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SUMMARY

The dissertation includes three essays contributing to our understanding of human cap-

ital development and student talent allocation. The first essay provides insights into the

impact of algorithmic student advising programs, while the second essay highlights the

role of higher education agencies in promoting international student mobility. The third es-

say evaluates the cognitive development trade-offs entailed by technical coursework. The

first essay discusses the Graduation and Progression (GPS) program, which is an algo-

rithmic student advising platform implemented by Georgia State University. The study

analyzes the impact of this program on student course-taking by comparing GPS-advised

students with those who did not receive advising. The study failed to credit the program to

have increased graduation rates by improving academic fit but found that marginal students

tended to leave college earlier. Also, the study provides evidence of assortative matching

between students and course selection, albeit only for STEM Computational majors. The

second essay examines the relationship between the 1996-2016 expansion of the German

agency DAAD’s outbound offices and international student enrollment in Germany. The

findings suggest that an increase in the number of DAAD offices has a positive impact on

international student enrollment in Germany, and that the first office foundation has the

largest effect. The study concludes by discussing the policy implications of these findings

for countries competing in the global race for talent. The third essay evaluates cognitive de-

velopment trade-offs between numeracy and literacy skills. The study uses PISA data and

analyzes the educational and financial gains from technical education versus the potential

underdevelopment of verbal skills. The study finds that the technical track outperforms the

Liberal Arts track due to greater educational production efficiency, which overcompensates

for worse educational production inputs. The findings suggest that the STEM advantage is

linked to the four additional instructional units in math and physics, and that there are no

secondary effects due to differences in preexisting levels of student skills.

x



CHAPTER 1

GEORGIA STATE UNIVERSITY’S GRADUATION AND PROGRESSION

SUCCESS ADVISING: ACADEMIC FIT EFFECTS FROM LEARNING

ANALYTICS

1.1 Introduction

The growing academic interest in learning analytics (Goldstein and Katz 2005; Siemens

2013; Papamitsiou and Economides 2014; Macfadyen and Dawson 2010; Hlosta, Zdrahal,

and Zendulka 2017) matches the expanding investment in Learning Management Systems

which has driven a three-fold increase in the financing of educational technology startups

during the COVID-19 pandemic (Singer 2021).

Learning Analytics (LA) collected in academic databases can track, predict, and influence

student performance in classes, similar to how consumer analytics are used in the enter-

tainment industry to tailor product offerings and improve customer satisfaction (Goldstein

and Katz 2005; Siemens 2013; Papamitsiou and Economides 2014; Macfadyen and Daw-

son 2010; Hlosta, Zdrahal, and Zendulka 2017). These LA systems often involve a large

amount of data, can process information quickly, include a variety of data types, and are

reliable. Companies like Amazon, Netflix, and YouTube have successfully used recom-

mendation algorithms to reach a diverse range of customer preferences. This approach,

known as the “long tail” ‘(Anderson 2006), allows for the inclusion of niche interests that

may not be addressed by mainstream content creation.

The use of algorithmic advising in higher education has significant implications for educa-

tional policy (Arcidiacono, Aucejo, and Spenner 2012). In the past, access to different col-

lege paths was determined by a variety of factors, including student preferences, abilities,

financial resources, and randomness. However, AI-powered recommendation platforms are
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designed to minimize randomness in student behavior and increase predictability of course-

work choices based on legacy student data such as demographics, test scores, and previous

academic performance. This potentially leads to a “predictability revolution” similar to

what has occurred in the consumer media industry (Cinelli et al. 2021), where algorithmic

tracking of user accounts increases ability to predict consumer behavior.

Using legacy student data to influence coursework choices may compromise our traditional

definition of “educational opportunity” (Reardon 2018), which allows for a degree of ran-

domness. The Duke survey (Arcidiacono, Aucejo, and Spenner 2012), a longitudinal study

of undergraduate student major intentions at Duke University, highlights the potential un-

intended consequence of advising students such that their chances of obtaining a degree

are maximized, where students may prioritize easier, less marketable degrees over more

challenging but potentially more marketable ones. On the other hand, more reliable and

standardized advising may improve student outcomes. For example, early advising can

decrease the negative impacts of enrolling students who are likely to drop out of college,

minimizing the financial burden of tuition payments and lost income. Additionally, AI-

powered recommendations may improve the match between students and courses, leading

to more specialized skillsets.

The article reports the results of the Graduation and Progression System (GPS) advising

program, implemented by Georgia State University (GSU), which is the first and largest

application of individualized LA to intrusive student advising (GSU 2019). Intrusive ad-

vising is a proactive approach to advising that involves regularly checking in with students

and providing guidance on their academic and career goals, and differs from a more reac-

tive approach, in which students only receive assistance when they seek it out. Bill Gates

has even commented on the GPS program’s reach, stating that “no other institution has

accomplished what GSU has over the past decade” in terms of expanding the scope of LA.

Using ten years of student data from all of GSU’s campuses, departments, and programs,

the program has identified nearly 1,000 “academic signals” indicating when students may
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not be well-suited to their current academic curriculum. These signals, which can be spe-

cific to certain programs or classes or more comprehensive, are used to alert advisors to

students who may be struggling and suggest course adjustments. Poorly fitting students are

then met with their assigned advisors – a ratio of 1-in-700 has been reported by GSU (GSU

2019) – who use the wealth of students’ records to customize advice to their specific needs.

The GPS advising program thus combines the personalization of feedback with mass pro-

duction of advising services, a combination previously thought to be unattainable.

Results are based on unique GSU administrative data from 2006 to 2014 and divided by

four discipline categories: STEM Computational, STEM Life Sciences, Social Sciences,

and Humanities (Le, Robbins, and Westrick 2014). Quasi-experimental techniques are

used to control for bias from observable student characteristics, and validity checks are

performed to minimize the influence of concurrent university policies such as microgrants

going to students in need, history effects such as grade inflation, and changes in tuition

regimes brought about by the reform of the HOPE scholarship system.

A theory of action based on the option value of college (Stange 2012) was used to generate

research hypotheses relating the availability of information about academic fit to gradua-

tion rates, persistence, and course-taking. Specifically, academic fit was operationalized

as the distance between a student’s relative academic aptitude and their major. A Rela-

tive Academic Strength index was created using academic tilt literature (Coyle and Pillow

2008; Coyle 2018) and ranks students and majors along a STEM fit continuum based on

the distance between their verbal and numerical scores on standardized tests.

The findings of the study are mixed and should be considered within the limitations of the

research design. A difference-in-differences experiment comparing students who switched

majors and those who stayed in their intended majors failed to demonstrate a relationship

between improving student-major fit and increased graduation rates, although the dosage

effects of the policy are consistent with this interpretation. There was also evidence that the

length of time spent in college decreased among students who eventually dropped out, but
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only among those with partial or no financial aid. Findings related to course-taking showed

an increase in coursework in relevant major areas and a decrease in the absolute distance

between students’ relative academic aptitude and their majors. Specifically, STEM Com-

putational students took, on average, over 15 more credits in their major area compared to

pre-GPS program implementation cohorts.

1.2 Literature Review

1.2.1 Learning analytics and advising

Intrusive advising (Angrist, Lang, and Oreopoulos 2009; Bettinger and Baker 2014; Ore-

opoulos, Brown, and Lavecchia 2017; Oreopoulos and Petronijevic 2018; Dobronyi, Ore-

opoulos, and Petronijevic 2019; Page et al. 2019) consists of text messages, e-mails, phone

calls, and other forms of outreach (e.g., chatbots, prerecorded videos and audios, online and

offline mentoring, etc.) stimulating student proactive behavior. Advancements in the tech-

nology have allowed universities to scale intrusive advising interventions, and their cou-

pling with high-frequency LA (Goldstein and Katz 2005; Siemens 2013; Papamitsiou and

Economides 2014; Macfadyen and Dawson 2010; Hlosta, Zdrahal, and Zendulka 2017),

including course-specific information from Learning Management Systems (Jovanovic et

al. 2019), promises to further customize interventions to the needs and backgrounds of in-

dividual students.

The focus on retention in individual classes typifies the first generation of interventions

headlined by the Open Academic Analytics Initiative (OAAI). This generation includes

other interventions conducted at Purdue (Arnold and Pistilli 2012), San Diego State Uni-

versity (Dodge, Whitmer, and Frazee 2015), and the Open University of Hong Kong (Choi

et al. 2018). The Bill & Melinda Gates Foundation has taken the lead on student ana-

lytics sponsoring the OAAI (Jayaprakash et al. 2014) and the later expansion of Georgia

State University’s GPS advising system, with the US Department of Education follow-

ing suit with generous funding to the Monitoring Advising Analytics to Promote Success
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(MAAPS) initiative involving 11 institutions inclusive of GSU (Rossman et al. 2021).

In contrast to the initiative evaluated in the current study, the OAAI used logistic regres-

sion to identify and alert students at risk of failing certain classes. The two OAAI treatment

groups, one receiving text messages if classified as at-risk and the other receiving both texts

and mentoring services, exhibited marginally higher grades but also higher attrition com-

pared to the control group in the classes covered by the initiative. The Purdue experiment

(2007-2009) implemented course signals through a traffic light system blinking red, yel-

low, or green to indicate a student’s status in the class and decreased class attrition (Arnold

and Pistilli 2012), similar to the San Diego (Dodge, Whitmer, and Frazee 2015) and Hong

Kong (Choi et al. 2018) experiments.

A previous evaluation of the MAAPS initiative (Rossman et al. 2021) differs from the

current study. The evaluation implements a randomized controlled trial design, in which

the treatment group received degree-planning and proactive outreach activities based on

self-regulated learning, in addition to the advising services offered to the placebo group.

Therefore, the control group in the MAAPS study effectively corresponds to the treatment

group in the current study. Additionally, the MAAPS study is a longitudinal analysis of the

undergraduate careers of the 2016-17 freshman class at several universities, including ap-

proximately 2,000 students from GSU, and focuses mainly on cumulative GPA and credit

hours without a specific emphasis on course selection and student-major fit.

The MAAPS study found that Black students had the largest gains, with a 0.22 point in-

crease in GPA, 12 additional credits, 8 percentage point increase in graduation rates, and a

10 percentage point decrease in dropout rates when advised through the MAAPS program.

In the discussion, Rossman et al. (2021) raise concerns about a shift towards easier classes

and changes in incentives to choose certain classes, but do not further explore or develop a

theoretical framework for algorithmic advising at the system level.

5



1.2.2 The information value of academic signals

A substantial effort to understand the determinants of college enrollment and persistence

has been pledged across education research. Educational psychology has linked academic

performance to self-efficacy (Schunk 1991) developing the concept of self-regulated learn-

ing (Zimmerman 2000) while the economist perspective has taken from the incentive-based

analysis of obtaining a degree (Mincer 1958; Schultz 1961; Becker 1962; Heckman 1976).

The perspective of educational psychology recognizes the iterative nature of course-taking

and the impact of early classes on later learning, leading to the need to update the human

capital model to account for the informational value of early classes (Stange 2012). This

informational value is a key aspect of studies on intrusive advising (Angrist, Lang, and

Oreopoulos 2009; Bettinger and Baker 2014; Oreopoulos, Brown, and Lavecchia 2017;

Oreopoulos and Petronijevic 2018; Dobronyi, Oreopoulos, and Petronijevic 2019; Page et

al. 2019) and is integral to the development of a model for algorithmic student advising.

The iterative enrollment model developed by Stange (2012) decomposes the value Vijt of

a degree j to student i at time t into two components: the net present value of the de-

gree NPVijt(·) and the option or information value Ii,t+1(·) of reassessing one’s chances

to attain a degree at checkpoint t + 1. The net present value of the degree captures the

lifetime returns of the degree (Wj) minus its costs (Cj); conversely, the information value

captures the value of the reduction in uncertainty (ηijt) concerning degree-specific relative

academic strength (RASij) discounted at the student’s self-confidence level (δit). Because

of the indexing of RASij to both i and j, the index must be understood as relative aptitude

rather than general student aptitude or g (Coyle and Pillow 2008; Coyle 2018). Relative

academic strength is partially known when entering college (0 < ηi,j,t=0 << 1) through

high school grades, test score results, and teacher and peer assessments and fully revealed

when graduating from college at time T (ηi,j,t=T ≈ 0). Note the indexing of δit to time t to

account for the plasticity of self-confidence (i.e., 0 < δit < 1). The option value of college

gets larger when residual uncertainty is greater (i.e., ∂It+1/∂ηijt > 0), and when student
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self-confidence is lower (i.e., ∂It+1/∂δit < 0).

The total value of degree j to student i at time t resolves to:

Vijt =NPVijt(Wj, Cj) + I((1− δit)
tηijtRASij)

Student i would persist in college when the value of their degree Vijt is greater than the

non-college option Vi = NPV (Wk), where k is the most lucrative occupation which does

not require a degree. The iterative college investment model improves upon the standard

model by taking into account the option value of college, which can make the decision to

enroll in college seem more rational for students who may have a low ex ante probability

of graduation and high costs of attendance. Additionally, this model can help explain why

some college students may choose to drop out at later stages without having updated their

degrees and absent any material changes in the cost-benefit ratio of their educational in-

vestments, as they may be “cashing in” on the new information value they have gained at

the end of an academic year.

1.3 Methodology

This section hosts discussions of the methods used in the study, including the development

of the index of relative academic strength to measure student-major fit and the GPA defla-

tion procedure to account for potential bias due to increases in average GPA over time.

The goal of the methodology is to control for observable differences between students who

received advising services and those who did not. However, due to the non-experimental

nature of the treatment and the comprehensive rollout of the program across undergradu-

ate education at GSU, assignment to treatment is non-random and there is neither a clean

control group available nor a presumably exogenous set of placebo students. In the study,

different student subgroups were used to test different aspects of the model and each sub-

group had to be matched independently to ensure that observational bias was minimized.

Details of this matching procedure are provided in the following subsection.
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The matching process used in this study identified two groups of students that were compa-

rable on key characteristics reported in Table 1.1. This table presents the matching features

and basic descriptives for the treated group of first-year students from A.Y.s 2012-2013 to

2014-2015 and the control group of first-year students from academic years 2006-2007 to

2008-2009. The t-tests and χ2-tests for numerical and categorical variables respectively

showed significant differences in all features except for out-of-state and first-generation

status, age, and SAT math test score.

1.3.1 Matching design

To address observational bias, outcomes of treatments and controls were weighted using

inverse probability weights from optimal matching with replacement (Rosenbaum 1989;

Hansen 2004). Propensity scores were calculated on observable student characteristics to

balance covariates across students who received GPS advising and students who did not get

advised independent of the outcomes. Next, conditional outcomes were calculated using

the appropriate method for the outcome, linear regression (continuous outcomes), logistic

regression (binary outcomes), or ordinal logistic regression (ordinal outcomes) requiring

robust standard errors.

In general, one wants to finds a “control” student (i.e., GPSi′ = 0) defined by a vector

of matching covariates Xi,GPS=0 about equal to the covariate space Xi′,GPS=1 of a treated

student (i.e., GPSi = 1). Propensity score matching matches the covariate spaces indi-

rectly through asymptotic convergence of the conditional features (Rosenbaum and Rubin

1983). Under standard identifying assumptions, inverse probability weights generated from

logistic regression of the binary treatment variable on the conditioning factors identify the

Average Treatment Effect on the Treated (ATT) in the second-stage difference-of-means

or difference-of-proportions. The ATT estimator is the inverse probability weighted differ-

ence in graduation rates for the 1, . . . , N treatments and the 1, . . . , N ′ controls:
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Table 1.1: Sample descriptives of matching features used for inverse probability weighting

Variable GPS1 Non-GPS2

Female∗∗∗ 59.9% 56.6%
Race∗∗∗

American Indian or Alaska Native 0.4% 0.2%
Asian 14.7% 17.5%
Black 33.2% 38.0%
Native Hawaiian or Pacific Islander 0.5% 0.1%
Not Reported 5.5% 4.0%
Two or More Races 3.6% 6.9%
White 42.1% 33.3%

Hope Recipient∗∗∗ 81.3% 71.0%
Out-of-State 3.4% 3.6%
Pell Eligible∗∗∗ 37.5% 43.5%
First Generation 20.6% 21.4%
Unmet Need∗∗∗ 54.4% 72.2%
Age (yrs) 18.4 (0.6) 18.4 (0.6)
High School GPA∗∗∗ 3.33 (0.32) 3.36 (0.34)
SAT Math 540.3 (71.9) 538.4 (77.7)
SAT Verbal∗∗ 540.1 (71.4) 537.4 (73.1)
SAT Writing∗∗∗ 526.5 (70.9) 520.6 (73.8)
Graduation∗∗∗

Yes, >4 yrs 45.0% 34.2%
Yes, <=4 yrs 17.2% 21.9%
No, <=4 yrs 37.7% 43.9%

Note. The table reports sample descriptives and the statistical significance of their
differences between treatments and controls (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p <
0.001). Standard deviations and t-tests are provided for numerical features, and
sample proportions and χ2 tests for categorical features.

1 The treatment group comprises students who entered their first year anywhere be-
tween A.Y. 2012-2013 and A.Y. 2014-15.

2 The control group comprises students who entered their first year anywhere between
A.Y. 2006-2007 and A.Y. 2008-09.

∆ ˆGraduation = N
N∑
i=1

Graduationi

p̂GPSi=1(Xi)
−N ′

N ′∑
i′=1

Graduationi′

1− p̂GPSi′=0(Xi′)

where the numerator is the observed graduation outcome and the denominator is the in-

verse probability weight calculated from the individual propensity of treatment p̂(·) condi-

tional on the matching features X = x1, . . . , xk. The study uses a difference-in-differences
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model to compare the graduation rates of two groups of students: those who switched ma-

jors (switchers) and those who did not (non-switchers) before and after the implementation

of the program. The difference-in-differences estimator calculates the ratio of graduation

rates between these two groups, with the upper and lower bounds defined by the most ex-

treme outcomes. The research design and measurement of other outcomes are discussed in

more detail in subsection 1.4.1.

The bias reduction measures the extent to which the differences between the treated group

and the control group, in terms of their covariates, are reduced. It is calculated as the

percentage reduction in total bias, which is the sum of the absolute standardized mean

differences between the two groups:

∆Bias =1−
K∑
k=1

| Xafter

k,GPS=1 −X
after

k,GPS=0 |√
(S2 after

k,GPS=1 − S2 after
k,GPS=0)/2

/
| Xbefore

k,GPS=1 −X
before

k,GPS=0 |√
(S2 before

k,GPS=1 − S2 before
k,GPS=0)/2

where Xk is the average of feature k and Sk is its variance calculated before or after

matching. The Conditional Independence Assumption (CIA) requires that: 1) the first-

stage binary model fully determines the data generating process; 2) good conditioning

factor balance is achieved after matching; and 3) there is no unobservable heterogeneity

that differentially affects the outcomes of treatments and controls. Assumption 1) is satis-

fied via complete specification of an education production function that determines student

outcomes in college (Sass, Semykina, and Harris 2014). Assumption 2) is satisfied by de-

tecting minimal violations of optimal post-matching balance at the standard significance

threshold of 0.1 standardized mean differences. Assumption 3) might only be violated with

particular outcomes subject to unobservable longitudinal shocks (see subsection 1.5.2 for

details).

10



1.3.2 Relative academic strength

An index of discipline fit was created using relative academic strength (Coyle and Pillow

2008; Coyle 2018). This index is a continuous value between −1 and +1 that represents

the maximum fit for qualitative and quantitative disciplines, respectively. The index is

calculated using the relative percentile ranks of a student’s math and verbal scores from the

SAT or ACT test. Since students at GSU can choose to submit either the SAT or ACT, the

distributions for both tests were averaged and scaled separately. The formula for calculating

the Relative Academic Strength (RAS) is as follows:

RASi =
νi − λi

| νi − λi |
· (| νi − λi |)max(ν,λ)

where νi is the math rank and λi is the verbal rank measured in percentiles.

A preliminary check of face validity was conducted via simulation (Table 1.2). A student

with a math score at the 80th percentile and a verbal score at the 20th percentile would

have a RAS value of −(0.8 − 0.2)0.8 = 0.66. A student with the same percentile rank in

verbal and math would be positioned at the center of the RAS range, though this is unlikely

to happen. The index takes into account diminishing marginal returns of relative ability,

and moves students towards the middle of the range as their composite percentile rank in-

creases. This means that a student with the same math or verbal tilt will be pushed further

to the right or left of the range, respectively, if their scores are closer to the median score.

For example, a student with a 20-percentile math tilt at the 90th percentile in math and 70th

percentile in verbal will have a RAS of 0.23, but a student with the same math tilt at the

70th percentile in math and 50th percentile in reading will have a RAS of 0.32.

RAS values were computed for both students and majors to calculate the distance between

students’ academic aptitude and their terminal majors. To minimize the potential confound-

ing effect of the program on the index, the entry SAT and ACT test scores of students were

collected from the GSU web repository IPORT using Python’s Selenium. While the data

11



is aggregated by major, IPORT provides more detailed information than the information

available from administrative data. For instance, IPORT includes the average SAT scores

of applicants, admitted, and enrolled students. The data on admitted students was used

as it is believed to provide a more accurate representation of the skill requirements for a

particular program compared to data on applicants or enrollments, which may be influ-

enced by market demand and other non-academic factors. The entry-level test scores of the

freshman cohorts from 2009-2010, 2010-2011, and 2011-2012, which predate the program,

were not included in the treatment effect analysis as they were considered to be uncontam-

inated data. Additionally, using entry test scores helps to ensure that factors endogenous

to course-taking at GSU do not influence the construction of the index. For majors with

a sufficient number of students, the most recent test data was used, while the average test

scores from 2009-2011 were weighted by cohort size and used for smaller majors.

The RAS values of majors, plotted in Figure 1.1, reveal good face validity. The three ma-

jors with the highest verbal tilt are Women’s and Gender Studies, French, and Journalism,

while the most quantitative-leaning majors are Finance, Physics, and Math. Some large

programs at GSU, like Exercise Science and Nutrition, show a surprising STEM tilt while

the social sciences (e.g., Criminal Justice, Economics, Social Work) tend to be balanced

with a slight verbal tilt.

1.3.3 Accounting for GPA inflation

There is evidence that grades in higher education have increased since the 1970s (Pattison,

Grodsky, and Muller 2013), a phenomenon known as grade inflation, and that students who

are close to receiving scholarships or waivers may improve their college performance in

response (Henry and Rubenstein 2002). As a result, there is a possibility that comparisons

of GPA outcomes over time may be biased due to history and behavioral effects.

To control for the potential bias of grade inflation, the study used a method similar to that

of Henry and Rubenstein (2002) by assuming that the relationship between SAT scores
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Table 1.2: Relative Academic Strength (RAS) value for mock students with varying apti-
tude

Academic aptitude Math pct.1 Verbal pct.2 RAS

Very high math, very low verbal 0.9 0.1 0.82
High math, low verbal 0.8 0.2 0.66
Middle-to-high math, middle-to-low verbal 0.7 0.3 0.53
Middle-to-high math, middle-to-low verbal 0.6 0.4 0.38
Middle math, middle verbal 0.5 0.5 0.00
Middle-to-low math, middle-to-high verbal 0.4 0.6 -0.38
Middle-to-low math, middle-to-high verbal 0.3 0.7 -0.53
Low math, high verbal 0.2 0.8 -0.66
Very low math, very high verbal 0.1 0.9 -0.82

Notes. The math and verbal percentile scores reported in columns (1) and (2) indicate
varying levels of academic strength. The corresponding RAS is reported in column (3).

1 A student’s math percentile score is their percentile rank in the score distribution of
SAT/ACT tests in their freshman year.

2 A student’s verbal percentile score is their percentile rank in the score distribution of
SAT/ACT tests in their freshman year.

and GPA should remain constant when GPA increases. A GPA discount factor Ijt was

calculated for each major j and year t by using 2010 as a baseline and considering the

relative changes in the average GPA and SAT scores of students graduating from the major:

Ijt =
SATjt

GPAjt

/
SATj2010

GPAj2010

If this ratio remains constant over time, it indicates that the major grades consistently

across years. On the other hand, a changing ratio suggests that similar students are graded

differently over time. To adjust for this, a major-year-specific GPA discount factor Ijt was

calculated for each major j and year t using 2010 as the baseline. This discount factor

was used to convert nominal GPA into real GPA denominated in 2010 GPA points, so that

Ijt = Ij2010:

Real GPA =Ijt × Nominal GPA
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Figure 1.1: Relative Academic Strength (RAS) by major in descending order of STEM fit

14



After adjusting for grade inflation, the average GPA for all students across all majors

was found to be lower than the nominal GPA, with the extent of the decrease differing by

major.

Other methods for accounting for changes in GPA over time were considered, but ulti-

mately not used in this study. A common approach is regression-based adjustment of nom-

inal GPA (Brookhart et al. 2016): the assumption here is that the same student features

should afford similar grades year over year, less grading has become more or less lenient.

However, this approach has the potential flaw of assuming that the education production

function remains constant, even when the institutional and environmental context changes.

In contrast, the correction method used in this study only assumes the stability of the re-

lationship between GPA and test scores. While there is ongoing debate about the stability

of measures of cognition, there is a general consensus that these measures are more stable

over time than the relationship between factors of the educational production process and

student achievement.

1.4 Empirical Section

In this dataset, there are records for undergraduate students at GSU from 2006 to 2014.

The time-invariant features are characteristics of the student that remain constant over time,

such as ethnicity and high school GPA, and are used to generate propensity weights. The

time-variant features, on the other hand, vary on an annual basis and include information

such as major declaration and tuition status, primarily used as outcome measures and for

inclusion and exclusion criteria in validity checks. The dataset also includes information

on credit hours taken by each student in a given academic year (e.g., MATH, CS, ENG,

etc.), with credits for each subject area being aggregated to calculate cumulative GPA at

the end of each year. Descriptive information for treated and control students is provided

in Table 1.1.
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1.4.1 Theory of action

Central to the option value of college model (Stange 2012) is that students follow an itera-

tive decision-making process, and reassess the value of the degree at each checkpoint. On

the other hand, in the standard human capital model (Mincer 1958; Schultz 1961; Becker

1962; Heckman 1976), students make a one-time enrollment decision based on the ex-

pected lifetime returns of a degree minus its opportunity costs. Information made available

by GPS advisors shapes student decision-making by benchmarking student performance to

historical data.

This high-frequency feedback can encourage students to move towards majors that are more

closely aligned with their inclinations and provide emotional support for learning. Studies

have shown that access to better information about the value of a degree can increase re-

tention rates, particularly in the case of intrusive advising interventions (Angrist, Lang, and

Oreopoulos 2009; Bettinger and Baker 2014; Oreopoulos, Brown, and Lavecchia 2017;

Oreopoulos and Petronijevic 2018; Dobronyi, Oreopoulos, and Petronijevic 2019; Page

et al. 2019). Additionally, students may make suboptimal college choice and enrollment

decisions due to informational constraints, self-concepts formed by early performance in

college classes (Porter and Swing 2006; Lizzio and Wilson 2013) such as fixed beliefs

about their abilities (Dweck 2013), and perceptions carrying over from prior formation

(Schunk 1991; Lent, Brown, and Hackett 1994; Zimmerman 2000).

Overall, algorithmic student advising is bound to affect student outcomes through three

distinct pathways:

1. Self-confidence pathway. Changes in student self-confidence, now effectively be-

coming a dynamic, time-dependent, construct (i.e., δit);

2. Ability revelation pathway. Reductions in uncertainty about degree-specific ability

(i.e., ηijt);

3. Academic fit pathway. Changing net present value of a degree NPVijt(·) after a
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switch to a better-fit major j.

The effectiveness of academic signals may vary depending on the individual student’s

characteristics and circumstances. Stange (2012) notes that “moderate-ability students,

who have the most uncertainty about the desirability of schooling, derive even more value”

(p.81) from continuous and flexible information provision. Another potential reason for

underprivileged students overresponding to GPS advising is the greater plasticity of their

self-confidence and perception of ability (Tinto 1987). However, the value of the new in-

formation may be more accessible to high-achieving students who have more resources to

make better use of it.

There are two main concerns that have been raised in the literature regarding algorithmic

advising: the potential for students to be restricted by their pre-college records, and the

possibility of shifting marginal students towards less marketable majors. This second con-

cern is supported by the Campus Life and Learning Project (Arcidiacono, Aucejo, and

Spenner 2012), which found that a reduction in the first-year Black-White GPA gap from

0.5 to 0.3 points at the end of the fourth year at Duke University resulted in about half of

Black females and a third of Black males switching from their intended STEM majors to

humanities majors, which had an average of 10% higher grades. The advising intervention,

while effective at improving graduation rates, had the unintended consequence of diluting

the value of the extra degrees attained.

The first part of the study employs what is essentially a difference-in-difference design to

identify transmission mechanisms for graduation rates. The first difference is the difference

in the graduation rate of students who did not switch majors before and after treatment and

the second difference is the difference in the graduation rate of students who switched ma-

jors before and after treatment. The academic fit pathway, which focuses on the effects of

algorithmic advising on coursework selection, is only applicable to students who switch

their majors. This allows the research design to differentiate the impact of the third path-

way from the first two pathways, which are not dependent on major switches. Therefore,
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the difference-in-differences is a significance test for academic fit effects from the GPS

program.

The research further aims to examine whether algorithmic advising affected persistence of

students who eventually dropped out. This is based on the idea that students who are on

the fence about continuing their studies may be more likely to drop out if they receive in-

formation about their low chances of completing their degree. By providing these students

with more accurate and timely information, algorithmic advising may help them exit col-

lege early. The information value thus potentially explains why marginal students enroll in

college despite their low college readiness. Algorithmic advising might correct suboptimal

decision-making avoiding losses of time and income resources.

Thirdly, tailored information about learning paths might lead to greater course-taking in

areas of better academic fit. Using the RAS index described in section 1.3, potential reduc-

tions in student-major distance resulting from algorithmic advising were evaluated. The

impacts of algorithmic advising on GPA and total credit hours were also analyzed to deter-

mine any potential trade-offs between the quantity and quality of instruction.

1.4.2 Effects of algorithmic student advising

Graduation rates

The first research question is whether retention changed as a result of switching to majors

that are a better fit for students.

The experimental design uses a difference-in-differences approach to identify transmission

mechanisms of the policy. The difference-in-differences estimate results from two differ-

ences: the first difference is the graduation rate change for students who did not switch

majors before and after the GPS program implementation (i.e., non-switchers), and the

second difference is the graduation rate change for students who switched majors (i.e.,

switchers). If the positive effects of algorithmic advising on student outcomes are due to

improvements in academic fit, it is necessary for these effects to be more pronounced in
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students who changed majors. It is possible that other confounding factors may prevent a

definitive causal claim from being made, but this condition appears to be a minimum re-

quirement for the viability of the transmission mechanism.

To further tease out transmission mechanisms, the study sets up a subexperiment and a vi-

sual test. The subexperiment divides the group of students who switched majors into two

sets: the first set consists of students who switched to majors that are a better fit for their rel-

ative academic aptitude, while the second set consists of students who switched to majors

that are a worse fit. If the effects of the policy are primarily due to improved student-major

fit, the first group of students should have benefited more from the policy than the second

group. The visual test (see Figure 1.2) examines the effects of increasing exposure to the

recommendation system (i.e., “dosage effects”) to identify discontinuities in the effect of

the policy: if effects increased not dissimilarly for switchers and non-switchers, this would

suggest that the policy’s effects are not primarily due to the academic fit pathway.

The results in Table 1.3 show the graduation odds ratio for non-switchers and two sets of

switchers, with confidence intervals for each set of coefficients. The table presents coeffi-

cient estimates as graduation odds ratios, i.e., before-after ratios of graduation odds. The

difference-in-differences estimate is the net change in graduation odds due to the major

switch, taking into account the change in graduation odds for non-switchers. Examining

the confidence intervals can reveal whether the association between algorithmic advising

services and student graduation rates is statistically significant, or if it is challenging to

establish noteworthy and distinctive impacts between major switchers and non-switchers.

The results of the experiment indicate that students who switched majors under GPS ad-

vising had an increased chance of graduating, although this difference was not statistically

significant (OR = 1.257, 95% CI 0.867-1.823) when compared to students who did not

switch majors. The subexperiment on students who switched to majors that were closer

matches to their academic aptitude also did not yield statistically significant results (OR =

1.254, 95% CI 0.846-1.859). Hence, one cannot assert that the GPS advising program led
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to enhancements in student graduation rates, or at the very least, it is plausible to eliminate

the possibility that it achieved this outcome through the major switching pathway, which

aligns with the most effective transmission mechanism according to theory.

The visual “dosage effects” provides more moderate evidence in favor of switching ef-

fects. Switchers who were exposed to the full four years of the program had a higher posi-

tive impact, with the non-switcher confidence falling within a similar range. Furthermore,

switchers who were exposed to the GPS program for three or two years had a decrease in

the impact on their graduation rates, and there was no significant difference in the effects

between those with one and two years of exposure. Conversely, non-switchers did not con-

sistently show an increase in graduation rates with increased exposure to the GPS program,

and the trendline for their effects was always within the margin of error for the trendline for

switchers. Therefore, while the dosage effects suggest moderate support for the academic

fit pathway, the results do not provide strong evidence against the null hypothesis that the

policy did not channel any effects through improvements in academic fit.

Persistence of dropout students

The second research question is whether the persistence of students who eventually dropped

out changed due to the GPS program. To answer this question, ordinal logistic regression

was used to analyze the persistence of students who had dropped out. The outcome variable

is ordinal because students who left at any point during their college careers stayed for one,

two, three, or four years before leaving. The goal was to determine if the GPS advising

system influenced the timing of students leaving college.

One potential estimation issue is the change to Georgia merit-based financial aid in the A.Y.

2011-2012. Specifically, the requirement to maintain a full tuition waiver was raised from

a 3.0 GPA to a 3.3 GPA, breaking up the previous scholarship program that awarded full

tuition waivers to students maintaining a 3.0 GPA into two tiers: one that covered the full

tuition costs for students with a 3.3 GPA and another that provided a partial tuition waiver
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Figure 1.2: Odds ratios of college graduation for GPS students who updated their majors and
who stayed in their intended majors

Notes. This figure plots the graduation odds of GPS-advised students who did not change
their majors (Stayer) and GPS-advised students who switched their majors at any point
during their academic career (Switcher) relative to the graduation odds for control stu-
dents. The x-axis indicates years of exposure to the policy or “dosage effects” from a
minimum of one year (2009-10 freshman cohort) to a maximum of four years (2012-13
freshman cohort).
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Table 1.3: Odds ratios of college graduation for GPS advised students

Odds Ratio (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

Non-Switchers1 1.115 0.940 1.323 6,282 86.6
All majors2

Switchers 1.402∗∗∗ 1.147 1.713 5,947 82.8
Difference-in-Differences 1.257 0.867 1.823
Better majors3

Switchers 1.399∗∗∗ 1.120 1.747 2,765 86.5
Difference-in-Differences 1.254 0.846 1.859 2,765

Notes. Odds ratios are calculated from logistic regression of the binary graduation
outcome. Coefficients capture the ceteris paribus likelihood of graduation of GPS-
advised students relative to those not. The Difference-in-Difference term is the ratio
of the switcher to non-switcher coefficients, with 95% confidence region ranging from
the mildest outcome (ratio of the lower bound switcher and upper bound non-switcher
estimates) to the most extreme outcome (ratio of the upper bound switcher and lower
bound non-switcher estimates). Estimates are inverse probability weighted (IPW) by
the most important outcome predictors and use robust standard errors for calculation
of the 95% confidence intervals (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).

1 The non-switcher set is students who graduated from the same majors they declared
before college entry.

2 The first set of switchers graduated in a major different from the majors that they
declared before college.

3 The second set of switchers is a more exclusive set that only includes students switch-
ing to majors that are closer fits to their academic aptitude.
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for those with a GPA between 3.0 and 3.3.

The effect of the change in financial aid requirements on college persistence was evaluated

by Jones et al. (2022) using a regression discontinuity design. The study found that the

change, which affected students with a cumulative GPA below 3.3 at the beginning of Fall

2011-2012, did not lead to significant drops in college persistence, likely because the main

targets of the change were students from upper socio-economic backgrounds who were less

sensitive to changes in price.

To ensure that the results were not biased by the changes to financial aid, a check was

performed by excluding the cohort of students who were fully exempt from tuition in the

A.Y. 2010-2011 and experienced financial losses from not meeting the required 3.3 GPA.

Although the research design does not use freshman cohorts from A.Y.s 2009, 2010, and

2011, multiple treatments bias might stem from the 2008 freshman cohort. If any of the

A.Y. 2008-2009 freshman students, who were in their fourth year in Fall 2011-2012, had a

GPA below 3.3, their full tuition waiver would have been terminated.

While multiple treatments bias might be a limited threat, financial aid changes modified the

playing field. The change was anticipated and non-exogenous for students in high school

at the time of the regime swap, but these students faced a tighter funding situation when

starting college. Therefore, a second validity check looks at the three categories of funding

recipients: students with no tuition waivers, students with partial tuition waivers, and stu-

dents with full tuition waivers when starting college.

The results of the analysis (see Table 1.4) suggest that the GPS advising system may lead

to earlier dropout among students who are struggling academically (OR = 0.662, 95% CI

0.559-0.784). This is seen as a positive outcome, as it may allow these students to leave

college and enter the workforce earlier, potentially avoiding the loss of time and resources

that may come with continuing their education. The results also show that there are minor

differences in estimates when excluding students who experienced changes in financial aid

regimes, suggesting that these changes may not have had a significant impact on the results.
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It appears as though the advising system is effective at accelerating the decisions to leave

college among students who were marginal in the first place.

Students who received full tuition waivers did not drop out of college earlier when they

received GPS advising, according to the results of further subset regressions with the three

categories of financial aid (i.e., none, partial, and full). While students who received partial

tuition waivers or no waivers behaved similarly to the main group, students with full fund-

ing did not leave college sooner when advised by GPS. It is possible that the full tuition

waivers acted as a “sticky” factor, causing students to remain enrolled even if they received

advising signals to leave. However, this result is largely consistent with expectations, as

students with full financial support may be less likely to respond to advising signals.

Table 1.4: Odds ratios of survival in college for students who dropped out

Odds Ratio (95% C.I.) Matching

coef. lwr. upr. treat (%) ∆Bias (%)

Overall set 0.600∗∗∗ 0.506 0.713 5,016 79.6
No tuition losers 1 0.593∗∗∗ 0.497 0.706 4,988 76.2
Financial Aid = None 0.684∗∗∗ 0.470 0.997 555 77.1
Financial Aid = Partial 0.728∗∗∗ 0.585 0.905 2,406 82.3
Financial Aid = Full 0.914 0.691 1.210 1,649 64.0

Notes. Odds ratios are calculated from ordinal logistic regression of the year of
dropout (1,2,3,4). Coefficients capture the ceteris paribus likelihood of surviving one
more year in college of GPS-advised students relative to those not. Estimates are in-
verse probability weighted (IPW) by the most important outcome predictors and use
robust standard errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001).
1 These are students that suddenly lost part of the their tuition coverage in Fall 2011-

2012 from the changing requirements of Georgia’s state aid.

Graduation outcomes

The last set of findings accounts for course-taking outcomes of students: graduation GPA,

student-major fit, and credit hours in their reference disciplinary area. High-ability students

in STEM computational disciplines were found to benefit the most from GPS advising in
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terms of increased GPA points (0.222, 95% CI ± 0.099) and credit hours taken in their

major area (16.05, 95% CI ± 4.91) as well as decreased distance between their intended

major and their actual graduation major each measured in terms of RAS (-0.075, 95% CI

± 0.054). These results were seen for three out of the four major denominations, except for

Humanities. Importantly, the four labels are defined by the intended major, not by gradua-

tion major, to avoid reversing the order of events.

The distance between students and their terminal majors declined the most among stu-

dents who intended to major in STEM Computational disciplines, followed by STEM Life

Sciences and the Social Sciences. Conversely, prospective Humanities students did not

significantly reduce the distance with their graduation majors. The fit between a student’s

academic aptitude and their major is indicated by the absolute distance between the aca-

demic tilts of the student and their majors (Coyle and Pillow 2008; Coyle 2018). If the

distance between a student’s aptitude and their major decreases, it means they have moved

closer to a discipline that is a good fit for them. Ability tilt expresses a continuum of out-

comes from high verbal proficiency to high math proficiency: if a student or major has high

math score compared to their verbal score, they are more heavily STEM leaning.

Students who received algorithmic advising showed significant changes in their GPA, with

the exception of those in the Humanities. Students in STEM Computational and Social

Sciences disciplines had an increase in their graduation GPA, while students in STEM Life

Sciences had a decrease in their GPA. Further analysis of the course structure in different

fields may be needed to understand the specific reasons for the changes in GPA. However, it

is noteworthy that the three disciplinary labels that reduced the distance between their stu-

dents’ entry academic aptitude and terminal majors also changed their inflation-adjusted

GPA.
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Table 1.5: Grade inflation-adjusted GPA at graduation

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational 0.222∗∗∗ 0.123 0.321 679
STEM Life Sciences -0.191∗∗∗ -0.328 -0.054 726
Social Sciences 0.236∗∗∗ 0.152 0.320 3,309
Humanities -0.215 -0.631 0.201 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regression of four-
year graduation GPA. Coefficients capture the ceteris paribus change in GPA of
GPS-advised students relative to those not. Estimates are inverse probability
weighted (IPW) by the most important outcome predictors and use robust standard
errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001).

Table 1.6: Credit hours taken in the student’s respective major area

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational 16.05*** 11.14 20.96 679
STEM Life Sciences -1.22 -4.37 1.91 726
Social Sciences 3.62*** 1.19 6.05 3,309
Humanities 2.91 -1.32 7.13 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regressions of credit
hours in the relevant subject area. Coefficients capture the ceteris paribus change
in credit hours taken by GPS-advised students relative to those not. Estimates are
inverse probability weighted (IPW) by the most important outcome predictors and
use robust standard errors for calculation of the 95% confidence intervals (∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).
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Table 1.7: Distance between students and their graduation major

WLS estimates (95% C.I.) Matching

Coef. Lwr. Upr. n ∆Bias (%)

STEM Computational -0.075*** -0.129 -0.021 679
STEM Life Sciences -0.052** -0.102 -0.003 726
Social Sciences -0.045** -0.084 -0.006 3,309
Humanities 0.006 -0.046 0.058 1,610 87.9

Notes. Coefficients are calculated from ordinary least squares regressions of the
distance between the relative academic strength of students and their majors. Coef-
ficients capture the ceteris paribus change in the fit between a student-major pair of
GPS-advised students relative to those not. Negative (positive) coefficients indicate
a narrower (looser) fit between students and their terminal majors. Estimates are in-
verse probability weighted (IPW) by the most important outcome predictors and use
robust standard errors for calculation of the 95% confidence intervals (∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001).

1.5 Discussion

1.5.1 Conclusions

This study examined the effects of largest algorithmic student advising implementation,

Georgia State University’s Graduation and Progression System (GPS). The program aims

to improve student graduation rates by better aligning students with majors that fit their abil-

ities, rather than just improving their chances of success in individual classes as previous

programs have done. The research found that the program had an impact on course-taking,

particularly among high-ability students in STEM fields, but did not demonstrate a link

between academic fit and improved graduation rates. The program may also have led to

faster dropouts among students on the margin, albeit not among those receiving full tuition

waivers.

The first set of findings used a difference-in-differences design to control for changes in

graduation rates over time and identify the potential mechanisms through which the GPS

program affects student outcomes. The results showed that both students who switched

majors and those who did not had increased chances of graduating under the GPS program,
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and the rate of change did not differ significantly between the two groups. This suggests

that the program did not have a disproportionately greater impact on students who switched

majors. A subexperiment conducted on students who switched to majors that were a better

fit for them also yielded insignificant results, further indicating that the student-major fit

pathway was not an active factor in improving graduation rates. The dosage effects test

also showed similar trends for students who switched majors and those who did not, de-

pending on the length of their exposure to the program. Overall, the results do not support

the hypothesis that the student-major fit pathway contributes to improved graduation rates.

The second set of results showed that the GPS program reduced the time it took for students

to drop out of college. This effect was not consistent across all students, with those who

received full tuition waivers showing no decrease in persistence under the program. These

findings suggest that the GPS program may be effective at helping students on the margin

make quicker decisions about their college careers, and that students who are fully tuition

exempt may not respond as much to the program because they are less sensitive to price. It

is important for educational policy to avoid unnecessarily causing students to leave college

and to focus on helping those who would be better off seeking employment in the work-

force. Therefore, the algorithm should be used with caution to ensure that it is not causing

unnecessary harm to students.

The third set of results showed that the GPS program had a significant impact on both

credit hours and GPA for students in STEM Computational, STEM Life Sciences, and So-

cial Science disciplines, with no significant effects on students in the Humanities. The

greatest beneficiaries seemed to be STEM Computational students, who took more exten-

sive coursework in their field of study and achieved better GPAs under the GPS system.

However, it is important to consider that these positive effects may disproportionately ben-

efit students who are already doing well and are best positioned to reap the rewards of their

education. Therefore, the scaling of advising interventions should be carefully considered

in light of the potential risks of further exacerbating divergence in student outcomes.
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1.5.2 Limitations

The main limitation of the study is the campus-wide rollout of the program in A.Y. 2012-13

by GSU, which means that synchronous control units were not available. This could lead

to bias due to changes in the unobservable composition of the student body. Unobservable

bias may affect outcomes that are influenced by history effects during the study period,

such as GPA. However, the procedure for adjusting GPA for grade inflation based on the

SAT-GPA ratio can mitigate this bias (see subsection 1.3.3). It is also possible that there

are other unobservable sources of bias that cannot be properly accounted for and may im-

pact graduation and persistence outcomes, such as changes in the economy that alter the

cost-benefit ratio of attending and remaining in college. As a precautionary measure, the

time-frame of the study was limited to three years before and after the program rollout.

The second set of validity threats involve concurrent programs that could affect the out-

comes being examined. One of these initiatives, the Summer Success Academy, is designed

to increase retention for less academically prepared students by providing various forms of

support and mentoring before college begins. However, this initiative was deemed to have

too limited a scope to potentially influence the results and no action was taken to control for

its effects. Another initiative, the Panther Retention Grants, could have affected length of

stay, course-taking, and graduation. The program disbursed microgrants of an average size

of $1,000 (GSU 2019) to unmet need students who are in good academic standing and have

met tuition payment deadlines in the past. To minimize the potential for multiple treatment

bias, students who received these grants were excluded from the analysis.

A third and more substantive threat comes from the changing requirements of financial aid

in the state of Georgia (Jones et al. 2022). The students who were exogenously stripped

of some of their financing in A.Y. 2011-2012 were identified and excluded from the analy-

sis. However, the changes persisted and affected subsequent cohorts of students who began

college after the reform, even though it was no longer an exogenous shock. To address

that, subset analysis of students in different financial aid bands was conducted, revealing
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that GPS-advised dropouts who received partial tuition waivers or no waivers were solely

responsible for the decline in persistence.

Minimal threats come from instrumentation as the instrument used to measure student-

major fit, based on relative academic strength, demonstrated good face validity (see Fig-

ure 1.1). Despite the limitations detailed in this section, the results suggest that effects

from scaling LA to offer student advising may be substantial, and they could optimize

course-taking and the decision to leave college of marginally enrolled students. However,

more research effort is needed to further understand how potential increases in achievement

inequality can be tempered and what specific adjustments might be needed for different

groups of students with varying socioeconomics and backgrounds. The article also sug-

gests that effects on graduation rates might at times be overstated, and, at the very least,

might not depend on improved class selection.
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CHAPTER 2

THE ROLE OF HIGHER EDUCATION AGENCIES IN PROMOTING

INTERNATIONAL STUDENT MOBILITY: THE EXPANSION OF GERMAN

DAAD’S OUTBOUND NETWORK

2.1 Introduction

The international mobility of students has seen significant growth in recent decades, with

the number of internationally mobile students more than doubling between 1998 and 2016,

from 1.9 to 5 million (UNESCO 2022). Some countries, such as the UK, have been par-

ticularly successful in recruiting a significant portion of their tertiary students from abroad,

relying heavily on the tuition fees paid by international students to finance their higher

education systems. Other English-speaking countries have also benefited from offering ed-

ucation in the global lingua franca, experiencing increased tuition revenues and a greater

availability of high-skilled workers.

Previous research on international student mobility, using gravity models (McMahon 1992;

Rosenzweig 2006; Naidoo 2007; Soo and Elliott 2010; Bessey 2012; Jena and Reilly 2013;

Beine, Noël, and Ragot 2014; Zheng 2014), has had some success in understanding the

factors that influence this phenomenon. Student mobility is driven by international wage

differentials rather than domestic schooling capacity constraints (Rosenzweig 2006) and

strongly and negatively predicted by distance between countries. However, these studies

have primarily focused on factors outside of the scope of educational policy (e.g., wage

rate, population, geography, etc.), offering limited guidance to governments and educa-

tional institutions. While some governments have implemented recruitment policies (Soo

and Elliott 2010; Jena and Reilly 2013; Zheng 2014), the response of students to these

types of interventions is largely unknown.
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This article seeks to bring the institutional perspective to the literature on international

student mobility by examining the relationship between the expansion of outbound of-

fices of Germany’s higher education agency, the Deutscher Akademischer Austauschdienst

(DAAD) alias “German Academic Exchange Service”, and foreign student enrollment in

Germany. The DAAD is a higher education agency that competes with other organizations,

such as the British Council and Campus France, for the acquisition of international stu-

dent talent. Higher education agencies are government-funded organizations that partner

with schools, universities, and other institutions to provide educational resources, organize

outreach activities, and supply information to international students who are considering

studying in the country, including information on funding and scholarships, accommoda-

tion, and visa requirements. The study uses panel data covering two decades (1996-2016)

and 208 countries, during which the DAAD added 53 offices to its network, bringing the

total number of offices to 64 at the end of the period (see Table 2.1).

The article examines the impact of hosting a DAAD office on foreign enrollment in a coun-

try. It looks at both the level effects from hosting an increasing number of offices and the

change in enrollment that occurs when a country becomes a host for a DAAD office. To

do that, it implements two treatment effect estimators: a standard two-way fixed effects

regression model, where the focal variable is an interval-level variable coding the number

of DAAD offices in a country at a time; a synthetic difference-in-differences model, where

the focal variable is a binary indicator turning on when a country starts hosting a DAAD

office.

Notably, synthetic difference-in-differences cannot capture “increasing doses” of the treat-

ment (D’Haultfœuille, Hoderlein, and Sasaki 2022) nor return estimates for countries that

added more than one office. This is because the estimator relies upon the canonical difference-

in-difference setup with a dichotomous, not polytomous treatment variable. However, syn-

thetic difference-in-differences are robust to concerns that the relationship between migra-

tion and office foundations could work in both directions (i.e., simultaneous or reverse
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causality), and that the establishment of offices did not occur at the same time for all coun-

tries (i.e., staggered treatment adoption).

The results of the study show that hosting DAAD offices leads to an increase in outbound

mobility. In particular, the level effect of each additional office is an 11-point increase (p-

value < 0.001) relative to the case rate for the same country with one less office. Similarly,

the difference-in-differences model estimates a grand average effect from office openings

of 19 points (p-value = 0.08) as compared to the case rate of the same country without any

offices. It appears that the majority of the impact is seen in low-income countries, which

could indicate that moving into these countries early, before they send large outbound co-

horts, may provide a competitive advantage.

This study highlights the potential for countries to influence international student mobil-

ity through the funding and maintenance of higher education agencies, rather than simply

relying on the relaxation of immigration laws. The findings of the study have direct impli-

cations for educational policy-making in the context of intense international competition

for foreign talent.

2.2 Background

Models of international student mobility have roots in the Random Utility Maximization

(RUM) framework (Rosenzweig 2006; Beine, Noël, and Ragot 2014) and the gravity equa-

tion framework of human capital mobility (McMahon 1992; Tinbergen 1962; Karemera,

Oguledo, and Davis 2000). The RUM framework offers a micro-level understanding of the

cost-benefit analysis that individual students undertake, while the gravity equation frame-

work uses quantitative methods to examine the macro-level patterns of international student

flows. These two frameworks can be used together in empirical research to provide an un-

derstanding of the factors influencing international student mobility.

The decision to study abroad is a multi-stage process that involves choosing to attend col-

lege, applying to higher education institutions, and accepting an admission offer. When
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Table 2.1: DAAD office openings by country 1996-2016

Country Foundation(s) Classification1

China 1994, 2001, 2002, 2003 LM
Russia 1993, 2001, 2002, 2003 L
India 1960, 2001, 2001, 2009 L
Israel 2004, 2014 H
Viet Nam 2001, 2003 L
Turkey 2000, 2000 LM
Brazil 1972, 2001 UM
United States 1971, 2002 H
Lebanon 2015 LM
Peru 2015 LM
Ethiopia 2014 LM
Tunisia 2014 L
Afghanistan 2012 H
Belgium 2012 L
Jordan 2012 LM
Cameroon 2009 L
Pakistan 2008 L
Serbia 2006 H
United Arab Emirates 2006 LM
Colombia 2005 LM
Costa Rica 2005 LM
Syria 2005-2011 LM
Armenia 2004 L
Azerbaijan 2004 L
Georgia 2004 LM
Italy 2004 H
Kazakhstan 2004 LM
Kyrgyzstan 2004 L
Latvia 2004 LM
South Africa 2004 UM
Spain 2004 H
Tajikistan 2004 L
Uzbekistan 2004 LM
Belarus 2003 LM
Cuba 2003 LM
Greece 2003 H
Iran 2003 LM
Sudan 2003-2008 L
Ukraine 2003 LM
Hungary 2002 UM
Romania 2002 LM
Canada 2002 H
Australia 2001 H
Ghana 2001 L
Hong Kong 2001 H
Singapore 2001 H
Venezuela 2001 LM
Viet Nam 2001 L
Czech Republic 2000 UM
Mexico 2000 UM
South Korea 2000 H
Taiwan 2000 H
Argentina 1999 UM
Chile 1999 UM
Malaysia 1999 UM
Thailand 1999 LM
Poland 1997 UM

1 The World Bank’s 1996 classification of countries defines four income groups
based on their gross national income per capita: low income (L) if below $786,
lower middle income (LM) if in the $786-3,115 range, upper middle income
(UM) if in the $3,116-9,645 range, and high income (H) if above $9,645.
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students consider moving to a new location, they weigh the potential costs and benefits of

the move. These costs and benefits are represented in their decision-making process as a

utility function, which is a summary measure of the monetary and non-monetary choice

dimensions. If the expected utility of moving to a new location is greater than the expected

utility of staying at their current location, then they would decide to make the move. In

this decision-making process, the potential destinations are considered as part of the indi-

vidual’s “awareness space” (Wolpert 1965), which refers to the range of locations that they

are aware of and considering as potential destinations.

In physics, the gravity equation is a mathematical relationship that describes the strength of

the gravitational force between two objects as a function of their masses and the distance

between them. In the social sciences, the gravity equation has been used to model the flow

of various quantities between locations, such as the flow of goods, services, capital, or peo-

ple. In the context of international student migration, the gravity equation has been applied

to understand the factors that influence the decision of students to move abroad for their

studies.

2.2.1 The student migration decision

There is broad agreement that the “awareness space” of students, or the institutions and

destinations they are aware of and consider, plays a role in their decision, similar to how

it influences worker relocations (Sjaastad 1962; Bartel 1979). However, there is a lack of

understanding in the literature on the specific timing and considerations involved in this

process (Carlson 2013). Do students move conditionally on a positive decision to pursue

a tertiary degree? Have they turned down all the potential home destinations by the time

they search for destinations abroad?

The research hypothesis being explored here is that higher education agencies may drive in-

migrations by acting as information brokers and increasing the awareness space of students.

Vrontis, Thrassou, and Melanthiou (2007) describe the consumption of higher education
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as a three-part journey: prospective students must perceive a purchase as “urgent”; then,

they must become aware of differentiating characteristics setting it apart from the compe-

tition; lastly, the perceived utility of the purchase must exceed its monetary and transaction

costs. Higher education agencies intervene at all stages of the student consumer journey by

creating awareness, highlighting the selling points of national educational institutions, and

helping new recruits with paperwork.

The RUM framework (Rosenzweig 2006; Beine, Noël, and Ragot 2014), widely applied in

the study of worker migration (Sjaastad 1962; Bartel 1979), can be used to understand the

decision-making process of internationally mobile students. Much like relocating workers,

students weigh the utility provided by outbound alternatives one at a time against the utility

from pursuing the home alternative. To model the migratory flows resulting from individ-

ual utility-maximization, scholars have implemented the gravity equation model (McMa-

hon 1992) formerly applied to the study flows of goods, services, and capital as well as

migrations (Tinbergen 1962) and which produced “some of the clearest empirical results in

international economics and business” (Karemera, Oguledo, and Davis 2000, p. 1746).

The utility of choosing a specific outbound destination j, represented by Uij , is central to

the analytical framework. The utility function accounts for the fact that students migrate

at a certain time M , complete their studies at a later time S, and then enter the workforce

at time S + 1 until the age of retirement R, receiving wage payments during [S + 1, R]

based on the market demand for their skills wit(si). The utility function also considers the

costs of relocation and studies abroad Cijt, as well as the one-time psychological burden

of migration PijM , and normalizes and omits any non-monetary benefits or “amenities”

Aijt that may accrue as a result of the migration (i.e.., lifestyle, exit from warzones, milder

climate, etc.). The utility functions for choosing an outbound destination j and the home

destination h are as follows:
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Uij =

(∫ R

t=S+1

eδtwit(si)dt+
R∑

t=M

Aijt

)
−

(
S∑

t=M

Cijt − PijM

)
(2.1a)

Uih =

(∫ R

t=S+1

eδtwiht(si)dt

)
−

(
S∑

t=M

Cijt

)
(2.1b)

According to the RUM decision rule, a student will only migrate if the utility gained

from at least one host destination is greater than the utility gained from remaining at home.

The RUM model assumes that students have unbounded knowledge of the benefits and

costs of migration, constant non-monetary benefits, and equal living expenses in the host

and origin countries. However, it does not assume that students will necessarily join the

workforce in the host country after completing their studies. Instead, the model uses the

world price of skills wit(si), rather than the host country’s price, to capture the wages

received by the student. It is also assumed that the wage rate in the country of origin

wiht(si) is different from the world rate and that students have already made the decision

to pursue a degree and are not considering workforce employment.

2.2.2 Gravity equations of international student mobility

The gravity equation expresses the number of student moves between any two countries

(j, h) as proportional to the K dyadic economic, social, and political pull factors Xjhk and

inversely proportional to their distance Djh.

Flowjh =

∏K
k=1 X

βk

jhk

Dα
jh

(2.2)

While some of these factors have shown clear relationships with student migrations, the

effects of others have been less consistent and more difficult to discern (see Table 2.2). The

table summarizes gravity equation studies with one inflow destination and multiple outflow

destinations. Most of the studies use total enrollments as instruments for first-year student
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flows exploiting the strong correlation between the two quantities. The time-invariant char-

acteristics of the host country are included as fixed effects and omitted from the output.

Distance is the most significant and negative predictor of student migrations. Other pre-

dictors considered are language, borders, population trade, and exchange rate. Sharing a

common language and border positively predicts student moves while being landlocked did

not have a statistically discernible impact on student inflows into Germany (Bessey 2012).

Population is also a driver for out-migrations and so is involvement in international trade

(McMahon 1992; Naidoo 2007; Jena and Reilly 2013; Zheng 2014). Contrary to expec-

tations (Jena and Reilly 2013), appreciating exchange rates do not significantly hamper

out-migrations (Naidoo 2007; Zheng 2014).

There is ongoing debate regarding the influence of economic factors on international stu-

dent migrations. Some research suggests that GDP, or a country’s overall capacity for

economic production, may not significantly impact the number of students enrolling in in-

stitutions of higher education. For example, a study by Bessey (2012) found that higher per

capita GDP did not lead to increased enrollment in German universities. This may be due

to the fact that poorer students who may benefit from increased economic capacity may

already be receiving grants and are instead constrained by other non-monetary factors. On

the other hand, research by Rosenzweig (2006) suggests that wage differentials play the

most significant role in determining enrollment patterns in higher education. Specifically,

the study found that international students are more likely to enroll in US higher educa-

tion institutions in pursuit of higher wages, rather than being crowded out by educational

systems at capacity. This supports the “brain drain” model, which posits that students will

follow economic opportunities rather than eschewing the constraints of overpopulated do-

mestic educational systems.

There is mixed evidence on the impact of specific features of the education system, such

as tuition fees and university rankings. Some studies have found that tuition fees may not

significantly impact migration decisions, with students often choosing to attend a particular
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institution regardless of the cost. This may be due to the fact that once students have made

the decision to pursue higher education, the difference in fees between institutions may

not be a major factor in their decision-making process (Soo and Elliott 2010). Similarly,

university rankings have been found to be largely uncorrelated with student mobility on

a global scale (Rosenzweig, 2006), albeit rankings may serve as a status signal and may

impact élite migrations among high-income students.

The current study speaks to a gap in the international student migration literature by bring-

ing attention to the role of institutions. To further encourage the study of this topic, it is

important to note that there is strong theoretical support for the effects of higher education

agencies, but there is a lack of empirical evidence to back up these claims. Few studies

(Soo and Elliott 2010; Jena and Reilly 2013; Zheng 2014) have investigated specific initia-

tives, such as the two phases of the UK Prime Minister’s Initiative (PMI) in 1999 and 2006

which expanded the British Council’s capabilities and streamlined the visa application pro-

cess. Prime Minister Tony Blair’s goal was to reassert the British presence in the worldwide

market for talent dominated by the United States by reducing the overhead of the migra-

tion decision and creating a clear pathway for UK employment. Soo and Elliott (2010)

found that the number of British Council exhibitions attended by universities in 2006-2007

predicted international enrollment, but the relationship was non-linear and the effect faded

when considering the quality of the institution. Other studies (Jena and Reilly 2013; Zheng

2014) have produced mixed results, potentially due to differences in the operationalization

of the focal variable.

2.3 Methodology

2.3.1 Data

This research study analyzed the universe of international student inflows into German uni-

versities from 208 countries in the years between 1996 and 2016 (inclusive). This period

witnessed the most rapid expansion of DAAD’s outbound network, which grew from 11
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Table 2.2: Gravity model estimates from selected single-destination studies

Author(s)

Agarwal &
Winkler

McMahon Rosenzweig
et al.

Naidoo Bessey Jena &
Reilly

Zheng Levatino

Year (1985) (1992) (2006) (2007) (2012) (2013) (2014) (2017)
Period 1954-1973 1960-1975 2003-2004 1985-2003 1997-2002 2001-2008 1994-2007 2002-2011
Model OLS OLS OLS OLS RE OLS GLS OLS
R2 0.6 0.47 0.71 0.9 0.69 0.51 N/A N/A
Host USA USA USA GBR DEU GBR GBR AUS
n 25 18 125 171 144 89 42 153
Outcome Enrollment Mobility rate Enrollment Enrollment Enrollment VISA issues Enrollment Enrollment
GDP (+) (+) (+) (+) N/A (nss) (-) (+)
Forex N/A N/A N/A (nss) N/A (-) (-) N/A
Trade N/A (+) N/A N/A N/A (+) (+) N/A
Population N/A N/A (+) N/A (+) (nss) (+) (+)
Language (nss) N/A N/A N/A N/A (+) (+) (+)

The table presents the characteristics of the studies and the significance of their gravity
parameter estimates, which are coded as follows: negative (-), positive (+), not statisti-
cally significant (nss), and not available (N/A).

offices at the beginning of the time-frame to 64 offices. Variables reflecting time-variant

heterogeneity at the country-level were collected from the World Bank, the United Nations,

and the CIA Factbook and included in the analysis dataset.

The analysis used two different methods to determine how the establishment of DAAD

offices impacted foreign enrollment: a standard two-way fixed effects model, which ex-

amined how changes in the number of DAAD offices affected foreign enrollment; and a

synthetic difference-in-differences model, which compared changes in foreign enrollment

before and after the establishment of the first DAAD office in a country. The treatment

variable, or the variable being analyzed, was ordinal (i.e., office count) in the first method

and binary (i.e., hosting an office or not) in the second method. The treatment group used

for the synthetic difference-in-differences model was limited to countries that had estab-

lished one office.

The dependent variable in the analysis was the count of foreign students enrolled in German

universities. This count variable may exhibit overdispersion (Silva and Tenreyro 2006),

which can lead to deviations from the residual normality assumption that is required for
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multiple linear regression. In addition, the treatment (i.e., establishment of DAAD offices)

may be endogenous to pre-treatment factors such as sending capacity, and the treatment was

implemented in a staggered manner (Goodman-Bacon 2021; Baker, Larcker, and Wang

2022; Callaway and Sant’Anna 2021). Endogeneity bias may occur if the establishment

of offices follows migration flows rather than causing them. In this case, the increase in

migration flows may not be a result of the offices themselves, but rather due to other fac-

tors that influence both the establishment of offices and migration flows. The staggered

implementation of the treatment invalidates the canonical difference-in-differences setup,

which assumes a common treatment period across all treated units. This may also lead

to a difference-in-differences estimator identifying spurious variation, rather than causal

variation, reflecting the timing of treatment and size of the treated group in each cohort

(Goodman-Bacon 2021).

2.3.2 Standard two-way fixed effects estimation

The expanded gravity equation models used to estimate the effect of adding one or more

DAAD offices on international students outflows into Germany was:

Flowjt =exp(γj + ϕt +
K∑
k=1

βkXjtk + δDAADjt + ϵjt)

where:

• Flowjt is the count of foreign students of country j hosted in Germany at time t;

• γj and ϕt are the country and year fixed effects;

• [β1, ..., βK ] is a vector of K coefficients storing j’s time-varying effects;

• δ is the target coefficient storing the level effects from increasing j’s DAAD office

count;
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• ϵjt is an individual error clustered at the country-year level.

By virtue of fixed effects estimation, coefficient estimates are calculated using varia-

tion within a country over time (i.e., “within-variation”). Resultantly, coefficients capture

ceteris paribus differences in the number of student contingents by adding one office rather

than differences between countries with a different office count (i.e., “between-variation”).

Four panel data estimators were tested: 1) ordinary least squares; 2) log-transformed or-

dinary least squares; 3) Poisson; and 4) negative binomial. Residual diagnostics (see Fig-

ure A.1 in the Appendix) and goodness-of-fit tests were conducted leading to the choice of

the negative binomial model as the most appropriate for the data.

First, a baseline linear model was estimated using student enrollment as the dependent

variable and population size, GDP per capita, imports, exports, and year and country fixed

effects as predictors. The second model considers a log-transformation of the dependent

variable as suggested by the log-likelihood profiles for the Box-Cox parameter (i.e., λ = 0)

using the same base predictors and the log of student counts as the outcome variable with

a one-unit shift to avoid undefined terms. Next, the Poisson and the more general nega-

tive binomial models were tested. The negative binomial distribution generalizes Poisson

allowing for separate adjustment of the variance thanks to the shape parameter α found

through optimization.1

Adoption of negative binomial was upheld by failures of the assumptions required by the

other models. Residual diagnostics of the ordinary least squares and log-transformed mod-

els revealed heavy tails in the distribution of the residual variance and a violation of the

normality assumption. The Poisson model also showed a poor fit to the data as per the

quantile-quantile plot and the deviance test (p-value < 0.001); furthermore, the conditional

mean trailed several orders of magnitude behind the conditional variance (dispersion pa-

rameter = 82.3) violating the main Poisson assumption. No need was found to separately

account for the zero-counts, which are in the single digits (< 5%).
1R’s glm package comes with a built-in optimizer printing the reciprocal of the dispersion parameter

θ = 1
α to the output (Hilbe 2014)
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The Hausman (1978) specification test was used to evaluate the appropriateness of using

fixed effect estimation. The significant test statistic (p-value < 0.001) indicated a corre-

lation between the time-varying predictors and the fixed effects, leading to the conclusion

that the fixed effect estimator is more appropriate and efficient in this case. The fixed esti-

mator purges time-invariant heterogeneity, observed and unobserved, by “demeaning” the

dependent variable by the group- and time-averaged values of student flows for each coun-

try.

In the analysis, serial correlation and heteroskedasticity were potential concerns due to the

two levels of clustering in the data by year and country (Arellano et al. 1987), and were de-

tected by the Breusch-Godfrey (Breusch 1978; Godfrey 1978) and Breusch-Pagan (Breusch

and Pagan 1979) tests. These types of correlation, longitudinal and cross-sectional, can

cause standard error estimates not to fully capture predictive uncertainty. However, the

decision was made not to cluster the standard errors following the argument that clustering

may not be necessary when the dataset is the universe of an event set rather than a sam-

ple, as there is no uncertainty due to sampling that needs to be accounted for through error

clustering (Abadie et al. 2022).

2.3.3 Synthetic difference-in-differences

The use of synthetic difference-in-differences is motivated by endogeneity concerns due to

the potential endogeneity of office foundations, and staggered treatment adoption. In this

context, endogeneity concerns refer to the potential for the treatment (i.e., establishment of

DAAD offices) to be influenced by third factors which explain the outcome (i.e., foreign

enrollment in German universities) rather than the other way around. This can lead to bi-

ased estimates of the treatment effect.

Synthetic difference-in-differences is a method that aims to address endogeneity concerns

in difference-in-differences analysis by using synthetic control methods. The synthetic

control group is designed to closely match the treated unit on the pre-treatment trends and
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covariates, in order to control for confounding factors that may affect the outcome. The

donor pool is a set of units that are used as a reference group (i.e., placebos) to construct

the synthetic control group for each treated unit in synthetic difference-in-differences anal-

ysis. The synthetic control group for each treated unit is constructed by combining units

from the donor pool in a way that minimizes the difference between the treated unit and the

synthetic control group on the pre-treatment trends and covariates.

A growing literature (Goodman-Bacon 2021; Baker, Larcker, and Wang 2022; Callaway

and Sant’Anna 2021) attests to the failures of two-way fixed effects regression to identify

the causal difference-in-differences parameter when the rollout of the treatment is stag-

gered. Due to asynchronous office foundations, the canonical difference-in-differences

treatment matrix with {1+, . . . , J+} treatment countries, {1−, . . . , J−} placebos, and {1, . . . , T−, T+, . . . , T}

time-periods shown below is unavailable:



DAAD1+,0 . . . DAADJ+,0 DAAD1−,0 . . . DAADJ−,0

... . . .
...

... . . .
...

DAAD1+,T− . . . DAADJ+,T− DAAD1−,T− . . .DAADJ−,T−

DAAD1+,T+ . . . DAADJ+,T+ DAAD1−,T+ . . .DAADJ−,T+

... . . .
...

... . . .
...

DAAD1+,T . . . DAADJ+,T DAAD1−,T . . . DAADJ−,T


=



0 . . . 0 0 . . . 0

... . . .
...

... . . .
...

0 . . . 0 0 . . . 0

1 . . . 1 0 . . . 0

... . . .
...

... . . .
...

1 . . . 1 0 . . . 0


(2.3)

Conversely, to be defined here is a block matrix with multiple treatment periods tj+ like

the one in equation (Equation 2.4). Forcing a two-way fixed effects estimator on a simi-

lar block matrix might introduce bias in the causal parameter of interest (Goodman-Bacon

2021). The estimator would use a combination of “allowed” and “prohibited” counter-

factuals to estimate the difference-in-differences parameter: country 1+ hosting an office

starting at time T 1+ would factor into the control group for country J+ hosting an office

starting at T J+ (“prohibited comparison”), thus joining countries j+ not yet hosting offices
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by time T 1+ and countries j− which never hosted offices (“allowed comparisons”). Vice

versa, country J+ might be legitimately used as a comparison for treated country 1+ at time

T 1+ because not yet treated at that time.



DAAD1+,0 . . . DAADJ+,0 DAAD1−,0 . . . DAADJ−,0

... . . .
...

... . . .
...

DAAD1+,T− . . . DAADJ+,T− DAAD1−,T− . . .DAADJ−,T−

DAAD1+,T 1+. . . DAADJ+,T 1+ DAAD1−,T 1+ . . .DAADJ−,T 1+

... . . .
...

... . . .
...

DAAD1+,TJ+. . . DAADJ+,TJ+ DAAD1−,TJ+ . . .DAADJ−,TJ+


=



0 . . . 0 0 . . . 0

... . . .
...

... . . .
...

0 . . . 0 0 . . . 0

1 . . . 0 0 . . . 0

... . . .
...

... . . .
...

1 . . . 1 0 . . . 0


(2.4)

One approach to addressing the staggered implementation of the treatment is to re-

duce the treatment matrix to valid submatrices that conform to the canonical difference-in-

differences block design (Goodman-Bacon 2021; Baker, Larcker, and Wang 2022; Call-

away and Sant’Anna 2021). This can be achieved through the use of estimators such as the

Callaway-Sant’Anna estimator (Callaway and Sant’Anna 2021), which is a two-stage pro-

cedure that involves disaggregating the treatment matrix into valid submatrices and reaggre-

gating the effect sizes calculated from individual regressions. These regressions use units

treated at one time and controls that are either never-treated or not-yet-treated, reducing the

treatment matrix to a canonical difference-in-differences matrix. The use of not-yet-treated

controls can increase the power and decrease self-selection bias in the control group, but at

the cost of losing a clean, time-invariant control group.

As a case in point we consider the case of Turkey, Italy, and Belgium. Their treatment

turns on in 2001, 2005, and 2013 through the end of the panel respectively. In this context,

the identification of the causal parameter for Italy in 2005 using Turkey and Belgium as

controls would be problematic because Turkey was already treated in 2001, making it an

invalid placebo for Italy in 2005. In contrast, Belgium in 2005 would be a valid control
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because it had not yet received the treatment. Removing Turkey from the treatment matrix

would allow the analysis to conform to canonical difference-in-differences.



TUR1996 ITA1996 BEL1996

... . . .
...

TUR2001 ITA2001 BEL2001

... . . .
...

TUR2005 ITA2005 BEL2005

... . . .
...

TUR2012 ITA2012 BEL2012



=



0 0 0

... . . .
...

1 0 0

... . . .
...

1 1 0

... . . .
...

1 1 0



(2.5)



ITA1996 BEL1996

...
...

ITA2005 BEL2005

...
...

ITA2012 BEL2012


=



0 0

...
...

1 0

...
...

1 0


(2.6)

A synthetic difference-in-differences estimate (Arkhangelsky et al. 2021) is obtained by

slicing the treatment matrix down to a form that conforms to the canonical difference-in-

differences design (see Equation 2.3), and using the pre-treatment periods from the control

countries to generate unit weights and time weights. Unit weights define a linear combina-

tion of untreated outcomes that best match the pre-treatment outcomes of the treated and

control countries, while time weights represent a linear combination of time periods that

best fit the average post-treatment outcome of each control unit with its pre-treatment out-

comes. The time weights are the distinctive addition of synthetic difference-in-differences

to the standard synthetic control method (Abadie, Diamond, and Hainmueller 2010, 2015)

and are pseudo time series parameters weighting more heavily time-periods which are pre-

dictive of post-treatment enrollment. In this case, time weights are useful because stu-
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dent outflows are being predicted by two factors: enrollment in other countries (cross-

sectionally) and lagged enrollment (longitudinally).

A weighted least square regression can be calculated using unit and time weights to esti-

mate the average treatment effect. The ATT parameter for country j+ results from a two-

way fixed effects regression of the outcome on the submatrix including the treated country

j+ and its donor pool observed throughout the panel:

Flowj+t =exp(wj+ · wt(γj + ϕt + δj+DAADj+t + ϵj+t)) (2.7)

where unit weights wj are assigned to the treated country and the control countries,

while time weights wt are assigned to each time-period. The undefined unit weight for the

treated unit defaults to the relative size of the donor pool, and the undefined time weights

for the post-treatment period default to the average post-treatment indicator.

The remainder of the section discusses parameter interpretation and effects aggregation.

The synthetic difference-in-differences framework does not impose restrictions on the func-

tional form, therefore fixed effects negative binomial regression can be used to return the

causal parameters [δ̂1+ , . . . , δ̂J+ ]. However, the prior ordinal interpretation of the causal

parameter does not transfer to synthetic difference-in-differences. Now, each δ̂j+ is a bi-

nary indicator reflecting the average change in student enrollment determined by an office

foundation. Using the potential outcome notation:

δ̂j+ =
1

T − T j+

T∑
t=T j+

Flowj+t(1)− Flowj+t(0) (2.8)

Synthetic difference-in-differences estimates allow for the analysis of the impact of one

office foundation on foreign enrollment in German universities, but only for countries that

have hosted one and only one office over the observation period. This is because countries

that have opened more than one office are not considered valid candidates for estimation.
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Potentially, one could truncate the observation period until before the opening of the second

office, but none of the countries that opened a second office started the panel as not-yet-

treated and all hosted at least one office from the beginning.

Similarly, countries that started and completed the observation period with one office (e.g.,

France) are also excluded from the estimation set. The control group for each treatment unit

j+ is composed of countries that have not opened any offices by the end of the observation

period. Synthetic counterfactuals can only be constructed using untreated variation, so any

countries that receive treatment during j+’s post-treatment period (T j+, T ) are not included

in its synthetic control. This allows the block matrix for each treated country to conform

to a valid 2x2 block matrix with one treated country-treatment period combination and a

group of not-yet-treated units.

The final analysis aggregates the individual treatment effects using two methods: inverse-

variance weighting (IVW) and exposure and inverse-variance weighting (EIVW). IVW is

a method of weighting the individual treatment effects by the inverse of their variance, in

order to give more weight to estimates with lower variance and higher precision. The final

estimate is calculated as the weighted average of the individual treatment effects, with the

weights being the inverse of the variance of each estimate.

EIVW is a variant of IVW that takes into account the length of the exposure window (i.e.,

the time period during which the treatment was in effect) in the calculation of the weights.

The EIVW estimate is calculated as a weighted average of the individual treatment effects,

with the weights being the inverse of the variance of each estimate multiplied by the length

of the exposure window. This method gives more weight to countries that opened offices

earlier in the panel and provided more post-treatment data points, as these countries have

longer and potentially less noisy exposure periods. The EIVW-ATT estimate is calculated

as follows:
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∆̂ =

∑J+

j+=1+ δj+(1/σ̂j+)(T − T j+)∑J+

j+=1+(1/σ̂j+)(T − T j+)
(2.9)

where (1/σ̂j+) is the inverse variance weight and (T−T j+) is the exposure weight. The

IVW aggregate removes the exposure weight (T −T j+) and only considers the variance of

the estimate.

2.4 Results

2.4.1 Main estimates

The analysis in this study found that the opening of German Academic Exchange Service

(DAAD) offices is strongly related to an increase in the number of students coming to

study in Germany. This relationship was examined using two-way fixed effect estimation

and synthetic difference-in-differences, and was found to be robust across multiple model

specifications (see Table 2.3). The negative binomial model was determined to be the best

fit for the data according to a Weight of Evidence (WoE) test, which compares the good-

ness of fit of different regression models. The results from this model align with estimates

obtained through log-transformed ordinary least squares regression, but contrast with esti-

mates from ordinary least squares and Poisson regression.

The model specification was validated using the Akaike Information Criterion corrected

(AICc), which is a measure of the relative fit of different models (see Table Table A.1 in

the Appendix). The WoE test is a method used to evaluate and compare the goodness of fit

of different regression models ranking the models based on their relative distance from the

best-performing model, which is set to zero. The WoE statistic is calculated by subtracting

the best model’s AICc value from the AICc value of each model in the set to obtain the

∆AICc, and then normalizing this difference to a value between 0 and 1. Larger WoE val-

ues indicate a better relative fit of the model.
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According to the WoE test, the model that includes GDP per capita as a predictor and spec-

ifies the other quantitative predictors (population, GDP per capita, imports, exports, and

urban population) as linear is the most appropriate for the data. This is indicated by the

WoE statistic in column 5 of Table Table A.1. The models that include GDP as a predictor

rank second and third, followed by the GDP per capita model with log specification of the

quantitative predictors. It is also notable that the log-likelihood (column 6) is stable across

the highest-ranked models, indicating that the estimates are not sensitive to model specifi-

cation. This suggests that the chosen model is a reliable fit for the data.

Table 2.3 presents the main estimates from the model selected using the WoE test. These

estimates include those from the negative binomial model, as well as ordinary least squares

regression, log-transformed linear regression, and Poisson regression. Table 2.3 also pro-

vides information about the interpretation of the coefficients (column 2), the parameter

estimates (column 3), and their significance (column 4). The linear regression coefficient

can be interpreted as the ceteris paribus increase in student moves to Germany with one

more office, while the coefficient from the log-transformed model represents the percent-

age increase. The Poisson and negative binomial coefficients have the same interpretation

as incidence rate ratios, or the sending rate that countries adding one office exhibit relative

to the baseline model with one less office and the same specification otherwise. All of the

coefficient estimates capture within-variation or longitudinal changes in the target measure,

rather than cross-sectional variation across countries with different office counts.

The negative binomial model estimates that the opening of a German DAAD office leads

to a 11-point increase in the sending rate, or the rate at which students are sent to study in

Germany (p-value < 0.001). This means that the sending rate for a country with one addi-

tional DAAD office is estimated to be 1.11 times as high as the rate for the same country

without the office. The log-transformed model also estimates a similar percent increase in

students sent to be about 11%. In contrast, the Poisson and linear regression models did

not fit the data well, as indicated by the residuals against fitted values plots, and returned
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similar and insignificant effect estimates.

Table 2.3: Average office numbers effect from standard two-way fixed effects

Functional Form 95% C.I.

Link Interpretation Coef. Lwr. Upr.

Linear Students sent (number) 106 -36 248
Log Students sent (% increase) 0.11∗∗∗ 0.04 0.19
Poisson Sending rate (ratio) 1.00 0.99 1.01
Negative Binomial Sending rate (ratio) 1.11∗∗∗ 1.03 1.19

Note. This table presents the standard two-way fixed effects estimates and
their significance for each of the four functional forms (∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001).

Synthetic difference-in-differences estimates (Table 2.4) validate the effects estimated

from standard two-fixed effects. Grand average treatment effects (column 2) and p-values

(column 3) are reported for both inverse-variance weighting (IVW) and Length of Exposure

and Inverse-Variance Weighting (EIVW), and are stable with and without the inclusion of

covariates in weights calculations.

The grand average EIVW estimate, which is a measure of the relationship between the

opening of DAAD offices and student inflows to Germany, amounts to 1.19 incidence

rate ratios. This estimate is larger than the IVW estimate of 1.13 and is significant at

the 10% confidence level. The EIVW estimate is more directly comparable to standard

two-way fixed effects estimates because it takes into account the fact that countries with

longer exposure to DAAD offices are given more weight in the analysis (Goodman-Bacon

2021). In contrast, the IVW estimate treats countries with longer and shorter exposures

equally and only accounts for the uncertainty of short exposure windows through inverse-

variance weights. However, these weights are based on the standard errors of the synthetic

difference-in-differences estimates, which are largely determined by the size of the placebo

groups. Therefore, the EIVW estimate is the preferred alternative.

Average treatment effects from individual countries (see Table A.2) provide further di-
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rectional learning although intensity of treatment might not be properly evaluated in this

environment. Of the 48 individual effects, 38 underscore positive impacts from office foun-

dations. Furthermore, of the ten negative effects, only a handful of extreme cases grab at-

tention. The most extreme case is Sudan (case ratio = 0.47), which briefly hosted a DAAD

office in 2003 at the same time that it was experiencing the Darfur conflict and the eventual

secession of South Sudan in 2011. The second most extreme case is Hungary (case ratio =

0.68), which was undergoing a tightening of its repressive regime under the leadership of

Victor Orbán during the period of analysis.

Table 2.4: Grand-average office foundations effect from synthetic difference-in-differences

Raw1 Covariate2

Weighting ATT P-value ATT P-value

Inverse-Variance (IVW) 1.13 0.50 1.13 0.50
Length of Exposure Inverse-Variance (EIVW) 1.19∗ 0.09 1.20 0.08

Note. This table presents the synthetic difference-in-differences estimates and their
significance using inverse-variance and length of exposure inverse-variance weight-
ing (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001). The coefficients reflect sending rate
ratios or ratios of the migration case rate with and without the office.

1 The weights are determined by matching on the pre-foundation trends.
2 The weights are determined by matching on the pre-foundation trends and the co-

variates included in the standard two-way fixed effects regression.

2.4.2 Estimates by World Bank income group

Analyzing the results by country allows for the identification of potential transmission

mechanisms of the impact of DAAD office openings on student inflows to Germany. As

shown in Table 2.5, the overall findings of this study contrast with those from previous

studies conducted in the UK, but align with a prior study on Germany’s international stu-

dent migrant flows (Bessey 2012).

The countries were divided into three groups based on World Bank income classification,

with lower middle-income and upper middle-income countries combined to ensure suf-
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ficient sample sizes for estimation. The results showed that only the low-income group

returned significant and positive estimates, while the middle- and high-income groups

largely returned insignificant or negative estimates. The negative synthetic difference-in-

differences estimate for the high-income group (incidence rate ratio = 0.91) warrants further

investigation.

The study found that the low-income group was the only group to show a positive response

to the opening of offices. This contradicts the expectation that the middle-income group,

which has both the financial resources to support migrations and often underdeveloped edu-

cational opportunities for their best and brightest, would show the most significant response

(McMahon 1992). The finding also conflicts with the findings of a previous study (Zheng

2014) that observed little response from poorer non-OECD countries to the British PMI.

In the low-income group, the standard two-way fixed effects estimate (incidence rate ra-

tio = 1.15) has the same sign, but is smaller in magnitude than the synthetic difference-

in-differences estimate (incidence rate ratio = 1.32). It must be reiterated that standard

two-way fixed effects estimates capture the marginal effects of adding offices, while the

synthetic difference-in-differences estimates capture the factor effects of starting to host

offices. The standard two-way fixed effects estimate shows that, holding other factors con-

stant, the addition of one more office leads to 15-point increase in the sending rate. The

synthetic difference-in-differences estimate, on the other hand, suggests that the first office

leads to a 32-point increase after foundation.

All in all, the analysis suggests that the impact of opening DAAD offices on student in-

flows to Germany is most pronounced in low-income countries, possibly due to the ability

to establish informational rents and dominate the “awareness space” of student migrants

in these countries. In contrast, the impact of opening offices in middle-income and high-

income countries is generally insignificant, possibly due to the presence of established

outbound contingents and more entrenched “awareness space”. The results thus suggest

that the financial value of opening offices in developed countries is low in terms of student
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flow.

Table 2.5: Averag estimated effects by World Bank income group

Two-Way Fixed Effects Synthetic DiD

Countries Coef. P-value ATT P-value

Low-Income 1.15∗ 0.050 1.32∗∗∗ <0.001
Middle-Income 0.98 0.702 0.98 0.238
High-Income 0.97 0.616 0.91∗ 0.063

Note. This table presents the standard two-way fixed effects and synthetic
difference-in-differences estimates (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).
The coefficients reflect sending rate ratios or ratios of the migration case rate with
and without the office.

2.5 Conclusions

This study found that the establishment of a higher education agency, such as the DAAD

office, is associated with an increase in student migration. This section summarizes the

policy insights from the study while indicating transmission mechanisms from theory and

highlighting the limitations of the study.

On average, the addition of one office leads to a migration incidence that is 1.11 times

as high as the pre-expansion incidence, and the establishment of the first office leads to a

migration incidence ratio of 1.19. This finding is in contrast to the limited impact of most

factors that influence international student mobility, which are often beyond the control of

governments.

The largest opportunity for this type of policy is in low-income countries, where informa-

tional asymmetries and first mover advantage may play a role in attracting international

students. This includes building a reputation through the establishment of outbound of-

fices, which can put destinations on the map for potential student recruits and establish the

reputation of educational systems over time.

Higher education agencies can profit from informational asymmetries and the path-dependent
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nature of migration flows. First of all, the decision-making process of international students

tends to resemble Herbert Simon’s concept of satisficing rather than utility maximization

as students maximize their utility from migration subject to the informational constraints

of their awareness space. Second of all, the process is path-dependent, as international stu-

dents tend to gravitate towards destinations with established expatriate communities.

There are several limitations to the findings of this study that should be considered. Firstly,

it is important to recognize that only a subset of college-age students becomes interna-

tionally mobile at any given time, so it is difficult to determine how much of the potential

migrant pool is being influenced by the presence of DAAD offices. Additionally, it is un-

clear whether the presence of offices leads to an increase in international mobility among

students who may not have previously migration-seeking. Finally, it is possible that the

causal relationship between office foundations and student migration may be reversed, with

office foundations following rather than causing migration patterns. However, the use of

synthetic difference-in-differences helps to temper this potential concern.

This study emphasizes the important role that institutions, such as higher education agen-

cies, can play in increasing international student mobility. These agencies can help to build

the reputation of educational systems in countries that are still developing, particularly for

recruiters that do not have the advantage of offering instruction in the English language.

Findings are therefore of particular significance for countries outside of the Anglophone

block, which may need to rely on the first mover advantage to establish a presence in the

higher education market.
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CHAPTER 3

(NO) TRADE-OFF BETWEEN NUMERACY AND VERBAL REASONING

DEVELOPMENT: EVIDENCE FROM ITALY’S ACADEMIC TRACKING

3.1 Introduction

A growing literature validates the effect of math and science coursework on students’ aca-

demic outcomes (Rose and Betts 2004; Long, Iatarola, and Conger 2009; Long, Conger,

and Iatarola 2012) and earnings (Joensen and Nielsen 2009; Cortes, Goodman, and Nomi

2015; Goodman 2019). However, the existence of learning trade-offs between numerical

and verbal reasoning skills has not been evaluated in the process of skill formation (Heck-

man 2006) and educational investment (Cattell 1987; Park, Lubinski, and Benbow 2007;

Coyle et al. 2015).

The failure to observe any trade-offs between types of cognition counters Nobel Prize re-

cipient Umberto Eco’s argument that technical and critical thinking skills are substitutes in

the education production function. Famously, Eco defended the teaching of humanities and

the classical heritage of the country as a conduit to foster critical thinking in a public debate

featuring economist Andrea Ichino (Schiavazzi 2014). Eco’s central claim was that critical

thinking skills might not be fostered vicariously through technical instruction and must be

fed directly into the high school curriculum. Eco thus downplayed Ichino’s suggestion to

downsize the teaching of the humanities. Findings of this study, which will be argued to be

lower bound estimates of the “STEM advantage”, dispute the alleged trade-off at the core

of Eco’s argument.

The study elicits academic tracking in Italy’s secondary education using OECD’s Pro-

gramme for International Student Assessment (PISA) test scores as a testbed. PISA is

credited to be a test of “functional knowledge” in math, reading, and science (OECD 2016)
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or adult-life preparedness test (Reardon 2018) which relates to but is neither a general in-

telligence nor a domain knowledge test (Pokropek et al. 2022). Suppose a trade-off exists

between types of cognitive skills students gained in different tracks. In that case, gains in

the math and science sections of the test afforded by a stronger STEM curriculum must

happen at the expense of achievement in verbal literacy.

No evidence of trade-offs between numerical and verbal reasoning ability is found. After

matching on the factors determining track selection, Liberal Arts students exhibit lower

achievement than students in the STEM track. Decomposition of the gap further shows

that differences in resources – i.e., the individual, parental, and school inputs of the educa-

tion production function – are not responsible for the STEM advantage, but differences in

returns to resources – i.e., the “production function” – are.

The relevance of the findings is established by the prevalence of pull-out and elective

classes (OECD 2021). Italy tracks its students at the end of middle school at the age of

13, sorting them into a secondary institution from one of the tracks in the three main path-

ways, vocational (Professionale), technical (Tecnico), and general education (Liceo). This

study compares the achievement of students in the Liberal Arts and STEM track on the

math, reading, and science section of OECD’s PISA

Table 3.1 and Table 3.2 summarize the instructional units for year I and II at each track.

The track envisions physics requirements for year I and II, absent from the Liberal Arts

curriculum, it has less Latin credits hours (3) compared to Liberal Arts (5) and none of

the Greek instructional units (5). Liberal Arts graduates most of the administrative, politi-

cal, and intellectual upper class, similar to the British Politics, Philosophy, and Economics

(PPE) curriculum. Notably, all serving Italian Prime Ministers for the first two decades

of the 21st century were Liberal Arts graduates. Conversely, the technical track attracts a

much larger enrollment at about 25% of total secondary students, nearly three times that of

Liberal Arts and 45% of general education enrollment.
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Table 3.1: Instructional units in year I and II of high school

Liberal Arts STEM

Latin (5) Math (5)
Greek (5) Italian (4)
Italian (4) Latin (3)
Foreign language (3) Foreign language (3)
History & Geography (3) History & Geography (3)
Math (3) Physics (2)
Science (3) Science (2)
Physical Education (2) Technical Drawing (2)

Physical Education (2)

Notes. Credit requirements are measured in
hours/week (in parentheses) and apply nationwide
in schools offering the relevant curricula.

Table 3.2: Instructional units in year I and II of high school

Liberal Arts STEM

Literacy Grammar, Epic Poetry Grammar, Epic Poetry
Math Algebra, Geometry, IT Algebra, Geometry, IT
Science Earth Science, Biology, Chemistry Earth Sciences, Biology, Chemistry
Physics – Optics, Dynamics, Thermodynam-

ics

Notes. Course requirements apply nationwide in schools offering the relevant cur-
ricula.

3.2 Background

3.2.1 Academic Strength and Skill Formation

There are two ways to look at skills: as a generative process or statically as a skill bundle.

This article considers both, placing itself at the crossroads of four bodies of literature:

academic tilt and investment theories of niche-picking (Cattell 1987; Park, Lubinski, and

Benbow 2007; Coyle et al. 2014; Coyle et al. 2015; Coyle 2018; Becker et al. 2022),

human capital accumulation and skill development (Heckman 2006; Cunha and Heckman

2007; Cunha, Heckman, and Schennach 2010; Doyle et al. 2017), gifted youth (Achter

et al. 1999; Lubinski et al. 2001; Park, Lubinski, and Benbow 2007; Wai et al. 2010;
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Wang, Eccles, and Kenny 2013; Bernstein, Lubinski, and Benbow 2021), and returns from

technical coursework (Altonji 1995; Levine and Zimmerman 1995; Rose and Betts 2004;

Long, Conger, and Iatarola 2012; Cortes, Goodman, and Nomi 2015; Long, Iatarola, and

Conger 2009; Goodman 2019).

Ability tilt is proxied by relative differences between a student’s percentile score in the

verbal and math domains. The construct has shown to be predictive of major and career

choices (Coyle et al. 2014; Coyle et al. 2015; Coyle 2018), other academic and industry

outcomes such as patent issues (Park, Lubinski, and Benbow 2007), and has been linked to

national economic output using PISA data (Hunt and Wittmann 2008). Consistency over

time of ability tilt has been investigated across genders (Coyle, Snyder, and Richmond

2015) and geographies (Becker et al. 2022), and the higher predictiveness of math tilt over

verbal tilt has been noted along with field-specific differences in predictive power (Coyle

et al. 2014).

Studies of precocious children intertwine with academic tilt literature pinpointing early life

divergence of educational investment based on relative academic aptitude. Two normative

and not necessarily related conclusions from this literature are of interest:

• the earlier the tilt manifests, the larger the expected size of tilt in adulthood (Lubinski

et al. 2001; Bernstein, Lubinski, and Benbow 2021)

• pre-collegiate experience in technical (creative) domains is key to later life accumu-

lation of technical (creative) human capital (Wai et al. 2010).

Therefore, coursework policy-induced convergence might be harmful as divergence is

quintessential to manifesting talent (Hunt and Wittmann 2008). Reducing the ability tilt

by increasing math scores while keeping verbal scores unchanged – and therefore reducing

the absolute size of the tilt – might result in what Wang, Eccles, and Kenny (2013) have

described as the “paradox of choice”. Individuals with similar math and reading scores,

especially as found among females, might base their career choices on other factors such
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as personal interests and potentially forgo the economic gains from seeking STEM careers.

The “non-interventionist” argument likely applies to the far right tail of the ability distri-

bution. An extension of the argument to the bulk of the distribution is dubious though.

More of any competencies appears to be the better choice than the tilt-maximizing option

for multiple reasons: socioeconomic determinacy of early life school choices (Reardon

2018); supobtimal student decision-making, particularly in earlier grades and in heavy-

tracking environments (Checchi and Flabbi 2007; Tamm 2008; Pekkarinen, Uusitalo, and

Kerr 2009; Piopiunik 2014); and bearing of pre-collegiate skill accumulations over future

career choices (Wai et al. 2010).

The bridge between academic tilt and skill formation literature is human development.

In the context of gender-based academic tilt differences, Coyle, Snyder, and Richmond

(2015) have hypothesized that “males may show an early math tilt bias, which produces

later STEM preferences” (p. 217). Coyle (2018) has made similar comments concerning

the link between early ability tilts and later life skill accumulation in analyzing the rela-

tion of SAT non-g residuals to niche-picking. Early life differences thus possibly reflect in

subsequent skill formation by governing the direction and gradient of learning. Likewise,

skill formation literature centers around early life differences in skills, albeit focusing on

absolute levels of achievements or “human capital”.

In the Heckman life-cycle model of skill accumulation (Heckman 1976, 2006), the quan-

tity and quality of human capital at any time – a distinction later added to account for

non-cognitive skills (Cunha, Heckman, and Schennach 2010) – is path-dependent upon

prior skill stocks through an exponential link function. Therefore, the same amount of ed-

ucational input reaps the largest yield, the earlier its deployment. A wealth of empirical

evidence supports the life-cycle model validating the early opening of achievement gaps

before kindergarten entry (Reardon 2018) and as early as the first 18 months of life (Doyle

et al. 2017). A staggering figure comes from the Early Childhood Longitudinal Study in

which of the 1.25 standard deviations that the achievement gap is worth at the end of grade
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8, about 90% (1.15 SD) is instantiated before kindergarten entry.

The following section presents evidence of the “STEM advantage”. To date, potential ad-

verse effects from decreased verbal reasoning competence have not been evaluated nor

quantified. One must acknowledge the opportunity cost associated with underinvestment

in developing verbal reasoning skills in order to flesh out the case behind the “STEM ad-

vantage”.

3.2.2 The “STEM Advantage”

The primary research question addresses math and verbal reasoning development trade-

offs. Of all the inputs of educational production, coursework is one of the most understud-

ied due to the lack of cross-sectional variation in coursework policies, the self-selection

of high-ability students into advanced courses (Levine and Zimmerman 1995; Joensen and

Nielsen 2009), and the low predictive power of credit hours over student outcomes (Al-

tonji 1995). Regarding the relationship between credit hours and student outcomes, Altonji

(1995) has famously noted that the effect of one additional year of schooling on earnings is

larger than the cumulative effect of individual credit hours. Else known as the “curriculum

puzzle”, Altonji’s is an important reason why “most research on the relationship between

education and wages has examined the effects of years of schooling” (p. 410) while over-

looking coursework.

Unsurprisingly, early literature has not found significant effects of coursework on student

outcomes (Levine and Zimmerman 1995). By contrast, more recent non-experimental

(Rose and Betts 2004; Long, Iatarola, and Conger 2009) and quasi-experimental studies

(Joensen and Nielsen 2009; Cortes, Goodman, and Nomi 2015; Goodman 2019) point to a

more significant relationship. Rose and Betts (2004) and Long, Iatarola, and Conger (2009)

have found that advanced high school math classes increase ACT scores and earnings in

adulthood. In a follow-up study, Long, Conger, and Iatarola (2012) pinned down a positive

impact on math scores and GPA although they could not find any effects on later life out-
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comes, be high school graduation or college attendance.

Quasi-experimental studies (Joensen and Nielsen 2009; Cortes, Goodman, and Nomi 2015;

Goodman 2019) exploit exogenous changes in coursework requirements to estimate “local

treatment effects” from increasing math and science requirements. Joensen and Nielsen

(2009) looked at a 1998’s Danish pilot program that took out the physics requirements

necessary to take advanced math classes. The reform made advanced math coursework ac-

cessible to a much broader student population, as post-reform cohorts could enroll without

taking the physics classes formerly required. Their difference-in-differences estimate nets

an increase in the yearly rate of return for impacted cohorts nearing 20% of their future in-

come. Similarly, Cortes, Goodman, and Nomi (2015) have used a regression discontinuity

design to evaluate a Chicago Public School policy administering a double dose of algebra

to students falling below a specific test score cutoff. Double-dosed students achieved better

GPA and ACT scores while exhibiting greater chances of graduating from high school and

attending college than students just above the cutoff. Lastly, Goodman (2019) has exploited

the timing of reforms that changed math requirements for cohorts graduating in the years

1982-1994 in 40 US states. Impacted cohorts increased their earnings between 5% and

9%, primarily by majoring in higher-paying college fields. Crucially, the reforms targeted

students with little prior training in technical subjects and therefore had a sizeable impact

at the extensive margin. That is, the reforms extended access to student populations previ-

ously excluded from quantitative training rather than increasing access for already served

populations.

3.2.3 International Education Production Functions

Human capital production is a form of production generating knowledge through trans-

forming educational inputs. Education production functions (Boardman and Murnane

1979; Hanushek 1979; Todd and Wolpin 2003; Sass, Semykina, and Harris 2014) express

knowledge as a function of individual, parental, and school characteristics. Educational
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attainments at a point in time are instrumented by a measure of achievement such as test

scores and depend on cumulative inputs from starting grade until the current grade.

Because of the complex data generating process of educational production (Sass, Semyk-

ina, and Harris 2014), researchers invoke simplifying assumptions to model student achieve-

ment. A reduced-form education production function is expressed by:

Aist =A (Iit, Pit, Sst, λAi,s,t−1, gi, ϵist) (3.1)

where Iit, Pit, and Sst are individual, parental, and school characteristics governing the

attainments of student i in school s at time t (Aist). Baseline attainments one year prior

(Ai,s,t−1) are discounted at the standard geometric rate of decay λ and proxy for the history

of educational inputs (Sass, Semykina, and Harris 2014). The coefficient on each char-

acteristic captures the marginal product of the educational factors of production. Hence,

coefficients suggest the optimal allocation of educational resources to educational policy-

makers facing real-world budget constraints.

The unavailability of general ability measures (gi) might cause omitted variables bias and

must be addressed by researchers. Also, international standardized testing does not take

repeated measurements of student achievement, thus added-value models may not be esti-

mated. Furthermore, lack of prior educational inputs records calls for a further assumption

about the invariance of individual and parental inputs over time. What is assumed is that

richer parents would have afforded greater access to kindergarten and better K-5 schooling

to their children in earlier grades. Thus, much of the variation in test scores attributable

to pre-primary and primary education would be stored in the parental variables at time

t, withal consistently with the life-cycle model of human capital accumulation (Heckman

1976, 2006).

The PISA variables most predictive of student achievement internationally, parental socioe-

conomic status and sex (Hanushek and Wössmann 2011), channel most of the effects of the
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individual-level factors responsible for student achievement, including g, conscientious-

ness, and family factors (Hanushek et al. 2022). Notably, female test-takers outperform

male test-takers on the reading section of the PISA test in all 77 countries tested by PISA

2018 while differences in math and science are more erratic. These results stand among the

most consequential for comparative educational policy analysis adding to evidence on the

persisting math male advantage (Stoet and Geary 2018; Wai, Hodges, and Makel 2018),

especially at the far right tail of the distribution (Wai, Hodges, and Makel 2018). The uni-

versality of the inverse reading gender gap revealed by PISA is of particular relevance to

the study. Of more limited interest is the debate on the plasticity of the math gender gap

with respect to a country’s degree of gender parity, enlivened by some evidence that points

towards convergence (Guiso et al. 2008; Makel et al. 2016).

The lack of school expenditures information in the PISA dataset might not be seen as an

issue for estimation (Hanushek and Wössmann 2011; Hanushek and Woessmann 2017).

While school expenditures famously divide the field into proponents of the “money doesn’t

matter” (Hanushek 1989, 1997) and the “money matters” (Card and Krueger 1996; Jack-

son, Johnson, and Persico 2015) camps, scholars agree that failing schools are typically

bound to inefficient resource allocations (Hanushek 2003). Internationally, the inclusion of

all the factors of production brings down the predictive power of educational expenditures

to marginal (Hanushek and Woessmann 2017).

3.2.4 PISA: Testing Functional Knowledge

The data used in this study come from three rounds of the PISA examination administered

in 2012, 2015, and 2018. PISA is a low-stake test assessing the functional proficiency in

math, reading, and science of 15-years olds independently of grade. The test measures

“functional skills” rather than domain knowledge (OECD 2016) and provides an adult-life

preparedness checkpoint close to a measure of equality of opportunity (Reardon 2018).

OECD’s stated intent to test functional knowledge is one of the bedrocks of PISA’s presence

64



in the public discourse. Although some concerns have been raised about the discriminant

validity of the different sections of the PISA test (Pokropek et al. 2022), the clear bearing

of g on test score achievements (Geary et al. 2017) is mostly a confounder in the context of

within-country studies and one mired in the different degrees of participation in secondary

education and other differences in educational systems (Rindermann 2007). PISA perfor-

mance has been shown to correlate with g across countries (Rindermann 2007; Burhan et

al. 2014; Jones and Potrafke 2014), a result which is likely second order to differences in

levels of economic development and dovetails with “the cumulate effects of the social and

economic context children encounter as well as the overall quality of the education systems

in which they grow and develop” (Pokropek et al. 2022, p. 11). The covariation between

national GDP and g (Lynn and Vanhanen 2012) as well as generational differences in na-

tional IQs (Roivainen 2012) also point to a connection between economic growth and g,

and so do the path-dependencies in student achievement stressed by the input-dependent

model of cognitive development (Heckman 2006).

Overall, the correlation between national IQs and PISA test scores leaves PISA’s mission

statement to test functional knowledge largely unscathed. In addition to that, PISA tests dif-

ferently from general ability testing. The test is content-neutral and packaged with domain-

specific language. Therefore, students must be familiar with the mathematical terminology

to decode math and science tasks. Likewise, verbal tasks require breadth and depth of

active and passive vocabulary and grammar structures.

3.2.5 Current Study

The study tackles the following research questions:

1. Are there any trade-offs between numerical and verbal skills?

2. Are differences in achievement attributable to differences in coursework?

3. Are differences in achievement attributable to instructional unit requirements?
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The analytical model addresses the research questions using i) inverse probability weight-

ing; ii) Blinder-Oaxaca achievement decomposition into coefficients, endowments, and en-

dowments by coefficients effect (Blinder 1973; Oaxaca 1973); iii) Altonji decomposition

of achievement into instructional unit requirements (Altonji 1995). For a trade-off to ex-

ist between numerical and verbal skills, it must be that the STEM advantage reverts upon

conditioning on the inputs of educational production. Suppose there is no section of the

PISA test, which the Liberal Arts curriculum adds more to. That would rule out cognitive

trade-offs in learning underpinning a dominant STEM education production function.

3.3 Methods

3.3.1 Data

The analysis uses three public use datafiles from PISA 2012, 2015, and 2018 obtained from

Italy’s INVALSI. The use of three waves of the PISA test is instrumental to having a sam-

ple size large enough for analysis. Prior waves of the test could not be included because

tested cohorts were schooled under a regime different from that of law 1/2009, making

track identification impossible. Using instructional requirements in the different subjects,

841 observations of Liberal Arts and 1,968 technical students were identified. Among the

variables included in the national version of the data files which are not featured in the

OECD datasets, are the geographic and education pathways variables.

National test-takers are sampled following a two-stage sampling procedure that collects

extensive background data from questionnaires administered to students, teachers, parents,

and school principals. Through two-stage sampling, participants are randomly chosen from

non-randomly selected schools. The sampling design thus balances representativeness and

unbiasedness of selection. National sampling weights are post-processed and added to the

dataset by OECD to further increase the representativeness of samples.

At a very high level, PISA scores of students reflect their percentile rank in the international

preparedness or adult-life readiness distribution in math, reading, and science. The scores
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are ability parameters from a two-parameter Item Response Theory model without a guess-

ing parameter (Birnbaum 1968).1 Scores are scaled internationally to a normal distribution

with a mean of 500 and a standard deviation of 100 achievement points.

The calibration of item-response parameters adds to the substantial labor demands of the

two-staged sampling procedure. This is responsible for the lag between test administration

and results dissemination. Adding to the lead time, national statistical offices augment the

PISA datasets with country-specific variables before release. Italy’s National Institute for

the Evaluation of the Education System (INVALSI) adds geographic information coding

the five Italian macroareas and an indicator coding the different high school pathways.

Table 3.3 reports descriptive statistics. Liberal Arts students are more likely to be female

(75.1% to 52.4%), grade repeater (4.4% to 3.0%), and about as likely as STEM students

to be immigrants (2.4% to 1.8%). Liberal Arts students come from a more advantaged

socioeconomic background, as attested by home book possessions. More than half of Lib-

eral Arts declare to possess more than 200 books at home relative to about one-third of

STEM. A similar proportion of students declare home book possessions in the 101-200

books range while STEM are about twice as likely to be represented in the 26-100 and in

the 11-25 books categories. Likewise, for each STEM household declaring a Master’s de-

gree or higher educational attainments, there are two such Liberal Arts households. Much

smaller shares of Liberal Arts students have parents who completed a high school diploma

(14.3% to 39.5%) or lower educational level (14.5% to < 1%).

Differences in school institutions are more marginal (see Table 3.4). Schools offering

the Liberal Arts and STEM tracks are about equally balanced in the proportion of full-time

staff, student-teacher ratio, school size, and ownership status. Schools staff about 15% of

part-time teachers, have a student-teacher slightly exceeding 10-to-1, and host an average

of 800+ students with huge degrees of variation across individual institutions. Publicly-

owned schools are prevalent and private institutions more likely to be found in Liberal Arts

1The 2012 version of the test used a one-parameter model (Rasch 1960). Since PISA 2015, OECD
transitioned to the two-parameter model.
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Table 3.3: Individual and parental characteristics

Liberal Arts STEM

Female 52.4 75.1
Grade repeater 3.0 4.4
Immigrant 1.8 2.4
Area
North 19.1 27.0
Central 24.9 21.9
South & Islands 56.0 51.1

Highest parental education
Less than high school 14.5 < 1
High school 39.5 14.4
Bachelor’s 5.7 5.9
Master’s or higher 40.3 79.1

Books at home
0-10 4.7 1.8
11-25 11.6 4.8
26-100 30.3 17.8
101-200 22.9 24.4
200+ 30.5 51.2

Notes. Features of Liberal Arts (n = 841) and
STEM (n = 1,968) students from PISA 2012-2018
background surveys. Sample proportions are re-
ported as percentages (%).

than STEM (2.5% to 0.6%).

Students are similarly represented across locations and geographies. The majority of schools

is located in large towns hosting anywhere between 15, 000 and 100, 000 inhabitants, fol-

lowed by suburban (100, 000-1, 000, 000), small-town (3, 000-15, 000), urban (> 1, 000, 000),

and village (< 3, 000) settings. About equal proportions of samples were drawn from the

two most affluent areas of the countries, the Northern and Southern regions, as compared

to the underdeveloped South and Islands.

3.3.2 Analytical Model

To exclude that observable confounders are responsible for observed gaps, difference-of-

mean tests were performed using inverse probability weighting. Characteristics of students

that predate high school entry were used to create propensity scores for the chances of
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Table 3.4: School characteristics

Liberal Arts STEM

Location size
Rural 0.6% 1.3%
Small town 25.1% 13.3%
Large town 48.9% 53.4%
Suburban 18.1% 24.3%
Urban 7.4% 7.7%

School ESCS 0.30 0.32
School size 870.5 841.1
Student-teacher ratio 12.3 11.2
Full-time teachers 86.8% 84.6%
Private 0.6% 2.5%

Notes. Features of schools offering Liberal
Arts (n = 300) and STEM (n = 317) curricula
from PISA 2012-2018 background surveys.
Sample proportions are reported as percent-
ages (%).

entering the Liberal Arts track. The propensity score equation for a student attending the

Liberal Arts track is given by:

p(Liberal Artsi = 1|Ii, Pi) =σ(δ0 + δ1Ii + δ2Pi + ηis) (3.2)

where σ(·) is the logistic function evaluated at the individual and parental characteris-

tics influencing the high school choice of Italian middle school students. Inverse probability

weights were derived from the probability of treatment estimated through logistic regres-

sion and used to calculate weighted differences of means.2 A weighted difference-of-means

captures the average treatment effect (ATE) from attending the Liberal Arts track relative

to attending the technical track.

Next, indication about the causes of the gaps was obtained from achievement decomposi-

tion. A regression decomposition à la Blinder-Oaxaca (Blinder 1973; Oaxaca 1973) de-

2The features predating high school entry that are included in the model are the same reported in Table
Table 3.3: female, grade repeater, immigration status, books at home, region. The location variable, although
collected at the school-level, was included as a proxy for place of residence.
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composes the estimated achievement gaps into the endowments, coefficients, and endow-

ments by coefficients effects. Three counterfactuals are quantified by the decomposition:

• Would Liberal Arts students have scored as well as technical students had they had

the same characteristics?

• Would Liberal Arts students have scored as well as technical students had they had

the same returns on characteristics?

• Would Liberal Arts students have scored as well as technical students had they had

the same characteristics and returns on characteristics?

The decomposition is conducted into three steps. Firstly, differences of mean charac-

teristics are calculated for each factor of educational production (i.e., the same features

included in the regressions in Table B.2, Table B.3, and Table B.4). Secondly, two sep-

arate sets of parameters are estimated via regression of PISA test scores on educational

production features of STEM and Liberal Arts students. Thirdly, using the estimated co-

efficients and mean characteristics, three quantities are calculated, the endowments effect,

coefficients effect, and endowments by coefficients effect:

Endowments =βLibArts(XSTEM −XLibArts)

Coefficients =(βSTEM − βLibArts)XLibArts

Endowments× Coefficients =(βSTEM − βLibArts)(XSTEM −XLibArts)

The vectors of coefficients βLibArts and βSTEM include the parameters from the two

regressions while XLibArts and XSTEM are the mean characteristics of students at the two

schools. A threefold achievement decomposition defines the difference in predicted mean

achievement as the sum of the three effects:
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ÂSTEM − ÂLibArts =Endowments+ Coefficients+ Endowments× Coefficients

Decomposition methods are particularly helpful to direct policy action and found wide

application in the analysis of the education and healthcare sector performance. For exam-

ple, a school or hospital might be performing below the national average because it operates

on low levels of resources. In that case, the Blinder-Oaxaca decomposition would return

a significant and positive effect on the endowments component, indicating that redistribu-

tion of resources to the school would be performance-enhancing. The contribution of each

component is measured on the scale of the output variable and indicates how much conver-

gence is expected under full input equalization. Suppose the achievement gap between two

schools is 50 points on the scale of a particular test. In that case, an endowments effect of

50 will project a near-zero gap under complete resource equalization (e.g., the two schools

would look the same).

The coefficients effect indicates how much of the achievement gap depends upon the differ-

ential rate of return on one unit of resource. In the previous example, a school or hospital

might be underperforming despite operating on the national-average level of resources.

Coefficients effects are referred to as “production function”, in that they capture the pro-

duction rate of individual inputs. Equalization of coefficients will reduce the achievement

gap to zero if the component contributes 50 points to the gap. Highly productive teach-

ers and doctors, that is, teachers and doctors who outproduce the production rate expected

from their measurable characteristics, contribute to positive coefficients effects.

The interaction of endowments and characteristics covers simultaneous increases of re-

sources and production rate. While this component is largely irrelevant for this assessment,

it informs on nonlinear effects of redistributive policy. A school or hospital might gain

more from adding extra resources when its production rate is higher (positive interaction

effect); or, marginal gains might taper off at higher production rates (negative interaction
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effect). Very productive workers might gain little from more technology; or, they might

gain more than less productive workers would.

The larger the endowments effect estimated through Blinder-Oaxaca, the closer the edu-

cation production function of the Liberal Arts and STEM tracks would be. Conversely, a

large coefficients effect would suggest that a larger share of the gap rests within differences

in educational inputs.

A third and final research question relates differences in achievement to differences in

instructional units. Are differences in achievement attributable to instructional unit re-

quirements? To give this question an answer, the achievement model was re-estimated by

specifying the instructional units taken in math, reading, and science. The new model was

then compared to the baseline model. If the independent effects of credits in the different

classes add up to the total difference in achievement, it is possible to attribute achievement

gaps to credit hours requirements. For PISA math score, the target equality is:

ˆPISASTEM − ˆPISALibArts =(mSTEM −mLibArts)× βMath

The expression requires that the difference in predicted math achievement between the

STEM and the Liberal Arts track is about equal to the differences in instructional units in

math mSTEM − mLibArts (in minutes) multiplied by the coefficients from the new model

with instructional units in math and science. The reading and science achievement gaps

were evaluated in a similar fashion.

Robustness checks conclude the discussion of results. Validity was assessed by: i) em-

ploying evidence from Trends in International Mathematics and Science Study (TIMSS)

and Progress in International Reading Literacy Study (PIRLS) to pin down student learn-

ing progression and dynamic human capital; ii) discussing qualitative findings from PISA

2012’s Mathematics, Reading, Science, Problem Solving and Financial Literacy special

focus survey (OECD 2013) on math-related beliefs (e.g., intrinsic motivation to learn),
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self-beliefs (e.g., self-efficacy), and intentions (e.g., desire to major in the STEM field); iii)

considering prior data points (Checchi and Zollino 2001), achievement regression residuals

(Coyle 2018), and other qualitative arguments.

3.4 Results

The section reports results from inverse probability weighting (see Table 3.5 and Figure 3.1,

and Table B.1 in the Appendix), Blinder-Oaxaca decomposition (see Figure 3.2), and Al-

tonji decomposition. Empirical findings indicate no reading loss experienced by Liberal

Arts students. Furthermore, the cognitive gains afforded by the STEM track could be lin-

early linked to math requirements (via Altonji decomposition) and shown not to depend

on observable characteristics of students or endowments effects (via achievement decom-

position). Potential omitted variable bias due to self-selection of more motivated and aca-

demically prepared students into the STEM track is addressed in the Robustness Checks

section.

3.4.1 Matching

Using inverse probability weighting, difference-of-means tests were conducted for PISA

test score achievements of Liberal Arts and STEM students (see Table 3.5). Propensity

scores were obtained from a logistic regression of the binary treatment (0 = attending

STEM, 1 = Liberal Arts) on the individual characteristics of students and their parents.

Further conditional differences were estimated regressing PISA test scores on school char-

acteristics and the same student covariates used in the propensity scores calculations and

weighting observations by the inverse probability weights. Estimates were negligibly dif-

ferent at standard statistical level of certainty and are therefore omitted from the presenta-

tion.

Standardized mean differences before and after adjustment validate the matching strat-
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Table 3.5: Mean PISA test scores before and after inverse probability matching

STEM Liberal Arts difference t-stat

Unmatched 552.6 508.4 -44.2∗∗∗ -14.4
Math Matched 553.6 503.5 -50.1∗∗∗ -16.2

Unmatched 549.5 541.1 -8.4∗∗∗ -2.8
Reading Matched 552.7 530.7 -22.0∗∗∗ -7.4

Unmatched 544.7 519.9 -24.8∗∗∗ -8.0
Science Matched 546.2 513.4 -32.9∗∗∗ -10.6

Notes. Score averages are calculated from a) the observed sample
(“Unmatched”); and b) the weighted sample after inverse probability
matching on observables (“Matched”). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001.

Figure 3.1: Standardized mean differences before and after inverse probability matching
The figure shows substantial bias reduction upon inverse probability weighting. Each red triangle is a
standardized mean difference between Liberal Arts and STEM before matching and each blue circle
is a difference after matching. The dashed line indicates the significance threshold of a 0.1-difference.

egy (see Figure 3.1 as well as Table B.1 in the Appendix for numeric results).3 Of the

matching variables female, grade repeater, immigration status, book at home, location,

and region, all achieved substantial bias reduction upon weighting. The standardized mean

3A standardized mean difference is a unit-less measure that normalizes the average difference by a mea-
sure of spread. It is calculated as the mean difference in the level of the matching covariate between treated
and controls divided by the square root of the mean of the variances, or: XLibArts−XSTEM√

(S2
LibArts−S2

STEM )/2
.
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difference in the female predictor dropped down from 0.486 standardized mean difference

to near-zero. Comparable bias reduction was achieved for home book possessions bringing

down the 0.432 difference in the 200+ books category to a difference of 0.018. None of the

variables were unbalanced in the matched data beyond the standard significance threshold

of one-tenth of a standardized mean difference.

After matching on educational features, PISApoint gaps in math (50.1) and science (32.9)

did not change much relative to the unmatched differences in the same subjects of 44.2 and

24.8. Remarkably, reading differences were more than twice as large in the matched sam-

ple (22.0) relative to the unmatched sample (8.4), all differences being significant as per

Welch’s two-sample t-tests. Results thus fail to support cognitive trade-offs from acquisi-

tion of numerical skills. On the contrary, there appear to be positive learning spillovers from

the technical curriculum into verbal competence. Furthermore, the size of the spillover ap-

pears to be larger when STEM and Liberal Arts students are more evenly matched on their

most important observable characteristics. Upon matching, STEM students do even better

in the reading domain: thus, the “STEM advantage” would be larger if STEM and Liberal

Arts students were more alike.

3.4.2 Achievement Decomposition

Results from the threefold achievement decomposition (Figure 3.2) exclude that test score

differences between STEM and Liberal Arts depend on endowments effects (i.e., superior

educational inputs for STEM). The decompositions use technical students as the reference,

therefore:

• The endowments component calculates the sample-mean difference between STEM

and Liberal Arts multiplied by the coefficient estimates for Liberal Arts;

• The coefficients component is the product of the endowments of Liberal Arts and the

difference in coefficient estimates;
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Figure 3.2: Decomposition of the STEM-Liberal Arts PISA score gap
Three-factor decomposition of percentile score differentials: a) endowments, or con-
tributions of educational resources (i.e., mean levels of inputs such as sex, parental
resources, location, etc.); b) coefficients, or unitary contributions of resources as
measured by regression coefficients; and c) their interactions. Positive (negative) y-
axis values positively (inversely) explain the gap.
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• The endowments by coefficients component is the product of the two differences.

The decomposition of math scores returns a coefficient effect (41.9) which is about one

order of magnitude larger than the endowments effect (4.0). Similarly, the science decom-

position indicates that coefficients (25.5) are mainly responsible for differences in PISA

attainments, while differences in endowments marginally and negatively predict the gap

(-5.7).

Notably, the reading decomposition returns a negative score of -11.7 PISA points on en-

dowments and a positive 14.4 PISApoint effect on coefficients. Therefore, the reading

score of STEM students would be larger if they were endowed with the same characteris-

tics as Liberal Arts students and smaller if they shared the same marginal products. The

negative reading endowments effect points to negative selection of students into the STEM

track while the endowments effect echoes the math and science decompositions. Overall,

the STEM advantage would decrease if the STEM production technology was common

across the two tracks and it would increase if the characteristics of Liberal Arts students

were shared across both tracks.

Achievement decompositions were calculated using coefficient estimates from the two sub-

group regressions that use the two subsamples of Liberal Arts and STEM students (see Ta-

ble B.2, Table B.3, and Table B.4 in the Appendix). Notably, results are largely consistent

with prior estimates of international PISA production functions (Hanushek and Wössmann

2011). The predictive model includes the variables female, grade repeater, immigration

status, books at home, location, region, proportion of full-time teachers, student-teacher

ratio, school size, and school ownership. The most important predictor of achievement is

parental socioeconomic status (i.e., books at home) while school characteristics are less

important and often insignificant. Consistently with international literature, female-male

differences are negative in math and science and positive in reading. Thus, a gender gap in

technical subjects and an inverse gender gap in the verbal domain must be noted.

Models (2) and (3) in the regressions add controls for the other PISA test scores and the
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imputed TIMSS and PIRLS scores (more on that in the next section). Notably, coefficient

estimates on reading test scores are indistinguishable in the STEM and Liberal Arts math

regressions in Table Table B.2 (33.0 PISApoint for a one-SD increase in test scores) and so

are the math coefficients in the reading regressions in Table B.3 (32.0). Returns are there-

fore the same, inconsistently with underlying differences in g and differential effects by

ability (Coyle et al. 2014). The point will become more apparent with subsequent regres-

sion decomposition and validity checks attesting to superior pre-high school human capital

stocks among Liberal Arts and lack of patterns in the residuals.

3.4.3 Altonji Decomposition

The Altonji decomposition convincingly links the STEM advantage to differences in in-

structional unit requirements. What was left to explain from the Blinder-Oaxaca decompo-

sition is that the STEM advantage depends on curricular requirements. In order to recom-

mend the STEM curriculum for policy adoption, the attribution must be unmistakable.

The Altonji decompositions neatly attribute differences across test domains to differences

in math and physics credits (i.e., 240 minutes) multiplied by their marginal product. The

decompositions come from independent re-estimation of the achievement model with the

inclusion of instructional unit requirements in math, science, and readings (in minutes)

without subsetting the total sample into independent Liberal Arts and STEM samples. Al-

most all of the 44.2 PISApoint difference in math is explained by curricular differences

(43.3), all of the 24.8 science difference (26.2), and the explained reading difference (15.1)

is actually larger than the predicted difference of 8.4 points.

Results reveal that, all else being equal, equalization of math coursework would reduce

most of the gap in the technical domains, math and science, and revert the reading gap.

The evidence provided by the Altonji decomposition complements evidence from Blinder-

Oaxaca indicating that at least some of the Liberal Arts requirements could be taken out

without trading away much verbal reasoning competence. As suggested by evidence pre-
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sented in the next section, the STEM advantage manifests itself notwithstanding ability

sorting driving more academically prepared students into the Liberal Arts track.

3.5 Robustness Checks

This section addresses potential bias due to unobserved heterogeneity. Although general

ability and prior test scores information is not available in the PISA dataset, the internal

and external validity of the findings might be affirmed.

It must be noted that elementary and middle school is comprehensive in Italy. Therefore,

the prestige of the Liberal Arts track entices students who had access to better instructional

resources in earlier comprehensive grades. Older data shows that Liberal Arts students

were more likely to graduate with the highest grade of “Outstanding” from middle school

and that more than half of Liberal Arts entrants achieved that grade (Checchi, 2001). That

led labor economist Ichino (Ichino 2000) to note that “the favorable later life outcomes

of Italy’s Liberal Arts graduates might solely depend on the positive selection of students

with greater motivation and proclivity to learn”. This jives with the descriptive statistics

presented in the Results section flattering the socioeconomics of Liberal Arts students.

Yet, it might be argued that more motivated students are more likely to enter the STEM

track. One immediate counterargument to that is that the STEM track does not require

prerequisite knowledge while students entering the Liberal Arts track are often expected to

have taken the extracurricular Latin classes offered in middle school. These classes pull

middle schoolers out of their main classes and impart the basics of Latin conjugation and

vocabulary. A second counterargument comes from the PISA 2012 special focus question-

naire on math (OECD 2016). Students in the Liberal Arts track declared more hours of

self-study outside of the classroom (20.3 hrs) relative to STEM students (18.5 hrs). Also,

Liberal Arts students appear to be largely driven by intrinsic motivation, which has been

linked to performance on standardized tests including PISA (Lee 2020) and TIMSS (Mullis

et al. 2020). Conversely, extrinsic or instrumental motivation is the leading motivator for
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STEM students who scored more than one-half of a standard deviation higher on the INST-

MOT index (i.e., self-reported instrumental motivation) constructed by PISA At face value,

these statistics uphold greater intrinsic motivation to learn among students sorting into the

Liberal Arts track and present no threat to the validity of conclusions.

One additional avenue for self-selection is academic preparedness or readiness. Academic

preparedness was imputed using test scores from TIMSS and PIRLS, two “sister tests” as-

sessing the same latent constructs tested by PISA, verbal and numerical ability. Namely,

PIRLS tests fourth-graders on verbal competence while TIMSS tests fourth and eighth-

graders on numerical competence. The books at home and location variables are also col-

lected by TIMSS and PIRLS and coded consistently with PISA Thus, tracking the profi-

ciency progression is possible by linking PISA records with its sister tests through exact

covariate matching. Average PIRLS and TIMSS scores were calculated for the subgroups

defined by the books at home, location, and female variables. Implied numerical scores

were obtained for grades 4 and 8 from TIMSS, and implied verbal scores for grade 4 from

PIRLS. The imputed verbal and numerical scores were used in two different ways. First,

inverse probability weighting and decomposition analyses were re-estimated a second time

using imputed scores. Results from this second iteration are within error from the main

presentation with no statistical nor substantive departures. The second, visual approach,

was to plot the implied proficiency progression for Liberal Arts and STEM students (see

Figure 3.3).

The trendlines in Figure 3.3 indicate better selection of students into the Liberal Arts

track (in red) as compared to STEM (in blue). Liberal Arts students average out at a higher

percentile of implied verbal and numerical scores in comprehensive grades. Namely, they

are implied to enter at the 63rd pct. in math in grade 4 and to progress to the 67th pct. in

math in grade 8. By contrast, STEM students move down from the 61st pct. in grade 4 to

the 57th pct. in grade 8 in math. In reading, Liberal Arts students start off at the 78th pct.

in the verbal score distribution at grade 4, much higher than STEM who enter at the 61st
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Figure 3.3: Projected math and reading proficiency progression
The graph plots the average projected national percentile rank with 95% confidence interval of
STEM and Liberal Arts students based on exact covariate matching with TIMSS (grades 4 and
8) and PIRLS (grade 4) test-takers. Stronger academic readiness among Liberal Arts students is
evidenced in either of the two domains.

Figure 3.4: Projected math and reading proficiency progression internationally
The graph plots the average projected national percentile rank with 95% confidence interval of
Liberal Arts students based on exact covariate matching with TIMSS (grades 4 and 8) and PIRLS
(grade 4) test-takers of comparison countries. Academic readiness of Liberal Arts is competitive
internationally before fading with PISA.
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pct. in PIRLS. Implied scores thus indicate greater academic preparedness in the verbal and

numerical domains for Liberal Arts. Their performance drops dramatically after tracking,

in comport with negative effect from the Liberal Arts coursework.

One more sanity check involves counterfactual proficiency progression for the US and two

other European countries, Finland and Ireland. Countries were chosen based on availabil-

ity of data for TIMSS and PIRLS. Unfortunately, TIMSS records were incomplete for Ger-

many, the European country whose high school education is the most comparable to Italy’s.

Implied test scores for students with the same characteristics as Liberal Arts students were

calculated using the three variables books at home, location, and female. The interpretation

of the plot is straightforward: the Liberal Arts trend is consistent with the international

trend before tracking and inconsistent thereafter. Foreign counterfactuals follow a similar

progression from grade 4 (67th, 61st, and 64th) through grade 8 in math (70th, 63th, 69th),

and start from a similar baseline in reading (74th, 69th, 74th). However, they would have

achieved at much higher levels than Italy’s Liberal Arts on the math and reading sections

of PISA. That is, had students with the same characteristics as Italy’s Liberal Arts entered

secondary education in the US, Finland, or Ireland, their implied progression would have

placed them much higher in PISA.

One last piece of information comes from analysis of the residuals from the three achieve-

ment models. If residuals were heavily patterned, some unobservable feature dispropor-

tionally found among one set of students might drive student achievement. The correlations

between residuals and observed values were similar for STEM and Liberal Arts in either

subject, math (0.52 and 0.54), reading (0.59 and 0.55), or science (0.51 and 0.50). All in all,

the different quantitative and qualitative arguments dismiss omitted variable bias concerns.

If anything, qualitative evidence is consistent with positive self-selection into the Liberal

Arts track. Therefore, results might, at worse, be intended as valid and, at best, as con-

servative estimates of the positive spillover of numerical training into the verbal reasoning

domain.
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3.6 Conclusions

The article investigates trade-offs in cognition in the numerical and verbal domains. The

statistical analysis conducted on a sample of Italian students in the two élite tracks of sec-

ondary education shows that the Liberal Arts curriculum decreases math, science, and read-

ing achievement on the PISA test relative to expectations based on prior imputed achieve-

ment levels.

Results suggest that standard arguments supporting Liberal Arts instruction such as Um-

berto Eco’s might overstate the benefits of a heavy Liberal Arts curriculum. Realistically,

a comprehensive high school system with strong technical foundations and few elective

classes to observe student choice would build up Italy’s STEM workforce and fuel long-

term economic growth (Hunt and Wittmann 2008; Coyle et al. 2018). The term technical

here may not be intended as stricto sensu “quantitative” and encompasses quantitative and

qualitative training which builds socially desirable and economically viable skillsets. In the

best-case scenario, Italy might be able to add as much as one-quarter of an international

standard deviation to its mean PISA achievement (or about as much as Liberal Arts’s math

and literacy preparedness advantage is worth at high school entry) by placing its “best and

brightest” into the STEM track. The “deadweight loss” of Liberal Arts education might ex-

plain the laggard performance of Italy on PISA despite the quality of its primary education,

the wide availability of social welfare, and its scientific heritage.

The claim might be tempered by unintended scale effects of extending the STEM curricu-

lum, such as recruitment of a marginal teacher workforce. Furthermore, PISA reading

might not completely overlap with a broader definition of critical thinking skills held by

advocates for Liberal Arts education. To that, it must be countered that critical thinking

skills must crystallize into one or more assessment dimensions to be material. Lastly, stu-

dents might be selected into tracks based on unobserved academic interest, not academic

strength and readiness. The latter concern, however, is partially assuaged by the prevalence
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and success of comprehensive schooling worldwide. Tracking might only increase parental

wealth’s bearing on student achievement (Pekkarinen, Uusitalo, and Kerr 2009), and elec-

tive classes might just be enough to differentiate the academic offer.

The evidence provided speaks against learning trade-offs in creating technical knowledge.

Standard arguments favoring non-technical education as soul-enriching and fostering crit-

ical thinking might be largely hackneyed. Thus, the article contributes to the slowly ex-

panding body of knowledge on coursework policy, under-explored due to the low degree of

variation of coursework policies nationally and lacking comparability of educational sys-

tems internationally (Levine and Zimmerman 1995; Joensen and Nielsen 2009). Findings

also extend policy-relevant knowledge about the non-monetary and monetary gains from

technical coursework (Long, Iatarola, and Conger 2009; Goodman 2019), and add one key

dimension to the skill formation (Heckman 2006) and academic investment (Cattell 1987;

Park, Lubinski, and Benbow 2007; Coyle et al. 2015) bodies of literature.

What remains to be discussed are deeper transmission mechanisms. The minor institutional

differences between schools offering the Liberal Arts and STEM curricula are unlikely to

be strong candidates. A more likely candidate is the use of verbal reasoning as vehicular

to analyzing relatable real-world problems as it happens in the technical track. The indi-

rect teaching of second language skills as a medium of instruction in bilingual education

programs (Cummins 2014) might be appropriate proof of concept. Much like language is

better learned through contextual applications, indirect nurturing of verbal reasoning skills

through technical applications could be the better approach.

At the moment, these hypotheses are speculative. However, concerns about the loss of

verbal reasoning skills in technical education are largely unfounded. Mastering a technical

coursework increases student cognitive scores in either domain, numerical or verbal, with

no measurable loss.
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APPENDIX A

ESSAY II

(a) (b)

(c) (d)

Figure A.1: Residuals versus fitted values plots across model specifications
The figure shows residual versus fitted values plots for four different regression models: a) ordinary
least squares, b) log-transformed ordinary least squares, c) Poisson, and d) negative binomial. The
45-degree line indicates an ideal fit.
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Table A.1: Selection of model specification using Weight of Evidence test

Model k AICc ∆AICc1 WoE2 LL

Full - GDP per capita (linear) 190 33142.8 0.0 99.5 -16367.9
Full (linear) 190 33157.4 14.6 0.5 -16375.2
Full - No GDP (linear) 190 33164.1 21.3 <0.1 -16378.6
Full (log) 190 33218.5 75.7 <0.1 -16405.8
Full - GDP per capita (log) 190 33219.4 76.6 <0.1 -16406.3
Full - No GDP (log) 190 33220.8 78.0 <0.1 -16406.9
Full - No Import-Export
(linear)

198 38039.4 4896.6 <0.1 -18809.4

Full - No Import-Export (log) 198 38096.3 4953.5 <0.1 -18837.9
No Covariates - Fixed Effects 202 39374.1 6231.3 <0.1 -19472.8
No Covariates - Gravity (log) 5 46953.1 13810.3 <0.1 -23471.5
No Covariates - Gravity
(linear)

5 48926.6 15783.8 <0.1 -24458.3

Note. The table presents the number of parameters (k), Akaike information crite-
rion corrected (AICc), delta-AICc (∆AIC), Weight of Evidence (WoE), and Log-
likelihood (LL) for each model. Quantitative predictors are specified as either linear
or logarithmic (in parentheses).

1 The ∆AIC measures the distance of each model m to the best model in the set m∗

by measure of their AICc values (i.e., ∆m = AIccm − AICcm∗).
2 The WoE statistic is a scaled measure of relative goodness of fit for each model m

calculated as the ratio: e−
∆m
2 /
∑M

m=1 −e
∆m
2 .
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Table A.2: Country-average office foundations effect from synthetic difference-in-
differences

Country DAAD foundation ATT

Malaysia 2000 3.58
Viet Nam 2002 2.91
Mexico 2001 2.50
Azerbaijan 2005 2.10
Kyrgyzstan 2005 1.93
Colombia 2006 1.92
Thailand 2000 1.75
Iran 2004 1.70
Singapore 2002 1.70
United Arab Emirates 2007 1.67
Pakistan 2009 1.56
Australia 2002 1.46
Afghanistan 2013 1.45
Israel 2005 1.39
Ukraine 2004 1.37
Armenia 2005 1.31
Chile 2000 1.27
Turkey 2001 1.27
Tunisia 2015 1.26
Costa Rica 2006 1.26
South Korea 2001 1.25
Belarus 2004 1.23
Canada 2003 1.21
Italy 2005 1.19
Kazakhstan 2005 1.16
South Africa 2005 1.13
Venezuela 2002 1.10
Spain 2005 1.08
Lebanon 2016 1.05
Greece 2004 1.02
Peru 2016 1.01
Jordan 2013 1.01
Romania 2003 0.99
Argentina 2000 0.97
Georgia 2005 0.94
Ethiopia 2015 0.94
Cuba 2004 0.93
Belgium 2013 0.89
Latvia 2005 0.87
Czech Republic 2001 0.86
Ghana 2002 0.79
Hungary 2003 0.68
Sudan 2004 0.47

Note. This table presents the synthetic difference-in-differences estimates and their
significance for individual office foundations using length of exposure inverse-
variance weighting (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001). The coefficients
reflect sending rate ratios or ratios of the migration case rate with and without the
office and are sorted by their magnitude.
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APPENDIX B

ESSAY III

Table B.1: Standardized mean differences before and after matching

Raw differences Weighted differences

Propensity score 0.816 0.001
Female 0.486 0.004
Books: 201+ 0.432 0.018
Location: 3,000-15,000 0.295 0.008
Books: 26-100 0.301 0.018
Books: 11-25 0.251 0.001
Books: 0-10 0.164 0.024
Region: Northeastern 0.164 0.002
Location: 100,000-1,000,000 0.150 0.007
Region: Southern 0.139 0.028
Location: 15,000-100,000 0.091 0.009
Region: Northwestern 0.086 0.010
Region: Central 0.073 0.022
Location: ¡3,000 0.072 0.001
Repeater 0.071 0.002
Immigrant: Native 0.046 0.037
Books: 101-200 0.034 0.019
Immigrant: Second-Generation 0.034 0.019
Immigrant: Third-Generation 0.030 0.033
Region: Islands 0.027 0.012
Location: 1,000,000+ 0.014 0.021

Notes. Bias reduction after inverse probability matching. Matching weights
factor the probability of assignment into the tracks (“Weighted differ-
ences”) to mitigate observational biases in sample means (“Raw differ-
ences”).
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Table B.2: Predictors of PISA math score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 582.0∗∗∗ 81.0∗∗∗ 94.0 508.0∗∗∗ 90.0∗∗∗ 145.0
(21.0) (16.0) (105.0) (29.0) (23.0) (274.0)

Female -26.0∗∗∗ -20.0∗∗∗ -37.0 -28.0∗∗∗ -22.0∗∗∗ -51.0
(3.1) (2.0) (86.0) (5.4) (3.7) (228.0)

Grade repeater -62.0∗∗∗ -9.9 -9.8 -50.0∗∗∗ -16.0 -16.0
(8.6) (6.0) (6.1) (12.0) (8.5) (8.5)

Immigration status (base: Native)
Second-generation -11.0 -7.2 -7.2 -39.0 15.0 16.0

(16.0) (8.4) (8.4) (33.0) (20.0) (20.0)
Third-generation -29.0 2.4 2.4 -55.0∗ -18.0 -18.0

(16.0) (8.4) (8.5) (25.0) (17.0) (17.0)
Books at home (base: 0-10)
11-25 -12.0 -10.0∗ -4.7 0.3 -12.0 55.0

(9.0) (5.0) (108.0) (21.0) (13.0) (282.0)
26-100 3.9 -3.5 21.0 27.0 -5.7 269.0

(8.1) (4.6) (411.0) (19.0) (12.0) (1,083.0)
101-200 19.0∗ -1.2 33.0 53.0∗∗ 5.6 490.0

(8.4) (4.8) (692.0) (19.0) (12.0) (1,825.0)
200+ 22.0∗∗ -1.5 40.0 64.0∗∗∗ 5.8 544.0

(8.2) (4.7) (749.0) (19.0) (12.0) (1,980.0)
School random effects
School ESCS 15.0∗ 3.1 3.0 42.0∗∗∗ 3.6 3.7

(6.3) (3.6) (3.6) (6.9) (4.4) (4.4)
Student-teacher ratio 2.1∗∗∗ 0.6 0.6 0.8 -0.8 -0.8

(0.6) (0.4) (0.4) (0.9) (0.6) (0.6)
Number of students 0.7 0.2 0.2 0.8 0.9∗ 0.9∗

(0.5) (0.3) (0.3) (0.7) (0.4) (0.4)
Private -60.0∗∗ -19.0 -19.0 -53.0∗∗ -3.8 -4.4

(23.0) (14.0) (14.0) (18.0) (10.0) (10.0)
Full-time ratio 18.0 5.8 5.9 -9.3 7.1 6.7

(11.0) (5.9) (5.9) (17.0) (12.0) (12.0)
PISA test score (unit: 1 SD)
Reading 32.0∗∗∗ 32.0∗∗∗ 32.0∗∗∗ 32.0∗∗∗

(2.4) (2.4) (3.3) (3.3)
Science 56.0∗∗∗ 56.0∗∗∗ 50.0∗∗∗ 50.0∗∗∗

(2.4) (2.4) (3.3) (3.3)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 -0.4 0.03

(1.9) (4.8)
TIMSS – Grade 8 -0.4 -4.5

(5.3) (14.0)
PIRLS 0.2 -2.4

(2.6) (6.9)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.21 0.73 0.73 0.24 0.69 0.69

Notes. Models for PISA math test score with sequential inclusion of regressors: a) student features; b)
PISA test scores on the domains of reading and science; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table B.3: Predictors of PISA reading score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 528.0∗∗∗ 70.0∗∗∗ 133.0 512.0∗∗∗ 76.0∗∗ 52.0
(18.0) (15.0) (104.0) (35.0) (24.0) (269.0)

Female 13.0∗∗∗ 30.0∗∗∗ -23.0 14.0∗ 34.0∗∗∗ 50.0
(3.0) (1.9) (86.0) (5.5) (3.3) (221.0)

Grade repeater -67.0∗∗∗ -22.0∗∗∗ -22.0∗∗∗ -56.0∗∗∗ -23.0∗∗ -23.0∗∗
(8.4) (5.7) (5.7) (12.0) (7.3) (7.3)

Immigration status (base: Native)
Second-generation 5.2 13.0 13.0 -73.0 -28.0 -28.0

(16.0) (8.1) (8.1) (39.0) (15.0) (15.0)
Third-generation -32.0∗ -5.6 -5.4 -38.0 6.2 6.2

(14.0) (9.5) (9.6) (26.0) (18.0) (18.0)
Books at home (base: 0-10)
11-25 -5.1 -1.5 66.0 0.1 -13.0 -46.0

(7.8) (5.0) (109.0) (20.0) (11.0) (270.0)
26-100 3.4 -2.9 249.0 27.0 -6.9 -126.0

(7.1) (4.6) (413.0) (19.0) (9.5) (1,044.0)
101-200 16.0∗ -2.4 421.0 44.0∗ -8.8 -211.0

(7.3) (4.7) (695.0) (18.0) (9.2) (1,760.0)
200+ 22.0∗∗ 0.9 458.0 57.0∗∗ -6.4 -218.0

(7.2) (4.7) (753.0) (18.0) (9.1) (1,908.0)
School random effects
School ESCS 2.1 -12.0∗∗ -12.0∗∗ 40.0∗∗∗ 0.2 0.2

(6.1) (3.9) (3.9) (7.4) (4.6) (4.7)
Student-teacher ratio 1.5∗∗ -0.1 -0.1 1.6 0.3 0.2

(0.6) (0.4) (0.4) (1.1) (0.7) (0.7)
Number of students 1.3∗∗ 1.0∗∗ 1.0∗∗ 0.1 0.1 0.1

(0.5) (0.3) (0.3) (0.8) (0.5) (0.5)
Private -25.0 21.0 22.0 -59.0∗∗ -8.6 -8.6

(22.0) (16.0) (16.0) (22.0) (13.0) (13.0)
Full-time ratio 27.0∗ 18.0∗∗ 18.0∗∗ -20.0 -6.3 -6.0

(11.0) (6.3) (6.2) (19.0) (18.0) (18.0)
PISA test score (unit: 1 SD)
Math 33.0∗∗∗ 33.0∗∗∗ 33.0∗∗∗ 33.0∗∗∗

(2.4) (2.4) (3.4) (3.4)
Science 45.0∗∗∗ 45.0∗∗∗ 52.0∗∗∗ 52.0∗∗∗

(2.4) (2.4) (3.6) (3.6)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 -1.2 0.4

(1.9) (4.7)
TIMSS – Grade 8 -3.2 1.3

(5.4) (14.0)
PIRLS -1.6 1.1

(2.7) (6.7)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.14 0.65 0.65 0.20 0.68 0.68

Notes. Models for PISA math test score with sequential inclusion of regressors: a) student features; b)
PISA test scores on the domains of math and science; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table B.4: Predictors of PISA science score

STEM Liberal Arts

(1) (2) (3) (1) (2) (3)

Constant 592.0∗∗∗ 88.0∗∗∗ -101.0 512.0∗∗∗ 70.0∗∗ 158.0
(21.0) (15.0) (97.0) (33.0) (24.0) (222.0)

Female -18.0∗∗∗ -9.5∗∗∗ 148.0 -21.0∗∗∗ -15.0∗∗∗ -93.0
(3.1) (1.9) (80.0) (5.3) (3.4) (182.0)

Grade repeater -54.0∗∗∗ 3.3 3.0 -32.0∗ 14.0 14.0
(8.2) (5.6) (5.7) (13.0) (7.6) (7.6)

Immigration status (base: Native)
Second-generation -9.0 -5.6 -5.8 -62.0 -13.0 -13.0

(17.0) (7.3) (7.4) (37.0) (16.0) (16.0)
Third-generation -38.0∗ -10.0 -11.0 -50.0∗ -9.4 -9.3

(18.0) (9.2) (9.2) (23.0) (11.0) (11.0)
Books at home (base: 0-10)
11-25 0.6 8.6 -189.0 25.0 25.0∗ 114.0

(8.7) (4.7) (100.0) (19.0) (10.0) (230.0)
26-100 11.0 7.9 -739.0 48.0∗∗ 24.0∗∗ 354.0

(8.0) (4.4) (378.0) (17.0) (9.1) (876.0)
101-200 26.0∗∗ 11.0∗ -1,245.0 67.0∗∗∗ 25.0∗∗ 570.0

(8.2) (4.5) (637.0) (17.0) (9.0) (1,477.0)
200+ 30.0∗∗∗ 10.0∗ -1,349.0 81.0∗∗∗ 28.0∗∗ 606.0

(8.1) (4.4) (690.0) (17.0) (8.9) (1,600.0)
School random effects
School ESCS 20.0∗∗ 11.0∗∗∗ 12.0∗∗∗ 51.0∗∗∗ 15.0∗∗∗ 15.0∗∗∗

(6.2) (3.4) (3.3) (7.1) (4.0) (4.0)
Student-teacher ratio 1.9∗∗ 0.2 0.2 2.2∗ 1.1∗∗ 1.1∗∗

(0.6) (0.3) (0.3) (1.0) (0.4) (0.4)
Number of students 0.2 -0.7∗ -0.7∗∗ -0.4 -0.8 -0.8

(0.5) (0.3) (0.3) (0.7) (0.5) (0.5)
Private -59.0∗∗ -18.0∗ -19.0∗∗ -62.0∗∗ -13.0 -13.0

(19.0) (7.8) (7.4) (20.0) (12.0) (12.0)
Full-time ratio 6.3 -13.0∗ -13.0∗ -20.0 -7.4 -7.3

(11.0) (6.1) (6.1) (20.0) (20.0) (20.0)
PISA test score (unit: 1 SD)
Math 51.0∗∗∗ 51.0∗∗∗ 43.0∗∗∗ 43.0∗∗∗

(1.8) (1.8) (3.0) (3.0)
Reading 39.0∗∗∗ 39.0∗∗∗ 44.0∗∗∗ 44.0∗∗∗

(1.9) (1.9) (2.8) (2.8)
Imputed test score (unit: 1 pct.)
TIMSS – Grade 4 3.4∗ -2.0

(1.7) (3.9)
TIMSS – Grade 8 9.6∗ -3.6

(4.9) (11.0)
PIRLS 4.7 -2.0

(2.4) (5.7)

Region FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
N 1,968 1,968 1,968 841 841 841
Adjusted R2 0.19 0.74 0.74 0.25 0.74 0.74

Notes. Models for PISA science test score with sequential inclusion of regressors: a) student features;
b) PISA test scores on the domains of math and reading; and c) imputed TIMSS and PIRLS test scores.
T-statistics are reported in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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