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SUMMARY

The dissertation includes three essays contributing to our understanding of human cap-

ital development and student talent allocation. The first essay provides insights into the

impact of algorithmic student advising programs, while the second essay highlights the

role of higher education agencies in promoting international student mobility. The third es-

say evaluates the cognitive development trade-offs entailed by technical coursework. The

first essay discusses the Graduation and Progression (GPS) program, which is an algo-

rithmic student advising platform implemented by Georgia State University. The study

analyzes the impact of this program on student course-taking by comparing GPS-advised

students with those who did not receive advising. The study failed to credit the program to

have increased graduation rates by improving academic fit but found that marginal students

tended to leave college earlier. Also, the study provides evidence of assortative matching

between students and course selection, albeit only for STEM Computational majors. The

second essay examines the relationship between the 1996-2016 expansion of the German

agency DAAD’s outbound offices and international student enrollment in Germany. The

findings suggest that an increase in the number of DAAD offices has a positive impact on

international student enrollment in Germany, and that the first office foundation has the

largest effect. The study concludes by discussing the policy implications of these findings

for countries competing in the global race for talent. The third essay evaluates cognitive de-

velopment trade-offs between numeracy and literacy skills. The study uses PISA data and

analyzes the educational and financial gains from technical education versus the potential

underdevelopment of verbal skills. The study finds that the technical track outperforms the

Liberal Arts track due to greater educational production efficiency, which overcompensates

for worse educational production inputs. The findings suggest that the STEM advantage is

linked to the four additional instructional units in math and physics, and that there are no

secondary effects due to differences in preexisting levels of student skills.

x



CHAPTER 1

GEORGIA STATE UNIVERSITY’S GRADUATION AND PROGRESSION

SUCCESS ADVISING: ACADEMIC FIT EFFECTS FROM LEARNING

ANALYTICS

1.1 Introduction

The growing academic interest in learning analytics (Goldstein and Katz 2005; Siemens

2013; Papamitsiou and Economides 2014; Macfadyen and Dawson 2010; Hlosta, Zdrahal,

and Zendulka 2017) matches the expanding investment in Learning Management Systems

which has driven a three-fold increase in the financing of educational technology startups

during the COVID-19 pandemic (Singer 2021).

Learning Analytics (LA) collected in academic databases can track, predict, and influence

student performance in classes, similar to how consumer analytics are used in the enter-

tainment industry to tailor product offerings and improve customer satisfaction (Goldstein

and Katz 2005; Siemens 2013; Papamitsiou and Economides 2014; Macfadyen and Daw-

son 2010; Hlosta, Zdrahal, and Zendulka 2017). These LA systems often involve a large

amount of data, can process information quickly, include a variety of data types, and are

reliable. Companies like Amazon, Netflix, and YouTube have successfully used recom-

mendation algorithms to reach a diverse range of customer preferences. This approach,

known as the “long tail” ‘(Anderson 2006), allows for the inclusion of niche interests that

may not be addressed by mainstream content creation.

The use of algorithmic advising in higher education has significant implications for educa-

tional policy (Arcidiacono, Aucejo, and Spenner 2012). In the past, access to different col-

lege paths was determined by a variety of factors, including student preferences, abilities,

financial resources, and randomness. However, AI-powered recommendation platforms are
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designed to minimize randomness in student behavior and increase predictability of course-

work choices based on legacy student data such as demographics, test scores, and previous

academic performance. This potentially leads to a “predictability revolution” similar to

what has occurred in the consumer media industry (Cinelli et al. 2021), where algorithmic

tracking of user accounts increases ability to predict consumer behavior.

Using legacy student data to influence coursework choices may compromise our traditional

definition of “educational opportunity” (Reardon 2018), which allows for a degree of ran-

domness. The Duke survey (Arcidiacono, Aucejo, and Spenner 2012), a longitudinal study

of undergraduate student major intentions at Duke University, highlights the potential un-

intended consequence of advising students such that their chances of obtaining a degree

are maximized, where students may prioritize easier, less marketable degrees over more

challenging but potentially more marketable ones. On the other hand, more reliable and

standardized advising may improve student outcomes. For example, early advising can

decrease the negative impacts of enrolling students who are likely to drop out of college,

minimizing the financial burden of tuition payments and lost income. Additionally, AI-

powered recommendations may improve the match between students and courses, leading

to more specialized skillsets.

The article reports the results of the Graduation and Progression System (GPS) advising

program, implemented by Georgia State University (GSU), which is the first and largest

application of individualized LA to intrusive student advising (GSU 2019). Intrusive ad-

vising is a proactive approach to advising that involves regularly checking in with students

and providing guidance on their academic and career goals, and differs from a more reac-

tive approach, in which students only receive assistance when they seek it out. Bill Gates

has even commented on the GPS program’s reach, stating that “no other institution has

accomplished what GSU has over the past decade” in terms of expanding the scope of LA.

Using ten years of student data from all of GSU’s campuses, departments, and programs,

the program has identified nearly 1,000 “academic signals” indicating when students may
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not be well-suited to their current academic curriculum. These signals, which can be spe-

cific to certain programs or classes or more comprehensive, are used to alert advisors to

students who may be struggling and suggest course adjustments. Poorly fitting students are

then met with their assigned advisors – a ratio of 1-in-700 has been reported by GSU (GSU

2019) – who use the wealth of students’ records to customize advice to their specific needs.

The GPS advising program thus combines the personalization of feedback with mass pro-

duction of advising services, a combination previously thought to be unattainable.

Results are based on unique GSU administrative data from 2006 to 2014 and divided by

four discipline categories: STEM Computational, STEM Life Sciences, Social Sciences,

and Humanities (Le, Robbins, and Westrick 2014). Quasi-experimental techniques are

used to control for bias from observable student characteristics, and validity checks are

performed to minimize the influence of concurrent university policies such as microgrants

going to students in need, history effects such as grade inflation, and changes in tuition

regimes brought about by the reform of the HOPE scholarship system.

A theory of action based on the option value of college (Stange 2012) was used to generate

research hypotheses relating the availability of information about academic fit to gradua-

tion rates, persistence, and course-taking. Specifically, academic fit was operationalized

as the distance between a student’s relative academic aptitude and their major. A Rela-

tive Academic Strength index was created using academic tilt literature (Coyle and Pillow

2008; Coyle 2018) and ranks students and majors along a STEM fit continuum based on

the distance between their verbal and numerical scores on standardized tests.

The findings of the study are mixed and should be considered within the limitations of the

research design. A difference-in-differences experiment comparing students who switched

majors and those who stayed in their intended majors failed to demonstrate a relationship

between improving student-major fit and increased graduation rates, although the dosage

effects of the policy are consistent with this interpretation. There was also evidence that the

length of time spent in college decreased among students who eventually dropped out, but
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only among those with partial or no financial aid. Findings related to course-taking showed

an increase in coursework in relevant major areas and a decrease in the absolute distance

between students’ relative academic aptitude and their majors. Specifically, STEM Com-

putational students took, on average, over 15 more credits in their major area compared to

pre-GPS program implementation cohorts.

1.2 Literature Review

1.2.1 Learning analytics and advising

Intrusive advising (Angrist, Lang, and Oreopoulos 2009; Bettinger and Baker 2014; Ore-

opoulos, Brown, and Lavecchia 2017; Oreopoulos and Petronijevic 2018; Dobronyi, Ore-

opoulos, and Petronijevic 2019; Page et al. 2019) consists of text messages, e-mails, phone

calls, and other forms of outreach (e.g., chatbots, prerecorded videos and audios, online and

offline mentoring, etc.) stimulating student proactive behavior. Advancements in the tech-

nology have allowed universities to scale intrusive advising interventions, and their cou-

pling with high-frequency LA (Goldstein and Katz 2005; Siemens 2013; Papamitsiou and

Economides 2014; Macfadyen and Dawson 2010; Hlosta, Zdrahal, and Zendulka 2017),

including course-specific information from Learning Management Systems (Jovanovic et

al. 2019), promises to further customize interventions to the needs and backgrounds of in-

dividual students.

The focus on retention in individual classes typifies the first generation of interventions

headlined by the Open Academic Analytics Initiative (OAAI). This generation includes

other interventions conducted at Purdue (Arnold and Pistilli 2012), San Diego State Uni-

versity (Dodge, Whitmer, and Frazee 2015), and the Open University of Hong Kong (Choi

et al. 2018). The Bill & Melinda Gates Foundation has taken the lead on student ana-

lytics sponsoring the OAAI (Jayaprakash et al. 2014) and the later expansion of Georgia

State University’s GPS advising system, with the US Department of Education follow-

ing suit with generous funding to the Monitoring Advising Analytics to Promote Success
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(MAAPS) initiative involving 11 institutions inclusive of GSU (Rossman et al. 2021).

In contrast to the initiative evaluated in the current study, the OAAI used logistic regres-

sion to identify and alert students at risk of failing certain classes. The two OAAI treatment

groups, one receiving text messages if classified as at-risk and the other receiving both texts

and mentoring services, exhibited marginally higher grades but also higher attrition com-

pared to the control group in the classes covered by the initiative. The Purdue experiment

(2007-2009) implemented course signals through a traffic light system blinking red, yel-

low, or green to indicate a student’s status in the class and decreased class attrition (Arnold

and Pistilli 2012), similar to the San Diego (Dodge, Whitmer, and Frazee 2015) and Hong

Kong (Choi et al. 2018) experiments.

A previous evaluation of the MAAPS initiative (Rossman et al. 2021) differs from the

current study. The evaluation implements a randomized controlled trial design, in which

the treatment group received degree-planning and proactive outreach activities based on

self-regulated learning, in addition to the advising services offered to the placebo group.

Therefore, the control group in the MAAPS study effectively corresponds to the treatment

group in the current study. Additionally, the MAAPS study is a longitudinal analysis of the

undergraduate careers of the 2016-17 freshman class at several universities, including ap-

proximately 2,000 students from GSU, and focuses mainly on cumulative GPA and credit

hours without a specific emphasis on course selection and student-major fit.

The MAAPS study found that Black students had the largest gains, with a 0.22 point in-

crease in GPA, 12 additional credits, 8 percentage point increase in graduation rates, and a

10 percentage point decrease in dropout rates when advised through the MAAPS program.

In the discussion, Rossman et al. (2021) raise concerns about a shift towards easier classes

and changes in incentives to choose certain classes, but do not further explore or develop a

theoretical framework for algorithmic advising at the system level.
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1.2.2 The information value of academic signals

A substantial effort to understand the determinants of college enrollment and persistence

has been pledged across education research. Educational psychology has linked academic

performance to self-efficacy (Schunk 1991) developing the concept of self-regulated learn-

ing (Zimmerman 2000) while the economist perspective has taken from the incentive-based

analysis of obtaining a degree (Mincer 1958; Schultz 1961; Becker 1962; Heckman 1976).

The perspective of educational psychology recognizes the iterative nature of course-taking

and the impact of early classes on later learning, leading to the need to update the human

capital model to account for the informational value of early classes (Stange 2012). This

informational value is a key aspect of studies on intrusive advising (Angrist, Lang, and

Oreopoulos 2009; Bettinger and Baker 2014; Oreopoulos, Brown, and Lavecchia 2017;

Oreopoulos and Petronijevic 2018; Dobronyi, Oreopoulos, and Petronijevic 2019; Page et

al. 2019) and is integral to the development of a model for algorithmic student advising.

The iterative enrollment model developed by Stange (2012) decomposes the value Vijt of

a degree j to student i at time t into two components: the net present value of the de-

gree NPVijt(·) and the option or information value Ii,t+1(·) of reassessing one’s chances

to attain a degree at checkpoint t + 1. The net present value of the degree captures the

lifetime returns of the degree (Wj) minus its costs (Cj); conversely, the information value

captures the value of the reduction in uncertainty (ηijt) concerning degree-specific relative

academic strength (RASij) discounted at the student’s self-confidence level (δit). Because

of the indexing of RASij to both i and j, the index must be understood as relative aptitude

rather than general student aptitude or g (Coyle and Pillow 2008; Coyle 2018). Relative

academic strength is partially known when entering college (0 < ηi,j,t=0 << 1) through

high school grades, test score results, and teacher and peer assessments and fully revealed

when graduating from college at time T (ηi,j,t=T ≈ 0). Note the indexing of δit to time t to

account for the plasticity of self-confidence (i.e., 0 < δit < 1). The option value of college

gets larger when residual uncertainty is greater (i.e., ∂It+1/∂ηijt > 0), and when student
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self-confidence is lower (i.e., ∂It+1/∂δit < 0).

The total value of degree j to student i at time t resolves to:

Vijt =NPVijt(Wj, Cj) + I((1− δit)
tηijtRASij)

Student i would persist in college when the value of their degree Vijt is greater than the

non-college option Vi = NPV (Wk), where k is the most lucrative occupation which does

not require a degree. The iterative college investment model improves upon the standard

model by taking into account the option value of college, which can make the decision to

enroll in college seem more rational for students who may have a low ex ante probability

of graduation and high costs of attendance. Additionally, this model can help explain why

some college students may choose to drop out at later stages without having updated their

degrees and absent any material changes in the cost-benefit ratio of their educational in-

vestments, as they may be “cashing in” on the new information value they have gained at

the end of an academic year.

1.3 Methodology

This section hosts discussions of the methods used in the study, including the development

of the index of relative academic strength to measure student-major fit and the GPA defla-

tion procedure to account for potential bias due to increases in average GPA over time.

The goal of the methodology is to control for observable differences between students who

received advising services and those who did not. However, due to the non-experimental

nature of the treatment and the comprehensive rollout of the program across undergradu-

ate education at GSU, assignment to treatment is non-random and there is neither a clean

control group available nor a presumably exogenous set of placebo students. In the study,

different student subgroups were used to test different aspects of the model and each sub-

group had to be matched independently to ensure that observational bias was minimized.

Details of this matching procedure are provided in the following subsection.
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The matching process used in this study identified two groups of students that were compa-

rable on key characteristics reported in Table 1.1. This table presents the matching features

and basic descriptives for the treated group of first-year students from A.Y.s 2012-2013 to

2014-2015 and the control group of first-year students from academic years 2006-2007 to

2008-2009. The t-tests and χ2-tests for numerical and categorical variables respectively

showed significant differences in all features except for out-of-state and first-generation

status, age, and SAT math test score.

1.3.1 Matching design

To address observational bias, outcomes of treatments and controls were weighted using

inverse probability weights from optimal matching with replacement (Rosenbaum 1989;

Hansen 2004). Propensity scores were calculated on observable student characteristics to

balance covariates across students who received GPS advising and students who did not get

advised independent of the outcomes. Next, conditional outcomes were calculated using

the appropriate method for the outcome, linear regression (continuous outcomes), logistic

regression (binary outcomes), or ordinal logistic regression (ordinal outcomes) requiring

robust standard errors.

In general, one wants to finds a “control” student (i.e., GPSi′ = 0) defined by a vector

of matching covariates Xi,GPS=0 about equal to the covariate space Xi′,GPS=1 of a treated

student (i.e., GPSi = 1). Propensity score matching matches the covariate spaces indi-

rectly through asymptotic convergence of the conditional features (Rosenbaum and Rubin

1983). Under standard identifying assumptions, inverse probability weights generated from

logistic regression of the binary treatment variable on the conditioning factors identify the

Average Treatment Effect on the Treated (ATT) in the second-stage difference-of-means

or difference-of-proportions. The ATT estimator is the inverse probability weighted differ-

ence in graduation rates for the 1, . . . , N treatments and the 1, . . . , N ′ controls:
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Table 1.1: Sample descriptives of matching features used for inverse probability weighting

Variable GPS1 Non-GPS2

Female∗∗∗ 59.9% 56.6%
Race∗∗∗

American Indian or Alaska Native 0.4% 0.2%
Asian 14.7% 17.5%
Black 33.2% 38.0%
Native Hawaiian or Pacific Islander 0.5% 0.1%
Not Reported 5.5% 4.0%
Two or More Races 3.6% 6.9%
White 42.1% 33.3%

Hope Recipient∗∗∗ 81.3% 71.0%
Out-of-State 3.4% 3.6%
Pell Eligible∗∗∗ 37.5% 43.5%
First Generation 20.6% 21.4%
Unmet Need∗∗∗ 54.4% 72.2%
Age (yrs) 18.4 (0.6) 18.4 (0.6)
High School GPA∗∗∗ 3.33 (0.32) 3.36 (0.34)
SAT Math 540.3 (71.9) 538.4 (77.7)
SAT Verbal∗∗ 540.1 (71.4) 537.4 (73.1)
SAT Writing∗∗∗ 526.5 (70.9) 520.6 (73.8)
Graduation∗∗∗

Yes, >4 yrs 45.0% 34.2%
Yes, <=4 yrs 17.2% 21.9%
No, <=4 yrs 37.7% 43.9%

Note. The table reports sample descriptives and the statistical significance of their
differences between treatments and controls (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p <
0.001). Standard deviations and t-tests are provided for numerical features, and
sample proportions and χ2 tests for categorical features.

1 The treatment group comprises students who entered their first year anywhere be-
tween A.Y. 2012-2013 and A.Y. 2014-15.

2 The control group comprises students who entered their first year anywhere between
A.Y. 2006-2007 and A.Y. 2008-09.

∆ ˆGraduation = N
N∑
i=1

Graduationi

p̂GPSi=1(Xi)
−N ′

N ′∑
i′=1

Graduationi′

1− p̂GPSi′=0(Xi′)

where the numerator is the observed graduation outcome and the denominator is the in-

verse probability weight calculated from the individual propensity of treatment p̂(·) condi-

tional on the matching features X = x1, . . . , xk. The study uses a difference-in-differences
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model to compare the graduation rates of two groups of students: those who switched ma-

jors (switchers) and those who did not (non-switchers) before and after the implementation

of the program. The difference-in-differences estimator calculates the ratio of graduation

rates between these two groups, with the upper and lower bounds defined by the most ex-

treme outcomes. The research design and measurement of other outcomes are discussed in

more detail in subsection 1.4.1.

The bias reduction measures the extent to which the differences between the treated group

and the control group, in terms of their covariates, are reduced. It is calculated as the

percentage reduction in total bias, which is the sum of the absolute standardized mean

differences between the two groups:

∆Bias =1−
K∑
k=1

| Xafter

k,GPS=1 −X
after

k,GPS=0 |√
(S2 after

k,GPS=1 − S2 after
k,GPS=0)/2

/
| Xbefore

k,GPS=1 −X
before

k,GPS=0 |√
(S2 before

k,GPS=1 − S2 before
k,GPS=0)/2

where Xk is the average of feature k and Sk is its variance calculated before or after

matching. The Conditional Independence Assumption (CIA) requires that: 1) the first-

stage binary model fully determines the data generating process; 2) good conditioning

factor balance is achieved after matching; and 3) there is no unobservable heterogeneity

that differentially affects the outcomes of treatments and controls. Assumption 1) is satis-

fied via complete specification of an education production function that determines student

outcomes in college (Sass, Semykina, and Harris 2014). Assumption 2) is satisfied by de-

tecting minimal violations of optimal post-matching balance at the standard significance

threshold of 0.1 standardized mean differences. Assumption 3) might only be violated with

particular outcomes subject to unobservable longitudinal shocks (see subsection 1.5.2 for

details).
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1.3.2 Relative academic strength

An index of discipline fit was created using relative academic strength (Coyle and Pillow

2008; Coyle 2018). This index is a continuous value between −1 and +1 that represents

the maximum fit for qualitative and quantitative disciplines, respectively. The index is

calculated using the relative percentile ranks of a student’s math and verbal scores from the

SAT or ACT test. Since students at GSU can choose to submit either the SAT or ACT, the

distributions for both tests were averaged and scaled separately. The formula for calculating

the Relative Academic Strength (RAS) is as follows:

RASi =
νi − λi

| νi − λi |
· (| νi − λi |)max(ν,λ)

where νi is the math rank and λi is the verbal rank measured in percentiles.

A preliminary check of face validity was conducted via simulation (Table 1.2). A student

with a math score at the 80th percentile and a verbal score at the 20th percentile would

have a RAS value of −(0.8 − 0.2)0.8 = 0.66. A student with the same percentile rank in

verbal and math would be positioned at the center of the RAS range, though this is unlikely

to happen. The index takes into account diminishing marginal returns of relative ability,

and moves students towards the middle of the range as their composite percentile rank in-

creases. This means that a student with the same math or verbal tilt will be pushed further

to the right or left of the range, respectively, if their scores are closer to the median score.

For example, a student with a 20-percentile math tilt at the 90th percentile in math and 70th

percentile in verbal will have a RAS of 0.23, but a student with the same math tilt at the

70th percentile in math and 50th percentile in reading will have a RAS of 0.32.

RAS values were computed for both students and majors to calculate the distance between

students’ academic aptitude and their terminal majors. To minimize the potential confound-

ing effect of the program on the index, the entry SAT and ACT test scores of students were

collected from the GSU web repository IPORT using Python’s Selenium. While the data
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is aggregated by major, IPORT provides more detailed information than the information

available from administrative data. For instance, IPORT includes the average SAT scores

of applicants, admitted, and enrolled students. The data on admitted students was used

as it is believed to provide a more accurate representation of the skill requirements for a

particular program compared to data on applicants or enrollments, which may be influ-

enced by market demand and other non-academic factors. The entry-level test scores of the

freshman cohorts from 2009-2010, 2010-2011, and 2011-2012, which predate the program,

were not included in the treatment effect analysis as they were considered to be uncontam-

inated data. Additionally, using entry test scores helps to ensure that factors endogenous

to course-taking at GSU do not influence the construction of the index. For majors with

a sufficient number of students, the most recent test data was used, while the average test

scores from 2009-2011 were weighted by cohort size and used for smaller majors.

The RAS values of majors, plotted in Figure 1.1, reveal good face validity. The three ma-

jors with the highest verbal tilt are Women’s and Gender Studies, French, and Journalism,

while the most quantitative-leaning majors are Finance, Physics, and Math. Some large

programs at GSU, like Exercise Science and Nutrition, show a surprising STEM tilt while

the social sciences (e.g., Criminal Justice, Economics, Social Work) tend to be balanced

with a slight verbal tilt.

1.3.3 Accounting for GPA inflation

There is evidence that grades in higher education have increased since the 1970s (Pattison,

Grodsky, and Muller 2013), a phenomenon known as grade inflation, and that students who

are close to receiving scholarships or waivers may improve their college performance in

response (Henry and Rubenstein 2002). As a result, there is a possibility that comparisons

of GPA outcomes over time may be biased due to history and behavioral effects.

To control for the potential bias of grade inflation, the study used a method similar to that

of Henry and Rubenstein (2002) by assuming that the relationship between SAT scores
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Table 1.2: Relative Academic Strength (RAS) value for mock students with varying apti-
tude

Academic aptitude Math pct.1 Verbal pct.2 RAS

Very high math, very low verbal 0.9 0.1 0.82
High math, low verbal 0.8 0.2 0.66
Middle-to-high math, middle-to-low verbal 0.7 0.3 0.53
Middle-to-high math, middle-to-low verbal 0.6 0.4 0.38
Middle math, middle verbal 0.5 0.5 0.00
Middle-to-low math, middle-to-high verbal 0.4 0.6 -0.38
Middle-to-low math, middle-to-high verbal 0.3 0.7 -0.53
Low math, high verbal 0.2 0.8 -0.66
Very low math, very high verbal 0.1 0.9 -0.82

Notes. The math and verbal percentile scores reported in columns (1) and (2) indicate
varying levels of academic strength. The corresponding RAS is reported in column (3).

1 A student’s math percentile score is their percentile rank in the score distribution of
SAT/ACT tests in their freshman year.

2 A student’s verbal percentile score is their percentile rank in the score distribution of
SAT/ACT tests in their freshman year.

and GPA should remain constant when GPA increases. A GPA discount factor Ijt was

calculated for each major j and year t by using 2010 as a baseline and considering the

relative changes in the average GPA and SAT scores of students graduating from the major:

Ijt =
SATjt

GPAjt

/
SATj2010

GPAj2010

If this ratio remains constant over time, it indicates that the major grades consistently

across years. On the other hand, a changing ratio suggests that similar students are graded

differently over time. To adjust for this, a major-year-specific GPA discount factor Ijt was

calculated for each major j and year t using 2010 as the baseline. This discount factor

was used to convert nominal GPA into real GPA denominated in 2010 GPA points, so that

Ijt = Ij2010:

Real GPA =Ijt × Nominal GPA
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Figure 1.1: Relative Academic Strength (RAS) by major in descending order of STEM fit
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After adjusting for grade inflation, the average GPA for all students across all majors

was found to be lower than the nominal GPA, with the extent of the decrease differing by

major.

Other methods for accounting for changes in GPA over time were considered, but ulti-

mately not used in this study. A common approach is regression-based adjustment of nom-

inal GPA (Brookhart et al. 2016): the assumption here is that the same student features

should afford similar grades year over year, less grading has become more or less lenient.

However, this approach has the potential flaw of assuming that the education production

function remains constant, even when the institutional and environmental context changes.

In contrast, the correction method used in this study only assumes the stability of the re-

lationship between GPA and test scores. While there is ongoing debate about the stability

of measures of cognition, there is a general consensus that these measures are more stable

over time than the relationship between factors of the educational production process and

student achievement.

1.4 Empirical Section

In this dataset, there are records for undergraduate students at GSU from 2006 to 2014.

The time-invariant features are characteristics of the student that remain constant over time,

such as ethnicity and high school GPA, and are used to generate propensity weights. The

time-variant features, on the other hand, vary on an annual basis and include information

such as major declaration and tuition status, primarily used as outcome measures and for

inclusion and exclusion criteria in validity checks. The dataset also includes information

on credit hours taken by each student in a given academic year (e.g., MATH, CS, ENG,

etc.), with credits for each subject area being aggregated to calculate cumulative GPA at

the end of each year. Descriptive information for treated and control students is provided

in Table 1.1.
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1.4.1 Theory of action

Central to the option value of college model (Stange 2012) is that students follow an itera-

tive decision-making process, and reassess the value of the degree at each checkpoint. On

the other hand, in the standard human capital model (Mincer 1958; Schultz 1961; Becker

1962; Heckman 1976), students make a one-time enrollment decision based on the ex-

pected lifetime returns of a degree minus its opportunity costs. Information made available

by GPS advisors shapes student decision-making by benchmarking student performance to

historical data.

This high-frequency feedback can encourage students to move towards majors that are more

closely aligned with their inclinations and provide emotional support for learning. Studies

have shown that access to better information about the value of a degree can increase re-

tention rates, particularly in the case of intrusive advising interventions (Angrist, Lang, and

Oreopoulos 2009; Bettinger and Baker 2014; Oreopoulos, Brown, and Lavecchia 2017;

Oreopoulos and Petronijevic 2018; Dobronyi, Oreopoulos, and Petronijevic 2019; Page

et al. 2019). Additionally, students may make suboptimal college choice and enrollment

decisions due to informational constraints, self-concepts formed by early performance in

college classes (Porter and Swing 2006; Lizzio and Wilson 2013) such as fixed beliefs

about their abilities (Dweck 2013), and perceptions carrying over from prior formation

(Schunk 1991; Lent, Brown, and Hackett 1994; Zimmerman 2000).

Overall, algorithmic student advising is bound to affect student outcomes through three

distinct pathways:

1. Self-confidence pathway. Changes in student self-confidence, now effectively be-

coming a dynamic, time-dependent, construct (i.e., δit);

2. Ability revelation pathway. Reductions in uncertainty about degree-specific ability

(i.e., ηijt);

3. Academic fit pathway. Changing net present value of a degree NPVijt(·) after a
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switch to a better-fit major j.

The effectiveness of academic signals may vary depending on the individual student’s

characteristics and circumstances. Stange (2012) notes that “moderate-ability students,

who have the most uncertainty about the desirability of schooling, derive even more value”

(p.81) from continuous and flexible information provision. Another potential reason for

underprivileged students overresponding to GPS advising is the greater plasticity of their

self-confidence and perception of ability (Tinto 1987). However, the value of the new in-

formation may be more accessible to high-achieving students who have more resources to

make better use of it.

There are two main concerns that have been raised in the literature regarding algorithmic

advising: the potential for students to be restricted by their pre-college records, and the

possibility of shifting marginal students towards less marketable majors. This second con-

cern is supported by the Campus Life and Learning Project (Arcidiacono, Aucejo, and

Spenner 2012), which found that a reduction in the first-year Black-White GPA gap from

0.5 to 0.3 points at the end of the fourth year at Duke University resulted in about half of

Black females and a third of Black males switching from their intended STEM majors to

humanities majors, which had an average of 10% higher grades. The advising intervention,

while effective at improving graduation rates, had the unintended consequence of diluting

the value of the extra degrees attained.

The first part of the study employs what is essentially a difference-in-difference design to

identify transmission mechanisms for graduation rates. The first difference is the difference

in the graduation rate of students who did not switch majors before and after treatment and

the second difference is the difference in the graduation rate of students who switched ma-

jors before and after treatment. The academic fit pathway, which focuses on the effects of

algorithmic advising on coursework selection, is only applicable to students who switch

their majors. This allows the research design to differentiate the impact of the third path-

way from the first two pathways, which are not dependent on major switches. Therefore,
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the difference-in-differences is a significance test for academic fit effects from the GPS

program.

The research further aims to examine whether algorithmic advising affected persistence of

students who eventually dropped out. This is based on the idea that students who are on

the fence about continuing their studies may be more likely to drop out if they receive in-

formation about their low chances of completing their degree. By providing these students

with more accurate and timely information, algorithmic advising may help them exit col-

lege early. The information value thus potentially explains why marginal students enroll in

college despite their low college readiness. Algorithmic advising might correct suboptimal

decision-making avoiding losses of time and income resources.

Thirdly, tailored information about learning paths might lead to greater course-taking in

areas of better academic fit. Using the RAS index described in section 1.3, potential reduc-

tions in student-major distance resulting from algorithmic advising were evaluated. The

impacts of algorithmic advising on GPA and total credit hours were also analyzed to deter-

mine any potential trade-offs between the quantity and quality of instruction.

1.4.2 Effects of algorithmic student advising

Graduation rates

The first research question is whether retention changed as a result of switching to majors

that are a better fit for students.

The experimental design uses a difference-in-differences approach to identify transmission

mechanisms of the policy. The difference-in-differences estimate results from two differ-

ences: the first difference is the graduation rate change for students who did not switch

majors before and after the GPS program implementation (i.e., non-switchers), and the

second difference is the graduation rate change for students who switched majors (i.e.,

switchers). If the positive effects of algorithmic advising on student outcomes are due to

improvements in academic fit, it is necessary for these effects to be more pronounced in
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students who changed majors. It is possible that other confounding factors may prevent a

definitive causal claim from being made, but this condition appears to be a minimum re-

quirement for the viability of the transmission mechanism.

To further tease out transmission mechanisms, the study sets up a subexperiment and a vi-

sual test. The subexperiment divides the group of students who switched majors into two

sets: the first set consists of students who switched to majors that are a better fit for their rel-

ative academic aptitude, while the second set consists of students who switched to majors

that are a worse fit. If the effects of the policy are primarily due to improved student-major

fit, the first group of students should have benefited more from the policy than the second

group. The visual test (see Figure 1.2) examines the effects of increasing exposure to the

recommendation system (i.e., “dosage effects”) to identify discontinuities in the effect of

the policy: if effects increased not dissimilarly for switchers and non-switchers, this would

suggest that the policy’s effects are not primarily due to the academic fit pathway.

The results in Table 1.3 show the graduation odds ratio for non-switchers and two sets of

switchers, with confidence intervals for each set of coefficients. The table presents coeffi-

cient estimates as graduation odds ratios, i.e., before-after ratios of graduation odds. The

difference-in-differences estimate is the net change in graduation odds due to the major

switch, taking into account the change in graduation odds for non-switchers. Examining

the confidence intervals can reveal whether the association between algorithmic advising

services and student graduation rates is statistically significant, or if it is challenging to

establish noteworthy and distinctive impacts between major switchers and non-switchers.

The results of the experiment indicate that students who switched majors under GPS ad-

vising had an increased chance of graduating, although this difference was not statistically

significant (OR = 1.257, 95% CI 0.867-1.823) when compared to students who did not

switch majors. The subexperiment on students who switched to majors that were closer

matches to their academic aptitude also did not yield statistically significant results (OR =

1.254, 95% CI 0.846-1.859). Hence, one cannot assert that the GPS advising program led
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to enhancements in student graduation rates, or at the very least, it is plausible to eliminate

the possibility that it achieved this outcome through the major switching pathway, which

aligns with the most effective transmission mechanism according to theory.

The visual “dosage effects” provides more moderate evidence in favor of switching ef-

fects. Switchers who were exposed to the full four years of the program had a higher posi-

tive impact, with the non-switcher confidence falling within a similar range. Furthermore,

switchers who were exposed to the GPS program for three or two years had a decrease in

the impact on their graduation rates, and there was no significant difference in the effects

between those with one and two years of exposure. Conversely, non-switchers did not con-

sistently show an increase in graduation rates with increased exposure to the GPS program,

and the trendline for their effects was always within the margin of error for the trendline for

switchers. Therefore, while the dosage effects suggest moderate support for the academic

fit pathway, the results do not provide strong evidence against the null hypothesis that the

policy did not channel any effects through improvements in academic fit.

Persistence of dropout students

The second research question is whether the persistence of students who eventually dropped

out changed due to the GPS program. To answer this question, ordinal logistic regression

was used to analyze the persistence of students who had dropped out. The outcome variable

is ordinal because students who left at any point during their college careers stayed for one,

two, three, or four years before leaving. The goal was to determine if the GPS advising

system influenced the timing of students leaving college.

One potential estimation issue is the change to Georgia merit-based financial aid in the A.Y.

2011-2012. Specifically, the requirement to maintain a full tuition waiver was raised from

a 3.0 GPA to a 3.3 GPA, breaking up the previous scholarship program that awarded full

tuition waivers to students maintaining a 3.0 GPA into two tiers: one that covered the full

tuition costs for students with a 3.3 GPA and another that provided a partial tuition waiver
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Figure 1.2: Odds ratios of college graduation for GPS students who updated their majors and
who stayed in their intended majors

Notes. This figure plots the graduation odds of GPS-advised students who did not change
their majors (Stayer) and GPS-advised students who switched their majors at any point
during their academic career (Switcher) relative to the graduation odds for control stu-
dents. The x-axis indicates years of exposure to the policy or “dosage effects” from a
minimum of one year (2009-10 freshman cohort) to a maximum of four years (2012-13
freshman cohort).
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Table 1.3: Odds ratios of college graduation for GPS advised students

Odds Ratio (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

Non-Switchers1 1.115 0.940 1.323 6,282 86.6
All majors2

Switchers 1.402∗∗∗ 1.147 1.713 5,947 82.8
Difference-in-Differences 1.257 0.867 1.823
Better majors3

Switchers 1.399∗∗∗ 1.120 1.747 2,765 86.5
Difference-in-Differences 1.254 0.846 1.859 2,765

Notes. Odds ratios are calculated from logistic regression of the binary graduation
outcome. Coefficients capture the ceteris paribus likelihood of graduation of GPS-
advised students relative to those not. The Difference-in-Difference term is the ratio
of the switcher to non-switcher coefficients, with 95% confidence region ranging from
the mildest outcome (ratio of the lower bound switcher and upper bound non-switcher
estimates) to the most extreme outcome (ratio of the upper bound switcher and lower
bound non-switcher estimates). Estimates are inverse probability weighted (IPW) by
the most important outcome predictors and use robust standard errors for calculation
of the 95% confidence intervals (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).

1 The non-switcher set is students who graduated from the same majors they declared
before college entry.

2 The first set of switchers graduated in a major different from the majors that they
declared before college.

3 The second set of switchers is a more exclusive set that only includes students switch-
ing to majors that are closer fits to their academic aptitude.
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for those with a GPA between 3.0 and 3.3.

The effect of the change in financial aid requirements on college persistence was evaluated

by Jones et al. (2022) using a regression discontinuity design. The study found that the

change, which affected students with a cumulative GPA below 3.3 at the beginning of Fall

2011-2012, did not lead to significant drops in college persistence, likely because the main

targets of the change were students from upper socio-economic backgrounds who were less

sensitive to changes in price.

To ensure that the results were not biased by the changes to financial aid, a check was

performed by excluding the cohort of students who were fully exempt from tuition in the

A.Y. 2010-2011 and experienced financial losses from not meeting the required 3.3 GPA.

Although the research design does not use freshman cohorts from A.Y.s 2009, 2010, and

2011, multiple treatments bias might stem from the 2008 freshman cohort. If any of the

A.Y. 2008-2009 freshman students, who were in their fourth year in Fall 2011-2012, had a

GPA below 3.3, their full tuition waiver would have been terminated.

While multiple treatments bias might be a limited threat, financial aid changes modified the

playing field. The change was anticipated and non-exogenous for students in high school

at the time of the regime swap, but these students faced a tighter funding situation when

starting college. Therefore, a second validity check looks at the three categories of funding

recipients: students with no tuition waivers, students with partial tuition waivers, and stu-

dents with full tuition waivers when starting college.

The results of the analysis (see Table 1.4) suggest that the GPS advising system may lead

to earlier dropout among students who are struggling academically (OR = 0.662, 95% CI

0.559-0.784). This is seen as a positive outcome, as it may allow these students to leave

college and enter the workforce earlier, potentially avoiding the loss of time and resources

that may come with continuing their education. The results also show that there are minor

differences in estimates when excluding students who experienced changes in financial aid

regimes, suggesting that these changes may not have had a significant impact on the results.
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It appears as though the advising system is effective at accelerating the decisions to leave

college among students who were marginal in the first place.

Students who received full tuition waivers did not drop out of college earlier when they

received GPS advising, according to the results of further subset regressions with the three

categories of financial aid (i.e., none, partial, and full). While students who received partial

tuition waivers or no waivers behaved similarly to the main group, students with full fund-

ing did not leave college sooner when advised by GPS. It is possible that the full tuition

waivers acted as a “sticky” factor, causing students to remain enrolled even if they received

advising signals to leave. However, this result is largely consistent with expectations, as

students with full financial support may be less likely to respond to advising signals.

Table 1.4: Odds ratios of survival in college for students who dropped out

Odds Ratio (95% C.I.) Matching

coef. lwr. upr. treat (%) ∆Bias (%)

Overall set 0.600∗∗∗ 0.506 0.713 5,016 79.6
No tuition losers 1 0.593∗∗∗ 0.497 0.706 4,988 76.2
Financial Aid = None 0.684∗∗∗ 0.470 0.997 555 77.1
Financial Aid = Partial 0.728∗∗∗ 0.585 0.905 2,406 82.3
Financial Aid = Full 0.914 0.691 1.210 1,649 64.0

Notes. Odds ratios are calculated from ordinal logistic regression of the year of
dropout (1,2,3,4). Coefficients capture the ceteris paribus likelihood of surviving one
more year in college of GPS-advised students relative to those not. Estimates are in-
verse probability weighted (IPW) by the most important outcome predictors and use
robust standard errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001).
1 These are students that suddenly lost part of the their tuition coverage in Fall 2011-

2012 from the changing requirements of Georgia’s state aid.

Graduation outcomes

The last set of findings accounts for course-taking outcomes of students: graduation GPA,

student-major fit, and credit hours in their reference disciplinary area. High-ability students

in STEM computational disciplines were found to benefit the most from GPS advising in
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terms of increased GPA points (0.222, 95% CI ± 0.099) and credit hours taken in their

major area (16.05, 95% CI ± 4.91) as well as decreased distance between their intended

major and their actual graduation major each measured in terms of RAS (-0.075, 95% CI

± 0.054). These results were seen for three out of the four major denominations, except for

Humanities. Importantly, the four labels are defined by the intended major, not by gradua-

tion major, to avoid reversing the order of events.

The distance between students and their terminal majors declined the most among stu-

dents who intended to major in STEM Computational disciplines, followed by STEM Life

Sciences and the Social Sciences. Conversely, prospective Humanities students did not

significantly reduce the distance with their graduation majors. The fit between a student’s

academic aptitude and their major is indicated by the absolute distance between the aca-

demic tilts of the student and their majors (Coyle and Pillow 2008; Coyle 2018). If the

distance between a student’s aptitude and their major decreases, it means they have moved

closer to a discipline that is a good fit for them. Ability tilt expresses a continuum of out-

comes from high verbal proficiency to high math proficiency: if a student or major has high

math score compared to their verbal score, they are more heavily STEM leaning.

Students who received algorithmic advising showed significant changes in their GPA, with

the exception of those in the Humanities. Students in STEM Computational and Social

Sciences disciplines had an increase in their graduation GPA, while students in STEM Life

Sciences had a decrease in their GPA. Further analysis of the course structure in different

fields may be needed to understand the specific reasons for the changes in GPA. However, it

is noteworthy that the three disciplinary labels that reduced the distance between their stu-

dents’ entry academic aptitude and terminal majors also changed their inflation-adjusted

GPA.
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Table 1.5: Grade inflation-adjusted GPA at graduation

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational 0.222∗∗∗ 0.123 0.321 679
STEM Life Sciences -0.191∗∗∗ -0.328 -0.054 726
Social Sciences 0.236∗∗∗ 0.152 0.320 3,309
Humanities -0.215 -0.631 0.201 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regression of four-
year graduation GPA. Coefficients capture the ceteris paribus change in GPA of
GPS-advised students relative to those not. Estimates are inverse probability
weighted (IPW) by the most important outcome predictors and use robust standard
errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001).

Table 1.6: Credit hours taken in the student’s respective major area

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational 16.05*** 11.14 20.96 679
STEM Life Sciences -1.22 -4.37 1.91 726
Social Sciences 3.62*** 1.19 6.05 3,309
Humanities 2.91 -1.32 7.13 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regressions of credit
hours in the relevant subject area. Coefficients capture the ceteris paribus change
in credit hours taken by GPS-advised students relative to those not. Estimates are
inverse probability weighted (IPW) by the most important outcome predictors and
use robust standard errors for calculation of the 95% confidence intervals (∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).
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Table 1.7: Distance between students and their graduation major

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational -0.075*** -0.129 -0.021 679
STEM Life Sciences -0.052** -0.102 -0.003 726
Social Sciences -0.045** -0.084 -0.006 3,309
Humanities 0.006 -0.046 0.058 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regressions of the
distance between the relative academic strength of students and their majors. Coef-
ficients capture the ceteris paribus change in the fit between a student-major pair of
GPS-advised students relative to those not. Negative (positive) coefficients indicate
a narrower (looser) fit between students and their terminal majors. Estimates are in-
verse probability weighted (IPW) by the most important outcome predictors and use
robust standard errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001).

1.5 Discussion

1.5.1 Conclusions

This study examined the effects of largest algorithmic student advising implementation,

Georgia State University’s Graduation and Progression System (GPS). The program aims

to improve student graduation rates by better aligning students with majors that fit their abil-

ities, rather than just improving their chances of success in individual classes as previous

programs have done. The research found that the program had an impact on course-taking,

particularly among high-ability students in STEM fields, but did not demonstrate a link

between academic fit and improved graduation rates. The program may also have led to

faster dropouts among students on the margin, albeit not among those receiving full tuition

waivers.

The first set of findings used a difference-in-differences design to control for changes in

graduation rates over time and identify the potential mechanisms through which the GPS

program affects student outcomes. The results showed that both students who switched

majors and those who did not had increased chances of graduating under the GPS program,
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and the rate of change did not differ significantly between the two groups. This suggests

that the program did not have a disproportionately greater impact on students who switched

majors. A subexperiment conducted on students who switched to majors that were a better

fit for them also yielded insignificant results, further indicating that the student-major fit

pathway was not an active factor in improving graduation rates. The dosage effects test

also showed similar trends for students who switched majors and those who did not, de-

pending on the length of their exposure to the program. Overall, the results do not support

the hypothesis that the student-major fit pathway contributes to improved graduation rates.

The second set of results showed that the GPS program reduced the time it took for students

to drop out of college. This effect was not consistent across all students, with those who

received full tuition waivers showing no decrease in persistence under the program. These

findings suggest that the GPS program may be effective at helping students on the margin

make quicker decisions about their college careers, and that students who are fully tuition

exempt may not respond as much to the program because they are less sensitive to price. It

is important for educational policy to avoid unnecessarily causing students to leave college

and to focus on helping those who would be better off seeking employment in the work-

force. Therefore, the algorithm should be used with caution to ensure that it is not causing

unnecessary harm to students.

The third set of results showed that the GPS program had a significant impact on both

credit hours and GPA for students in STEM Computational, STEM Life Sciences, and So-

cial Science disciplines, with no significant effects on students in the Humanities. The

greatest beneficiaries seemed to be STEM Computational students, who took more exten-

sive coursework in their field of study and achieved better GPAs under the GPS system.

However, it is important to consider that these positive effects may disproportionately ben-

efit students who are already doing well and are best positioned to reap the rewards of their

education. Therefore, the scaling of advising interventions should be carefully considered

in light of the potential risks of further exacerbating divergence in student outcomes.
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1.5.2 Limitations

The main limitation of the study is the campus-wide rollout of the program in A.Y. 2012-13

by GSU, which means that synchronous control units were not available. This could lead

to bias due to changes in the unobservable composition of the student body. Unobservable

bias may affect outcomes that are influenced by history effects during the study period,

such as GPA. However, the procedure for adjusting GPA for grade inflation based on the

SAT-GPA ratio can mitigate this bias (see subsection 1.3.3). It is also possible that there

are other unobservable sources of bias that cannot be properly accounted for and may im-

pact graduation and persistence outcomes, such as changes in the economy that alter the

cost-benefit ratio of attending and remaining in college. As a precautionary measure, the

time-frame of the study was limited to three years before and after the program rollout.

The second set of validity threats involve concurrent programs that could affect the out-

comes being examined. One of these initiatives, the Summer Success Academy, is designed

to increase retention for less academically prepared students by providing various forms of

support and mentoring before college begins. However, this initiative was deemed to have

too limited a scope to potentially influence the results and no action was taken to control for

its effects. Another initiative, the Panther Retention Grants, could have affected length of

stay, course-taking, and graduation. The program disbursed microgrants of an average size

of $1,000 (GSU 2019) to unmet need students who are in good academic standing and have

met tuition payment deadlines in the past. To minimize the potential for multiple treatment

bias, students who received these grants were excluded from the analysis.

A third and more substantive threat comes from the changing requirements of financial aid

in the state of Georgia (Jones et al. 2022). The students who were exogenously stripped

of some of their financing in A.Y. 2011-2012 were identified and excluded from the analy-

sis. However, the changes persisted and affected subsequent cohorts of students who began

college after the reform, even though it was no longer an exogenous shock. To address

that, subset analysis of students in different financial aid bands was conducted, revealing
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APPENDIX A

ESSAY II

(a) (b)

(c) (d)

Figure A.1: Residuals versus fitted values plots across model specifications
The figure shows residual versus fitted values plots for four different regression models: a) ordinary
least squares, b) log-transformed ordinary least squares, c) Poisson, and d) negative binomial. The
45-degree line indicates an ideal fit.
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Table A.1: Selection of model specification using Weight of Evidence test

Model k AICc ∆AICc1 WoE2 LL

Full - GDP per capita (linear) 190 33142.8 0.0 99.5 -16367.9
Full (linear) 190 33157.4 14.6 0.5 -16375.2
Full - No GDP (linear) 190 33164.1 21.3 <0.1 -16378.6
Full (log) 190 33218.5 75.7 <0.1 -16405.8
Full - GDP per capita (log) 190 33219.4 76.6 <0.1 -16406.3
Full - No GDP (log) 190 33220.8 78.0 <0.1 -16406.9
Full - No Import-Export
(linear)

198 38039.4 4896.6 <0.1 -18809.4

Full - No Import-Export (log) 198 38096.3 4953.5 <0.1 -18837.9
No Covariates - Fixed Effects 202 39374.1 6231.3 <0.1 -19472.8
No Covariates - Gravity (log) 5 46953.1 13810.3 <0.1 -23471.5
No Covariates - Gravity
(linear)

5 48926.6 15783.8 <0.1 -24458.3

Note. The table presents the number of parameters (k), Akaike information crite-
rion corrected (AICc), delta-AICc (∆AIC), Weight of Evidence (WoE), and Log-
likelihood (LL) for each model. Quantitative predictors are specified as either linear
or logarithmic (in parentheses).

1 The ∆AIC measures the distance of each model m to the best model in the set m∗

by measure of their AICc values (i.e., ∆m = AIccm − AICcm∗).
2 The WoE statistic is a scaled measure of relative goodness of fit for each model m

calculated as the ratio: e−
∆m
2 /
∑M

m=1 −e
∆m
2 .
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Table A.2: Country-average office foundations effect from synthetic difference-in-
differences

Country DAAD foundation ATT

Malaysia 2000 3.58
Viet Nam 2002 2.91
Mexico 2001 2.50
Azerbaijan 2005 2.10
Kyrgyzstan 2005 1.93
Colombia 2006 1.92
Thailand 2000 1.75
Iran 2004 1.70
Singapore 2002 1.70
United Arab Emirates 2007 1.67
Pakistan 2009 1.56
Australia 2002 1.46
Afghanistan 2013 1.45
Israel 2005 1.39
Ukraine 2004 1.37
Armenia 2005 1.31
Chile 2000 1.27
Turkey 2001 1.27
Tunisia 2015 1.26
Costa Rica 2006 1.26
South Korea 2001 1.25
Belarus 2004 1.23
Canada 2003 1.21
Italy 2005 1.19
Kazakhstan 2005 1.16
South Africa 2005 1.13
Venezuela 2002 1.10
Spain 2005 1.08
Lebanon 2016 1.05
Greece 2004 1.02
Peru 2016 1.01
Jordan 2013 1.01
Romania 2003 0.99
Argentina 2000 0.97
Georgia 2005 0.94
Ethiopia 2015 0.94
Cuba 2004 0.93
Belgium 2013 0.89
Latvia 2005 0.87
Czech Republic 2001 0.86
Ghana 2002 0.79
Hungary 2003 0.68
Sudan 2004 0.47

Note. This table presents the synthetic difference-in-differences estimates and their
significance for individual office foundations using length of exposure inverse-
variance weighting (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001). The coefficients
reflect sending rate ratios or ratios of the migration case rate with and without the
office and are sorted by their magnitude.
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APPENDIX B

ESSAY III

Table B.1: Standardized mean differences before and after matching

Raw differences Weighted differences

Propensity score 0.816 0.001
Female 0.486 0.004
Books: 201+ 0.432 0.018
Location: 3,000-15,000 0.295 0.008
Books: 26-100 0.301 0.018
Books: 11-25 0.251 0.001
Books: 0-10 0.164 0.024
Region: Northeastern 0.164 0.002
Location: 100,000-1,000,000 0.150 0.007
Region: Southern 0.139 0.028
Location: 15,000-100,000 0.091 0.009
Region: Northwestern 0.086 0.010
Region: Central 0.073 0.022
Location: ¡3,000 0.072 0.001
Repeater 0.071 0.002
Immigrant: Native 0.046 0.037
Books: 101-200 0.034 0.019
Immigrant: Second-Generation 0.034 0.019
Immigrant: Third-Generation 0.030 0.033
Region: Islands 0.027 0.012
Location: 1,000,000+ 0.014 0.021

Notes. Bias reduction after inverse probability matching. Matching weights
factor the probability of assignment into the tracks (“Weighted differ-
ences”) to mitigate observational biases in sample means (“Raw differ-
ences”).
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Table B.2: Predictors of PISA math score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 582.0∗∗∗ 81.0∗∗∗ 94.0 508.0∗∗∗ 90.0∗∗∗ 145.0
(21.0) (16.0) (105.0) (29.0) (23.0) (274.0)

Female -26.0∗∗∗ -20.0∗∗∗ -37.0 -28.0∗∗∗ -22.0∗∗∗ -51.0
(3.1) (2.0) (86.0) (5.4) (3.7) (228.0)

Grade repeater -62.0∗∗∗ -9.9 -9.8 -50.0∗∗∗ -16.0 -16.0
(8.6) (6.0) (6.1) (12.0) (8.5) (8.5)

Immigration status (base: Native)
Second-generation -11.0 -7.2 -7.2 -39.0 15.0 16.0

(16.0) (8.4) (8.4) (33.0) (20.0) (20.0)
Third-generation -29.0 2.4 2.4 -55.0∗ -18.0 -18.0

(16.0) (8.4) (8.5) (25.0) (17.0) (17.0)
Books at home (base: 0-10)
11-25 -12.0 -10.0∗ -4.7 0.3 -12.0 55.0

(9.0) (5.0) (108.0) (21.0) (13.0) (282.0)
26-100 3.9 -3.5 21.0 27.0 -5.7 269.0

(8.1) (4.6) (411.0) (19.0) (12.0) (1,083.0)
101-200 19.0∗ -1.2 33.0 53.0∗∗ 5.6 490.0

(8.4) (4.8) (692.0) (19.0) (12.0) (1,825.0)
200+ 22.0∗∗ -1.5 40.0 64.0∗∗∗ 5.8 544.0

(8.2) (4.7) (749.0) (19.0) (12.0) (1,980.0)
School random effects
School ESCS 15.0∗ 3.1 3.0 42.0∗∗∗ 3.6 3.7

(6.3) (3.6) (3.6) (6.9) (4.4) (4.4)
Student-teacher ratio 2.1∗∗∗ 0.6 0.6 0.8 -0.8 -0.8

(0.6) (0.4) (0.4) (0.9) (0.6) (0.6)
Number of students 0.7 0.2 0.2 0.8 0.9∗ 0.9∗

(0.5) (0.3) (0.3) (0.7) (0.4) (0.4)
Private -60.0∗∗ -19.0 -19.0 -53.0∗∗ -3.8 -4.4

(23.0) (14.0) (14.0) (18.0) (10.0) (10.0)
Full-time ratio 18.0 5.8 5.9 -9.3 7.1 6.7

(11.0) (5.9) (5.9) (17.0) (12.0) (12.0)
PISA test score (unit: 1 SD)
Reading 32.0∗∗∗ 32.0∗∗∗ 32.0∗∗∗ 32.0∗∗∗

(2.4) (2.4) (3.3) (3.3)
Science 56.0∗∗∗ 56.0∗∗∗ 50.0∗∗∗ 50.0∗∗∗

(2.4) (2.4) (3.3) (3.3)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 -0.4 0.03

(1.9) (4.8)
TIMSS – Grade 8 -0.4 -4.5

(5.3) (14.0)
PIRLS 0.2 -2.4

(2.6) (6.9)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.21 0.73 0.73 0.24 0.69 0.69

Notes. Models for PISA math test score with sequential inclusion of regressors: a) student features; b)
PISA test scores on the domains of reading and science; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table B.3: Predictors of PISA reading score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 528.0∗∗∗ 70.0∗∗∗ 133.0 512.0∗∗∗ 76.0∗∗ 52.0
(18.0) (15.0) (104.0) (35.0) (24.0) (269.0)

Female 13.0∗∗∗ 30.0∗∗∗ -23.0 14.0∗ 34.0∗∗∗ 50.0
(3.0) (1.9) (86.0) (5.5) (3.3) (221.0)

Grade repeater -67.0∗∗∗ -22.0∗∗∗ -22.0∗∗∗ -56.0∗∗∗ -23.0∗∗ -23.0∗∗
(8.4) (5.7) (5.7) (12.0) (7.3) (7.3)

Immigration status (base: Native)
Second-generation 5.2 13.0 13.0 -73.0 -28.0 -28.0

(16.0) (8.1) (8.1) (39.0) (15.0) (15.0)
Third-generation -32.0∗ -5.6 -5.4 -38.0 6.2 6.2

(14.0) (9.5) (9.6) (26.0) (18.0) (18.0)
Books at home (base: 0-10)
11-25 -5.1 -1.5 66.0 0.1 -13.0 -46.0

(7.8) (5.0) (109.0) (20.0) (11.0) (270.0)
26-100 3.4 -2.9 249.0 27.0 -6.9 -126.0

(7.1) (4.6) (413.0) (19.0) (9.5) (1,044.0)
101-200 16.0∗ -2.4 421.0 44.0∗ -8.8 -211.0

(7.3) (4.7) (695.0) (18.0) (9.2) (1,760.0)
200+ 22.0∗∗ 0.9 458.0 57.0∗∗ -6.4 -218.0

(7.2) (4.7) (753.0) (18.0) (9.1) (1,908.0)
School random effects
School ESCS 2.1 -12.0∗∗ -12.0∗∗ 40.0∗∗∗ 0.2 0.2

(6.1) (3.9) (3.9) (7.4) (4.6) (4.7)
Student-teacher ratio 1.5∗∗ -0.1 -0.1 1.6 0.3 0.2

(0.6) (0.4) (0.4) (1.1) (0.7) (0.7)
Number of students 1.3∗∗ 1.0∗∗ 1.0∗∗ 0.1 0.1 0.1

(0.5) (0.3) (0.3) (0.8) (0.5) (0.5)
Private -25.0 21.0 22.0 -59.0∗∗ -8.6 -8.6

(22.0) (16.0) (16.0) (22.0) (13.0) (13.0)
Full-time ratio 27.0∗ 18.0∗∗ 18.0∗∗ -20.0 -6.3 -6.0

(11.0) (6.3) (6.2) (19.0) (18.0) (18.0)
PISA test score (unit: 1 SD)
Math 33.0∗∗∗ 33.0∗∗∗ 33.0∗∗∗ 33.0∗∗∗

(2.4) (2.4) (3.4) (3.4)
Science 45.0∗∗∗ 45.0∗∗∗ 52.0∗∗∗ 52.0∗∗∗

(2.4) (2.4) (3.6) (3.6)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 -1.2 0.4

(1.9) (4.7)
TIMSS – Grade 8 -3.2 1.3

(5.4) (14.0)
PIRLS -1.6 1.1

(2.7) (6.7)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.14 0.65 0.65 0.20 0.68 0.68

Notes. Models for PISA math test score with sequential inclusion of regressors: a) student features; b)
PISA test scores on the domains of math and science; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table B.4: Predictors of PISA science score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 592.0∗∗∗ 88.0∗∗∗ -101.0 512.0∗∗∗ 70.0∗∗ 158.0
(21.0) (15.0) (97.0) (33.0) (24.0) (222.0)

Female -18.0∗∗∗ -9.5∗∗∗ 148.0 -21.0∗∗∗ -15.0∗∗∗ -93.0
(3.1) (1.9) (80.0) (5.3) (3.4) (182.0)

Grade repeater -54.0∗∗∗ 3.3 3.0 -32.0∗ 14.0 14.0
(8.2) (5.6) (5.7) (13.0) (7.6) (7.6)

Immigration status (base: Native)
Second-generation -9.0 -5.6 -5.8 -62.0 -13.0 -13.0

(17.0) (7.3) (7.4) (37.0) (16.0) (16.0)
Third-generation -38.0∗ -10.0 -11.0 -50.0∗ -9.4 -9.3

(18.0) (9.2) (9.2) (23.0) (11.0) (11.0)
Books at home (base: 0-10)
11-25 0.6 8.6 -189.0 25.0 25.0∗ 114.0

(8.7) (4.7) (100.0) (19.0) (10.0) (230.0)
26-100 11.0 7.9 -739.0 48.0∗∗ 24.0∗∗ 354.0

(8.0) (4.4) (378.0) (17.0) (9.1) (876.0)
101-200 26.0∗∗ 11.0∗ -1,245.0 67.0∗∗∗ 25.0∗∗ 570.0

(8.2) (4.5) (637.0) (17.0) (9.0) (1,477.0)
200+ 30.0∗∗∗ 10.0∗ -1,349.0 81.0∗∗∗ 28.0∗∗ 606.0

(8.1) (4.4) (690.0) (17.0) (8.9) (1,600.0)
School random effects
School ESCS 20.0∗∗ 11.0∗∗∗ 12.0∗∗∗ 51.0∗∗∗ 15.0∗∗∗ 15.0∗∗∗

(6.2) (3.4) (3.3) (7.1) (4.0) (4.0)
Student-teacher ratio 1.9∗∗ 0.2 0.2 2.2∗ 1.1∗∗ 1.1∗∗

(0.6) (0.3) (0.3) (1.0) (0.4) (0.4)
Number of students 0.2 -0.7∗ -0.7∗∗ -0.4 -0.8 -0.8

(0.5) (0.3) (0.3) (0.7) (0.5) (0.5)
Private -59.0∗∗ -18.0∗ -19.0∗∗ -62.0∗∗ -13.0 -13.0

(19.0) (7.8) (7.4) (20.0) (12.0) (12.0)
Full-time ratio 6.3 -13.0∗ -13.0∗ -20.0 -7.4 -7.3

(11.0) (6.1) (6.1) (20.0) (20.0) (20.0)
PISA test score (unit: 1 SD)
Math 51.0∗∗∗ 51.0∗∗∗ 43.0∗∗∗ 43.0∗∗∗

(1.8) (1.8) (3.0) (3.0)
Reading 39.0∗∗∗ 39.0∗∗∗ 44.0∗∗∗ 44.0∗∗∗

(1.9) (1.9) (2.8) (2.8)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 3.4∗ -2.0

(1.7) (3.9)
TIMSS – Grade 8 9.6∗ -3.6

(4.9) (11.0)
PIRLS 4.7 -2.0

(2.4) (5.7)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.19 0.74 0.74 0.25 0.74 0.74

Notes. Models for PISA science test score with sequential inclusion of regressors: a) student features;
b) PISA test scores on the domains of math and reading; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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