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RESEARCH ARTICLE Open Access

Dopaminergic tone regulates transient potassium
current maximal conductance through a
translational mechanism requiring D1Rs,
cAMP/PKA, Erk and mTOR
Edmund W Rodgers1, Wulf-Dieter Krenz1, Xiaoyue Jiang3, Lingjun Li3 and Deborah J Baro1,2*

Abstract

Background: Dopamine (DA) can produce divergent effects at different time scales. DA has opposing immediate
and long-term effects on the transient potassium current (IA) within neurons of the pyloric network, in the Panulirus
interruptus stomatogastric ganglion. The lateral pyloric neuron (LP) expresses type 1 DA receptors (D1Rs). A 10 min
application of 5-100 μM DA decreases LP IA by producing a decrease in IA maximal conductance (Gmax) and a
depolarizing shift in IA voltage dependence through a cAMP-Protein kinase A (PKA) dependent mechanism. Alterna-
tively, a 1 hr application of DA (≥5 nM) generates a persistent (measured 4 hr after DA washout) increase in IA Gmax

in the same neuron, through a mechanistic target of rapamycin (mTOR) dependent translational mechanism. We ex-
amined the dose, time and protein dependencies of the persistent DA effect.

Results: We found that disrupting normal modulatory tone decreased LP IA. Addition of 500 pM-5 nM DA to the sa-
line for 1 hr prevented this decrease, and in the case of a 5 nM DA application, the effect was sustained for >4 hrs
after DA removal. To determine if increased cAMP mediated the persistent effect of 5nM DA, we applied the cAMP
analog, 8-bromo-cAMP alone or with rapamycin for 1 hr, followed by wash and TEVC. 8-bromo-cAMP induced an
increase in IA Gmax, which was blocked by rapamycin. Next we tested the roles of PKA and guanine exchange factor
protein activated by cAMP (ePACs) in the DA-induced persistent change in IA using the PKA specific antagonist Rp-
cAMP and the ePAC specific agonist 8-pCPT-2′-O-Me-cAMP. The PKA antagonist blocked the DA induced increases
in LP IA Gmax, whereas the ePAC agonist did not induce an increase in LP IA Gmax. Finally we tested whether extra-
cellular signal regulated kinase (Erk) activity was necessary for the persistent effect by co-application of Erk antago-
nists PD98059 or U0126 with DA. Erk antagonism blocked the DA induced persistent increase in LP IA.

Conclusions: These data suggest that dopaminergic tone regulates ion channel density in a concentration and
time dependent manner. The D1R- PKA axis, along with Erk and mTOR are necessary for the persistent increase in
LP IA induced by high affinity D1Rs.

Background
Neuromodulators can produce a multitude of different
effects depending on context, timescale, and concentra-
tion. DA, for example, has actions on the scale of milli-
seconds, during error detection [1], to minutes and
hours with its effects on volitional movement and cog-
nition [2]. In most systems, DA transmission is both

tonic and phasic [3]. Using the stomatogastric nervous
system (STNS, Figure 1A) in the spiny lobster, Panulirus
interruptus, we recently demonstrated that these two
types of transmissions can act over distinct time scales
to produce opposing effects on the same cell type [4].
The STNS comprises several motor networks and has

long served as an ideal model system for studies of
neuromodulation [5]. The pyloric circuit is a 14-neuron
network located exclusively within the stomatogastric gan-
glion (STG, Figure 1A) that is modulated by DA [6]. The
STNS dopaminergic system is well defined [7-15]. L-cells
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within the commissural ganglia (COGs, Figure 1A) secrete
DA into the hemolymph [15]. Since the STG resides in a
blood vessel and is bathed by hemolymph [5], this neuro-
hormonal DA serves as a source of tonic DA transmission
to pyloric neurons, predicted to be in the pM-nM range
[5,16]. In addition, modulatory DA projection neurons in
the COGs use volume transmission whereby DA is re-
leased into open synapses and diffuses to its target sites be-
fore reuptake [10]. In other systems volume transmission
results in tonic nM DA in the extracellular space that can
rise to μM levels near the release sites of bursting DA neu-
rons [17-19]. DA receptors are divided into two broad clas-
ses, type 1 (D1Rs) and type 2 (D2Rs). The lobster genome
contains two D1Rs and one D2R [7,8]. These receptors sig-
nal through canonical pathways in the native system [9,14]
and behave exactly like their mammalian counterparts
when expressed in human embryonic kidney cells [7,8].
In order to better understand the roles of tonic and

phasic DA transmissions, we have examined the effects of
nM vs. μM DA on identified pyloric neurons. The data
suggest tonic and phasic DA have distinct roles because
the two concentrations produced opposing persistent vs.
immediate effects on IA, respectively [4]. The channels
mediating IA are encoded by the shal (Kv4) gene in crusta-
ceans [20-22]. IA is active at sub-threshold voltages, and
helps determine the rate of post-inhibitory rebound and
spike frequency in pyloric neurons [23].
There is one lateral pyloric neuron (LP) in the pyloric

circuit that expresses D1Rs but not D2Rs [14]. Pyloric
neurons show spontaneous, rhythmic oscillations in mem-
brane potential and burst firing (Figure 1B). A 10 min bath

application of nM DA has no immediate effect on neuronal
output, but bath application of μM DA immediately alters
LP activity (Figure 1B), including an increase cycle fre-
quency, a decrease burst duration, and a phase advance me-
diated, in part, by decreasing LP IA [6,14,24]. The threshold
for this action is ~ μM [14] and is therefore likely mediated
by low affinity D1Rs. Whereas nM DA has no immediate
effect, it can act at high affinity LP D1Rs to persistently alter
LP IA: A 1 hr application of 5 nM DA followed by 3 hr
wash produced a persistent ~25% increase in LP IA Gmax

relative to controls that did not receive DA [4].
The signaling pathways that transduce DA’s immediate

and persistent effects appear to be distinct. Similar to
the situation in mammals [25], lobster D1Rs can couple
with Gs and Gq [7,9]. The immediate decrease in LP IA
was mediated by a D1R-AC-cAMP-PKA dependent path-
way [14]. The pathway mediating the DA-induced persist-
ent increase in LP IA is unknown, but it is both
translation- and mTOR-dependent [4]. Several intracellu-
lar signaling pathways can modulate the activity of the
serine-threonine kinase, mTOR [26-29]. The goal of this
work was to understand the dose and time dependencies
and the signaling proteins involved in the DA-induced,
persistent increase in LP IA. Here we show that dopamin-
ergic tone regulates IA density through the D1R-PKA axis,
Erk and mTOR.

Results
The persistent effect is both time and dose dependent
We previously showed that a 1 hr application of 5 nM
and 5 μM DA both produced a ~25% increase in LP IA

A B

Figure 1 Stomatogastric nervous system and experimental method. A. The stomatogastric nervous system (STNS) was dissected from the
animal and pinned in a Sylgard dish. A petroleum jelly well was constructed around the stomatogastric ganglion (STG). There are ~30 neurons in
the STG; two are drawn. Saline, with or without drugs, was superfused into the well surrounding the STG. Neurons in the commissural ganglia
(COG) and esophageal ganglion provide descending modulation that remained intact until voltage-clamp. LP was identified using a combination
of intra and extracellular recordings. B. Pyloric neurons spontaneously produce a triphasic rhythmic output (Control-Left Traces). The top two
traces represent intracellular recordings from the lateral pyloric (LP) and pyloric dilator (PD) cells, while the bottom traces represent extracellular
recordings taken from the lateral ventricular nerve (lvn) and pyloric dilator nerve (pdn). The application of 5nM DA produces no change in the LP
rhythmic output (Middle Traces). Application of 5 μM DA (Right Traces), however, alters LP activity [14]. In 5 μM DA cycle frequency is increased
and LP burst duration is a decreased [24].
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Gmax measured 4 hr after DA washout [4]. The fact that
both doses produced equivalent responses suggested that
DA was acting at high affinity receptors. Here we further
examined the dose dependency of the response using
two DA concentrations (500 pM, 5 nM). After dissection
and cell identification, a 2-5 hr process, a given concen-
tration of DA was or was not (control) bath applied to
the STG for 1 hr, and LP IA was immediately measured
at the end of the application, before DA washout using
two-electrode voltage clamp (TEVC) (Figure 2A). Data for
each time point was normalized by the mean control value.
LP IA Gmax was significantly increased in 500 pM and

5 nM, relative to control preparations (ANOVA F2,51 =
6.728, p = 0.0026; Dunnet’s post hoc 5 nM vs ctrl, p < 0.01,
500 pM vs ctrl, p < 0.05) (Figure 2B). In another series of
experiments, 50 pM DA was also applied (not shown), but
was not significantly different than control, and was
dropped from subsequent time points. Voltage dependen-
cies were not altered by any concentration of DA tested
(ANOVA: activation, p = 0.64, inactivation, p = 0.81).
We next examined if the effect persisted upon DA

washout. Experiments were repeated for control, 500 pM
and 5 nM preparations. DA or saline (control) was applied
for 1 hr and then DA was washed out for 1 hr, 4 hr, or

Figure 2 IA regulation by DA is both time and dose dependent. A. Experimental design: After identification, 1 hr, 2 hr, 5 hr and 18 hr
experiments were performed as diagramed. Experiments were concluded after TEVC measurement of IA. B. Each experiment was normalized by
the mean for the control group and normalized measures of LP IA were plotted over time for the experiments diagramed in 2A. Data points
represent normalized IA Gmax for each treatment group ± S.D. Each treatment group is independent. Asterisks indicate significant differences from
control, Dunnet’s post hoc test, p < 0.05 (see text). Dashed lines indicates the within treatment trend overtime. X-axis not drawn to scale. C. In
these experiments IA was measured repeatedly throughout a 1 hr DA or saline application, as diagramed. After an initial application of blocking
saline, IA was measured every 20 min in the presence or absence of DA. D. For each individual experiment in 2C, the values were normalized to
t = 0. Normalized means ± S.D. for each time point are shown. Asterisks represent significant differences between treatments determined by
post-hoc analysis, p < 0.05.
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18 hrs followed by TEVC in blocking saline (see Methods)
to measure LP IA (Figure 2A). Data for each experiment
were normalized by the mean for control at that time
point. Control means varied less than 10% between 1 hr
and 18 hr. After a 1 hr DA washout (i.e. 2 hr time point),
the effect of 500 pM DA on LP IA Gmax was no longer
significant, whereas the significant increase produced by
5 nM DA was sustained (ANOVA F2,15 = 6.51, p = 0.0101,
Dunnet’s post hoc, 5 nM vs ctrl, p < 0.01) (Figure 2B).
After a 4 hr DA washout (i.e., 5 hr time point) average LP
IA Gmax decreased to control levels in the 500 pM treated
preparations but remained significantly elevated in the
5 nM treated preparations compared to control (ANOVA
F2,20 = 5.411, p = 0.013, Dunnet’s post hoc 5 nM vs ctrl,
p < 0.01, Figure 2B). IA Gmax remains elevated out to
18 hrs after DA administration [4] (Figure 2B).
The previous experiments revealed that the persistent ef-

fect of nM DA was observable, compared to controls, by
1 hr after the start of DA administration. To examine the
time course for the development of the DA mediated in-
crease in IA we measured IA repeatedly during a 1 hr 5 nM
DA or saline (control) application (Figure 2C). To more
carefully examine changes over time, we normalized all the
values to t = 0 (Figure 2D) (There were no differences at
t = 0 between control and DA treated preparations (t-test,
p = 0.19)). We then performed mixed-model repeated mea-
sures ANOVA with time as the within-subjects factor and
treatment (5 nM DA vs. Control) as the between-subjects
factor. There was a significant effect of treatment (F1,9 =
7.10, p = 0.026), but not of time (F2,9 = 3.05, p = 0.0975).
Post hoc comparisons, with Dunn-Sidak adjustments, re-
vealed significant differences between treatments at 60 min
(p = 0.0247) (Figure 2D). By 60 min, average IA Gmax in-
creased by ~10%, in DA-treated preparations and de-
creased by ~13% in control preparations.

The persistent effect is mediated by increased cAMP
Our next goal was to identify signaling molecules involved
in the DA-induced, mTOR- and translation-dependent,
persistent increase in LP IA. LP exclusively expresses D1Rs
[14], of which there are 2 types that couple with Gs
(D1αPan) or Gs & Gq (D1βPan) [7]. To first examine
whether the persistent effect on LP IA was mediated by
cAMP, we applied the cAMP analogue, 8-bromo-cAMP or
saline (control) for 1 hr followed by a 1 hr block and TEVC
to measure LP IA (Figure 3A). We used the lowest effective
dose reported in this system [14]. Application of 8-bromo-
cAMP significantly and persistently elevated LP IA Gmax by
40% compared to saline controls (t-test, p = 0.0034), while
voltage dependence was not affected (t-test, p = 0.98.).
Interestingly, the magnitude of the increase in LP IA Gmax

produced by 8-Bromo-cAMP was very similar to that
produced by 5 nM DA in the 2 hr experimental paradigm
(5 nM mean ± S.E.M.: LP IA Gmax 3.16 ± 0.25, 8-Bromo-

cAMP LP IA Gmax 3.14 ± 0.16, Figure 3B). To determine if
the cAMP mediated persistent increase in LP IA depended
upon mTOR, we repeated the experiments except that the
mTOR antagonist, rapamycin (100 nM), was co-applied
with 8-Bromo-cAMP or 5 nM DA (Figure 3A). We then
compared those groups to saline alone or saline + 5 nM DA
(Figure 3B). Rapamycin reduced the 5 nM DA and 8-
bromo-cAMP induced increase in LP IA Gmax (ANOVA,
F4,25 = 6.02, p = 0.0016, Dunnet’s Post Hoc: Ctrl vs 5nM
DA, p < 0.05, Ctrl vs 8-Bromo, p < 0.05, Ctrl vs 5 nM+
RAP n.s., Ctrl vs 8-Bromo + RAP, n.s.) suggesting cAMP at
least partially mediates the D1R-induced persistent increase
in LP IA Gmax.

cAMP acts through PKA to increase IA Gmax

There are several known downstream effectors of cAMP
[30], notably PKA [31], ePACs [32,33], and cyclic-
nucleotide gated channels [34]. We first tested whether
cAMP mediated its effects on LP IA through ePAC by
employing the ePAC specific agonist, 8-pCPT-2′-O-Me-

Figure 3 cAMP analogue produces an increase in IA Gmax. A.
50 μM 8-Bromo-cAMP (with or without rapamycin) was applied to
an ongoing rhythm for 1 hr, followed by a 1 hr block and TEVC for
IA. Rapamycin was applied 10 min prior to 8-bromo-cAMP adminis-
tration. These data were compared to 2 hr control, 5 nM DA, or
5 nM DA + RAP. B. The data for each treatment group ± S.D were
plotted. Asterisks indicate significant differences from control. Data
was analyzed using ANOVA’s with Dunnett’s post hoc tests. 8-Bromo
cAMP persistently increased IA Gmax, while Rapamycin blocks or at-
tenuates those effects.
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cAMP. This cAMP analogue has been used successfully
to differentially activate ePAC1/2 as opposed to PKA
[35] in a host of phylogenetically divergent animals,
including crustaceans [36]. We applied 50 μM 8-cpt-
cAMP or saline (control) for 1 hr, followed by a 1 hr
wash and TEVC to measure LP IA. 8-cpt-cAMP had no
effect on LP IA Gmax relative to control (t-test, p = 0.72),
suggesting that the persistent effect of DA on LP IA was
not mediated through ePAC activation. At present there
are no effective antagonists for ePACs.
To determine if PKA mediated the D1R-induced persist-

ent increase in LP IA Gmax, we applied the specific PKA
antagonist, Rp-cAMP for 1 hr with 5 nM DA and TTX,
followed by 3 hr wash and subsequent TEVC (Figure 4A).
Controls received the same treatment except that DA was
omitted. Tetrodotoxin (TTX) was incorporated into these
experiments because bath application of PKA antagonists
caused cessation of a rhythmic network output (Figure 1B).
Thus, to standardize both activity and drugs across

experiments, (no Rp-cAMP, Rp-cAMP, 5 nM DA and
5 nM DA+ Rp-cAMP) TTX was included in all treatment
groups to block rhythmic network output. Previous exper-
iments have demonstrated that co-application of TTX
with DA did not affect the DA induced persistent increase
in IA Gmax [4]. Rp-cAMP blocked the DA induced persist-
ent increase in IA Gmax (ANOVA, F3, 22 = 3.697, p = 0.027,
Tukey’s post hoc, Rp-cAMP+DA vs TTX Ctrl, n.s., Rp-
cAMP+DA vs TTX+DA, p < 0.05, Figure 4B).

Erk activation is required for the DA mediated increase in
IA Gmax

Erk has been shown to positively regulate mTOR activity
through a number of mechanisms [28,37], and Erk signal-
ing is necessary for mTOR mediated, forskolin (adenyl
cyclase activator) induced, late-phase LTP [38]. However,
depending upon the cell type, increased cAMP can activate
[39] or inhibit [40] the Erk signaling pathway. To test
whether Erk was involved in mediating the DA induced
persistent increase in LP IA Gmax we used the indirect Erk
antagonists PD98059 and U0126. Both drugs act on the
mitogen-activated protein kinase kinases (MEK1/2) imme-
diately upstream of Erk to prevent activation through
phosphorylation. We co-applied either PD98059 or U0126
with or without 5 nM DA for 1 hr, followed by a 1 hr block
and TEVC (Figure 5A). We compared the results of each
drug to saline control and DA alone. Both drugs blocked
the DA induced increase in IA: PD98059, Figure 5B,
ANOVA F3,20 = 4.125, p = 0.019, Dunnet’s post hoc, ctrl vs
DA, p < 0.05, ctrl vs PD98059, n.s., ctrl vs PD98059 +DA,
n.s.. U0126, Figure 5C, ANOVA F3,19 = 3.133, p = 0.049,
Dunnet’s post hoc ctrl vs DA, p < 0.05, ctrl vs U0126, n.s.,
ctrl vs U0126 +DA, n.s.. These data show that Erk activa-
tion is required for the persistent increase in IA Gmax.

U0126 affects the time constant of inactivation
Shal (Kv4) channels mediate IA in pyloric neurons [20-22].
Shal (Kv4) proteins are well conserved across species [41].
Previous work using U0126 has shown that it interacts
directly with the rat Kv4.2 channel (a mammalian A-type
K channel), causing an acceleration of inactivation of the
channel [42]. To determine if U0126 had a similar effect
on Panulirus A-type K channels, we determined the time
constants of inactivation by fitting IA inactivation with a
double exponential function (Clampfit) (Figure 6A). We
found that both fast and slow time constants were signifi-
cantly different in the presence of U0126; the fast time
constant was accelerated 40% by U0126 compared to sa-
line, while the slow time constant was lengthened by 59%.
PD98059, which also blocked the persistent effect of DA
on LP IA, had no direct effect on A-channel inactivation
kinetics (Fast τ, Figure 6B top panel, ANOVA F2,28 = 30.53,
p < 0.0001, Tukey’s post hoc, U0126 vs Saline p < 0.0001,
U0126 vs PD98059, p < 0.0001, PD98059 vs Saline, ns;

Figure 4 PKA antagonist Rp-cAMP blocks DA induced increase
in IA Gmax. A. The specific PKA antagonist Rp-cAMP was applied in
conjunction with TTX for 1 hr (with or without DA) followed by a
3 hr washout, and 1 hr block. Rp-cAMP and TTX were applied
10 min before administration of DA. B. 1 mM Rp-cAMP blocked the
DA induced increase in IA Gmax, and was significantly different than
TTX + DA alone, indicating that the persistent effect is dependent of
PKA. Data were analyzed with ANOVAs, Tukey’s post hoc that makes
all pairwise comparisons and plotted as mean ± S.D.
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Figure 5 Erk antagonists inhibit DA induced increase in IA Gmax. A. Erk antagonists were applied with and without DA for 1 hr to an
ongoing rhythm, followed by 1 hr of blocking saline and TEVC. Erk antagonists were applied 10 min prior to DA application. B. 50 μM PD98059
blocked the DA induced increase in IA Gmax. C. 50 μM U0126 also blocked the DA induced increase in IA Gmax. These data show that Erk is
necessary to produce the persistent DA effect. Both data sets were analyzed by ANOVA, with Dunnet’s post hoc tests that compared each
treatment group to control and plotted as mean ± S.D.

Figure 6 U0126 alters the time constants of inactivation. A. Representative two-electrode voltage clamp IA recordings for Saline, U0126,
PD98059 treatment groups. Overlaid traces are leak-subtracted currents elicited by a step to +20 mV after a -90 mV prepulse. B. Kinetics of IA in-
activation were determined by fitting the +20 mV current traces with a double exponential function. The mean fast (top panel) and slow (bottom
panel) time constants (τ) of inactivation were plotted ± S.D for Saline, U0126, and PD98059 treatment groups. Data from drug alone and drug with
5 nM DA samples were pooled, as both means and variance between two groups were not different (n≥ 10 for each group). Asterisks indicate
significant differences from control (saline). Both the fast and slow τ values for U0126 were significantly different than PD98059 or Saline. Saline
and PD98059 were not significantly different. Data were analyzed with ANOVAs and Tukey’s post hoc tests.
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Slow τ, Figure 6B bottom panel, ANOVA, F2, 28 = 25.65,
p < 0.0001, Tukey’s post hoc, U0126 vs Saline p < 0.0001,
U0126 vs PD98059, p < 0.0001, PD98059 vs Saline n.s.,
Figure 6B). This work supports the findings of Yuan et al.,
that the drug has an effect through direct interaction with
the channel and that further, this effect may be present in
many A-type K channels, given its presence in both mam-
mals and crustaceans.

Discussion
Tonic DA regulates IA in a time and dose dependent manner
We showed that dopaminergic tone influences IA density.
In the absence of tonic DA, average IA Gmax decreased by
13% over the course of 1 hr. Average IA Gmax did not de-
crease during a 1 hr application of ≥500 pM DA, but
dropped to control levels when DA was removed. Average
IA Gmax increased by ~10% during a 1 hr application of
5 nM DA and the increase was sustained for at least 5 hrs
after removal of DA. 5 μM DA produced the same persist-
ent increase in LP IA Gmax [4]. We interpret the data to
mean that dopaminergic tone acts at high affinity D1Rs to
persistently augment LP IA density. Our findings are con-
sistent with previous work that suggests that tonic appli-
cation of modulators can regulate surface expression of
ion channels [43-45].
One interpretation of these data is that dopaminergic

tone increases the ratio of the rate of shal channel inser-
tion into versus removal from the plasma membrane.
Upon removal of DA, the ratio will decrease, and IA will
decline according to the half-life of the channel. Since the
DA-induced increase is translation-dependent, it is tempt-
ing to speculate that DA increases the pool of shal chan-
nels available for insertion. Alternatively, or in addition, it
is also possible that DA might alter the subunit compos-
ition of the shal channels by incorporating different shal
isoforms into the tetrameric channel [22] or by altering
auxiliary subunits that interact with the alpha subunits
[46], which are known to influence conductance [47]. It is
also possible that DA alters levels of proteins involved in
trafficking or endocytosis of shal channels. Since TEVC
was always performed in the presence of TTX to block ac-
tivity, we cannot rule out the possibility that decreases in
activity may also contribute to changes in IA Gmax. Indeed,
both neuronal activity acting through changes in Ca2+ and
neuromodulators can alter cAMP levels in arthropods via
the adenylyl cyclase, rutabaga [48,49].

Immediate and persistent regulation of IA both utilize
cAMP-PKA axis
The immediate and persistent effects of DA that decrease
and increase IA, respectively, are both mediated by a DA
activated increase in cAMP and PKA activity [14]. It is un-
clear where the pathways diverge. LP cells express two dif-
ferent D1Rs: D1αPan and D1RβPan [7,14]. These distinct

receptors could mediate the observed high and low affinity
effects. This need not be the case. Receptors exist in mul-
tiprotein signaling complexes called signalplexes [50-52]
and the same receptor could be incorporated into distinct
signalplexes that generate unique cAMP signals. It has
been demonstrated that agonists acting at receptors that
positively couple with cAMP can simultaneously generate
large, temporally complex, local signals and sustained glo-
bal signals [53-56]. Compartmentilization of cAMP signal-
ing has been demonstrated to be critical in mediating
differential downstream effects of cAMP and preventing
non-specific activity of cAMP effectors [30]. cAMP signals
can be constrained by differential PKA compartmen-
talization via A Kinase anchoring proteins (AKAPs) [31]
and/or by differential phosphodiesterase localization [54].
D1Rs are predominately localized to terminals in fine
neurites [14]. Previous cAMP imaging studies on STG
neurons showed that continuous application of modula-
tors, including DA, initially produced a cAMP signal in
the terminals that eventually spread throughout the cell
[57]. Since the persistent effect is induced by continuous
exposure to DA, that could result in more global changes
in shal channels than the immediate effect.

PKA and ERK contribute to the persistent increase in LP IA
Gmax

Erk activation is required for the persistent increase in IA
Gmax. Both MEK antagonists blocked the persistent effect
when co-applied with 5 nM DA. It is not clear if ERK and
PKA are acting in parallel or series. The intracellular sig-
naling pathway mediating the persistent increase in LP IA
shows a remarkable overlap with many proteins involved
in L-3, 4-dihydroxyphenylalanine (L-DOPA) induced dys-
kinesia (LID) [58-60]. Specifically, both pathways involve a
D1R mediated increase in cAMP, PKA activation, increase
in Erk activity, and finally mTORC1 activation. LID is at-
tenuated by PKA [61] and mTOR antagonism [62]. Inde-
pendent dual activation of cAMP/PKA axis and Erk by
D1Rs has been observed in LID, where L-DOPA treated
Gαolf deficient mice showed decreased PKA phosphoryl-
ation, but no change in Erk activation [63]. The Erk
pathway has multiple points of interaction with proteins
affecting mTOR activity [28], and based on this data, it is
impossible to say which protein pathways mediate this ef-
fect. Interestingly, the neurotrophic factor Neuritin, which
also increases IA (Kv4.2) in a dose and time dependent
manner in mammalian neurons, requires both Erk and
mTOR [64], suggesting many components of modulatory
tone may act together to determine IA density.

Conclusions
DA acts at high affinity receptors to increase IA Gmax

through a translation dependent mechanism that requires
a functional D1R-PKA axis, Erk and mTOR.
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Methods
Animals
California spiny lobsters, Panulirus interruptus, were
purchased from Catalina Offshore Products (San Diego,
CA) and Marinus Scientific (Long Beach, CA) and housed
in saltwater aquaria at Georgia State University (Atlanta,
GA). Animals were a mix of both male and females.
This research was carried out in accordance with the

IACUC standards for use of animals in research at
Georgia State University.

Pharmacology
All drugs were administered to the STG via superfusion.
DA was administered for 1 hour in all cases. To minimize
oxidation, DA was made fresh and exchanged after 30 min.
Dosages of PKA antagonist Rp-cAMP (1 mM) (Sigma),
and mTOR antagonist rapamycin (100 nM) (Sigma) were
chosen based previously established effective doses in the
STG [4,14]. The ePAC agonist (Tocris) was applied at
50 μM [36]. ErK activity was blocked by the use of MEK
antagonists PD98059 (50 μM, Invivogen) and U0126
(50 μM, Tocris) based on previously shown effective dos-
ages in the white shrimp, F. indicus [65], and dissolved in
DMSO. Drugs were applied to the preparation 10 min be-
fore the application of DA.

STNS Dissection, Pyloric cell identification
Lobsters were anaesthetized on ice for at least 30 min,
followed by the dissection of the STNS, as previously
described [66]. The STNS was pinned in a Sylgard-lined
dish. The STG was desheathed and petroleum jelly well
was constructed around it. Using a Dynamax peristaltic
pump (Rainin), the STG was superfused with Panulirus
(P.) saline (in mM: 479 NaCl, 12.8 KCl, 13.7 CaCl2, 39
Na2SO4, 10 MgSO4, 2 Glucose, 4.99 HEPES, 5 TES;
pH 7.4).
Experiments were performed at room temperature.

Temperature was continuously monitored with a mini-
ature probe in the bath. The temperature changed by
less than 1°C throughout the course of the day (the
change ranged from 0.1 to 0.9°C on any given day), and
by only 3°C across all experiments (19-22°C).
Cells were identified using previously described stand-

ard intracellular and extracellular recording techniques.
Intracellular somatic recordings (such as those seen in
Figure 1B) were obtained using 20–40 MΩ glass micro-
electrodes filled with 3 M KCl and Axoclamp 2B or
900A amplifiers (Molecular Devices, Foster City, CA).
Extracellular recordings of identified motor neurons
were obtained using a differential AC amplifier (A-M
Systems, Everett, WA) with stainless steel pin elec-
trodes. LP neurons were identified by their distinct
waveforms, the timing of their voltage oscillations, and

correlation of spikes on the extracellular and intracellu-
lar recordings (Figure 1B).

Two-electrode voltage clamp
A portion of the stomatogastric nerve was isolated in a pet-
roleum jelly well containing isotonic sucrose; descending
inputs were removed by cutting the STN in the sucrose
bath 1 hour prior to TEVC. The STG was superfused con-
tinuously with blocking saline, which consisted of P. saline
containing picrotoxin (10-6 M) to block glutamatergic syn-
aptic inputs and voltage-dependent ion channel blockers:
tetrodotoxin (TTX, 100 nM, INa), tetraethylammonium
(TEA, 20 mM, IK(V) and IK(Ca)), and cadmium chloride
(CdCl2, 200 μM, ICa). LP cells were impaled with two low
resistance microelectrodes (8–10 MΩ) filled with 3 M KCl.
The holding potential was -50 mV. IA activation was mea-
sured by two different protocols, A and B. Protocol A: IA
was elicited by a series of depolarizing steps (500 ms) ran-
ging from −50 to +60 mV in 10 mV increments that were
or were not preceded by a 200 ms prepulse to -90 mV to
remove resting inactivation of A type K + channels. IA was
obtained by digitally subtracting the current obtained with-
out a prepulse from currents obtained with a prepulse.
After digital subtraction, the peak current was converted to
conductance (G = Ipeak/(Vm-Ek), plotted against voltage and
fit using a 1st order Boltzmann equation to determine the
voltage of half activation and maximal conductance. Proto-
col B: here the voltage protocol was modified to minimize
the effects of repeated depolarization. This protocol was
only used in the experiments shown in Figure 2D. IA acti-
vation was measured with 8 depolarizing steps that ranged
from -50 mV to +20 mV, and the minimum tail current
was subtracted from peak current for each sweep. Data
was again fit with a 1st order Boltzmann equation to deter-
mine the voltage of half activation and maximal conduct-
ance. Steady state inactivation was measured by a series of
sweeps that varied the range of the 200 ms prepulse
from −110 to -20 mv in 10 mV increments followed by
a constant step to 20 mV (500 ms). To further isolate IA,

a depolarizing prepulse to -20 mV, followed by a test pulse
to 20 mV was digitally subtracted from each inactivation
trace. Peak current was plotted for each voltage and fit
with a 1st order boltzmann equation to derive voltage of
half inactivation.

Statistical analysis
The data were checked for normality and analyzed using
parametric statistics. Data were analyzed using Prism
Statistical software package (Graphpad) and SAS ver-
sion 8.1 (SAS Institute Inc.). Significance threshold was
set at p < 0.05 in all cases. Statistical outliers were ex-
cluded based on Chauvenet’s Criterion. Means are pre-
sented ± Standard Deviation.
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