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ABSTRACT 

The aim of this thesis is to develop faster method for stable model computation of non-

stratified logic programs and study its efficiency. It focuses mainly on the stable model and weak 

well founded semantics of logic programs. We propose an approach to compute stable models by 

where we first transform the logic program using paraconsistent relational model, then we 

compute the weak-well founded model which is used to generate a set of models consisting of 

the true and unknown values, which are tested for stability. We perform some experiments to test 

the efficiency of our approach which incurs overhead to eliminate negative values against a 

Naïve method of stable model computation. 
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CHAPTER 1 

INTRODUCTION 

Deductive databases and logic programming have been widely recognized as expressive 

knowledge representation formalisms. One can draw inferences firstly based on a database and 

secondly by applying a set of rules to infer more information based on the information in the 

database. For example it is given that man (Socrates) and mortal(X):- man(X) then based on the 

information that Socrates is man and applying the rule we get mortal (Socrates). According to 

closed world assumption if certain fact is not derivable from the database with any of the 

inference rules it is assumed to be false, for example if the database has no other rules like 

man(Thor) then infer  ¬man(Thor). Negation as failure is not true in classical logic, but it is an 

assumption made in traditional databases, i.e. if database does not contain information that 

Socrates is manger of Department of Sales then assumes he is not, but what if the information is 

not yet available then the appropriate answer would be unknown. 

 There has been a continuing research on the correct semantics of logic programs. The 

idea of using first order predicate logic as a programming language was introduced by van 

Emden and Kowalski in [1]. In this paper they provide semantics for class of logic programs 

called the Horn programs. A number of extensions were found to be necessary in order to gain 

expressivity. Initially, the Horn logic programs were extended to include negation in the body of 

rules. Clark [2] proposed a notion of a completion of a logic program, a notion developed further 

by Shepherdson [3, 4]. Fitting [5] and Kunen [6] developed this into the 3-valued theory. These 

are some of the semantics that have emerged as being the most widely accepted by research 

community which gave more uniform semantics by interpreting the program completion in 3-

valued constructive logic. The third truth value is „unknown‟. These semantics are the weak-well 
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founded [5], well founded model [7] and the stable model semantics [8].  Research has shown 

that these semantics have higher expressible power than some of the other semantics mentioned 

above. 

 This thesis focuses mainly on the stable model and weak well founded semantics of the 

logic programs. It has been motivated by our efforts to develop faster algorithms to compute 

stable models. The outline of the thesis is as follows. Chapter 2 is an introduction to deductive 

databases and logic programming focusing mainly on definite logic programs and its semantics. 

In Chapter 3 we introduce negation in logic programs, its types and the 3-valued semantics of 

general logic programs i.e. the weak well founded, well founded and stable model semantics. 

Chapter 4 goes over the paraconsistent data model, a data model based on the open world 

assumption. We introduce an algorithm for transforming the logic program consisting of harmful 

negation into harmless negation using paraconsistent data model. In part 2 we introduce our 

approach for faster stable model computation. In chapter 5, we propose our approach for stable 

model computation which goes through the assumptions and the actual processes involved. We 

first transform the original logic program into another logic program using paraconsistent data 

model. Then we compute the Fitting‟s model of the program that gives us the true, false and 

unknown values. Using the true and unknown values we generate possible sets of models that are 

tested for stability. We also generate stable models using the Naïve approach. In chapter 6, we go 

over the experiments conducted to compare the results and efficiency of our approach i.e., using 

Fitting‟s model with a Naïve method. The time taken to compute the stable models is taken 

under consideration, and the efficiency of the two methods is compared. The results show that 

Fitting‟s approach of stable model computation is much faster than the Naïve approach.  
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CHAPTER 2 

DEDUCTIVE DATABASES AND LOGIC PROGRAMMING 

2.1 Introduction 

In recent years deductive databases have been an area of intense research which has brought 

dramatic advances in the field of theory, systems and applications. A salient feature of deductive 

databases is their capability of supporting a declarative, rule-based style of expressing queries 

and applications on database. Relational  databases, which are lacking in built-in reasoning 

capabilities,  have  also demonstrated  the  desirability  of  using  a  declarative logic-based  

language. Therefore deductive databases provide a declarative, logic based language for 

expressing queries, reasoning and complex applications on databases [23].  

 Research on deductive databases has also contributed to areas such as non-monotonic 

reasoning and knowledge representation by extending the declarative semantics of Horn Clauses 

(based on the concepts minimal model and least-fixpoint [10, 11]) to non-monotonic constructs 

such as negation and sets.  Concepts,  such  as  stratification  [9],  well-founded models,  and  

stable models have shed  new  light on various aspects  of non-monotonic reasoning and 

knowledge representation,  and have also provided formal semantics  to  seemingly unrelated  

concepts  such  as  non-determinism  [12]. Many of these theoretical contributions had a practical 

impact, current deductive database systems provide efficient support for stratified negation; work 

is progressing on finding efficient ways to support more powerful semantics (e.g., well-founded 

models). 

 A deductive database is commonly viewed as a general logic program. A general logic 

program is a set of rules that have both negative and positive subgoals. The rules in deductive 
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database consist of EDB (extensional database) rules known as facts that sit above the IDB 

(intentional database) rules. The IDB rules are evaluated using the EDB in a recursive manner to 

give the meaning of the program. The example taken from [13], shown next consists of three 

EDB rules and two IDB rules. 

Example 2.1.1 

t0(2). 

g(2, 3, 4). 

g(3 ,4, 5). 

g(5, 1, 3). 

t(Z) ← t0(Z). 

t(Z) ← g(X, Y, Z), t(X), not t(Y). 

Before going into details of the semantics of general logic programs, we go through the 

background of logic programs without negation and its semantics. 

2.2 Logic Programs 

Logic programs have emerged as a very expressive tool for knowledge representation. It is 

programming by description which uses logic to represent knowledge and uses deduction to 

solve problems by deriving logical consequences. We introduce the basic concepts of logic 

programming and focus mainly on the declarative semantics of logic programs. These semantics 

include the model theoretic and fix point semantics. The reader is referred to [11] for a more 

detailed description of operational semantics of logic programs. 
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2.2.1 Definite Logic Programs  

We now introduce definite logic programs that are logic programs without negation. A definite 

logic program is a set of Horn Clauses. Before defining Horn clause we look into some basic 

structures. 

A term is either a variable or an expression f(t1, t2,... tn) where f is the function symbol and ti are 

terms. Constants are 0-ary function symbols. An atom of the language is of the form P(t1, 

t2,…,tn) or negation of P(t1, t2,…,tn) where P is the predicate symbol with finite arity n ≥0 and 

t1,…, tn are terms. A literal is either an atom or its negation denoted by p(t1, t2…, tn). 

A definite logic program is a set of rules of the form 

A ← B1, B2 …, Bn 

Where A, B1, B2,…, Bn are atoms. Here A is called the head or conclusion of the rule and 

conjunction of B1 ʌ B2 ʌ …ʌ Bn is called the body or premise of the rule. We now describe the 

model theoretic and fixpoint semantics of logic programs. 

2.2.2 Model Theoretic Semantics 

This is the declarative semantics of the logic program that describes the meaning of a logic 

program in terms of the set of models of the program viewed as a logical theory. To determine 

the set of models of a logic program, we can use the work of Herbrand, who showed how to 

define models from given theories, and showed that any consistent theory always has a model, 

which is denumerable. This is the theory‟s Herbrand model. To determine the Herbrand model, 

we first construct the Herbrand universe of the logic program. For a logic program P the 

Herbrand universe Up is the set of all possible ground terms constructed recursively using the 
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constants and function symbols occurring in the program P. A term, atom, literal, rule or 

program is ground if it is free of variables. A ground instance of a rule is obtained by replacing 

the variables in a program with elements from Up in every possible way. A ground program is 

the union of the ground instances of the rules in the program. An example of Herbrand universe 

of a logic program is shown below.  

Example 2.2.2 

Consider a logic program as 

natural_number(0). 

natural_number (s(X)) ← natural_number(X). 

Here the set of constants is {0} and set of function symbols is {s}. Thus the Herbrand universe is 

{0, s(0), s(s(0)),…….}. If there are no function symbols we get a finite Herbrand universe. So, 

the Herbrand universe is the set of all possible terms that the theory can make assertions about. 

The Herbrand base of P, denoted by HBp, is the set of all possible ground atoms whose predicate 

symbols occur in P and whose arguments are elements of Up. For example for the Herbrand base 

of above program is  

{natural_number(0), natural_number(s(0)), natural_number(s(s(0))), … } 

Herbrand Interpretation I of P is any subset of the Herbrand base of P. It is an assignment of 

truth or falsity to each element of Herbrand base. For the natural number example the entire 

Herbrand base must be assigned true. A Herbrand interpretation simultaneously associates, with 

every n-ary predicate symbol in P, a unique n-ary relation over UP. 
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1. A ground atomic formula A is true in a Herbrand interpretation I iff A ∈ I. 

2. A ground negative literal ¬A is true in iff A ∉ I. 

3. A ground clause L1 V L2 V…V Lm is true in I iff at least one literal Li, is true in I. 

4. In general a clause C is true in I iff every ground instance C𝜎 of C is true in I. (C𝜎 is 

obtained by replacing every occurrence of a variable in C by a term in UP. Different 

occurrences of the same variable are replaced by the same term.) 

5. A set of clauses A is true in I iff each clause in A is true in I. 

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I, then we say that I is 

a Herbrand model of A. Let M(A) be the set of all Herbrand models of A; then ∩M(A), the 

intersection of all Herbrand models of A, is itself a Herbrand interpretation of A. This holds for 

any set of clauses A even if A is inconsistent. If A is a consistent set of Horn clauses then 

∩M(A) is itself a Herbrand model of A. More generally, Horn clauses have the model 

intersection property: If L is any nonempty set of Herbrand models of A then ∩L is also a model 

of A, and is the least such model of A which are the declarative semantics of logic programs. For 

details refer to [1]. 

2.2.3 Fix-Point Semantics 

The least model semantics provide logic based declarative definition of the meaning of a 

program. We need to now consider constructive semantics and effective means to realize the 

minimal model semantics. A constructive semantics follows from viewing the rules as 

constructive derivation patterns, whereby, from the tuples that satisfy the patterns specified by 

the goals in a rule, we construct the corresponding head atoms. For a positive program P, it is 
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customary to consider the mapping TP called the Immediate Consequence Operator, for P, 

defined as follows: 

TP (I) = {A | A :- B1, B2, …, Bn ∈ ground(P) and {B1, B2, …, Bn} ⊆ I } 

TP(I) contains a ground atomic formula 𝐴 ∈ 𝐻𝐵𝑝 iff for some ground instance 𝐶𝜎 of a clause C 

∈ P, C𝜎 = A ← B1, B2, …, Bn ∈ ground(P) and {B1, B2, …, Bn} ⊆ I, n ≥ 0. Thus TP is a mapping 

from Herbrand Interpretations of P to Herbrand Interpretations of P.  

The least fixpoint  computation  amounts  to an iterative  procedure, where partial  results  

are added to a relation  until  steady state  is  reached. The least fixpoint of TP is the least model 

of P. This result relies on the fact that TP is monotonic and hence posses a least fixpoint. TP is 

monotonic means for any interpretations I1and I2 such that I1 ⊆ I2 then TP (I1) ⊆ TP (I2). The least 

fixpoint is given by: 

∩{I: TP(I) ⊆ I} 

For a definite logic program P let M(P) be its Herbrand Models and let ∩M(P) be its least 

model. Let C(P) be set all interpretations closed under TP, i.e., I ϵ C(P) iff TP(I) ⊆ I. We need to 

show that ∩M(P) = ∩C(P). It is easier to show that M(P) = C(P). 

Theorem 1.2.1 If P is a definite logic program then M(P) = C(P), i.e. |=I P iff T(I) ⊆ I, for all 

Herbrand Interpretation I of P. 

Proof. (|=I P implies TP(I) ⊆ I). Suppose I is a model of P, we want to show that if A ∈ TP(I) then 

A ∈ I. Assume that A ∈ TP(I). Then by definition of TP there is a clause C ∈ P such that C𝜎 = A 

← B1, B2, …, Bn, where B1, B2, …, Bn ∈ I. Since I is a model of P, C𝜎 is true in I which means 

that A is true in I since ¬B1,¬B2, …,¬Bn are false in I. Therefore A ∈ I. 
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 (TP (I) ⊆ I implies |=I P). Suppose that I is not a model of P. Then for some 

clause C ∈ P, C𝜎 = A ← B1, B2, …, Bn is false in I, i.e., B1, B2, …, Bn ∈ I and A ∉ I. But by 

definition of TP, since B1, B2, …, Bn ϵ I, A ∈ TP(I). Thus TP ⊈ I. 

It can also be shown that the least model is the limit of the increasing, possibly infinite 

sequence of iterations ∅, TP(∅), TP(TP(∅)),…. There is a standard notation used to denote 

elements of the sequence of interpretations constructed for P. Namely:  

TP ↑ 0 = ∅ 

TP ↑ i+1 = TP (TP ↑ i) 

TP ↑ 𝜔 =   𝑇𝑝 ↑ 𝑖∞
𝑖=0  

We show the iterations of TP operator with an example. 

Example 2.2.2 Consider the definite logic program 

odd (s(0)). 

odd (s(s(X))) :- odd(X). 

TP ↑ 0 = ∅ 

TP ↑ 1 = {odd(s(0))} 

 ׃

TP ↑ 𝜔 = {odd (s
n
(0) | n ϵ {1, 3, 5,…}} 

In conclusion the least fix point approach and least model approach assign the same meaning to a 

positive logic program.  
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CHAPTER 3 

NEGATION 

3.1 Introduction 

 In this chapter we describe some of the results in extending Horn clause programs to 

include negation in the body of clauses. Such logic programs are called general logic programs 

or normal logic programs. A normal logic program is a finite set of normal clauses. A normal 

clause is a rule of the form: 

A ← B1, B2…Bn, ~C1…~Cm 

where, A is an atom and B1,…Bn and C1,…Cm are literals. When we have a collection of Horn 

clauses (rules without negation) , then we know there is a unique minimal model of the program 

that assigns the meaning to the program. However these types of rules are often too limited in 

covering the expanse of queries that could be answered. But, as soon as we introduce negation in 

the rules there is no guarantee of a unique minimal and in fact, it is normal to have more than one 

minimal model. This can be illustrated from an example from [13]. There are two bus lines from, 

red and blue, which runs between pairs of cities. Predicate blue(X, Y) is true if blue line runs a 

bus from city X to city Y, while red(X, Y) has corresponding meaning for red line. The president 

of red line wants to find out where red has monopoly, i.e. a pair of cities such red runs bus 

between them, but on blue buses you cannot even travel from X to Y through a sequence of 

intermediate cities. Suppose the data relation for both blue and red are blue(1, 2), red(1, 2) and 

red(2, 3). 
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Example 3.1.1 

(1) bluePath (X, Y) ← blue (X, Y). 

(2) bluePath (X, Y) ← bluePath (X, Z), bluePath (Z, Y). 

(3) monopoly (X, Y) ← red (X, Y) , not bluePath (X, Y). 

 The above program has two minimal models (A):{bluePath (1, 2), monopoly (2, 3)} and 

(B):{bluePath (1, 2), bluePath (2, 3) , bluePath (1, 3)}, both having the EDB rules. The first 

model makes sense the only bluePath is one that follows from Rule 1 and monopoly fact follows 

from Rule 3, but the second model makes no sense and the facts bluePath(2, 3) and bluePath(1, 

3) seems to appear from nowhere. However it is also a minimal model, in that  

1. When you make any substitutions of constants for X, Y and (if necessary) Z, rules (1) –

(3) are true if the true ground atomic formulas are those given in (B), plus the given data. 

2. If we delete one or more facts from (B), point (1) no longer holds. 

But the question is which one is the intended model of the program, and the first model seems to 

be the intended one. 

3.2   Stratified Logic 

 The least controversial type of negation is stratified negation, where there is no recursion 

involved in negated subgoals. This idea was arrived at by Van Gelder [14], Apt, Blair and 

Walker [9], and Naqvi [15]. A normal logic program P is stratified if there is an assignment of 

integers (0, 1, 2…3) to predicates p in P such that for each clause r in P the following holds. If p 

is the predicate in head of r and q is the predicate Li in body of r then stratum (p) ≥ stratum (q), 

if Li is positive, and stratum (p) > stratum (q), if Li is negative. Thus, example 3.1.1 is stratified 
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as monopoly depends negatively on bluePath but bluePath does not depend at all on monopoly, 

i.e. there are no cycles with negation. We can draw a dependency graph for the above logic 

program to check whether it is stratified or not. The dependency graph which does not involve 

cycles with not, depicts a stratified logic program. The EDB predicates are drawn lowest while 

the IDB predicates are drawn higher, and if there is a rule p :- q then p is drawn above q. For the 

above logic program the dependency graph is as follows: 

 

Figure 3.1 Dependency graph for example 3.1.1 

So, we can compute bluePath facts completely from Rules (1) and (2) and then use Rule (3) to 

compute monopoly facts. This process yields the first model {bluePath(1, 2), monopoly (2, 3)} 

for the example above and confirms that this should be the intended model.  The result of 

computing predicates this way is often known as the perfect model which is defined by taking 

least fixed point in order from lower strata to higher strata. An alternative view is 

circumscription [16], of dealing with negation that says the only facts true for predicates are 

those that can be followed from rules and given data. Then for example 3.1.1 we circumscribe 

bluePath and declaring those facts as true that follow from rules (1) and (2) and given blue data, 

and declaring all other pairs of X, Y for bluePath as false. Then these facts are used in rule (3) to 

assert monopoly facts. 

blue red

monopoly

bluePath

EDB

IDB

not
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 The idea of stratification was extended Przymusinska and Przymusinski [17] into locally 

stratified programs. Here the predicate can negatively depend on itself, but when rules are 

instantiated by constants the program contains no cycles. A program can be locally stratified for 

one set of EDB rules and non- stratified for another.  The semantics of locally stratified 

programs have been treated in [14, 9, 17, 18] where they give a definition of perfect models and 

have shown that locally stratified programs have one. An example of locally stratified program is 

given next, which represents a board game that says a player wins the game if board is on 

position X and there is a legal move from X to Y and Y is not a winning position.  

Example 3.2.1 

win(X)  ← move(X,Y) , not win(Y). 

Here win depends negatively on itself, so it is not stratified. However if move is acyclic i.e., you 

can move from X to Y but there is no sequence of moves that takes you from Y to X. Then if we 

instantiate the rules in all possible ways, there is no way win(a), for a particular board game a,  

can depend negatively on itself, Thus, win rule is locally stratified provided move is acyclic. 

Next, we present the semantics of non-stratified programs. 

3.3 3-Valued Semantics 

 The landmark paper of Fitting [5] introduced semantics for logic programs with negation that 

was very different and gave a more uniform semantics, based on the 3-valued logic given by 

Kleene. The 3
rd

 truth value, connotes unknown truth value, thus now an atom can be possibly 

true, false, or unknown. A principal result was that every program has a minimum 3-valued 

model and that according to Fitting could be taken as the semantics of the program from now on 

known as Fitting‟s semantics. Another model based on 3-valued logic, which has competing 
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thrust to provide meaning of non-stratified program is the well founded model of van Gelder, ross 

and Schilpf [7]. We briefly describe here the Fitting‟s semantics and the well founded semantics. 

3.3.1 Fitting’s Semantics 

 Fitting‟s semantics is based on the notion of partial interpretations. We give a brief 

description here, the reader is referred to [5] for detailed information. 

Definition 1. A partial interpretation is a pair 〈I+
, I

-〉, where I
+
 and I

-
 are any subsets of the 

Herbrand base. 

  A partial interpretation is consistent if I
+
 ∩ I

- 
=∅. For any partial interpretations I and J 

we let I ∩ J be the partial interpretations 〈I+
 ∩ J

+
, I

-
 ∩ J

-〉 , and I ∪ J be the partial interpretations 

〈I+ ∪ J
+
, I

-
 ∪ J

-〉. We also say that I ⊆ J, whenever I
+
 ⊆ J+

 and I
-
 ⊆ J-

. The Fitting‟s model for a 

general logic program P is the least fixed point of the immediate consequence function 𝑇𝑃
𝐹

 on 

consistent partial interpretations defined as follows (let P* be the ground version of P): 

Definition 2. Let I be the partial interpretation, then 𝑇𝑃
𝐹  (I) is the partial interpretation given by 

𝑇𝑃
𝐹  (I

+
)   =   {a | for some clause a ← l1, l2… lm ∈ P*, for each 1≤ i ≤ m  

if li is positive li ∈ I
+
 and,  

if li is negative li′ ∈ I
-
} 

𝑇𝑃
𝐹  (I

-
)   =   {a | for some clause a ← l1, l2… lm ∈ P*, for each 1≤ i ≤ m  

if li is positive li ∈ I
-
 and,  

if li is negative li′ ∈ I
+
} 
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where li′ is the complement of literal li. It is easily seen that 𝑇𝑃
𝐹  is monotonic and its application 

on consistent partial interpretation results in consistent partial interpretation. It thus poses a least 

model that is the Fitting model for P. This least fixed point is easily shown to be 𝑇𝑃
𝐹

 ↑ 𝜔, where 

the ordinal powers of 𝑇𝑃
𝐹are defined as follows: 

Definition 3. For any ordinal α, 

                         〈∅,∅〉      if α = 0, 

𝑇𝑃
𝐹↑ α =         𝑇𝑃

𝐹  (𝑇𝑃
𝐹  ↑ (α -1))    if α is a successor ordinal, 

                       〈 ∪β<α(𝑇𝑃
𝐹  ↑ β)

+
, ∪β<α(𝑇𝑃

𝐹  ↑ β)
- 〉   if α is limit ordinal 

We show an example of Fitting semantics computation on a general deductive database. 

Example 3.3.1 Consider a general deductive database P : 

r(a, c). 

r(b, b). 

s(a, a). 

p(X) ← r(X, Y) , not p(Y). 

p(Y) ← s(Y, a).  

Then 𝑇𝑃
𝐹  ↑ 0 = 〈∅,∅〉. 𝑇𝑃

𝐹  ↑ 1 is given by the following partial interpretation: 

(𝑇𝑃
𝐹  ↑ 1)

+
 = {r(a, c), r(b, b), s(a, a)}, 

(𝑇𝑃
𝐹  ↑ 1)

-
 = {r(a ,a), r(a, b), r(b, a), r(b, c), r(c, a), r(c, b), r(c, c), 
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s(a, b), s(a, c), s(b, a), s(b, b), s(b, c), 

s(c, a), s(c, b), s(c, c)} . 

And 𝑇𝑃
𝐹  ↑ 2 = I ∪ 𝑇𝑃

𝐹  ↑ 1, where I is the partial interpretation 〈{p(a)},{p(c)}〉. 

Furthermore, for every ordinal α > 2, 𝑇𝑃
𝐹  ↑ α can be seen to be same as 𝑇𝑃

𝐹  ↑ 2. So, we can see in 

Fitting‟s model that it assigns p(a) as true, p(c) as false and no truth value is assigned to p(b). 

Fitting‟s semantics has the distinction of being the first semantics to provide unique model for 

general logic programs. However, they fail to capture positive recursion. 

Example 3.3.2: Consider the following logic program: 

a(0) ← b(0). 

b(0) ← a(0). 

The Fitting‟s model for this program is 〈∅,∅〉, and it assigns truth value unknown to both a(0) 

and b(0). It is easily seen that there is positive recursion between a(0) and b(0). This is captured 

by the well founded semantics.   

3.3.2 Well Founded Semantics and Unfounded Sets 

  The well founded semantics are also the 3-valued semantics given by Van Gelder et al. It 

assigns some ground atoms truth value as true, some as false and rests are unknown. The 

unfounded sets form the basis of negative conclusions in well founded semantics. For detailed 

description the reader is referred to [7]. 
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Definition 4. Let a program P, its Herbrand base H and a partial interpretation I be given. Then 

A ⊆ H is an unfounded set of P with respect to I if each atom p ∈ A satisfies the following 

condition: For each instantiated rule r of P whose head is p, (at least) one of the following holds. 

1. Some positive subgoal q or negative subgoal not q of body occurs in ¬I i.e., is 

inconsistent with I. 

2. Some positive subgoal of body occurs in A. 

Informally the well founded semantics uses condition (1) and (2) to draw negative conclusions. 

We illustrate unfounded sets through example 3.3.3. 

Example 3.3.3 

Consider the following ground logic program: 

p(a) ← p(c), not p(b). 

p(b) ← not p(a). 

p(e) ← not p(d). 

p(c) ← . 

p(d) ← q(a), not q(b). 

p(d) ← q(b), not q(c). 

q(a) ← p(d). 

q(b) ← q(a). 

The atoms {p(d), q(a), q(b), q(c)} form the unfounded set with respect to interpretation ∅. q(c) 

satisfies the first condition and p(d), q(a) and q(b) satisfy the second condition. It is easily seen 

that p(d), q(a) and q(b) depend positively on each other. As a result none of them can be the first 

to be proven true. Also declaring one of them false does not make any other remaining two true. 

This is where the set {p(a), p(b)} does not form an unfounded set, even though they depend on 
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each other. This is because they depend negatively on each other. As a result making one of them 

false makes the other true. And if both are declared false at once we have inconsistency. The 

intuition of preceding example is immediate that union of arbitrary unfounded sets is an 

unfounded set. This leads naturally to: 

Definition 5. The greatest unfounded set of P with respect to I, GUSP(I) is the union of all 

unfounded sets with respect to I. 

  We now define three transformation needed to in turn define the well founded partial 

model. 

Definition 6. The transformations TP(I), UP(I) and WP(I) are defined as follows: 

 TP(I) is the transformation defined by p ∈ TP(I) if and only if there is some instantiated 

rule r of P such that r has head p, and each subgoal literal in body of r occurs in I. 

 UP(I) is the transformation defined by UP(I) = ¬G, where G is GUSP(I). 

 Finally WP(I) = TP(I) ∪ UP(I). 

Definition 7. The well founded semantics of a program P is the least fixed point of WP(I). Every 

positive literal denotes that its atom is true, every negative literal denotes that its atom is false 

and missing atoms have undefined truth value.  

3.4 Stable Model Semantics 

 Another competing thrust that provides meaning to general logic programs is the stable 

model semantics. They were proposed by Gelfond and Lifschitz [8] at around the same time as 

well founded model.  
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In its original form it is a two-valued semantics that is every atom is either true or false. 

The notable feature of stable model semantics is its simplicity. We first define stable models for 

logic programs without negation i.e., definite logic programs. 

Definition 8. The least model of a definite logic program is the smallest set of atoms M such that 

for every rule of the form 

A ← B1, B2, …, Bn. 

If B1, B2, …, Bn ∈ M then A ∈ M. 

This definition is same as TP for definite logic programs as defined by Emden and Kowalski. 

Thus for general logic program the stable model is a set of atoms. We assume that a set of atoms 

is available to us and based on certain transformations we decide whether the given set is stable 

or not. 

Definition 8. Let P be a ground general logic program and let S be a set of atoms. The   

Gelfond-Lifschitz transformation P
S
 of P with respect to S is obtained by: 

1. Deleting every rule with ~L in body with L ∈ S. 

2. Deleting negative literals from body of the remaining rules. 

P
S
 is a definite logic program. S is a stable model of P if S is the least model of P

S
. 

The definition of stable model semantics is simple and elegant but, the stable model 

semantics are not constructive and thus computationally expensive. As it can be seen a general 

logic program can have more than one stable model. Consider the following ground program: 
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Example 3.4.1 

a ← not b. 

b ← not a. 

 Above program has two stable models {a} and {b}, while the well founded model is ∅. 

The stable model semantics differ from other semantics discussed so far. The well founded 

conclusions are only those that are necessarily true. However each stable model corresponds to a 

possible set of beliefs. Thus, when the program has more than one stable model, it essentially 

means that there is more than one way in which the meaning of the program can be interpreted. 

 If there is a unique stable model of a program then it is taken to be the preferred model of 

the program. Also if there is a two valued well founded model i.e., no ground atom is assigned 

unknown value then this model is the unique stable model, however the converse is not true as 

shown in [7]. There are programs with unique stable models that do not coincide with the well 

founded model. 

Example 3.4.2 An example taken from propositional logic [13] 

(1) p ← not q. 

(2) r ← p. 

(3) q ← not p. 

(4) r ← not r. 

 The taking the model as {p, r}, and using P
S
 transformation we first remove rules (3) and (4) 

and now applying (2) of P
S
 transformation we get the following definite logic program. 
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p ← . 

r ← p. 

The least model for this definite logic program is {p, r}. Thus this is a stable model and it is 

unique but well founded model for the above program is ∅. 

 There have been number developments relating and modifying stable models and well 

founded models. For example Sacca and Zaniolo [12] look at intersection of stable models, Baral 

and Subramaninan [19] consider sets of stable models as meaning of program. We do not get 

into details of these here. Other developments are Przymusinski [20] gives 3-valued extensions 

to original two-valued definition of stable models, and shows that they coincide with well 

founded models.  
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CHAPTER 4 

PARACONSISTENT RELATIONAL DATA MODEL 

In this chapter we present a key background material related to our proposed approach. We 

introduce a model based that is the generalization of the relational data model, the paraconsistent 

relational model. Here we give a brief overview of this model, for a detailed description the 

reader is referred to [21]. 

4.1 Paraconsistent Relations 

 Paraconsistent relations are the fundamental mathematical structures underlying the 

model, which essentially contains two kinds of tuples, ones that definitely belong to the relation 

and others that do not belong to the relation. These structures are strictly more general than the 

ordinary relations, in that for every ordinary relation there is a paraconsistent relation but not 

vice-versa. They provide a framework for incomplete or even inconsistent information about the 

tuples. They naturally model the belief systems rather the knowledge systems, and are thus 

generalizations of ordinary relations. The operators on ordinary relations can also be generalized 

for paraconsistent relations. 

4.2 Formal Definition of Paraconsistent Relations  

 Let a relation scheme (or just scheme) Σ be a finite set of attribute names, where for any 

attribute name A ∈ Σ, dom(A) is a non-empty domain of values for A. A tuple on Σ is any map  t: 

Σ → ∪A ∈ Σ dom(A), such that t(A) ∈ dom(A), for each A ∈ Σ. Let τ(Σ) denote the set of all tuples 

on Σ. 
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Definition 9. A paraconsistent relation on a scheme Σ is a pair R = 〈R+
, R

-〉, where R
+
 and R

-
 

are any subsets of τ(Σ). We let P(Σ) be the set of all paraconsistent relations on Σ. 

Definition 10. A paraconsistent relation R on scheme Σ, is consistent if R
+
 ∩ R

-
 = ∅. We let C(Σ) 

be the set of consistent relations on Σ. Moreover R is called complete relation if R
+
 ∪ R

-
 = τ(Σ). 

If R is consistent and complete i.e. R
-
 = τ(Σ) – R

+
, then it is a total relation and we let T (Σ) be 

the set of all total relations on Σ.  

4.3 Algebraic Operators on Paraconsistent Relations 

 This section presents the algebraic operators on paraconsistent relations. To reflect the 

generalization of algebraic operators of ordinary relations, a dot is placed over the ordinary 

relation operator to obtain corresponding paraconsistent relation operator. For example ⋈, 

denotes the natural join among ordinary relations, and ⋈  denotes natural join among the 

paraconsistent relations. We first define four set-theoretic algebraic operations on paraconsistent 

relations. 

Definition 11. Let R and S be two paraconsistent relations on scheme Σ. Then, 

a) the union of R and S, denoted by R ∪  S, is a paraconsistent relation on scheme Σ given 

by, (R ∪  S)
+
 = R

+
 ∪ S

+
 , (R∪  S)

-
 = R

-
 ∩ S

-
; 

b) the complement of R, denoted by −  R, is a paraconsistent relation on scheme Σ given by, 

(−  R)
+
 = R

-
 , (−  R)

-
 = R

+
; 

c) the intersection of R and S, denoted by R ∩  S, is a paraconsistent relation on scheme Σ 

given by, (R ∩  S)
+
 = R

+
 ∩  S

+
, (R ∩  S)

-
 = R

- ∪ S-
; 
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d) the difference of R and S, denoted by R −  S, is a paraconsistent relation on scheme Σ 

given by, (R −  S)
+
 = R

+
 ∩ S

-
, (R −  S)

-
= R

- ∪ S
+
.      

If Σ and Δ are relation schemes such that Σ ⊆ Δ, then for any tuple t ∈ τ(Σ), we let t
Δ 

denote the 

set {t′ ∈ τ(Δ)| t′(A) = t(A), for all A ∈ Σ} of all extensions of t. We extend this notion for any T ⊆ 

τ(Σ) by defining T
Δ 

= ∪𝑡∈𝑇 t
Δ 

. We now define some relation-theoretic operators on 

paraconsistent relations. 

Definition 12. Let R and S be paraconsistent relations on schemes Σ and Δ, respectively. Then, 

natural join of R and S, denoted by R ⋈  S, is a paraconsistent relation on the scheme Σ ∪ Δ, 

given by (R ⋈  S)
+
 = R

+
 ⋈ S+ , (R ⋈  S)

-
 = (R

-
) 

Σ∪Δ
 ∪ (S

-
) 

Σ∪Δ 
, where ⋈ is natural join among 

relations. 

Definition 13. Let R be a paraconsistent relation on scheme Σ, and Δ be any scheme. Then, the 

projection of R onto Δ, denoted by 𝜋 Δ(R) is a paraconsistent relation on Δ given by, 𝜋 Δ(R)
+
 = 

πΔ((R
+
)
 Σ∪Δ 

), and 𝜋 Δ(R)
- 
= { t ∈ τ(Σ) | t

 Σ∪Δ  ⊆ (R-
)
 Σ∪Δ  

}, where πΔ is the usual projection over Δ 

on ordinary relations. 

Definition 14.  Let R be a paraconsistent relation on scheme Σ, and let F be any logic formula 

involving attribute names in Σ, constant symbols (denoting values in the attribute domains), 

equality symbol =, negation symbol ¬, and connectives ∧ and ∨. Then, the selection of R by F, 

denoted 𝜎 F(R), is a paraconsistent relation on scheme Σ, given by 𝜎 F(R)
+
 = σF(R

+
), and 𝜎 F(R)

- 
 = 

R-  ∪ 𝜎¬𝐹(τ(Σ)), where σF is usual selection of tuples satisfying F. 

Example 4.3.1. Strictly speaking, relation schemes are set of finite attribute names, but in this 

example they are treated as ordered sequences of attribute names, so tuples can be viewed as the 
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usual list of values. Let {a, b, c} be a common domain for all attribute names, and let R and S be 

the following paraconsistent relations on schemes 〈X, Y〉 and 〈Y, Z〉, respectively: 

R
+
 = {(b, b), (b, c)}, R

-
 = {(a, a), (a, b), (a, c)} 

S
+
 = {(a, c), (c, a)}, S

- 
= {(c, b)}. 

Then R ⋈  S, is the following paraconsistent relation on scheme 〈X, Y, Z〉: 

(R ⋈  S) 
+
 = {(b, c, a)}, 

(R ⋈  S)
-
 = {(a, a, a), (a, a, b), (a, a, c), (a, b, a), (a, b, b), (a, b, c), (a, c, a),  

         (a, c, b), (a, c, c), (b, c, b), (c, c, b)}. 

Observe how (R ⋈  S)
-
 blows up to contain extensions of all tuples in R- and S- . Now 𝜋 〈X, Z〉(R ⋈  

S) becomes the following paraconsistent relation scheme 〈X, Z〉:      

𝜋 〈X, Z〉(R ⋈  S)
+
 = {(b, a)},  𝜋 〈X, Z〉(R ⋈  S)

-
 = {(a, a), (a, b), (a, c)}. 

The tuples in negative component of the projected paraconsistent relation are such that all their 

extensions were present in negative component of original paraconsistent relation.  
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Part II 

A NOVEL APPROACH FOR STABLE MODEL COMPUTATION 
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CHAPTER 5 

THE PROPOSED APPROACH 

 In this chapter we present a novel approach for stable model computation, which is 

motivated by the idea to develop faster algorithms for computing stable models of a logic 

program. We give the overview of the model and then present a detailed description of each of 

the modules involved. 

5.1 Assumptions 

We assume the following conditions hold for the logic program that is the input to our approach: 

1. Let L be the given underlying language with a finite set of constants, variables, and 

predicate symbols, but no function symbols. A term is either a variable or a constant. An 

atom is of the form p(t1, t2, …, tn) where p is the predicate symbol and ti are terms. A 

literal is either a positive literal A or a negative literal ¬A, where A is an atom.  Our 

input logic program would be a finite set of clauses of the form : 

a ← b1, b2, …, bm 

 where m ≥ 0 and a and each bi is an atom. 

2. The terms involved in the IDB (intentional database) of the logic program can only 

consist of variables and not constants. p(X, 2) where p is the predicate symbol, is not 

allowed as a term in the logic program. Thus there won‟t be any use of select operator in 

our approach. 
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5.2 Overview of the Steps Involved 

 

Figure 5.1 Block diagram for the proposed approach  

 The above figure shows the block diagram of various steps involved in the computation. 

The process starts with compiling a logic program that performs the syntax and semantic checks 

and produces a data structure called rules consisting of the logic program. These rules are then 

transformed using the paraconsistent relation operators into another logic program consisting of 

transformed rules. The transformed rules are then used to compute the weak well founded model 

using the fix point operator. After the weak well founded model is computed the positive and the 

unknown values are drawn from it and send to generate set of all possible models that are tested 

for stability. The rules are also sent for ground program generation. The ground program and the 

models for test are sent one by one to the stable model tester which tests each of them for 

stability and returns a yes if model is stable and no otherwise. We also note the time taken to 
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complete the process of stable model computation. Next we describe each of the modules in 

detail. 

5.3 Modules 

 In this section we go over each of the modules in our described above. We start with the 

compiler and the details about the Datalog language. Next we introduce two algorithms namely, 

CONVERT and TRANSFORM in the transformation module. Then we go over model 

generation for stability testing and ground program generation and finally the Stable model tester 

is described. 

5.3.1 Datalog Compiler 

 Datalog (one without function symbols) with negation, with a well defined declarative 

semantics based on the work in logic programming has been widely accepted as standard 

deductive database language [25, 26]. We use Datalog as our language and build a compiler so as 

to do the syntax and semantic checks and create a data structure, for efficient storage of the logic 

program. Some definitions related to Datalog. 

Definition 15. Atomic formula:  

a. p(x1, x2, …, xn) where p is a relation name (predicate name) and x1, x2, …, xn are variables 

or constants. According to our assumption x1, x2, …, xn can only be variables in EDB. 

b. x <op> y where x and y are either constants or variables and <op> is one of the 

following six comparison operators: <, <=, >, >=, =, != . In our language we assume 

there are no such atomic formulas present. 
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Variables that appear only once in the rule can be replaced by anonymous variable (represented 

by underscore). Every anonymous variable is different from all other variables. 

Definition 16. Datalog rule: 

p :- q1, q2, …, qn. 

Where, p is an atomic formula and q1, q2, …, qn are either atomic formula or negated atomic 

formula (i.e. atomic formula preceded by not). p is referred to as the head and q1, q2, …, qn are 

referred to as subgoals of body. 

Definition 17. Safe Datalog rule:  

A Datalog rule p :- q1, q2, …, qn. is safe 

a. If every variable that occurs in a negated subgoal also appears in a positive subgoal and 

b. If variable that appears in the head of the rule also appears in the body of the rule. 

The compiler is build using the JFlex and JCup technologies that builds the lexer and parser. A 

block diagram depicts the process. We input a logic program in the compiler and get a data 

structure called rules as the output if there is no syntax or semantic errors. 

The data structure is build using two classes namely predicate and rule. The parameters and its 

types for the classes are shown below (using the definitions above): 

Table 5.1 Predicate 

Parameter Name Data Type Description 

Name String Stores the relation name as p for above atomic 

formula 

Arglist Vector Stores the (x1, x2…xn)  arguments 

isNegative Boolean Stores the information whether atomic formula is 

positive or negative. 



32 
 

Table 5.2 Rule 

Parameter Name Data Type Description 

Head Predicate Stores the atomic formula p. 

Body Vector A vector of predicates that stores (q1, q2 …qn). 

isEDB Boolean Whether rule is EDB (only has head) or IDB. 

Finally, the data structure rules is a vector where each element is of type rule. 

We also perform some semantic checks, which are as follows: 

1. Arity Check: If an atomic formula appears more than once in the rules, then for its each 

instance the argument list should be of the same size, i.e. if p(x1, x2…xn) and q(y1, y2, 

…yn) are in logic program and if p = q, then n should be equal to m (n = m). 

Example 5.3.1  

(1) p(X, Y) :- r(X, Y, Z), s(X, Z). 

(2) q(Z) :- r(X, Y), s(Z). 

the above program has error as the relation named r has argument lists of size 2 in rule 1 

and of size 3 in rule 2. 

2. Safety Checks 

a. Every variable that appears in negated subgoal should appear in the positive 

subgoal. Suppose there is rule of the form: 

p(X, Y) :- r(X, Y), not s(X, Z) 

then the rule is not safe as the variable Z only appears in a negative subgoal and 

not in a positive subgoal.  

b. Every variable that appears in the head of the rule must appear in the body of the 

rule. Suppose there is rule as follows: 

p(X, Y) :- r(X, Z), s(Z). 



33 
 

 is not safe as variable Y does not appear in the body of the rule. 

Once we get an error free logic program we move to the next step that is transformation of the 

logic program into a new logic program. 

5.3.2 Transformation 

 We now present a transformation of a general deductive database P. In this method the 

paraconsistent relations are the semantic objects associated with the predicate symbols in P. The method 

involves two steps. The first step is to convert P into a set of paraconsistent relation definitions for 

predicate symbols occurring in P taken from [21]. These definitions are of the form   

p = Dp, 

where, p is a predicate symbol of P, and Dp is an algebraic expression involving predicate 

symbols of p and paraconsistent relation operators. The second step is to generate a new logic 

program from the algebraic expression that can be used to compute the weak well founded 

model. 

  Before describing the method to convert the given database P into set of definitions for 

predicate symbol in P, let us look at an example. Suppose the following are the only clauses with 

the predicate symbol p in their heads: 

 p(X) ← r(X, Y), ¬p(Y) 

p(Y) ← s(Y, Z) 

 From these clauses the algebraic definition constructed for symbol p is the following: 

p = (𝜋 {X}(r(X, Y) ⋈  −  p(Y)))[X]  ∪  (s(Y, Z)) [Y] 
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Such a conversion exploits the close connection between attribute names in relation schemes and 

variables in clauses, as pointed out in [25]. The expression thus constructed can be used to arrive 

at a better approximation of paraconsistent relation p from some approximations of p, r and s. 

We now give the algorithm to convert one clause into an expression. 

 The algorithm presented here is a modification of the original convert algorithm as our 

deductive database does not involve any select conditions and the terms of IDB do not contain 

constant values. 

Algorithm 1 CONVERT 

Input: A general deductive database clause l0 ← l1, l2, …, lm. 

Let l0 be of the form p0(A01, …, A0k0), and each li, 1 ≤ i ≤ m, be either of the form pi(Ai, …, Aiki) or 

of the form ¬pi(Ai, …, Aiki). For any i, 1 ≤ i ≤ m, let Vi be the set of all variables occurring in li. 

Output: An algebraic expression involving paraconsistent relations. 

Method: The expression is constructed using the following steps: 

1. Let 𝑙 i be the atom pi(Bi1, …, Biki) and Fi be the conjunction of Ci1 ˄ Ci2 … ˄ Ciki. If li is a 

positive literal, then let Qi, be the expression 𝜋 Vi(𝜎 𝐹𝑖 𝑙 𝑖 )). Otherwise, let Qi  be the 

expression −  𝜋 Vi(𝜎 𝐹𝑖 𝑙 𝑖 )).  

As a syntactic optimization, if all conjuncts of Fi are true (i.e. all argument of li are distinct 

variables), then both 𝜎 𝐹𝑖  and 𝜋 Vi  are reduced to identity operations, and hence are dropped from 

the expression. For example, if li = ¬p(X, Y), then Qi = − p(X, Y). As our language does not 

contain any select conditions we drop both 𝜎 𝐹𝑖  and 𝜋 Vi  to identity operation always. 
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2. Let E be the natural join (⋈ ) of Qi’s thus obtained, 1 ≤ i ≤ m. The output expression is 

(𝜋 V(E))[B01, …, B0k0], where V is the set of variables occurring in 𝑙 0. 

From the algebraic expressions obtained by algorithm CONVERT for all clauses in general deductive 

database we construct another logic program using algorithm Transform. 

Before going to transform we give an example from [13] of a deductive database and application of 

convert algorithm on its clauses.  

Example 5.3.2 

This example represents a circuit consisting of an unusual sort of a logic gate, with one positive input X, 

and one negative input Y, the its output is 1 or “true” if and only if X is 1 and Y is 0(“false”). There is an 

EDB predicate g(X, Y, Z) that says there is a gate of this type with positive input X, negative input Y, and 

output Z. We may think of inputs and outputs as being terminal or wire nets. There is also an EDB 

predicate t0 that is true of those input terminals that are externally set to 1. Input terminals that are set to 0 

do not appear in t0.  

The IDB predicate is t. The intended significance of the positive ground atom t(a) being in the 

model is that the circuit value of terminal a is 1. If ¬t(a) is in the model, then the value of terminal is 0. 

What if the value that terminal a has ambiguous; either it depends on critical race in the circuit or 

oscillates in normal circuit operation? Then, we expect t(a) to have a third, “unknown” value of three 

valued logic. The following are the rules defining the operation of the gates: 

t0(2). 

g(5,1,3). 

g(1,2,4). 
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g(3,4,5). 

t(Z) :- t0(Z) . 

t(Z) :- g(X, Y, Z), t(X), not t(Y) . 

The data in the EDB i.e. t0(2), g(5, 1, 3), g(1, 2, 4) and g(3, 4, 5) represents the circuit of Figure 

5.5.2 with only second input set to true. 

 

Figure 5.2 Circuit for Example 5.5.2 

We now apply Algorithm CONVERT on the two IDB clauses: 

1. t(Z) :- t0(Z). The expression of this is t(Z) :- t0(Z). 

2. t(Z) :- g(X, Y, Z), t(X), not t(Y). The positive literals g(X, Y, Z) and t(X) remain the same and the 

literal not t(Y) becomes − t(Y). Then on the application of step 2 we get the following as the 

algebraic expression: 

t(Z) :- 𝜋 [Z](E) 

 where, E is the natural join (⋈ ) of g(X, Y, Z), t(X) and − t(Y). 
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When we get the algebraic expressions for all the clauses of IDB we move to the next 

step. Here we introduce the algorithm TRANSFORM that takes these algebraic expressions as 

input and returns a logic program as output. This logic program contains positive and negative 

parts for all the different predicate symbols including the EDB relations. The transformation 

converts the potentially harmful negation in the logic program into harmless negation. We also 

create some new relations like the temporary and domain. 

Algorithms 2 TRANSFORM 

Input: EDB clauses and Algebraic expressions involving paraconsistent relations for IDB 

clauses. 

Output: A general logic program consisting of clauses of the form l0 ← l1, l2, …, lm. 

Let l0 be of the form p0(A01, …, A0k0), and each li, 0 ≤ i ≤ m, be either of the form pi(Ai, …, Aiki) or 

of the form ¬pi(Ai, …, Aiki). 

Method: The logic program is constructed is using the following steps. 

1. Transform the EDB clauses 

a. Let a1,…, an be the constants present in EDB. Then, for each constant value ai create 

the following predicates with dom (domain) as  the predicate symbol as follows 

dom (a1). 

:   

dom (an). 
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b. Let l1,…,ln be the EDB predicates, where li is pi(B1,…,Bm), B1,..,Bm are constants, and 

1 ≤ i ≤ n. Complete each EDB predicate pi as follows. Firstly, rename the existing 

predicates and add it to the new logic program:  

p1_plus(B1, ..., Bm). 

:   

pn_plus(B1,…, Bm). 

For each unique predicate name pi in EDB add a rule as follows: 

pi_minus(V1,…,Vn) :- dom(V1), dom(V2),…, dom(Vn), not pi_plus(V1,…, Vn). 

where, V1,…,Vn are variables.  

For example there are two EDB predicates p(1, 2) and p(2, 3) then we add the 

following predicates, p_plus(1, 2), p_plus(2, 3) and a rule written below to the new logic 

program. 

p_minus(X, Y) :- dom(X), dom(Y), not p_plus(X, Y). 

 

2. Renaming: If n IDB expressions have head with same predicate name p, and n > 1, 

then, rename the clauses as p1, p2, …, pn in the algebraic expression. Let the argument 

list be (V1, …, Vm) where V1,…, Vm are variables. Add the following positive predicates to 

the logic program: 

p_plus(V1,…,Vm) :- p1_plus(V1,…,Vm). 

:   

p_plus(V1,…,Vm) :- pn_plus(V1,…,Vm). 
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Add the following rule for the negative predicate. 

p_minus(V1,…,Vm) :- p1_minus(V1,…,Vm), …., pn_minus(V1,…,Vm). 

And, add the following rule for unknown values. 

p_unknown(V1,…,Vm) :- dom(V1), …, dom(Vm), not p_plus(V1,…,Vm) , not 

p_minus(V1,…,Vm). 

3. Construct paraconsistent trees for each IDB expression. 

a. Let the IDB clause be l0 ← l1, …, ln, p1,…,pm where, l1, …, ln are positive 

literals and p1, …, pm are negative literals. For this clause let the following be 

the algebraic expression: 

l0 :- (𝜋 V(E))[B01, …, B0k0] 

where, V is the set of variables occurring in l0 and E is the natural join of l1, …, ln, 

p1,…,pm. 

Let l0 = p(B1, …, Bn), li = ai(C1,…, Cm) , where 1 ≤ I ≤ m and pj = ¬ bj(D1, …, Dk) 

where 0 ≤ j ≤ k, and C1,…, Cm and D1,…, Dk are variables. So, the paraconsistent 

tree of the above expression would be depicted as follows: 

 

 

  

 

 

 
 

Figure 5.3 Paraconsistent expression tree 
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b. Naming the tree 

i. Name the child node ai for 1 ≤ i ≤ n with its pair 〈ai_plus, ai_minus〉. 

ii. Name the complement (− ) nodes with child node as bj as a pair 

〈bk_complementplus, bk_complementminus〉, where 0 ≤ j ≤ k. 

iii. If join (⋈ ) is an internal node name it tempn where n is the n
th

 rule in IDB. 

iv. Name the root node with the head predicate p as a pair 〈p_plus, p_minus〉. 

The named tree of figure 5.2.3 is as follows: 

 

Figure 5.4 Named paraconsistent tree 

 

4. Create rules for paraconsistent trees of all IDB expressions using the steps below. 

Start writing rules bottom-up for all internal nodes. 

a. If node type is complement (− ) and the child node is predicate c(B1, B2, …, 

Bn). 

c_complementplus(B1, B2, …, Bn) :- c_minus(B1, B2, …, Bn). 

c_complementminus(B1, B2, …, Bn) :- c_plus(B1, B2, …, Bn). 

.

a1

πV

. . . . . .

. . .

an bkb1

.

.

.

〈a1_plus, a1_minus〉 〈an_plus, an_minus〉 〈b1_plus, b1_minus〉 〈bk_plus, bk_minus〉

〈bk_complementplus, bk_comlpementminus〉

〈tempn_plus, tempn_minus〉

〈p_plus, p_minus〉

〈b1_complementplus, b1_comlpementminus〉
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b. If node type is join (⋈ ) and it is the root node named 〈p_plus, p_minus〉, with 

the child nodes named as 〈c1_plus, c1_minus〉,…,〈cn_plus, cn_minus〉 then 

add the following rules: 

p_plus(B1,…Bz) :- c1_plus(V1, …, Vm),…, cn_plus(T1,…Tk). 

Also, add n rules where, n is the number of child nodes, and 1 ≤ i ≤ n as follows: 

p_minus(B1,…Bz):- ci_minus(U1,…,Um). 

if m < n that is if B1,…Bj = U1, …, Um and i ≤ j ≤ z, then extend the rule by 

adding dom predicates for Bj,…Bz to the above rule: 

p_minus(B1,…Bn):- ci_minus(U1,…,Um), dom(Bj), …., dom(Bz). 

c. If node type is join (⋈ ) and it is an internal node named tempn with child 

nodes named as 〈c1_plus, c1_minus〉,…,〈cn_plus, cn_minus〉, then let the 

argument list of temp be V, where V is the set of all the variables occurring 

the child nodes of tempn. And we add the rule as follows: 

tempn_plus(V) :- c1_plus(V1, …, Vm),…, cn_plus(T1,…Tk). 

Also, add n rules where, n is the number of child nodes, and 1 ≤ i ≤ n as follows: 

 tempn_minus(V) :- ci_minus(U1,…,Um), dom(B1), …., dom(Bz). 

where B1,…, Bz are the set of variables not present in U1,.., Um. 

d. If node type is projection (𝜋 V) named p, and V is the set projected variables, and 

the child node is named tempn. In tempn , variables that do not appear in V are 

anonymous and can be denoted by underscore. 

p_plus(V) :- tempn(V, _,…). 
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(represent the projected variables in temp and rest of them with underscore)  

We add three more rule for the negative predicate as follows: 

    tempn1(A1,…, An) :- dom(A1),…, dom(An). 

   tempn2(V) :- tempn1(A1,…,An), not tempn_minus(A1,…,An). 

   p_minus(V) :- dom(V1),..,dom(Vn), not tempn2(V). 

 

Where, A1,…, An is the set of variables in child node tempn and V1,…, Vn are the 

set of variables in V. 

e. If the expression tree is a single child tree and it does not involve even 

projection then for such tree we write the rules as follows. If root node is 

named 〈p_plus, p_minus〉 and the child node is 〈c_plus, c_minus〉 then the 

rules are: 

p_plus(B1,…, Bn) :- c_plus(B1,…, Bn). 

p_minus(B1,…, Bn) :- c_minus(B1,…, Bn). 

5. For each unique IDB predicate p, except for those created in Step 2, add the following 

rule for unknown values: 

p_unknown(B1...Bn) :- dom(B1),…,dom(Bn), not p_plus(B1,…, Bn), not p_minus(B1,…, Bn).  

The TRANSFORM algorithm removes the „harmful negation‟ or we can say the unsafe 

negation from the original program because with each negative predicate it introduces the dom 

predicates, which are joined with the negative predicate, that limits the domain to all constant 

value present in the Herbrand base. This could otherwise cause safety issue as to negation of a 

relation can be infinite. Thus, TRANSFORM algorithm eliminates the arbitrary negation from 
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general deductive databases and at the same retains the meaning of the deductive databases with 

respect to Fitting‟s model.  

Next we present an example of application of transform algorithm on algebraic 

expressions of example 5.3.2.  

Example 5.3.3  

Consider the expressions shown below: 

t0(2). 

g(1, 2, 4). 

g(3, 4, 5). 

g(5, 1, 3). 

(1) t(Z) :- t0(Z). 

(2) t(Z) :- 𝜋 {Z}(E) 

 where, E is the natural join (⋈ ) of g(X, Y, Z), t(X) and − t(Y). 

1. (a) The constant in the EDB of the program are {1, 2, 3, 4, 5}, so we add the following five EDB 

rules: 

dom(1), dom(2), dom(3), dom(4) and dom(5). 

(b) Now we complete the EDB predicates t0 and g by adding the following rules. 

t0plus(2), g_plus(1, 2, 4), g_plus(3, 4, 5), g_plus(5, 1, 3). 

t0_minus(Z) :- dom(Z) , not t0_plus(Z).  

g_minus(X, Y, Z) :- dom(X), dom(Y), dom(Z), not g_plus(X, Y, Z). 

2. Next we have two IDB rules with same head t  so we rename them to t1 and t2 



44 
 

t1(Z) :- t0(Z). 

t2(Z) :- 𝜋 [Z](E). 

where, E is (g(X, Y, Z) ⋈   t(X) ⋈  (− t(Y))) 

and add the following rules: 

t_plus(Z) :- t1_plus(Z). 

t_plus(Z) :- t2_plus(Z). 

t_minus(Z) :- t1_minus(Z), t2_minus(Z). 

t_unknown(Z) :- dom(Z), not t_plus(Z), not t_minus(Z). 

 

3. Now we create the trees for the IDB expressions as follows: 

                                       

       Figure 5.5 Tree for Expression 1    Figure 5.6 Tree for Expression 2 

4. Now we write rules from the above expression trees: 

Expression 1: t1(Z) :- t0(Z).  

t1_plus(Z) :- t0_plus(Z). 

t1_minus(Z) :- t0_minus(Z). 

Expression 2: t2(Z) :- 𝜋 [Z](E). 

We start bottom-up in the tree with first internal node that is (− ), adding the following rules: 

a. t_complementplus(Z) :- t(Z). 
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t_complementminus(Z) :- t(Z). 

b. Next, we add rules for join (⋈ ) node as follows: 

temp2_plus(X, Y, Z) :- g_plus(X, Y, Z), t_plus(X), t_complementplus(Y). 

temp2_minus(X, Y, Z) :- g_minus(X, Y, Z). 

temp2_minus(X, Y, Z) :- t_minus(X), dom(Y), dom(Z). 

temp2_minus(X, Y, Z) :- t_complementminus(Y), dom(X), dom(Z). 

c. Now we write rules for the projection node (𝜋 V) named t2, where V = {Z}. 

t2_plus(Z) :- temp2_plus(_, _, Z). 

temp21(X, Y, Z) :- dom(X), dom(Y), dom(Z). 

temp22(Z) :- temp21(X, Y, Z), not temp2_minus(X, Y, Z). 

t2_minus(Z) :- dom(Z), not temp22(Z). 

5. Now we add the rules for unknown predicates. But, here they have already been added in 

step 2. So, by keeping the unknown rules in the end we get the following transformed 

program: 

dom(2). 

dom(5). 

dom(1). 

dom(3). 

dom(4). 

t0_plus(2). 

g_plus(5, 1, 3). 

g_plus(1, 2, 4). 
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g_plus(3, 4, 5). 

t0_minus(Z):-dom(Z), not t0_plus(Z). 

g_minus(X, Y, Z):-dom(X), dom(Y), dom(Z), not g_plus(X, Y, Z). 

t1_minus(Z):-t0_minus(Z). 

t1_plus(Z):-t0_plus(Z). 

t_plus(Z):-t1_plus(Z). 

t_complementplus(Y):-t_minus(Y). 

t_complementminus(Y):-t_plus(Y). 

temp2_minus(X, Y, Z):-g_minus(X, Y, Z). 

temp2_minus(X, Y, Z):-t_minus(X), dom(Y), dom(Z). 

temp2_minus(X, Y, Z):-t_complementminus(Y), dom(X),dom(Z). 

temp2_plus(X, Y, Z):-g_plus(X, Y, Z), t_plus(X), t_complementplus(Y). 

t2_plus(Z):-temp2_plus(_,_,Z). 

t_plus(Z):-t2_plus(Z). 

temp21(X, Y, Z):-dom(X), dom(Y), dom(Z). 

temp22(Z):-temp21(X, Y, Z), not temp2_minus(X, Y, Z). 

t2_minus(Z):-dom(Z), not temp22(Z). 

t_minus(Z) :- t1_minus(Z), t2_minus(Z). 

t_unknown(Z) :- dom(Z), not t_plus(Z), not t_minus(Z). 

5.3.3 Fitting’s Model Generation 

After we have generated the logic program we use the fix point semantics and apply the fix point operator 

TP on the logic program. The application of TP  gives us the meaning of the program and in this case it is 

the weak well founded or the Fitting‟s model for the program. We use this model as preprocessing 
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mechanism for stable model computation. We know, the least fixpoint  computation  amounts  to an 

iterative  procedure, where partial  results  are added to a relation  until  steady state  is  reached. 

In order to compute the partial relations we make use DBEngine, a database system where we 

store the information present in our logic program and compute the partial relations to generate 

the least fix point of the logic program. The DBEngine consists of three classes namely, Driver, 

Relation and Tuple and it provides the usual database operations like join, minus, project, select 

and others.  

 Next we show the results of applying the TP operator on our logic program. The values 

which we are interested in are for the t relation as it is the only predicate present in IDB. We start 

with the EDB predicates t0 and g. t0_plus contains values {2} and t0_minus has four values {1, 

3, 4, 5}. Similarly, in the first pass we get g_plus with three tuples {{5, 1, 3}, {1, 2, 4}, {3, 4, 5}} 

and g_minus has 122 tuples as it has all the combinations of these values i.e. 5
3
 except the three 

tuples in g_plus. These values remain same for all the passes for EDB predicates g and t0. Next 

the values that get populated are for the IDB and we show the values of relation t. 

Table 5.3 Fix point computation for predicate t 

Iteration t1_plus t1_minus t2_plus t2_minus t_plus t_minus 

1 {2} {1, 3, 4, 5} ∅ {1, 2, 4} {2} {1, 4} 

2 {2} {1, 3, 4, 5} ∅ {1, 2, 4} {2} {1,4} 

 

We get the steady state in pass 2. Since we take the paraconsistent union of t1 and t2 we get the 

following: 

(t1 ∪  t2)
+
 = t1

+
 ∪ t2

+
 , (t1∪  t2)

-
 = t1

-
 ∩ t2

-
; 
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Where (t1 ∪  t2)
+
 is t_plus and (t1∪  t2)

-
 is t_minus. Thus, the partial relation for t would be: 

〈t+
, t

-〉 = 〈 {2}, {1, 4} 〉 

Also, from the rule: 

t_unknown(Z) :- dom(Z) , not t_plus(Z), not t_minus(Z). 

We get the unknown values as t(3) and t(5). 

Thus we get the Fitting‟s model for our original program of example 5.3.2 as: 

Positive values: {t0(2), g(5, 1, 3), g(3, 4, 5), g(1, 2, 4), t(2)} 

Negative values: {t(1), t(4)} 

Unknown values: {t(3), t(5)} 

After the computation of the weak well founded model we move to the next step and that is 

stable model generation. 

5.3.4 Models and Ground Program Generation 

 After the generation of the Fitting‟s model, the next step is come up with models that can 

be tested for stability. The models for test are generated from the unknown and positive values of 

the Fitting‟s model. The unknown values may be positive or negative, thus we take them into 

consideration for stability testing. Let the P be the set of positive values as {P1, P2,…, Pn) and U 

be the set of unknown values {U1, U2,…, Um). Then the number of possible stable models that 

can be generated using the P and U values are 2
(n+m)

, where each model has the EDB rules of the 

original logic program which are always true. The number models that can be generated from 

example 5.2.2 with one positive and two unknown predicates is 2
(1+2) 

i.e. 8, where, EDB is 
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{t0(2), g(1, 2, 4), g(3, 4, 5), g(5, 1, 3)}, positives are {t(2)} and unknowns are {t(3), t(5)}. Then, 

following are the models that would be tested for stability. 

1. ∅ + EDB 

2. {t(2)} + EDB 

3. {t(3)} + EDB 

4. {t(5)} + EDB 

5. {t(2), t(3)} + EDB 

6. {t(2), t(5)} + EDB 

7. {t(3), t(5)} + EDB 

8. {t(2), t(3), t(5)} +EDB 

After the models are generated we need to test each one for stability. The stability testing is done 

using the Gelfond-Lifschitz transformation P
S
 of P with respect to S, where P is the original 

logic program and S would be the model for testing. To do the stability testing we need to 

generate the ground program for our original logic program. The ground program is generated by 

replacing all the variables in the program with constant values. Let c be the number of constants 

in the program A(B1,…, Bn) be a predicate in the IDB rule with largest argument list, then the 

number of ways it can be instantiated by constants is n
c
. And using this instantiation we 

instantiate the complete rule. Thus for the rule: 

t(Z) :- t0(Z) 

with 5 constants and one variable, the possible instantiations are 5
1 

i.e. 5. But, only one of them 

is useful i.e.  

t(2) :- t0(2) 
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Similarly, the rule: 

t(Z) :- g(X, Y, Z), t(X), not t(Y) 

with 5 constants and largest argument list 3(of predicate g (X, Y, Z)) can be instantiated in 5
3
 i.e. 

125  ways, out of which only 3 are useful, they are as follows: 

t(4) :- g(1, 2, 4), t(1), not t(2) 

t(5) :- g(3, 4, 5), t(3), not t(4) 

t(3) :- g(5, 1, 3), t(5), not t(1) 

Thus the ground program would contain 130 rules + EDB, but the useful rules are 4 of 

those and EDB. Next we show the stability testing of one of the models from the above shown 8 

models. For this process, we built the stable model tester that takes the input as the ground 

program and one model at a time and tests it for stability. It gives the output as yes or no and 

adds the model to a vector if it is stable. 

5.3.5 Stable Model Tester 

  This module is designed to test the stability of a model given a ground logic program and 

the model for test. We use the rules stated by the Definition 8. We take the ground logic program 

P and the model for test S and get the transformation P
S
. Following is step by step application of 

definition 8 for S as {t(2) + EDB}. 

The ground program for example 5.5.2 with useful IDB rules is as follows: 

t(2) :- t0(2) 
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t(4) :- g(1, 2, 4), t(1), not t(2) 

t(5) :- g(3, 4, 5), t(3), not t(4) 

t(3) :- g(5, 1, 3), t(5), not t(1) 

After the application of first step 1, i.e. deleting every rule with ~L in body with L ∈ S we get the 

following: 

t(2) :- t0(2) 

t(5) :- g(3, 4, 5), t(3), not t(4) 

t(3) :- g(5, 1, 3), t(5), not t(1) 

After the application of step 2, i.e. deleting negative literals from remaining rules we get the 

following transformation P
S
: 

t(2) :- t0(2) 

t(5) :- g(3, 4, 5), t(3). 

t(3) :- g(5, 1, 3), t(5). 

Now we again apply the T
P
 operator on this logic program. t(2) becomes true because of t0(2) 

but t(5) and t(3) are dependent on each other and none of them is true so they become false. 

Thus, the least fix point of this program as {t(2) + EDB} which is the model for test i.e. S. Since 

the least fix point of P
S
 and S are the same we can conclude S is a stable model for P which our 

original logic program. Similarly, we test the rest of the 7 models for stability and none of them 

is stable. Thus, our logic program has one stable model. But suppose if we add the following 
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EDB predicates {g(2, 5, 6), g(2, 6, 3)} to the original program and then apply the same 

procedure we get 2 stable models where {t(3), t(5), t(6)} are unknown.  

5.4 Implementation of the Modules 

 This section briefly describes how each of the modules have actually been implemented 

with the java code.  

5.4.1 Compiler 

Input: A logic program 

Output: Vector rules where each element is of type RULE. 

 The Datalog compiler is built using the JFlex and JCup technologies. The JFlex creates a 

lexical analyzer which creates tokens that are forwarded to the parser. The parsers tests each 

token for syntax and requests more tokens from the lexer, and finally create our data structure 

rules.  

 

Figure 5.7 Block diagram for compiling process 

The grammar for our parser is as follows: 

ddb          ::= rules DOLLAR 

idb_rules    ::= idb_rule |  idb_rule idb_rules  

idb_rule     ::= predicate IMPLIES idb_body PERIOD | predicate PERIOD 
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idb_body     ::= literal |  literal COMMA idb_body 

literal      ::= NOTOP predicate | predicate 

predicate    ::= NAME LPAREN arg_list RPAREN  

arg_list     ::= arg | arg COMMA arg_list 

arg          ::= NAME | NUMBER | VARIABLE 

constant     ::= NUMBER | STRING  

We write java statements for each grammar rule in the Cup file, for details refer to 

appendix section 9.2. One example of the extracting data from rules is as follows which 

gives us a rule from the program: 

idb_rule::= predicate: head IMPLIES idb_body:body PERIOD 

            {: 

                Rule R = new Rule (head, body, false); 

                RESULT = R; 

            :} 

Similarly we write java code for each of the grammar statements and if there are no errors 

in the syntax of the program the data structure rules which is of type Vector is created. In 

Rules each element is of type Rule (the class introduced earlier). This data structure 

provides a way to store and retrieve data from our program. After this step we perform 

the semantic checks mentioned earlier, 

1. Arity Check: From rules we collect all the predicates with same name and check its 

argument list if they are not equal, an error is reported else we move to safety checks. 

This process is repeated for all unique predicates. 

2. Safety Checks: 

a. We collect the variables in head of the rule and collect variables from the 

body of the rules and compare both the list to check whether all the variables 
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in head list are present in the body list. This process in repeated for all the 

rules. For actual code refer section 9.6. 

b. Similarly, for each rule we collect the variables in negative predicates from 

the rule and collect variables from positive predicates from the body of the 

rule. Then the two lists are compared to check whether each variable in 

negative list is present in positive list. 

If any of the above checks fail the program throws and error and it is stopped. Else we move to 

the next step that is transformation. 

5.4.2 Generating Transformed Program 

Input: Data structure rules 

Output: Data structure transformed rules (a Fitting‟s model equivalent). 

       The transformation is carried out using the same procedure as explained in the 

TRANSFORM algorithm, although we do not create the equation using paraconsistent trees and 

expressions.  

We start with modifying the rule vector if more than one rule has same head p we change the 

head names in Vector itself to p1, …, pn and add the new rules for its union and intersection in a 

new vector same type as rules named as paraconsistent rules. After this step we begin the EDB 

transformation and IDB transformations: 

1. EDB Transformation: 

a. Extract all the constants from the original program and add dom rules for each 

constant in the new vector paraconsistent rules 

b. Then for each unique EDB predicate we complete the rules with its plus and 

minus counterparts. For example the code to implement is shown where P is new 
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predicate with name p_plus and AL is its argument list. In Rule we add this 

predicate P as its head in rule R1, and finally add it to new vector EDB rules. 

Predicate P = new Predicate(pname, AL,false);  

Rule R1 = new Rule(P,null,true); 

EDBRules.add(R1); 

 

c. When all the rules have been created they are added to the paraconsistent rules 

vector. 

2. IDB transformation: 

a. We start by checking whether the rule has projection or not. If yes then it is 

treated a bit differently than the one without projection. 

b. For each rule we start by checking whether it is positive or negative, if it is 

negative then add the rules mentioned for the (– ) complement node, because it 

will always be the bottom most node. 

c. Then we add rules for normal join which is union of all negative goals and 

intersection of positive goals. We check whether any of the negative goals has 

lesser variables than the head then we add dom predicates to complete the node. 

d. Finally we handle projection by writing rules for temp node, and it is numbered 

based on its position in the rules vector so that if there is more than one temp node 

the program we can distinguish them.  There is a separate function in the code that 

takes input as rule that has the temp node and returns a vector for the rule created.  

e. After this all the rules that are created are added to the paraconsistent rules vector 

which is returned to the main program. 

For example to complete the complement predicates in the following rule  

t(Z) :- g(X,Y,Z), t(X), not t(Y). 

Steps to implement transformation for complement: 
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 Start by checking the rule for a negative subgoal. 

 Let P be the negative predicate not t(Y) of the rule so we extract in P. 

 Create the body predicates as new Predicate b1 = new Predicate (“t_plus”, {Y}, false). 

  Add it to a vector that is bodyVector1 = {b1}. 

 Create head of the rule as Predicate h1 = new Predicate (“t_complementminus”, {Y}, 

false}. 

 Finally create the new Rule R1 with head h1 body bodyVector1 and isEDB false. 

 Rule R1 = new Rule (h1, bodyVector1, false). 

 Similarly we complete the negative part and its rule to the paraconsistent rules vector. 

For details about this module refer section 9.7 in the appendix. 

5.4.3 Fitting’s Model Generation 

Input: Transformed Rules 

Output: A Hash map consisting of mappings for each predicate name to its respective table 

which is a vector of all tuples of that predicate. (Fitting‟s Model) 

             The fitting‟s model is generated when we apply fix-point operator on paraconsistent 

rules or our transformed program. For generating the model we use the DBEngine a database 

system that allows us to perform the basic operation like join, union, projection etc. For this we 

first start by populating the data in .dat files for each predicate a corresponding .dat file is created 

same as a table of data. We already have the EDB facts from the program so we use them to 

create our files. Next we start evaluating each rule in IDB from the transformed program one by 

one using the data in EDB and applying the operations on the body of the rules. We start by 

joining the positive goals then apply the minus operation with negative goals. And then finally 

apply projection.  
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Eg: 

 t2_plus(Z) :- g_plus(X, Y, Z), t_plus(X), t_complementplus(Y). 

We perform the following operations where R1,…Rn are relations of type relation class from 

DBEngine. Let R1 = g_plus, R2 = t_plus, R3 = t_complementplus. 

R4 = R1 join R2 

R5 = R4 join R3. 

R6 = R5.projection (V). 

where, V is a vector, which contains elements from the head of rule. Thus now we can fill the 

table of t2_plus with relation R6. We keep a track of files that have been created using a 

HashMap so that in the files that have already been created we can add data, and if they are not 

created we create them. Also we can check from the hash map whether or not a new value is 

added to any of tables or not. Once we see that no new values are added to the Hash map we are 

sure that program has reached steady state and thus we can compute the unknowns too. For 

details refer to section 9.8 of appendix. 

5.4.4 Models Generation  

Input: Positive and unknown values extracted from the Hash map. 

Output: A set of models consisting of all possible combination of these values which are each an 

element of a vector. 

        When we compute the weak well founded model we get the positive, negative and unknown 

values of our program which are present in respective plus, minus and unknown .dat files. Now 

we use these values to generate the model for test. In hash map we store map a predicate name 

with its values and so we get the IDB predicates from the original program and extract their 
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arguments from the hash map to construct predicates for test. For example the hash map has a 

mapping for predicate t_plus with values {2} and t_unkown is mapped to {3, 5} then we 

construct three predicates {t(2), t(3), t(5)} and generate all possible sets of these predicates 

which is done in recursive manner using the functions GenerateAllCombinations and 

DoCombine in section 9.11. So this set will generate 2
3
 models that would be tested for stability. 

To test the stability we also generate the Ground Program using the code in section 9.10. Ground 

program is generated by instantiating the rules of the original program in all possible ways from 

the constants. So the ground program generation is an iterative procedure where we generate the 

ground rules for each rule. 

5.4.5 Stable Model Tester  

Input: Models for test and the ground program where each model is an element of Vector. 

Output: Stable models. 

 In this module all the models that are generated in previous step are tested for stability. 

We create a separate class called the stable model tester which taken in input the models for test 

and the ground program. Then for each model we perform the following the steps: 

1. Remove the rules from the ground program vector in which negation of one the atoms 

sent for test is present. 

2. Remove negated subgoals (predicates) from rest of the rules. 

3. Finally we get a program we apply fix point operation. 

For the fix point operation we again make use of the DBEngine where we store the data in 

original rules and create tables whenever needed for the new IDB tables formed. Here, also a 

hash map is created which stores the mapping of predicate name and its values. So, we again 
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check whether mapping for IDB predicates is same as those in model sent testing. If it is same 

then we output the stable model.  

So we can compute the stable models of a logic program using the steps described above. Now, 

we need to test the efficiency of our proposed approach. This is done on the next chapter.  
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CHAPTER 6 

EXPERIMENTS 

6.1 Introduction  

In this chapter we present the experiments performed to test the efficiency of our approach. We 

perform two experiments and compute the stable models using our proposed approach and a 

naïve method of stable model computation. In both the experiments, the aim is to compare the 

time taken to compute stable models of a logic program using our approach and the Naïve 

approach. We use the IDB from example 5.5.2 as our logic program, and note the time taken to 

compute the stable models with various EDBs. The experiments are performed on Windows 7 

professional operating system with 3 GB RAM and a 32-bit operating system. 

 We also analyze the results obtained from the experiments, which shows that our 

prediction of the proposed approach performs considerably better than the naïve approach in case 

of larger databases is correct. 

6.2 Design of Experiments 

 We have designed two experiments for testing the efficiency of our approach: 

1.  Given the IDB rules we keep the number of constants to be used the program fixed to 10 

and vary the number of EDB rules or facts, in increments of 5, starting from 5 and going 

up to 40. The argument list for the facts would be randomly generated from the given set 

of constants. We note the time taken to compute the stable model from our approach and 

the Naïve approach for each set of facts. 

2. Given the IDB rules we keep the number of EDB rules or facts fixed to 30 and vary the 

number of constants present in the program in increments of 2, starting from 5 and going 
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up to 15. The data for facts would be generated randomly i.e. the argument list for the 

facts would be formed randomly from constant values. We note the time taken to 

compute the stable models from our approach and the Naïve approach for each set of 

constants.  

Using these two designs we can see how the time varies in both the cases i.e. varying the number 

of facts and varying the number of constants. Also, we work on large data in real life scenarios, 

so, it is worthwhile to check the improvement in efficiency of stable model computation with 

Fitting‟s model used as a pre processing mechanism over a Naïve approach, which is 

computationally considered to be quite expensive. Next we present the procedure followed for 

stable model computation using our approach and the Naïve approach respectively. 

Steps to perform the experiments with our approach are as follows: 

1. Generate random data for facts for the IDB rules of example 5.5.2 consisting of EDB 

predicates t0 and g, to create a logic program P. 

2. Compile the program P to get the data structure rules. 

3. Transform the original logic program P into a new logic program P′ which is used for 

computing the Fitting‟s model. 

4. Compute the Fitting‟s model. 

5. Using the positive and unknown values from the Fitting‟s model generate all possible 

models that are tested for stability. 

6. Generate the ground program from the original logic program P. 

7. Test each of the model generated in step 5 for stability and output the model if it is stable. 

8. Note the time taken to perform Step 1 to Step 7. 
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Steps to perform the experiments with the Naïve approach. 

1. Generate random data for facts for the IDB rules of example 5.5.2 consisting of EDB 

predicates t0 and g, to create a logic program P. 

2. Compile the program P and perform the semantic checks to get the data structure rules. 

3. Using the constant values and IDB predicates generate all possible model that could be 

tested for stability. For example in case of the example 5.2.2 there are 5 constant values 

and one IDB predicate t, the possible values for t are {1, 2, 3, 4, 5} and the number of 

possible models is 2
5
 i.e. 32.  

4. Generate the ground program from the original logic program P. 

5. Test each of the model generated in step 3 for stability and output the model if it is stable. 

6. Note the time taken to perform Step 1 to Step 5. 

As it can be seen from above the number of steps involved in the Naïve approach is lesser than 

the steps involved in our approach, but the number of models that are being tested in case of 

Naïve approach is 32 and in our approach they are reduced to 8 for example 5.2.2. The overhead 

of transformation and computing the Fitting‟s model is added in our approach. Thus, we perform 

the experiments and see whether the overhead of reducing the possible models of test is worth 

the work involved.  

Comparing our approach with Naïve approach we can see there is an overhead of three steps 

transformation, weak well founded model generation and extraction of positive and unknown 

values to eliminate negative values. So, when models that are generated for testing only consists 

of positive and unknown values. On the other hand the number of steps performed in naïve 

approach is less than our approach. The figure shown below makes it more clear. 
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Figure 6.1 Comparison of our approach with naïve approach in terms of steps involved 

 To test whether the elimination of negation reduces the time to compute stable models 

and it is worth the work involved the experiments are performed. The time taken to do the 

transformation and generate the fitting‟s model according to our prediction should much less 

than testing the models with all positive, negative and unknown values. 

6.3.Results 

After performing the experiments we obtain the data which keeps track of number of constants, 

facts, stable models and the time taken. Table 6.1 shows the results for experiment 1 where we 

vary the number of constants and number of facts is fixed and table 6.2 shows the result for 

experiment 2, below in tabular form and in graphical form: 
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Table 6.1 Results from Experiment 1 

No. of Facts 5 10 15 20 25 30 35 40 

Our Approach 

(time in seconds) 
4.98 44.82 49.76 82.51 53.04 130.81 91.4 143.97 

Naïve approach 

(time in seconds) 
2.72 182.59 70.52 192.55 202.95 210.02 221.3 224.48 

 

 

Figure 6.2 Naïve approach vs. our approach with variable number of facts 

 The data above shows that as we increase the number of facts in our logic program the 

time taken to compute the stable models increases for both Naïve approach and our approach, but 

the time taken by our approach is considerably lesser. Also we can see that in case of smaller 

data i.e. with 5 facts Naïve approach performs better than our approach and the overhead of 

using Fitting‟s model a preprocessing mechanism is more for smaller data. But, for bit larger 

data i.e. even with 10 facts our approach performs much better. Next are the results from 

experiment 2 with fixed number of facts and variable number of constants. 
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      Table 6.2 Results from Experiment 2 

No. of constants 5 7 9 11 13 15 

Our Approach  

(time in seconds) 
7.035 12.034 33.255 149.507 62.339 1051.978 

Naïve Approach 

(time in seconds) 
4.189 11.398 83.037 557.124 3568.867 21166.96 

 

 

Figure 6.3 Naive approach vs. Our approach with variable number of constants 

 The results from experiment 2 shows that our approach performs way better than the 

Naïve approach in case of larger number of constants, because as the number of constants 

increase the possible number of models for stability testing for Naïve methods is 2
number of constants

, 

which is a considerable increase. But, in case of our approach the Fitting‟s model reduces the 

possible models for test as we consider only the positive and unknown values, which as we can 

see tend to remain small and so is the time to compute the stable models.  
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6.4 Analysis of Results 

 In case of fixed number of constants the we can see the time taken increases gradually for 

both approaches although our approach performs much better than the naïve approach by 

eliminating the negative values. Although it can be observed that there is not a significant 

amount of time change in case of variable number of facts. In the second experiment where we 

have fixed number of facts and variable number of facts the efficiency of our approach is much 

higher than the naïve approach. As it can be seen only with 15 constants the time taken by our 

approach is approximately 17 minutes and in case of naïve approach it is about 5 hours, which is 

significant. For each values that is found negative in case of given example the time taken 

reduces to half in comparison to naïve approach, so if one value is declared negative out 10 the 

possible models for test for our approach is 2
9
 and for naïve approach it is 2

10
, if we get one more 

as value as negative the time taken for approach is 2
8 

while for naïve approach it remains 2
10

. So 

the time taken is proportional to models being tested for stability and if they are reduced time 

also reduces proportionally. In case of more IDB predicates with greater number of variables the 

difference is much more significant. Number of possible models for p positive and u unknowns. 

 Let a1, …, an be the IDB predicates each having b1,…., bn variables. 

 Let m = p + u. (m = sum of number of positive and unknown predicates) 

 Number of ways each predicate can be instantiated is c
b1

,….,c
bn 

, where c is number of 

constants the program. 

 Let K = c
b1 

+…+ c
bn

.(total of all the ways). 

 Now it is clear m << K 

 Number of combinations of instantiated predicates a1,…. ,an is 2
m

 i.e. models for test. 

 Number of models for test for naïve approach would be 2
K
. 
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CHAPTER 7 

CONCLUSION 

 In this thesis we introduced a novel approach for stable model computation, which is a 

computationally expensive process otherwise. The process involved made use of Fitting‟s model 

as a pre processing mechanism. We also introduce an algorithm named TRANSFORM that 

eliminates arbitrary negation in general deductive databases and enables us to use traditional 

bottom-up evaluators for computing the meaning of the general deductive databases. The 

experiments performed shows that our approach for stable model computation performs much 

better than a naïve approach which is time consuming, and in case of larger databases the 

difference in performance is even greater. Our approach reduce the model for test by considering 

only the positive and unknown values, while the naïve approach tests all the positive, negative 

and unknown values, thereby increasing the time taken. This time is much more than the 

overhead involved in computing the Fitting‟s model by applying the transformation and then 

computing the stable models. 

 Stable models are one of the widely accepted semantics of general deductive databases. 

Recently, stable models of general deductive databases have been shown to be useful in speeding 

up the solutions to many NP-complete problems in graph theory [27, 28]. Thus, an algorithm to 

speed up stable model computation can be helpful.  

 In future, the algorithm can be extended to work with well-founded models instead of 

Fitting‟s model. Also, the approach can be extended to disjunctive databases. Experimental 

studies can be performed to see if generating stable models by pre processing with our approach 

can improve over other algorithms to compute stable models. 
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CHAPTER 9 

APPENDIX: Java code used to implement our approach 

9.1 Lexer: 
/* --------------------------Usercode Section------------------------ */    

import java_cup.runtime.*;    

/* -----------------Options and Declarations Section----------------- */ 

%% 

%class Lexer 

%line 

%column 

%cup  

%{       

    private Symbol symbol(int type) { 

        return new Symbol(type, yyline, yycolumn); 

    } 

    private Symbol symbol(int type, Object value) { 

        return new Symbol(type, yyline, yycolumn, value); 

    } 

%} 

/* 

  Macro Declarations 

  These declarations are regular expressions that will be used latter 

  in the Lexical Rules Section.   

*/ 

LineTerminator = \r|\n|\r\n    

WhiteSpace     = {LineTerminator} | [ \t\f] 

NAME =  [a-z][a-zA-Z0-9_]* 

VARIABLE = [_A-Z][a-zA-Z0-9_]* 

NUMBER  = 0 | [-]?[1-9][0-9]*|[-]?[0-9]*\.[0-9]* 

COMPARISON = > | < | (>=) | (<=) | <> | = 

NOT = [Nn][Oo][Tt] 

STRING = '[A-Za-z0-9_]' 

COMMENT = %*\sFor Rule [a-z][a-zA-Z0-9_]*\([_A-Z][a-zA-Z0-9_]*,?]*\) 

%% 

<YYINITIAL> { 

    "("                { return symbol(sym.LPAREN); } 

    ")"                { return symbol(sym.RPAREN); } 

    "$"                { return symbol(sym.DOLLAR); } 

    "."                { return symbol(sym.PERIOD); } 

    ":-"               { return symbol(sym.IMPLIES); } 

    ","                { return symbol(sym.COMMA);} 

    {NOT}              { return symbol(sym.NOTOP);} 

    {NAME}             { return symbol(sym.NAME, yytext()); } 

    {VARIABLE}         { return symbol(sym.VARIABLE, yytext()); } 

    {NUMBER}           { return symbol(sym.NUMBER, yytext()); } 

    {STRING}           { return symbol(sym.STRING, yytext()); } 

    {COMMENT}          { /* just skip what was found, do nothing */ } 

 {COMPARISON}      { return symbol(sym.COMPARISON, yytext()); } 

    {WhiteSpace}       { /* just skip what was found, do nothing */ } 

} 

[^]                    { /*throw new Error("Illegal character 

<"+yytext()+">"); }*/ 
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                         System.out.println("Syntax Error - Scanning 

problem"); 

                       } 

 

9.2 Parser:  

import java_cup.runtime.*; 

import java.util.*; 

parser code {: 

    //public LinkedList lst = new LinkedList(); 

    public void report_error(String messages, Object info) 

    { 

        StringBuffer m = new StringBuffer("Error"); 

        if (info instanceof java_cup.runtime.Symbol)  

        { 

            java_cup.runtime.Symbol s = ((java_cup.runtime.Symbol) info); 

            if (s.left >= 0)  

            { 

                m.append(" in line " + (s.left+1)); 

                if(s.right >= 0) 

                    m.append(", column " + (s.right+1)); 

            } 

        } 

        m.append(" : " + messages); 

        System.err.println(m); 

    } 

     

    public void report_fatal_error(String message, Object info) { 

        report_error(message, info); 

        //System.exit(1); 

    } 

:}; 

 

/* Non terminals used in the grammar section. */ 

terminal                DOLLAR, IMPLIES, PERIOD, COMMA, LPAREN, RPAREN, 

NOTOP; 

terminal String         COMPARISON, NAME, NUMBER, STRING, VARIABLE; 

non terminal Object     ddb; 

non terminal Vector     idb_rules, idb_body, arg_list, arg; 

non terminal Rule       idb_rule; 

non terminal Predicate  predicate, literal; 

 

/* -------------Precedence and Associatively of Terminals Section----------- 

*/ 

 

/* ----------------------------Grammar Section-------------------- */ 

    

/* The grammar for our parser. 

 

ddb          ::= rules DOLLAR 

idb_rules    ::= idb_rule |  idb_rule idb_rules  

idb_rule     ::= predicate IMPLIES idb_body PERIOD | predicate PERIOD 

idb_body     ::= literal |  literal COMMA idb_body 

literal      ::= NOTOP predicate | predicate 

predicate    ::= NAME LPAREN arg_list RPAREN | arg COMPARISON arg 

arg_list     ::= arg | arg COMMA arg_list 
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arg          ::= NAME | NUMBER | VARIABLE 

constant     ::= NUMBER | STRING 

 

*/ 

ddb ::= idb_rules:r DOLLAR 

            {: 

                //System.out.println("DDB"); 

                RESULT = r; 

            :}; 

idb_rules ::= idb_rule:r1 

            {: 

                Vector R = new Vector(); 

                R.add(r1); 

                //System.out.println("RULES"); 

                RESULT = R; 

            :} 

|  idb_rule:r1 idb_rules:rs 

            {: 

                Vector R = new Vector(); 

                R.add(r1); 

                R.addAll(rs); 

                RESULT = R; 

            :};           

idb_rule ::= predicate:head IMPLIES idb_body:body PERIOD 

            {: 

                Rule R =  new Rule(head,body,false); 

                //System.out.println("RULE"); 

                RESULT = R; 

            :} 

| predicate:head PERIOD 

            {: 

                Rule R =  new Rule(head,null,true); 

                RESULT = R; 

            :};             

idb_body ::= literal:l 

            {: 

                Vector P = new Vector(); 

                P.add(l); 

                RESULT = P; 

            :} 

 |  literal:pr COMMA idb_body :prs           

            {: 

                Vector P = new Vector(); 

                P.add(pr); 

                P.addAll(prs); 

                RESULT = P; 

            :};             

literal ::= NOTOP LPAREN predicate:p RPAREN 

            {: 

                p.setIsNegative(true); 

                RESULT = p; 

            :} 

|NOTOP predicate:p 

            {: 

                p.setIsNegative(true); 

                RESULT = p;   

            :} 
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| predicate:p1 

            {: 

                RESULT = p1; 

            :}; 

predicate ::= NAME:n LPAREN arg_list:al RPAREN  

            {: 

                RESULT = new 

Predicate(n,al,false,false,null,null,null,null,null); 

            :};            

arg_list ::= arg:a1 

            {: 

                Vector v = new Vector(); 

                v.add(a1); 

                RESULT = v; 

            :} 

| arg:a2 COMMA arg_list:al 

            {: 

                Vector v = new Vector(); 

                v.add(a2); 

                v.addAll(al); 

                RESULT = v; 

            :}; 

             

arg ::= NAME:n 

            {: 

                Vector v1 = new Vector(); 

                v1.add(n); 

                v1.add("varchar"); 

                RESULT = v1;             

            :} 

| NUMBER:num  

            {: 

                Vector v2 = new Vector(); 

                v2.add(num); 

                v2.add("varchar"); 

                RESULT = v2; 

            :} 

| VARIABLE:var 

            {: 

                Vector v3 = new Vector(); 

                v3.add(var); 

                v3.add("variable"); 

                RESULT = v3; 

            :}; 

 

 

9.3 Predicate Class 
import java.util.Vector; 

import java.util.*; 

public class Predicate{ 

    String Name; 

    Vector ArgList; 

    boolean isNegative; 

     public String getName() { 

   return Name; 
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  } 

  public void setName(String name) { 

   Name = name; 

  } 

  public Vector getArgList() { 

   return ArgList; 

  } 

  public void setArgList(Vector argList) { 

   ArgList = argList; 

  } 

  public boolean getIsNegative() { 

   return isNegative; 

  } 

  public void setIsNegative(boolean isNegative) { 

   this.isNegative = isNegative; 

  } 

    public Predicate( String name, Vector arglist, boolean isnegative){ 

        Name = name; 

        ArgList = arglist; 

        isNegative = isnegative; 

    } 

} 

9.4 Rule Class: 
import java.util.Vector; 

import java.util.*; 

public class Rule{ 

    Predicate Head; 

    Vector Body; 

    boolean isEDB; 

    public Predicate getHead(){ 

        return Head; 

    } 

    public void setHead(Predicate Head){ 

        this.Head = Head; 

    } 

    public Vector getBody() { 

        return Body; 

    } 

    public void setBody(Vector Body) { 

        this.Body = Body; 

    } 

    public boolean getIsEDB() { 

    return isEDB; 

    } 

    public void setIsEDB(boolean isEDB) { 

        this.isEDB = isEDB; 

    } 

    public Rule(Predicate h, Vector b, boolean isedb) { 

        Head =  h; 
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        Body =  b; 

        isEDB = isedb; 

    } 

} 

9.5 Main Class: 
import java.sql.Time; 

import java.util.*; 

import java.io.*; 

public class MAIN{ 

    MiscFunctions mf = new MiscFunctions(); 

static public void main(String[] args){ 

        try{            

         RandomFacts rf = new RandomFacts(); 

         int constants = 13; 

         int t_facts = 4; 

         int g_facts = 26; 

         rf.setRandomFacts(constants, t_facts, g_facts); 

         Vector V1 = rf.getT0_facts(); 

         Vector V2 = rf.getG_facts(); 

         CreateInput cp = new CreateInput(); 

         cp.CreateInputFile(V1, V2); 

         System.out.println(System.getProperty("user.dir")); 

         parser p = new parser(new Lexer(new FileReader(args[0]))); 

            Vector Rules = (Vector)(p.parse().value); 

            //-----------------Safety Checks-------------------------------- 

            Safety sc = new Safety(); 

            sc.variablesCheck(Rules); 

            sc.notSafety(Rules); 

            sc.airtyCheck(Rules); 

            //-------------------------------------------------------------- 

//------------Get rules for than one same IDB predicates eg: t(Z) :- t0(Z) 

//------------and t(Z) :- g(X,Y,Z),t(X), not t(Y). 

//Then change rule to form t1(Z) and t2(Z) and get Rules t(Z) :- t1(Z) //----

//-----;t2(Z). 

   long t1 = System.currentTimeMillis(); 

             ModifyRules mr = new ModifyRules(); 

   Vector MainRule = new Vector(); 

   Vector Mod_Rules = (Vector)Rules.clone(); 

//-----------Get Transformed rules from Paraconsistent Class in TRules------- 

   Vector TRules = new Vector(); 

            ParaConsistentRules pr = new ParaConsistentRules(); 

  if(mr.hasSameHead(Rules)){//if Rules have more than one same head 

modify rules  

      MainRule = mr.getMainRule(Mod_Rules); 

      Mod_Rules = mr.getNewRules(Mod_Rules);  

      TRules  = pr.getTransformedRules(Mod_Rules); 

      TRules.addAll(MainRule); 

      TRules = mr.reorderRules(MainRule,TRules); 

   } 
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   else { 

             TRules = pr.getTransformedRules(Rules); 

            } 

   //--------------------Send the Transformed rules to 

Populate Relations Class for creating the DataBase------------------ 

            PopulateRelations prels = new PopulateRelations(); 

            prels.storeData(TRules); 

   //------Printing the Transformed rules in transformed.txt-- 

   PrintRules prs = new PrintRules(); 

   prs.Print(TRules); 

   //----------Compute the Weak-Well Founded Model-- 

   WeakWellFoundedModel wwf = new WeakWellFoundedModel(); 

   HashMap result = wwf.computeWWF(TRules); 

   System.out.println("WWF$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"); 

   long t2 = System.currentTimeMillis(); 

   long diff1 = t2-t1; 

   //-----Get the ground Program for the original Rules------- 

   parser p1 = new parser(new Lexer(new FileReader(args[0]))); 

             Vector Rules1 = (Vector)(p1.parse().value); 

   GroundProgram gp = new GroundProgram(); 

   Vector GPRules = gp.getGroundProgram(Rules1); 

//Get a Vector containing all positive Predicates and Unknown Predicates of 

IDB---------- 

   PredicatesForTest prt = new PredicatesForTest(); 

   long t3 = System.currentTimeMillis(); 

   Vector P = prt.getPositiveUnknownPredicates(Rules1, 

result); 

   long t4 = System.currentTimeMillis(); 

   long diff2 = t4-t3; 

   Vector EDB = prt.getEDBPredicates(Rules1); 

   //P.addAll(EDB); 

   //Populate Original data relation  

   PopulateOrgData PO = new PopulateOrgData(); 

   PO.CreateDatabase(Rules1); 

//-----Vector containing positive and unknown predicates from IDB. 

//--Get Stable models using ground Program and data returned from Predicates 

For Test-------- 

   long start_time = System.currentTimeMillis(); 

   StableModelTester st = new StableModelTester(GPRules, 

Rules1); 

   Vector StableModels = st.Test_All(P,EDB,GPRules); 

   System.out.println("Number of stable models is 

:"+StableModels.size()); 

   long end_time = System.currentTimeMillis(); 

   long diff = end_time - start_time; 

   diff = diff+diff1+diff2; 

   System.out.println("Time to compute:"+ diff); 
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   //Calculate Stable Models with Naive Method

 System.out.println("###########################NAIVE###################

#########"); 

   Vector Naive_predicates = 

prt.getPredicatesForNaiveTest(Rules1); 

   StableModelTester st1 = new StableModelTester(GPRules, 

Rules1); 

   long start_time_naive = System.currentTimeMillis(); 

   Vector NaiveStableModels = st1.Test_All(Naive_predicates, 

EDB, GPRules); 

   System.out.println("Number of stable models is :"+ 

NaiveStableModels.size()); 

   long end_time_naive = System.currentTimeMillis(); 

   long diff_naive = end_time_naive - start_time_naive; 

   System.out.println("Time to compute:"+ diff_naive); 

        } 

        catch(Exception e){ 

            System.out.println(e.getMessage()); 

        }  

    } 

} 

9.6 Semantic Checks Class 
import java.util.*; 

import java.io.*; 

public class Safety{ 

    public void variablesCheck(Vector Rules){ 

        for(int i= 0; i<Rules.size(); i++){ 

            Rule r = (Rule)(Rules.elementAt(i)); 

            if(!(r.getIsEDB())){ 

                Predicate head = r.getHead(); 

                Vector headArgList = (Vector)(head.getArgList()); 

                Vector bodyArgList = new Vector(); 

                Vector body = (Vector)(r.getBody()); 

                for(int j =0 ; j<body.size();j++){ 

                    Predicate b = (Predicate)(body.elementAt(j)); 

                    if(!(b.getIsNegative()) && !(b.getIsComparision())){ 

Vector bArgList = (Vector)(b.getArgList()); 

                        bodyArgList.addAll(bArgList); 

                    } 

                } 

                for(int k=0; k<headArgList.size();k++){ 

                    String val1 = (headArgList.elementAt(k)).toString(); 

                    int flag = 0; 

                    for(int m=0; m<bodyArgList.size(); m++){ 

                        String val2 = (bodyArgList.elementAt(m)).toString(); 

                        if(val1.equals(val2)){ 

                            flag = 1; 

                        }  

                    } 
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                    if(flag == 0){ 

                        System.out.println("Safety Error:"+ val1+" does not 

occur in any positive body predicate."); 

                    } 

                } 

            } 

        }  

    } 

    public void notSafety(Vector Rules){ 

        for(int i= 0; i<Rules.size(); i++){ 

            Rule r = (Rule)(Rules.elementAt(i)); 

            if(!(r.getIsEDB())){ 

                Vector positiveArgList = new Vector(); 

                Vector negativeArgList = new Vector(); 

                Vector body = (Vector)(r.getBody()); 

                for(int j =0 ; j<body.size();j++){ 

                    Predicate b = (Predicate)(body.elementAt(j)); 

                    if(!(b.getIsNegative()) && !(b.getIsComparision())){ 

                        Vector bArgList = (Vector)(b.getArgList()); 

                        positiveArgList.addAll(bArgList); 

                    } 

                    else if(!(b.getIsComparision())){ 

                        Vector nArgList = (Vector)(b.getArgList()); 

                        negativeArgList.addAll(nArgList); 

                    } 

                } 

                for(int k = 0; k<negativeArgList.size(); k++){ 

                    Vector in = (Vector)negativeArgList.elementAt(k); 

                    String type = (String)(in.elementAt(1)); 

                    String val = (in.elementAt(0)).toString(); 

                    if(type.equals("variable")){ 

                        int flag = 0; 

                        for(int m=0; m<positiveArgList.size(); m++){ 

                            Vector inner = 

(Vector)(positiveArgList.elementAt(m)); 

                            String type1 = (String)(inner.elementAt(1)); 

                            String val1 = (inner.elementAt(0)).toString(); 

                            if(type1.equals("variable")){ 

                                if(val1.equals(val)){ 

                                    flag = 1; 

                                } 

                            } 

                        } 

                        if(flag == 0){ 

                            System.out.println("Safety Error: Variable " + 

val +" does not appear in any positive predicates."); 

                        } 

                    } 

                } 
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            } 

        }  

    } 

    public void airtyCheck(Vector Rules)  { 

       Vector Airty = new Vector(); 

       Vector IDBAirty = new Vector(); 

       for(int i= 0; i<Rules.size(); i++){ 

            Rule r = (Rule)(Rules.elementAt(i)); 

            if(r.getIsEDB()){ 

                Predicate head = (Predicate)r.getHead(); 

                Vector val = new Vector(); 

                val.add(head.getName()); 

                val.add(((Vector)(head.getArgList())).size()); 

                Airty.add(val); 

            } 

        } 

        for(int i= 0; i<Rules.size(); i++) 

        { 

            Rule r = (Rule)(Rules.elementAt(i)); 

            if(!(r.getIsEDB())){ 

                Predicate head = (Predicate)r.getHead(); 

                Vector v = new Vector(); 

                v.add(head.getName()); 

                v.add(((Vector)(head.getArgList())).size()); 

                IDBAirty.add(v); 

                Vector body = (Vector)(r.getBody()); 

                for(int j=0; j<body.size(); j++){ 

                    Predicate b = (Predicate)(body.elementAt(j)); 

                    Vector bv = new Vector(); 

     if(!(b.getIsComparision())){ 

                    bv.add(b.getName()); 

                    bv.add(((Vector)(b.getArgList())).size()); 

                    IDBAirty.add(bv); 

     } 

                }  

            } 

        }  

        for(int i=0; i<Airty.size(); i++){ 

            Vector in = (Vector)(Airty.elementAt(i)); 

            String name = (String)(in.elementAt(0)); 

            String s = (in.elementAt(1)).toString(); 

            int size = Integer.parseInt(s); 

            for(int j=0; j<IDBAirty.size();j++){ 

                Vector inner = (Vector)(IDBAirty.elementAt(j)); 

                String pname = (String)(inner.elementAt(0)); 

                String s1 = (inner.elementAt(1)).toString(); 

                int size1 = Integer.parseInt(s1); 

                if(name.equals(pname)){ 

                    if(size != size1){ 
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                        System.out.println("Airty mismatch for predicate " + 

pname +" .");  

                    } 

                } 

            } 

        } 

        for(int i=0; i<IDBAirty.size(); i++){ 

            Vector in = (Vector)(IDBAirty.elementAt(i)); 

            String name = (String)(in.elementAt(0)); 

            String s = (in.elementAt(1)).toString(); 

            int size = Integer.parseInt(s); 

            for(int j=0; j<IDBAirty.size();j++){ 

                Vector inner = (Vector)(IDBAirty.elementAt(j)); 

                String pname = (String)(inner.elementAt(0)); 

                String s1 = (inner.elementAt(1)).toString(); 

                int size1 = Integer.parseInt(s1); 

                if(name.equals(pname)){ 

                    if(size != size1){ 

                        System.out.println("Airty mismatch for predicate " + 

pname +" .");  

                    } 

                } 

            } 

        } 

    } 

} 

 

9.7 Transformation Class: 
import java.util.*; 

import java.io.*; 

import java.lang.*; 

public class ParaConsistentRules 

{ 

    public Vector getTransformedRules(Vector Rules){ 

        Vector Constants = new Vector(); // Vector containing all constants 

fro making dom rules. 

        Vector EDBRules = new Vector(); // Vector containing all rules of 

type r(1,2) to r_plus(1,2). 

        Vector TransformedRules = new Vector(); 

        for(int i = 0; i < Rules.size(); i++){ 

            Rule R = (Rule)(Rules.elementAt(i)); 

            if(R.getIsEDB()){ 

                Predicate fact = R.getHead(); 

                String pname = fact.getName() + "_plus"; 

                Vector AL = new Vector(); 

                Vector ArgList = fact.getArgList(); 

                for(int j = 0; j<ArgList.size(); j++){ 

                    if(!(Constants.contains(ArgList.elementAt(j)))){ 

                        Constants.add(ArgList.elementAt(j)); 
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                    } 

                    Vector inner = (Vector)(ArgList.elementAt(j)); 

                    AL.add(inner.elementAt(0)); 

                } 

                Predicate P = new Predicate(pname, AL, 

false,false,null,null,null,null,null); 

                Rule R1 = new Rule(P,null,true); 

                EDBRules.add(R1); 

            } 

        } 

        // Code to add all dom rules. 

        // Eg: dom(1), dom(2), dom(3)...... 

        for(int k=0; k<Constants.size(); k++){ 

            Vector inner = (Vector)(Constants.elementAt(k)); 

            Vector arglist = new Vector(); 

            arglist.add(inner.elementAt(0)); 

            Predicate P = new 

Predicate("dom",arglist,false,false,null,null,null,null,null); 

            Rule R = new Rule(P,null,true); 

            TransformedRules.add(R); 

        } 

        Vector minusRules = AddEDBMinus(TransformedRules, EDBRules,Rules); 

        TransformedRules.addAll(EDBRules); 

        TransformedRules.addAll(minusRules); 

        Vector IDBRules = TransformedIDBRules(Rules); 

        TransformedRules.addAll(IDBRules); 

        return TransformedRules; 

    } 

        // Code to add minus predicate for non-dom predicates 

        // Eg : r_minus(X,Y) :- dom(X), dom(Y), not r_plus(X,Y). 

    public Vector AddEDBMinus(Vector domRules, Vector EDBRules, Vector 

Rules){ 

        Vector minusRules = new Vector(); 

        for(int k =0; k<EDBRules.size();k++){ 

            Rule EDBrule = (Rule)(EDBRules.elementAt(k)); 

            Predicate head = (Predicate)EDBrule.getHead(); 

            String name = head.getName(); 

            int ind = name.indexOf("_plus",0); 

            name = name.substring(0,ind); 

            int flag = 0; 

            for(int q=0; q< minusRules.size();q++){ 

                Rule minusRule = (Rule)(minusRules.elementAt(q)); 

                Predicate minushead = minusRule.getHead(); 

                if(minushead.getName().equals(name+"_minus")){ 

                    flag =1; 

                } 

            } 

            if(flag == 0)   { 

                Vector newAL = new Vector(); 
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                Vector minusBody = new Vector(); 

                for(int i = 0;i<Rules.size();i++){ 

                    Rule R = (Rule)(Rules.elementAt(i)); 

                    if(!(R.isEDB)){ 

                        Vector body = R.getBody(); 

                        for(int j=0; j< body.size(); j++){ 

                            Predicate P = (Predicate)(body.elementAt(j)); 

       if(!(P.getIsComparision())){ 

                                if(P.getName().equals(name)){ 

                                    Vector AL = P.getArgList(); 

                                    if(newAL.size() == 0){ 

                                        for(int a =0; a<AL.size(); a++){ 

                                             

                                            newAL.add(AL.elementAt(a));    

                                        } 

                                    } 

                                } 

       } 

                        } 

                    } 

                } 

                for(int a1 =0; a1<newAL.size(); a1++) { 

                    Vector domlist = new Vector(); 

                    domlist.add(newAL.elementAt(a1)); 

                    Predicate Pdom = new 

Predicate("dom",domlist,false,false,null,null,null,null,null); 

                    minusBody.add(Pdom); 

                } 

                Predicate P1 = new 

Predicate(name+"_plus",newAL,true,false,null,null,null,null,null); 

                minusBody.add(P1); 

                Predicate head1 = new 

Predicate(name+"_minus",newAL,true,false,null,null,null,null,null); 

                Rule R1 = new Rule(head1, minusBody, false); 

                minusRules.add(R1); 

            } 

        } 

        return minusRules; 

    } 

    public Vector TransformedIDBRules(Vector Rules){ 

        Vector TransRules = new Vector(); 

        for(int i=0; i< Rules.size(); i++){ 

           Vector CPredicates = new Vector();//Vector to store comparision 

predicates of a rule. 

     boolean hasComparision = false; 

   Rule R = (Rule)(Rules.elementAt(i)); 

            if(!(R.isEDB)){ 

                Vector Body = R.getBody(); 

                for(int j = 0; j < Body.size(); j++){ 
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                    Predicate P = (Predicate)(Body.elementAt(j)); 

                    if(P.getIsNegative()) { 

                        Predicate b1 = new 

Predicate(P.getName()+"_minus",P.getArgList(),false,false,null,null,null,null

,null); 

                        Vector b1body = new Vector(); 

                        b1body.add(b1); 

                        Predicate h1 = new 

Predicate(P.getName()+"_complementplus", 

P.getArgList(),false,false,null,null,null,null,null); 

                        Predicate b2 = new 

Predicate(P.getName()+"_plus",P.getArgList(),false,false,null,null,null,null,

null); 

                        Vector b2body = new Vector(); 

                        b2body.add(b2); 

                        Predicate h2 = new 

Predicate(P.getName()+"_complementminus",P.getArgList(),false,false,null,null

,null,null,null); 

                        Rule r1 = new Rule(h1,b1body,false); 

                        Rule r2 = new Rule(h2,b2body,false); 

                        TransRules.add(r1); 

                        TransRules.add(r2); 

                    } 

                } 

                Predicate Head = (Predicate)R.getHead(); 

                Vector headAL = Head.getArgList(); 

                boolean projection = false; 

                for(int m=0; m<Body.size(); m++){ 

                    Predicate P1 = (Predicate)(Body.elementAt(m)); 

     Vector bodyAL = new Vector(); 

     if(!(P1.getIsComparision())){ 

      bodyAL= P1.getArgList(); 

     } 

                    if(bodyAL.size() > headAL.size()){ 

                        projection = true; 

                    }                 

                } 

    for(int g =0; g< Body.size(); g++){ 

     Predicate P = (Predicate)(Body.elementAt(g)); 

     if(P.getIsComparision()){ 

      CPredicates.add(P); 

      hasComparision = true; 

     } 

    } 

                Vector plusBody = new Vector(); 

                if(projection){ 

                    Vector ag = getArgumentsforTemp(R); 

     for(int n = 0; n<Body.size(); n++){ 

                        Predicate P = (Predicate)(Body.elementAt(n)); 
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      if(!(P.getIsComparision())){ 

       Vector ArgList = new Vector(); 

       ArgList = P.getArgList(); 

       Vector bodyminus = new Vector(); 

       Predicate hminus ; 

       Predicate b1; 

       Vector newArgList = ArgList; 

       if(P.getIsNegative()){ 

b1 = new Predicate(P.getName()+"_complementplus", newArgList, false, 

false, null,null,null,null,null); 

hminus = new Predicate("temp"+i+"_minus" ,ag, false, false, 

null,null,null,null,null); 

Predicate bminus = new Predicate(P.getName()+"_complementminus", 

newArgList, false, false, null,null,null,null,null); 

bodyminus.add(bminus); 

} 

else{ 

b1 = new Predicate(P.getName()+"_plus",newArgList, false, false, 

null,null,null,null,null); 

hminus = new Predicate("temp"+i+"_minus" , ag, false, false, 

null,null,null,null,null); 

Predicate bminus = new Predicate(P.getName()+"_minus", newArgList, 

false, false, null,null,null,null,null); 

 bodyminus.add(bminus); 

} 

if(hminus.getArgList().size() > P.getArgList().size()){ 

 Vector T = hminus.getArgList(); 

 Vector Dom = new Vector(); 

 for(int b = 0; b<T.size();b++){       

 if(!(newArgList.contains(T.elementAt(b)))){ 

   Dom.add(T.elementAt(b)); 

       } 

     } 

  for(int c= 0; c< Dom.size(); c++){ 

   Vector domlist = new Vector(); 

domlist.add(Dom.elementAt(c)); 

   Predicate pdom = new 

Predicate("dom",domlist,false,false,null,null,null,null,null); 

   bodyminus.add(pdom); 

   } 

 }        

 Rule mRuleminus = new Rule(hminus, bodyminus, false); 

 TransRules.add(mRuleminus); 

 plusBody.add(b1); 

 } 

} 

    Predicate hplus = new Predicate("temp"+i+"_plus",ag,false, false, 

null,null,null,null,null); 

    Rule mRuleplus = new Rule(hplus, plusBody, false); 
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                    TransRules.add(mRuleplus); 

                    Vector projectionRules = 

getProjectionRules(R,i,ag,hasComparision,CPredicates); 

                    TransRules.addAll(projectionRules); 

                    //Add plus body vector rule 

                } 

                else{ 

                    for(int n = 0; n<Body.size(); n++){ 

                        Predicate P = (Predicate)(Body.elementAt(n)); 

      if(!(P.getIsComparision())){ 

       Vector ArgList = P.getArgList(); 

       Vector bodyminus = new Vector(); 

       Predicate hminus; 

       Predicate b1; 

       Vector newArgList = P.getArgList(); 

       if(P.getIsNegative()){ 

 b1 = new Predicate(P.getName()+"_complementplus", newArgList, false, 

false, null,null,null,null,null); 

 hminus = new Predicate(Head.getName()+"_minus" ,Head.getArgList(), 

false, false, null,null,null,null,null); 

 Predicate bminus = new Predicate(P.getName()+"_complementminus", 

newArgList, false, false, null,null,null,null,null); 

 bodyminus.add(bminus); 

 } 

 else{ 

 b1 = new Predicate(P.getName()+"_plus",newArgList, false, false, 

null,null,null,null,null); 

 hminus = new Predicate(Head.getName()+"_minus" ,Head.getArgList(), 

false, false, null,null,null,null,null); 

 Predicate bminus = new Predicate(P.getName()+"_minus", newArgList, 

false, false, null,null,null,null,null); 

 bodyminus.add(bminus); 

 } 

 if(Head.getArgList().size() > P.getArgList().size()){ 

 Vector T = new Vector(); 

 Vector Dom = new Vector(); 

 for(int z = 0; z< Head.getArgList().size();z++){ 

  try{           

   T.add(Head.getArgList().elementAt(z)); 

  } 

  catch(Exception e){ 

    } 

  } 

  for(int b = 0; b<T.size();b++){ 

  if(!(newArgList.contains(T.elementAt(b)))){ 

  Dom.add(T.elementAt(b)); 

  } 

  } 

  for(int c= 0; c< Dom.size(); c++){ 



88 
 

  Vector domlist = new Vector(); 

        

 domlist.add(Dom.elementAt(c)); 

Predicate pdom = new 

Predicate("dom",domlist,false,false,null,null,null,null,null); 

bodyminus.add(pdom); 

 }        

 } 

Vector list = Head.getArgList(); 

       Predicate hplus = new Predicate(Head.getName()+"_plus",list,false, 

false, null,null,null,null,null); 

   Rule mRuleplus = new Rule(hplus, plusBody, false); 

    TransRules.add(mRuleplus); 

                }//Get Unknown Rule  

            } 

        } 

  for(int j= 0; j<Rules.size(); j++){ 

   Rule R = (Rule)(Rules.elementAt(j)); 

   if(!(R.getIsEDB())){ 

    Rule U_rule = getUnknownRule(R); 

    TransRules.add(U_rule); 

   } 

  } 

    return TransRules;  

    } 

    public Rule getUnknownRule(Rule R){ 

  Predicate head = (Predicate)(R.getHead()); 

  Vector RBody = new Vector(); 

  Vector Arglist = head.getArgList(); 

  for(int j=0; j<Arglist.size(); j++){ 

   Vector AL = new Vector(); 

   AL.add(Arglist.elementAt(j)); 

   Predicate dom = new 

Predicate("dom",AL,false,false,null,null,null,null,null); 

   RBody.add(dom); 

  } 

  Predicate R_plus = new 

Predicate(head.getName()+"_plus",Arglist,true,false,null,null,null,null,null)

; 

  Predicate R_minus = new Predicate(head.getName()+"_minus", 

Arglist,true,false,null,null,null,null,null); 

  RBody.add(R_plus); 

  RBody.add(R_minus); 

  Predicate R_head = new 

Predicate(head.getName()+"_unknown",Arglist,false,false,null,null,null,null,n

ull); 

  Rule R1 = new Rule(R_head,RBody,false); 

  return R1;   

 } 
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    public Vector getArgumentsforTemp(Rule R){ 

        Predicate head = (Predicate)(R.getHead()); 

        Vector body = (Vector)(R.getBody()); 

        Vector argTemp = new Vector();  

        for(int i= 0; i<body.size(); i++){ 

            Predicate P = (Predicate)(body.elementAt(i)); 

   if(!(P.getIsComparision())){ 

    Vector parg = P.getArgList(); 

    for(int j= 0; j< parg.size(); j++){ 

     if(!(argTemp.contains(parg.elementAt(j)))){ 

      argTemp.add(parg.elementAt(j)); 

     } 

    } 

   } 

        } 

  Vector variables = new Vector(); 

  for(int k=0; k<argTemp.size(); k++){ 

   Vector inner = (Vector)(argTemp.elementAt(k)); 

   variables.add(inner.elementAt(0)); 

  } 

  Object[] arr = new String[argTemp.size()]; 

  arr = variables.toArray(); 

  String[] sa = new String[argTemp.size()]; 

  for(int m=0; m<arr.length;m++){ 

   sa[m] = arr[m].toString(); 

  } 

  Arrays.sort(sa); 

  Vector argtemp1 = new Vector(); 

  for(int k=0; k<sa.length; k++){ 

   Vector v  = new Vector(); 

   v.add(sa[k]); 

   v.add("variable"); 

   argtemp1.add(v); 

  } 

        return argtemp1; 

    } 

    public Vector getProjectionRules(Rule R, int i, Vector arguments, boolean 

hasComparision, Vector CP){ 

        Vector Rules = new Vector();   

        Predicate head = (Predicate)(R.getHead()); 

        Vector headargs = head.getArgList(); 

       //For Positive Rule 

        Vector plusargs = new Vector(); 

        //plusargs.addAll(headargs); 

        for(int k =0; k< arguments.size();k++){ 

            if(!(headargs.contains(arguments.elementAt(k)))) { 

                Vector plusargs1 = new Vector(); 

    plusargs1.add("_"); 

    plusargs1.add("variable"); 
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    plusargs.add(plusargs1); 

            } 

   else{ 

    plusargs.add(arguments.elementAt(k)); 

   } 

        } 

        Predicate bodyplus = new 

Predicate("temp"+i+"_plus",plusargs,false,false, null,null,null,null,null); 

        Vector bodyp = new Vector(); 

        bodyp.add(bodyplus); 

  if(hasComparision){ 

   bodyp.addAll(CP); 

  } 

        Predicate plushead = new 

Predicate(head.getName()+"_plus",headargs,false,false, 

null,null,null,null,null); 

        Rule plusRule = new Rule(plushead, bodyp, false); 

        Rules.add(plusRule); 

       //For Minus Rules ----Rule 1----------------------------------------- 

        Vector b1 = new Vector(); 

        for(int l = 0 ; l< arguments.size(); l++) { 

            Vector domList= new Vector(); 

            domList.add(arguments.elementAt(l)); 

 

            Predicate P = new Predicate("dom", domList, false,false, 

null,null,null,null,null); 

            b1.add(P); 

        } 

        Predicate h1 = new 

Predicate("temp"+i+1,arguments,false,false,null,null,null,null,null); 

        Rule R1 = new Rule(h1,b1,false); 

        Rules.add(R1); 

        ///For Rule 2------------------------------------------------------- 

        Vector b2 = new Vector(); 

        b2.add(R1.getHead()); 

        Predicate body2 = new Predicate("temp"+i+"_minus",arguments, 

true,false,null,null,null,null,null); 

        b2.add(body2); 

        Predicate head2 = new 

Predicate("temp"+i+2,headargs,false,false,null,null,null,null,null); 

        Rule R2 = new Rule(head2, b2, false); 

        Rules.add(R2); 

        //For Rule 3-------------------------------------------------------- 

        Vector b3 = new Vector(); 

        for(int j= 0; j < headargs.size(); j++){ 

            Vector domList = new Vector(); 

            domList.add(headargs.elementAt(j)); 

            Predicate P = new Predicate("dom", domList, false,false, 

null,null,null,null,null); 



91 
 

            b3.add(P); 

        } 

        Predicate body3 = new 

Predicate("temp"+i+2,headargs,true,false,null,null,null,null,null); 

        b3.add(body3); 

        Predicate head3 = new 

Predicate(head.getName()+"_minus",headargs,false,false,null,null,null,null,nu

ll); 

  if(hasComparision){ 

   Vector CP1 = getCompPredicates(CP); 

   b3.addAll(CP1); 

  } 

        Rule R3 = new Rule(head3, b3, false); 

        Rules.add(R3); 

        return Rules; 

    } 

} 

9.8 Weak Well Founded Model: 
import java.util.*; 

import java.io.*; 

 

public class WeakWellFoundedModel 

{ 

 public HashMap computeWWF(Vector Rules) 

 { 

  HashMap resultMap = new HashMap(); 

  try{ 

   Relation Rel = null; 

   Rel.initializeDatabase("DATA"); 

   boolean flag = true; 

   Vector wffPredicates = new Vector(); 

   for(int j=0; j<Rules.size();j++){ 

    Rule r = (Rule)(Rules.elementAt(j)); 

    if(r.getIsEDB()){ 

     Predicate p = (Predicate)(r.getHead()); 

     String name = p.getName(); 

     Vector argList = p.getArgList(); 

     if(!(resultMap.containsKey(name))){ 

      Vector val = new Vector(); 

      val.add(argList); 

      resultMap.put(name,val); 

     } 

     else{ 

      Vector val1 = 

(Vector)(resultMap.get(name)); 

      val1.add(argList); 

      resultMap.put(name,val1); 

     } 

     wffPredicates.add(p); 
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    } 

   } 

  //While Loop to find the Well Founded Model until no more changes 

occur to data. 

   while(flag){ 

    flag= false; 

    for(int m = 0; m< Rules.size(); m++){ 

     Rel.initializeDatabase("DATA"); 

     Rule R = (Rule)(Rules.elementAt(m)); 

     if(!(R.getIsEDB())){ 

      Predicate head = 

(Predicate)(R.getHead()); 

     

 if(!(head.getName().endsWith("unknown"))){ 

       Vector body = 

(Vector)(R.getBody()); 

       Relation R1 = null; 

       for(int j=0; j< body.size(); j++){ 

        Predicate P = 

(Predicate)(body.elementAt(j)); 

if((!(P.getIsNegative())) && (!(P.getIsComparision())) && R1 == null){ 

R1 = Rel.getRelation(P.getName().toUpperCase()); 

 R1 = R1.rename(getVarList(P.getArgList())); 

 } 

else if((!(P.getIsNegative())) && (!(P.getIsComparision()))){ 

 Relation R2 = Rel.getRelation(P.getName().toUpperCase()); 

 Relation R3 = R2.rename(getVarList(P.getArgList())); 

 R1 = R1.join(R3); 

 } 

 } 

 for(int k=0; k<body.size();k++){ 

  Predicate P = (Predicate)(body.elementAt(k)); 

  if(P.getIsNegative()){ 

  Relation minusRel = Rel.getRelation(P.getName().toUpperCase()); 

minusRel = minusRel.rename(getVarList(P.getArgList())); 

  Relation plusRel = R1.projection(getVarList(P.getArgList())); 

  minusRel = plusRel.minus(minusRel); 

  R1 = R1.join(minusRel); 

  } 

 } 

 R1 = R1.projection(getVarList(head.getArgList())); 

 Vector RelTable = R1.getTable(); 

 if(!(resultMap.containsKey(head.getName()))){ 

 resultMap.put(head.getName(),RelTable); 

  if(RelTable != null){ 

   flag = true; 

   } 

  } 

  else{ 
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  Vector V = (Vector)(resultMap.get(head.getName())); 

  for(int c=0; c< RelTable.size(); c++){ 

  Vector inner = (Vector)(RelTable.elementAt(c)); 

        

 if(!(V.contains(inner))){ 

  V.add(inner); 

  flag = true; 

  } 

 }      

 resultMap.put(head.getName(),V); 

 } 

 Set keyset = resultMap.keySet(); 

 Iterator i1 = keyset.iterator(); 

 while(i1.hasNext()){ 

 String RelName = (String)(i1.next()); 

 Vector v1 = (Vector)(resultMap.get(RelName)); 

 FileOutputStream fs1 = new 

FileOutputStream("DATA\\"+RelName.toUpperCase()+".dat"); 

 PrintStream ps1 = new PrintStream(fs1); 

 ps1.println(v1.size()); 

 for(int d = 0; d<v1.size(); d++){ 

  Vector v2 = (Vector)(v1.elementAt(d)); 

  for(int e =0; e< v2.size(); e++){ 

   ps1.println(v2.elementAt(e)); 

   } 

   } 

  ps1.close(); 

  fs1.close(); 

  } 

 } 

} 

}} 

for(int m=0; m<Rules.size();m++){ 

 Rel.initializeDatabase("DATA"); 

 Rule R = (Rule)(Rules.elementAt(m)); 

 if(!(R.getIsEDB())){ 

  Predicate head = (Predicate)(R.getHead()); 

  if(head.getName().endsWith("unknown")){ 

  System.out.println(head.getName()); 

  Vector body = (Vector)(R.getBody()); 

  Relation R1 = null; 

  for(int j=0; j< body.size(); j++){ 

  Predicate P = (Predicate)(body.elementAt(j)); 

  if((!(P.getIsNegative())) && (!(P.getIsComparision())) && R1 == 

null){ 

  R1 = Rel.getRelation(P.getName().toUpperCase()); 

  R1 = R1.rename(getVarList(P.getArgList())); 

  } 

  else if((!(P.getIsNegative())) && (!(P.getIsComparision()))){ 
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  Relation R2 = Rel.getRelation(P.getName().toUpperCase()); 

  Relation R3 = R2.rename(getVarList(P.getArgList())); 

        R1 = R1.join(R3); 

       } 

      } 

      for(int k=0; k<body.size();k++){ 

       Predicate P = 

(Predicate)(body.elementAt(k)); 

 if(P.getIsNegative()){ 

 Relation minusRel = Rel.getRelation(P.getName().toUpperCase()); 

 minusRel = minusRel.rename(getVarList(P.getArgList())); 

 Relation plusRel = R1.projection(getVarList(P.getArgList())); 

 minusRel = plusRel.minus(minusRel); 

 R1 = R1.join(minusRel); 

  } 

 } 

 R1 = R1.projection(getVarList(head.getArgList())); 

 R1.displayRelation(); 

 Vector RelTable = R1.getTable();    

 if(!(resultMap.containsKey(head.getName()))){ 

 resultMap.put(head.getName(),RelTable); 

 } 

 else{ 

 Vector V = (Vector)(resultMap.get(head.getName())); 

 for(int c=0; c< RelTable.size(); c++){ 

  Vector inner = (Vector)(RelTable.elementAt(c)); 

        if(!(V.contains(inner))){ 

         V.add(inner); 

        } 

       } 

       resultMap.put(head.getName(),V); 

      } 

      Set keyset = resultMap.keySet(); 

      Iterator i1 = keyset.iterator(); 

      while(i1.hasNext()){ 

      String RelName = (String)(i1.next()); 

   Vector v1 = (Vector)(resultMap.get(RelName)); 

   FileOutputStream fs1 = new 

FileOutputStream("DATA\\"+RelName.toUpperCase()+".dat"); 

  PrintStream ps1 = new PrintStream(fs1); 

    ps1.println(v1.size()); 

     for(int d = 0; d<v1.size(); d++){ 

        Vector v2 = 

(Vector)(v1.elementAt(d)); 

        for(int e =0; e< v2.size(); 

e++){ 

        

 ps1.println(v2.elementAt(e)); 

        } 
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       } 

       ps1.close(); 

       fs1.close(); 

      } 

     } 

    } 

   } 

   MiscFunctions mf = new MiscFunctions(); 

   mf.printWeakWellFounded(resultMap); 

  } 

  catch(Exception ex){ 

   ex.printStackTrace(); 

  } 

  return resultMap; 

 } 

 public Vector getVarList(Vector argList) { 

        Vector T =  new Vector(); 

        for(int i = 0; i<argList.size(); i++) { 

   if(argList.elementAt(i).equals("_")){ 

    T.add("_"); 

   } 

   else{ 

    Vector in = (Vector)(argList.elementAt(i)); 

    T.add(in.elementAt(0)); 

   } 

        } 

        return T; 

    } 

 public Relation evaluateCols(Relation Rel,Vector ArgList){ 

  Vector variables = new Vector(); 

  Vector var1 = new Vector(); 

  for(int i=0;i<ArgList.size();i++){ 

   Vector inner = (Vector)(ArgList.elementAt(i)); 

   if(inner.elementAt(1).equals("varchar")){ 

    String LOT = "col"; 

    String ROT = "str"; 

    int j= i+1; 

    String LOP = "C"+ Integer.toString(j); 

    String ROP = (String)inner.elementAt(0); 

    String OP = "="; 

    Rel = Rel.selection(LOT,LOP,OP,ROT,ROP); 

   } 

   else{ 

    int j = i+1; 

    variables.add("C"+Integer.toString(j)); 

    var1.add(inner.elementAt(0)); 

   } 

  } 

  Rel = Rel.projection(variables); 
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  return Rel; 

 } 

} 

9.9 Generate Models for Stability Testing: 
import java.util.*; 

import java.io.*; 

public class PredicatesForTest { 

 public Vector getPositiveUnknownPredicates(Vector Rules, HashMap 

result){ 

  ModifyRules mrf = new ModifyRules(); 

  Vector headNames = new Vector(); 

  headNames = mrf.getUniqueHeads(Rules); 

  Vector P = new Vector(); 

  for(int i=0; i< headNames.size();i++){ 

   String name = (String)headNames.elementAt(i); 

   String headplus = name + "_plus"; 

   String headunknown = name + "_unknown"; 

   Vector plusArgs = (Vector)(result.get(headplus)); 

   Vector unknownArgs = (Vector)(result.get(headunknown)); 

   for(int m=0;m<unknownArgs.size();m++){ 

    if(!(plusArgs.contains(unknownArgs.elementAt(m)))){ 

     plusArgs.add(unknownArgs.elementAt(m)); 

    } 

   } 

   //System.out.println("HEAD:"+head.getName()); 

   for(int j=0; j< plusArgs.size();j++){ 

    Vector args = (Vector)(plusArgs.elementAt(j)); 

    Predicate p1 = new 

Predicate(name,args,false,false,null,null,null,null,null); 

    int index = P.indexOf(p1); 

    if(!(P.contains(p1))){ 

     P.add(p1); 

    } 

   } 

  } 

  return P; 

 } 

 public Vector getEDBPredicates(Vector Rules){ 

  Vector EDB = new Vector(); 

  for(int i=0;i<Rules.size();i++){ 

   Rule R = (Rule)(Rules.elementAt(i)); 

   if(R.getIsEDB()){ 

    Predicate head = R.getHead(); 

    EDB.add(head); 

   } 

  } 

  return EDB; 

 } 
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 public Vector getPredicatesForNaiveTest(Vector Rules){ 

  Vector NaivePredicates = new Vector(); 

  Vector args = new Vector(); 

  Vector EDB1 = getEDBPredicates(Rules); 

  for(int i=0; i<EDB1.size(); i++){ 

   Predicate p = (Predicate)(EDB1.elementAt(i)); 

   Vector ArgList = p.getArgList(); 

   for(int j=0; j< ArgList.size(); j++){ 

    if(!args.contains(ArgList.elementAt(j))){ 

     args.add(ArgList.elementAt(j)); 

    } 

   } 

  } 

  for(int i=0; i< args.size(); i++){ 

   Vector v = new Vector(); 

   v.add(args.elementAt(i)); 

   Predicate P = new Predicate("t",v,false,false, 

null,null,null,null,null); 

   NaivePredicates.add(P); 

  } 

  return NaivePredicates; 

 } 

} 

9.10 Ground Program Generation: 
import java.util.*; 

import java.io.*; 

//A class to transform a Program into its ground program i.e. replacing all 

the variables with  

// constants. 

public class GroundProgram{ 

 public Vector Perms = new Vector(); 

 MiscFunctions mf = new MiscFunctions(); 

 public Vector getGroundProgram(Vector Rules){ 

  Vector GP = new Vector(); 

  String[] constants = getConstants(Rules); 

  for(int i = 0; i<Rules.size();i++){ 

   Rule R = (Rule)(Rules.elementAt(i)); 

   if(!(R.getIsEDB())){ 

    Predicate head = R.getHead(); 

    Vector body = R.getBody(); 

    Perms = new Vector(); 

    Predicate p = getMaxPredicate(R); 

    int size = ((Vector)(p.getArgList())).size(); 

    getCombos(size,constants); 

    for(int j=0;j<Perms.size();j++){ 

     Vector argList = mf.getVarList(p.getArgList()); 

     String[] arr = (String[])(Perms.elementAt(j)); 

     HashMap map = new HashMap(); 

     for(int k = 0; k<arr.length;k++){ 
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      map.put(argList.elementAt(k),arr[k]); 

     } 

     //-------Create new Head with new constant 

arguments 

     Vector headArgs = 

mf.getVarList(head.getArgList());//get original head arguments 

     Vector newHeadArgs = new Vector();//place new 

contants arguments keeping the mapping as X to 1st argument, Y to 

     // 2nd argument 

     for(int m=0; m<headArgs.size();m++){ 

      String val = 

(String)(map.get(headArgs.elementAt(m))); 

      newHeadArgs.add(val); 

     } 

     Predicate newHead = new 

Predicate(head.getName(),newHeadArgs,false,false,null,null,null,null,null); 

     //-------------Create new Body Predicate for 

each permutation------------------ 

     Vector newBody = new Vector(); 

     for(int bp =0 ;bp<body.size(); bp++){ 

      Predicate P_body = 

(Predicate)(body.elementAt(bp)); 

      if(!(P_body.getIsComparision())){ 

       Vector b_args = 

mf.getVarList(P_body.getArgList()); 

       Vector newb_args = new Vector(); 

       for(int a=0; a<b_args.size();a++){ 

        String val1 = 

(String)(map.get(b_args.elementAt(a))); 

        newb_args.add(val1); 

       } 

       Predicate newP_body = new 

Predicate(P_body.getName(),newb_args,P_body.getIsNegative(),false,null,null,n

ull,null,null); 

       newBody.add(newP_body); 

      } 

      } 

     Rule new_R = new Rule(newHead,newBody,false); 

     GP.add(new_R); 

    } 

   } 

   else{ 

    Predicate head = R.getHead(); 

    head.setArgList(mf.getVarList(head.getArgList())); 

    GP.add(R); 

   } 

  } 

  //mf.PrintRules_2(GP); 

  return GP; 
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 } 

 //Returns a predicate with longest argument list from a Rule 

 public Predicate getMaxPredicate(Rule R){ 

  Predicate P = null; 

  Predicate head = R.getHead(); 

  Vector arglist = head.getArgList(); 

  int len = arglist.size(); 

  P = head; 

  Vector body = (Vector)(R.getBody()); 

  for(int i =0; i< body.size(); i++){ 

   Predicate pd = (Predicate)(body.elementAt(i)); 

   Vector arg = pd.getArgList(); 

   if(arg != null){ 

    if(arg.size()>len){ 

     P = pd; 

     len = arg.size(); 

    } 

   } 

  } 

  return P; 

 } 

 //Retuns a vector containing all the permutations of given arguments of 

given size. 

 //eg: give arguments 1,2 and size 2, returns |1,2|,|2,1| 

 public void printCombos(int[] digits,int count, String[][] arr,String[] 

temp,int number, Vector Perms){ 

  if(count == number){ 

   String[] val = new String[temp.length]; 

   for(int j=0; j<temp.length;j++){ 

    val[j] = temp[j]; 

    //System.out.print(temp[j]); 

   }//temp = temp.substring(0,1); 

   //System.out.println(); 

   Perms.add(val); 

   return; 

  } 

  for(int i=0;i<(arr[digits[count]]).length;i++){ 

   temp[count] = arr[digits[count]][i]; 

   printCombos(digits,count+1,arr,temp,number,Perms); 

  }  

 } 

 public void getCombos(int number, String[] arr){ 

  String[][] arr1 = new String[number][arr.length]; 

  for(int k = 0;k<number;k++) 

  { 

   arr1[k] = arr; 

  } 

        int val  = 0; 

  int[] digits = new int[number]; 
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  for(int j = 0 ; j <number;j++){ 

   digits[j] = j; 

  } 

  String[] temp = new String[number]; 

  printCombos(digits,0,arr1,temp,number,Perms); 

 } 

 //Gets all the constants from the EDB predicates in a String array 

 public String[] getConstants(Vector Rules){ 

  Vector constants = new Vector(); 

  for(int i=0; i<Rules.size();i++){ 

   Rule R = (Rule)(Rules.elementAt(i)); 

   if(R.getIsEDB()){ 

    Predicate p = R.getHead(); 

    Vector args = mf.getVarList(p.getArgList()); 

    for(int j=0; j<args.size();j++){ 

     if(!(constants.contains(args.elementAt(j)))) 

      constants.add(args.elementAt(j)); 

    } 

   } 

  } 

  String[] dom = new String[constants.size()]; 

  for(int k=0; k<constants.size();k++){ 

   dom[k] = constants.elementAt(k).toString(); 

  } 

  return dom; 

 } 

} 

9.11 Stable Model Tester: 
import java.util.*; 

public class StableModelTester { 

 public Vector GP = new Vector(); 

 public Vector OrgRules = new Vector(); 

 public Vector Combos = new Vector(); 

 MiscFunctions mfs = new MiscFunctions(); 

 public StableModelTester(Vector _GP, Vector _OrgRules){  

  GP =  _GP;  

  OrgRules = _OrgRules; 

  //System.out.println("GROUND PROGRAM"); 

  //mfs.PrintRules_2(GP);} 

 public boolean Test(Vector TP1, Vector EDB, Vector _GP)//TP = 

TestPredicates, GP = Ground Program{ 

  GroundProgram PG = new GroundProgram(); 

  GP = PG.getGroundProgram(OrgRules); 

  boolean flag = false; 

  Vector GPNew = new Vector(); 

  for(int i=0;i<GP.size();i++){ 

   Rule R = (Rule)(GP.elementAt(i)); 

   if(R.getIsEDB()){ 

    GPNew.add(R); 
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            } 

   else{ 

    Vector body = R.getBody(); 

    boolean hasNegative = false; 

    for(int j=0;j<body.size();j++){ 

     Predicate P1 = (Predicate)(body.elementAt(j)); 

     for(int a=0;a<TP1.size();a++){ 

      Predicate P2 = 

(Predicate)(TP1.elementAt(a)); 

      if(P1.equalsPositive(P2) && 

P1.getIsNegative()){ 

       hasNegative = true; 

       break; 

      } 

      if(hasNegative){ 

       break; 

      } 

     } 

    } 

    if(!hasNegative){ 

     Rule R1 = new 

Rule(R.getHead(),R.getBody(),R.getIsEDB()); 

     GPNew.add(R1); 

    } 

   } 

  } 

  Vector TransGP = (Vector)GPNew.clone(); 

  for(int i=0;i<TransGP.size();i++){ 

   Rule R1 = (Rule)(TransGP.elementAt(i)); 

   if(!(R1.getIsEDB())){ 

    Vector body1 = R1.getBody(); 

    Vector remove = new Vector(); 

    for(int j=0; j<body1.size();j++){ 

     Predicate P1 = (Predicate)(body1.elementAt(j)); 

     if(P1.getIsNegative()){ 

      remove.add(j); 

     } 

    } 

    if(remove.size()>0){ 

     for(int a=0;a<remove.size();a++) 

     { 

     

 body1.removeElementAt((Integer)(remove.elementAt(a))); 

     } 

    } 

   } 

  } 

  EvaluateStableModel SM = new EvaluateStableModel(TransGP); 

  Vector SMPredicates = SM.evaluate(); 
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  for(int k=0;k<SMPredicates.size();k++){ 

   Predicate P = (Predicate)(SMPredicates.elementAt(k)); 

   P.PrintPredicate(); 

  } 

  System.out.println("----------------Stable Model End-------------

-------");*/ 

  boolean comp = ComparePredicates(SMPredicates, TP1); 

  GPNew.removeAllElements(); 

  return comp; 

 } 

 public Vector Test_All(Vector TP,Vector EDB, Vector _GP){ 

  Vector StableModels = new Vector(); 

  GenerateAllCombinations(TP); 

  for(int i=0; i<Combos.size();i++){ 

   Vector TP1 = new Vector(); 

   int[] arr = (int[])Combos.elementAt(i); 

   for(int j = 0;j<arr.length;j++){ 

    TP1.add(TP.elementAt(arr[j])); 

   } 

   TP1.addAll(EDB); 

   PopulateOrgData PO = new PopulateOrgData(); 

   PO.CreateDatabase(OrgRules); 

   boolean flag = Test(TP1, EDB, _GP); 

   if(flag == true){ 

    StableModels.add(TP1); 

    for(int m=0;m<TP1.size();m++){ 

     Predicate P = (Predicate)(TP1.elementAt(m)); 

     P.PrintPredicate(); 

    } 

    System.out.println("STABLE MODEL ADDED---------------

-------------");  

   } 

  } 

  return StableModels; 

 } 

 public void GenerateAllCombinations (Vector TP)//PT= Predicates for 

test{ 

  //System.out.println("Generate ALL Combinations"); 

  int[] in = new int[TP.size()]; 

  int[] out = new int[in.length+1]; 

  for(int i= 0;i<TP.size();i++){ 

   in[i] = i; 

   //System.out.println(in[i]); 

  } 

  DoCombine(in,out,in.length,0,0); 

 } 

 public void DoCombine(int[] in, int[] out,int length, int recLevel, int 

start){ 

  int i; 
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  for(i= start;i<length;i++){ 

   out[recLevel] = in[i]; 

   out[recLevel+1] = '\u0000'; 

   int[] c= new int[recLevel+1]; 

   for(int j=0; j<recLevel+1;j++){ 

    //System.out.print(out[j]+","); 

    c[j] = out[j]; 

   } 

   if(!Combos.contains(c)){ 

    Combos.add(c); 

   } 

   if(i<length -1) 

   DoCombine(in,out,length,recLevel+1,i+1); 

  } 

 } 

 public boolean ComparePredicates(Vector P1, Vector P2) 

 { 

  boolean b = false; 

  if(P1.size() != P2.size()) 

   return false; 

  else{ 

   for(int i=0;i<P1.size();i++){ 

    Predicate p1 = (Predicate)P1.elementAt(i); 

    b =  false; 

    for(int j=0;j<P2.size();j++){ 

     Predicate p2 = (Predicate)P2.elementAt(j); 

     if(p1.equalsPositive(p2)){ 

      b = true; 

     } 

    } 

    if(b == false) 

     break; 

   } 

   if(b) 

    return true; 

   else 

    return false; 

  } 

 } 

} 


	A Novel Stable Model Computation Approach for General Dedcutive Databases
	Recommended Citation

	A NOVEL STABLE MODEL COMPUTATION APPROACH FOR GENERAL DEDUCTIVE DATABASES

