musicians

are cautioned not to confuse this definition of inversion with the musical one.

Definition 2.1.2 Let x € M, where x = <a,b,c>. An inversion, denoted I, is a bijective
mapping l,: M — M, such that

Ih(X) = -X + n = <-A+n,-B+n,-C+n> VYne 7
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As with transpositions, there are 24 triads to invert and an infinite number of
inversions of each triad, and when we apply I, for n 2 12 we generate the same triads
that have been generated for 0 < n < 11. For example

Io(C) = 19(<0,4,7>) = <0,8,5>

|1(C) = |1(<0,4,7>) =<1 ,9,6>

112(C) = 112(<0,4,7>) = <0,8,5> = 1o(C)
l13(C) = 115(<0,4,7>) = <1,9,6> = |;(C)
We see then that for each triad there are no more than 12 distinct inversions.

In contrast to the algebraic representation of inversion, the geometric
representation is somewhat more intuitive. All inversions can be illustrated as the
reflections of triangles about the vertical axis from 0 to 6 on the circle. Unlike the
transpositions, Figure 2.2 is not simply the 12 inversions of <0,4,7>. Rather, in order to
show the notion of reflection, the illustrations provide the inverted form of each major

triad, which is ultimately a transposition of the original triad <0,4,7>.

lo(<0,4,7>) = <0,8,5> lo(<1,5,8>) = <11,7 4>




l0(<8,0,3>) = <4,0,9> l0(<9,1,45) = <3,11,8>




il 1 1 1

lo(<10,2,5>) = <2,10,7>

Figure 2.2 |, of all 12 major triads

lo(<11,3,6>) = <1,9,6>

By observation we see that there are no more than 12 transpositions and 12

inversions, so while the indices are in the set of integers (which includes negative and

positive numbers and is infinite), they are always equivalent to some ke {0, 1,2, 3,4, 5

¥

6,7,8,9,10, 11}. In effect, any triad being acted on changes according to the index

and therefore does not change by more than 11. We formalize this in the following

Theorem.

Theorem 2.1.3 Foralln, ke Z, such that n=k mod 12,

Tn = Tk and .n - lk.

Proof:

Since n=kmod 12, thenn=12q + k, forsome qe Z

Tn=Tkmod 12 = T12q+k = T12q ® Tk = (To)¥° Tk = ()7 ° Tw = T«

and

In=lkmod 12 = lag+k = T12g ° lk = (To)? ° lk = ()9 ° Ik = Ik
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Both sets of T and | functions constitute the entire set called the T/I-set, which is
illustrated in table 2.1. The term T/l is standard notation in mathematical music theory

and should not be confused with the notation of quotient groups.

Table 2.1 The T/l-set

To T4 T Ts T4 Ts Ts T, Tg To Tio T1

lo l4 2 I3 l4 s ls l7 ls lo l1o l11

Definition 2.1.4 The set of all transposition and inversion functions is known as T/,

and defined as

TN={T,andln|n=0,..., 11}

It turns out we can actually represent all these elements in a more compact manner, if

we take a look at all 4 possible compositions of T and | functions.

Lemma 2.1.5 The results of the following equations account for all the functions in the

T/l-set:
) Tm ° Tn = Tmsnmod 12 (1)
i) Tm ° ln = Insnmod 12 2
i) Im ° Tn = lm-n mod 12 (3)

iV) Im ° ln = Tr-nmod 12 (4)



Proof:

) Tm°Th

i) Tm°In

i) Im°Th

iv) I © I

= Tm(Th(<a,b,c>))

= Tm(<a+n,b+n,c+n>)

= <a+n+m,b+n+m,c+n+m>

= <a+(m+n),b+(m+n),c+(m+n)>
= Tm+n mod 12

= Tm(ln(<a,b,c>))

= Tm(<-a+n,-b+n,-c+n>)

= <-a+n+m,-b+n+m,-c+n+m>

= <-a+(m+n),-b+(m+n),-c+(m+n)>
= lm+nmod 12

= Im(Th(<a,b,c>))

= Im(<a+n,b+n,c+n>)

= <-a-n+m,-b-n+m,-c-n+m>

= <-a+(m-n),-b+(m-n),-c+(m-n)>
= lm-n mod 12

= In(ln(<a,b,c>))

= |m(<-a+n,-b+n,-c+n>)

= <a-n+m,b-n+m,c-n+m>

= <a+(m-n),b+(m-n),c+(m-n)>

= Tm-n mod 12

17
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When all the functions from table 2.1 are consecutively applied to any triad in M, then
the entire set M is reproduced. As an example, table 2.2 demonstrates the result of

applying all T and | functions to C = <0,4,7>.

Table 2.2 All transpositions and inversions applied to C-major

Prime Forms

Inverted Forms

To(<0,4,75) = <0,4,7>

lo(<0,4,7>) = <0,8,5>

T1(<0,4,7>) = <1,5,8>

11(<0,4,7>) = <1,9,6>

T2(<0,4,7>) = <2,6,9>

12(<0,4,7>) = <2,10,7>

T3(<0,4,7>) = <3,7,10>

13(<0,4,7>) = <3,11,8>

T.(<0,4,7>) = <4,8,11>

14(<0,4,7>) = <4,0,9>

T5(<0,4,7>) = <5,9,0>
T6(<0,4,7>) = <6,10,1>
T/(<0,4,7>) = <7,11,2>
Te(<0,4,7>) = <8,0,3>
To(<0,4,7>) = <9,1,4>
T10(<0,4,7>) = <10,2,5>
T41(<0,4,7>) = <11,3,6>

15(<0,4,7>) = <5,1,10>
l6(<0,4,7>) = <6,2,11>
1,(<0,4,7>) = <7,3,0>
ls(<0,4,7>) = <8,4,1>
lo(<0,4,7>) = <9,5,2>
ll10(<0,4,7>) =<10,6,3>
||H(<o,4,7>) =<11,7,4>

This same set of triads will be produced regardless of the triad used. Notice that
certain triads in this table differ in order from those in table 1.2. As mentioned before,
the ordering of each triad is inconsequential, but it will make certain investigations
easier if this ordering is preserved. The headings of the two columns are commonly
used in the literature on this subject, and when this ordering of a triad is preferred or
required, the triad is referred to as a triad in prime or inverted form. This is will become

apparent when working with the P, L, and R operations.
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Before we move on to more operations on the set of 24 triads, we will first verify
that the results of T, and I, do not depend on the element in M they are acting on, and

furthermore that it doesn’t matter which representative within each pitch class is used.

Theorem 2.1.6 The operations T, and |, are well defined and therefore, if [x] is a pitch
class triad in M then for all x4, x> € [x] we have
i) Tna(x1) = Tr(x2), i.e. Tn(<ay,by,c1>) = Th(<az,bs,co>)
i) In(x1) = In(x2), i.e. lu(<a,by,c1>) = l(<az,bs,co>)
Proof:
Let x1, xo € [X] € M, where x; =<aq,by,c1> and xo = <ap,bs,co>. So, x4, and x»
are elements in the triad class [x] = <[a],[b],[c]>. We see then that a; as € [a] € Z 12,
and by by e [ble Ziz and ¢y coe[cle Z12
iy Tn(<aibicy>) = <aj+n,bi+n,ci+n>
and,
Tn(<az by Co>) = <az+n,bo+n,cotn>
since,
a;e [a], then(a;+n)e [a+n] and aze [a], then (ax+n) e [a+n]
Similarly
(b1+n), (botn) € [b+n] and (ci+n), (co+n) € [c+n]
which gives us
Tn(x1) = Ta(<as,b1,c1>) = <a1+n,b1+n,c1+n> =<az+n,bo+n,Co+n> = Tr(<az bz Co>) = Tn(X2)
Therefore, T, is well defined.

ii) In(<aybyc1>) = <-ai+n,-by+n,-c4+n>
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and,
In(<ag ba Co>) = <-az+n,-bo+n,-Co+n>
since,
-a1 € [a], then(-a;+n)e [a+n] and -as e [a], then (-ax+n) € [a+n]
Similarly
(-b1+n), (-bo+n) € [b+n] and  (-cy+n), (-c2+n) € [c+n]
which gives us
In(X1) = In(<a1 b1.c1>) = <-a1+n,-b1+n,-C1+n> =<-ao+N,-bo+Nn,-Co+N> = Iy(<az b2 Co>) = In(X2)

Therefore, 1, is well defined.

2.2. TheP, L, and R Transformations

In addition to the T and | transformations that we apply to the set M, we also
have the parallel (P), leading tone exchange (L), and relative (R) functions [13]. As with
the T and | functions, there are musical, group theoretic and geometric descriptions of
the P, L and R functions. The descriptions and definitions of these three will not be
separated as with the T and | functions, and extended examples are provided below the
formal definition in the event that the following brief examples are not clear.

Two triads are said to be parallel if they have the same letter name but of
opposite parity (parity meaning major or minor). For instance, the parallel minor of F-
major <5,9,0> is f-minor <5,8,0>. Both triads are named with the letter f, but one is
major and the other is minor. Two triads are said to be relative if they are again of

opposite parity, and if the root of the minor triad is three semitones below the root of
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major triad. To illustrate, we take F-major <5,9,0> and count three semitones below 5,
which is 2 and then build a minor chord on 2. This yields the d-minor chord <2,5,9>,
and d minor is the relative minor of F-major. Lastly, the leading tone exchange is
derived from the fact that a semitone below any pitch is called the leading tone of that
pitch. Therefore, the leading tone exchange of any triad is also of opposite parity, and
the root of the major triad is replaced with its leading tone. We use F-major
<5,9,0>0nce again to illustrate. The root of F is 5, which is replaced with its leading
tone, 4. It suffices for now to say that the only minor chord with the pitches 4, 9, and O
is the a-minor chord, <4,0,9>. Richard Cohn [12] describes it as:
“P (for Parallel) which relates triads that share a common fifth; L (for Leading-
tone exchange), which relates triads that share a common minor third; and R (for
Relative), which relates triads that share a common major third.”
Below are the mathematical definitions of P, L, and R which are then followed by

examples. Recall that the triad ordering in table 2.2 is recommended.

Definition 2.2.1 Letx, Y € M, where x = <a,b,c> a minor triad and Y = <A,B,C> a major

triad, then
P(x) = P(<a,b,c>) = <C,B+1,A> (5)
P(Y) = P(<A,B,C>) = <c,b-1,a> (6)
L(x) = L(<a,b,c>) = <A+1,C,B> (7)
L(Y) = L(<A,B,C>) = <a-1,c,b> (8)
R(x) = R(<a,b,c>) = <B,A,C-2> (9)

R(Y) = R(<A,B,C>) = <b,a,c+2> (10)
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Notice that each function keeps two notes in common with the original chord, but
switches their positions. In addition to this, each function converts the original triad from
major to minor or vice versa. These relationships are more musically meaningful and
are easier to detect for those that are musically inclined. If one takes a purely numerical
view of the results it is not as intuitive, so we once again interject with a reminder to use
the triad ordering in table 2.2. Each function has musical relevance, and these
transformations are commonly used during modulation (the change of one key to
another). The goal is to make the transition as smooth as possible, so the more notes in
common between the connecting triads, the less noticeable it is to hear the change of

course. The following examples provide concrete implementation of definition 2.2.1.

P(c) = P(<7,3,0) = <0,4,7>=C and P(F) = P(<5,9,0.>) = <0,8,5> = f
L(e) =L(<11,7,4>) =<0,4,7>=C and L(G) = L(<7,11,2>) =<6,2,11>=b
R(b) = R(<6,2,1 1>) = <2,6,9> =D and R(A) = R(<9,1 ,4>) =<1 ,9’6> = f#

We now explore what the set of P, L, and R functions looks like and we will start
with the geometric representation. As with the T and | functions, there is a rather
interesting representation of the P, L, and R functions, known as the Tonnetz. The word
Tonnetz is German for “tone network” and was invented by Leonhard Euler [12]. It was
Hugo Riemann that explored its capacity to chart harmonic motion or the movement
from one pitch or triad to another. For various reasons, the original Tonnetz has
undergone various alterations [12], but we will use the version shown in figure 2.3. Note

that the vertices are pitch classes and the triangles represent major and minor triads.
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As mentioned before, the P, L, and R transformations preserve 2 pitches when applied
to any triad. Therefore, the rotation of a triangle about any one of its edges yields
another triangle which is equivalent to one of the three triads that P, L, or R would
produce. Notice that if we expand the diagram with more vertices, we see that they
start repeating vertically and horizontally and in effect, the grid wraps around and

therefore lies on a torus. This idea will be expanded upon in chapter 6.

\/\/\/\/\/
/\/\M/\/\
\/\/\/\/\/
/\/\/\/\/\
\/\/\/\/\/
/\/\/\/\/\
\/\/\/\/\/

Figure 2.3 The Oettingen/Riemann Tonnetz

While we are treating P, L, and R as transformations we will determine what
sequence of functions maps each element of M to a distinct image, as with the T and |
functions. Although, unlike T and |, we do not have the subscripts of each function and

therefore the elements of the set are not as obvious. The Tonnetz makes this
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exploration visual and in turn much more effortless than having to calculate a series of
transformations by hand. We look to figure 2.3 to see that there are multiple ways of
tracing any triad to itself; however we are concerned with a path that traverses every
element in M. Figure 2.4 displays such a path and we see that a series of Rand L
functions map the triad <5,9,0> to itself by mapping to every other triad in the process.
We are not claiming yet that this is the entire set of P, L, and R functions, but rather that

this gives us a sense of what the elements might look like.

A A AV AY AV AV AYAYAYAYAYAS

3————-10——-5

¥%¥\ %K%¥%K%K\ %K%K%K%K%

4 11 — 6 3 e 10 e 5 —— O

I AYAYAVAVAVAVAVAVAVAVAVAN

Figure 2.4 A unique path of functions on the Tonneitz

From this result, we turn then to the compositions of P, L, and R and the powers
of those compositions in order to determine the elements of the set. We notice quickly
that P, L, and R are involutive. In other words,

PP=L?=R?=i
We will show this for the P function for example, and the L and R functions will behave
in the same way.

P ° P(<a,b,c>)= P(<C,B+1,A>) = <a,(b+1)-1,c> = <a,b,c>

= i(<a,b,c>) (the identity function)
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Note: After the first application of P, the resulting triad is a major triad, so care must be
taken in using the correct computation from definition 2.2.1.

As demonstrated above, by consecutively applying R to any triad and then L to
the result, you will produce the following sequence of triads (again, upper case
representing major triads and lower case representing minor triads).

C,a,F,d,Bb,g,Eb,c,Ab,f,Db,bb,Gb,eb,B,g# E, c# A f# D, b G, e C
This sequence so happens to be a famous progression in Beethoven'’s Ninth Symphony
[15]. In order to see this sequence unfolding, recall that it is makes the explanation
simpler when using the order of the triads found in table 2.2. Initially, for example, we
take C = <0,4,7> and start applying the R and L functions to get the following

R(<0,4,7>) =<4,0,9>=a
So, we see that C is taken to its relative minor, a. Then
LR(<0,4,7>) = L(<4,0,9>) =<5,9,0> =F
which shows that a is taken to its leading tone, F-major.

Continuing in this way will eventually produce the string of triads displayed above
and in table 2.3. In fact, when the R and L functions are applied to any major triad in
that order, the same sequence of triads will result. Alternatively, the sequence is
produced in reverse order when applied to any minor triad. Furthermore (as seen in
figure 2.4), once all the elements in M are produced via the R and L functions, the
sequence starts repeating. We illustrate this by the following operation on a triad x in M.

(LR)™%(x) = (LR)(LR)""(x)

(LR)(LR)"(x) = (LR)(LR)""(<A,B,C>)

= (LR)"(L(R(<A,B,C>))) = (LR)"(L(<b,a,c+2>)))
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= (LR)"(<B+1,C+2,A>) = (LR)"°(L(R(<B+1,C+2,A>)))
= (LR)'%(L(<c+2,b+1,a+2>)) = (LR)"%(<C+3,A+2,B+1>)

= (LR)*(L(R(<C+3,A+2,B+1>))) = (LR)°(L(<a+2,c+3,b+3>))

= (LR)°(<A+3,B+3,C+3>) = (LR)}(L(R(<A+3,B+3,C+3>)))
= (LR)®(L(<b+3,a+3,c+5>)) = (LR)](<B+4,C+5,A+3>)

= (LR)’(L(R(<B+4,C+5,A+3>))) = (LR)"(L(<c+5,b+4,a+5))

= (LR)"(<C+6,A+5,B+4>) = (LR)*(L(R(<C+6,A+5,B+4>)))
= (LR)®(L(<a+5,c+6,b+6>)) = (LR)°(<A+6,B+6,C+6>)

= (LR)*(L(R(<A+6,B+6,C+6>))) = (LR)*(L(<b+6,a+6,c+8>))

= (LR)*(<B+7,C+8,A+6>) = (LR)*L(R(<B+7,C+8,A+6>)))
= (LR)*(L(<c+8,b+7,a+8>)) = (LR)*(<C+9,A+8,B+7>)

= (LR)*(L(R(<C+9,A+8,B+7>))) = (LR)}(L(<a+8,c+9,0+9>))

= (LR)}(<A+9,B+9,C+9>) = (LRA(L(R(<A+9,B+9,C+9>)))
= (LR)*(L(<b+9,a+9,c+11>)) = (LR)*(<B+10,C+11,A+9>)

= (LR)(L(R(<B+10,C+11,A+9>))) = (LR)(L(<c+11,b+10,a+115))

= (LR)}(<C+12,A+11,B+10>) = (L(R(<C+12,A+11,B+10>)))
= L(<a+11,c+12,b+12>) = <A+12,B+12,C+12>)
=<AB,C>

=i(<A,B,C>)

Similarly, if you apply (LR)" = (LR)(LR)"" to a minor triad, you will end up with that same
triad. The next iteration is R(LR)'?, which gives us
R(LR)'%(<A,B,C>)= <b,a,c+2> = R(<A,B,C >)

Similarly, if we compute (LR)"™ we get



(LR)'*(<A,B,C >)= <B+1,C+2,A> = LR(<A,B,C >)

(LR)?=i=1=(LR)°

We can then see that (LR)'? behaves like the identity and so we can say that

Table 2.3 R and L functions applied to C-major

R(<0,4,7>) =<4,0,9>=a

R(LR)®(<0,4,7>) = <10,6,3>=¢ b

LR(<0,4,7>) = <5,9,0> =F

(LR)'(<0,4,7>) = <11,3,6> = B

R(LR)(<0,4,7>) = <9,5,2> = d

R(LR)(<0,4,7>) = <3,11,8> = g

(LR)*(<0,4,7>) = <10,2,5> =B b

(LR)%(<0,4,7>) = <4,8,11>=E

R(LR)%(<0,4,7>) = <2,10,7> = g

R(LR)®(<0,4,7>) = <8,4,1> = c#

(LR)}(<0,4,7>) = <3,7,10>=E b

(LR)°(<0,4,7>) = <9,1,4> = A

R(LR)*(<0,4,7>) = <7,3,0> =¢

R(LR)*(<0,4,7>) = <1,9,6> = f#

(LR)*(<0,4,7>) = <8,0,3>=A b

(LR)'(<0,4,7>) = <2,6,9> =D

R(LR)*(<0,4,7>) = <0,8,5> = f

R(LR)'°(<0,4,7>) = <6,2,11> =D

(LR)*(<0,4,7>) =<1,5,8>=Db

(LR)'(<0,4,7>) =<7,11,2> =G

R(LR)%(<0,4,7>) = <5,1,10> = b b

R(LR)''(<0,4,7>) = <11,7,4>=¢

(LR)®%(<0,4,7>) = <6,10,1>=G b

(LR)’(<0,4,7>) = <0,4,7> =C
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Again we see that the powers of the functions will always be in the set {0, 1, 2, 3,

4,5,6,7,8,9, 10, 11}. Once again we formalize this in a theorem.

Theorem 2.2.2 Foralln, ke 7, suchthatn=k mod 12,
(LR)" = (LR)* and R(LR)" = R(LR)*.
Proof:

Since n=kmod 12, then n = 12q + k, forsome q e Z
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(LR)" = (LR)*™™ = (LR)"* ¥ = (LR) *(LR)" = ((LR))¥LR)* =()*(LR)" = (LR)"
and
R(LR)" = R(LR)* ™2 = R(LR)"*1* ¥ = R(LR)'*(LR)" = (R(LR)°)%(LR)"

= (R()Y(LR)" = R(LR)"

This yields 12 functions of the form (LR)" and 12 functions of the form R(LR)" for
a minimum of 24 distinct functions in our set of P, L, and R functions so far. While this
says nothing about the maximum amount of functions in the set, we will verify shortly

that the entire PLR-set actually consists only of the functions in table 2.4.

Table 2.4 The PLR-set

R =R(LR)°| R(LR)? R(LR)* R(LR)® R(LR)® R(LR)"
(LR)' (LR)® (LR)® (LR)’ (LR)° (LR)"
R(LR)’ R(LR)? R(LR)° R(LR)’ R(LR)® R(LR)"
(LR)? (LR)* (LR)® (LR)® (LR)'° (LRY =

Definition 2.2.3 By theorem 2.2.2 we see that the set of all parallel, relative, and
leading tone exchange functions is known as PLR, and defined as

PLR = {(LR)"and R(LR)" | n =0, ..., 11}



29

It is curious that the single functions P and L don’t explicitly show up in table 2.3
where we are able to generate the entire set M without employing either of them.
Further investigation will reveal that both P and L are represented above because

P = R(LR)® and L = R(LR)"
These equalities are irrespective of whether you apply them to a major or minor triads.
Take for example a minor triad such as f and apply P to it as stated in definition 2.2.1.
P(f) = P(<0,8,5>) = <5,9,0> = F
Now if we use the R and L functions as described before, we get
R(f) = R(<0,8,5>) = <8,0,3>
LR(<0,8,5>) = L(<8,0,3>) = <7,3,0>
R(LR)(<0,8,5>) = R(<7,3,0>) = <3,7,10>
(LR)*(<0,8,5>) = L(<3,7,10>) = <2,10,7>
R(LR)? (<0,8,5>) = R(<2,10,7>) = <10,2,5>
(LR)*(<0,8,5>) = L(<10,2,5>) = <9,5,2>
R(LR)3(<0,8,5>) = R(<9,5,2>) = <5,9,0> = F
On the other hand if we take a major triad such as D, we get
P(D) = P(<2,6,9>) =<9,5,2>=d
Now if we use the R and L functions as described before, we get
R(D) = R(<2,6,9>) = <6,2,11>
LR(<2,6,9>) = L(<6,2,11>) = <7,11,2>
R(LR)(<2,6,9>) = R(<7,11,2>) = <11,7 4>
(LR)%(<2,6,9>) = L(<11,7,4>) = <0,4,7>

R(LR)*(<2,6,9>) = R(<0,4,7>) = <4,0,9>
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(LR)*(<2,6,9>) = L(<4,0,9>) = <5,9,0>

R(LR)*<2,6,9>) = R(<5,9,0>) = <9,5,2> =d
This shows P = R(LR)?, irrespective of major or minor triads and the same will be true of
L=R(LR)".

Another somewhat obvious concern might be that the functions of the form (RL)
may introduce additional distinct functions into the set. Interestingly since the P, L, and
R functions are involutive, when you consecutively apply the function L to a triad first
and then R, you will also produce the above mentioned sequence of triads in reverse

order. Table 2.5 shows the equivalences between the LR and RL functions.

Table 2.5 Equivalences between (LR) and (RL) functions

R(LR)’ =R = L(RL)"

R(LR)® = L(RL)®

LR = (RL)"

(LR)" = (RL)®

R(LR) = L(RL)™

R(LR)’ = L(RL)*

(LR)* = (RL)™

(LR)® = (RL)*

R(LR)? = L(RL)®

R(LR)® = L(RL)®

(LR)® = (RL)°

(LR)® = (RL)’

R(LR)® = L(RL)®

R(LR)® = L(RL)?

(LR)" = (RL)°

(LR)™ = (RL)*

R(LR)* = L(RL)’

IR(LR)'® = L(RL)

(LR)°® = (RL)’

(LR)" = RL

R(LR)® = L(RL)®

(LR)® = (RL)°

(LR)" = (RL)°

R(LR)" = L(RL)° =L
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We can now conclude that the list of all (LR)" and R(LR)™ functions in table 2.4 is
a far more comprehensive list than what it appears to be. It contains a set of
compositions that include the P, L and R functions as well as the compositions of (LR)
and (RL). Moreover, these 24 distinct functions map any element of M to 24 distinct
elements of M. From our results thus far however, we cannot definitively say that this
accounts for all possible P, L, and R compositions (for example PLRPRLLR). We can
however note that the two basic elements (LR)" and R(LR)™ already produce all the
triads in M, so any other amount of P, L or R functions (before or after them) has
nothing else but to map to another triad that has already been mapped to. We see then
(informally) that any possible composition of P, L, and R is just another way of writing an
element that already exists in table 2.4. We arrive at the solution to this problem more
formally through induction, but first we look at the results of all possible compositions of

the two basic functions (LR)" and R(LR)™.

Lemma 2.2.4 The PLR-set is closed under °.

Proof:

Since we have two main functions in the set ((LR)" and R(LR)™), we have four possible
compositions that must be verified to exist in the PLR-set.

Case 1: R(LR)" ° R(LR)" = R(\LRLR LRLFD °R(LRLR ... LRLR)
Y g

n times m times

= R(LRLR ... LR) (L) (RR) (LRLR ... LRLR)
[\ J -« J

"

n-1 times m times
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= R(LRLR ... LR) (L) (LRLR ... LRLR) since R® = i
— \ v g
n-1 times m times

= R(LRLR ... LR) (LL) (R) (LR ... LRLR)
S—— S~

n-1 times m-1 times
=R(LRLR ... LR) (R) (LR ... LRLR) since L? =i
| S—
n-1 times m-1 times

Continue in this way to get
= R(LRLRLR) (R)(LRLR) since L® =i

= RLRLRL (RR) LRLR

= RLARLR (LL) RLR since R =
= RLRL (RR) LR since L2 =
=RLR (LL) R since R® =i
= RL (RR) since L® =
= RL since R% =i

As in table 2.5, RL = (LR)"' € PLR

Therefore, R(LR)" ° R(LR)" € PLR

Note: When n=m in case 1, we get

= R(LRLR ... LR) (R) (LR ... LRLR)  since L?=i
\ J ;_W__..__._/

n-1 times n-1 times

Continue in this way to get
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= R(LR) (R)(LR) since L? =i
=RL (RR) LR

=R (LL) R since R? =i

=RR since L2 =

=i since L2 =i

Case 2: (LR)" ° (LR)™ = (LR)™™ = (LR)™*™ ™2 ¢ PLR

Case 3: R(LR)" ° (LR)™ = R(LR)™™ = R(LR)™™ ™42 ¢ PLR

Case 4: (LR)" ° R(LR)" = (\LRLR LRLR) °R(LRLR ... LRLR)

Y v
n times m times

= (LRLR ... LR) (L) (RR) (LRLR ... LRLR)
A\ J -« S

o
n-1times m times
= (LRLR ... LR) (L) (LRLR ... LRLR) since R® =i
\—“V‘_J ~ hd
n-1 times m times

= (LRLR ... LR) (LL) (R) (LR ... LRLR)
— —

n-1 times m-1 times
= (LRLR ... LR) (R) (LR ... LRLR) since L? =i
\_‘\f“"“"‘”
n-1 times m-1 times

Continue in this way to finally get

= (LRLR) (L) (LRLRLR) since L® =
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= LRLR (LL) RLRLR

= LRL (RR) LRLR since L® =i
= LR (LL) RLR since R® = i
=L (RR) LR since L2 =i
=(LL) R since R® =i
=R since L2 =i

Where R € PLR

We conclude then, for alln, m € Z, all compositions of (LR)" and R(LR)" are in PLR.

Before we present the induction proof, we look at one more lemma that will be utilized in

the induction process.

Lemma 2.2.5 Letx € {({LR)", R(LR)"}, and lety = a ° x, where a € {P, L, R} then
Case 1: Letx = (LR)" then y=a°xe PLR
Case 2: Letx = R(LR)" then y=a°xe PLR

Proof:

For each case there are 3 sub-cases, namely
i) If a=P = R(LR)%, i) If a=L =R(LR)", andiii) If a=R.

Case 1: Letx = (LR)"

)lfa="P:



= R(LR)® (LR)" since P = R(LR)®

By case 3 of Lemma 2.2.3, R(LR)® (LR)" € PLR

ilfa=L:
y=a°x
=L°(LR)"
= R(LR)"! (LR)" since L = R(LR)"

By case 3 of Lemma 2.2.3, R(LR)"" (LR)" € PLR

i) Ifa=R:
y=a°Xx
=R°(LR)"
= R(LR)"

As in table 2.4, R(LR)" € PLR

Case 2: Letx = R(LR)"

Nlfa=P:
y=a°x
=P ° R(LR)"
=R(LR)® R(LR)" since P = R(LR)?

By case 1 of Lemma 2.2.3, R(LR)® R(LR)" € PLR
i)lfa=L:

y=a°X
=L °R(LR)"

=R(LR)"" R(LR)" since L = R(LR)"

35
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By case 1 of Lemma 2.2.3, R(LR)" R(LR)" € PLR

ii)lfa=R:
y=a°Xx
=R °R(LR)"
= (RR) (LR)"
= (LR)" since R? =i

As in table 2.4, (LR)" € PLR

In conclusion, all compositions of P, L, and R functions are represented in the set PLR.

Now we will show by induction that all possible compositions of P, L, and R are

equivalent to some composition of (LR)" and R(LR)™.

Theorem 2.2.6 All possible compositions of P, L, and R are in the PLR-set.
Proof:
Let x be any composition of P, L, and R functions. We say that x has length at most n if
there exists a decomposition for x as a composition of at most n total P, L, and R
functions. We will prove by induction that any composition of P, L, and R functions is in
the PLR-set.
Base case: Verify that any x of length n =1, is in the PLR-set.

Case 1: x =P =R(LR), then x € PLR

Case 2: If x =L =R(LR)", then x € PLR

Case 3: If x=R, then x e PLR
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We assume that we have proved that if x has length at most k, for k 2 1 then x e PLR.
Inductive Step: Verify that if x has length k+1, then x € PLR.

Let y be of length k+1, so by definition y is a composition of k+1 total P, L, and R
functions. Let a be the first function in the composition, therefore a € {P, L, R}, and then
y =a°x. Now x has length < k, and by the base case, we know that x e PLR.
Therefore, there exists an n such that x = (LR)" or x = R(LR)"

Now apply lemma 2.2.5 and we see thata®x=y € PLR.

Note that since P' =P, L' =L, and R" = R, then theorem 2.2.6 shows that the
subgroup generated by P, L, and R (which is the group of all the possible compositions
including inverses), is the PLR-set. This concludes our investigation of the elements in
the PLR-set. We know that there are no less and no more than 24 elements in the set,
which are illustrated in table 2.4. As with the T/l functions, we verify that the PLR

functions are well defined.

Theorem 2.2.7 The operations P, L, and R are well defined and therefore, if [x] is a
pitch class triad in M then for all x4, x2 € [x] we have

i) P(xq) = P(x2), i.e. P(<ai,b1,c1>) = P(<azbsco>)

i) L(xy) = L(x), i.e. L{<ay,by,c1>) = L(<azboco>)

ii) R(X1) = R(Xg), i.e. R(<a1,b1,c1>) = R(<a2,b2,c2>)
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Proof:
Let X1, X2 € [x] € M, where x; = <aq,by,c1> and xp = <ap,b,,co>. So, x4, and xz are
elements in the triad class [x] = <[a],[b],[c]>. We see then that a; a € [a] € Z 12, and
by.bs e [ble Z1z and cy o e [cle Z1z
i) P(<ajbici>) =<Cq,B1+1,A>
and,
P(<az boco>) = <Cp,Bot+1,Ax>
since,
Ai e [A] then (A;+n) e [A+n] and Az e [A] then (Ax+n) e [A+n]
Similarly
(B1+n), (Bo+n) € [B+n] and (C+n), (Co+n) € [C+n]
which gives us
P(x4) = P(<aq b1.c1>) = <C4,B1+1,A1> = <Cp,Bo+1,Ax> = P(<az bz co>) = P(X2)
Hence, P is well defined.
i) L(<aibyci>) =<A1+1,C1,B1>
and,
L(<a2b2Co>) = <Ax+1,C2,Bo>
since,
Ai e [A] then (A+n) e [A+n] and Az e [A] then (Ax+n) e [A+n]
Similarly
(B1+n), (Bo+n) € [B+n] and (Ci+n), (Co+n) € [C+n]
which gives us

L(X1) = L(<a1,b1,c1>) = <A1+1 ,C1,B1> = <A2+1 ,Cg,Bg> = L(<ag,b2,Cg>) = L(Xg)



ii)

Hence, L is well defined.
R(<asbqcy>) = <By,A1,C1-2>
and,
R(<agbsco>) = <By,Ap,Co-2>
since,
Ai e [A] then (A+n) e [A+n] and Az e [A] then (Az+n) e [A+n]
Similarly
(B1+n), (B2+n) € [B+n] and (Cy+n), (Co+n) € [C+n]
which gives us
R(x4) = R(<ai b1 c1>) = <B1,A1,C1-2> = <B2,A2,C2-2> = R(<az b2 ¢2>) = R(X2)

Hence, Ris well defined.

39
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3. T/l AND PLR GROUPS

After having established the T/I and PLR sets of functions to be well defined, it is
safe to move onto the exploration of these sets as groups under composition. We have
already noticed that the two sets look very different. The elements of the T/l-set are
more intuitively derived through their indices whereas the elements of the PLR-set are
not quite so intuitive. The group properties of each will follow in a similar fashion. We

first recall the definition of a group.

Definition 3.0.1 A nonempty set G with a binary operation * on G is called a group if
the following axioms hold:
i. Foralla,be G, a*b =c such thatc e G (G is closed under the operation)
ii. ax(bc)=(ab)xcforalla,b,ce G
iii. There existsi € G suchthatirta=aforallae G

iv. Forevery ae G there exists @’ € G such thata’+sa =1

3.1. The T/I-Group
Using the results of the compositions of all T and | functions, the properties of the

T/I-group can be represented in a much more concise manner.

Theorem 3.1.1 T/l forms a group under composition.
Proof:
i. Forallf,ge T/l,f°g=he T/l, by equations (1), (2), (3), and (4).

Hence, T/l is closed under composition.
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ii. To°Tn=Towm=Thn

To°To=Theo=Thn

To° ln =lown = In

heTo=lo=1In

Therefore, To =i € T/l (i.e. Ty is the identity element)
ji. Tn°Tizn=Tan12n=T2=To

Ti2n ° Ta=Tiznin=Tr2=To

Therefore, T, = Tizq

helh=Tan=To

Therefore, I, =1,
iv. By the properties of the composition of functions, the operation ° is associative.

Hence, T/l is a group under composition

3.2, The PLR-Group

With the fine details taken care of in section 2.2, we will use the main outcomes

in order to simplify our proof here.

Theorem 3.2.1 PLR forms a group under composition and (R(LR)")" = R(LR)" and
((LR)")™ = (LR)* where -n = k mod 12.

Proof:

By the note after theorem 2.2.6, PLR is the subgroup generated by all P, L, and R

functions and therefore fulfills ali the properties of being a group. While we know that
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The second representation involves moving from g-minor to B-major via some

transformation, of which five such possibilities are proposed here.

Transformation 1:  T4(g) = T4(<2,10,7>) =<6,2,11>=Db

then

P(g) = P(<6,2,11>) =<11,3,6>=B
Transformation 2:  14(g) = T1(lo(<2,10,7>)) = T1(<10,2,5) = <11,3,6> =B
Transformation 3: P(g) = P(<2,10,7>) =<7,11,2>=G

then

LP(g) = LP(<2,10,7>) =<6,2,11> =D

followed by

PLP(g) = PLP(<2,10,7>) =<11,3,6>=B
Transformation 4. L(g) = L(<2,10,7>) = <3,7,10> = D#

then

PL(g) = PL(<2,10,7>) = <10,6,3> = d#

followed by

LPL(g) = LPL(<2,10,7>) =<11,3,6>=B
Transformation 5: R(g) = R(<2,10,7>) =<10,2,5> =E

then

LR(g) = LR(<2,10,7>) =<9,5,2> =d

followed by

PLR(g) = PLR(<2,10,7>) = <2,6,9> =D

then
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RPLR(g) = RPLR(<2,10,7>) =<6,2,11> =D
followed by

PRPLR(g) = PRPLR(<2,10,7>) = <11,3,6> = B

These examples are just some of the few ways in which this transformation can be
represented. The object is to show that there exists at least one operation in T/l and
PLR that represents the subtraction between any two triads in the torsor, M. We verify
both properties of the torsor in the following theorem, which completes our declaration

of M being a torsor.

Theorem 6.1.6 M is a T/I-torsor and a PLR-torsor.
Proof:
Let A1 = (r1,01), and Az = (rp,02), for all Ay, A, e M. Thenfor allf e T/l or PLR,

i) f(A) =A2 as shown in table 2.2 and table 2.3.
and

i) Azx— Ay =(ro—rq, 0201)
Since ro — 11, € Z 12 and 0204 € {+,-}, then

Ap— Ay =(r2—rq, 0201) = (r3,03) = Az M

This shows us that the subtraction between any two triads result only in triads that are in
our set M. When we view Az as an interval we are returning to the notion of
transformations. Therefore, the subtraction between two triads is a transformation
which we can view as a mapping of one triad to another via some operation. Since all

of the transformations studied here (T, I, P, L, and R), undeniably map any triad to
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another triad and no other element outside of M, we see then the definition fulfilled. The
difference between two elements in M represents a transformation in T/l or in PLR.

Thus M is a T/I-torsor, and M is a PLR-torsor.

6.2. The Tonnetz and the Torus

We have already seen the torus surface in chapter 3, but here is where we elaborate
on its presence in music. We informally define the torus as a topological object that
looks like an inner tube filled with air [16]. More formally, we consider circle C, (from
figure 6.1) and rotate it about the z-axis. The full rotation of circle C forms a second
circle, C,. Point (p1, po) is the result of rotating C4 about the z-axis until it lies in a
vertical plane containing p.. We see then that all the points of the torus are obtained by

the Cartesian product of these two circles.

)

Figure 6.1 The torus generated by C1xC,

While each circle in itself is generated by the Cartesian product of two sets of real

numbers, we see that the torus is a product of 4 sets of real numbers. Alternatively, we
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can say that it is imbedded in Euclidean 4-space, where a Euclidean n-space is defined
as n-tuples of n real numbers [21]. The work to follow does not rely on the formal

definition of the torus, but it is provided nonetheless.

Definition 6.2.1 The torus is a product space or 4-d Euclidean embedding such that

<X,Y,Z,W> = <0COS X, asin X, fcos y, Bsin y> where o and B are constants.

A more practical way of working on the torus is by modeling it on a flat (or two
dimensional) surface, where the points on the surface of the torus are repeated
continually in all four directions of the plane to form the flat torus. The torus and flat
torus are topologically the same, since the surface is unaffected by deformation. We
can say that the four edges of the flat torus are glued together to form the surface of a
doughnut or inner tube. Geometrically, on the other hand, they are different because
they have different curvatures (one is flat and one is circular and cylindrical in nature).
The flat torus is not to be confused with the actual Cartesian plane, which is infinite.
The torus is a finite area with no edges [29], and while this area could be repeated
infinitely on a flat surface, every identical point on the plane is actually the same point
on the torus. In other words, an infinite path that repeatedly passes over a certain point
is not a path that stretches out to infinity. Rather it is a path that wraps around the torus
infinitely.

The torus appears in various forms in musical analysis, one of which is the Tonnetz
which we have seen before. The Tonnetzis used as a tool for its ability to trace

harmonic motion or chord progressions in music. Of all the descriptions of its
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construction, the most eloquent comes from Balzano [5], who sets out to represent n-
fold music systems that are analogous to the common 12-tone system.

Balzano proceeds to examine Cartesian products of subgroups of Z 1,.and the
potential isomorphisms with Z .. We have the following theorems at our disposal to

help determine the subgroups of 7 1 and its isomorphisms [7].

Theorem 6.2.2 (Lagrange) Let G be a finite group. Then the order of any subgroup of

G divides the order of G.

Theorem 6.2.3 If G is a cyclic group of order mn, where (m,n) =1, then G = H x K,

where H is a subgroup of order m, and K is a subgroup of order n.

The following are then subgroups of orders 2, 3, 4, 6 respectively, and while the trivial

group and Z 1, itself are technically also subgroups, they are of no concern at this

moment.

L1267 ={0,6} = Z o ={0, 1}
71247 ={0, 4,8} = Z3=1{0, 1, 2}
71237 =10, 3,6,9)= Z4+=1{0, 1, 2, 3}
71227 ={0,2,4,6,8,10}= Z¢={0, 1, 2, 3, 4, 5}
We see then that Z 3x Z 4, which is the set
{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3)}

is the only possible isomorphism with Z 12, and the following mapping is proposed.
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Theorem 6.2.4 There exists a bijective homorphism p: Z 3x7Z 4 — 7. 12, such that
p(a,b) = (4a + 3b)
Proof:
Let the operation * be defined as
(a,b)#(c,d) = (a+c,b+d), for all (a,b), (c,d) € Z3xZ 4
We verify the homomorphism as p((a,b)*(c,d)) = p(a,b) * p(c,d)
The left side yields
p(a,b)x(c,d)) = p(a+c,b+d) = 4(a+c) + 3(b+d) = 4a+4c+3b+3d
The right side yields
p(a,b)xp(c,d) = (4a + 3b) + (4¢ + 3d) = 4a+4c+3b+3d

Hence p is a homomorphism, from 7 3xZ 4 to 7. 12, where the mapping goes as follows

Tabie 6.1 Isomorphism p: ZxZis > Zi12

Z3XZ4 -> Z12

(0,0) >0 (0,1) >3 (0,2) » 6 0,3) » 9 (1,00-4 1,1)->7

(12) =10 | (1,3) 51 | 208 | 21)>11| (22)>2 | (23)—>5

We see from the table that it is a bijective mapping, therefore Z 3xZ. 4 = 7 12.

For the geometric interpretation, we introduce the following definitions [6].
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Definition 6.2.5 The distance between any two pitches is called the interval between
them and is measured in half-steps or semitones. A semitone is equivalent to 1, and
the following are common intervals

i) 3 semitones between two pitches is called a minor third (denoted m3)

ii) 4 semitones between two pitches is called a major third (denoted M3)

iif) 7 semitones between two pitches is called a perfect fifth (denoted P5)

We are able to plot the intervals on the Cartesian plane from the mapping shown in
table 6.1. We see then that one axis is generated by intervals of 3 and the other axis is

generated by intervals of 4 as shown in figure 6.2.

03 — (1.3) — (2.3) 9 1 5
02) — (1,2 — (22) — 6 10 2
on ——— 1,1 — 21 — 3 7 11

(0,0) 0
(1,0) (2,0) 4 8

Figure 6.2 The geometric representation of ZxZ 4= Z 12

So, we see that each interval can be described in terms of the number of major

and minor thirds in the interval. For example, take the point 7 in figure 6.2, on the grid
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to the right. The interval 7 is a perfect fifth (P5), where the point 7 on the right
corresponds to the point (1,1) on the left, which translates into

7 =4(1) + 3(1) = (1 major third) and (1 minor third) = (1,1)
Another example, would be the point (2,3) on the left grid of figure 6.2. This point
indicates that we are moving an interval equivalent to 2 major thirds and 3 minor thirds
away from the origin, which gives us

(2,3) = (2 major thirds) and (3 minor thirds) = 4(2) + 3(3) = 17
Therefore, the size of our interval from the origin is 17 = 5 mod 12, as shown on the right
grid.

Since both groups (Z sxZ 4 and 7 1) are cyclic, the numbers repeat as we
extend up and across, giving a grid as in figure 6.3. As described previously, this grid is
nothing more than the flat or 2-dimensional representation of the torus that these points
lie on. Notice that this diagram looks very similar to figure 2.3 (the Tonnetz). In fact, it
only differs in historical and minor geometric aspects. Figure 2.3 was constructed for
the purpose of analyzing music and ends up forming equilateral triangles between notes
to form a lattice-like diagram. Figure 6.3 on the other hand was constructed as a result
of the isomorphism between Z3x7Z 4 and Z 12. As a consequence, it ends up forming
right-angled triangles between vertices. While different, they both embody the same
musical tools which will be easier to explain after a few more definitions ([6], [26], and
[30]). Recall that the three notes in a triad are called the root, the third and the fifth,

where the fifth is 7 semitones (or a P5) away from the root.



81

Definition 6.2.6 The circle of fifths is a sequence of intervals, where all notes are 7

semitones or a P5 apart.

Definition 6.2.7 An augmented triad is a triad consisting of two major thirds. In other

words, when the fifth of a major triad is raised by a semitone, it is augmented.

Definition 6.2.8 A diminished triad is a triad consisting of two minor thirds. In other

words, when the fifth of a minor triad is lowered by a semitone, it is diminished.

Definition 6.2.9 A diatonic scale is a sequence of whole and half steps as follows

{whole, whole, half, whole, whole, whole, half}

The most common example of this is the diatonic major scale, for instance the C-major
scale {0,2,4,5,7,9,11}, which essentially is made of all the white keys on the piano within

one octave.

Definition 6.2.10 A topological space X is said to be compact if every open covering U

of X contains a finite subcoliection that also covers X.

Definition 6.2.11 Let X be a topological space. A separation of X is a pair U, V of
disjoint nonempty open subsets of X whose union is X. The space X is said to be

connected if there does not exist a separation of X.
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Definition 6.2.12 A set S is convex in R " if for any two points a, b, the straight line

segment joining a and b is contained in A.

A note about the way in which we are describing the grid in figure 6.3 deserves
some attention. Notice that the grid was generated by 7 3xZ 4 as a group isomorphic to
7. 12, however we can view it topologically (as mentioned in the start of this section).
The grid in figure 6.3 is a subset of the flat torus, which we recall, is a subset of the
plane (R ?). The flat torus is just a 2-dimensional representation of the torus, which is
defined as an embedding in R*. This clarification enables us to apply the above
definitions to our discussion without confusion. Now that we have these terms
established, we can reveal the remaining musical representations found on the flat torus
- each of which are represented in figure 6.3.

The most basic of observations is the intervals between all the vertices and the
musical structures they form. We see that all the maximally compact, connected
structures are indeed four basic chords (major, minor, augmented, and diminished 7"
chords). The major and minor triads are formed by constructing triangles between the
points. The major triad triangles are formed by edges that connect any vertex to the
vertex to its right, then to the vertex above that and then back to the original point. The
minor triad triangles are just the opposite, where the edge extends from any vertex to
the first vertex to its left and then one vertex below that. Recall the ordering that we
suggest for the ease of the P, L, and R operations (in table 2.2). Notice that this is the
ordering of the triads formed from the above instructions. These triads are illustrated in

the top right-hand corner of figure 6.3.
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The augmented triads and diminished 7™ chords are slightly less involved and
are a direct consequence of how the grid is constructed. We know, from our definition
that an augmented triad is made of two major thirds and a diminished triad is made of
two minor thirds (a diminished 7" chord is then just 3 minor thirds). The columns are
constructed using intervals of 3 and therefore the diminished 7 chords are formed
simply by grouping any four adjacent notes on any column. The rows are constructed
using intervals of 4, and so the augmented triads are then groups of any three adjacent
notes on any row. These are displayed at the top of figure 6.3.

By further investigating adjacent tones, we see that the sequence of semitones
runs diagonally from top left to bottom right, which is labeled on the middle right side of
the grid. In contrast to that, we see the sequence of fifths emerge on the diagonals
running from bottom left to top right (shown on the middle left side of the grid). ltis to
be noted as well, that by adjoining adjacent triads along the fifths intervals a portion of
the diatonic major scale is formed (as shown in the middle of figure 6.3). The entire
diatonic major scale is made of the following triads (where upper case is major and
lower case is minor).

{CEG, dfa, egb, FAC, GBD, ace, bdf}
Mathematically these triads in M are

{<0,4,7>, <9,5,2>, <11,7,4>, <5,9,0>, <7,11,2>, <4,0,9>, <5,2,11>}
As illustrated in figure 6.3, we see six out of the seven triads in the diatonic major scale,
which form a convex, compact space. It spans a maximum amount of space along both

axes before any one pitch repeats, but does not contain the last triad in the scale. We
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notice that <5,2,11> is a diminished triad, which is not an element of our set M and
therefore will not appear in this space.

The last musical depiction on the flat torus becomes apparent after connecting
the vertices to form the major and minor triads. We have the P, L, and R
transformations, as previously represented on the Oettingen/Reimann Tonnetz, on the
right side of the lower half of figure 6.3. We also have the T and | functions on the lower
half of the figure. Notice that the triads under transposition are right-angled triangles
facing the same direction (major triads with the hypotenuse facing up toward the left,
and minor with the hypotenuse facing down and to the right). The triads under inversion

have been marked with symbols inside them to match the triad and its inverted form.
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Diminished 7" chords
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Figure 6.3 Musical structure on the flat torus
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CONCLUSION

The evolution of the connection between math and music has proved to be a
symbiotic relationship. Most evidently, it presents itself as an aid to musicologists,
composers, performers and listeners in their pursuit to attain a comprehensive
understanding of music. Although, we see in some instances that mathematical tools
designed for music are beneficial to other disciplines such as geography, computer
science, and physics [25] and [10]. So, the research done in mathematical music theory
has both resulted in new mathematical structures, and as in this study, revealed the
presence of already existing structures such as transformational operations, groups,
isomorphisms, geometric and topological objects, and torsors.

All of these structures materialize after establishing the fundamental notion of
relationships or intervals between pitches. This idea of movement between musical
objects eventually translates into mathematical transformations between numbers,
which extends into sets of functions and then extends further into groups of functions
under composition. We end up with the T/I-group consisting of transpositions and
inversions, and the PLR-group consisting of parallel, leading tone exchange and relative
functions. Both groups have group theoretic representations which are best expressed
through their similarity to the dihedral group of order 24. They both form isomorphisms
with D42 and are thereby isomorphic to each other. An additional isomorphism exists
between the T/I-group and PLR-group, which arises out of construction - since both
groups map one triad to another there is manifestly a matching of elements between T/l

and PLR.
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Aside from these relationships, we define actions of the T/I and PLR groups on M
(the set of 24 major and minor triads), which facilitate the investigation of the T/l and
PLR orbits and stabilizers. With the use of the orbit-stabilizer theorem, we discover that
the actions on M are simply transitive. Furthermore, the commutativity of these two
groups reveals that each group is the centralizer of the other within the larger group
Sym(M). The property of being one another’s centralizers, in conjunction with their
actions on M being simply transitive, leads to the notion of duality. Duality in this thesis
is specifically defined, and as mentioned previously, is not to be confused with other
instances of duality. This notion is best represented with the help of category theory,
where we can show duality via commutative diagrams.

Finally we have some alternative representations of music theory, one of which
was the set of 24 triads as a torsor (instead of just a set of unordered 3-tuples). We are
able to give structure to the set of triads in order to exhibit the way in which it fulfills the
conditions of being a T/I-torsor and PLR-torsor. The second observation results in a
topological representation of the 12-tone system and the operations performed on it.
This topological space is generated by way of the isomorphism between Z 3xZ 4 and
Z 12, which results in an infinite grid of the twelve pitches. This repeated grid lies on the
torus but is presented on the Cartesian plane, because we are able to employ the
interchangeable topology of the torus and flat torus. This allows us to graphically
demonstrate the various musical structures that are used in both neo-Riemannian and
tonal music theory. The flat torus then provides a topological equivalent to the tone

network or Tonnetz, and is therefore used to model music analysis.
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In closing, we see various mathematical structures emerge from the very fabric of
music theory. It has been made evident by means of multiple lemmas and theorems
that the claims presented in the literature on transformational theory are mathematically
sound. These mathematical models not only enhance music theory by serving as tools
in the task of analysis, but also augment mathematics by serving as concrete examples
that have the potential to broaden the understanding of abstract concepts and lead to

the formulation of new mathematical structures.
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