
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Learning Sciences Faculty Publications Department of Learning Sciences 

11-26-2020 

An Examination of a Group of Middle School Students’ An Examination of a Group of Middle School Students’ 

Engagement during a Series of Afterschool Computing Activities Engagement during a Series of Afterschool Computing Activities 

in an Urban School District in an Urban School District 

Brendan Calandra 
Georgia State University 

Maggie Renken 
Georgia State University 

Jonathan Cohen 
Georgia State University 

Timothy Hicks 
Georgia State University 

Tuba Ketenci 
Georgia Institute of Technology 

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_facpub 

 Part of the Instructional Media Design Commons 

Recommended Citation Recommended Citation 
Calandra, B. Renken, M., Cohen, J., Hicks, T., and Ketenci, T. (2020). An examination of a group middle 
school students’ engagement and computational thinking outcomes during a series of afterschool 
computing activities. Tech Trends. 65, 17-25. https://doi.org/10.1007/s11528-020-00557-6 

This Article is brought to you for free and open access by the Department of Learning Sciences at ScholarWorks @ 
Georgia State University. It has been accepted for inclusion in Learning Sciences Faculty Publications by an 
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/ltd_facpub
https://scholarworks.gsu.edu/ltd
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/795?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


1 

An examination of a group middle school students’ engagement and computational 
thinking outcomes during a series of afterschool computing activities 

Abstract 

In this study, the authors analyzed data from a sample of thirty-two middle school students from 
an inner-city school district in the southeastern United States who used MIT’s App Inventor to 
design, create, and remix mobile apps during an afterschool program for one school year. This 
paper focuses on computer science learning outcomes associated with computational thinking 
(CT), and as measured by an instrument created by the authors called the CT Quiz (Ayer, et. al. 
2018). Findings indicated a linear relation between the number of apps a participant created 
during the given afterschool program and their level of accuracy on the CT Quiz. Findings 
should be of interest to both researchers and practitioners. 

Keywords: Computer Science Education, Broadening Participation in Computing, Afterschool, 
Computational Thinking   
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 2 

 
 

An examination of middle school student computational thinking outcomes and 
engagement in a series of afterschool computing activities 

 

Introduction 

The study reported in this paper was part of a larger project that included the creation, 

implementation, and initial testing of an afterschool learning environment for middle school 

youth in a large, inner-city school district in the southeastern United States. Many young people 

in the United States do not have equal opportunities to engage in computing, especially girls, 

minorities, and those from lower-income families (Google & Gallup, 2016; K12CS, 2019), 

resulting in tech sector jobs and the technologies that those jobs produce in the US still primarily 

being the effort of a narrow set of demographics that is not representative of the larger 

population (Wang, 2017). This has in part resulted in a large number of vacant computing jobs in 

the United States, but also a noticeable lack of diversity in the computing workforce (Code.org, 

2019). This lack of diversity can exclude a segment of our population from a chance to share in 

the socioeconomic stability that high-paid careers can provide. It can also result in new 

technologies being designed, developed, and implemented in ways that do not equitably serve an 

entire, diverse population in countries like the US (Howard, 2016; Lee, 2015; Saran, 2017), a 

phenomenon that can have widespread societal impact. There is a growing body of work focused 

on broadening participation in computing (Asprey, 2016; Goode, 2008; Lachney, 2018; Rankin 

& Thomas, 2017; Ryoo, et al., 2013). One way to approach broadening participation reported in 

this literature is to provide more opportunities for women and people of color to be producers 

rather than mere consumers of technology in both formal and informal learning environments 

(Kafai & Burke, 2014). Informal learning environments such as museums, makerspaces, 
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computer labs, community centers, and school-based afterschool programs have been reported in 

the literature as well-suited for bridging gaps in access to computing education in part because 

these programs can afford students, some of whom may not have such opportunities during the 

school day, the time and freedom to learn how to be producers rather than consumers of digital 

technologies (Ericson & McKlin, 2012; Maloney, et al., 2008; Scott, Sheridan, & Clark, 2015).  

The project within which this study was embedded was designed to test a model for 

afterschool programming that exposes traditionally underrepresented students to accessible, 

engaging, and challenging computer science curricula. The study described here focuses on one 

set of student outcomes resulting from participation in the program, and related to a construct 

called computational thinking (CT). Computational thinking (CT) has been established by a 

number of educational institutions and government agencies as an essential 21st century skill 

(e.g., K12CS, 2019). Since Wing’s (2006) influential article, quite a few definitions of CT have 

emerged in the literature. See Grover and Pea for an in-depth analysis (2013). While there are 

multiple and varied definitions of CT that exist, CT is considered by many as the ability to use 

principles from computer science to solve problems and express solutions in a way that could be 

carried out by a computer (Kong, Abelson, & Lai, 2019, Shute, Sun, & Asbell-Clark, 2017; 

Wing, 2010; Yadav et al., 2017). Although the current study examines a group of students 

learning about CT through a series of block-based programming activities, it is important to 

acknowledge that CT has also been touted as a more fundamental skill set that can be applied in 

multiple and varied subject areas as well as contexts beyond computing (Grover & Pea, 2013). 

Purpose 

The current study was part of a project designed to support underrepresented middle 

school students’ engagement in activities that incorporated the use of knowledge, skills, and 
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practices represented in the ICT workplace to develop digital artifacts (Cohen, Renken, & 

Calandra, 2017). Embedded within the larger project, the purpose of the current study was to 

consider how performance on a multiple-choice computer science assessment called the CT Quiz 

(Ayer, et. al. 2018) was related to the completion of a series of self-paced, mobile app 

development activities during the one-year after-school computing program. The current study 

was guided by the following research question: Can student engagement in a series of block-

based coding activities during an afterschool program influence their performance on the CT 

Quiz?  

Method 

Participants  

Study participants were 32 middle school students from 9 schools in an inner-city school 

district on the southeastern United States who were participating in a free, after-school program 

that served roughly 2600 students at the time the study took place. While 174 students 

participated in the afterschool program, assented to participate in research, and provided data at 

some point in the program, only 32 of these participants provided the researchers with complete 

data sets related to the current research question and purpose of this study. This was due to the 

flexible, voluntary nature of the afterschool program. The 32 middle school students who agreed 

to participate and who produced usable data sets included 16 girls and 16 boys. According to 

self-reports of race, 18 participants were African American; 5 reported having multiple 

racial/ethnic backgrounds; and 8 preferred not to self-report race. Participants’ ages ranged from 

11 to 16, with a mean age of 12.5.  

Intervention  
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The intervention involved participants working on computer science activities in media 

centers, computer labs, classrooms, and online at 9 middle school sites in an inner-city school 

district in the southeastern United States. The intervention took place after school for up to 90 

minutes twice a week for around 16 weeks. This duration varied somewhat at each school site as 

each individual school had some control over program implementation. During this time, 

participants were presented with a series of computer science activities. The instructional design 

for the activities included self-paced, direct instruction (Kirschner, Sweller, & Clark, 2006), 

followed by increasingly less structured computational problem-solving activities (Guzdial, 

2015). More specifically, the sequence consisted of: a) A guided series of programming steps 

that lead to the creation of pre-designed mobile apps called cookbooks; b) more lightly guided 

problem-based tasks that allowed participants to continue working on, tweaking, 

troubleshooting, or remixing existing mobile apps called DIYs; and c) opportunities for 

participants to work on their own ideas for apps alone or in self-selected teams once they became 

comfortable with the App Inventor interface. The authors chose MIT’s App Inventor as the 

platform for helping novices learn to code because it is a user-friendly solution that would allow 

young students to create content for platforms that they commonly use, such as mobile devices 

(Goode, 2008; Patten, Tissenbaum, & Harunani, 2019). The authors felt that block-based coding 

was an efficient gateway into coding while also allowing students to showcase varied and rich 

creative expression (Kafai & Burke, 2017). Both of these affordances of App Inventor were in 

keeping with our broader goal of increasing access to engaging CS learning experiences, 

especially for minority students and girls.  

The app building activities were created to include computational thinking (CT) concepts 

and practices as outlined by Brennan and Resnick’s (2012) framework. The CT practices 
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embedded in the intervention included abstracting and modularizing, reusing and remixing 

others’ projects, and being incremental and iterative. The CT concepts and related skills included 

were the use of sequences, loops, parallelism, events, conditionals, and operators. As much as 

possible, each activity was also designed to connect the app building experiences with relevant, 

and at times socially responsible themes. Themes for app activities included but not exclusively 

musical artists, civil rights, games, quizzes, and public health. While activities were presented to 

participants based on gradual increases of difficulty, the authors would like to note that students 

were permitted to choose activities out of the suggested sequence, although very few did so. 

Students who worked out of sequence did so mostly based on their interest in the content/theme 

of a given activity. Activities could be downloaded and submitted online in a custom-built 

content management system. During their activity time, participants interacted with school 

teachers, with graduate student program facilitators, and with undergraduate mentors who were 

Computer Science majors from 3 local, Historically Black Colleges and Universities.  

CT Quiz  

While evaluation of the larger project involved multiple and mixed data sources, this 

paper focuses on the number of apps each participant completed as it related to CT quiz scores. 

The CT Quiz is an instrument that falls into the classification of a CT summative instrument 

(Roman-Gonzales, Moreno-Leon, & Robles, 2019). In other words, it was designed for a post-

test evaluation of student learning after their exposure to a CT-infused curriculum involving 

mobile app development. The CT Quiz was developed by a team that included experts in CS 

education, instructional design, and psychometrics, and it was based closely on Yadav et al.’s 

(2017) definition of CT combined with Brennan and Resnick’s (2012) framework for 

computational thinking concepts and practices (Ayer, et al., 2018). Brennan and Resnick (2012) 
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was used specifically to expand upon the broader definition in order to further identify categories 

of related, but more concrete CT concepts and practices that are specific to teaching and learning 

programming (K12CS, 2016). See Table 1 below for the broader CT definition matched to 

constructs from the framework.  

Table 1 
Operational Definitions, Practices, and Concepts 
 
Definition Practices Coding Concepts 

(can be embedded within multiple practices) 
Breaking down complex 
problems into manageable 
smaller chunks of problem  

Abstracting and 
modularizing 

 
 

Variables 
Lists 

Sequences 
Loops 

Parallelism 
Events 

Conditionals 
Operators 

 
Using algorithms to solve 
problems,  

 
Being incremental and 
iterative 
 

Transferring the solution to 
similar problems 
 

Reusing and remixing 
other's project 

Determining if an intelligent 
agent can effectively carry out 
the solution  

Debugging and testing 
the existing project 

 
Note: The definitions, concepts, and practices were drawn directly from Yadav et al. (2016) and 
Brennan and Resnick (2012) 

 
Items in the CT Quiz were designed to allow students to demonstrate CT concepts and to 

some extent practices by answering multiple choice questions (Ayer, Cohen, & Calandra, 2018). 

Answer choices were included that were correct, plausible, and incorrect. Plausible in this case 

did not mean “more correct” than incorrect answer choices. It only meant that these were 

designed to be more plausible distractors. See Table 2 for a list of items included in the Quiz 

mapped to CT concepts and CT practices.  

Table 2 
Quiz items, Practices, and Concepts 
 

CT Quiz Item CT Practice CT Concept 
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1 Abstraction Loop 
2 Abstraction Sequence 
3 Abstraction Variable 
4 Abstraction Variable 
5 Abstraction, Reuse Sequence/Event 
6 Abstraction, Reuse Sequence/Event 
7 Abstraction Parallelism 
8 Abstraction, Debugging Operation 
9 Abstraction, Reuse Sequence/Event 

10 Abstraction Loop 
11 Abstraction, Debugging Conditional 
12 Abstraction Conditional  

 

See Figure 1 below for a sample Quiz question. The question in Figure 1 addresses 

participants’ knowledge of how individual pieces of code work together to control objects in the 

app (abstraction). In addition, students are required to identify and fix an error in a block of code 

in order to answer the question correctly (debugging). 

 

Question: You realize that your code for your app above is doing the calculation wrong for your 
fitness level. It should multiply the height by two and then divide by 10. Please choose the 
appropriate code block below to solve the problem. 
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Figure 1. Sample question (quiz question number 8) from the computational concepts and 
practices Quiz. 

 
By relevant activities, the authors mean cookbook activities that contained explicit 

instruction on a given concept as well as exposure to given practices. DIYs and student 

driven/designed apps are not included in this table because they did not include explicit 

instruction, however, students who completed these, completed more activities in general, and 

thus had more opportunity for exposure to given concepts and practices, including some not 

explicitly included in the cookbooks such as reuse and debugging. See Table 3. 

Table 3 
Quiz items and Relevant Activities 
 
Quiz Items Relevant Activities Number of RA 
1 6, 9, 10 3 
2 2, 8, 9, 10, 11 5 
3 8, 9, 10, 11 4 
4 8, 10, 11 3 
5 2, 8, 9, 10, 11 5 
6 2, 8, 9, 10, 11 5 
7 2, 6, 8, 9, 10, 11 6 
8 6, 8, 9, 10, 11 5 
9 2 1 
10 8, 10, 11 3 
11 6, 9, 10 3 
12 6, 9, 10 3 

Data Collection 

Pretesting opportunities were provided for participants at the beginning of each of two 

school semesters and post testing at the end. Participation in data collection was also voluntary. 

Researchers were on site to assist participants in completing the CT Quiz in a school computer 

lab during afterschool time at each school site at the beginning and end of each semester (fall and 

spring). Thirty-two participants completed the CT Quiz prior to working on the app-building 

curriculum and after completing each school semester. Due to differences in patterns of 
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attendance, 7 participants completed the CT quiz 3 times rather than 2. For this reason, the 

authors defined an individual’s pretest as the first time a student took the CT Quiz and the 

posttest as the last time they took it. Participants were instructed to turn in their completed apps 

by the end of the program. The authors used number of apps completed as a measure of student 

exposure to the curriculum. App completion in this case meant the participant submitted an at 

least partially functional mobile application to the online system. 

Data Analysis 

 Quantitative data analysis was conducted by graduate research assistants and a faculty 

expert in psychometrics. All data was downloaded, stored, de-identified and cleaned in 

spreadsheets. Analysis was then conducted using the SPSS statistical analysis software. In 

addition, all apps were downloaded, stored and de-identified after which time they were 

reviewed for content and creativity as well as instances of CT concepts being implemented. This 

analysis was guided by the App Inventor Project Rubric - Computational Thinking through 

Mobile Computing created by Sherman et al. (2014). This review was conducted by two 

doctoral-level graduate assistants: A former Computer Science teacher, and a student of 

Instructional Design and Technology.  

Results 

The number of apps participants completed during their exposure to the afterschool 

curriculum ranged from 1 to 11. The data was normally distributed with a mean app completion 

rate of 4.6 apps. Pretest scores were normally distributed and ranged from 0% correct to 50% 

correct, with a mean of 22% correct. As expected, a correlation analysis indicated that the pretest 

scores did not differ as a function of apps completed (Pearson’s r = .106, p = .564 and 

Spearman’s rho = .134, p = .465). Posttest scores were moderately skewed to the left and ranged 
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from 0% correct to 83% correct, with a mean of 30.5% correct. The authors calculated a CT Quiz 

Change score as the individual’s posttest score minus their pretest score. The change scores were 

normally distributed and ranged from -25% to 50%. Both posttest scores and change scores were 

significantly correlated with the number of apps a participant completed (Posttest: Pearson’s r = 

.545, p = .001 and Spearman’s rho = .547, p = .001; Change score: Pearson’s r = .548, p = .001 

and Spearman’s rho = .436, p = .013). Figure 3 demonstrates the linear relationship between the 

number of apps completed and the change in CT score from pre- to posttest.  

 

Figure 2. Relation between Change in CT Score from Pre- to Posttest and Number of Apps 
Completed. 
 

To further explore the positive correlation between change scores on the CT Quiz and the 

number of apps a participant completed, and thus to more thoroughly answer our research 
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question, the authors determined quartiles based upon the number of apps they completed. See 

Table 2. In the lowest quartile, participants (n = 9) completed 1 or 2 apps. In the second quartile, 

participants (n = 8) completed 3 or 4 apps. In the third, participants (n =9) completed 5 or 6 apps; 

and in the fourth, participants (n = 6) completed between 7 and 11. 

Table 3 
Number of apps completed and number of participants in each app completion quartile  
 

Quartile Range of apps completed Number of participants (n) 
1 1-2 apps 9 
2 3-4 apps 8 
3 5-6 apps 9 
4 7-11 apps 6 

 

The authors were interested in the percentage of participants in each quartile with gains in 

their score (i.e., change score > 0), a loss in their score (i.e., change score < 0), or no change (i.e., 

change score = 0). The percentage of participants who scored higher at posttest than at pretest 

jumped from 33.3% in Quartile 1 (Q1) to 66.7% in Quartile 4 (Q4). See Figure 3 for mean 

change in CT scores across groups. 

 

-5.00% 0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

1

2

3

4

Mean change in CT score

Q
ua

rt
ile

AUTHOR A
CCEPTED M

ANUSCRIP
T



 13 

Figure 3. Mean change in percent accurate on the CT Quiz from pretest to posttest within each 
quartile.  
 

Further, there were 4 participants whose percentage of correct responses decreased from 

pre to posttest. These participants were only in quartiles 1 – 3; in other words, none of the 

participants who completed more than 6 apps performed more poorly at posttest than they did at 

pretest. One way to think about performance on the posttest is with regard to performing at 

chance. With 4 multiple choice answers from which to select the correct answer, performing at 

chance would be equivalent to 25% accuracy. For the top quartiles, 83.33% of the participants in 

Q4 and 77.78% of the participants in Q3 performed above chance on the posttest. In contrast, 

0%, and 22.22% performed above chance in the other quartiles, Q2 and Q1, respectively. Of the 

two students in Q1 that scored above chance, the first student’s grade stayed the same from the 

fall post-test to the spring post-test while the other’s increased from the fall (16.67%) to the 

spring (33.33%) having had the chance to work on 2 apps. 

The authors conducted a One-way Analysis of Variance (ANOVA) with CT change score 

as the dependent variable and quartile as the factor. A one-way ANOVA was selected because it 

is a statistical test designed to assess whether or not there are statistically significant differences 

in means across more than two independent groups. In this case, the authors divided participants 

into independent groups as a function of the number of apps they completed and the authors were 

interested in how this group membership related to the average CT change scores in each group. 

Specifically, the authors were interested in whether or not there were differences in CT change 

scores across the groups. CT change scores were significantly related to number of apps 

completed in the 4 quartiles (F(3, 28) = 3.616, p = .025). To determine statistically significant 

differences among the 4 groups, the authors ran post hoc analyses.  A Tukey HSD test, LSD test, 

and a Bonferroni test each showed no statistically significant difference between change score 
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for participants in Q1 versus Q2 (Tukey: p = .999, LSD: p = .886, Bonferroni: p = 1.000). 

Participants in Q1 versus Q4 came closer to showing a significant difference with a Tukey HSD 

test and Bonferroni test (Tukey: p = .056 and Bonferroni: p = .074). The LSD test, however, 

suggested a significant difference between Q4 and Q1 and Q2 but not Q3 (Q1: p = .012, Q2: p = 

.019, Q3: p = .446).  

The authors must point out that, none of the students worked on apps using App Inventor 

immediately prior to the pretest, although it was not possible to confirm whether or not any of 

the schools were working on computational thinking related activities during the school day. The 

authors did, however, ask students about their related prior knowledge and prior technology use, 

and there was no noticeable relationship between reported prior knowledge and pretest scores. 

Most importantly, participants’ pretest data was collected at the beginning of their participation 

in the program, either at the start of the fall or start of the spring semester. This meant that they 

were not provided with any app building experience through the program in question prior to the 

pretest. That being said, 7 of the participants took the test 3 times rather than 2 times. They 

completed 2, 1, 4, 5, 10, 7, and 11 apps, respectively. These participants were spread across app 

completion quartiles: Quartiles 1 (n = 2), Quartile 2 (n=1), Quartile 3 (n=1), and Quartile 4 (n = 

3). All but 2 of the 7 students mentioned above showed positive gains in CT quiz scores of time 

but two who were in Quartiles 1 and 2. 

Artifact analysis data were used to help the researchers further explore the quantitative 

findings. First, a review using Sherman et al.’s (2014) rubric showed that students in the 4th 

quartile and to some extent also the 3rd not only completed more app activities, but they 

progressed through more activities of increasing difficulty, which led them to be exposed to 

more of the CT concepts represented in the CT Quiz. See Table 4. 
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Table 4 
Total Number of Apps Completed by Participants in Each Quartile  
 

Quartile Number of 
Participants  

Total Number of 
Apps  

Total Number of 
Relevant Apps 

1 9 13 5 
2 8 31 9 
3 9 50 21 
4 6 53 24 

 

Artifact analysis further indicated that, as compared to their classmates who completed 

fewer and more basic apps, students in higher app-completion quartiles were not only completing 

more apps, but they were also expanding upon their cookbook apps by adding design, media, and 

functional tweaks to the existing apps, thus potentially having more exposure to CT concepts 

included in the Quiz. Students in the 4th quartile also enjoyed the opportunity to work on at least 

one DIY activity, which would indicate their reaching a certain comfort level with the App 

Inventor interface and CT concepts. Some examples of DIY apps included a fan app for various 

celebrities, a healthy living advice app based on a users’ age, a very colorful adapted version of 

the space invaders game, and an app designed to “hypnotize” users.  

Conclusion 

Results demonstrated that in this particular context, with these 32 participants, exposure 

to computing activities that include CT concepts of gradually increasing complexity using App 

Inventor seemed to enhance student performance on the CT Quiz. However, there appears to be a 

threshold for which this held true. In this case, completing 3 or fewer apps resulted in 

distinguishably different learning outcomes than completing 7 or more over the course of a year-

long intervention. In addition, students who completed more apps were also able to explore the 

app building process in more details via exposure to more DIY activities. Indeed, sustained 
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attendance in afterschool programs and support for completing and progressing through after-

school curricula such as the activities presented here is imperative because, as may have been the 

case in this study, it was evident that exposure to more and a greater variety of activities equaled 

better performance on a measure of computational thinking. 

Although the activities in this study did cover CT concepts that were represented in the 

CT quiz, future research will need to continue to consider at a finer grain size the overlap in 

content taught in specific modules that participants complete and their performance on an 

assessment that covers multiple CT concepts. Such an investigation should provide details about 

the generalizability of skills clearly aligned with one concept to others that are less directly 

aligned. Our data was collected at the end of each semester, so there was a brief relative delay 

from task completion to assessment, but future work should also explore the temporal transfer of 

gains in CT conceptual knowledge. The current findings do not address transfer to a different app 

building or coding language platform. Future research must focus on generalizing findings like 

these across such facets of transfer. As recommended by colleague, fifth author, and college 

(2019), via the creation of the CT Quiz and its early implementation as described in this paper, 

the authors hope to contribute to a battery of commonly used instruments for assessing 

commonly understood variables associated with Computational Thinking.  

Because this study was conducted in a large, inner-city afterschool program with a group 

of minority middle school girls and boys who self-selected into the program in question, this 

study answers a call by Mouza et al. (2016) that, “future research should examine the benefits of 

CS after-school programs in more diverse contexts, in terms of both gender and ethnicity” (p. 

99). Part of the value of this study is that it provides some evidence that with proper scaffolding, 

gradually increasing levels of challenge, and sustained interest and attendance, after school 
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programs that include CS curricula may lead to cognitive gains related to CT. Although these 

results are not generalizable due mostly to sample size, this intervention and corresponding 

measure show enough promise for them to be to be further tested, refined, and validated in 

multiple and varied contexts, thus making it a worthwhile addition to the larger conversation 

surrounding broadening participation in computing via informal computer science educational 

opportunities.  
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