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ABSTRACT 

Recent experimental studies point to the notion that the brain is a complex dynamical sys-

tem whose behaviors relating to brain functions and dysfunctions can be described by the physics 

of network phenomena. The brain consists of anatomical axonal connections among neurons and 

neuronal populations in various spatial scales. Neuronal interactions and synchrony of neuronal 

oscillations are central to normal brain functions. Breakdowns in interactions and modifications 

in synchronization behaviors are usual hallmarks of brain dysfunctions. Here, in this dissertation 

for PhD degree in physics, we report discoveries of brain oscillatory network activity from two 

separate studies. These studies investigated the large-scale brain activity during tactile perceptual 

decision-making and epileptic seizures.  

In perceptual decision-making study, using scalp electroencephalography (EEG) recordings 

of brain potentials, we investigated how oscillatory activity functionally organizes different neo-

cortical regions as a network during a tactile discrimination task. While undergoing EEG record-

ings, blindfolded healthy participants felt a linear three-dot array presented electromechanically, 



 

under computer control, and reported whether the central dot was offset to the left or right.  

Based on the current dipole modeling in the brain, we found that the source-level peak activity 

appeared in the left primary somatosensory cortex (SI), right lateral occipital complex (LOC), 

right posterior intraparietal sulcus (pIPS) and finally left dorsolateral prefrontal cortex (dlPFC) at 

45, 130, 160 and 175 ms respectively. Spectral interdependency analysis showed that fine tactile 

discrimination is mediated by distinct but overlapping ~15 Hz beta and ~80 Hz gamma band 

large-scale oscillatory networks. The beta-network that included all four nodes was dominantly 

feedforward, similar to the propagation of peak cortical activity, implying its role in accumulat-

ing and maintaining relevant sensory information and mapping to action. The gamma-network 

activity, occurring in a recurrent loop linked SI, pIPS and dlPFC, likely carrying out attentional 

selection of task-relevant sensory signals. Behavioral measure of task performance was correlat-

ed with the network activity in both bands. 

In the study of epileptic seizures, we investigated high-frequency (> 50 Hz) oscillatory 

network activity from intracranial EEG (IEEG) recordings of patients who were the candidates 

for epilepsy surgery.  The traditional approach of identifying brain regions for epilepsy surgery 

usually referred as seizure onset zones (SOZs) has not always produced clarity on SOZs. Here, 

we investigated directed network activity in the frequency domain and found that the high-

frequency (>80 Hz) network activities occur before the onset of any visible ictal activity, and 

causal relationships involve the recording electrodes where clinically identifiable seizures later 

develop. These findings suggest that high-frequency network activities and their causal relation-

ships can assist in precise delineation of SOZs for surgical resection.  

 

INDEX WORDS: Perceptual decision-making, Spectral Granger causality, Cortical sources in 
tactile discrimination, High-frequency oscillations, Seizure localization, Epilepsy surgery. 
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1 

1 INTRODUCTION 

1.1 Introduction 

This dissertation describes two studies on brain oscillatory network activity. The first 

study is on tactile perceptual decision-making in healthy human participants. The second study is 

on epileptic seizures in patients admitted in Emory University Hospital for epilepsy surgery. In 

chapter 2, a short description of the brain neuronal oscillations and network activity is presented. 

We describe electroencephalography (EEG), intracranial EEG (iEEG) and epileptic seizures and 

high-frequency oscillations (HFOs). Chapter 3 is about the oscillatory neocortical networks un-

derlying decision-making processes in the somatosensory domain. The experimental set-up, ma-

terials and methods, results and the discussion of these results are given in detail. Chapter 4 de-

scribes the use of the spectral Granger causality analysis in order to localize the seizure onset 

zones (SOZs) and onset times. The wavelet-based power, spectral measures such as coherence 

and Granger causality are used to specify the characteristics of the seizure networks. Chapter 5 

summarizes the main conclusions of these studies. 
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2 OSCILLATIONS AND NETWORKS 

2.1 Brain oscillations 

The human brain consists of a large number of highly interconnected neuronal popula-

tions that are functionally organized in both short-range, local-area ensembles and long-range, 

large-scale networks supporting various functions, including cognitive and perceptual [1,2].   

These large-scale functional networks, which can exist even “at rest” in the absence of task per-

formance or of explicit external stimuli, involve not only the oscillatory activities of individual 

neural systems and inter-regional coherence of oscillatory activity, but also the directional inter-

actions between them. Knowledge of brain network activity is important not only to understand 

how different brain areas work together for cognitive and perceptual processes in health, but also 

to understand how such coordinated activity breaks down in disease.  

Neurons or neuronal populations often show rhythmic or repetitive activity, called oscil-

lation. Neural oscillations can be seen in all measurement levels, e.g. from a single neuron, local 

field potentials (LFPs) and large-scale brain recordings [2,3]. At the level of single neuron, oscil-

lations can appear either as oscillations in membrane potential or as rhythmic patterns of action 

potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of 

neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscop-

ic oscillations, as observed in the electroencephalography (EEG) recordings. Oscillatory activity 

in groups of neurons generally arises from feedback connections between the neurons that result 

in the synchronization of their firing patterns. The possible roles of neural oscillations include 

feature binding, perception, information transfer mechanisms, and the generation of rhythmic 

motor output. 

Macroscopic EEG signals arising from the brain consist of several simultaneous oscilla-
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tions; can be subdivided into frequency bands such as delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 

Hz), beta (13-30Hz) and gamma (30-80 Hz). Working memory processes seem to be reflected as 

oscillations within the theta frequencies. Alpha frequency responses can be observed in associa-

tion with tasks requiring alertness, attention and semantic memory processes [4]. Beta rhythm 

responses are reported in association with cognitive processing [5]. Gamma brain oscillations 

have been observed in association with visual, auditory and motor tasks and might exist in a 

number of brain structures with somewhat different functional/behavioral correlates. The fre-

quency of such oscillations determines the temporal windows of processing and indirectly the 

size of the neuronal structures involved [6,7]. In a wider time window, more neurons can be re-

cruited from larger brain areas because synaptic and axonal conductance delays are less limiting. 

Hence, the spatial extent of synchrony is much larger for slow rhythms. Slow oscillations can 

involve many neuronal groups across widely distributed brain areas, whereas fast oscillations are 

generally predestined for local information processing due to their shorter time window for in-

formation exchange [1,8].  

Different neural generators are involved in the generation of these brain oscillations at 

different frequencies. Hippocampal neural activity seems to be reflected as oscillations within 

the theta frequency range while the alpha rhythms seem to be mainly generated by corticocortical 

and thalamocortical neural networks. In general, subcortical structures, especially the thalamus, 

appear to dominate in the generation and synchronization of oscillatory activity in the lower fre-

quency bands (α, θ, δ and below) [9,10]. The neural synchronization in the high-frequency range 

(β- and γ- band) is mediated by cortico-cortical connections that reciprocally link cells situated in 

the same cortical area, but also cells distributed across different areas and even across the two 

hemispheres [11,12].  
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Neural oscillations play an important role in many neurological disorders, such as exces-

sive synchronization during seizure activity in epilepsy or tremor in patients with Parkinson's 

disease (PD). Though there are large numbers of studies investigating the role of synchrony in a 

wide range of cognitive and executive processes, relatively few investigations have examined the 

possible relevance of neural synchrony in pathological brain states, such as epilepsy, schizophre-

nia, autism, and Alzheimer’s disease (AD). Oscillatory activity can also be used to control exter-

nal devices in brain-computer interfaces, in which subjects can control an external device by 

changing the amplitude of particular brain rhythms. 

2.2 Relevance of network studies 

Questions regarding the brain functions can only be answered by studying the group dy-

namics of neurons or neuron populations. Information processed at the neuronal level often 

needs to be integrated across brain regions to be functionally useful [13]. Nowadays, many re-

searchers are trying to understand how brain networks are organized to support this type of oper-

ation [14,15]. Moreover, the dysfunction or deviation from the normal functioning of large-scale 

brain networks is increasingly observed in many brain disorders [16]. The network approaches 

have thus become useful for understanding how connected regions work together in cognitive 

functions. These network approaches are also providing new insights into aberrant brain organi-

zation in several neurological disorders such as epilepsy, autism, schizophrenia and others.  

The following factors are responsible for the surge of interest of using about network ap-

proaches to characterize network level oscillatory interactions and/or activities. At present, vari-

ous advanced mathematical methods are far more accessible than before to study oscillations. 

Standard computer software available now makes spectral analysis relatively easy, and modern 

computers have the necessary speed and memory capacity to apply these techniques to large da-
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tasets. Moreover, computational neuroscientists have pushed the experimentalists studying neu-

rophysiology to consider network phenomena rather than focusing their attention primarily on 

the response recorded from a single electrode. In addition, the ability to record EEG from small 

regions of the human brain using intracranial methods has demonstrated that prominent oscilla-

tions like those long studied in rodents and cats are also present in human cortex and hippocam-

pus [17,18].  

Though recent studies have revealed large-scale oscillatory brain networks associated 

with perceptual decision-making processes in the visual domain [19] and in the auditory-visual 

domains [20], very little is known in case of the somatosensory domain. The study of fine tactile 

discrimination in the somatosensory domain is expected to fill scientific knowledge gaps in hier-

archical neural processing and to provide useful information for clinical applications. Accurate 

localization of the seizure onset zones based on the information obtained from intracranial elec-

troencephalography recordings is a complex and imperfect process. Answers to the following 

questions help to analyze features of seizure networks and to aid in surgical decision-making: (i) 

Are network activity measures like Granger causality (GC) useful to localize the seizure onset 

zones? (ii) Can the complexity of the network activity predict the surgical outcome (seizure-

freedom or not)? (iii) Can preictal or interictal activities predict a seizure occurrence? In both of 

the studies, the spectral GC approach was used. GC is a new and effective data-driven way of 

looking at network interactions, and it enhances our ability to identify key brain structures under-

lying the organization of a given behavior. 

2.3 Electroencephalography and intracranial EEG 

Richard Caton published reports on his detection of electrical activity in animal brains 

[21]. He used the galvanometer over the human scalp to record brain activity in the form of elec-
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trical signals in 1875, and was probably the first to do so. Since then, the concept of electro-

(electrical activity) encephalo-(signals emitting from the head) and gram or graphy (drawing or 

writing) combined together established the “electroencephalogram” which was henceforth used 

to denote the neuronal electrical activity of brain.  

Hans Berger began his studies of human EEG in 1920. His discovery that the brain gen-

erates a low-level sub-audio frequency electrical activity has led to the establishment of a clinical 

neurophysiological specialty known as electroencephalography. It was between 1926 and 1929 

when Berger first obtained good recordings of the alpha waves [22-24] in human brain. He also 

first measured beta activity. In 1964, the British scientist W. Grey Walter discovered delta waves 

and theta activity which initiated enormous clinical interest in the diagnosis of brain abnormali-

ties [25]. Electroencephalography (EEG) consists of recording the electrical activity produced by 

the firing of an ensemble of neurons by means of electrodes attached to the scalp [26]. 

EEG commonly refers to scalp EEG. Scalp EEG provides a poor spatial resolution of the 

cerebral location generating the scalp signals because of the smearing of neural electrical poten-

tials introduced by the meninges, cerebrospinal fluid, skull bone and scalp. Stereotactic EEG 

(SEEG) and intracranial EEG (iEEG) provide solutions to some of the limitations of scalp EEG. 

SEEG records neural electrical potentials from depth electrodes (reaching potentially deeper and 

sub-cortical brain regions) consisting of 1-D linear electrode arrays shaped in the form of a nee-

dle [27]. IEEG or electrocorticography (ECoG) consists of 2-D grids or 1-D strips placed directly 

on the cortical surface or the dura. In the context of epilepsy, iEEG and SEEG are essentially 

two-step procedures. The first step involves identification of the epileptogenic area(s) by means 

of placements of subdural electrodes [28-31]. If that is successful, the second procedure involves 

resection of the epileptogenic area [32,33]. Both recording techniques provide better spatial and 
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temporal resolution and are thus able to better localize pathological cortical generators than scalp 

EEG. Indeed, the distortions of the EEG scalp potentials produced by the skull-scalp interface 

are avoided [34]. Further, iEEG and SEEG are not contaminated by the artifacts caused by mus-

cle activity, eye movements and eye blinks [34,35]. The main disadvantage of SEEG and iEEG 

is invasiveness, which introduces risk of infection, bleeds, strokes, or other complications (<1%) 

from the surgical procedure, and significant cost [36]. Another fundamental disadvantage is that 

most of the cortex, besides area(s) under the implanted electrodes, remains unexplored. If the 

seizure onset zone is not covered, iEEG and SEEG techniques might lead to erroneous conclu-

sions. For this reason, these techniques have limitations in investigating the connectivity of corti-

cal networks for seizure initiation. 

2.4 Epilepsy and high-frequency oscillations 

Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. An 

epileptic seizure is an episode of disorganized electrical activity, typically related to excessive 

neuronal excitation in the cortex, with a broad range of symptoms, including loss of conscious-

ness, involuntary movements, etc. A person who has experienced only one seizure cannot be 

qualified as being epileptic, since a healthy brain can be provoked into a seizure under various 

stresses. Epileptic seizures are unpredictable and may sometimes be resistant to antiepileptic 

medications, with consequent progressive neurological and cognitive dysfunction. Electrical 

changes in the brain related to seizures, often referred to as the ictal state, and typically last from 

seconds to minutes; however, in some instances prolonged seizure activity or a succession of sei-

zures result in a life-threatening condition called status epilepticus. The period between seizures 

is referred to as the interictal state. Depending on the extent of involvement of the various brain 

regions, epileptic seizures are classified into two main groups; focal seizures, and generalized 
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seizures. Focal seizures, also called partial seizures, occur in a localized area of the brain, while 

generalized seizures are seen in the whole brain.  

If the underlying cause of the seizures is known (tumor, trauma etc.), the epilepsy is 

termed as symptomatic. If the cause of seizures is unknown [computed tomography (CT) or 

magnetic resonance imaging (MRI) are normal], the epilepsy is termed as idiopathic. Seizures of 

the temporal lobe usually induce drastic changes to cognitive processes of an individual. Epilep-

sy of the temporal lobe can cause changes in moods and behavior [37]. The temporal lobe is one 

of the brain regions that are commonly involved in partial epileptic networks. Abnormal oscilla-

tions recorded from the hippocampus are assumed to play an important role in some epileptic 

syndromes [38]. The treatment of epilepsy involves the use of a palette of antiepileptic drugs 

(AEDs), as a first step. Medications generally work well in about 50% of the patients. These pa-

tients may remain seizure free if they strictly follow the medication regimen. In 20% of the cas-

es, the frequency of seizures decreases greatly. About 30% of the patients continue to experience 

seizures (intractable) in spite of AEDs [39,40]. Neurosurgery for the resection of the seizure on-

set zone (SOZ) may a viable option in some cases. The SOZ is defined as the area of the cortex 

where the onset of a partial seizure is generated. Clinicians traditionally focus on localizing the 

generators of interictal and ictal events, such as the spike-and-slow-wave complex, for determin-

ing the cortical region potentially targeted for resection. A spike is a transient electrophysiologi-

cal phenomenon that differs clearly from background activity, with typical durations of 10 to 100 

milliseconds. A spike-and-slow-wave complex consists of spike followed by a slow wave. Cur-

rently, data can be recorded at high sampling rates (>1000 Hz) at a large number of recording 

sites (>100). Therefore, analysis of epileptic data has been made possible at high-frequency do-

mains of the power spectrum. Recent studies of interictal high-frequency oscillations have re-
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vealed what might be new markers of epilepsy, with greater sensitivity than spike-wave events 

[41,42]. Indeed, it has been proposed that the brain regions sustaining recurrent high-frequency 

oscillations (HFOs) may correspond to the SOZs.  

HFOs are the field potentials that reflect short-term synchronization of neural activity and 

are believed to play important roles in both normal and pathologic brain function. The frequency 

spectrum covered by HFOs has been subdivided into so called ripples (80-200 Hz) and fast rip-

ples (FR) (200-500 Hz), thereby defining potential new biomarkers of the SOZ. However, HFOs 

have been reported in healthy as well as epileptic subjects, thus making it difficult to distinguish 

between normal and pathologic HFOs (pHFOs) so far. It is assumed by several research groups 

that ripples reflect physiological HFOs, and that FR reflect pHFOs, although the distinction can-

not be based on differences in their respective frequency range alone. The location of their gen-

erators also plays a major role. Indeed, ripples observed in the dentate gyrus of the hippocampus 

are considered as pathologic, because such high-frequency oscillatory bursts are generally not 

observed if the region is healthy. Oscillatory bursts in the range of 200-600 Hz can be observed 

in the normal neocortex. Ripples have been recorded in healthy controls [43-46] and are believed 

to play an important role in synchronizing neuronal activity and might be an essential mechanism 

to episodic memory [6]. Normal HFOs are believed to reflect the summation of inhibitory 

postsynaptic potentials (IPSP), produced by discharges of principal cells [47,48]. GABAergic 

neurons play a pivotal role in generation of HFOs and their local synchronization, whereas glu-

tamatergic connections appear to control their strength, duration and long-range synchronization 

[49]. The degree of synchronization is highly precise to the scale of milliseconds but never 

reaches a point where an individual neuron becomes unidentifiable from surrounding cells, due 

to high synchronicity [50]. The first incidence of pHFOs in the range of 250-600 Hz was report-
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ed in patients with mesial temporal lobe epilepsy [43]. FRs were observed during interictal peri-

ods, as well as during ictal onsets in rodents, thus strengthening the hypothesis of the role of FRs 

in epileptogenesis [43,45,51]. 

HFOs have a frequency in the range of 80 to 500 Hz, a duration in the range of 4 to 6 cy-

cles, and magnitudes of about 3 to 5 standard deviation (SD) from baseline fluctuations at the 

same location and within the same frequency range [52,53]. HFOs are linked to the seizure onset 

zone (SOZ), and the surgical removal of regions generating them correlates with a seizure-free 

post-surgical outcome [54]. Though spikes and sharp-waves are the most significant clinical bi-

omarkers for epilepsy, recent studies on HFOs (≥ 100 Hz) have suggested that the HFO events 

can be a more reliable indicator for the SOZs [55]. 

2.5 Measures of oscillatory network activity 

Here, we first define spectral measures from two simultaneously measured time series, 

and , where the sampling rate of measurement 

is ( fs is the maximum measurable frequency, or Nyquist frequency). Using either a paramet-

ric or a nonparametric spectral estimation approach [56-58], we can obtain the spectral density 

matrix  ( ), the transfer function ( ), and the noise covariance matrix ( ) from these 

time series. For nonstationary processes, the wavelet transforms-based nonparametric estimation 

[56,57] can be used and these quantities become functions of both time and frequency indices. 

Time-domain total interdependence (TI) between these two processes is a measure to reflect the 

total amount of mutual information between them and is defined in terms of the integrated spec-

tral coherence between them ([59]):   

       (1) 

x : x1(1), x1(2),..., x1(t),... y : y1(1), y1(2),..., y1(t),...
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The coherence function is defined as:  

         (2)  

 

where is the spectral matrix that contains cross spectra  and auto spectra 

(power) . Granger causality from y to x in the spectral domain  can be ob-

tained as: 

     (3) 

where, by interchanging x and y, one can also compute Granger causality from the first 

node x to the second node y at frequency . The time-domain Granger causality 

is obtained by integration over the entire frequency range:  

        (4) 

Geweke showed that  [59],where is instantaneous causality 

between x and y unlike and , which are causality for delayed interactions.  

These measures can be computed for a number of recording channels in pairwise combi-

nations time window by time window . For N recordings, the net causal outflow spectra 

 from a node m defines the driving strength from that node around time :  

     (5) 
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where the self-causality for all . The integrated outflow (iOF) over frequen-

cy gives the time-domain outflow. Here, a positive OF refers to the net outgoing information 

flow away from the node (source) and a negative OF refers to the net incoming flow towards the 

node (sink). 
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3 OSCILLATORY ACTIVITY IN NEOCORTICAL NETWORKS DURING TAC-

TILE DISCRIMINATION NEAR THE LIMIT OF SPATIAL ACUITY 

3.1 Introduction  

Dynamic interactions between widely separated but functionally related brain regions are 

central for perception and cognition. Interactions among neural systems enable synchronization 

of neuronal oscillations and collective brain rhythms [1]. Oscillatory synchronization is a sug-

gested mechanism underlying the perception of external stimuli [2,60,61]. Sensory-guided, goal-

directed behaviors such as planning appropriate motor responses to incoming stimuli, a process 

commonly known as perceptual decision-making [62-65], involve multiple sub-processes such as 

encoding of sensory evidence, planning of actions and mapping of sensory information to action 

plans. Recent neuroimaging studies have begun to reveal large-scale oscillatory brain networks 

associated with perceptual decision-making processes in the visual domain [19] and in the audi-

tory-visual domains [20]. Yet little is known about the oscillatory brain networks underlying de-

cision-making processes in the somatosensory domain.  

 Perceptual decision-making requires conscious stimulus perception and, in the soma-

tosensory domain, it is known to involve functional coordination between somatosensory regions 

and higher cognitive regions such as parietal and prefrontal cortices [66]. Decision-making, as 

observed in monkeys performing vibrotactile discrimination tasks [67] , is a distributed function 

resulting from the joint activity of many higher-order cortical regions, not from serial processing.  

How the decision-related brain activity emerges and binds parietal and prefrontal cortices is not 

completely understood. Previous functional magnetic resonance imaging (fMRI) studies [68-70] 

have specified the brain regions associated with fine tactile spatial perception. These studies also 

examined directed interactions using blood oxygenation level-dependent (BOLD) data. Howev-
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er, brain networks that appear unified in fMRI studies because of slow BOLD hemodynamic re-

sponses may in fact include processes that occur on multiple time scales. Thus, how these inter-

actions occur at the neural level on a millisecond time-scale, what frequencies of information 

flow bind these areas in a network, and the evolution of activity over time are largely unknown.  

 Past studies provide clues about the timing of somatosensory responses and the feed-

back of control (attention) signals. The primary somatosensory cortex (SI) responds to electrical 

stimulation of the finger within 20-60 ms [71,72], parietal cortex and frontal cortices respond 

within 70–110 ms [73-75] and the brain response at 140 ms is modulated by attention to soma-

tosensory stimuli [76,77]. These findings are consistent with the idea that SI responds to feed-

forward input under the influence of top-down attentional signals, but where and how the rele-

vant processes take place has not been resolved. Our hypothesis is that a tactile perceptual deci-

sion involves an oscillatory network linking somatosensory, parietal and prefrontal regions con-

sistent with the flow of sensory and attention signals. Here, we designed an electroencephalog-

raphy (EEG) study to test this hypothesis and provide insight into the neural basis of fine tactile 

spatial discrimination of the kind necessary for Braille reading, using a task near the limit of tac-

tile spatial acuity.  

3.2 Materials and methods 

3.2.1 Participants 

Fifteen neurologically normal right-handed volunteers (12 male, 3 female) participated in 

this study after giving informed consent. Their ages ranged from 18 to 42 years (mean: 24.7 

years, standard deviation: 5.7 years). Two participants were excluded from the final analysis be-

cause of poor behavioral performance and/or unmanageable artifacts and noise present in their 

EEG data. The Institutional Review Boards of Georgia State University and Emory University 
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approved the experimental protocol. 

3.2.2  Tactile stimulation  

The experimental set-up was similar to that used in earlier fMRI studies [69]. A pneumat-

ic stimulator was used to present tactile stimuli to the right index fingerpad. The tactile stimulus 

consisted of a three-dot array mounted on a square (20 mm × 20 mm) plate with the middle dot 

placed vertically equidistant and 1.94 mm to the left or right of the line joining the two outer dots 

spaced 4 mm apart vertically, as shown in Figure 3.1 (A). Dot height was 0.64 mm above the 

plate surface. The right index finger was immobilized in the supine position (palmar side up) in a 

finger mold mounted on the base of the stimulator, using thick, double-sided adhesive tape that 

also served as padding for comfort. A disk atop the stimulator allowed 180° rotation of a stimu-

lus to facilitate rapid switching between left and right offsets. Care was taken to ensure that the 

stimulus array was properly centered on the base plate so that this rotation would result in sym-

metric positioning of the two stimulus alternatives. The stimulus was applied for 1s. A computer 

program written in Presentation (Neurobehavioral Systems, Albany, CA) controlled stimulation 

sequences and provided records of stimulus timings for synchronization with EEG recordings. 

Participants were blindfolded during tactile stimulation, and did not see the stimuli during the 

study. 

3.2.3 Spatial discrimination task 

Following the 1s stimulus, the participant responded within the next 2 s [Figure 3.1(A)].  

Participants were asked to decide whether the central dot was offset to the left or right and to in-

dicate their responses by left or right mouse-button clicks using their left hands. The offset used 

(1.94 mm) was near the spatial acuity limit under the conditions of stimulation. 
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3.2.4 Data acquisition and preprocessing  

Prior to setting up for EEG acquisition, participants took part in a practice session to fa-

miliarize them with the task. Trials were presented in blocks of 20 (=1 minute) with an equal 

probability of left and right offsets. Two such blocks comprised the practice session. Following 

EEG set-up, participants were briefed on the basic principles of EEG and how to minimize intro-

ducing contaminants into the ongoing EEG signals. 

 Continuous EEG was recorded using a Neuroscan system with a 68-channel elec-

trode cap, AgCl sintered electrodes, and SynAmps2 amplifiers at a sampling rate of 1000 

Hz/channel (Neuroscan Systems, Charlotte, NC, USA).  Analog-to-digital conversion was per-

formed at a resolution of 24 bits. The electrode cap was aligned to standard cranial fiducials and 

exploring electrodes were referenced against the right mastoid. Electrode impedances were kept 

below 10 kΩ. Recordings were done for 30 blocks in 7 participants, 20 blocks in 5 and 10 blocks 

in 3 participants. Behavioral performance was analyzed and participants were categorized as 

good performers if their accuracy was at least 70% correct. The number of blocks with correct 

responses was 18.0 ± 2.0 (mean ± standard error).  

 EEG data were band-pass filtered between 1-100 Hz and notch filtered to remove 60 

Hz AC-line noise. Data from bad electrodes was discarded and replaced, when appropriate, by 

spatial interpolation of the recordings from the neighboring working electrodes.  

3.2.5 Data analysis  

The analysis of the preprocessed EEG included these main steps: (i) computation of 

ERPs, (ii) EEG-source reconstruction based on ERPs and distributed dipole modeling, (iii) re-

construction of single-trial source waveforms based on the identified sources and discrete dipole 

modeling and (iv) computation of power, coherence and Granger causality spectra based on sin-
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gle-trial waveforms and the parametric spectral approach [56]. The nonparametric wavelet-based 

spectral method [56,57] was used to examine the temporal variation of coherence. Details are 

provided below. 

Using the stimulus onset times as reference, the data were segmented into trials of 700 ms 

duration (100 ms prestimulus and 600 ms poststimulus) and separated into correct and incorrect 

trials based on responses. For each trial, prestimulus data (100 ms prior to the stimulus) were 

used for baseline correction. Statistical procedures [78] were used in Matlab to identify outlier 

trials (3 standard deviations above or below the means) and discard them from the subsequent 

analysis. EEG trials associated with correct responses were collected from those task blocks that 

met the above-mentioned 70% correct performance threshold criterion for good performers. EEG 

trials for incorrect responses were also separated from all possible task blocks from all partici-

pants. Paired t-tests at α = 0.001 were performed at each time point to test for differences be-

tween trials with correct and incorrect responses. These tests were performed separately for each 

channel and each participant. We regarded the response as being significantly different for cor-

rect vs. incorrect responses if the t-tests were significant at least across 20 consecutive time 

points and 2 adjacent channels (cluster correction). The EEG data were averaged across partici-

pants to arrive at grand average ERPs for correct and incorrect responses separately.  

The grand average ERPs for correct responses were used in the Brain Electrical Source 

Analysis (BESA) Research software version 5.3.7 (www.besa.de) to reconstruct EEG sources on 

the cortical surface. We used the minimum-norm estimates (MNE) approach [79,80] to find the 

localized sources generating the scalp potentials. For distributed solutions, MNE uses l2 mini-

mum-norm (Euclidean norm) estimates to constrain the source solution. The locations of the 

sources can be constrained to the cortical surface and their orientations constrained to be perpen-
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dicular to the local cortical surface [81]. Such constraints are based on the neurophysiological 

information that the sources of EEG signals are postsynaptic currents in cortical pyramidal cells, 

and that the direction of these currents is perpendicular to the cortical surface [82]. The peak ac-

tivities of these sources were marked as network nodes for connectivity analysis. Using single-

trial EEG data, we fitted dipoles at the peak activation locations of the localized sources with the 

dipole orientations given in Table 3.1. These dipole orientations were obtained from the MNE 

approach. We thus obtained single-trial source signal waveforms. The source signals were com-

puted using a four-shell spherical head model and a regularization constant of 1% for the inverse 

operator. The source signals obtained from the single-trial EEG data were used in the connectivi-

ty analysis.  

 In order to see how neuronal synchrony in specific brain areas varied for correctly per-

ceived stimuli over time, we studied two epochs: an earlier (30-140 ms) and a later (140-210 ms) 

period. The ERP results showed that the somatosensory response peaked as early as ~30 ms and 

differed for correct and incorrect responses starting at around 130 ms. For each epoch, we com-

puted power spectra using the source waveforms from each network node. As the power density 

of EEG roughly follows power-law decay as frequency increases [1,83], modulations of spectral 

power are typically small in absolute magnitude at higher frequencies. Therefore, we computed 

the overall power spectrum and then separated the signal into two frequency ranges comprising 

the beta (12-30 Hz) and gamma (30-100 Hz) bands. This band-specific analysis allowed us to 

test whether beta and gamma band neuronal oscillations play independent roles in tactile percep-

tual decision-making as in the visual domain [19]. Band-specific, integrated power averages and 

the standard errors of the means were computed using data pooled across participants. 

Spectral coherence between two oscillatory processes is a measure of statistical interde-
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pendence between them and is derived from the normalized cross-spectral density function. Co-

herence between neural processes reflects frequency-specific inter-areal synchrony between os-

cillatory neuronal processes. Spectral Granger causality measures the directional influence from 

one oscillatory process to another [59,84]. These measures can be computed both by parametric 

and nonparametric methods [56,57]. Here, we applied the parametric method to single-trial EEG-

source signals and computed network activity across the distributed neocortical regions found to 

be sources of the observed scalp-recorded activity. The difficulty of finding an optimal model 

order in the parametric approach [56] was circumvented by comparing power spectra from the 

nonparametric and parametric approaches at different model orders and choosing the model 

order yielding the lowest power difference. We evaluated the patterns of causality spectra by us-

ing both bivariate and conditional Granger causality. Conditional Granger causality analysis [56] 

was performed to distinguish direct and mediated causal influences, and to retain only the direct 

ones in the Granger causality network. We used the parametric spectral methods for all of these 

calculations. We used the wavelet transforms-based nonparametric approach [56,57] to deter-

mine the temporal changes of coherence that were predictive of the correct responses.  The 

thresholds for statistical significance were computed from surrogate data by using permutation 

tests and a gamma-function fit [85,86] under a null hypothesis of no interdependence at the sig-

nificance level p < 10-6. We finally computed the net causal inflow by subtracting the Granger 

causality (obtained from the parametric method) out of the node from that into the node: 

  F! = (I!→!-‐I!→!)!
!!! , where N is the total number of nodes in a network and I is the 

band-integrated Granger causality, with self-causality assumed to be zero. Here, a positive F rep-

resents the net incoming information flow towards the node (sink) and a negative F refers to the 

net outgoing flow away from the node (source). The coherence and Granger causality calcula-
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tions were done on the ensemble-average removed source signals between the time intervals 30-

210 ms after stimulus onset. To check whether these spectral measures computed from single 

trial source waveforms after removing stimulus-triggered ensemble averages are affected by tri-

al-to-trial variability in latency and amplitude [87], we applied the analysis of single-trial ERP 

and ongoing activity (ASEO) algorithm [88] to remove ensemble averages from single-trial 

source waveforms from all the nodes. We then computed power, coherence and Granger causali-

ty again from these ASEO-method treated waveforms and compared these spectral quantities 

with those obtained from the single trials after removing stimulus-triggered averages as men-

tioned above.   

 We included all the behavioral and EEG data of all participants. For each participant, we 

computed behavioral accuracy defined as the ratio of the number of correct responses (trials) to 

the total number of responses (trials). The accuracy was then converted into z-scores by using the 

average accuracy and standard deviation of individual participant results. We computed coher-

ence and Granger causality spectra from the source waveforms for all responses (both correct 

and incorrect) from all participants.  We then extracted coherence and Granger causality peak 

values to correlate with accuracy. The relationship in the scatterplot was assessed by both 

Spearman’s rank correlation and Pearson’s correlation. A correlation was considered significant 

if p < 0.05 for both results. Results are reported in terms of Spearman’s rank correlation. A posi-

tive correlation indicates that greater accuracy relates to higher network coherence or Granger 

causality. 

3.3 Results 

3.3.1 Behavioral results  

The overall accuracy for the task among good performers (see Methods) was 88.2 ± 1.9% 
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(mean ± standard error of the mean). Figure 3.1(B) shows the average accuracy for each good 

performer.  

 

Figure 3.1 Experimental set-up and behavioral performance. (A). The middle dot of a raised 

3-dot array was offset either to the right or left. A pneumatically driven stimulator presented 

stimuli to the right index fingerpad for 1s (on-interval) and participants responded within the 

next 2s (off-interval). (B). Behavioral performance accuracy rates of better performers are dis-

played here.  Better performers have at least 70 % correct responses in two runs. 

3.3.2 Electrophysiological results  

Group-level average event-related potentials (ERPs): As shown in Figure 3.2, the average 

ERPs differed significantly between correct (blue traces) and incorrect responses (green traces) 
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at several scalp locations (shaded regions on the topographical map) during the timeframes indi-

cated by the two vertical dashed lines in the ERP plots.  These ERP differences between correct 

and incorrect responses survived paired t-tests at p < 0.001 and cluster-level thresholds (number 

of consecutive time points > 20 and number of adjacent channels > = 2) as described in the Ma-

terials and Methods section. Significant ERP differences in different blocks of channels were 

noted to begin around 140 ms. 

Temporal evolution of cortically localized sources: The average ERPs for correct re-

sponses were used in the minimum-norm estimates (MNE) approach [79,80] to reconstruct the 

inverse EEG solutions. Figure 3.3 shows the locations of peak source activity (in dashed circles) 

as it traversed the cortical surface (first row), and the locations and orientations of the fitted di-

poles used to obtain the single-trial source waveforms (second row). The earliest peak of cortical 

activity occurred in left SI at around 45 ms after stimulus onset, followed by activation in the 

right occipital region, in an area consistent with the location of the lateral occipital complex 

(LOC) at 130 ms, and then in the location of the right posterior intraparietal sulcus (pIPS) at 160 

ms. Finally, at 175 ms, activation was seen in left dlPFC. Table 3.1 lists the ERP source loca-

tions, dipole orientations of the source model and activation time of cortical sources. The fitted 

dipoles at locations and orientations shown explained approximately 82% of the variance in the 

EEG signal for trials with correct responses. 
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Figure 3.2 Event-related potentials (ERPs). The shaded regions covering two or three labeled 

circles, in the 68-electrode EEG recording montage, show the locations in sensor space where 

ERPs differed significantly for trials with correct and incorrect responses in the approximate 

timeframe 130 - 175 ms. The average waveforms, at representative sites from the shaded regions, 

are also shown for correct and incorrect responses. 

 

Power spectra: Figure 3.4 (A-B) shows how source-level power in the beta- (12 - 30Hz) 

and gamma band- (30 - 100 Hz) frequency bands varied in the network nodes (SI, LOC, pIPS 

and dlPFC) during earlier (30 - 140 ms) and later (140 - 210 ms) periods of trials associated with 

correct responses. Significant power changes are detailed in Table 3.2. SI showed a significant 
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decrease in power over time in both bands. In contrast, power in both pIPS and dlPFC increased 

in the gamma band but decreased in the beta band over time. LOC spectral power did not change 

significantly over time. 

Table 3.1:  The anatomical location, dipole orientation (components) and activation timeframes 

of localized sources obtained for correctly perceived stimuli using the minimum-norm estimate 

(MNE) approach. 

 

 

Table 3.2: The significance level (p-value and corresponding t - value in parentheses, marked in 

boldface) for spectral power differences between later (140-210 ms) and earlier (30-140 ms) pe-

riods during correct responses (obtained from paired t-tests). 
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Figure 3.3 Spatiotemporal profiles of peak source-level electrophysiological activity during 

trials with correct responses. The top row represents minimum-norm estimate (MNE) sources 

with peak activity over L SI at 45 ms, R LOC at 130 ms, R pIPS at 160 ms and L dlPFC at 175 

ms. The bottom row represents the corresponding fitted dipoles with their orientations. Abbrevia-

tions as in text. 

 

Coherence spectra:  Beta band coherence between the node-pairs SI-LOC, LOC-pIPS, SI-

pIPS and pIPS- dlPFC was significantly higher for correct compared to incorrect responses 

(p<0.01) (not shown) and for the later period in comparison to the earlier period (p<0.05) [Figure 

3.4(C)]. In contrast, beta band and gamma band coherences decreased over time for the SI-dlPFC 

node-pair (p<0.05). Gamma band coherence between pIPS and dlPFC was significantly higher 

for the later period in comparison to the earlier period (p<0.05) [Figure 3.4 (D)]. Gamma band 

coherence between pIPS and dlPFC during trials with correct responses was significantly higher 

than that in trials with incorrect responses, from as early as 117 ms and lasting until 158 ms (see 

Appendix A and Figure A6 therein).   
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Figure 3.4 Spectral power and coherence.  Beta band (12- 30 Hz) (A), and gamma band (30-

100 Hz) (B) spectral power during earlier (30-140 ms) and later (140 – 210 ms) periods for    

correct response trials. Power increases occurred only in the gamma band activity of pIPS and 

dlPFC. (C-D). For correct responses, pIPS-dlPFC coherence increased significantly in the later 

period for both β and γ. Error bars are standard error of the mean (S.E.M.). 

 

Beta band and gamma band Granger causality spectra: We computed Granger causality 

spectra to assess oscillatory network interactions among the four nodes of activity: SI, LOC, 

pIPS and dlPFC. Because of the frequency band-specific relevance of oscillations in perceptual 
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decision-making [19], we computed Granger causality spectra and separated the spectra into beta 

(12-30 Hz) and gamma (30-100 Hz) bands (Figure A1 in Appendix A shows some of the results 

 

 

Figure 3.5 Granger causality and net causal flow in the frequency range (0 – 30 Hz). (A-F) 

Granger causality spectra when participants responded correctly; the peak causal influence is 

seen at roughly 13-16 Hz (low beta range). Significance thresholds (shown by dotted lines) as in 

text. (G) Schematic representation of the beta band Granger causality network graph associated 

with correct responses, based on the bivariate (pairwise) and trivariate (conditional) Granger 

causality results. (H) Significant (p<0.001) changes in net causal inflow between earlier and later 

durations. Error bars are standard error of the mean (S.E.M.).   
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Figure 3.6 Granger causality and net causal flow in the gamma band (30 – 100 Hz). (A-F). 

Granger causality spectra when participants responded correctly. Significance thresholds (shown 

by dotted lines) as in text. (G) The conditional Granger causality spectra SIàpIPS|dlPFC (means 

SI to pIPS after factoring out mediation through dlPFC) (green line). (H) Schematic representa-

tion of the gamma band network activity associated with correct responses based on the bivariate 

and trivariate (conditional) Granger causality results.  (I) Changes in net causal inflow (total in-

coming causal flow minus total outgoing flow for a node) between earlier and later durations. 

Error bars are standard error of the mean (S.E.M.). 
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from a participant before separating frequency band-specific activities).  To better assess the spec-

tral specificity and temporal evolution of neuronal effects, we also performed time-frequency 

analyses separately for both beta and gamma band oscillations and examined the power spectra, 

coherence spectra and Granger causality spectra (see Appendix A and Figures A7-A8 therein for 

details).  

 Figure 3.5 (A-F) shows Granger causality spectra in the beta band and the net causal flow 

for the four-node network as a function of frequency within the beta band associated with correct 

responses. In this band, there was bidirectional information flow between each of the three node-

pairs involving SI, LOC and pIPS. Among these regions, the LOC received comparatively 

stronger influences from the pIPS and SI compared to outflow to these regions. The causal influ-

ence was unidirectional from the pIPS to dlPFC. The Granger causality spectral peaks occurred 

around 15 Hz. The dominant information flow here was, overall, consistent with the pattern of 

temporal evolution of the MNE source activation shown in Figure 3.3 (see Appendix A and Fig-

ure A3 therein for further details of dominance in flow patterns). Figure A4 shows the absence of 

organized feedforward or feedback network activity in the absence of task performance (pres-

timulus durations). We performed conditional Granger causality analysis to rule out mediated 

interactions between all possible node-pairs. Figure 3.5 (G) shows the Granger causality network 

graph associated with correct responses. Figure 3.5 (H) shows the net beta band causal flow in 

the earlier and later epoch at each node. The pIPS functioned predominantly as a target in the 

earlier period with the LOC and dlPFC functioning mainly as sources; this pattern reversed in the 

later epoch. SI functioned as a source in both epochs, without a significant change in net causal 

flow over time.    

 Similarly, we also evaluated the patterns of pairwise and conditional Granger causality and 



 
	  

 

32 

net causal inflow in the gamma band (Figure 3.6). Gamma band frequency oscillations around 80 

Hz held SI, pIPS and dlPFC in the network while the LOC was excluded. Causal influence was 

directed from SI to dlPFC to pIPS and back to SI as a closed loop during correct responses [Fig-

ure 3.6 (H)]. The interaction from SI to pIPS was found to be mediated through dlPFC, since the 

causality from SI to pIPS after factoring out mediation through dlPFC (SIà pIPS|dlPFC) [Figure 

3.6 (G)] was not significant. As shown in Figure 3.6 (I), there were significant causal inflow dif-

ferences between the earlier (30-140 ms) and later (140-210 ms) epochs in the pIPS and dlPFC 

(Table 3.3). The pIPS functioned mostly as a source of information flow in the earlier timeframe 

but as a target in the later timeframe, whereas the dlPFC became a more dominant source over 

time. SI and LOC showed no significant changes over time. These results of spectral peaks ob-

tained from single trial waveforms after removing stimulus-triggered averages showed excellent 

agreement with the spectral quantities computed from the single trials after removing ensemble 

averages using the ASEO-method [88] (see Figure A2 for the spectral power and causality com-

puted from the ASEO-method treated trials). Following the method of time-shifted surrogates 

used in previous studies [89,90], we verified that these networks were not affected by any resid-

ual volume conduction in reconstructed source signals (see Appendix A for additional infor-

mation and Figure A5 therein for details). 

Brain-behavior relation: Behavioral accuracy (expressed in z-score) was found to be sig-

nificantly positively correlated with measures of network activity in both beta and gamma bands. 

The performance was correlated with beta band coherence for SI-LOC, and pIPS- dlPFC [as 

shown in Figure 3.7 (A-B)] and with gamma band coherence for pIPS-dlPFC and SI-dlPFC 

[Figure 3.7 (C-D)]. Similarly, behavioral accuracy was also correlated with beta band Granger 

causality from pIPS to dlPFC [Figure 3.8 (A)] and with gamma band Granger causality from 
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dlPFC to pIPS, and SI to dlPFC [Figure 3.8 (B-C)]. All the results of brain and behavior relation-

ships are shown in Figures A9-A12. 

 

 

Figure 3.7 Relation between coherence and behavioral performance. Pairs of nodes showing 

positive correlations of beta band (A-B) and gamma band (C-D) coherence with behavioral per-

formance (p < 0.05).  
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Table 3.3: The p-value and corresponding t - value (in parentheses) with significance denoted by 

boldface, for spectral power differences between later (140-210 ms) and earlier (30-140 ms) pe-

riods during correct responses (obtained from paired t-tests). 

 

 

3.4 Discussion 

Fine tactile discrimination involves somatosensory processing, focusing attention on stimu-

lus features, encoding the acquired sensory information, visualizing the stimulus features, and 

eventually forming decisions expressed in motor responses, as elaborated in previous studies 

[66,67]. Here, we obtained two important results that point towards unifying principles con-

sistent with the sequence of these processes. First, ~15 Hz beta network oscillatory activity was 

dominantly feedforward from somatosensory to occipital to parietal to prefrontal regions, similar 

to the propagation of average cortical activity, probably reflecting accumulation and maintenance 

of sensory information. Second, ~80 Hz gamma network oscillations occurred in a recurrent 

closed loop from prefrontal to posterior parietal to somatosensory and back to prefrontal regions, 

implying involvement of this loop in attentional selection of task-relevant sensory evidence. Ac-

curacy of tactile discrimination was significantly correlated with measures of network activity in 

both bands. These results provide direct evidence of recurrent information processing of sensory 
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and attentional signals as in somatosensory awareness [91] and in other forms of decision-

making [92,93].  These findings, together with previous studies in the visual [19] and auditory-

visual domains [20] suggest common oscillatory network mechanisms for perceptual decision-

making across various sensory modalities. Further, these results are consistent with earlier fMRI 

studies of somatosensory perception: An fMRI study [69] with a similar stimulation protocol to 

this 

 

Figure 3.8 Relation between Granger causality and behavioral performance. Beta band (A) 

and gamma band (C-D) Granger causality relationships among node pairs (p < 0.05). 
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study found that the paths predicting acuity converged from the left postcentral sulcus (PCS) and 

right frontal eye field (FEF) onto the right pIPS, consistent with interaction between feedforward 

somatosensory signals and feedback control signals. Similarly, other fMRI studies on haptic per-

ception revealed evidence for both bottom-up projections from somatosensory cortex and top-

down paths from prefrontal and parietal cortex to the LOC [94-96]. Our results provide a new 

understanding of the role of oscillatory interactions within these somatosensory and frontoparie-

tal networks during tactile perceptual decision-making. 

3.4.1 Cortical sources of neural activity   

 Sensor-level brain responses associated with correct and incorrect perception differed 

around 130-175 ms after stimulus onset. MNE-localized cortical sources from these responses 

propagated from left SI at around 45 ms to the right LOC at 130 ms, to the right pIPS at 160 ms 

and finally to left dlPFC at 175 ms, outlining a feedforward sweep. Contralateral SI activation 

within the 30-50 ms timeframe is consistent with a previous ERP study [97] for tactile stimuli 

varying in shape. The LOC is known for visuo-tactile convergence of information relating to 

object shape [98-101]. The right LOC activation found here at around 130 ms could be associat-

ed with visualizing tactile stimulus features [97]. Previous studies have found LOC activation 

more consistently in the right hemisphere [69,100-103]. As for SI, the right pIPS and left dlPFC 

activations were somewhat delayed relative to those observed with electrical stimulation of the 

median nerve [71-75], which excites peripheral afferents synchronously at a more proximal lo-

cation. The pIPS activation may reflect the role of posterior parietal cortex in tactile perception 

[69,96,100] and spatial attention [104,105]. Activation seen in left dlPFC at around 175 ms may 

indicate a role for this region in working memory (WM), or in encoding and maintaining deci-

sions [106,107] until a motor response is generated.  
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Processing of either consciously perceived stimuli [108-110] or imperceptible sensory 

stimuli [110-113] involves a widespread network, including SI [110-113] and several areas high-

er in the processing hierarchy [111,114,115]. The data of the present study suggest that the neu-

ral correlates distinguishing correct percepts from incorrect percepts emerge at later stages and 

higher levels of sensory processing, after ~140 ms. Hence our results not only support the notion 

that early SI activation is insufficient to distinguish trials with correct from those with incorrect 

responses, but also shows that processing of these trial types differs significantly starting around 

~140 ms after stimulus presentation when the signal is processed in parietal and frontal cortices 

[116].  

3.4.2 Oscillatory power  

We observed ~15 Hz (beta band) and ~80 Hz (gamma band) spectral power peaks 30-210 

ms after stimulus onset. These oscillations reflect distinct aspects of synchronization among neu-

ronal populations during perception, attention and memory maintenance [117,118] and are ob-

served during a variety of processes, including those associated with somatosensation, WM and 

attention [19,119-121]. Spectral power differed before and after 140 ms in all regions except 

LOC (Fig. 3.4). SI demonstrated a decrease in power in both beta and gamma bands, whereas 

both pIPS and dlPFC showed gamma band increases but beta band decreases. Gamma-power 

increases in pIPS and dlPFC during trials with correct responses could be due to changes in at-

tentional control, working memory maintenance and verbal encoding of decision reports [122]. 

Gamma power increase with a concomitant beta power decrease compared to the baseline was 

also observed in a tactile delayed-match-to-sample task [119]. The gamma and beta power 

changes observed here in pIPS and dlPFC between different phases of the tactile decision-
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making task could be due to a change in level of top-down attentional control [105] and a change 

in WM maintenance to update WM contents [121].  

3.4.3  Oscillatory network activity 

Coherence and Granger causality spectral analyses showed that inter-areal brain synchroni-

zation and interactions during a tactile perceptual decision-making task were consistent with me-

diation by ~15Hz beta band and ~80 Hz- gamma band neural oscillations. Measures of network 

activity, especially those pertaining to the dlPFC in both bands, were significantly correlated 

with the accuracy of task performance (Figure 3.7 and Figure 3.8). These frequencies (15 Hz and 

80 Hz) of oscillatory activity are close to the ones observed in an EEG study of multisensory 

perception [20]. The beta band network in our study included all four active nodes in somatosen-

sory, lateral occipital, parietal and prefrontal cortex while the gamma band network excluded the 

lateral occipital cortical node but included the other three. A similar beta oscillatory network was 

observed in a somatosensory-motor task [86] and in a WM task [123]. The parietal and prefrontal 

coherence in the gamma band increased over time, consistent with a well-known role of gamma 

oscillations in perceptual binding [4,124].  The information flow at ~15 Hz was dominantly feed-

forward, reflecting sensory-driven processes.  On the other hand, ~80 Hz gamma band infor-

mation flow was directed in a recurrent loop from dlPFC to pIPS to SI and SI to dlPFC, implying 

involvement in attentional selection of relevant sensory information and sensory updating. These 

results of organized oscillatory network activity are based on the analysis of post-stimulus brain 

activity. The pre-stimulus periods lacked the same level of organization (see Figure A4 in the 

Appendix A). However, the pre-stimulus brain activity can be modulated by top-down attention, 

which has been shown in the somatosensory domain [125] and in the visual domain [126,127]. 

The inter-areal and laminar neural circuitry in the brain support the natural occurrence of gamma 
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and beta oscillatory activities and their modulations in cognitive and perceptual tasks that engage 

top-down attentional control signals [49]. 

To summarize, the present study extends our understanding of the neocortical dynamics 

underlying perceptual decision making in the somatosensory domain, with regard to the time 

frame of averaged evoked potentials and the fast oscillatory networks that appear to organize 

evoked activity across widespread cortical regions. We found that fine tactile discrimination is 

mediated by distinct but overlapping ~15 Hz beta and ~80 Hz gamma band large-scale oscillato-

ry networks. The beta-network was dominantly feedforward from somatosensory to lateral occip-

ital to posterior parietal to dorsolateral prefrontal cortex, similar to the propagation of average 

cortical activity, implying its role in accumulating and maintaining relevant sensory information 

and mapping to action. The gamma band network activity, occurring in a recurrent loop from the 

prefrontal to posterior parietal to somatosensory and back to prefrontal cortex, likely carried out 

attentional selection of task-relevant sensory evidence. Measures of network activity in both 

bands were correlated with accuracy of task performance. These findings provide important in-

sights into the neural mechanisms that mediate fine tactile spatial discrimination of the kind that 

is necessary for Braille reading.    
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4 LOCALIZING EPILEPTIC SEIZURE ONSETS WITH GRANGER CAUSALITY 

4.1 Introduction  

Of 2. 5 million people with epilepsy in the United States, at least 30% have seizures such 

as refractory temporal lobe epilepsy that cannot be controlled with medication, and are therefore 

potential candidates for epilepsy surgery [61,128]. But 10%–40% of patients who undergo pre-

surgical evaluation have seizures that are not localized by the use of scalp electroencephalog-

raphy (EEG), multimodal imaging, and magnetoencephalography (MEG). Many of these patients 

undergo intracranial electroencephalography (IEEG) recording with grid and depth electrodes. 

However, the increasing numbers of electrodes implanted by neurosurgeons in recent years, of-

ten totaling over 100 per patient, have not always produced greater clarity. Sampling of the sei-

zure onset zone may still be incomplete. IEEG seizures may appear nonlocalized by conventional 

visual standards. Complete resection or disconnection of an apparent, nonlesional, extratemporal 

focus leads to a cure in less than 50% of cases. Traditional criteria for the estimation of IEEG 

seizure onset may be inadequate for many patients.  

A conventional evaluation for epilepsy surgery uses IEEG to record a number of seizures, 

typically three to ten, over a period of 1–4 weeks during an inpatient stay in the epilepsy-

monitoring unit. From the recorded information, the epilepsy monitoring team and neurosur-

geons try to estimate the seizure onset zone (SOZ) in preparation for surgery. Suggested methods 

for the evaluation of IEEG include extending expert analysis of conventional visual EEG fre-

quencies to direct current (dc) shift to high beta (20–30 Hz) to gamma (30–100 Hz) frequencies, 

and more recently to interictal high-frequency (> 80 Hz) oscillations (HFOs) [62-64]. Epilepsy 

surgery restricted mainly to the brain regions of HFOs has often lead to seizure freedom 

[63,129]. However, HFOs are also commonly observed in a normal brain state [64]. Various 
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measures (linear and nonlinear, univariate and bivariate) have been used to discriminate a preic-

tal state from an interictal period [130]. The univariate methods have not always been sufficient 

in identifying the crucial ictal portion. The bivariate methods used so far have not been able to 

reveal the importance of high-frequency network activity in localizing epileptic seizure onsets. 

Nonlinear time series techniques have been mostly applied to predict seizures from the ictal ac-

tivity of brain potential recordings [102,103,118,131-133]. However, the suitability of nonlinear 

measures to characterize brain potential recordings in predicting seizures has been questioned 

[122,134]. 

The activity of pathological neuronal systems and their network interactions lie at the 

heart of epileptic seizure and its propagation over the brain [61]. Current IEEG monitoring prac-

tice is still in the process of realizing the underlying network mechanisms of the generation and 

propagation of epileptic seizures. A limited number of studies have applied network correlational 

measures such as correlation and coherence to epilepsy data [85,86,135,136]. Here, considering 

neuronal network dynamics and HFOs at the heart of seizure generation and propagation over the 

brain, we applied multivariate spectral interdependency techniques to IEEG recordings of eight 

patients, including the directional measure Granger causality (GC), and assessed their effective-

ness in the localization of seizure onset times and zones.  

Fourier and wavelet transform-based nonparametric methods were recently extended to 

obtain Granger causality spectra [56-58]. Granger causality spectra can be used to examine the 

strengths, directions, and frequencies of interactions between oscillatory stochastic processes. 

Clive J. Granger, 2003’s Nobel Laureate in Economics, had formulated the statistical definition 

of time-domain causality between two jointly stationary processes in 1969 using a parametric 

modeling scheme of time series data [137,138]. The frequency-domain Granger causality under 
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the same parametric estimation approach was proposed by Geweke in 1982 [59]. The parametric 

and nonparametric approaches to spectral analysis of time series data are complementary to each 

other [56,57]. We used both parametric and nonparametric approaches for optimal estimation of 

spectral quantities such as power, coherence, and Granger causality from spatially distributed 

IEEG recordings. We also computed total interdependence (TI) by integrating coherence over 

the entire frequency range [59,84] and net causal outflow (OF) associated with each recording 

electrode. With these measures, we evaluated where and when seizures started and how they 

propagated over the recording electrodes implanted in the subdural space and directly within the 

brain. 

4.2 Materials and methods 

4.2.1 Patient selection 

IEEGs were analyzed from eight patients who had undergone electrode implantation be-

tween 2010 and 2012, using combinations of standard depth electrodes and subdural grids, re-

cording from a total of 40 -128 electrodes at a sampling rate of 500 Hz.  Raw data was saved at a 

passband from dc to 500 Hz.  Prior to digitization, analog data was passed through a type II Che-

byshev filter with 3db point at 240 Hz. Patients were studied retrospectively, in order to examine 

the general features of spectral measures in IEEG.  These records were chosen because seizures 

appeared to have a consistent pattern of propagation, in which the onset was nonetheless ambig-

uous in terms of visual criteria including classic EEG frequencies, dc shifts, and gamma activity.   

EEG segments for analysis ranged from 5 to 20 s in duration, chosen to proceed to earliest visual 

manifestation of the seizure, and extending to include its visible propagation to at least two elec-

trodes.  Additional samples were taken at earlier times if high-frequency GC could be detected at 

the onset of the initial data segment, and separate 8 samples were taken at times remote from 
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known seizures, to evaluate the possible presence of GC interictally. The spectral power, coher-

ence and GC analyses were done on deidentified data without any specific assumptions about the 

seizure onset zones established by the clinical visual criteria.  

In the prospective portion of the study, two patients were chosen based on the condition 

of ambiguous visual onset, i.e., ictal activity was consistent across multiple seizures but visual 

criteria for seizure onset were inadequate or contradictory. Additional information was consid-

ered important for surgical decision-making when a single definitive site of resection could not 

be selected on the basis of iEEG augmented by combinations of clinical semiology, 3T anatomic 

magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emis-

sion computed tomography (SPECT), magnetoencephalography (MEG), neuropsychological as-

sessment, and/or functional MRI (fMRI) mapping.  The Emory University Institutional Review 

Board approved this study. 

4.2.2 Spectral interdependency measures 

We applied spectral Granger causality analysis to IEEG recordings and computed wave-

let power, TI, GC spectra, and OF spectra in moving time windows of length 0. 5 s (250 time 

points). Here, power provides us the information about the level of synchrony of the underlying 

neural system within a recording site, coherence about synchrony between the neuronal systems, 

and GC about the directed influence from one neuronal system to another. In this study, the net 

outgoing information flow away from the node (source) is represented by a positive OF and the 

net incoming flow towards the node (sink) is represented by a negative OF. This interpretation is 

valid within the same patient’s data and fine temporal resolution. However, we think that very 

coarse temporal resolution of the recordings may lead to spurious causalities, as was indicated in 

previous studies [67,84,139]. 
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4.3 Results  

4.3.1 Retrospective cases  

IEEG segments were selected from patients undergoing clinical evaluation for epilepsy 

surgery. These segments included clinically identified ictal (seizure) activities and preictal (be-

fore the seizure) activity. Figure 4.1 shows a sample of multichannel IEEG time series that in-

cludes a seizure event. In this case, the seizure was clinically determined to start at around 9 s, as 

marked by the green vertical line in Fig. 4.1. 

 

Figure 4.1 Sample time series: Multi-channel IEEG recordings with a seizure event in a patient. 

A green vertical line at t = 9.0 s marks the beginning time of a visually identified seizure event. 

 
We computed wavelet power, coherence, TI, spectral and temporal GC, and net causal 

outflow OF as defined above from all patients separately. For this representative patient, these  
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Figure 4.2 Spectral power averages, total interdependence (TI), and time-domain Granger cau-

sality (GC). (a)–(c) Wavelet power (z score) averaged over entire time (a), over recording chan-

nel (b), and over frequency (c). The white dashed lines in (b) and (c) represent the seizure onset 

times assessed by using traditional visual criteria. (d)–(f) TI at different times (t = 3.0, 6.5, and 

9.5 s). In the ictal period (t = 9.5 s) the seizure has already spread to the entire network (f). (g)–

(h) Time-domain GC in preictal period (t = 3.0 s) and the ictal period (t = 9.5 s). (i) Frequency-

domain Granger causality spectra for two selected channels, 43 and 27, in which the former 

sends a dominantly stronger causal influence to the latter at around t = 9.5 s. The horizontal 

dashed line represents the threshold level at significance p < 10−6, obtained by permutation tests.  
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Figure 4.3 The net causal outflow (OF) averaged over entire time (a), over recording channel 

(b), and over frequency (c). The white dashed lines [(b) and (c)] represent the seizure onset times 

assessed by the traditional visual criteria. (d) Integrated net causal outflows (iOF, expressed in z 

score). iOF crosses three standard deviations (marked by horizontal dashed lines) ~3 s earlier 

(marked by a vertical green line at around 6 s) than the time assessed by using the traditional cri-

teria (marked by a dashed black line). (e) iOF after the time of significant causality from all 

IEEG recordings of the same representative patient. Here, a channel with a positive value repre-

sents a causality source channel whereas one with a negative value represents a sink channel. 
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quantities are shown in Figs. 4.2 and 4.3. The wavelet power [Figs. 4.2(a) –4.2(c)] shows that 

there was high-frequency (~150 Hz) activity in a limited group of electrodes early during the sei-

zure. Compared to t = 3. 0 s (preictal period) in Fig. 4.2(d) and t = 6. 5 s  (~ seizure onset time 

from the GC approach) in Fig. 4.2(e), the whole network was affected by the seizure propagation 

at 9. 5 s (ictal period) as shown by TI [Fig. 4.2(f)]. A group of recordings (around channel 40) 

acted as strong sources of GC [Fig. 4.2(h)]. For instance, channel 43 was exerting a stronger 

causal influence to 27 than the other way around [Fig. 4.2(i)]. Figures 4.3(a) –4.3(e) show that 

the net causal outflow can identify the locations and time of seizure onset. Here, electrodes 

around channel 40 propagated high-frequency activities approximately 3 s before it was clinical-

ly recognized by using any visual criterion. The difference in the causal outflow between the 

times of seizure and before seizure for a strongest causality source remained positive for all pa-

tients P1–P8 (shown in Fig. 4.4). For individual outflow spectra from all patients and for further 

TI, iGC, and iOF results, please see the Appendix B. In all patients, high-frequency GC relation-

ships could be defined among groups of electrodes prior to the onset of any visible ictal activity. 

GC calculation shows the seizure occurred anywhere between 2.0 and 12.5 s (mean ± standard 

error of mean = 6. 3 ± 1. 4 s) earlier than the time it was determined visually as determined by 

the 3 times the standard deviation (SD) criteria. For these seizure samples, the net causal outflow 

has exceeded 3 SD and the positive predictive value of this finding prior to visible seizure onset 

is 100%. For the interictal data, which was comparable in length to the ictal data far away from 

seizures, the net causal outflow never exceeded 2.5 SD. Here, the most striking finding was the 

frequent demonstration of strong causality at frequencies approaching 200 Hz. The clinicians in 

the epilepsy-monitoring unit were unable to visualize this activity using any combination of gain, 

time scale, and filter settings. Even on Fourier spectral graphs, it was detectable only by careful 
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Figure 4.4 Integrated causal outflow differences (∆OF) in a source channel between ictal and 

preictal periods in eight patients (P1–P8). Positive differences in all patients suggest that the cau-

sality can always increase in going from the preictal to the ictal periods. 

 

adjustment of display parameters. These results show that high-frequency GC could often be   

defined among groups of electrodes long before the onset of any visible ictal activity. 

4.3.2 Prospective cases  

Prospective Case 1 was a 32-year-old left handed man with medically refractory partial 

seizures and secondary generalization of 3 year duration. MRI showed prominent right hippo-

campal sclerosis plus Dandy-Walker malformation, hyperplastic cerebellum, and numerous areas 

of heterotopic gray matter that were particularly prominent in the right posterior occipital and 

parietal regions. MEG localized interictal epileptiform activity to the right posterior perisylvian 

region. PET scan showed relative hypometabolism in the medial and inferior right temporal lobe. 
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Scalp EEG showed delayed onset of ictal activity in the right posterior temporoparietal region. 

Neuropsychological testing revealed cognitive impairment in the areas of verbal and spatial 

memory, naming, motor skills, information processing speed, and verbal fluency.  IEEG record-

ed 8 clinically and electrographically stereotyped seizures with earliest visible onset in the form 

of fast narrow spikes and beta activity from a single right occipital grid electrode, ROg61, which 

was otherwise remote from all other early ictal discharges in the temporal lobe. ROg61 was fol-

lowed by HFOs involving electrodes in right anterior and mid-temporal strips, the latter evolving 

to ictal beta and then more widespread ictal discharges (Figure 4.5A). In this case, we used GC 

to test a simple binary hypothesis concerning electrode ROg61: that it was either a causal source 

or sink in relation to the sampled electrodes in RAsT and RMsT (Figure 4.5 (B-C)). The GC re-

sult indicated that ROg61 was in fact a causal sink among these electrodes, with the strongest 

causal source being RAsT5. Based in part on this result, we chose to ignore the early discharge 

in ROg61 (along with the extensive anatomic abnormalities in the right parietal and occipital 

lobes) and perform a standard right temporal lobectomy. The patient remains seizure free and 

back at work one year later.  
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Figure 4.5 Visible ictal onset in the first prospective patient. HF = 240, LF = 1, nominal sensi-

tivity = 100 µV/mm. ROg = portions of a Right Occipital grid, RPHs = Right Parahippocampal 

strip, RAsT = Right Anterior Subtemporal strip, RMsT =Right Midtemporal strip.  A. The earli-

est visually-apparent activity consists of fast narrow spikes at right occipital grid electrode 

ROg61, preceding ictal activity in the right temporal lobe.  B. Electrodecrement in parahippo-

campal and anterior-mesial temporal strips. C. High frequency oscillations progressing to ictal 

beta in anterior and mid-temporal strip electrodes RAsT1 and RMsT1. D. GC comparison lim-

ited to the electrodes that appear most involved in the initial ictal discharge, showing ROg61 and 

the 4 strongest sources in A - C. Despite being visible earliest and at highest frequency, ROg61 

is a causal sink over the selected time interval (~7.5 s)—while the strongest causal sources are 
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the fifth, rather than the first, anterior and mid-temporal strip electrodes. This finding was inter-

preted as evidence against ROg61 representing the ictal onset zone or a major node in seizure 

propagation. 

 
Prospective Case 2 is a 35-year-old left handed man with complex partial seizures and ra-

re secondary generalization following reported H. influenza meningitis in infancy, and later fe-

brile seizures at age 3. 3T anatomic MRI showed marked atrophy of the right mammillary body 

and fornix, with no hippocampal abnormality. PET scan showed bilaterally symmetric hypome-

tabolism in the mesial temporal lobes.  Wada test indicated left hemisphere dominance for lan-

guage, and neuropsychological evaluation was considered mildly suggestive of right hemisphere 

dysfunction.  Scalp video-EEG of seven seizures suggested onset predominantly from the right 

parieto-temporal-occipital region, with interictal epileptiform discharges in the right frontotem-

poral, midtemporal, and parieto-temporal-occipital regions.  IEEG recording was made from 

multiple strip, grid, and amygdalohippocampal depth electrodes designed to cover areas of the 

right hemisphere extending from the frontal to the parietal and inferior temporal-occipital region. 

Based on visual criteria, the seizure onset zone was considered likely to lie in the posterolateral 

temporal and occipital areas. A formal epilepsy surgery conference considered further electrode 

implants in that region extending dorsal to the parietal lobe, versus an extensive cortical resec-

tion sparing the amygdala and hippocampus.  However, later review of GC results suggested that 

preictal activity was unexpectedly prominent in the amygdala and hippocampal depths (Figure 

4.6), while head-to-head comparison of the most prominent GC sources at the time GC became 

significant (Figure 4.7) indicated that the strongest causal source was a depth electrode in the 

amygdala, followed by hippocampal depth electrodes. In comparison, posterior temporal and oc-

cipital neocortical electrodes were relative GC sinks. Considering this result, a second epilepsy 

surgery conference changed the recommendation to a standard right anterior temporal lobecto-
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my, including the amygdala and hippocampus, and neocortex below right temporal grid electrode 

1; with plans to revisit the posterior neocortical regions only if the first resection was unsuccess-

ful.  This patient had a single atypical postoperative seizure without loss of consciousness at 24 

hours, has returned to full employment, and has reported a few brief auras without alteration in 

behavior or consciousness in the six months since surgery. 

Figure 4.6 GC outflow sources overlaid on selected channels of IEEG for 12 seconds before and 

during visible ictal onset in the second prospective patient. Display parameters as in Figure 4.5. 

RMOs is a right mid-occipital strip; RIOs1 is the most ventral electrode of an inferior occipital 

strip; RAd, RAHd, and RPHd are amygdalar, anterior hippocampal, and posterior hippocampal 

depths respectively. A short train of spikes (A), more widespread than is visible in these selected 

channels, is followed one second later by a widespread polymorphic ictal discharge (B).  
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Figure 4.7 A. GC outflow sources for all sampled electrodes in the same patient as Figure 4.6, 

extending from 30 seconds prior to visible ictal onset to 4 seconds after. The section outlined in 

purple corresponds to the data selected in Figure 4.6. Additional electrodes: RAsT =Right Ante-

rior Temporal strip; RMsT = Right Mid-Temporal strip; RPg =Right Parietal grid; RTg = Right 

Temporal grid; RPsT = Right Posterior Temporal strip. B. Pairwise GC outflow comparison lim-

ited to the 6 most prominent GC source electrodes, computed prior to ictal onset. The first amyg-

dalar depth electrode is the dominant source, with the second amygdalar depth electrode next. 

RSOs1 and RMOs1, two sites of apparent visible ictal onset, are relative sinks. RTg1, a weaker 

relative source, was within the area of the subsequent anterior temporal resection.  

Though the spectral Granger causality (GC) and related techniques applied to iEEG at 

HFO frequencies helped to identify seizure onset zones and times, the greatest impediment to it 

is the enormous number of calculations needed to evaluate causal relationships among large 

numbers of channels at high sampling rates. With a dedicated computer requiring roughly one 
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hour of processing for every second of data, it is challenging even to complete a single ictal 

analysis prior to explantation of iEEG electrodes. It demands the need of enough computing 

power, may be use of networked computers or even using the Matlab Cloud for computation, to 

examine many hours of interictal EEG for significant GC independent of seizures. Moreover, no 

form of mathematical analysis can identify seizure onsets where we don’t have an electrode. 

4.4 Conclusions 

Identifying targets for the surgical resection in epilepsy remains a complex and imperfect 

process. Recent cases of seizure-free outcomes after resection of HFO-generating brain tissues 

[63,64] hint toward the main characteristics of the epileptogenic zones and are highly encourag-

ing. Here, we provide evidence that high-frequency network activities are the precursors of epi-

leptic seizures and a careful evaluation of causal relationships from iEEG recordings can sup-

plement the conventional visual inspection in identifying seizure onset zones for surgery. These 

findings suggest that high-frequency (>80 Hz) events in iEEG recordings that are close to hidden 

seizure onset zones can be observed and their causal relationships with the rest of the recordings 

can assist in surgical localization, thereby increasing cure rates. 
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5 SUMMARY AND FUTURE OUTLOOK 

Using scalp electroencephalography (EEG) recordings combined with source reconstruc-

tion techniques, we found that the fine tactile discrimination involves somatosensory processing, 

focusing attention on stimulus features, encoding the acquired sensory information, visualizing 

the stimulus features, and eventually forming decisions expressed in motor responses. The cor-

rect stimulus perception was found to involve the primary somatosensory cortex, lateral occipital 

complex, posterior intraparietal sulcus and dorsolateral prefrontal cortex in different temporal 

millisecond time-scales. We found that ~15 Hz beta band oscillatory networks, dominantly feed-

forward from somatosensory to lateral occipital to parietal to prefrontal regions, and ~80 Hz 

gamma band oscillatory networks, occurring in a recurrent closed loop from prefrontal to poste-

rior parietal to somatosensory and back to prefrontal regions, coordinate activity between these 

regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. The-

se findings provide important insights into the neural mechanisms and the role of oscillatory in-

teractions within these somatosensory and frontoparietal networks that mediate fine tactile spa-

tial discrimination of the kind that is necessary for Braille reading and hence may inform design 

of the effective sensory aid devices for the visually impaired.  In visually impaired populations, 

how these neural mechanisms and oscillatory interactions happen remains to be explored.    

Applying spectral Granger causality analysis to intracranial electroencephalography 

(iEEG) recordings in patients during seizures, we found that the high-frequency network activity 

helps to identify seizure onset times and zones. This technique has potential to increase under-

standing of preictal network activity and to help improve surgical outcomes. This study involved 

primarily retrospective patients, but can be applied to the clinical problem of identifying the sei-

zure onset zones, at frequencies including HFOs, in cases where inception appears to be ambigu-
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ous or nearly simultaneous in widely separated regions of the brain. Preictal and early ictal GC 

from individual recording electrodes can be characterized by the strength of causal outflow, spa-

tial distribution, and hierarchical causal relationships. The GC source/sink comparisons will sup-

port the exclusion of early ictal regions that may not be the dominant causal sources, and con-

tribute to planning of more limited surgical resections. Building up a systematic algorithm im-

plementing these network calculations which provides the information about the seizure onset 

zones and times may become a useful addition to the multiplicity of techniques that contribute to 

increased efficacy and decreased morbidity in the surgical treatment of epilepsy. 
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APPENDICES  

Appendix A 

Appendix A.1: Power, coherence and causality spectra 

From the single source trials producing correct responses, ensemble averages signal was 

removed and spectral quantities (power, coherence and Granger causality spectra) associated 

with nodes (L SI, R LOC, R pIPS and L dlPFC) and their networks were computed for all partic-

ipants. Figure A1 shows some of the results from one participant before separating frequency 

band-specific activities for further analyses.  There are two spectral peaks, one at around 15 Hz 

and the other at around 80 Hz in the power, coherence and Granger causality spectra. To see 

whether trial-to-trial variability has any effect on the spectra, we removed ensemble averages 

from single trials by using the ASEO method [88] and computed these spectral quantities. Alt-

hough the magnitude of these quantities decreased in the ASEO-treated data, the results did not 

change significantly. Figure A2 shows power and some of Granger causality spectra obtained 

after using ASEO method.  
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Figure A1: Power spectra (A), coherence spectra (B) and Granger causality spectra (C) from a 

participant while performing a tactile discrimination task and providing the correct response.  
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Figure A2: Power spectra from all four nodes (A), and Granger causality spectra (B) from a pair 

of nodes (pIPS and dlPFC).  These spectral measures were calculated from the single trial source 

waveforms after removing ensemble averages with the ASEO method. The Granger causality 

spectral peaks, though reduced in magnitudes, remain significant at ~15 Hz in beta and ~80 Hz 

in gamma frequency bands as in the traditional method. 

Appendix A.2: Dominant causal influences: feedforward or feedback or both? 

To determine whether there was asymmetry between feedback and feedforward directed 

connectivity during tactile perceptual decision-making; we performed pairwise tests for the 

Granger causality values between feedforward and feedback connections in each participant in 

the post-stimulus period (30 to 210 ms). The net direction of interaction in the beta band network 

turned out to be feedforward (p <0.05), whereas in the gamma band, it was found that there was 

no dominant feedforward or feedback interaction (p > 0.05) [Figure A3 (A-B)]. 
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Figure A3: Post-stimulus symmetrical and asymmetrical network activity in the beta band (A) 

and the gamma band (B). Here, R1= L SI, R2 = R LOC, R3 = R pIPS and R4 = L dlPFC. Inset in 

(A) shows the overall feedforward interaction (blue) is significantly greater than the feedback 

interaction (red) in the beta band.  The inset in (B) shows that there was no dominance of feed-

forward over feedback interactions, or the other way around; it was rather a recurrent loop for 

interaction (from SI to dlPFC, then to pIPS and to SI). Here, * indicates the significance of       

p< 0.05 and n.s. means not significant. Error bars are standard error of mean (S. E. M.). 

 

Beta band network activity [Fig. A3 (A)]: Bidirectional interactions (feedback and feed-

forward) between SI and pIPS and between LOC and pIPS did not differ significantly. However, 

the feedforward interaction from SI to LOC was significantly stronger than the feedback interac-

tion from LOC to SI. Also, the feedforward network interaction from pIPS to dlPFC differed 
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significantly compared to the feedback network interaction from dlPFC to pIPS. As shown in the 

inset [Fig. A3 (A)], the overall feedforward network interaction (blue) was significantly different 

from the feedback network interaction. 

Gamma band network activity [Fig. A3 (B)]: The direction of interactions from SI to 

dlPFC, dlPFC to pIPS, pIPS to SI differed significantly from dlPFC to SI, pIPS to dlPFC, SI to 

pIPS respectively [Fig. A3 (B)]. But there was no dominance of feedforward over feedback in-

teractions, or the other way around [inset Fig. A3 (B)]. 

Appendix A.3: Absence of organized feedforward or feedback network activity in the 

prestimulus durations 

In order to confirm that the observed network interaction patterns and Granger-causality 

based interactions could not be observed in the absence of task performance, we analyzed the 

data from the prestimulus period (-100 to 0 ms), computing Granger causality in the beta and 

gamma bands.  As shown in Figure A4 (A-B), there was an absence of organized feedforward or 

feedback network activity in the prestimulus durations in both beta and gamma bands.  
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Figure A4: Prestimulus network in beta band (A) and gamma band (B). Abbreviations and colors 

as in Figure A3. Neither the feedforward and feedback network interactions nor the overall feed-

forward and feedback direction of interactions (insets) were significantly different (p<0.05) dur-

ing the prestimulus period. R1, R2, R3, and R4 as in Fig. A3. Error bars are S.E.M. 
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Appendix A.4: Network activity is not a result of residual volume conduction in the 

source signals              

We used the procedure used in previous studies [89,90] of time-shifting driven signals to 

evaluate and rule out potential effects of residual volume conduction in the reconstructed source 

signals. The comparison between the average maximum Granger causality values of the original 

time series and the distribution of its values obtained for a set of 50 time-shifted surrogates for 

correct trials associated with two nodes (pIPS and dlPFC) showed the directed causal influences 

were not the result of volume conduction (Fig. A5).  
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Figure A5: Effect of any residual volume conduction in the source signals: true Granger causality 

(blue) and that obtained after shifting the time points (red). Here time points were shifted by,       

t =1, 2, 3, 4, 5 points to generate surrogate time series and to test the hypothesis that Granger 

causality would strengthen by time-shifting the driven signals if volume conduction effects were 

present in the data. 
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Figure A6: Gamma coherence (pIPS – dlPFC) during trials with correct and incorrect responses 

Appendix A.5: Time-frequency maps of power, coherence and causality spectra  

We performed time-frequency analyses separately for both beta and gamma band oscilla-

tions and examined the power spectra, coherence spectra and Granger causality spectra to better 

assess the spectral specificity and temporal evolution of neuronal effects for the duration of -100 

to 600 ms. 

Beta-oscillations: All the activation nodes demonstrated peak power at around 15 Hz, 

with pIPS showing the highest value and LOC, the lowest [Fig. A7 (1st column)]. Fig. A7 (2nd 

column) shows the coherence spectra peaking at around 15 Hz. From pairwise Granger causality 

spectra (3rd and 4th columns of Fig. A7), the interactions between SI and LOC, and between 
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LOC and pIPS, were bidirectional, while that between pIPS and dlPFC was unidirectional, all at 

around 15 Hz.  

Gamma-oscillations: All nodes displayed peak power at around 80 Hz, with the highest 

power at dlPFC [Fig. A8 (1st column)]. The coherence spectra [Fig. A8 (2nd column)] for pIPS-

dlPFC and SI-dlPFC were coherently modulated at around 80 Hz. The 3rd and 4th columns of 

Fig. A7 show the pairwise Granger causality spectra for a pair of network nodes.  

 

Figure A7: Time-frequency analysis, beta-oscillations. The first column shows power, the second 

column shows coherence (Ch), and the third and fourth columns show pairwise Granger causali-

ty (GC), where S = SI, L = LOC, P = pIPS, and F = dlPFC. Power, coherence and Granger cau-

sality spectra show peaks at around 15 Hz. 
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Figure A8: Time-frequency analysis, gamma-oscillations. The first column shows power (P), the 

second column, coherence (Ch), and the third and fourth columns, pairwise Granger causality 

(GC). S, L, P, and F as in Fig. A7. Power, coherence, and Granger causality spectral peaks occur 

at around 80 Hz. 

Appendix A.6: Brain-behavior correlation 

Here, we include all the results (significant and not significant) trying to establish brain 

and behavior relationships. We looked at the relationship between task performance accuracy 

and network activity (coherence and Granger causality). Source waveforms were collected both 

for correct and incorrect response trials from all network nodes and were used to compute the 

coherence and the causality spectra across subjects. We computed coherence and Granger cau-
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sality values separately for both beta and gamma bands from each participant to examine the re-

lationship between behavioral and electrophysiological data. The coherence values in the beta 

band (Fig. A9) and gamma band (Fig. A10) are plotted here as a function of average perfor-

mance accuracy (z-score), for each pair of nodes. We found significant positive correlations be-

tween coherence and behavioral performance for SI-LOC and pIPS-dlPFC in the beta band and 

for pIPS-dlPFC and SI-dlPFC in the gamma band. 

 

Figure A9: Relation between coherence and behavioral performance in the beta band. The high-

lighted subplots show pairs of nodes where coherence was significantly positively correlated 

with behavioral accuracy (green highlights).  R1, R2, R3, and R4 as in Fig. A3.  
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Figures A11 and A12 represent the Granger causal influences as a function of average 

accuracy in the beta and gamma bands, respectively. In the beta band, the Granger causal influ-

ence from pIPS to dlPFC was positively correlated with accuracy whereas the Granger causal 

influences from SI to LOC and LOC to pIPS tended to be significant. In the gamma band, the 

Granger causal influences from dlPFC to pIPS and SI to dlPFC were positively correlated with 

accuracy whereas the Granger causal influences from pIPS to SI tended to be significant.  

 

Figure A10: Relation between coherence and behavioral performance in the gamma band. The 

subplots highlighted in green represent pairs of nodes with significant positive correlations be-

tween coherence and behavioral accuracy. R1, R2, R3, and R4 as in Fig. A3.  
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Figure A11: Relation between Granger causal influences and behavioral performance in the beta 

band. The highlighted subplots show Granger causal influences significantly positively correlat-

ed with behavioral accuracy (green) or tending to be significantly correlated (gray). R1, R2, R3, 

and R4 as in Fig. A3.   
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Figure A12: Relation between Granger causal influences and behavioral performance in the 

gamma band. The highlighted subplots either show Granger causal influences significantly posi-

tively correlated with behavioral accuracy (green) or tending to be significantly correlated (gray 

color).  R1, R2, R3, and R4 as in Fig. A3. 
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Appendix B 

Here, we report additional results (Figures B1-B11 below): (i) Granger causality results 

for all patients P1-P8 in Figures (B1- B8) (A-D), (ii) total interdependence (TI) at different time 

windows in patient P4 shown in Figure B9 (A-D), (iii) integrated net-causal outflows (iOF) and 

inflows after the time of significant causality in patient P4 shown in Figure B10 (A-C), and (iv) 

integrated Granger causality (iGC) and integrated outflows (iOF) after the time of significant 

causality in patient P5 in Figure B11. The results from patient P4 as a representative patient are 

included in the main manuscript. 

Appendix B.1: Granger causality results for all patients P1-P8 

Figures B1-B8. Here, figures (A-C) show the net causal outflow averaged over time (A), 

over frequency (B) and over recording channel (C), and figure (D) shows net causal outflow over 

time from all electrodes. The white dashed lines in (B-C) and black dashed line in (D) represent 

the onset time of seizure assessed by using traditional visual criteria (from clinical evaluation). 

The green dashed line in (D) represents the time when net causal outflows cross the 3 standard 

deviations from our calculation. In all patients, the Granger causal relationships at high frequen-

cy (>80 Hz) could be defined among groups of electrodes. In these patients, the high frequency 

causality started to appear around 2.0 s to 12.5 s (patients’ average ± standard error = 6.3  ± 1.4 

s) before the onset of clinically identified ictal activity.  Abbreviations used here are:  f = fre-

quency, Ch = channel, OF = net causal outflow, OFt = outflow averaged over time, OFf = out-

flow averaged over frequency, and OFCh = outflow averaged over channel.  
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Figure B1: Patient 1 
 

 

Figure B2: Patient 2 
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Figure B3: Patient 3 

 

Figure B4: Patient 4 
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Figure B5: Patient 5 
	  

 

Figure B6: Patient 6 
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Figure B7: Patient 7 
 

 

Figure B8: Patient 8 
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Appendix B.2: Total interdependence (TI) at different time windows in patient P4  

Matrices of total interdependence (TI) at time = 8.5, 9.0, 9.5 and 10 s in Patient 4. This 

measure clearly shows where a seizure originates and how it propagates over the network reach-

ing the hyper-synchronized state.  

 

Figure B9: Matrices of total interdependence (TI) at time = 8.5, 9.0, 9.5 and 10 s in patient P4 

Appendix B.3: Integrated net-causal outflows (iOF) and inflows after the time of sig-

nificant causality in patient P4 

Figure B10 (A-C). Integrated outflows (iOF) and integrated Granger causality (iGC) in 

patient P4.  Fig (A) represents the frequency-integrated net causal outflows (iOF) after the time 

of significant causality (t ≈ 6s). Here, sources (having +ve iOF) are categorized and shown in 

different colors according to iOF compared to standard deviation of GC = 0.0167 from the pre-

ictal period. Figures (B-C) show the integrated Granger causality (iGC) in- and outflows from 
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and to channels:  to Ch 23 [(B10 (B)] and to Ch 65 [B10 (C)]. These two channels plus others 

having –ve iOF were the sink channels in B10 (A).  

 

Figure B10:  Integrated outflows (iOF) and integrated Granger causality (iGC) in patient P4.   

Appendix B.4: Integrated Granger causality (iGC) and integrated outflows (iOF) after 

the time of significant causality in patient P5 

Figure B11 (A-C). Fig. B11 (A) shows results of iGC in the ictal period at t = 8.5 s (in 

patient P5). Here, some channels [e.g. Ch = 34, 4.S11 (B)] receive stronger causal influences 

from other channels and some other channels [e.g. Ch = 44, B11 (C)] send out more than receiv-

ing from others.  
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Figure B11:  Granger causality results in patient P5 
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