
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

Summer 7-15-2010

A Novel Stable Model Computation Approach for General A Novel Stable Model Computation Approach for General

Dedcutive Databases Dedcutive Databases

Komal Khabya
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Recommended Citation Recommended Citation
Khabya, Komal, "A Novel Stable Model Computation Approach for General Dedcutive Databases." Thesis,
Georgia State University, 2010.
doi: https://doi.org/10.57709/1397210

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1397210
mailto:scholarworks@gsu.edu

A NOVEL STABLE MODEL COMPUTATION APPROACH FOR GENERAL DEDUCTIVE

DATABASES

by

KOMAL KHABYA

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

The aim of this thesis is to develop faster method for stable model computation of non-

stratified logic programs and study its efficiency. It focuses mainly on the stable model and weak

well founded semantics of logic programs. We propose an approach to compute stable models by

where we first transform the logic program using paraconsistent relational model, then we

compute the weak-well founded model which is used to generate a set of models consisting of

the true and unknown values, which are tested for stability. We perform some experiments to test

the efficiency of our approach which incurs overhead to eliminate negative values against a

Naïve method of stable model computation.

INDEX WORDS: Logic programming, Stable model, Fitting‟s model.

A NOVEL STABLE MODEL COMPUTATION APPROACH FOR GENERAL DEDUCTIVE

DATABASES

by

KOMAL KHABYA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2010

Copyright by

Komal Khabya

2010

A NOVEL STABLE MODEL COMPUTATION APPROACH FOR GENERAL DEDUCTIVE

DATABASES

by

KOMAL KHABYA

Committee Chair: Rajshekhar Sunderraman

Committee: Sushil Prasad

Yanqing Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2010

iv

ACKNOWLEDGEMENTS

I would like to thank my parents and my family for being the constant source of

encouragement during my life. Their motivation and support have always been there for me.

I am indebted to my advisor Dr. Rajshekhar Sunderraman for teaching me about the

interesting field of deductive databases and logic programming. His motivational words and the

guidance throughout have helped me achieve my goals. His ability to work hard and patience

inspires me and would keep inspiring other students. He has been a friend, philosopher and guide

through all the good and bad days. He has given me confidence and made me grow into a better

person. I would also like to thank my committee members Dr. Sushil Prasad and Dr. Yanqing

Zhang for giving their valuable time and assessing my work.

I am thankful to God Almighty for giving me the strength and for being kind to me at

every step, and enlighten me to take the right course of path.

I am also thankful to my friends here at Georgia State who were there for me to share my

problems and help me in every way they can. Last but not the least; I am thankful to my husband

for being there for me and supporting me throughout this time.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

1. INTRODUCTION... 1

I BACKGROUND .. 3

2. DEDUCTIVE DATABASES AND LOGIC PROGRAMMING .. 4

2.1 Introduction ..4

2.2 Logic Programs ..5

2.2.1 Definite Logic Programs ..6

2.2.2 Model Theoretic Semantics ..6

2.2.3 Fix-Point Semantics ..8

3. NEGATION ..11

3.1 Introduction ..11

3.2 Stratified Logic ...12

3.3 3-Valued Semantics ..14

3.3.1 Fitting’s Semantics ..15

3.3.2 Well Founded Semantics and Unfounded Sets ..17

3.4 Stable Model Semantics ...19

4. PARACONSISTENT RELATIONAL DATAMODEL .. 23

4.1 Paraconsistent Relations ... 23

4.2 Formal Definition of Paraconsistent Relations .. 23

4.3 Algebraic Operators on Paraconsistent Relations ... 24

vi

II A NOVEL APPROACH FOR STABLE MODEL COMPUTATION 27

5. THE PROPOSED APPROACH ... 28

5.1 Assumptions .. 28

5.2 Overview of the Steps Involved ... 29

5.3 Modules ... 30

5.3.1 Datalog Compiler ... 30

5.3.2 Transformation .. 33

5.3.3 Fitting’s Model Generation .. 46

5.3.4 Models and Ground Program Generation .. 48

5.3.5 Stable Model Tester .. 50

5.4 Implementation of the Modules .. 52

5.4.1 Compiler .. 52

5.4.2 Generating Transformed Program .. 54

5.4.3 Fitting’s Model Generation .. 56

5.4.4 Models Generation ... 57

5.4.5 Stable Model Tester ... 58

6. EXPERIMENTS ... 60

6.1 Introduction .. 60

6.2 Design of Experiments ... 60

6.3 Results ... 63

6.4 Analysis of Result .. 66

7. CONCLUSION ... 67

8. REFERENCES ... 68

vii

9. APPENDIX: Java code used to implement our approach ... 72

9.1 Lexer ... 72

9.2 Parser .. 73

9.3 Predicate Class .. 75

9.4 Rule Class .. 76

9.5 Main Class ... 77

9.6 Semantics Checks Class ... 79

9.7 Transformation Class .. 82

9.8 Weak Well Founded Model .. 91

9.9 Generate Models for Stability Testing ... 96

9.10 Ground Program Generation .. 97

9.11 Stable Model Tester ... 100

viii

LIST OF TABLES

Table 5.1 Predicate...31

Table 5.2 Rule ..32

Table 5.3 Fix point computation for predicate t ..47

Table 6.1 Results from Experiment 1 ..55

Table 6.2 Results from Experiment 2 ..56

ix

LIST OF FIGURES

Figure 3.1 Dependency graph for example 3.1.1 ...13

Figure 5.1 Block diagram for the proposed approach..30

Figure 5.2 Circuit for example 5.2.2 ..36

Figure 5.3 Paraconsistent expression tree ..39

Figure 5.4 Named paraconsistent tree ..40

Figure 5.5 Tree for expression 1 ..44

Figure 5.6 Tree for expression 2 ..44

Figure 5.7 Block diagram for compiling process...52

Figure 6.1 Comparison of our approach with naïve approach in terms of steps involved63

Figure 6.2 Naïve approach vs. our approach with variable number of facts64

Figure 6.3 Naïve approach vs. our approach with variable number of constants65

1

CHAPTER 1

INTRODUCTION

Deductive databases and logic programming have been widely recognized as expressive

knowledge representation formalisms. One can draw inferences firstly based on a database and

secondly by applying a set of rules to infer more information based on the information in the

database. For example it is given that man (Socrates) and mortal(X):- man(X) then based on the

information that Socrates is man and applying the rule we get mortal (Socrates). According to

closed world assumption if certain fact is not derivable from the database with any of the

inference rules it is assumed to be false, for example if the database has no other rules like

man(Thor) then infer ¬man(Thor). Negation as failure is not true in classical logic, but it is an

assumption made in traditional databases, i.e. if database does not contain information that

Socrates is manger of Department of Sales then assumes he is not, but what if the information is

not yet available then the appropriate answer would be unknown.

 There has been a continuing research on the correct semantics of logic programs. The

idea of using first order predicate logic as a programming language was introduced by van

Emden and Kowalski in [1]. In this paper they provide semantics for class of logic programs

called the Horn programs. A number of extensions were found to be necessary in order to gain

expressivity. Initially, the Horn logic programs were extended to include negation in the body of

rules. Clark [2] proposed a notion of a completion of a logic program, a notion developed further

by Shepherdson [3, 4]. Fitting [5] and Kunen [6] developed this into the 3-valued theory. These

are some of the semantics that have emerged as being the most widely accepted by research

community which gave more uniform semantics by interpreting the program completion in 3-

valued constructive logic. The third truth value is „unknown‟. These semantics are the weak-well

2

founded [5], well founded model [7] and the stable model semantics [8]. Research has shown

that these semantics have higher expressible power than some of the other semantics mentioned

above.

 This thesis focuses mainly on the stable model and weak well founded semantics of the

logic programs. It has been motivated by our efforts to develop faster algorithms to compute

stable models. The outline of the thesis is as follows. Chapter 2 is an introduction to deductive

databases and logic programming focusing mainly on definite logic programs and its semantics.

In Chapter 3 we introduce negation in logic programs, its types and the 3-valued semantics of

general logic programs i.e. the weak well founded, well founded and stable model semantics.

Chapter 4 goes over the paraconsistent data model, a data model based on the open world

assumption. We introduce an algorithm for transforming the logic program consisting of harmful

negation into harmless negation using paraconsistent data model. In part 2 we introduce our

approach for faster stable model computation. In chapter 5, we propose our approach for stable

model computation which goes through the assumptions and the actual processes involved. We

first transform the original logic program into another logic program using paraconsistent data

model. Then we compute the Fitting‟s model of the program that gives us the true, false and

unknown values. Using the true and unknown values we generate possible sets of models that are

tested for stability. We also generate stable models using the Naïve approach. In chapter 6, we go

over the experiments conducted to compare the results and efficiency of our approach i.e., using

Fitting‟s model with a Naïve method. The time taken to compute the stable models is taken

under consideration, and the efficiency of the two methods is compared. The results show that

Fitting‟s approach of stable model computation is much faster than the Naïve approach.

3

Part I

BACKGROUND

4

CHAPTER 2

DEDUCTIVE DATABASES AND LOGIC PROGRAMMING

2.1 Introduction

In recent years deductive databases have been an area of intense research which has brought

dramatic advances in the field of theory, systems and applications. A salient feature of deductive

databases is their capability of supporting a declarative, rule-based style of expressing queries

and applications on database. Relational databases, which are lacking in built-in reasoning

capabilities, have also demonstrated the desirability of using a declarative logic-based

language. Therefore deductive databases provide a declarative, logic based language for

expressing queries, reasoning and complex applications on databases [23].

 Research on deductive databases has also contributed to areas such as non-monotonic

reasoning and knowledge representation by extending the declarative semantics of Horn Clauses

(based on the concepts minimal model and least-fixpoint [10, 11]) to non-monotonic constructs

such as negation and sets. Concepts, such as stratification [9], well-founded models, and

stable models have shed new light on various aspects of non-monotonic reasoning and

knowledge representation, and have also provided formal semantics to seemingly unrelated

concepts such as non-determinism [12]. Many of these theoretical contributions had a practical

impact, current deductive database systems provide efficient support for stratified negation; work

is progressing on finding efficient ways to support more powerful semantics (e.g., well-founded

models).

 A deductive database is commonly viewed as a general logic program. A general logic

program is a set of rules that have both negative and positive subgoals. The rules in deductive

5

database consist of EDB (extensional database) rules known as facts that sit above the IDB

(intentional database) rules. The IDB rules are evaluated using the EDB in a recursive manner to

give the meaning of the program. The example taken from [13], shown next consists of three

EDB rules and two IDB rules.

Example 2.1.1

t0(2).

g(2, 3, 4).

g(3 ,4, 5).

g(5, 1, 3).

t(Z) ← t0(Z).

t(Z) ← g(X, Y, Z), t(X), not t(Y).

Before going into details of the semantics of general logic programs, we go through the

background of logic programs without negation and its semantics.

2.2 Logic Programs

Logic programs have emerged as a very expressive tool for knowledge representation. It is

programming by description which uses logic to represent knowledge and uses deduction to

solve problems by deriving logical consequences. We introduce the basic concepts of logic

programming and focus mainly on the declarative semantics of logic programs. These semantics

include the model theoretic and fix point semantics. The reader is referred to [11] for a more

detailed description of operational semantics of logic programs.

6

2.2.1 Definite Logic Programs

We now introduce definite logic programs that are logic programs without negation. A definite

logic program is a set of Horn Clauses. Before defining Horn clause we look into some basic

structures.

A term is either a variable or an expression f(t1, t2,... tn) where f is the function symbol and ti are

terms. Constants are 0-ary function symbols. An atom of the language is of the form P(t1,

t2,…,tn) or negation of P(t1, t2,…,tn) where P is the predicate symbol with finite arity n ≥0 and

t1,…, tn are terms. A literal is either an atom or its negation denoted by p(t1, t2…, tn).

A definite logic program is a set of rules of the form

A ← B1, B2 …, Bn

Where A, B1, B2,…, Bn are atoms. Here A is called the head or conclusion of the rule and

conjunction of B1 ʌ B2 ʌ …ʌ Bn is called the body or premise of the rule. We now describe the

model theoretic and fixpoint semantics of logic programs.

2.2.2 Model Theoretic Semantics

This is the declarative semantics of the logic program that describes the meaning of a logic

program in terms of the set of models of the program viewed as a logical theory. To determine

the set of models of a logic program, we can use the work of Herbrand, who showed how to

define models from given theories, and showed that any consistent theory always has a model,

which is denumerable. This is the theory‟s Herbrand model. To determine the Herbrand model,

we first construct the Herbrand universe of the logic program. For a logic program P the

Herbrand universe Up is the set of all possible ground terms constructed recursively using the

7

constants and function symbols occurring in the program P. A term, atom, literal, rule or

program is ground if it is free of variables. A ground instance of a rule is obtained by replacing

the variables in a program with elements from Up in every possible way. A ground program is

the union of the ground instances of the rules in the program. An example of Herbrand universe

of a logic program is shown below.

Example 2.2.2

Consider a logic program as

natural_number(0).

natural_number (s(X)) ← natural_number(X).

Here the set of constants is {0} and set of function symbols is {s}. Thus the Herbrand universe is

{0, s(0), s(s(0)),…….}. If there are no function symbols we get a finite Herbrand universe. So,

the Herbrand universe is the set of all possible terms that the theory can make assertions about.

The Herbrand base of P, denoted by HBp, is the set of all possible ground atoms whose predicate

symbols occur in P and whose arguments are elements of Up. For example for the Herbrand base

of above program is

{natural_number(0), natural_number(s(0)), natural_number(s(s(0))), … }

Herbrand Interpretation I of P is any subset of the Herbrand base of P. It is an assignment of

truth or falsity to each element of Herbrand base. For the natural number example the entire

Herbrand base must be assigned true. A Herbrand interpretation simultaneously associates, with

every n-ary predicate symbol in P, a unique n-ary relation over UP.

8

1. A ground atomic formula A is true in a Herbrand interpretation I iff A ∈ I.

2. A ground negative literal ¬A is true in iff A ∉ I.

3. A ground clause L1 V L2 V…V Lm is true in I iff at least one literal Li, is true in I.

4. In general a clause C is true in I iff every ground instance C𝜎 of C is true in I. (C𝜎 is

obtained by replacing every occurrence of a variable in C by a term in UP. Different

occurrences of the same variable are replaced by the same term.)

5. A set of clauses A is true in I iff each clause in A is true in I.

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I, then we say that I is

a Herbrand model of A. Let M(A) be the set of all Herbrand models of A; then ∩M(A), the

intersection of all Herbrand models of A, is itself a Herbrand interpretation of A. This holds for

any set of clauses A even if A is inconsistent. If A is a consistent set of Horn clauses then

∩M(A) is itself a Herbrand model of A. More generally, Horn clauses have the model

intersection property: If L is any nonempty set of Herbrand models of A then ∩L is also a model

of A, and is the least such model of A which are the declarative semantics of logic programs. For

details refer to [1].

2.2.3 Fix-Point Semantics

The least model semantics provide logic based declarative definition of the meaning of a

program. We need to now consider constructive semantics and effective means to realize the

minimal model semantics. A constructive semantics follows from viewing the rules as

constructive derivation patterns, whereby, from the tuples that satisfy the patterns specified by

the goals in a rule, we construct the corresponding head atoms. For a positive program P, it is

9

customary to consider the mapping TP called the Immediate Consequence Operator, for P,

defined as follows:

TP (I) = {A | A :- B1, B2, …, Bn ∈ ground(P) and {B1, B2, …, Bn} ⊆ I }

TP(I) contains a ground atomic formula 𝐴 ∈ 𝐻𝐵𝑝 iff for some ground instance 𝐶𝜎 of a clause C

∈ P, C𝜎 = A ← B1, B2, …, Bn ∈ ground(P) and {B1, B2, …, Bn} ⊆ I, n ≥ 0. Thus TP is a mapping

from Herbrand Interpretations of P to Herbrand Interpretations of P.

The least fixpoint computation amounts to an iterative procedure, where partial results

are added to a relation until steady state is reached. The least fixpoint of TP is the least model

of P. This result relies on the fact that TP is monotonic and hence posses a least fixpoint. TP is

monotonic means for any interpretations I1and I2 such that I1 ⊆ I2 then TP (I1) ⊆ TP (I2). The least

fixpoint is given by:

∩{I: TP(I) ⊆ I}

For a definite logic program P let M(P) be its Herbrand Models and let ∩M(P) be its least

model. Let C(P) be set all interpretations closed under TP, i.e., I ϵ C(P) iff TP(I) ⊆ I. We need to

show that ∩M(P) = ∩C(P). It is easier to show that M(P) = C(P).

Theorem 1.2.1 If P is a definite logic program then M(P) = C(P), i.e. |=I P iff T(I) ⊆ I, for all

Herbrand Interpretation I of P.

Proof. (|=I P implies TP(I) ⊆ I). Suppose I is a model of P, we want to show that if A ∈ TP(I) then

A ∈ I. Assume that A ∈ TP(I). Then by definition of TP there is a clause C ∈ P such that C𝜎 = A

← B1, B2, …, Bn, where B1, B2, …, Bn ∈ I. Since I is a model of P, C𝜎 is true in I which means

that A is true in I since ¬B1,¬B2, …,¬Bn are false in I. Therefore A ∈ I.

10

 (TP (I) ⊆ I implies |=I P). Suppose that I is not a model of P. Then for some

clause C ∈ P, C𝜎 = A ← B1, B2, …, Bn is false in I, i.e., B1, B2, …, Bn ∈ I and A ∉ I. But by

definition of TP, since B1, B2, …, Bn ϵ I, A ∈ TP(I). Thus TP ⊈ I.

It can also be shown that the least model is the limit of the increasing, possibly infinite

sequence of iterations ∅, TP(∅), TP(TP(∅)),…. There is a standard notation used to denote

elements of the sequence of interpretations constructed for P. Namely:

TP ↑ 0 = ∅

TP ↑ i+1 = TP (TP ↑ i)

TP ↑ 𝜔 = 𝑇𝑝 ↑ 𝑖∞
𝑖=0

We show the iterations of TP operator with an example.

Example 2.2.2 Consider the definite logic program

odd (s(0)).

odd (s(s(X))) :- odd(X).

TP ↑ 0 = ∅

TP ↑ 1 = {odd(s(0))}

 ׃

TP ↑ 𝜔 = {odd (s
n
(0) | n ϵ {1, 3, 5,…}}

In conclusion the least fix point approach and least model approach assign the same meaning to a

positive logic program.

11

CHAPTER 3

NEGATION

3.1 Introduction

 In this chapter we describe some of the results in extending Horn clause programs to

include negation in the body of clauses. Such logic programs are called general logic programs

or normal logic programs. A normal logic program is a finite set of normal clauses. A normal

clause is a rule of the form:

A ← B1, B2…Bn, ~C1…~Cm

where, A is an atom and B1,…Bn and C1,…Cm are literals. When we have a collection of Horn

clauses (rules without negation) , then we know there is a unique minimal model of the program

that assigns the meaning to the program. However these types of rules are often too limited in

covering the expanse of queries that could be answered. But, as soon as we introduce negation in

the rules there is no guarantee of a unique minimal and in fact, it is normal to have more than one

minimal model. This can be illustrated from an example from [13]. There are two bus lines from,

red and blue, which runs between pairs of cities. Predicate blue(X, Y) is true if blue line runs a

bus from city X to city Y, while red(X, Y) has corresponding meaning for red line. The president

of red line wants to find out where red has monopoly, i.e. a pair of cities such red runs bus

between them, but on blue buses you cannot even travel from X to Y through a sequence of

intermediate cities. Suppose the data relation for both blue and red are blue(1, 2), red(1, 2) and

red(2, 3).

12

Example 3.1.1

(1) bluePath (X, Y) ← blue (X, Y).

(2) bluePath (X, Y) ← bluePath (X, Z), bluePath (Z, Y).

(3) monopoly (X, Y) ← red (X, Y) , not bluePath (X, Y).

 The above program has two minimal models (A):{bluePath (1, 2), monopoly (2, 3)} and

(B):{bluePath (1, 2), bluePath (2, 3) , bluePath (1, 3)}, both having the EDB rules. The first

model makes sense the only bluePath is one that follows from Rule 1 and monopoly fact follows

from Rule 3, but the second model makes no sense and the facts bluePath(2, 3) and bluePath(1,

3) seems to appear from nowhere. However it is also a minimal model, in that

1. When you make any substitutions of constants for X, Y and (if necessary) Z, rules (1) –

(3) are true if the true ground atomic formulas are those given in (B), plus the given data.

2. If we delete one or more facts from (B), point (1) no longer holds.

But the question is which one is the intended model of the program, and the first model seems to

be the intended one.

3.2 Stratified Logic

 The least controversial type of negation is stratified negation, where there is no recursion

involved in negated subgoals. This idea was arrived at by Van Gelder [14], Apt, Blair and

Walker [9], and Naqvi [15]. A normal logic program P is stratified if there is an assignment of

integers (0, 1, 2…3) to predicates p in P such that for each clause r in P the following holds. If p

is the predicate in head of r and q is the predicate Li in body of r then stratum (p) ≥ stratum (q),

if Li is positive, and stratum (p) > stratum (q), if Li is negative. Thus, example 3.1.1 is stratified

13

as monopoly depends negatively on bluePath but bluePath does not depend at all on monopoly,

i.e. there are no cycles with negation. We can draw a dependency graph for the above logic

program to check whether it is stratified or not. The dependency graph which does not involve

cycles with not, depicts a stratified logic program. The EDB predicates are drawn lowest while

the IDB predicates are drawn higher, and if there is a rule p :- q then p is drawn above q. For the

above logic program the dependency graph is as follows:

Figure 3.1 Dependency graph for example 3.1.1

So, we can compute bluePath facts completely from Rules (1) and (2) and then use Rule (3) to

compute monopoly facts. This process yields the first model {bluePath(1, 2), monopoly (2, 3)}

for the example above and confirms that this should be the intended model. The result of

computing predicates this way is often known as the perfect model which is defined by taking

least fixed point in order from lower strata to higher strata. An alternative view is

circumscription [16], of dealing with negation that says the only facts true for predicates are

those that can be followed from rules and given data. Then for example 3.1.1 we circumscribe

bluePath and declaring those facts as true that follow from rules (1) and (2) and given blue data,

and declaring all other pairs of X, Y for bluePath as false. Then these facts are used in rule (3) to

assert monopoly facts.

blue red

monopoly

bluePath

EDB

IDB

not

14

 The idea of stratification was extended Przymusinska and Przymusinski [17] into locally

stratified programs. Here the predicate can negatively depend on itself, but when rules are

instantiated by constants the program contains no cycles. A program can be locally stratified for

one set of EDB rules and non- stratified for another. The semantics of locally stratified

programs have been treated in [14, 9, 17, 18] where they give a definition of perfect models and

have shown that locally stratified programs have one. An example of locally stratified program is

given next, which represents a board game that says a player wins the game if board is on

position X and there is a legal move from X to Y and Y is not a winning position.

Example 3.2.1

win(X) ← move(X,Y) , not win(Y).

Here win depends negatively on itself, so it is not stratified. However if move is acyclic i.e., you

can move from X to Y but there is no sequence of moves that takes you from Y to X. Then if we

instantiate the rules in all possible ways, there is no way win(a), for a particular board game a,

can depend negatively on itself, Thus, win rule is locally stratified provided move is acyclic.

Next, we present the semantics of non-stratified programs.

3.3 3-Valued Semantics

 The landmark paper of Fitting [5] introduced semantics for logic programs with negation that

was very different and gave a more uniform semantics, based on the 3-valued logic given by

Kleene. The 3
rd

 truth value, connotes unknown truth value, thus now an atom can be possibly

true, false, or unknown. A principal result was that every program has a minimum 3-valued

model and that according to Fitting could be taken as the semantics of the program from now on

known as Fitting‟s semantics. Another model based on 3-valued logic, which has competing

15

thrust to provide meaning of non-stratified program is the well founded model of van Gelder, ross

and Schilpf [7]. We briefly describe here the Fitting‟s semantics and the well founded semantics.

3.3.1 Fitting’s Semantics

 Fitting‟s semantics is based on the notion of partial interpretations. We give a brief

description here, the reader is referred to [5] for detailed information.

Definition 1. A partial interpretation is a pair 〈I+
, I

-〉, where I
+
 and I

-
 are any subsets of the

Herbrand base.

 A partial interpretation is consistent if I
+
 ∩ I

-
=∅. For any partial interpretations I and J

we let I ∩ J be the partial interpretations 〈I+
 ∩ J

+
, I

-
 ∩ J

-〉 , and I ∪ J be the partial interpretations

〈I+ ∪ J
+
, I

-
 ∪ J

-〉. We also say that I ⊆ J, whenever I
+
 ⊆ J+

 and I
-
 ⊆ J-

. The Fitting‟s model for a

general logic program P is the least fixed point of the immediate consequence function 𝑇𝑃
𝐹

 on

consistent partial interpretations defined as follows (let P* be the ground version of P):

Definition 2. Let I be the partial interpretation, then 𝑇𝑃
𝐹 (I) is the partial interpretation given by

𝑇𝑃
𝐹 (I

+
) = {a | for some clause a ← l1, l2… lm ∈ P*, for each 1≤ i ≤ m

if li is positive li ∈ I
+
 and,

if li is negative li′ ∈ I
-
}

𝑇𝑃
𝐹 (I

-
) = {a | for some clause a ← l1, l2… lm ∈ P*, for each 1≤ i ≤ m

if li is positive li ∈ I
-
 and,

if li is negative li′ ∈ I
+
}

16

where li′ is the complement of literal li. It is easily seen that 𝑇𝑃
𝐹 is monotonic and its application

on consistent partial interpretation results in consistent partial interpretation. It thus poses a least

model that is the Fitting model for P. This least fixed point is easily shown to be 𝑇𝑃
𝐹

 ↑ 𝜔, where

the ordinal powers of 𝑇𝑃
𝐹are defined as follows:

Definition 3. For any ordinal α,

 〈∅,∅〉 if α = 0,

𝑇𝑃
𝐹↑ α = 𝑇𝑃

𝐹 (𝑇𝑃
𝐹 ↑ (α -1)) if α is a successor ordinal,

 〈 ∪β<α(𝑇𝑃
𝐹 ↑ β)

+
, ∪β<α(𝑇𝑃

𝐹 ↑ β)
- 〉 if α is limit ordinal

We show an example of Fitting semantics computation on a general deductive database.

Example 3.3.1 Consider a general deductive database P :

r(a, c).

r(b, b).

s(a, a).

p(X) ← r(X, Y) , not p(Y).

p(Y) ← s(Y, a).

Then 𝑇𝑃
𝐹 ↑ 0 = 〈∅,∅〉. 𝑇𝑃

𝐹 ↑ 1 is given by the following partial interpretation:

(𝑇𝑃
𝐹 ↑ 1)

+
 = {r(a, c), r(b, b), s(a, a)},

(𝑇𝑃
𝐹 ↑ 1)

-
 = {r(a ,a), r(a, b), r(b, a), r(b, c), r(c, a), r(c, b), r(c, c),

17

s(a, b), s(a, c), s(b, a), s(b, b), s(b, c),

s(c, a), s(c, b), s(c, c)} .

And 𝑇𝑃
𝐹 ↑ 2 = I ∪ 𝑇𝑃

𝐹 ↑ 1, where I is the partial interpretation 〈{p(a)},{p(c)}〉.

Furthermore, for every ordinal α > 2, 𝑇𝑃
𝐹 ↑ α can be seen to be same as 𝑇𝑃

𝐹 ↑ 2. So, we can see in

Fitting‟s model that it assigns p(a) as true, p(c) as false and no truth value is assigned to p(b).

Fitting‟s semantics has the distinction of being the first semantics to provide unique model for

general logic programs. However, they fail to capture positive recursion.

Example 3.3.2: Consider the following logic program:

a(0) ← b(0).

b(0) ← a(0).

The Fitting‟s model for this program is 〈∅,∅〉, and it assigns truth value unknown to both a(0)

and b(0). It is easily seen that there is positive recursion between a(0) and b(0). This is captured

by the well founded semantics.

3.3.2 Well Founded Semantics and Unfounded Sets

 The well founded semantics are also the 3-valued semantics given by Van Gelder et al. It

assigns some ground atoms truth value as true, some as false and rests are unknown. The

unfounded sets form the basis of negative conclusions in well founded semantics. For detailed

description the reader is referred to [7].

18

Definition 4. Let a program P, its Herbrand base H and a partial interpretation I be given. Then

A ⊆ H is an unfounded set of P with respect to I if each atom p ∈ A satisfies the following

condition: For each instantiated rule r of P whose head is p, (at least) one of the following holds.

1. Some positive subgoal q or negative subgoal not q of body occurs in ¬I i.e., is

inconsistent with I.

2. Some positive subgoal of body occurs in A.

Informally the well founded semantics uses condition (1) and (2) to draw negative conclusions.

We illustrate unfounded sets through example 3.3.3.

Example 3.3.3

Consider the following ground logic program:

p(a) ← p(c), not p(b).

p(b) ← not p(a).

p(e) ← not p(d).

p(c) ← .

p(d) ← q(a), not q(b).

p(d) ← q(b), not q(c).

q(a) ← p(d).

q(b) ← q(a).

The atoms {p(d), q(a), q(b), q(c)} form the unfounded set with respect to interpretation ∅. q(c)

satisfies the first condition and p(d), q(a) and q(b) satisfy the second condition. It is easily seen

that p(d), q(a) and q(b) depend positively on each other. As a result none of them can be the first

to be proven true. Also declaring one of them false does not make any other remaining two true.

This is where the set {p(a), p(b)} does not form an unfounded set, even though they depend on

19

each other. This is because they depend negatively on each other. As a result making one of them

false makes the other true. And if both are declared false at once we have inconsistency. The

intuition of preceding example is immediate that union of arbitrary unfounded sets is an

unfounded set. This leads naturally to:

Definition 5. The greatest unfounded set of P with respect to I, GUSP(I) is the union of all

unfounded sets with respect to I.

 We now define three transformation needed to in turn define the well founded partial

model.

Definition 6. The transformations TP(I), UP(I) and WP(I) are defined as follows:

 TP(I) is the transformation defined by p ∈ TP(I) if and only if there is some instantiated

rule r of P such that r has head p, and each subgoal literal in body of r occurs in I.

 UP(I) is the transformation defined by UP(I) = ¬G, where G is GUSP(I).

 Finally WP(I) = TP(I) ∪ UP(I).

Definition 7. The well founded semantics of a program P is the least fixed point of WP(I). Every

positive literal denotes that its atom is true, every negative literal denotes that its atom is false

and missing atoms have undefined truth value.

3.4 Stable Model Semantics

 Another competing thrust that provides meaning to general logic programs is the stable

model semantics. They were proposed by Gelfond and Lifschitz [8] at around the same time as

well founded model.

20

In its original form it is a two-valued semantics that is every atom is either true or false.

The notable feature of stable model semantics is its simplicity. We first define stable models for

logic programs without negation i.e., definite logic programs.

Definition 8. The least model of a definite logic program is the smallest set of atoms M such that

for every rule of the form

A ← B1, B2, …, Bn.

If B1, B2, …, Bn ∈ M then A ∈ M.

This definition is same as TP for definite logic programs as defined by Emden and Kowalski.

Thus for general logic program the stable model is a set of atoms. We assume that a set of atoms

is available to us and based on certain transformations we decide whether the given set is stable

or not.

Definition 8. Let P be a ground general logic program and let S be a set of atoms. The

Gelfond-Lifschitz transformation P
S
 of P with respect to S is obtained by:

1. Deleting every rule with ~L in body with L ∈ S.

2. Deleting negative literals from body of the remaining rules.

P
S
 is a definite logic program. S is a stable model of P if S is the least model of P

S
.

The definition of stable model semantics is simple and elegant but, the stable model

semantics are not constructive and thus computationally expensive. As it can be seen a general

logic program can have more than one stable model. Consider the following ground program:

21

Example 3.4.1

a ← not b.

b ← not a.

 Above program has two stable models {a} and {b}, while the well founded model is ∅.

The stable model semantics differ from other semantics discussed so far. The well founded

conclusions are only those that are necessarily true. However each stable model corresponds to a

possible set of beliefs. Thus, when the program has more than one stable model, it essentially

means that there is more than one way in which the meaning of the program can be interpreted.

 If there is a unique stable model of a program then it is taken to be the preferred model of

the program. Also if there is a two valued well founded model i.e., no ground atom is assigned

unknown value then this model is the unique stable model, however the converse is not true as

shown in [7]. There are programs with unique stable models that do not coincide with the well

founded model.

Example 3.4.2 An example taken from propositional logic [13]

(1) p ← not q.

(2) r ← p.

(3) q ← not p.

(4) r ← not r.

 The taking the model as {p, r}, and using P
S
 transformation we first remove rules (3) and (4)

and now applying (2) of P
S
 transformation we get the following definite logic program.

22

p ← .

r ← p.

The least model for this definite logic program is {p, r}. Thus this is a stable model and it is

unique but well founded model for the above program is ∅.

 There have been number developments relating and modifying stable models and well

founded models. For example Sacca and Zaniolo [12] look at intersection of stable models, Baral

and Subramaninan [19] consider sets of stable models as meaning of program. We do not get

into details of these here. Other developments are Przymusinski [20] gives 3-valued extensions

to original two-valued definition of stable models, and shows that they coincide with well

founded models.

23

CHAPTER 4

PARACONSISTENT RELATIONAL DATA MODEL

In this chapter we present a key background material related to our proposed approach. We

introduce a model based that is the generalization of the relational data model, the paraconsistent

relational model. Here we give a brief overview of this model, for a detailed description the

reader is referred to [21].

4.1 Paraconsistent Relations

 Paraconsistent relations are the fundamental mathematical structures underlying the

model, which essentially contains two kinds of tuples, ones that definitely belong to the relation

and others that do not belong to the relation. These structures are strictly more general than the

ordinary relations, in that for every ordinary relation there is a paraconsistent relation but not

vice-versa. They provide a framework for incomplete or even inconsistent information about the

tuples. They naturally model the belief systems rather the knowledge systems, and are thus

generalizations of ordinary relations. The operators on ordinary relations can also be generalized

for paraconsistent relations.

4.2 Formal Definition of Paraconsistent Relations

 Let a relation scheme (or just scheme) Σ be a finite set of attribute names, where for any

attribute name A ∈ Σ, dom(A) is a non-empty domain of values for A. A tuple on Σ is any map t:

Σ → ∪A ∈ Σ dom(A), such that t(A) ∈ dom(A), for each A ∈ Σ. Let τ(Σ) denote the set of all tuples

on Σ.

24

Definition 9. A paraconsistent relation on a scheme Σ is a pair R = 〈R+
, R

-〉, where R
+
 and R

-

are any subsets of τ(Σ). We let P(Σ) be the set of all paraconsistent relations on Σ.

Definition 10. A paraconsistent relation R on scheme Σ, is consistent if R
+
 ∩ R

-
 = ∅. We let C(Σ)

be the set of consistent relations on Σ. Moreover R is called complete relation if R
+
 ∪ R

-
 = τ(Σ).

If R is consistent and complete i.e. R
-
 = τ(Σ) – R

+
, then it is a total relation and we let T (Σ) be

the set of all total relations on Σ.

4.3 Algebraic Operators on Paraconsistent Relations

 This section presents the algebraic operators on paraconsistent relations. To reflect the

generalization of algebraic operators of ordinary relations, a dot is placed over the ordinary

relation operator to obtain corresponding paraconsistent relation operator. For example ⋈,

denotes the natural join among ordinary relations, and ⋈ denotes natural join among the

paraconsistent relations. We first define four set-theoretic algebraic operations on paraconsistent

relations.

Definition 11. Let R and S be two paraconsistent relations on scheme Σ. Then,

a) the union of R and S, denoted by R ∪ S, is a paraconsistent relation on scheme Σ given

by, (R ∪ S)
+
 = R

+
 ∪ S

+
 , (R∪ S)

-
 = R

-
 ∩ S

-
;

b) the complement of R, denoted by − R, is a paraconsistent relation on scheme Σ given by,

(− R)
+
 = R

-
 , (− R)

-
 = R

+
;

c) the intersection of R and S, denoted by R ∩ S, is a paraconsistent relation on scheme Σ

given by, (R ∩ S)
+
 = R

+
 ∩ S

+
, (R ∩ S)

-
 = R

- ∪ S-
;

25

d) the difference of R and S, denoted by R − S, is a paraconsistent relation on scheme Σ

given by, (R − S)
+
 = R

+
 ∩ S

-
, (R − S)

-
= R

- ∪ S
+
.

If Σ and Δ are relation schemes such that Σ ⊆ Δ, then for any tuple t ∈ τ(Σ), we let t
Δ

denote the

set {t′ ∈ τ(Δ)| t′(A) = t(A), for all A ∈ Σ} of all extensions of t. We extend this notion for any T ⊆

τ(Σ) by defining T
Δ

= ∪𝑡∈𝑇 t
Δ

. We now define some relation-theoretic operators on

paraconsistent relations.

Definition 12. Let R and S be paraconsistent relations on schemes Σ and Δ, respectively. Then,

natural join of R and S, denoted by R ⋈ S, is a paraconsistent relation on the scheme Σ ∪ Δ,

given by (R ⋈ S)
+
 = R

+
 ⋈ S+ , (R ⋈ S)

-
 = (R

-
)

Σ∪Δ
 ∪ (S

-
)

Σ∪Δ
, where ⋈ is natural join among

relations.

Definition 13. Let R be a paraconsistent relation on scheme Σ, and Δ be any scheme. Then, the

projection of R onto Δ, denoted by 𝜋 Δ(R) is a paraconsistent relation on Δ given by, 𝜋 Δ(R)
+
 =

πΔ((R
+
)
 Σ∪Δ

), and 𝜋 Δ(R)
-
= { t ∈ τ(Σ) | t

 Σ∪Δ ⊆ (R-
)
 Σ∪Δ

}, where πΔ is the usual projection over Δ

on ordinary relations.

Definition 14. Let R be a paraconsistent relation on scheme Σ, and let F be any logic formula

involving attribute names in Σ, constant symbols (denoting values in the attribute domains),

equality symbol =, negation symbol ¬, and connectives ∧ and ∨. Then, the selection of R by F,

denoted 𝜎 F(R), is a paraconsistent relation on scheme Σ, given by 𝜎 F(R)
+
 = σF(R

+
), and 𝜎 F(R)

-
 =

R- ∪ 𝜎¬𝐹(τ(Σ)), where σF is usual selection of tuples satisfying F.

Example 4.3.1. Strictly speaking, relation schemes are set of finite attribute names, but in this

example they are treated as ordered sequences of attribute names, so tuples can be viewed as the

26

usual list of values. Let {a, b, c} be a common domain for all attribute names, and let R and S be

the following paraconsistent relations on schemes 〈X, Y〉 and 〈Y, Z〉, respectively:

R
+
 = {(b, b), (b, c)}, R

-
 = {(a, a), (a, b), (a, c)}

S
+
 = {(a, c), (c, a)}, S

-
= {(c, b)}.

Then R ⋈ S, is the following paraconsistent relation on scheme 〈X, Y, Z〉:

(R ⋈ S)
+
 = {(b, c, a)},

(R ⋈ S)
-
 = {(a, a, a), (a, a, b), (a, a, c), (a, b, a), (a, b, b), (a, b, c), (a, c, a),

 (a, c, b), (a, c, c), (b, c, b), (c, c, b)}.

Observe how (R ⋈ S)
-
 blows up to contain extensions of all tuples in R- and S- . Now 𝜋 〈X, Z〉(R ⋈

S) becomes the following paraconsistent relation scheme 〈X, Z〉:

𝜋 〈X, Z〉(R ⋈ S)
+
 = {(b, a)}, 𝜋 〈X, Z〉(R ⋈ S)

-
 = {(a, a), (a, b), (a, c)}.

The tuples in negative component of the projected paraconsistent relation are such that all their

extensions were present in negative component of original paraconsistent relation.

27

Part II

A NOVEL APPROACH FOR STABLE MODEL COMPUTATION

28

CHAPTER 5

THE PROPOSED APPROACH

 In this chapter we present a novel approach for stable model computation, which is

motivated by the idea to develop faster algorithms for computing stable models of a logic

program. We give the overview of the model and then present a detailed description of each of

the modules involved.

5.1 Assumptions

We assume the following conditions hold for the logic program that is the input to our approach:

1. Let L be the given underlying language with a finite set of constants, variables, and

predicate symbols, but no function symbols. A term is either a variable or a constant. An

atom is of the form p(t1, t2, …, tn) where p is the predicate symbol and ti are terms. A

literal is either a positive literal A or a negative literal ¬A, where A is an atom. Our

input logic program would be a finite set of clauses of the form :

a ← b1, b2, …, bm

 where m ≥ 0 and a and each bi is an atom.

2. The terms involved in the IDB (intentional database) of the logic program can only

consist of variables and not constants. p(X, 2) where p is the predicate symbol, is not

allowed as a term in the logic program. Thus there won‟t be any use of select operator in

our approach.

29

5.2 Overview of the Steps Involved

Figure 5.1 Block diagram for the proposed approach

 The above figure shows the block diagram of various steps involved in the computation.

The process starts with compiling a logic program that performs the syntax and semantic checks

and produces a data structure called rules consisting of the logic program. These rules are then

transformed using the paraconsistent relation operators into another logic program consisting of

transformed rules. The transformed rules are then used to compute the weak well founded model

using the fix point operator. After the weak well founded model is computed the positive and the

unknown values are drawn from it and send to generate set of all possible models that are tested

for stability. The rules are also sent for ground program generation. The ground program and the

models for test are sent one by one to the stable model tester which tests each of them for

stability and returns a yes if model is stable and no otherwise. We also note the time taken to

Stable Model

Tester
Compiler

Transformati

on

Weak well

founded model

Generator

Test Models

Generator

Ground Program

Generator

LP(E, I) LP ′(E ′, I ′) P & U Model

G
ro

u
n

d
 P

ro
g

ra
m

Paraconsistent relation

operators

Fix point

operator (TP)

Fix point

operator (TP)

LP(E, I) Yes

No

LP : Logic Program E : EDB I: IDB P : Positive Values U: Unknown Values

30

complete the process of stable model computation. Next we describe each of the modules in

detail.

5.3 Modules

 In this section we go over each of the modules in our described above. We start with the

compiler and the details about the Datalog language. Next we introduce two algorithms namely,

CONVERT and TRANSFORM in the transformation module. Then we go over model

generation for stability testing and ground program generation and finally the Stable model tester

is described.

5.3.1 Datalog Compiler

 Datalog (one without function symbols) with negation, with a well defined declarative

semantics based on the work in logic programming has been widely accepted as standard

deductive database language [25, 26]. We use Datalog as our language and build a compiler so as

to do the syntax and semantic checks and create a data structure, for efficient storage of the logic

program. Some definitions related to Datalog.

Definition 15. Atomic formula:

a. p(x1, x2, …, xn) where p is a relation name (predicate name) and x1, x2, …, xn are variables

or constants. According to our assumption x1, x2, …, xn can only be variables in EDB.

b. x <op> y where x and y are either constants or variables and <op> is one of the

following six comparison operators: <, <=, >, >=, =, != . In our language we assume

there are no such atomic formulas present.

31

Variables that appear only once in the rule can be replaced by anonymous variable (represented

by underscore). Every anonymous variable is different from all other variables.

Definition 16. Datalog rule:

p :- q1, q2, …, qn.

Where, p is an atomic formula and q1, q2, …, qn are either atomic formula or negated atomic

formula (i.e. atomic formula preceded by not). p is referred to as the head and q1, q2, …, qn are

referred to as subgoals of body.

Definition 17. Safe Datalog rule:

A Datalog rule p :- q1, q2, …, qn. is safe

a. If every variable that occurs in a negated subgoal also appears in a positive subgoal and

b. If variable that appears in the head of the rule also appears in the body of the rule.

The compiler is build using the JFlex and JCup technologies that builds the lexer and parser. A

block diagram depicts the process. We input a logic program in the compiler and get a data

structure called rules as the output if there is no syntax or semantic errors.

The data structure is build using two classes namely predicate and rule. The parameters and its

types for the classes are shown below (using the definitions above):

Table 5.1 Predicate

Parameter Name Data Type Description

Name String Stores the relation name as p for above atomic

formula

Arglist Vector Stores the (x1, x2…xn) arguments

isNegative Boolean Stores the information whether atomic formula is

positive or negative.

32

Table 5.2 Rule

Parameter Name Data Type Description

Head Predicate Stores the atomic formula p.

Body Vector A vector of predicates that stores (q1, q2 …qn).

isEDB Boolean Whether rule is EDB (only has head) or IDB.

Finally, the data structure rules is a vector where each element is of type rule.

We also perform some semantic checks, which are as follows:

1. Arity Check: If an atomic formula appears more than once in the rules, then for its each

instance the argument list should be of the same size, i.e. if p(x1, x2…xn) and q(y1, y2,

…yn) are in logic program and if p = q, then n should be equal to m (n = m).

Example 5.3.1

(1) p(X, Y) :- r(X, Y, Z), s(X, Z).

(2) q(Z) :- r(X, Y), s(Z).

the above program has error as the relation named r has argument lists of size 2 in rule 1

and of size 3 in rule 2.

2. Safety Checks

a. Every variable that appears in negated subgoal should appear in the positive

subgoal. Suppose there is rule of the form:

p(X, Y) :- r(X, Y), not s(X, Z)

then the rule is not safe as the variable Z only appears in a negative subgoal and

not in a positive subgoal.

b. Every variable that appears in the head of the rule must appear in the body of the

rule. Suppose there is rule as follows:

p(X, Y) :- r(X, Z), s(Z).

33

 is not safe as variable Y does not appear in the body of the rule.

Once we get an error free logic program we move to the next step that is transformation of the

logic program into a new logic program.

5.3.2 Transformation

 We now present a transformation of a general deductive database P. In this method the

paraconsistent relations are the semantic objects associated with the predicate symbols in P. The method

involves two steps. The first step is to convert P into a set of paraconsistent relation definitions for

predicate symbols occurring in P taken from [21]. These definitions are of the form

p = Dp,

where, p is a predicate symbol of P, and Dp is an algebraic expression involving predicate

symbols of p and paraconsistent relation operators. The second step is to generate a new logic

program from the algebraic expression that can be used to compute the weak well founded

model.

 Before describing the method to convert the given database P into set of definitions for

predicate symbol in P, let us look at an example. Suppose the following are the only clauses with

the predicate symbol p in their heads:

 p(X) ← r(X, Y), ¬p(Y)

p(Y) ← s(Y, Z)

 From these clauses the algebraic definition constructed for symbol p is the following:

p = (𝜋 {X}(r(X, Y) ⋈ − p(Y)))[X] ∪ (s(Y, Z)) [Y]

34

Such a conversion exploits the close connection between attribute names in relation schemes and

variables in clauses, as pointed out in [25]. The expression thus constructed can be used to arrive

at a better approximation of paraconsistent relation p from some approximations of p, r and s.

We now give the algorithm to convert one clause into an expression.

 The algorithm presented here is a modification of the original convert algorithm as our

deductive database does not involve any select conditions and the terms of IDB do not contain

constant values.

Algorithm 1 CONVERT

Input: A general deductive database clause l0 ← l1, l2, …, lm.

Let l0 be of the form p0(A01, …, A0k0), and each li, 1 ≤ i ≤ m, be either of the form pi(Ai, …, Aiki) or

of the form ¬pi(Ai, …, Aiki). For any i, 1 ≤ i ≤ m, let Vi be the set of all variables occurring in li.

Output: An algebraic expression involving paraconsistent relations.

Method: The expression is constructed using the following steps:

1. Let 𝑙 i be the atom pi(Bi1, …, Biki) and Fi be the conjunction of Ci1 ˄ Ci2 … ˄ Ciki. If li is a

positive literal, then let Qi, be the expression 𝜋 Vi(𝜎 𝐹𝑖 𝑙 𝑖)). Otherwise, let Qi be the

expression − 𝜋 Vi(𝜎 𝐹𝑖 𝑙 𝑖)).

As a syntactic optimization, if all conjuncts of Fi are true (i.e. all argument of li are distinct

variables), then both 𝜎 𝐹𝑖 and 𝜋 Vi are reduced to identity operations, and hence are dropped from

the expression. For example, if li = ¬p(X, Y), then Qi = − p(X, Y). As our language does not

contain any select conditions we drop both 𝜎 𝐹𝑖 and 𝜋 Vi to identity operation always.

35

2. Let E be the natural join (⋈) of Qi’s thus obtained, 1 ≤ i ≤ m. The output expression is

(𝜋 V(E))[B01, …, B0k0], where V is the set of variables occurring in 𝑙 0.

From the algebraic expressions obtained by algorithm CONVERT for all clauses in general deductive

database we construct another logic program using algorithm Transform.

Before going to transform we give an example from [13] of a deductive database and application of

convert algorithm on its clauses.

Example 5.3.2

This example represents a circuit consisting of an unusual sort of a logic gate, with one positive input X,

and one negative input Y, the its output is 1 or “true” if and only if X is 1 and Y is 0(“false”). There is an

EDB predicate g(X, Y, Z) that says there is a gate of this type with positive input X, negative input Y, and

output Z. We may think of inputs and outputs as being terminal or wire nets. There is also an EDB

predicate t0 that is true of those input terminals that are externally set to 1. Input terminals that are set to 0

do not appear in t0.

The IDB predicate is t. The intended significance of the positive ground atom t(a) being in the

model is that the circuit value of terminal a is 1. If ¬t(a) is in the model, then the value of terminal is 0.

What if the value that terminal a has ambiguous; either it depends on critical race in the circuit or

oscillates in normal circuit operation? Then, we expect t(a) to have a third, “unknown” value of three

valued logic. The following are the rules defining the operation of the gates:

t0(2).

g(5,1,3).

g(1,2,4).

36

g(3,4,5).

t(Z) :- t0(Z) .

t(Z) :- g(X, Y, Z), t(X), not t(Y) .

The data in the EDB i.e. t0(2), g(5, 1, 3), g(1, 2, 4) and g(3, 4, 5) represents the circuit of Figure

5.5.2 with only second input set to true.

Figure 5.2 Circuit for Example 5.5.2

We now apply Algorithm CONVERT on the two IDB clauses:

1. t(Z) :- t0(Z). The expression of this is t(Z) :- t0(Z).

2. t(Z) :- g(X, Y, Z), t(X), not t(Y). The positive literals g(X, Y, Z) and t(X) remain the same and the

literal not t(Y) becomes − t(Y). Then on the application of step 2 we get the following as the

algebraic expression:

t(Z) :- 𝜋 [Z](E)

 where, E is the natural join (⋈) of g(X, Y, Z), t(X) and − t(Y).

37

When we get the algebraic expressions for all the clauses of IDB we move to the next

step. Here we introduce the algorithm TRANSFORM that takes these algebraic expressions as

input and returns a logic program as output. This logic program contains positive and negative

parts for all the different predicate symbols including the EDB relations. The transformation

converts the potentially harmful negation in the logic program into harmless negation. We also

create some new relations like the temporary and domain.

Algorithms 2 TRANSFORM

Input: EDB clauses and Algebraic expressions involving paraconsistent relations for IDB

clauses.

Output: A general logic program consisting of clauses of the form l0 ← l1, l2, …, lm.

Let l0 be of the form p0(A01, …, A0k0), and each li, 0 ≤ i ≤ m, be either of the form pi(Ai, …, Aiki) or

of the form ¬pi(Ai, …, Aiki).

Method: The logic program is constructed is using the following steps.

1. Transform the EDB clauses

a. Let a1,…, an be the constants present in EDB. Then, for each constant value ai create

the following predicates with dom (domain) as the predicate symbol as follows

dom (a1).

:

dom (an).

38

b. Let l1,…,ln be the EDB predicates, where li is pi(B1,…,Bm), B1,..,Bm are constants, and

1 ≤ i ≤ n. Complete each EDB predicate pi as follows. Firstly, rename the existing

predicates and add it to the new logic program:

p1_plus(B1, ..., Bm).

:

pn_plus(B1,…, Bm).

For each unique predicate name pi in EDB add a rule as follows:

pi_minus(V1,…,Vn) :- dom(V1), dom(V2),…, dom(Vn), not pi_plus(V1,…, Vn).

where, V1,…,Vn are variables.

For example there are two EDB predicates p(1, 2) and p(2, 3) then we add the

following predicates, p_plus(1, 2), p_plus(2, 3) and a rule written below to the new logic

program.

p_minus(X, Y) :- dom(X), dom(Y), not p_plus(X, Y).

2. Renaming: If n IDB expressions have head with same predicate name p, and n > 1,

then, rename the clauses as p1, p2, …, pn in the algebraic expression. Let the argument

list be (V1, …, Vm) where V1,…, Vm are variables. Add the following positive predicates to

the logic program:

p_plus(V1,…,Vm) :- p1_plus(V1,…,Vm).

:

p_plus(V1,…,Vm) :- pn_plus(V1,…,Vm).

39

Add the following rule for the negative predicate.

p_minus(V1,…,Vm) :- p1_minus(V1,…,Vm), …., pn_minus(V1,…,Vm).

And, add the following rule for unknown values.

p_unknown(V1,…,Vm) :- dom(V1), …, dom(Vm), not p_plus(V1,…,Vm) , not

p_minus(V1,…,Vm).

3. Construct paraconsistent trees for each IDB expression.

a. Let the IDB clause be l0 ← l1, …, ln, p1,…,pm where, l1, …, ln are positive

literals and p1, …, pm are negative literals. For this clause let the following be

the algebraic expression:

l0 :- (𝜋 V(E))[B01, …, B0k0]

where, V is the set of variables occurring in l0 and E is the natural join of l1, …, ln,

p1,…,pm.

Let l0 = p(B1, …, Bn), li = ai(C1,…, Cm) , where 1 ≤ I ≤ m and pj = ¬ bj(D1, …, Dk)

where 0 ≤ j ≤ k, and C1,…, Cm and D1,…, Dk are variables. So, the paraconsistent

tree of the above expression would be depicted as follows:

Figure 5.3 Paraconsistent expression tree

40

b. Naming the tree

i. Name the child node ai for 1 ≤ i ≤ n with its pair 〈ai_plus, ai_minus〉.

ii. Name the complement (−) nodes with child node as bj as a pair

〈bk_complementplus, bk_complementminus〉, where 0 ≤ j ≤ k.

iii. If join (⋈) is an internal node name it tempn where n is the n
th

 rule in IDB.

iv. Name the root node with the head predicate p as a pair 〈p_plus, p_minus〉.

The named tree of figure 5.2.3 is as follows:

Figure 5.4 Named paraconsistent tree

4. Create rules for paraconsistent trees of all IDB expressions using the steps below.

Start writing rules bottom-up for all internal nodes.

a. If node type is complement (−) and the child node is predicate c(B1, B2, …,

Bn).

c_complementplus(B1, B2, …, Bn) :- c_minus(B1, B2, …, Bn).

c_complementminus(B1, B2, …, Bn) :- c_plus(B1, B2, …, Bn).

.

a1

πV

.

. . .

an bkb1

.

.

.

〈a1_plus, a1_minus〉 〈an_plus, an_minus〉 〈b1_plus, b1_minus〉 〈bk_plus, bk_minus〉

〈bk_complementplus, bk_comlpementminus〉

〈tempn_plus, tempn_minus〉

〈p_plus, p_minus〉

〈b1_complementplus, b1_comlpementminus〉

41

b. If node type is join (⋈) and it is the root node named 〈p_plus, p_minus〉, with

the child nodes named as 〈c1_plus, c1_minus〉,…,〈cn_plus, cn_minus〉 then

add the following rules:

p_plus(B1,…Bz) :- c1_plus(V1, …, Vm),…, cn_plus(T1,…Tk).

Also, add n rules where, n is the number of child nodes, and 1 ≤ i ≤ n as follows:

p_minus(B1,…Bz):- ci_minus(U1,…,Um).

if m < n that is if B1,…Bj = U1, …, Um and i ≤ j ≤ z, then extend the rule by

adding dom predicates for Bj,…Bz to the above rule:

p_minus(B1,…Bn):- ci_minus(U1,…,Um), dom(Bj), …., dom(Bz).

c. If node type is join (⋈) and it is an internal node named tempn with child

nodes named as 〈c1_plus, c1_minus〉,…,〈cn_plus, cn_minus〉, then let the

argument list of temp be V, where V is the set of all the variables occurring

the child nodes of tempn. And we add the rule as follows:

tempn_plus(V) :- c1_plus(V1, …, Vm),…, cn_plus(T1,…Tk).

Also, add n rules where, n is the number of child nodes, and 1 ≤ i ≤ n as follows:

 tempn_minus(V) :- ci_minus(U1,…,Um), dom(B1), …., dom(Bz).

where B1,…, Bz are the set of variables not present in U1,.., Um.

d. If node type is projection (𝜋 V) named p, and V is the set projected variables, and

the child node is named tempn. In tempn , variables that do not appear in V are

anonymous and can be denoted by underscore.

p_plus(V) :- tempn(V, _,…).

42

(represent the projected variables in temp and rest of them with underscore)

We add three more rule for the negative predicate as follows:

 tempn1(A1,…, An) :- dom(A1),…, dom(An).

 tempn2(V) :- tempn1(A1,…,An), not tempn_minus(A1,…,An).

 p_minus(V) :- dom(V1),..,dom(Vn), not tempn2(V).

Where, A1,…, An is the set of variables in child node tempn and V1,…, Vn are the

set of variables in V.

e. If the expression tree is a single child tree and it does not involve even

projection then for such tree we write the rules as follows. If root node is

named 〈p_plus, p_minus〉 and the child node is 〈c_plus, c_minus〉 then the

rules are:

p_plus(B1,…, Bn) :- c_plus(B1,…, Bn).

p_minus(B1,…, Bn) :- c_minus(B1,…, Bn).

5. For each unique IDB predicate p, except for those created in Step 2, add the following

rule for unknown values:

p_unknown(B1...Bn) :- dom(B1),…,dom(Bn), not p_plus(B1,…, Bn), not p_minus(B1,…, Bn).

The TRANSFORM algorithm removes the „harmful negation‟ or we can say the unsafe

negation from the original program because with each negative predicate it introduces the dom

predicates, which are joined with the negative predicate, that limits the domain to all constant

value present in the Herbrand base. This could otherwise cause safety issue as to negation of a

relation can be infinite. Thus, TRANSFORM algorithm eliminates the arbitrary negation from

43

general deductive databases and at the same retains the meaning of the deductive databases with

respect to Fitting‟s model.

Next we present an example of application of transform algorithm on algebraic

expressions of example 5.3.2.

Example 5.3.3

Consider the expressions shown below:

t0(2).

g(1, 2, 4).

g(3, 4, 5).

g(5, 1, 3).

(1) t(Z) :- t0(Z).

(2) t(Z) :- 𝜋 {Z}(E)

 where, E is the natural join (⋈) of g(X, Y, Z), t(X) and − t(Y).

1. (a) The constant in the EDB of the program are {1, 2, 3, 4, 5}, so we add the following five EDB

rules:

dom(1), dom(2), dom(3), dom(4) and dom(5).

(b) Now we complete the EDB predicates t0 and g by adding the following rules.

t0plus(2), g_plus(1, 2, 4), g_plus(3, 4, 5), g_plus(5, 1, 3).

t0_minus(Z) :- dom(Z) , not t0_plus(Z).

g_minus(X, Y, Z) :- dom(X), dom(Y), dom(Z), not g_plus(X, Y, Z).

2. Next we have two IDB rules with same head t so we rename them to t1 and t2

44

t1(Z) :- t0(Z).

t2(Z) :- 𝜋 [Z](E).

where, E is (g(X, Y, Z) ⋈ t(X) ⋈ (− t(Y)))

and add the following rules:

t_plus(Z) :- t1_plus(Z).

t_plus(Z) :- t2_plus(Z).

t_minus(Z) :- t1_minus(Z), t2_minus(Z).

t_unknown(Z) :- dom(Z), not t_plus(Z), not t_minus(Z).

3. Now we create the trees for the IDB expressions as follows:

 Figure 5.5 Tree for Expression 1 Figure 5.6 Tree for Expression 2

4. Now we write rules from the above expression trees:

Expression 1: t1(Z) :- t0(Z).

t1_plus(Z) :- t0_plus(Z).

t1_minus(Z) :- t0_minus(Z).

Expression 2: t2(Z) :- 𝜋 [Z](E).

We start bottom-up in the tree with first internal node that is (−), adding the following rules:

a. t_complementplus(Z) :- t(Z).

45

t_complementminus(Z) :- t(Z).

b. Next, we add rules for join (⋈) node as follows:

temp2_plus(X, Y, Z) :- g_plus(X, Y, Z), t_plus(X), t_complementplus(Y).

temp2_minus(X, Y, Z) :- g_minus(X, Y, Z).

temp2_minus(X, Y, Z) :- t_minus(X), dom(Y), dom(Z).

temp2_minus(X, Y, Z) :- t_complementminus(Y), dom(X), dom(Z).

c. Now we write rules for the projection node (𝜋 V) named t2, where V = {Z}.

t2_plus(Z) :- temp2_plus(_, _, Z).

temp21(X, Y, Z) :- dom(X), dom(Y), dom(Z).

temp22(Z) :- temp21(X, Y, Z), not temp2_minus(X, Y, Z).

t2_minus(Z) :- dom(Z), not temp22(Z).

5. Now we add the rules for unknown predicates. But, here they have already been added in

step 2. So, by keeping the unknown rules in the end we get the following transformed

program:

dom(2).

dom(5).

dom(1).

dom(3).

dom(4).

t0_plus(2).

g_plus(5, 1, 3).

g_plus(1, 2, 4).

46

g_plus(3, 4, 5).

t0_minus(Z):-dom(Z), not t0_plus(Z).

g_minus(X, Y, Z):-dom(X), dom(Y), dom(Z), not g_plus(X, Y, Z).

t1_minus(Z):-t0_minus(Z).

t1_plus(Z):-t0_plus(Z).

t_plus(Z):-t1_plus(Z).

t_complementplus(Y):-t_minus(Y).

t_complementminus(Y):-t_plus(Y).

temp2_minus(X, Y, Z):-g_minus(X, Y, Z).

temp2_minus(X, Y, Z):-t_minus(X), dom(Y), dom(Z).

temp2_minus(X, Y, Z):-t_complementminus(Y), dom(X),dom(Z).

temp2_plus(X, Y, Z):-g_plus(X, Y, Z), t_plus(X), t_complementplus(Y).

t2_plus(Z):-temp2_plus(_,_,Z).

t_plus(Z):-t2_plus(Z).

temp21(X, Y, Z):-dom(X), dom(Y), dom(Z).

temp22(Z):-temp21(X, Y, Z), not temp2_minus(X, Y, Z).

t2_minus(Z):-dom(Z), not temp22(Z).

t_minus(Z) :- t1_minus(Z), t2_minus(Z).

t_unknown(Z) :- dom(Z), not t_plus(Z), not t_minus(Z).

5.3.3 Fitting’s Model Generation

After we have generated the logic program we use the fix point semantics and apply the fix point operator

TP on the logic program. The application of TP gives us the meaning of the program and in this case it is

the weak well founded or the Fitting‟s model for the program. We use this model as preprocessing

47

mechanism for stable model computation. We know, the least fixpoint computation amounts to an

iterative procedure, where partial results are added to a relation until steady state is reached.

In order to compute the partial relations we make use DBEngine, a database system where we

store the information present in our logic program and compute the partial relations to generate

the least fix point of the logic program. The DBEngine consists of three classes namely, Driver,

Relation and Tuple and it provides the usual database operations like join, minus, project, select

and others.

 Next we show the results of applying the TP operator on our logic program. The values

which we are interested in are for the t relation as it is the only predicate present in IDB. We start

with the EDB predicates t0 and g. t0_plus contains values {2} and t0_minus has four values {1,

3, 4, 5}. Similarly, in the first pass we get g_plus with three tuples {{5, 1, 3}, {1, 2, 4}, {3, 4, 5}}

and g_minus has 122 tuples as it has all the combinations of these values i.e. 5
3
 except the three

tuples in g_plus. These values remain same for all the passes for EDB predicates g and t0. Next

the values that get populated are for the IDB and we show the values of relation t.

Table 5.3 Fix point computation for predicate t

Iteration t1_plus t1_minus t2_plus t2_minus t_plus t_minus

1 {2} {1, 3, 4, 5} ∅ {1, 2, 4} {2} {1, 4}

2 {2} {1, 3, 4, 5} ∅ {1, 2, 4} {2} {1,4}

We get the steady state in pass 2. Since we take the paraconsistent union of t1 and t2 we get the

following:

(t1 ∪ t2)
+
 = t1

+
 ∪ t2

+
 , (t1∪ t2)

-
 = t1

-
 ∩ t2

-
;

48

Where (t1 ∪ t2)
+
 is t_plus and (t1∪ t2)

-
 is t_minus. Thus, the partial relation for t would be:

〈t+
, t

-〉 = 〈 {2}, {1, 4} 〉

Also, from the rule:

t_unknown(Z) :- dom(Z) , not t_plus(Z), not t_minus(Z).

We get the unknown values as t(3) and t(5).

Thus we get the Fitting‟s model for our original program of example 5.3.2 as:

Positive values: {t0(2), g(5, 1, 3), g(3, 4, 5), g(1, 2, 4), t(2)}

Negative values: {t(1), t(4)}

Unknown values: {t(3), t(5)}

After the computation of the weak well founded model we move to the next step and that is

stable model generation.

5.3.4 Models and Ground Program Generation

 After the generation of the Fitting‟s model, the next step is come up with models that can

be tested for stability. The models for test are generated from the unknown and positive values of

the Fitting‟s model. The unknown values may be positive or negative, thus we take them into

consideration for stability testing. Let the P be the set of positive values as {P1, P2,…, Pn) and U

be the set of unknown values {U1, U2,…, Um). Then the number of possible stable models that

can be generated using the P and U values are 2
(n+m)

, where each model has the EDB rules of the

original logic program which are always true. The number models that can be generated from

example 5.2.2 with one positive and two unknown predicates is 2
(1+2)

i.e. 8, where, EDB is

49

{t0(2), g(1, 2, 4), g(3, 4, 5), g(5, 1, 3)}, positives are {t(2)} and unknowns are {t(3), t(5)}. Then,

following are the models that would be tested for stability.

1. ∅ + EDB

2. {t(2)} + EDB

3. {t(3)} + EDB

4. {t(5)} + EDB

5. {t(2), t(3)} + EDB

6. {t(2), t(5)} + EDB

7. {t(3), t(5)} + EDB

8. {t(2), t(3), t(5)} +EDB

After the models are generated we need to test each one for stability. The stability testing is done

using the Gelfond-Lifschitz transformation P
S
 of P with respect to S, where P is the original

logic program and S would be the model for testing. To do the stability testing we need to

generate the ground program for our original logic program. The ground program is generated by

replacing all the variables in the program with constant values. Let c be the number of constants

in the program A(B1,…, Bn) be a predicate in the IDB rule with largest argument list, then the

number of ways it can be instantiated by constants is n
c
. And using this instantiation we

instantiate the complete rule. Thus for the rule:

t(Z) :- t0(Z)

with 5 constants and one variable, the possible instantiations are 5
1

i.e. 5. But, only one of them

is useful i.e.

t(2) :- t0(2)

50

Similarly, the rule:

t(Z) :- g(X, Y, Z), t(X), not t(Y)

with 5 constants and largest argument list 3(of predicate g (X, Y, Z)) can be instantiated in 5
3
 i.e.

125 ways, out of which only 3 are useful, they are as follows:

t(4) :- g(1, 2, 4), t(1), not t(2)

t(5) :- g(3, 4, 5), t(3), not t(4)

t(3) :- g(5, 1, 3), t(5), not t(1)

Thus the ground program would contain 130 rules + EDB, but the useful rules are 4 of

those and EDB. Next we show the stability testing of one of the models from the above shown 8

models. For this process, we built the stable model tester that takes the input as the ground

program and one model at a time and tests it for stability. It gives the output as yes or no and

adds the model to a vector if it is stable.

5.3.5 Stable Model Tester

 This module is designed to test the stability of a model given a ground logic program and

the model for test. We use the rules stated by the Definition 8. We take the ground logic program

P and the model for test S and get the transformation P
S
. Following is step by step application of

definition 8 for S as {t(2) + EDB}.

The ground program for example 5.5.2 with useful IDB rules is as follows:

t(2) :- t0(2)

51

t(4) :- g(1, 2, 4), t(1), not t(2)

t(5) :- g(3, 4, 5), t(3), not t(4)

t(3) :- g(5, 1, 3), t(5), not t(1)

After the application of first step 1, i.e. deleting every rule with ~L in body with L ∈ S we get the

following:

t(2) :- t0(2)

t(5) :- g(3, 4, 5), t(3), not t(4)

t(3) :- g(5, 1, 3), t(5), not t(1)

After the application of step 2, i.e. deleting negative literals from remaining rules we get the

following transformation P
S
:

t(2) :- t0(2)

t(5) :- g(3, 4, 5), t(3).

t(3) :- g(5, 1, 3), t(5).

Now we again apply the T
P
 operator on this logic program. t(2) becomes true because of t0(2)

but t(5) and t(3) are dependent on each other and none of them is true so they become false.

Thus, the least fix point of this program as {t(2) + EDB} which is the model for test i.e. S. Since

the least fix point of P
S
 and S are the same we can conclude S is a stable model for P which our

original logic program. Similarly, we test the rest of the 7 models for stability and none of them

is stable. Thus, our logic program has one stable model. But suppose if we add the following

52

EDB predicates {g(2, 5, 6), g(2, 6, 3)} to the original program and then apply the same

procedure we get 2 stable models where {t(3), t(5), t(6)} are unknown.

5.4 Implementation of the Modules

 This section briefly describes how each of the modules have actually been implemented

with the java code.

5.4.1 Compiler

Input: A logic program

Output: Vector rules where each element is of type RULE.

 The Datalog compiler is built using the JFlex and JCup technologies. The JFlex creates a

lexical analyzer which creates tokens that are forwarded to the parser. The parsers tests each

token for syntax and requests more tokens from the lexer, and finally create our data structure

rules.

Figure 5.7 Block diagram for compiling process

The grammar for our parser is as follows:

ddb ::= rules DOLLAR

idb_rules ::= idb_rule | idb_rule idb_rules

idb_rule ::= predicate IMPLIES idb_body PERIOD | predicate PERIOD

53

idb_body ::= literal | literal COMMA idb_body

literal ::= NOTOP predicate | predicate

predicate ::= NAME LPAREN arg_list RPAREN

arg_list ::= arg | arg COMMA arg_list

arg ::= NAME | NUMBER | VARIABLE

constant ::= NUMBER | STRING

We write java statements for each grammar rule in the Cup file, for details refer to

appendix section 9.2. One example of the extracting data from rules is as follows which

gives us a rule from the program:

idb_rule::= predicate: head IMPLIES idb_body:body PERIOD

 {:

 Rule R = new Rule (head, body, false);

 RESULT = R;

 :}

Similarly we write java code for each of the grammar statements and if there are no errors

in the syntax of the program the data structure rules which is of type Vector is created. In

Rules each element is of type Rule (the class introduced earlier). This data structure

provides a way to store and retrieve data from our program. After this step we perform

the semantic checks mentioned earlier,

1. Arity Check: From rules we collect all the predicates with same name and check its

argument list if they are not equal, an error is reported else we move to safety checks.

This process is repeated for all unique predicates.

2. Safety Checks:

a. We collect the variables in head of the rule and collect variables from the

body of the rules and compare both the list to check whether all the variables

54

in head list are present in the body list. This process in repeated for all the

rules. For actual code refer section 9.6.

b. Similarly, for each rule we collect the variables in negative predicates from

the rule and collect variables from positive predicates from the body of the

rule. Then the two lists are compared to check whether each variable in

negative list is present in positive list.

If any of the above checks fail the program throws and error and it is stopped. Else we move to

the next step that is transformation.

5.4.2 Generating Transformed Program

Input: Data structure rules

Output: Data structure transformed rules (a Fitting‟s model equivalent).

 The transformation is carried out using the same procedure as explained in the

TRANSFORM algorithm, although we do not create the equation using paraconsistent trees and

expressions.

We start with modifying the rule vector if more than one rule has same head p we change the

head names in Vector itself to p1, …, pn and add the new rules for its union and intersection in a

new vector same type as rules named as paraconsistent rules. After this step we begin the EDB

transformation and IDB transformations:

1. EDB Transformation:

a. Extract all the constants from the original program and add dom rules for each

constant in the new vector paraconsistent rules

b. Then for each unique EDB predicate we complete the rules with its plus and

minus counterparts. For example the code to implement is shown where P is new

55

predicate with name p_plus and AL is its argument list. In Rule we add this

predicate P as its head in rule R1, and finally add it to new vector EDB rules.

Predicate P = new Predicate(pname, AL,false);

Rule R1 = new Rule(P,null,true);

EDBRules.add(R1);

c. When all the rules have been created they are added to the paraconsistent rules

vector.

2. IDB transformation:

a. We start by checking whether the rule has projection or not. If yes then it is

treated a bit differently than the one without projection.

b. For each rule we start by checking whether it is positive or negative, if it is

negative then add the rules mentioned for the (–) complement node, because it

will always be the bottom most node.

c. Then we add rules for normal join which is union of all negative goals and

intersection of positive goals. We check whether any of the negative goals has

lesser variables than the head then we add dom predicates to complete the node.

d. Finally we handle projection by writing rules for temp node, and it is numbered

based on its position in the rules vector so that if there is more than one temp node

the program we can distinguish them. There is a separate function in the code that

takes input as rule that has the temp node and returns a vector for the rule created.

e. After this all the rules that are created are added to the paraconsistent rules vector

which is returned to the main program.

For example to complete the complement predicates in the following rule

t(Z) :- g(X,Y,Z), t(X), not t(Y).

Steps to implement transformation for complement:

56

 Start by checking the rule for a negative subgoal.

 Let P be the negative predicate not t(Y) of the rule so we extract in P.

 Create the body predicates as new Predicate b1 = new Predicate (“t_plus”, {Y}, false).

 Add it to a vector that is bodyVector1 = {b1}.

 Create head of the rule as Predicate h1 = new Predicate (“t_complementminus”, {Y},

false}.

 Finally create the new Rule R1 with head h1 body bodyVector1 and isEDB false.

 Rule R1 = new Rule (h1, bodyVector1, false).

 Similarly we complete the negative part and its rule to the paraconsistent rules vector.

For details about this module refer section 9.7 in the appendix.

5.4.3 Fitting’s Model Generation

Input: Transformed Rules

Output: A Hash map consisting of mappings for each predicate name to its respective table

which is a vector of all tuples of that predicate. (Fitting‟s Model)

 The fitting‟s model is generated when we apply fix-point operator on paraconsistent

rules or our transformed program. For generating the model we use the DBEngine a database

system that allows us to perform the basic operation like join, union, projection etc. For this we

first start by populating the data in .dat files for each predicate a corresponding .dat file is created

same as a table of data. We already have the EDB facts from the program so we use them to

create our files. Next we start evaluating each rule in IDB from the transformed program one by

one using the data in EDB and applying the operations on the body of the rules. We start by

joining the positive goals then apply the minus operation with negative goals. And then finally

apply projection.

57

Eg:

 t2_plus(Z) :- g_plus(X, Y, Z), t_plus(X), t_complementplus(Y).

We perform the following operations where R1,…Rn are relations of type relation class from

DBEngine. Let R1 = g_plus, R2 = t_plus, R3 = t_complementplus.

R4 = R1 join R2

R5 = R4 join R3.

R6 = R5.projection (V).

where, V is a vector, which contains elements from the head of rule. Thus now we can fill the

table of t2_plus with relation R6. We keep a track of files that have been created using a

HashMap so that in the files that have already been created we can add data, and if they are not

created we create them. Also we can check from the hash map whether or not a new value is

added to any of tables or not. Once we see that no new values are added to the Hash map we are

sure that program has reached steady state and thus we can compute the unknowns too. For

details refer to section 9.8 of appendix.

5.4.4 Models Generation

Input: Positive and unknown values extracted from the Hash map.

Output: A set of models consisting of all possible combination of these values which are each an

element of a vector.

 When we compute the weak well founded model we get the positive, negative and unknown

values of our program which are present in respective plus, minus and unknown .dat files. Now

we use these values to generate the model for test. In hash map we store map a predicate name

with its values and so we get the IDB predicates from the original program and extract their

58

arguments from the hash map to construct predicates for test. For example the hash map has a

mapping for predicate t_plus with values {2} and t_unkown is mapped to {3, 5} then we

construct three predicates {t(2), t(3), t(5)} and generate all possible sets of these predicates

which is done in recursive manner using the functions GenerateAllCombinations and

DoCombine in section 9.11. So this set will generate 2
3
 models that would be tested for stability.

To test the stability we also generate the Ground Program using the code in section 9.10. Ground

program is generated by instantiating the rules of the original program in all possible ways from

the constants. So the ground program generation is an iterative procedure where we generate the

ground rules for each rule.

5.4.5 Stable Model Tester

Input: Models for test and the ground program where each model is an element of Vector.

Output: Stable models.

 In this module all the models that are generated in previous step are tested for stability.

We create a separate class called the stable model tester which taken in input the models for test

and the ground program. Then for each model we perform the following the steps:

1. Remove the rules from the ground program vector in which negation of one the atoms

sent for test is present.

2. Remove negated subgoals (predicates) from rest of the rules.

3. Finally we get a program we apply fix point operation.

For the fix point operation we again make use of the DBEngine where we store the data in

original rules and create tables whenever needed for the new IDB tables formed. Here, also a

hash map is created which stores the mapping of predicate name and its values. So, we again

59

check whether mapping for IDB predicates is same as those in model sent testing. If it is same

then we output the stable model.

So we can compute the stable models of a logic program using the steps described above. Now,

we need to test the efficiency of our proposed approach. This is done on the next chapter.

60

CHAPTER 6

EXPERIMENTS

6.1 Introduction

In this chapter we present the experiments performed to test the efficiency of our approach. We

perform two experiments and compute the stable models using our proposed approach and a

naïve method of stable model computation. In both the experiments, the aim is to compare the

time taken to compute stable models of a logic program using our approach and the Naïve

approach. We use the IDB from example 5.5.2 as our logic program, and note the time taken to

compute the stable models with various EDBs. The experiments are performed on Windows 7

professional operating system with 3 GB RAM and a 32-bit operating system.

 We also analyze the results obtained from the experiments, which shows that our

prediction of the proposed approach performs considerably better than the naïve approach in case

of larger databases is correct.

6.2 Design of Experiments

 We have designed two experiments for testing the efficiency of our approach:

1. Given the IDB rules we keep the number of constants to be used the program fixed to 10

and vary the number of EDB rules or facts, in increments of 5, starting from 5 and going

up to 40. The argument list for the facts would be randomly generated from the given set

of constants. We note the time taken to compute the stable model from our approach and

the Naïve approach for each set of facts.

2. Given the IDB rules we keep the number of EDB rules or facts fixed to 30 and vary the

number of constants present in the program in increments of 2, starting from 5 and going

61

up to 15. The data for facts would be generated randomly i.e. the argument list for the

facts would be formed randomly from constant values. We note the time taken to

compute the stable models from our approach and the Naïve approach for each set of

constants.

Using these two designs we can see how the time varies in both the cases i.e. varying the number

of facts and varying the number of constants. Also, we work on large data in real life scenarios,

so, it is worthwhile to check the improvement in efficiency of stable model computation with

Fitting‟s model used as a pre processing mechanism over a Naïve approach, which is

computationally considered to be quite expensive. Next we present the procedure followed for

stable model computation using our approach and the Naïve approach respectively.

Steps to perform the experiments with our approach are as follows:

1. Generate random data for facts for the IDB rules of example 5.5.2 consisting of EDB

predicates t0 and g, to create a logic program P.

2. Compile the program P to get the data structure rules.

3. Transform the original logic program P into a new logic program P′ which is used for

computing the Fitting‟s model.

4. Compute the Fitting‟s model.

5. Using the positive and unknown values from the Fitting‟s model generate all possible

models that are tested for stability.

6. Generate the ground program from the original logic program P.

7. Test each of the model generated in step 5 for stability and output the model if it is stable.

8. Note the time taken to perform Step 1 to Step 7.

62

Steps to perform the experiments with the Naïve approach.

1. Generate random data for facts for the IDB rules of example 5.5.2 consisting of EDB

predicates t0 and g, to create a logic program P.

2. Compile the program P and perform the semantic checks to get the data structure rules.

3. Using the constant values and IDB predicates generate all possible model that could be

tested for stability. For example in case of the example 5.2.2 there are 5 constant values

and one IDB predicate t, the possible values for t are {1, 2, 3, 4, 5} and the number of

possible models is 2
5
 i.e. 32.

4. Generate the ground program from the original logic program P.

5. Test each of the model generated in step 3 for stability and output the model if it is stable.

6. Note the time taken to perform Step 1 to Step 5.

As it can be seen from above the number of steps involved in the Naïve approach is lesser than

the steps involved in our approach, but the number of models that are being tested in case of

Naïve approach is 32 and in our approach they are reduced to 8 for example 5.2.2. The overhead

of transformation and computing the Fitting‟s model is added in our approach. Thus, we perform

the experiments and see whether the overhead of reducing the possible models of test is worth

the work involved.

Comparing our approach with Naïve approach we can see there is an overhead of three steps

transformation, weak well founded model generation and extraction of positive and unknown

values to eliminate negative values. So, when models that are generated for testing only consists

of positive and unknown values. On the other hand the number of steps performed in naïve

approach is less than our approach. The figure shown below makes it more clear.

63

Figure 6.1 Comparison of our approach with naïve approach in terms of steps involved

 To test whether the elimination of negation reduces the time to compute stable models

and it is worth the work involved the experiments are performed. The time taken to do the

transformation and generate the fitting‟s model according to our prediction should much less

than testing the models with all positive, negative and unknown values.

6.3.Results

After performing the experiments we obtain the data which keeps track of number of constants,

facts, stable models and the time taken. Table 6.1 shows the results for experiment 1 where we

vary the number of constants and number of facts is fixed and table 6.2 shows the result for

experiment 2, below in tabular form and in graphical form:

Create
random
input for

EDB rules.

Compile
the

program

Generate
possible
models

Generate
Ground
Program

Stability
Testing

Note the
time

taken.

Create
rando

m

input.

Compil
e the

progra
m

Transfor
m the

program

Gener
ate the
Fitting’

s
Model.

Generate
models
using

positives,
unknowns

.

Generate
Ground

Program.

Stabilit
y

Testin
g

Note
the

time

taken.

Elimination of negative values

Using positive, negative and unknown values

64

Table 6.1 Results from Experiment 1

No. of Facts 5 10 15 20 25 30 35 40

Our Approach

(time in seconds)
4.98 44.82 49.76 82.51 53.04 130.81 91.4 143.97

Naïve approach

(time in seconds)
2.72 182.59 70.52 192.55 202.95 210.02 221.3 224.48

Figure 6.2 Naïve approach vs. our approach with variable number of facts

 The data above shows that as we increase the number of facts in our logic program the

time taken to compute the stable models increases for both Naïve approach and our approach, but

the time taken by our approach is considerably lesser. Also we can see that in case of smaller

data i.e. with 5 facts Naïve approach performs better than our approach and the overhead of

using Fitting‟s model a preprocessing mechanism is more for smaller data. But, for bit larger

data i.e. even with 10 facts our approach performs much better. Next are the results from

experiment 2 with fixed number of facts and variable number of constants.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Ti
m

e
 in

 s
e

co
n

d
s

No. of facts

Our Approach

Naïve Approach

65

 Table 6.2 Results from Experiment 2

No. of constants 5 7 9 11 13 15

Our Approach

(time in seconds)
7.035 12.034 33.255 149.507 62.339 1051.978

Naïve Approach

(time in seconds)
4.189 11.398 83.037 557.124 3568.867 21166.96

Figure 6.3 Naive approach vs. Our approach with variable number of constants

 The results from experiment 2 shows that our approach performs way better than the

Naïve approach in case of larger number of constants, because as the number of constants

increase the possible number of models for stability testing for Naïve methods is 2
number of constants

,

which is a considerable increase. But, in case of our approach the Fitting‟s model reduces the

possible models for test as we consider only the positive and unknown values, which as we can

see tend to remain small and so is the time to compute the stable models.

0

5000

10000

15000

20000

25000

5 7 9 11 13 15

Ti
m

e
 in

 s
e

co
n

d
s

No. of constants

Our Approach

Naïve Approach

66

6.4 Analysis of Results

 In case of fixed number of constants the we can see the time taken increases gradually for

both approaches although our approach performs much better than the naïve approach by

eliminating the negative values. Although it can be observed that there is not a significant

amount of time change in case of variable number of facts. In the second experiment where we

have fixed number of facts and variable number of facts the efficiency of our approach is much

higher than the naïve approach. As it can be seen only with 15 constants the time taken by our

approach is approximately 17 minutes and in case of naïve approach it is about 5 hours, which is

significant. For each values that is found negative in case of given example the time taken

reduces to half in comparison to naïve approach, so if one value is declared negative out 10 the

possible models for test for our approach is 2
9
 and for naïve approach it is 2

10
, if we get one more

as value as negative the time taken for approach is 2
8

while for naïve approach it remains 2
10

. So

the time taken is proportional to models being tested for stability and if they are reduced time

also reduces proportionally. In case of more IDB predicates with greater number of variables the

difference is much more significant. Number of possible models for p positive and u unknowns.

 Let a1, …, an be the IDB predicates each having b1,…., bn variables.

 Let m = p + u. (m = sum of number of positive and unknown predicates)

 Number of ways each predicate can be instantiated is c
b1

,….,c
bn

, where c is number of

constants the program.

 Let K = c
b1

+…+ c
bn

.(total of all the ways).

 Now it is clear m << K

 Number of combinations of instantiated predicates a1,…. ,an is 2
m

 i.e. models for test.

 Number of models for test for naïve approach would be 2
K
.

67

CHAPTER 7

CONCLUSION

 In this thesis we introduced a novel approach for stable model computation, which is a

computationally expensive process otherwise. The process involved made use of Fitting‟s model

as a pre processing mechanism. We also introduce an algorithm named TRANSFORM that

eliminates arbitrary negation in general deductive databases and enables us to use traditional

bottom-up evaluators for computing the meaning of the general deductive databases. The

experiments performed shows that our approach for stable model computation performs much

better than a naïve approach which is time consuming, and in case of larger databases the

difference in performance is even greater. Our approach reduce the model for test by considering

only the positive and unknown values, while the naïve approach tests all the positive, negative

and unknown values, thereby increasing the time taken. This time is much more than the

overhead involved in computing the Fitting‟s model by applying the transformation and then

computing the stable models.

 Stable models are one of the widely accepted semantics of general deductive databases.

Recently, stable models of general deductive databases have been shown to be useful in speeding

up the solutions to many NP-complete problems in graph theory [27, 28]. Thus, an algorithm to

speed up stable model computation can be helpful.

 In future, the algorithm can be extended to work with well-founded models instead of

Fitting‟s model. Also, the approach can be extended to disjunctive databases. Experimental

studies can be performed to see if generating stable models by pre processing with our approach

can improve over other algorithms to compute stable models.

68

CHAPTER 8

REFERENCES

[1] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming

language. J. ACM, 23(4):733{742, 1976.

[2] K. L. Clark. Negation as failure. In M. L. Ginsberg, editor, Readings in Non-monotonic

Reasoning, pages 311{325. Kaufmann, Los Altos, CA, 1987.

[3]J. C. Shepherdson. Negation as failure, II Journal of Logic Programming, 2(3) 185-

202,1985.

[4] J. C. Shepherdson. Negation in logic programming. In J. Minker, editor, Workshop on

Foundation of Deductive Databases and Logic Programming, Washington, DC, August

1986.

[5] M. Fitting. A Kripke-KIeene semantics for Logic programs Journal of Logic Programming,

2(4).295-312, 1985.

[6] K Kunen. Negation in logic programming. Journal of Logic Programming, 4(4):289-398,

1987.

[7] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic

programs. Journal of the ACM, 38(3):621-650, 1991.

[8] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proceedings of the 5th ICSLP, pages 1070-1080, Seattle, WA, August 1988.

69

[9] Apt, K.R., BLAIR H.A., AND WALKER, A. 1988. Towards a theory of declarative

knowledge. In Foundations of deductive databases and logic programming, J. Minker, Ed.

Morgan Kaufmann Publishers Inc., San Francisco, CA, 89–148.

[10] S. Naqvi and S. Tsur. “A Logical Language for Data and Knowledge Bases,” W. H.

Freeman Publ., 1989.

[11] Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, (2nd Edition}, 1987.

[12] Sacc𝑎 D., Zaniolo, C., “Stable Models and Non-Determinism in Logic Programs with

Negation,” Proc. 9th ACM SIGMOD-SIGACT Symposium On Principles of Database Systems,

1990.

[13] J. Ullman. Assigning an appropriate meaning to database logic with negation. Technical

Report 1994-15, Stanford Infolab, 1994. A corrected version of a paper that appeared in

"Computers as Our Better Partners" (H. Yamada, Y. Kambayashi, and S. Ohta, eds.)pp. 216-225,

World Scientific, Singapore, 1994.

[14] Van Gelder A., “Negation as failure using tight derivations for general logic programs,”

Proc. Symp. On Logic Programming, IEEE, pp. 127-139.

[15] Naqvi S., Negation as failure for first-order queries,” Proc. Fifth ACM Symposium on

Principles of Databases Systems, pp. 114-122, 1986.

[16] Mc.Carthy, J., “Circumscription- a form of non-monotonic reasoning”, Artificial

Intelligence 13: 1-2, pp. 27-39,1980.

[17] Przymusinska, H. and T. Przymusinski. “Semantic issues in deductive databases and logic

programs,” Sourcebook on Formal Approaches in Artificial Intelligence (A. Banerji, ed.), 1989.

70

[18] V. Lifschitz, On declarative semantics of logic programs with negation. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 177-192. Morgan

Kaufmann, Los Altos, Ca, 1988.

[19] Baral, C. and V. S. Subramanian. “Dualities between alternative semantics for logic

programming and non-monotonic reasoning,” Proc. First International Workshop on Logic

Programming and Non-Monotonic Reasoning, MIT Press, 1992.

[20] Przymusinski, T. “Well-founded semantics coincides with three-valued stable sematics,”

Fundamneta Informaticae 13, pp. 445-463.

[21] Rajiv Bagai and Rajshekhar Sunderraman. A paraconsistent relational data model.

International Journal of Computer Mathematics, 55(3), 1995.

[22] Rajiv Bagai and Rajshekhar Sunderraman. Bottom-up computation of the Fitting model for

general deductive databases. Journal of Intelligent Information Systems, 6(1):59-75,January

1996.

[23] Jeffrey D. Ullman , Carlo Zaniolo, Deductive databases: achievements and future directions,

ACM SIGMOD Record, v.19 n.4, p.75-82, Dec. 1990 .

[24] Mengchi Liu, Deductive database languages: problems and solutions, ACM Computing

Surveys (CSUR), v.31 n.1, p.27-62, March 1999.

[25] Ullman, J. 1989a. Principles of Database and Knowledge-Base Systems. Computer Science

Press, Inc., New York, NY.

[26] Ceri, S., Gottlob, G., and Tanca, L. 1990. Logic programming and databases. Springer-

Verlag, New York, NY.

http://portal.acm.org/citation.cfm?id=122067&dl=GUIDE&coll=GUIDE&CFID=89050891&CFTOKEN=28987258
http://portal.acm.org/citation.cfm?id=122067&dl=GUIDE&coll=GUIDE&CFID=89050891&CFTOKEN=28987258
http://portal.acm.org/citation.cfm?id=311533&dl=GUIDE&coll=GUIDE&CFID=89051231&CFTOKEN=87011027
http://portal.acm.org/citation.cfm?id=311533&dl=GUIDE&coll=GUIDE&CFID=89051231&CFTOKEN=87011027
http://portal.acm.org/citation.cfm?id=311533&dl=GUIDE&coll=GUIDE&CFID=89051231&CFTOKEN=87011027

71

[27] Cristian Molinaro, Sergio Greco and Irina Trubitsyna. Implementation and experimentation

of the logic language np Datalog. In Proceedings of the 2006 International Conference on

Database and Expert Systems Applications (DEXA), pages 622-633, 2006.

[28] Irina Trubitsyna, Sergio Greco, Cristian Molinaro and Ester Zumpano. NP Datalog: a logic

language for expressing NP search and optimization problems. Theory and Practice of Logic

Programming (TPLP), 10(2); 125-166, 2010.

72

CHAPTER 9

APPENDIX: Java code used to implement our approach

9.1 Lexer:
/* --------------------------Usercode Section------------------------ */

import java_cup.runtime.*;

/* -----------------Options and Declarations Section----------------- */

%%

%class Lexer

%line

%column

%cup

%{

 private Symbol symbol(int type) {

 return new Symbol(type, yyline, yycolumn);

 }

 private Symbol symbol(int type, Object value) {

 return new Symbol(type, yyline, yycolumn, value);

 }

%}

/*

 Macro Declarations

 These declarations are regular expressions that will be used latter

 in the Lexical Rules Section.

*/

LineTerminator = \r|\n|\r\n

WhiteSpace = {LineTerminator} | [\t\f]

NAME = [a-z][a-zA-Z0-9_]*

VARIABLE = [_A-Z][a-zA-Z0-9_]*

NUMBER = 0 | [-]?[1-9][0-9]*|[-]?[0-9]*\.[0-9]*

COMPARISON = > | < | (>=) | (<=) | <> | =

NOT = [Nn][Oo][Tt]

STRING = '[A-Za-z0-9_]'

COMMENT = %*\sFor Rule [a-z][a-zA-Z0-9_]*\([_A-Z][a-zA-Z0-9_]*,?]*\)

%%

<YYINITIAL> {

 "(" { return symbol(sym.LPAREN); }

 ")" { return symbol(sym.RPAREN); }

 "$" { return symbol(sym.DOLLAR); }

 "." { return symbol(sym.PERIOD); }

 ":-" { return symbol(sym.IMPLIES); }

 "," { return symbol(sym.COMMA);}

 {NOT} { return symbol(sym.NOTOP);}

 {NAME} { return symbol(sym.NAME, yytext()); }

 {VARIABLE} { return symbol(sym.VARIABLE, yytext()); }

 {NUMBER} { return symbol(sym.NUMBER, yytext()); }

 {STRING} { return symbol(sym.STRING, yytext()); }

 {COMMENT} { /* just skip what was found, do nothing */ }

 {COMPARISON} { return symbol(sym.COMPARISON, yytext()); }

 {WhiteSpace} { /* just skip what was found, do nothing */ }

}

[^] { /*throw new Error("Illegal character

<"+yytext()+">"); }*/

73

 System.out.println("Syntax Error - Scanning

problem");

 }

9.2 Parser:

import java_cup.runtime.*;

import java.util.*;

parser code {:

 //public LinkedList lst = new LinkedList();

 public void report_error(String messages, Object info)

 {

 StringBuffer m = new StringBuffer("Error");

 if (info instanceof java_cup.runtime.Symbol)

 {

 java_cup.runtime.Symbol s = ((java_cup.runtime.Symbol) info);

 if (s.left >= 0)

 {

 m.append(" in line " + (s.left+1));

 if(s.right >= 0)

 m.append(", column " + (s.right+1));

 }

 }

 m.append(" : " + messages);

 System.err.println(m);

 }

 public void report_fatal_error(String message, Object info) {

 report_error(message, info);

 //System.exit(1);

 }

:};

/* Non terminals used in the grammar section. */

terminal DOLLAR, IMPLIES, PERIOD, COMMA, LPAREN, RPAREN,

NOTOP;

terminal String COMPARISON, NAME, NUMBER, STRING, VARIABLE;

non terminal Object ddb;

non terminal Vector idb_rules, idb_body, arg_list, arg;

non terminal Rule idb_rule;

non terminal Predicate predicate, literal;

/* -------------Precedence and Associatively of Terminals Section-----------

*/

/* ----------------------------Grammar Section-------------------- */

/* The grammar for our parser.

ddb ::= rules DOLLAR

idb_rules ::= idb_rule | idb_rule idb_rules

idb_rule ::= predicate IMPLIES idb_body PERIOD | predicate PERIOD

idb_body ::= literal | literal COMMA idb_body

literal ::= NOTOP predicate | predicate

predicate ::= NAME LPAREN arg_list RPAREN | arg COMPARISON arg

arg_list ::= arg | arg COMMA arg_list

74

arg ::= NAME | NUMBER | VARIABLE

constant ::= NUMBER | STRING

*/

ddb ::= idb_rules:r DOLLAR

 {:

 //System.out.println("DDB");

 RESULT = r;

 :};

idb_rules ::= idb_rule:r1

 {:

 Vector R = new Vector();

 R.add(r1);

 //System.out.println("RULES");

 RESULT = R;

 :}

| idb_rule:r1 idb_rules:rs

 {:

 Vector R = new Vector();

 R.add(r1);

 R.addAll(rs);

 RESULT = R;

 :};

idb_rule ::= predicate:head IMPLIES idb_body:body PERIOD

 {:

 Rule R = new Rule(head,body,false);

 //System.out.println("RULE");

 RESULT = R;

 :}

| predicate:head PERIOD

 {:

 Rule R = new Rule(head,null,true);

 RESULT = R;

 :};

idb_body ::= literal:l

 {:

 Vector P = new Vector();

 P.add(l);

 RESULT = P;

 :}

 | literal:pr COMMA idb_body :prs

 {:

 Vector P = new Vector();

 P.add(pr);

 P.addAll(prs);

 RESULT = P;

 :};

literal ::= NOTOP LPAREN predicate:p RPAREN

 {:

 p.setIsNegative(true);

 RESULT = p;

 :}

|NOTOP predicate:p

 {:

 p.setIsNegative(true);

 RESULT = p;

 :}

75

| predicate:p1

 {:

 RESULT = p1;

 :};

predicate ::= NAME:n LPAREN arg_list:al RPAREN

 {:

 RESULT = new

Predicate(n,al,false,false,null,null,null,null,null);

 :};

arg_list ::= arg:a1

 {:

 Vector v = new Vector();

 v.add(a1);

 RESULT = v;

 :}

| arg:a2 COMMA arg_list:al

 {:

 Vector v = new Vector();

 v.add(a2);

 v.addAll(al);

 RESULT = v;

 :};

arg ::= NAME:n

 {:

 Vector v1 = new Vector();

 v1.add(n);

 v1.add("varchar");

 RESULT = v1;

 :}

| NUMBER:num

 {:

 Vector v2 = new Vector();

 v2.add(num);

 v2.add("varchar");

 RESULT = v2;

 :}

| VARIABLE:var

 {:

 Vector v3 = new Vector();

 v3.add(var);

 v3.add("variable");

 RESULT = v3;

 :};

9.3 Predicate Class
import java.util.Vector;

import java.util.*;

public class Predicate{

 String Name;

 Vector ArgList;

 boolean isNegative;

 public String getName() {

 return Name;

76

 }

 public void setName(String name) {

 Name = name;

 }

 public Vector getArgList() {

 return ArgList;

 }

 public void setArgList(Vector argList) {

 ArgList = argList;

 }

 public boolean getIsNegative() {

 return isNegative;

 }

 public void setIsNegative(boolean isNegative) {

 this.isNegative = isNegative;

 }

 public Predicate(String name, Vector arglist, boolean isnegative){

 Name = name;

 ArgList = arglist;

 isNegative = isnegative;

 }

}

9.4 Rule Class:
import java.util.Vector;

import java.util.*;

public class Rule{

 Predicate Head;

 Vector Body;

 boolean isEDB;

 public Predicate getHead(){

 return Head;

 }

 public void setHead(Predicate Head){

 this.Head = Head;

 }

 public Vector getBody() {

 return Body;

 }

 public void setBody(Vector Body) {

 this.Body = Body;

 }

 public boolean getIsEDB() {

 return isEDB;

 }

 public void setIsEDB(boolean isEDB) {

 this.isEDB = isEDB;

 }

 public Rule(Predicate h, Vector b, boolean isedb) {

 Head = h;

77

 Body = b;

 isEDB = isedb;

 }

}

9.5 Main Class:
import java.sql.Time;

import java.util.*;

import java.io.*;

public class MAIN{

 MiscFunctions mf = new MiscFunctions();

static public void main(String[] args){

 try{

 RandomFacts rf = new RandomFacts();

 int constants = 13;

 int t_facts = 4;

 int g_facts = 26;

 rf.setRandomFacts(constants, t_facts, g_facts);

 Vector V1 = rf.getT0_facts();

 Vector V2 = rf.getG_facts();

 CreateInput cp = new CreateInput();

 cp.CreateInputFile(V1, V2);

 System.out.println(System.getProperty("user.dir"));

 parser p = new parser(new Lexer(new FileReader(args[0])));

 Vector Rules = (Vector)(p.parse().value);

 //-----------------Safety Checks--------------------------------

 Safety sc = new Safety();

 sc.variablesCheck(Rules);

 sc.notSafety(Rules);

 sc.airtyCheck(Rules);

 //--

//------------Get rules for than one same IDB predicates eg: t(Z) :- t0(Z)

//------------and t(Z) :- g(X,Y,Z),t(X), not t(Y).

//Then change rule to form t1(Z) and t2(Z) and get Rules t(Z) :- t1(Z) //----

//-----;t2(Z).

 long t1 = System.currentTimeMillis();

 ModifyRules mr = new ModifyRules();

 Vector MainRule = new Vector();

 Vector Mod_Rules = (Vector)Rules.clone();

//-----------Get Transformed rules from Paraconsistent Class in TRules-------

 Vector TRules = new Vector();

 ParaConsistentRules pr = new ParaConsistentRules();

 if(mr.hasSameHead(Rules)){//if Rules have more than one same head

modify rules

 MainRule = mr.getMainRule(Mod_Rules);

 Mod_Rules = mr.getNewRules(Mod_Rules);

 TRules = pr.getTransformedRules(Mod_Rules);

 TRules.addAll(MainRule);

 TRules = mr.reorderRules(MainRule,TRules);

 }

78

 else {

 TRules = pr.getTransformedRules(Rules);

 }

 //--------------------Send the Transformed rules to

Populate Relations Class for creating the DataBase------------------

 PopulateRelations prels = new PopulateRelations();

 prels.storeData(TRules);

 //------Printing the Transformed rules in transformed.txt--

 PrintRules prs = new PrintRules();

 prs.Print(TRules);

 //----------Compute the Weak-Well Founded Model--

 WeakWellFoundedModel wwf = new WeakWellFoundedModel();

 HashMap result = wwf.computeWWF(TRules);

 System.out.println("WWF$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$");

 long t2 = System.currentTimeMillis();

 long diff1 = t2-t1;

 //-----Get the ground Program for the original Rules-------

 parser p1 = new parser(new Lexer(new FileReader(args[0])));

 Vector Rules1 = (Vector)(p1.parse().value);

 GroundProgram gp = new GroundProgram();

 Vector GPRules = gp.getGroundProgram(Rules1);

//Get a Vector containing all positive Predicates and Unknown Predicates of

IDB----------

 PredicatesForTest prt = new PredicatesForTest();

 long t3 = System.currentTimeMillis();

 Vector P = prt.getPositiveUnknownPredicates(Rules1,

result);

 long t4 = System.currentTimeMillis();

 long diff2 = t4-t3;

 Vector EDB = prt.getEDBPredicates(Rules1);

 //P.addAll(EDB);

 //Populate Original data relation

 PopulateOrgData PO = new PopulateOrgData();

 PO.CreateDatabase(Rules1);

//-----Vector containing positive and unknown predicates from IDB.

//--Get Stable models using ground Program and data returned from Predicates

For Test--------

 long start_time = System.currentTimeMillis();

 StableModelTester st = new StableModelTester(GPRules,

Rules1);

 Vector StableModels = st.Test_All(P,EDB,GPRules);

 System.out.println("Number of stable models is

:"+StableModels.size());

 long end_time = System.currentTimeMillis();

 long diff = end_time - start_time;

 diff = diff+diff1+diff2;

 System.out.println("Time to compute:"+ diff);

79

 //Calculate Stable Models with Naive Method

 System.out.println("###########################NAIVE###################

#########");

 Vector Naive_predicates =

prt.getPredicatesForNaiveTest(Rules1);

 StableModelTester st1 = new StableModelTester(GPRules,

Rules1);

 long start_time_naive = System.currentTimeMillis();

 Vector NaiveStableModels = st1.Test_All(Naive_predicates,

EDB, GPRules);

 System.out.println("Number of stable models is :"+

NaiveStableModels.size());

 long end_time_naive = System.currentTimeMillis();

 long diff_naive = end_time_naive - start_time_naive;

 System.out.println("Time to compute:"+ diff_naive);

 }

 catch(Exception e){

 System.out.println(e.getMessage());

 }

 }

}

9.6 Semantic Checks Class
import java.util.*;

import java.io.*;

public class Safety{

 public void variablesCheck(Vector Rules){

 for(int i= 0; i<Rules.size(); i++){

 Rule r = (Rule)(Rules.elementAt(i));

 if(!(r.getIsEDB())){

 Predicate head = r.getHead();

 Vector headArgList = (Vector)(head.getArgList());

 Vector bodyArgList = new Vector();

 Vector body = (Vector)(r.getBody());

 for(int j =0 ; j<body.size();j++){

 Predicate b = (Predicate)(body.elementAt(j));

 if(!(b.getIsNegative()) && !(b.getIsComparision())){

Vector bArgList = (Vector)(b.getArgList());

 bodyArgList.addAll(bArgList);

 }

 }

 for(int k=0; k<headArgList.size();k++){

 String val1 = (headArgList.elementAt(k)).toString();

 int flag = 0;

 for(int m=0; m<bodyArgList.size(); m++){

 String val2 = (bodyArgList.elementAt(m)).toString();

 if(val1.equals(val2)){

 flag = 1;

 }

 }

80

 if(flag == 0){

 System.out.println("Safety Error:"+ val1+" does not

occur in any positive body predicate.");

 }

 }

 }

 }

 }

 public void notSafety(Vector Rules){

 for(int i= 0; i<Rules.size(); i++){

 Rule r = (Rule)(Rules.elementAt(i));

 if(!(r.getIsEDB())){

 Vector positiveArgList = new Vector();

 Vector negativeArgList = new Vector();

 Vector body = (Vector)(r.getBody());

 for(int j =0 ; j<body.size();j++){

 Predicate b = (Predicate)(body.elementAt(j));

 if(!(b.getIsNegative()) && !(b.getIsComparision())){

 Vector bArgList = (Vector)(b.getArgList());

 positiveArgList.addAll(bArgList);

 }

 else if(!(b.getIsComparision())){

 Vector nArgList = (Vector)(b.getArgList());

 negativeArgList.addAll(nArgList);

 }

 }

 for(int k = 0; k<negativeArgList.size(); k++){

 Vector in = (Vector)negativeArgList.elementAt(k);

 String type = (String)(in.elementAt(1));

 String val = (in.elementAt(0)).toString();

 if(type.equals("variable")){

 int flag = 0;

 for(int m=0; m<positiveArgList.size(); m++){

 Vector inner =

(Vector)(positiveArgList.elementAt(m));

 String type1 = (String)(inner.elementAt(1));

 String val1 = (inner.elementAt(0)).toString();

 if(type1.equals("variable")){

 if(val1.equals(val)){

 flag = 1;

 }

 }

 }

 if(flag == 0){

 System.out.println("Safety Error: Variable " +

val +" does not appear in any positive predicates.");

 }

 }

 }

81

 }

 }

 }

 public void airtyCheck(Vector Rules) {

 Vector Airty = new Vector();

 Vector IDBAirty = new Vector();

 for(int i= 0; i<Rules.size(); i++){

 Rule r = (Rule)(Rules.elementAt(i));

 if(r.getIsEDB()){

 Predicate head = (Predicate)r.getHead();

 Vector val = new Vector();

 val.add(head.getName());

 val.add(((Vector)(head.getArgList())).size());

 Airty.add(val);

 }

 }

 for(int i= 0; i<Rules.size(); i++)

 {

 Rule r = (Rule)(Rules.elementAt(i));

 if(!(r.getIsEDB())){

 Predicate head = (Predicate)r.getHead();

 Vector v = new Vector();

 v.add(head.getName());

 v.add(((Vector)(head.getArgList())).size());

 IDBAirty.add(v);

 Vector body = (Vector)(r.getBody());

 for(int j=0; j<body.size(); j++){

 Predicate b = (Predicate)(body.elementAt(j));

 Vector bv = new Vector();

 if(!(b.getIsComparision())){

 bv.add(b.getName());

 bv.add(((Vector)(b.getArgList())).size());

 IDBAirty.add(bv);

 }

 }

 }

 }

 for(int i=0; i<Airty.size(); i++){

 Vector in = (Vector)(Airty.elementAt(i));

 String name = (String)(in.elementAt(0));

 String s = (in.elementAt(1)).toString();

 int size = Integer.parseInt(s);

 for(int j=0; j<IDBAirty.size();j++){

 Vector inner = (Vector)(IDBAirty.elementAt(j));

 String pname = (String)(inner.elementAt(0));

 String s1 = (inner.elementAt(1)).toString();

 int size1 = Integer.parseInt(s1);

 if(name.equals(pname)){

 if(size != size1){

82

 System.out.println("Airty mismatch for predicate " +

pname +" .");

 }

 }

 }

 }

 for(int i=0; i<IDBAirty.size(); i++){

 Vector in = (Vector)(IDBAirty.elementAt(i));

 String name = (String)(in.elementAt(0));

 String s = (in.elementAt(1)).toString();

 int size = Integer.parseInt(s);

 for(int j=0; j<IDBAirty.size();j++){

 Vector inner = (Vector)(IDBAirty.elementAt(j));

 String pname = (String)(inner.elementAt(0));

 String s1 = (inner.elementAt(1)).toString();

 int size1 = Integer.parseInt(s1);

 if(name.equals(pname)){

 if(size != size1){

 System.out.println("Airty mismatch for predicate " +

pname +" .");

 }

 }

 }

 }

 }

}

9.7 Transformation Class:
import java.util.*;

import java.io.*;

import java.lang.*;

public class ParaConsistentRules

{

 public Vector getTransformedRules(Vector Rules){

 Vector Constants = new Vector(); // Vector containing all constants

fro making dom rules.

 Vector EDBRules = new Vector(); // Vector containing all rules of

type r(1,2) to r_plus(1,2).

 Vector TransformedRules = new Vector();

 for(int i = 0; i < Rules.size(); i++){

 Rule R = (Rule)(Rules.elementAt(i));

 if(R.getIsEDB()){

 Predicate fact = R.getHead();

 String pname = fact.getName() + "_plus";

 Vector AL = new Vector();

 Vector ArgList = fact.getArgList();

 for(int j = 0; j<ArgList.size(); j++){

 if(!(Constants.contains(ArgList.elementAt(j)))){

 Constants.add(ArgList.elementAt(j));

83

 }

 Vector inner = (Vector)(ArgList.elementAt(j));

 AL.add(inner.elementAt(0));

 }

 Predicate P = new Predicate(pname, AL,

false,false,null,null,null,null,null);

 Rule R1 = new Rule(P,null,true);

 EDBRules.add(R1);

 }

 }

 // Code to add all dom rules.

 // Eg: dom(1), dom(2), dom(3)......

 for(int k=0; k<Constants.size(); k++){

 Vector inner = (Vector)(Constants.elementAt(k));

 Vector arglist = new Vector();

 arglist.add(inner.elementAt(0));

 Predicate P = new

Predicate("dom",arglist,false,false,null,null,null,null,null);

 Rule R = new Rule(P,null,true);

 TransformedRules.add(R);

 }

 Vector minusRules = AddEDBMinus(TransformedRules, EDBRules,Rules);

 TransformedRules.addAll(EDBRules);

 TransformedRules.addAll(minusRules);

 Vector IDBRules = TransformedIDBRules(Rules);

 TransformedRules.addAll(IDBRules);

 return TransformedRules;

 }

 // Code to add minus predicate for non-dom predicates

 // Eg : r_minus(X,Y) :- dom(X), dom(Y), not r_plus(X,Y).

 public Vector AddEDBMinus(Vector domRules, Vector EDBRules, Vector

Rules){

 Vector minusRules = new Vector();

 for(int k =0; k<EDBRules.size();k++){

 Rule EDBrule = (Rule)(EDBRules.elementAt(k));

 Predicate head = (Predicate)EDBrule.getHead();

 String name = head.getName();

 int ind = name.indexOf("_plus",0);

 name = name.substring(0,ind);

 int flag = 0;

 for(int q=0; q< minusRules.size();q++){

 Rule minusRule = (Rule)(minusRules.elementAt(q));

 Predicate minushead = minusRule.getHead();

 if(minushead.getName().equals(name+"_minus")){

 flag =1;

 }

 }

 if(flag == 0) {

 Vector newAL = new Vector();

84

 Vector minusBody = new Vector();

 for(int i = 0;i<Rules.size();i++){

 Rule R = (Rule)(Rules.elementAt(i));

 if(!(R.isEDB)){

 Vector body = R.getBody();

 for(int j=0; j< body.size(); j++){

 Predicate P = (Predicate)(body.elementAt(j));

 if(!(P.getIsComparision())){

 if(P.getName().equals(name)){

 Vector AL = P.getArgList();

 if(newAL.size() == 0){

 for(int a =0; a<AL.size(); a++){

 newAL.add(AL.elementAt(a));

 }

 }

 }

 }

 }

 }

 }

 for(int a1 =0; a1<newAL.size(); a1++) {

 Vector domlist = new Vector();

 domlist.add(newAL.elementAt(a1));

 Predicate Pdom = new

Predicate("dom",domlist,false,false,null,null,null,null,null);

 minusBody.add(Pdom);

 }

 Predicate P1 = new

Predicate(name+"_plus",newAL,true,false,null,null,null,null,null);

 minusBody.add(P1);

 Predicate head1 = new

Predicate(name+"_minus",newAL,true,false,null,null,null,null,null);

 Rule R1 = new Rule(head1, minusBody, false);

 minusRules.add(R1);

 }

 }

 return minusRules;

 }

 public Vector TransformedIDBRules(Vector Rules){

 Vector TransRules = new Vector();

 for(int i=0; i< Rules.size(); i++){

 Vector CPredicates = new Vector();//Vector to store comparision

predicates of a rule.

 boolean hasComparision = false;

 Rule R = (Rule)(Rules.elementAt(i));

 if(!(R.isEDB)){

 Vector Body = R.getBody();

 for(int j = 0; j < Body.size(); j++){

85

 Predicate P = (Predicate)(Body.elementAt(j));

 if(P.getIsNegative()) {

 Predicate b1 = new

Predicate(P.getName()+"_minus",P.getArgList(),false,false,null,null,null,null

,null);

 Vector b1body = new Vector();

 b1body.add(b1);

 Predicate h1 = new

Predicate(P.getName()+"_complementplus",

P.getArgList(),false,false,null,null,null,null,null);

 Predicate b2 = new

Predicate(P.getName()+"_plus",P.getArgList(),false,false,null,null,null,null,

null);

 Vector b2body = new Vector();

 b2body.add(b2);

 Predicate h2 = new

Predicate(P.getName()+"_complementminus",P.getArgList(),false,false,null,null

,null,null,null);

 Rule r1 = new Rule(h1,b1body,false);

 Rule r2 = new Rule(h2,b2body,false);

 TransRules.add(r1);

 TransRules.add(r2);

 }

 }

 Predicate Head = (Predicate)R.getHead();

 Vector headAL = Head.getArgList();

 boolean projection = false;

 for(int m=0; m<Body.size(); m++){

 Predicate P1 = (Predicate)(Body.elementAt(m));

 Vector bodyAL = new Vector();

 if(!(P1.getIsComparision())){

 bodyAL= P1.getArgList();

 }

 if(bodyAL.size() > headAL.size()){

 projection = true;

 }

 }

 for(int g =0; g< Body.size(); g++){

 Predicate P = (Predicate)(Body.elementAt(g));

 if(P.getIsComparision()){

 CPredicates.add(P);

 hasComparision = true;

 }

 }

 Vector plusBody = new Vector();

 if(projection){

 Vector ag = getArgumentsforTemp(R);

 for(int n = 0; n<Body.size(); n++){

 Predicate P = (Predicate)(Body.elementAt(n));

86

 if(!(P.getIsComparision())){

 Vector ArgList = new Vector();

 ArgList = P.getArgList();

 Vector bodyminus = new Vector();

 Predicate hminus ;

 Predicate b1;

 Vector newArgList = ArgList;

 if(P.getIsNegative()){

b1 = new Predicate(P.getName()+"_complementplus", newArgList, false,

false, null,null,null,null,null);

hminus = new Predicate("temp"+i+"_minus" ,ag, false, false,

null,null,null,null,null);

Predicate bminus = new Predicate(P.getName()+"_complementminus",

newArgList, false, false, null,null,null,null,null);

bodyminus.add(bminus);

}

else{

b1 = new Predicate(P.getName()+"_plus",newArgList, false, false,

null,null,null,null,null);

hminus = new Predicate("temp"+i+"_minus" , ag, false, false,

null,null,null,null,null);

Predicate bminus = new Predicate(P.getName()+"_minus", newArgList,

false, false, null,null,null,null,null);

 bodyminus.add(bminus);

}

if(hminus.getArgList().size() > P.getArgList().size()){

 Vector T = hminus.getArgList();

 Vector Dom = new Vector();

 for(int b = 0; b<T.size();b++){

 if(!(newArgList.contains(T.elementAt(b)))){

 Dom.add(T.elementAt(b));

 }

 }

 for(int c= 0; c< Dom.size(); c++){

 Vector domlist = new Vector();

domlist.add(Dom.elementAt(c));

 Predicate pdom = new

Predicate("dom",domlist,false,false,null,null,null,null,null);

 bodyminus.add(pdom);

 }

 }

 Rule mRuleminus = new Rule(hminus, bodyminus, false);

 TransRules.add(mRuleminus);

 plusBody.add(b1);

 }

}

 Predicate hplus = new Predicate("temp"+i+"_plus",ag,false, false,

null,null,null,null,null);

 Rule mRuleplus = new Rule(hplus, plusBody, false);

87

 TransRules.add(mRuleplus);

 Vector projectionRules =

getProjectionRules(R,i,ag,hasComparision,CPredicates);

 TransRules.addAll(projectionRules);

 //Add plus body vector rule

 }

 else{

 for(int n = 0; n<Body.size(); n++){

 Predicate P = (Predicate)(Body.elementAt(n));

 if(!(P.getIsComparision())){

 Vector ArgList = P.getArgList();

 Vector bodyminus = new Vector();

 Predicate hminus;

 Predicate b1;

 Vector newArgList = P.getArgList();

 if(P.getIsNegative()){

 b1 = new Predicate(P.getName()+"_complementplus", newArgList, false,

false, null,null,null,null,null);

 hminus = new Predicate(Head.getName()+"_minus" ,Head.getArgList(),

false, false, null,null,null,null,null);

 Predicate bminus = new Predicate(P.getName()+"_complementminus",

newArgList, false, false, null,null,null,null,null);

 bodyminus.add(bminus);

 }

 else{

 b1 = new Predicate(P.getName()+"_plus",newArgList, false, false,

null,null,null,null,null);

 hminus = new Predicate(Head.getName()+"_minus" ,Head.getArgList(),

false, false, null,null,null,null,null);

 Predicate bminus = new Predicate(P.getName()+"_minus", newArgList,

false, false, null,null,null,null,null);

 bodyminus.add(bminus);

 }

 if(Head.getArgList().size() > P.getArgList().size()){

 Vector T = new Vector();

 Vector Dom = new Vector();

 for(int z = 0; z< Head.getArgList().size();z++){

 try{

 T.add(Head.getArgList().elementAt(z));

 }

 catch(Exception e){

 }

 }

 for(int b = 0; b<T.size();b++){

 if(!(newArgList.contains(T.elementAt(b)))){

 Dom.add(T.elementAt(b));

 }

 }

 for(int c= 0; c< Dom.size(); c++){

88

 Vector domlist = new Vector();

 domlist.add(Dom.elementAt(c));

Predicate pdom = new

Predicate("dom",domlist,false,false,null,null,null,null,null);

bodyminus.add(pdom);

 }

 }

Vector list = Head.getArgList();

 Predicate hplus = new Predicate(Head.getName()+"_plus",list,false,

false, null,null,null,null,null);

 Rule mRuleplus = new Rule(hplus, plusBody, false);

 TransRules.add(mRuleplus);

 }//Get Unknown Rule

 }

 }

 for(int j= 0; j<Rules.size(); j++){

 Rule R = (Rule)(Rules.elementAt(j));

 if(!(R.getIsEDB())){

 Rule U_rule = getUnknownRule(R);

 TransRules.add(U_rule);

 }

 }

 return TransRules;

 }

 public Rule getUnknownRule(Rule R){

 Predicate head = (Predicate)(R.getHead());

 Vector RBody = new Vector();

 Vector Arglist = head.getArgList();

 for(int j=0; j<Arglist.size(); j++){

 Vector AL = new Vector();

 AL.add(Arglist.elementAt(j));

 Predicate dom = new

Predicate("dom",AL,false,false,null,null,null,null,null);

 RBody.add(dom);

 }

 Predicate R_plus = new

Predicate(head.getName()+"_plus",Arglist,true,false,null,null,null,null,null)

;

 Predicate R_minus = new Predicate(head.getName()+"_minus",

Arglist,true,false,null,null,null,null,null);

 RBody.add(R_plus);

 RBody.add(R_minus);

 Predicate R_head = new

Predicate(head.getName()+"_unknown",Arglist,false,false,null,null,null,null,n

ull);

 Rule R1 = new Rule(R_head,RBody,false);

 return R1;

 }

89

 public Vector getArgumentsforTemp(Rule R){

 Predicate head = (Predicate)(R.getHead());

 Vector body = (Vector)(R.getBody());

 Vector argTemp = new Vector();

 for(int i= 0; i<body.size(); i++){

 Predicate P = (Predicate)(body.elementAt(i));

 if(!(P.getIsComparision())){

 Vector parg = P.getArgList();

 for(int j= 0; j< parg.size(); j++){

 if(!(argTemp.contains(parg.elementAt(j)))){

 argTemp.add(parg.elementAt(j));

 }

 }

 }

 }

 Vector variables = new Vector();

 for(int k=0; k<argTemp.size(); k++){

 Vector inner = (Vector)(argTemp.elementAt(k));

 variables.add(inner.elementAt(0));

 }

 Object[] arr = new String[argTemp.size()];

 arr = variables.toArray();

 String[] sa = new String[argTemp.size()];

 for(int m=0; m<arr.length;m++){

 sa[m] = arr[m].toString();

 }

 Arrays.sort(sa);

 Vector argtemp1 = new Vector();

 for(int k=0; k<sa.length; k++){

 Vector v = new Vector();

 v.add(sa[k]);

 v.add("variable");

 argtemp1.add(v);

 }

 return argtemp1;

 }

 public Vector getProjectionRules(Rule R, int i, Vector arguments, boolean

hasComparision, Vector CP){

 Vector Rules = new Vector();

 Predicate head = (Predicate)(R.getHead());

 Vector headargs = head.getArgList();

 //For Positive Rule

 Vector plusargs = new Vector();

 //plusargs.addAll(headargs);

 for(int k =0; k< arguments.size();k++){

 if(!(headargs.contains(arguments.elementAt(k)))) {

 Vector plusargs1 = new Vector();

 plusargs1.add("_");

 plusargs1.add("variable");

90

 plusargs.add(plusargs1);

 }

 else{

 plusargs.add(arguments.elementAt(k));

 }

 }

 Predicate bodyplus = new

Predicate("temp"+i+"_plus",plusargs,false,false, null,null,null,null,null);

 Vector bodyp = new Vector();

 bodyp.add(bodyplus);

 if(hasComparision){

 bodyp.addAll(CP);

 }

 Predicate plushead = new

Predicate(head.getName()+"_plus",headargs,false,false,

null,null,null,null,null);

 Rule plusRule = new Rule(plushead, bodyp, false);

 Rules.add(plusRule);

 //For Minus Rules ----Rule 1---

 Vector b1 = new Vector();

 for(int l = 0 ; l< arguments.size(); l++) {

 Vector domList= new Vector();

 domList.add(arguments.elementAt(l));

 Predicate P = new Predicate("dom", domList, false,false,

null,null,null,null,null);

 b1.add(P);

 }

 Predicate h1 = new

Predicate("temp"+i+1,arguments,false,false,null,null,null,null,null);

 Rule R1 = new Rule(h1,b1,false);

 Rules.add(R1);

 ///For Rule 2---

 Vector b2 = new Vector();

 b2.add(R1.getHead());

 Predicate body2 = new Predicate("temp"+i+"_minus",arguments,

true,false,null,null,null,null,null);

 b2.add(body2);

 Predicate head2 = new

Predicate("temp"+i+2,headargs,false,false,null,null,null,null,null);

 Rule R2 = new Rule(head2, b2, false);

 Rules.add(R2);

 //For Rule 3--

 Vector b3 = new Vector();

 for(int j= 0; j < headargs.size(); j++){

 Vector domList = new Vector();

 domList.add(headargs.elementAt(j));

 Predicate P = new Predicate("dom", domList, false,false,

null,null,null,null,null);

91

 b3.add(P);

 }

 Predicate body3 = new

Predicate("temp"+i+2,headargs,true,false,null,null,null,null,null);

 b3.add(body3);

 Predicate head3 = new

Predicate(head.getName()+"_minus",headargs,false,false,null,null,null,null,nu

ll);

 if(hasComparision){

 Vector CP1 = getCompPredicates(CP);

 b3.addAll(CP1);

 }

 Rule R3 = new Rule(head3, b3, false);

 Rules.add(R3);

 return Rules;

 }

}

9.8 Weak Well Founded Model:
import java.util.*;

import java.io.*;

public class WeakWellFoundedModel

{

 public HashMap computeWWF(Vector Rules)

 {

 HashMap resultMap = new HashMap();

 try{

 Relation Rel = null;

 Rel.initializeDatabase("DATA");

 boolean flag = true;

 Vector wffPredicates = new Vector();

 for(int j=0; j<Rules.size();j++){

 Rule r = (Rule)(Rules.elementAt(j));

 if(r.getIsEDB()){

 Predicate p = (Predicate)(r.getHead());

 String name = p.getName();

 Vector argList = p.getArgList();

 if(!(resultMap.containsKey(name))){

 Vector val = new Vector();

 val.add(argList);

 resultMap.put(name,val);

 }

 else{

 Vector val1 =

(Vector)(resultMap.get(name));

 val1.add(argList);

 resultMap.put(name,val1);

 }

 wffPredicates.add(p);

92

 }

 }

 //While Loop to find the Well Founded Model until no more changes

occur to data.

 while(flag){

 flag= false;

 for(int m = 0; m< Rules.size(); m++){

 Rel.initializeDatabase("DATA");

 Rule R = (Rule)(Rules.elementAt(m));

 if(!(R.getIsEDB())){

 Predicate head =

(Predicate)(R.getHead());

 if(!(head.getName().endsWith("unknown"))){

 Vector body =

(Vector)(R.getBody());

 Relation R1 = null;

 for(int j=0; j< body.size(); j++){

 Predicate P =

(Predicate)(body.elementAt(j));

if((!(P.getIsNegative())) && (!(P.getIsComparision())) && R1 == null){

R1 = Rel.getRelation(P.getName().toUpperCase());

 R1 = R1.rename(getVarList(P.getArgList()));

 }

else if((!(P.getIsNegative())) && (!(P.getIsComparision()))){

 Relation R2 = Rel.getRelation(P.getName().toUpperCase());

 Relation R3 = R2.rename(getVarList(P.getArgList()));

 R1 = R1.join(R3);

 }

 }

 for(int k=0; k<body.size();k++){

 Predicate P = (Predicate)(body.elementAt(k));

 if(P.getIsNegative()){

 Relation minusRel = Rel.getRelation(P.getName().toUpperCase());

minusRel = minusRel.rename(getVarList(P.getArgList()));

 Relation plusRel = R1.projection(getVarList(P.getArgList()));

 minusRel = plusRel.minus(minusRel);

 R1 = R1.join(minusRel);

 }

 }

 R1 = R1.projection(getVarList(head.getArgList()));

 Vector RelTable = R1.getTable();

 if(!(resultMap.containsKey(head.getName()))){

 resultMap.put(head.getName(),RelTable);

 if(RelTable != null){

 flag = true;

 }

 }

 else{

93

 Vector V = (Vector)(resultMap.get(head.getName()));

 for(int c=0; c< RelTable.size(); c++){

 Vector inner = (Vector)(RelTable.elementAt(c));

 if(!(V.contains(inner))){

 V.add(inner);

 flag = true;

 }

 }

 resultMap.put(head.getName(),V);

 }

 Set keyset = resultMap.keySet();

 Iterator i1 = keyset.iterator();

 while(i1.hasNext()){

 String RelName = (String)(i1.next());

 Vector v1 = (Vector)(resultMap.get(RelName));

 FileOutputStream fs1 = new

FileOutputStream("DATA\\"+RelName.toUpperCase()+".dat");

 PrintStream ps1 = new PrintStream(fs1);

 ps1.println(v1.size());

 for(int d = 0; d<v1.size(); d++){

 Vector v2 = (Vector)(v1.elementAt(d));

 for(int e =0; e< v2.size(); e++){

 ps1.println(v2.elementAt(e));

 }

 }

 ps1.close();

 fs1.close();

 }

 }

}

}}

for(int m=0; m<Rules.size();m++){

 Rel.initializeDatabase("DATA");

 Rule R = (Rule)(Rules.elementAt(m));

 if(!(R.getIsEDB())){

 Predicate head = (Predicate)(R.getHead());

 if(head.getName().endsWith("unknown")){

 System.out.println(head.getName());

 Vector body = (Vector)(R.getBody());

 Relation R1 = null;

 for(int j=0; j< body.size(); j++){

 Predicate P = (Predicate)(body.elementAt(j));

 if((!(P.getIsNegative())) && (!(P.getIsComparision())) && R1 ==

null){

 R1 = Rel.getRelation(P.getName().toUpperCase());

 R1 = R1.rename(getVarList(P.getArgList()));

 }

 else if((!(P.getIsNegative())) && (!(P.getIsComparision()))){

94

 Relation R2 = Rel.getRelation(P.getName().toUpperCase());

 Relation R3 = R2.rename(getVarList(P.getArgList()));

 R1 = R1.join(R3);

 }

 }

 for(int k=0; k<body.size();k++){

 Predicate P =

(Predicate)(body.elementAt(k));

 if(P.getIsNegative()){

 Relation minusRel = Rel.getRelation(P.getName().toUpperCase());

 minusRel = minusRel.rename(getVarList(P.getArgList()));

 Relation plusRel = R1.projection(getVarList(P.getArgList()));

 minusRel = plusRel.minus(minusRel);

 R1 = R1.join(minusRel);

 }

 }

 R1 = R1.projection(getVarList(head.getArgList()));

 R1.displayRelation();

 Vector RelTable = R1.getTable();

 if(!(resultMap.containsKey(head.getName()))){

 resultMap.put(head.getName(),RelTable);

 }

 else{

 Vector V = (Vector)(resultMap.get(head.getName()));

 for(int c=0; c< RelTable.size(); c++){

 Vector inner = (Vector)(RelTable.elementAt(c));

 if(!(V.contains(inner))){

 V.add(inner);

 }

 }

 resultMap.put(head.getName(),V);

 }

 Set keyset = resultMap.keySet();

 Iterator i1 = keyset.iterator();

 while(i1.hasNext()){

 String RelName = (String)(i1.next());

 Vector v1 = (Vector)(resultMap.get(RelName));

 FileOutputStream fs1 = new

FileOutputStream("DATA\\"+RelName.toUpperCase()+".dat");

 PrintStream ps1 = new PrintStream(fs1);

 ps1.println(v1.size());

 for(int d = 0; d<v1.size(); d++){

 Vector v2 =

(Vector)(v1.elementAt(d));

 for(int e =0; e< v2.size();

e++){

 ps1.println(v2.elementAt(e));

 }

95

 }

 ps1.close();

 fs1.close();

 }

 }

 }

 }

 MiscFunctions mf = new MiscFunctions();

 mf.printWeakWellFounded(resultMap);

 }

 catch(Exception ex){

 ex.printStackTrace();

 }

 return resultMap;

 }

 public Vector getVarList(Vector argList) {

 Vector T = new Vector();

 for(int i = 0; i<argList.size(); i++) {

 if(argList.elementAt(i).equals("_")){

 T.add("_");

 }

 else{

 Vector in = (Vector)(argList.elementAt(i));

 T.add(in.elementAt(0));

 }

 }

 return T;

 }

 public Relation evaluateCols(Relation Rel,Vector ArgList){

 Vector variables = new Vector();

 Vector var1 = new Vector();

 for(int i=0;i<ArgList.size();i++){

 Vector inner = (Vector)(ArgList.elementAt(i));

 if(inner.elementAt(1).equals("varchar")){

 String LOT = "col";

 String ROT = "str";

 int j= i+1;

 String LOP = "C"+ Integer.toString(j);

 String ROP = (String)inner.elementAt(0);

 String OP = "=";

 Rel = Rel.selection(LOT,LOP,OP,ROT,ROP);

 }

 else{

 int j = i+1;

 variables.add("C"+Integer.toString(j));

 var1.add(inner.elementAt(0));

 }

 }

 Rel = Rel.projection(variables);

96

 return Rel;

 }

}

9.9 Generate Models for Stability Testing:
import java.util.*;

import java.io.*;

public class PredicatesForTest {

 public Vector getPositiveUnknownPredicates(Vector Rules, HashMap

result){

 ModifyRules mrf = new ModifyRules();

 Vector headNames = new Vector();

 headNames = mrf.getUniqueHeads(Rules);

 Vector P = new Vector();

 for(int i=0; i< headNames.size();i++){

 String name = (String)headNames.elementAt(i);

 String headplus = name + "_plus";

 String headunknown = name + "_unknown";

 Vector plusArgs = (Vector)(result.get(headplus));

 Vector unknownArgs = (Vector)(result.get(headunknown));

 for(int m=0;m<unknownArgs.size();m++){

 if(!(plusArgs.contains(unknownArgs.elementAt(m)))){

 plusArgs.add(unknownArgs.elementAt(m));

 }

 }

 //System.out.println("HEAD:"+head.getName());

 for(int j=0; j< plusArgs.size();j++){

 Vector args = (Vector)(plusArgs.elementAt(j));

 Predicate p1 = new

Predicate(name,args,false,false,null,null,null,null,null);

 int index = P.indexOf(p1);

 if(!(P.contains(p1))){

 P.add(p1);

 }

 }

 }

 return P;

 }

 public Vector getEDBPredicates(Vector Rules){

 Vector EDB = new Vector();

 for(int i=0;i<Rules.size();i++){

 Rule R = (Rule)(Rules.elementAt(i));

 if(R.getIsEDB()){

 Predicate head = R.getHead();

 EDB.add(head);

 }

 }

 return EDB;

 }

97

 public Vector getPredicatesForNaiveTest(Vector Rules){

 Vector NaivePredicates = new Vector();

 Vector args = new Vector();

 Vector EDB1 = getEDBPredicates(Rules);

 for(int i=0; i<EDB1.size(); i++){

 Predicate p = (Predicate)(EDB1.elementAt(i));

 Vector ArgList = p.getArgList();

 for(int j=0; j< ArgList.size(); j++){

 if(!args.contains(ArgList.elementAt(j))){

 args.add(ArgList.elementAt(j));

 }

 }

 }

 for(int i=0; i< args.size(); i++){

 Vector v = new Vector();

 v.add(args.elementAt(i));

 Predicate P = new Predicate("t",v,false,false,

null,null,null,null,null);

 NaivePredicates.add(P);

 }

 return NaivePredicates;

 }

}

9.10 Ground Program Generation:
import java.util.*;

import java.io.*;

//A class to transform a Program into its ground program i.e. replacing all

the variables with

// constants.

public class GroundProgram{

 public Vector Perms = new Vector();

 MiscFunctions mf = new MiscFunctions();

 public Vector getGroundProgram(Vector Rules){

 Vector GP = new Vector();

 String[] constants = getConstants(Rules);

 for(int i = 0; i<Rules.size();i++){

 Rule R = (Rule)(Rules.elementAt(i));

 if(!(R.getIsEDB())){

 Predicate head = R.getHead();

 Vector body = R.getBody();

 Perms = new Vector();

 Predicate p = getMaxPredicate(R);

 int size = ((Vector)(p.getArgList())).size();

 getCombos(size,constants);

 for(int j=0;j<Perms.size();j++){

 Vector argList = mf.getVarList(p.getArgList());

 String[] arr = (String[])(Perms.elementAt(j));

 HashMap map = new HashMap();

 for(int k = 0; k<arr.length;k++){

98

 map.put(argList.elementAt(k),arr[k]);

 }

 //-------Create new Head with new constant

arguments

 Vector headArgs =

mf.getVarList(head.getArgList());//get original head arguments

 Vector newHeadArgs = new Vector();//place new

contants arguments keeping the mapping as X to 1st argument, Y to

 // 2nd argument

 for(int m=0; m<headArgs.size();m++){

 String val =

(String)(map.get(headArgs.elementAt(m)));

 newHeadArgs.add(val);

 }

 Predicate newHead = new

Predicate(head.getName(),newHeadArgs,false,false,null,null,null,null,null);

 //-------------Create new Body Predicate for

each permutation------------------

 Vector newBody = new Vector();

 for(int bp =0 ;bp<body.size(); bp++){

 Predicate P_body =

(Predicate)(body.elementAt(bp));

 if(!(P_body.getIsComparision())){

 Vector b_args =

mf.getVarList(P_body.getArgList());

 Vector newb_args = new Vector();

 for(int a=0; a<b_args.size();a++){

 String val1 =

(String)(map.get(b_args.elementAt(a)));

 newb_args.add(val1);

 }

 Predicate newP_body = new

Predicate(P_body.getName(),newb_args,P_body.getIsNegative(),false,null,null,n

ull,null,null);

 newBody.add(newP_body);

 }

 }

 Rule new_R = new Rule(newHead,newBody,false);

 GP.add(new_R);

 }

 }

 else{

 Predicate head = R.getHead();

 head.setArgList(mf.getVarList(head.getArgList()));

 GP.add(R);

 }

 }

 //mf.PrintRules_2(GP);

 return GP;

99

 }

 //Returns a predicate with longest argument list from a Rule

 public Predicate getMaxPredicate(Rule R){

 Predicate P = null;

 Predicate head = R.getHead();

 Vector arglist = head.getArgList();

 int len = arglist.size();

 P = head;

 Vector body = (Vector)(R.getBody());

 for(int i =0; i< body.size(); i++){

 Predicate pd = (Predicate)(body.elementAt(i));

 Vector arg = pd.getArgList();

 if(arg != null){

 if(arg.size()>len){

 P = pd;

 len = arg.size();

 }

 }

 }

 return P;

 }

 //Retuns a vector containing all the permutations of given arguments of

given size.

 //eg: give arguments 1,2 and size 2, returns |1,2|,|2,1|

 public void printCombos(int[] digits,int count, String[][] arr,String[]

temp,int number, Vector Perms){

 if(count == number){

 String[] val = new String[temp.length];

 for(int j=0; j<temp.length;j++){

 val[j] = temp[j];

 //System.out.print(temp[j]);

 }//temp = temp.substring(0,1);

 //System.out.println();

 Perms.add(val);

 return;

 }

 for(int i=0;i<(arr[digits[count]]).length;i++){

 temp[count] = arr[digits[count]][i];

 printCombos(digits,count+1,arr,temp,number,Perms);

 }

 }

 public void getCombos(int number, String[] arr){

 String[][] arr1 = new String[number][arr.length];

 for(int k = 0;k<number;k++)

 {

 arr1[k] = arr;

 }

 int val = 0;

 int[] digits = new int[number];

100

 for(int j = 0 ; j <number;j++){

 digits[j] = j;

 }

 String[] temp = new String[number];

 printCombos(digits,0,arr1,temp,number,Perms);

 }

 //Gets all the constants from the EDB predicates in a String array

 public String[] getConstants(Vector Rules){

 Vector constants = new Vector();

 for(int i=0; i<Rules.size();i++){

 Rule R = (Rule)(Rules.elementAt(i));

 if(R.getIsEDB()){

 Predicate p = R.getHead();

 Vector args = mf.getVarList(p.getArgList());

 for(int j=0; j<args.size();j++){

 if(!(constants.contains(args.elementAt(j))))

 constants.add(args.elementAt(j));

 }

 }

 }

 String[] dom = new String[constants.size()];

 for(int k=0; k<constants.size();k++){

 dom[k] = constants.elementAt(k).toString();

 }

 return dom;

 }

}

9.11 Stable Model Tester:
import java.util.*;

public class StableModelTester {

 public Vector GP = new Vector();

 public Vector OrgRules = new Vector();

 public Vector Combos = new Vector();

 MiscFunctions mfs = new MiscFunctions();

 public StableModelTester(Vector _GP, Vector _OrgRules){

 GP = _GP;

 OrgRules = _OrgRules;

 //System.out.println("GROUND PROGRAM");

 //mfs.PrintRules_2(GP);}

 public boolean Test(Vector TP1, Vector EDB, Vector _GP)//TP =

TestPredicates, GP = Ground Program{

 GroundProgram PG = new GroundProgram();

 GP = PG.getGroundProgram(OrgRules);

 boolean flag = false;

 Vector GPNew = new Vector();

 for(int i=0;i<GP.size();i++){

 Rule R = (Rule)(GP.elementAt(i));

 if(R.getIsEDB()){

 GPNew.add(R);

101

 }

 else{

 Vector body = R.getBody();

 boolean hasNegative = false;

 for(int j=0;j<body.size();j++){

 Predicate P1 = (Predicate)(body.elementAt(j));

 for(int a=0;a<TP1.size();a++){

 Predicate P2 =

(Predicate)(TP1.elementAt(a));

 if(P1.equalsPositive(P2) &&

P1.getIsNegative()){

 hasNegative = true;

 break;

 }

 if(hasNegative){

 break;

 }

 }

 }

 if(!hasNegative){

 Rule R1 = new

Rule(R.getHead(),R.getBody(),R.getIsEDB());

 GPNew.add(R1);

 }

 }

 }

 Vector TransGP = (Vector)GPNew.clone();

 for(int i=0;i<TransGP.size();i++){

 Rule R1 = (Rule)(TransGP.elementAt(i));

 if(!(R1.getIsEDB())){

 Vector body1 = R1.getBody();

 Vector remove = new Vector();

 for(int j=0; j<body1.size();j++){

 Predicate P1 = (Predicate)(body1.elementAt(j));

 if(P1.getIsNegative()){

 remove.add(j);

 }

 }

 if(remove.size()>0){

 for(int a=0;a<remove.size();a++)

 {

 body1.removeElementAt((Integer)(remove.elementAt(a)));

 }

 }

 }

 }

 EvaluateStableModel SM = new EvaluateStableModel(TransGP);

 Vector SMPredicates = SM.evaluate();

102

 for(int k=0;k<SMPredicates.size();k++){

 Predicate P = (Predicate)(SMPredicates.elementAt(k));

 P.PrintPredicate();

 }

 System.out.println("----------------Stable Model End-------------

-------");*/

 boolean comp = ComparePredicates(SMPredicates, TP1);

 GPNew.removeAllElements();

 return comp;

 }

 public Vector Test_All(Vector TP,Vector EDB, Vector _GP){

 Vector StableModels = new Vector();

 GenerateAllCombinations(TP);

 for(int i=0; i<Combos.size();i++){

 Vector TP1 = new Vector();

 int[] arr = (int[])Combos.elementAt(i);

 for(int j = 0;j<arr.length;j++){

 TP1.add(TP.elementAt(arr[j]));

 }

 TP1.addAll(EDB);

 PopulateOrgData PO = new PopulateOrgData();

 PO.CreateDatabase(OrgRules);

 boolean flag = Test(TP1, EDB, _GP);

 if(flag == true){

 StableModels.add(TP1);

 for(int m=0;m<TP1.size();m++){

 Predicate P = (Predicate)(TP1.elementAt(m));

 P.PrintPredicate();

 }

 System.out.println("STABLE MODEL ADDED---------------

-------------");

 }

 }

 return StableModels;

 }

 public void GenerateAllCombinations (Vector TP)//PT= Predicates for

test{

 //System.out.println("Generate ALL Combinations");

 int[] in = new int[TP.size()];

 int[] out = new int[in.length+1];

 for(int i= 0;i<TP.size();i++){

 in[i] = i;

 //System.out.println(in[i]);

 }

 DoCombine(in,out,in.length,0,0);

 }

 public void DoCombine(int[] in, int[] out,int length, int recLevel, int

start){

 int i;

103

 for(i= start;i<length;i++){

 out[recLevel] = in[i];

 out[recLevel+1] = '\u0000';

 int[] c= new int[recLevel+1];

 for(int j=0; j<recLevel+1;j++){

 //System.out.print(out[j]+",");

 c[j] = out[j];

 }

 if(!Combos.contains(c)){

 Combos.add(c);

 }

 if(i<length -1)

 DoCombine(in,out,length,recLevel+1,i+1);

 }

 }

 public boolean ComparePredicates(Vector P1, Vector P2)

 {

 boolean b = false;

 if(P1.size() != P2.size())

 return false;

 else{

 for(int i=0;i<P1.size();i++){

 Predicate p1 = (Predicate)P1.elementAt(i);

 b = false;

 for(int j=0;j<P2.size();j++){

 Predicate p2 = (Predicate)P2.elementAt(j);

 if(p1.equalsPositive(p2)){

 b = true;

 }

 }

 if(b == false)

 break;

 }

 if(b)

 return true;

 else

 return false;

 }

 }

}

	A Novel Stable Model Computation Approach for General Dedcutive Databases
	Recommended Citation

	A NOVEL STABLE MODEL COMPUTATION APPROACH FOR GENERAL DEDUCTIVE DATABASES

