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The growth of data sharing initiatives for neuroimaging and genomics represents an
exciting opportunity to confront the “small N” problem that plagues contemporary
neuroimaging studies while further understanding the role genetic markers play in the
function of the brain. When it is possible, open data sharing provides the most benefits.
However, some data cannot be shared at all due to privacy concerns and/or risk of
re-identification. Sharing other data sets is hampered by the proliferation of complex data
use agreements (DUAs) which preclude truly automated data mining. These DUAs arise
because of concerns about the privacy and confidentiality for subjects; though many do
permit direct access to data, they often require a cumbersome approval process that can
take months. An alternative approach is to only share data derivatives such as statistical
summaries—the challenges here are to reformulate computational methods to quantify
the privacy risks associated with sharing the results of those computations. For example,
a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative
approaches to accessing data are needed. This paper reviews the relevant literature on
differential privacy, a framework for measuring and tracking privacy loss in these settings,
and demonstrates the feasibility of using this framework to calculate statistics on data
distributed at many sites while still providing privacy.

Keywords: collaborative research, data sharing, privacy, data integration, neuroimaging

1. INTRODUCTION
Neuroimaging data has been the subject of many data shar-
ing efforts, from planned large-scale collaborations such as
the Alzheimers Disease Neuroimaging Initiative (ADNI) (Jack
et al., 2008) and functional biomedical informatics research
network (FBIRN) (Potkin and Ford, 2009) (among others) to
less-formalized operations such as openfmri.org (Poldrack et al.,
2013) and the grass roots functional connectomes project (FCP)
with its international extension (INDI) (Mennes et al., 2013). The
Frontiers in Neuroinformatics special issue on “Electronic Data
Capture, Representation, and Applications in Neuroimaging”
in 2012 Turner and Van Horn (2012) included a number of
papers on neuroimaging data management systems, several of
which provide the research community some access to their
data. In many cases, an investigator must agree to a data usage
agreements (DUA): they specify who they are, what elements
of the data they want, and often what they are planning to
do with it. The researcher must agree to abide by arrange-
ments such as not attempting to re-identify the subjects, not
re-sharing the data, not developing a commercial application
off the data, and so on. These DUAs may be as simple as
a one page electronic questionnaire for contact purposes, or
a full multi-page form that requires committee review, insti-
tutional official review and signatures being faxed back and
forth.

The 2012 publication by members of the INCF Task Force
on Neuroimaging Datasharing (Poline et al., 2012), specifi-
cally on neuroimaging data sharing, reiterated that data should
be shared to improve scientific reproducibility and accelerate
progress through data re-use. However, the barriers to data shar-
ing that they identified included the well-known problems of
motivation (both the ability to get credit for the data collected,
as well as the fear of getting “scooped”,) ethical and legal issues,
and technical or administrative issues. In many cases, motivation
is less of an issue than are the perceived legal and technical issues
in keeping an investigator from sharing their data. The perceived
legal issues regarding privacy and confidentiality, and protecting
the trust that the subject has when they give their time and effort
to participate in a study, are what lead to multi-page DUAs.

Neuroimaging is not the only data type whose sharing is
hampered by these privacy concerns. Genetic data is perhaps
the most contentious to share; the eMERGE consortium worked
through a number of issues with large-scale sharing of genetic
data, including the usual administrative burdens and ethical
concerns (McGuire et al., 2011), and the five sites of the
consortium identified numerous inconsistencies across institu-
tional policies due to concerns about ethical and legal protec-
tions. It is often easy to re-identify individuals from genetic
data; one publication showing re-identification of individu-
als is even possible from pooled data (Homer et al., 2008),
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prompting the NIH to remove data from a public reposi-
tory (Couzin, 2008). Despite the existence of more sophisticated
re-identificationattacks (e.g., Schadt et al., 2012), the NIH has
not responded by removing the data. One of the most recent
efforts re-identified subjects through combining DNA sequences
with publicly available, recreational genealogy databases (Gymrek
et al., 2013). These publicized privacy breaches make patients
rightly concerned about their identifiable health information
being shared with unknown parties.

This leads to basically three categories of data that will never
be made publicly available for easy access: (1) data that are
non-shareable due to obvious re-identification concerns, such as
extreme age of the subject or a zip code/disease combination that
makes re-identification simple; (2) data that are non-shareable
due to more complicated or less obvious concerns, such as genetic
data or other data which may be re-identifiable in conjunction
with other data not under the investigator’s control; and (3) data
that are non-shareable due to the local institutional review boards
(IRBs) rules or other administrative decisions (e.g., stakeholders
in the data collection not allowing sharing). For example, even
with broad consent to share the data acquired at the time of data
collection, some of the eMERGE sites were required to re-contact
the subjects and re-consent prior to sharing within the eMERGE
consortium, which can be a permanent show-stopper for some
datasets (Ludman et al., 2010).

The first two data types may be shared with an appropriate
DUA. But this does not guarantee “easy access;” it can slow down
or even prevent research. This is particularly onerous when it is
not known if the data being requested are actually useable for the
particular analysis the data requestor is planning. For example, it
may be impossible to tell how many subjects fit a particular set
of criteria without getting access to the full data first (Vinterbo
et al., 2012). It is markedly problematic to spend weeks, months,
or even years waiting for access to a dataset, only to find out
that of the several hundred subjects involved, only a few had
usable combinations of data of sufficient quality necessary for
one’s analysis.

Problems with DUAs only become worse when trying to access
data from multiple sites. Because each DUA is different, the
administrative burden rapidly becomes unmanageable. In order
to enable analyses across multiple sites, one successful approach
is to share data derivatives. For example, the ENIGMA consor-
tia pooled together data from many hundreds of local sites and
thousands of subjects by providing analysis scripts to local sites
and centrally collecting only the output of these scripts (Hilbar
et al., 2013). Another example is DataSHIELD (Wolfson et al.,
2010), which also uses shared summary measures to perform
pooled analysis. These systems are good starting points, but they
neither quantify privacy nor provide any guarantees against re-
identification. In addition, summary measures are restricted to
those that can be computed independently of other data. An
analysis using ENIGMA cannot iterate among sites to com-
pute results informed by the data as a whole. However, by
allowing data holders to maintain control over access, such an
approach does allow for more privacy protections at the cost
of additional labor in implementing and updating a distributed
architecture.

The ENIGMA approach is consistent with the differential pri-
vacy framework (Dwork et al., 2006), a strong notion of privacy
which measures the risk of sharing the results of computations
on private data. This quantification allows data holders to track
overall risk, thereby allowing local sites to “opt-in” to analyses
based on their own privacy concerns. However, in the differen-
tial privacy model, the computation is randomized—algorithms
introduce noise to protect privacy, thereby making the computa-
tion less accurate. However, if protecting privacy permits sharing
data derivatives, then aggregating private computations across
many sites may lead to a benefit; even though each local com-
putation is less accurate (to protect privacy), the “large N” benefit
from many sites allowing access will still result in a more accurate
computation.

The system we envision is a research consortium in which sites
allow differentially-private computations on their data without
requiring an individual DUA for each site. The data stays at each
site, but the private data derivatives can be exchanged and aggre-
gated to achieve better performance. In this paper we survey some
of the relevant literature on differential privacy to clarify if and
how it could help provide useful privacy protections in conjunc-
tion with distributed statistical analyses of neuroimaging data.
The default situation is no data sharing: each site can only learn
from its own data. We performed an experiment on neuroimages
from a study to see if we could predict patients with schizophrenia
from healthy control subjects. Protecting privacy permits a pooled
analysis; without the privacy protections, each site would have to
use its own data to learn a predictor. Our experiments show that
by gathering differentially private classifiers learned from mul-
tiple sites, an aggregator can create a classifier that significant
outperforms that which could be learned at a single site. This
demonstrates the potential of differential privacy: sharing access
to data derivatives (the classifiers) improves overall accuracy.

Many important research questions can be answered by the
kind of large-scale neuroinformatics analyses that we envision.

• Regression is a fundamental statistical task. Regressing covari-
ates such as age, diagnosis status, or response to a treatment
against structure and function in certain brain regions (voxels
in an image) is simple but can lead to important findings. For
example, in examining the ability to aggregate structural imag-
ing across different datasets (Fennema-Notestine et al., 2007)
used the regression of age against brain volumes as a validity
test. Age also affects resting state measures, as Allen et al. (2011)
demonstrated on an aggregated dataset of 603 healthy subjects
combined across multiple studies within an individual institu-
tion that had a commitment to data sharing and had minimal
concerns regarding re-identification of the data. In that study,
because privacy and confidentiality requirements that limited
access to the full data, the logistics of extracting and organizing
the data took the better part of a year (personal communication
from the authors). In such a setting, asking a quick question
such as whether age interacts with brain structure differently
in healthy patients versus patients with a rare disorder would
be impossible without submitting the project for IRB approval.
This process can take months or even years and cost hundreds
of dollars, whereas the analysis takes less than a day and may
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produce negative findings. We need a framework that facil-
itates access to data on the fly for such straightforward but
fundamental analyses.

• The re-use of genetic data has been facilitated by dbGAP,
NIH’s repository for sharing genome-wide scan datasets, gene
expression datasets, methylation datasets, and other genomic
measures. The data need to be easily accessible for combined
analysis for identification or confirmation of risk genes. The
success of the Psychiatric Genomic Consortium in finding
confirmed risk genes of schizophrenia after almost 5 years
of aggregating datasets supports these goals of making every
dataset re-usable (Ripke et al., 2013). While dbGAP has been a
resounding success, it has its drawbacks. Finding the data can
be a bit daunting, as often phenotype data is made available
separately from the genetic data. For example, the PREDICT-
HD Huntington’s disease study rolled out a year before the
genetic data. DbGAP’s sharing requirements are driven by the
need to ensure the data are handled appropriately and the sub-
jects’ confidentiality and privacy are protected; requesting a
dataset entails both the PI and their institutional official sign-
ing an agreement as well as a review by the study designate.
This process must be completed prior to access being granted
or denied. As before, this precludes any exploratory analyses
to identify particular needs, such as determining how many
subjects have the all the required phenotype measures.

• The success of multimodal data integration in the analy-
sis of brain structure/function (Plis et al., 2010; Bießmann
et al., 2011; Bridwell et al., 2013; Schelenz et al., 2013), imag-
ing/genetics (Liu et al., 2012; Chen et al., 2013; van Erp
et al., 2013), and EEG/fMRI (Bridwell et al., 2013; Schelenz
et al., 2013) shows that with enough data, we can go fur-
ther than simple univariate linear models. For example, we
can try to find combinations of features which predict the
development of a disorder, response to various treatments,
or relapse. With more limited data there has been some suc-
cess in reproducing diagnostic classifications (Arbabshirani
et al., 2013; Deshpande et al., 2013), and identifying coher-
ent subgroupings within disorders which may have different
genetic underpinnings (Girirajan et al., 2013). With combina-
tions of imaging, genetic, and clinical profiles from thousands
of subjects across autism, schizophrenia, and bipolar disor-
der, for example, we could aim to identify more clearly the
areas of overlap and distinction, and what combinations of
both static features and dynamic trajectories in the feature
space identify clinically relevant clusters of subjects who may
be symptomatically ambiguous.

2. PRIVACY MODELS AND DIFFERENTIAL PRIVACY
There are several different conceptual approaches to defining pri-
vacy in scenarios involving data sharing and computation. One
approach is to create de-identified data; these methods take a
database of records corresponding to individuals and create a
sanitized database for use by the public or another party. Such
approaches are used in official statistics and other settings—a sur-
vey of different privacy models can be found in Fung et al. (2010),
and a survey of privacy technologies in a medical informatics con-
text in Jiang et al. (2013). These approaches differ in how they

define privacy and what guarantees they make with respect to this
definition. For example, k-anonymity (Sweeney, 2002) quantifies
privacy for a particular individual i with data xi (for example, age
and zip code) in terms of the number of other individuals whose
data is also equal to xi. Algorithms for guaranteeing k-anonymity
manipulate data values (e.g., by reporting age ranges instead of
exact ages) to enforce that each individual’s record is identical to
at least k other individuals.

A different conceptual approach to defining privacy is to try
and quantify the change in the risk of re-identification as a result
of publishing a function of the data. This differs from data san-
itizing methods in two important respects. Firstly, privacy is a
property of an algorithm operating on the data, rather an a prop-
erty of the sanitized data—this is the difference between semantic
and syntactic privacy. Secondly, it can be applied to systems which
do not share data itself but instead share data derivatives (func-
tions of the data). The recently proposed ε-differential privacy
model (Dwork et al., 2006) quantifies privacy in terms of risk;
it bounds the likelihood that someone can re-infer the data of an
individual. Algorithms that guarantee differential privacy are ran-
domized—they manipulate the data values (e.g., by adding noise)
to bound the risk.

Finally, some authors define privacy in terms of data secu-
rity and say that a data sharing system is private if it satisfies
certain cryptographic properties. The most common of these
models is secure multiparty computation (SMC) (Lindell and
Pinkas, 2009), in which multiple parties can collaborate to com-
pute a function of their data without leaking information about
their private data to others. The guarantees are cryptographic
in nature, and do not assess the re-inference or re-identification
problem. For example, in a protocol to compute the maximum
element across all parties, a successful execution would reveal the
maximum. A secondary issue is developing practical systems to
work on neuroinformatics data. Some progress has been made in
this direction (Sadeghi et al., 2010; Huang et al., 2011; Nikolaenko
et al., 2013), and it is conceivable that in a few years SMC will be
implemented in real distributed systems.

2.1. PRIVACY TECHNOLOGIES FOR DATA SHARING
As discussed earlier, there are many scenarios in which sharing
raw data is either difficult or impossible—strict DUAs, obvious
re-identification issues, difficulties in assessing re-identifiability,
and IRB or other policy rules. Similar privacy challenges exists
in the secondary use of clinical data (National Research Council,
1997). In many medical research contexts, there has been a
shift toward sharing anonymized data. The Health Insurance
Portability and Accountability Act (HIPAA) privacy rule (45 CFR
Part 160 and Subparts A and E of Part 164) allows the shar-
ing of data as long as the data is de-identified. However, many
approaches to anonymizing or “sanitizing” data sets (Sweeney,
2002; Li et al., 2007; Machanavajjhala et al., 2007; Xiao and Tao,
2007; Malin, 2008) are subject to attacks (Sweeney, 1997; Ganta
et al., 2008; Narayanan and Shmatikov, 2008) that use public data
to compromise privacy.

When data sharing itself is precluded, methods such as
k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al.,
2007), t-closeness (Li et al., 2007), and m-invariance (Xiao and
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Tao, 2007) are no longer appropriate, since they deal with con-
structing private or sanitized versions of the data itself. In such
situations we would want to construct data access systems in
which data holders do not share the data itself but instead provide
an interface to the data that allows certain pre-specified compu-
tations to be performed on that data. The data holder can then
specify the granularity of access it is willing to grant subject to its
policy constraints.

In this model of interactive data access, the software that con-
trols the interface to the raw data acts as a “curator” that screens
queries from outsiders. Each data holder can then specify the level
of access which it will provide to outsiders. For example, a medi-
cal center may allow researchers to access summaries of clinical
data for the purposes of exploratory analysis; a researcher can
assess the feasibility of doing a study using existing records and
then file a proposal with the IRB to access the real data (Murphy
and Chueh, 2002; Murphy et al., 2006; Lowe et al., 2009; Vinterbo
et al., 2012). In the neuroinformatics context, data holders may
allow outside users to receive a histogram of average activity levels
for regions of a certain size.

Being able to track the privacy risks in such an interactive
system allows data holders to match access levels with local pol-
icy constraints. The key to privacy tracking is quantification—for
each query or access to the data, a certain amount of information
is “leaked” about the underlying data. With a sufficient number of
queries it is theoretically possible to reconstruct the data (Dinur
and Nissim, 2003), so the system should be designed to mitigate
this threat and allow the data holders to “retire” data which has
been accessed too many times.

2.2. DIFFERENTIAL PRIVACY
A user of the database containing private information may wish
to apply a query or algorithm to the data. For example, they may
wish to know the histogram of activity levels in a certain brain
region for patients with a specified mutation. Because the answer
to this query is of much lower dimension than a record in the
database, it is tempting to regard disclosing the answer as not
incurring a privacy risk. A important observation of Dinur and
Nissim (2003) was that an adversary posing such queries may be
able to reconstruct the entire database from the answers to multi-
ple simple queries. The differential privacy model was introduced
shortly thereafter, and has been adopted widely in the machine
learning and data mining communities. The survey by Dwork
and Smith (2009) covers much of the earlier theoretical work,
and Sarwate and Chaudhuri (2013) review some works relevant
to signal processing and machine learning. In the basic model,
the database is modeled as a collection of N individuals’ data
records D = (x1, x2, . . . , xN), where xj is the data for individual
j. For example, xj may be the MRI data associated to individual
j together with information about mutations in certain genes for
that individual.

An even simpler example is to estimate the mean activity
in a certain region, so each xj is simply a scalar which rep-
resented the measured activity of individual j. Let us call this
desired algorithm Alg. Without any privacy constraint, the data
curator would simply apply Alg to the data D to produce an
output h = Alg(D). However, in many cases the output h could

compromise the privacy of the data and unfettered queries could
lead to reidentification of an individual.

Under differential privacy, the curator applies an approxima-
tion PrivAlg to the data instead of Alg. The approximation PrivAlg
is randomized—the randomness of the algorithm ensures that an
observer of the output will have a difficult time re-identifying
any individual in the database. More formally, PrivAlg(·) provides
ε-differential privacy if for any subset of outputs S ,

P
(
PrivAlg(D) ∈ S) ≤ eε · P

(
PrivAlg(D′) ∈ S)

(1)

for any two databases D and D′ differing in a single individual.
Here P(·) is the probability over the randomness in the algorithm.
It provides (ε, δ)-differential privacy if

P
(
PrivAlg(D) ∈ S) ≤ eε

P
(
PrivAlg(D′) ∈ S) + δ. (2)

The guarantee that differential privacy makes is that the dis-
tribution of the output of PrivAlg does not change too much,
regardless of whether any individual xj is in the database or not.
In particular, an adversary observing the output of PrivAlg and
knowing all of the data of individuals in D ∩ D′ common to both
D andD′ will still be uncertain of the remaining individual’s data.
Since this holds for any two databases which differ in one data
point, each individual in the database is guaranteed of this protec-
tion. More specifically, the parameters ε and δ control the tradeoff
between the false-alarm (Type I) and missed-detection (Type II)
errors for an adversary trying to make a test between D and D′
(see Oh and Viswanath, 2013 for a discussion).

Returning to our example of estimating the mean, the desired
algorithm Alg is simply the sample mean of the m data points,
so Alg(D) = 1

m

∑m
j = 1 xi. The algorithm Alg itself does not pro-

vide privacy because output is deterministic: the distribution
of Alg(D) is a point mass exactly at the average. If we change
one data point to form, say D′ = (x1, x2, . . . , xm−1, x′

m), then
Alg(D′) �= Alg(D) and the only way Equation (1) can hold is
if ε = ∞. One form of a private algorithm is to add noise to
the average (Dwork et al., 2006). A differentially private algo-
rithm is PrivAlg(D) = 1

m

∑m
j = 1 xi + 1

εm z, where z has a Laplace
distribution with unit variance. The Laplace distribution is a pop-
ular choice, but there are many other distributions which can
also guarantee differential privacy and may be better in some
settings (Geng and Viswanath, 2012, 2013). For more general
functions beyond averages, Gupte and Sundararajan (2010) and
Ghosh et al. (2012) showed that in some cases we can find opti-
mal mechanisms, while Nissim and Brenner (2010) show that this
optimality may not be possible in general.

Although some variations on these basic definition have been
proposed in the literature (Chaudhuri and Mishra, 2006; Rastogi
et al., 2009; Kifer and Machanavajjhala, 2011), most of the liter-
ature focuses on ε- or (ε, δ)-differential privacy. Problems that
have been studied in the literature range from statistical estima-
tion (Smith, 2011; Kifer et al., 2012; Smith and Thakurta, 2013),
to cover more complex data processing algorithms such as real-
time signal processing (Fan and Xiong, 2012; Le Ny and Pappas,
2012a,b), classification (Chaudhuri et al., 2011; Rubinstein et al.,
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2012; Zhang et al., 2012b; Jain and Thakurta, 2014), online learn-
ing (Jain et al., 2012; Thakurta and Smith, 2013), dimensionality
reduction (Hardt et al., 2012; Chaudhuri et al., 2013), graph esti-
mation (Karwa et al., 2011; Kasiviswanathan et al., 2013), and
auction design (Ghosh and Roth, 2011). The preceding citations
are far from exhaustive, and new papers on differential privacy
appear each month as methods and algorithms become more
mature.

There are two properties of differential privacy which enable
the kind of privacy quantification that we need in shared data-
access scenarios. The first property is post-processing invariance:
the output of an ε-differentially private algorithm PrivAlg main-

tains the same privacy guarantee—if ĥ = PrivAlg(D), then the

output of any function g(ĥ) applied to ĥ is also ε-differentially
private, provided g(·) doesn’t depend on the data. This means
that once the data curator has guaranteed ε-differential privacy
for some computation, it need not track how the output is used
in further processing. The second feature is composition—if we
run two algorithms PrivAlg1 and PrivAlg2 on data D with pri-
vacy guarantees ε1 and ε2, then combined they have privacy risk
at most ε1 + ε2. In some cases these composition guarantees can
be improved (Dwork et al., 2010; Oh and Viswanath, 2013).

2.3. DIFFERENTIALLY PRIVATE ALGORITHMS
A central challenge in the use of differentially private algorithms is
that by using randomization to protect privacy, the corresponding
accuracy, or utility, of the result is diminished. We contend that
the potential for a much larger sample size through data sharing
makes this tradeoff worthwhile. In this section we discuss some of
the differentially private methods for statistics and machine learn-
ing that have been developed in order to help balance privacy and
utility in data analyses.

Differentially private algorithms have been developed for a
number of important fundamental tasks in basic statistics and
machine learning. Wasserman and Zhou (2010) put the differen-
tial privacy framework in a general statistical setting, and Smith
(2011) studied point estimation, showing that many statistical
quantities can be estimated with differential privacy with similar
statistical efficiency. Duchi et al. (2012, 2013) studied a differ-
ent version of local privacy and showed that requiring privacy
essentially entails an increase in the sample size. Since differen-
tial privacy is related to the stability of estimators under changes
in the data, Dwork and Lei (2009) and Lei (2011) used tools
from robust statistics to design differentially private estimators.
Williams and McSherry (2010) studied connections to probabilis-
tic inference. More recently, Kifer et al. (2012) proposed meth-
ods for high-dimensional regression and Smith and Thakurta
(2013) developed a novel variable selection method based on the
LASSO.

One approach to designing estimators is the sample-and-
aggregate (Nissim et al., 2007; Smith, 2011; Kifer et al., 2012),
which uses subsampling of the data to build more robust
estimators. This approach was applied to problems in sparse lin-
ear regression (Kifer et al., 2012), and in particular to analyze
the LASSO (Smith and Thakurta, 2013) under the slightly
weaker definition of (ε, δ)-differential privacy. There are sev-
eral works which address convex optimization approaches to

statistical model selection and machine learning under dif-
ferential privacy (Chaudhuri et al., 2011; Kifer et al., 2012;
Rubinstein et al., 2012; Zhang et al., 2012b) that encompass
popular methods such as logistic regression, support vector
machines, and other machine learning methods. Practical kernel-
based methods for learning with differential privacy are still
in their infancy (Chaudhuri et al., 2011; Jain and Thakurta,
2013).

2.4. CHALLENGES FOR DIFFERENTIAL PRIVACY
In addition to the theoretical and algorithmic developments,
some authors have started trying to build end-to-end differen-
tially private analysis toolkits and platforms. The query language
PINQ (McSherry, 2010) was the first tool that allowed people to
write differentially-private data-analysis programs that guaran-
tee differential privacy, and has been used to write methods for
a number of tasks, including network analyses (McSherry and
Mahajan, 2010). Fuzz (Reed and Pierce, 2010) is a functional
programming language that also guarantees differential privacy.
At the systems level, AIRAVAT (Roy et al., 2010) is a differen-
tially private version of MapReduce and GUPT (Mohan et al.,
2012) uses the sample-and-aggregate framework to run general
statistical algorithms such as k-means. One of the lessons from
these implementations is that building a differentially private sys-
tem involves keeping track of every data access—each access can
leak some privacy—and systems can be vulnerable to attack from
adversarial queries (Haeberlen et al., 2011).

A central challenge in designing differentially private algo-
rithms for practical systems is setting the privacy risk level ε. In
some cases, ε must be chosen to be quite large in order to pro-
duce useful results—such a case was studied in earlier work by
Machanavajjhala et al. (2008) in the context of publishing differ-
entially private statistics about commute times. On the other side,
choosing a small value of ε may result in adding too much noise
to allow useful analysis. To implement a real system, it is neces-
sary to do a proper evaluation of the impact of ε on the utility of
the results. Ultimately, the setting of ε is a policy decision that is
informed by the privacy-utility tradeoff.

There are several difficulties with implementing existing
methods “off the shelf” in the neuroinformatics context.
Neuroimaging data is often continuous-valued. Much of the
work on differential privacy has focused on discrete data, and
algorithms for continuous data are still being investigated theo-
retically (Sarwate and Chaudhuri, 2013). In this paper we adapt
existing algorithms, but there is a need to develop methods specif-
ically designed for neuroimage analyses. In particular, images
are high-dimensional signals, and differentially private version
of algorithms such as PCA may perform poorly as the data
dimension increases (Chaudhuri et al., 2013). Some methods do
exist that exploit structural properties such as sparsity (Hardt
and Roth, 2012, 2013), but there has been insufficient empirical
investigation of these methods. Developing low-dimensional rep-
resentations of the data (perhaps depending on the task) can help
mitigate this.

Finally, neuroimaging datasets may contain few individuals.
While the signal from each individual may be quite rich, the
number of individuals in a single dataset may be small. Since
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privacy affects the statistical efficiency of estimators, we must
develop distributed algorithms that can leverage the properties
of datasets at many locations while protecting the privacy of the
data at each. Small sample sizes present difficulties for statisti-
cal inference without privacy—the hope is that the larger sample
size from sharing will improve statistical inference despite the
impact of privacy considerations. We illustrate this in the next
section.

3. APPLYING DIFFERENTIAL PRIVACY IN
NEUROINFORMATICS

In the absence of a substitute for individual DUAs, sites are left
to perform statistical analyses on their own data. Our proposal is
to have sites participate in consortium in which they share differ-
entially private data derivatives, removing the need for individual
DUAs. Differential privacy worsens the quality of a statistical esti-
mate at a single site because it introduces extra noise. However,
because we can share the results of differentially private compu-
tations at different sites, we can reduce the impact of the noise
from privacy. This larger effective sample size can give better esti-
mates than are available at a single site, even with privacy. We
illustrate this idea with two examples. The first is a simple prob-
lem of estimating the mean from noisy samples, and the second is
an example of a classification problem.

3.1. ESTIMATING A MEAN
Perhaps the most fundamental statistical problem is estimating
the mean of a variable. Suppose that we have N sites, each with m
different samples of an unknown effect:

xi,j = μ + zi,j i = 1, 2, . . . , N, j = 1, 2, . . . , m, (3)

where μ is an unknown mean, and zi,j is normally distributed
noise with zero mean and unit variance. Each site can compute its
local sample mean:

X̄i = 1

m

m∑

j = 1

xi,j = μ + 1

m

m∑

j = 1

zi,j. (4)

The sample mean X̄i is a an estimate of μ which has an error
that is normally distributed with zero mean and variance 1

m .

Thus a single site can estimate μ to within variance 1
m . A simple

ε-differentially private estimate of μ is

X̃i = 1

m

m∑

j = 1

xi,j + 1

εm
wi, (5)

where wi is a Laplace random variable with unit variance. Thus
a single site can make a differentially private estimate of μ with
error variance 1

m + 1
(εm)2 . Now turning to the N sites, we can

form an overall estimate using the differentially private local
estimates:

X̄ = 1

N

N∑

i = 1

X̃i = μ + 1

mN

N∑

i = 1

m∑

j = 1

xi,j + 1

εmN

N∑

i = 1

wi. (6)

This is an estimate of μ with variance 1
mN + 1

(εm)2N
.

The data sharing solution results in a lower error compared to
the local non-private solution whenever 1

m > 1
mN + 1

(εm)2N
, or

N > 1 + 1

ε2m
.

As the number of sites increases, we can support additional
privacy at local nodes (ε can decrease) while achieving supe-
rior statistical performance over learning at a single site without
privacy.

3.2. CLASSIFICATION
We now turn to a more complicated example of differentially
private classification that shows how a public data set can be
enhanced by information from differentially private analyses of
additional data sets. In particular, suppose there are N sites with
private data and 1 site with a publicly available dataset. Suppose
private site i has mi data points {(�xi,j, yi,j) : j = 1, 2, . . . , mi},
where each �xi,j ∈ R

d is a d-dimensional vector of numbers repre-
senting features of the j-th individual at site i, and yi,j ∈ {−1, 1} is
a label for that individual. For example, the data could be activity
levels in certain voxels and the label could indicate a disease state.
Each site can learn a classifier on its own local data by solving the
following minimization problem.

�wi = argmin
�w∈Rd

mi∑

j = 1

�(yi,j �w	�xi,j) + λ

2
‖�w‖2, (7)

where �(·) is a loss function. This framework includes many pop-
ular algorithms: for the support vector machine (SVM) �(z) =
max(0, 1 − z) and for logistic regression �(z) = log(1 + e−z).

Because the data at each site might be limited, they may ben-
efit from producing differentially private versions �wi and then
combining those with the public data to produce a better over-
all classifier. That is, leveraging many noisy classifiers may give
better results than any �wi on its own. The method we propose
is to train N differentially private classifiers using the objective
perturbation method applied to the Huberized support vector
machine (see Chaudhuri et al., 2011 for details). In this proce-
dure, the local sites minimize a perturbed version of the classifier
given in Equation (7). Let �wi be the differentially private classifier
produced by site i.

Suppose the public data set has m0 points {(�x0,j, y0,j) :
j = 1, 2, . . . , m0}. We compute a new data set {(�u0,j, y0,j) : j =
1, 2, . . . , m0} where �u0,j is an N-dimensional vector whose i-th
component is equal to �w	

i �x0,j. Thus �u0,j is the vector of “soft”
predictions of the N differentially private classifiers produced by
the private sites. The public site then uses logistic regression to
train a new classifier:

�w0 = argmin
�w∈Rd

m0∑

j = 1

log(1 + e−y0,j �w	u0,j) + λ

2
‖�w‖2. (8)

This procedure is illustrated in Figure 1. The overall classifica-
tion system produced by this procedure consists of the classifiers
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FIGURE 1 | System for differentially private classifier aggregation from

many sites. The N sites each train a classifier on their local data to learn
vectors { �wi }. These are used by an aggregator to compute new features for

its own data set. The aggregator can learn a classifier using its own data
using a non-private algorithm (if its data is public) or a differentially private
algorithm (if its data is private).

{�wi : i = 0, 1, . . . , N}. To classify a new point �x ∈ R
d, the system

computes �u = (�w	
1 �x, �w	

2 �x, . . . , �w	
N�x) and then predicts the label

ŷ = sign(�w	
0 �u). In the setting where the public site has more

data, training a classifier on pairs (�u, �x) could also work better.
We can distinguish between two cases here—in the public-

private case, described above, the classifier in Equation (8) uses
differentially private classifiers from each of the N sites on public
data, so the overall algorithm is differentially private with respect
to the private data at the N sites. In the fully-private case, the
data at the (N + 1)-th site is also private. In this case we can
replace Equation (8) with a differentially private logistic regres-
sion method (Chaudhuri et al., 2011) to obtain a classifier which
is differentially private with respect to the data at all N + 1 sites.
Note, although we assign the role of constructing the overall two-
level classifier to either the public-data site or one of the private
sites in the real use-case no actual orchestrating of the process
is required. It is convenient for the purposes of the demonstra-
tion (and without loss of generality) to treat a pre-selected site as
an aggregator, which we do in the experiments below. Figure 2.
can only be interpreted if we are consistent with the site that
does the aggregation. However, all that needs to be done for the
whole system to work is for the N (or N + 1 in the fully pri-
vate case) private sites compute and publish their classifiers �wi.
Then in the public data case, anyone (even entities with no data),
can construct and train a classifier by simply downloading the
publicly available dataset and following the above-described pro-
cedure. This could be one of the sites with the private data as well.
When no public data is available the second level classifier can
be only computed by one of the private-data sites (or each one
of them) and later published online to be useful even for enti-
ties with insufficient data. In both cases, the final classifier (or
classifiers) is based on a larger data pool that is available to any
single site.

From the perspective of differential privacy it is important to
note that the only information that each site releases about its data
is the separating hyperplane vector �wi and it does so only once.
Considering privacy as a resource a site would want to minimize
the loss of this resource. For that, a single release of informa-
tion in our scheme is better that multiple exchanges in any of the

iterative approaches (e.g., Gabay and Mercier, 1976; Zhang et al.,
2012a).

We implemented the above system on a neuroimaging dataset
(structural MRI scans) with N = 10 private sites. We combined
data from four separate schizophrenia studies conducted at Johns
Hopkins University (JHU), the Maryland Psychiatric Research
Center (MPRC), the Institute of Psychiatry, London, UK (IOP),
and the Western Psychiatric Institute and Clinic at the University
of Pittsburgh (WPIC) (see Meda et al., 2008). The sample com-
prised 198 schizophrenia patients and 191 matched healthy con-
trols (Meda et al., 2008). Our implementation relies on the
differentially private SVM and logistic regression as described
by Chaudhuri et al. (2011) and implementation available
online 1. The differentially private Hubertized SVM in our
implementation used regularization parameter λ = 0.01, pri-
vacy parameter ε = 10, and the Huber constant h = 0.5, while
parameters for differentially private logistic regression were set
to λ = 0.01 and ε = 10 (for details see Chaudhuri et al., 2011).
The quality of classification depends heavily on the quality of
features; because distributed and differentially private feature
learning algorithms are still under development, for the pur-
poses of this example we assume features are given. To learn the
features for this demonstration we used a restricted Boltzmann
machine (RBM) (Hinton, 2000) with 50 sigmoidal hidden units.
For training we have employed an implementation from Nitish
Srivastava2. We have used L1-regularization of the feature matrix
W(λ‖W‖1)(λ = 0.1) and 50% dropout to encourage sparse fea-
tures and effectively handle segmented gray matter images of
60465 voxels each. The learning rate parameter was set to 0.01.
The weights were updated using the truncated Gibbs sampling
method called contrastive divergence (CD) with a single sampling
step (CD-1). Further information on RBM model can be found
in Hinton (2000) and Hinton et al. (2006). After the RBM was
trained we activated all 50 hidden units on each subject’s MRI
producing a 50 dimensional dataset. Note, no manual feature

1http://cseweb.ucsd.edu/˜kamalika/code/dperm/
2https://github.com/nitishsrivastava/deepnet
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FIGURE 2 | Classification error rates for the mixed private-public case

(A) and the fully-private case (B). In both cases the combined differentially
private classifier performs significantly better than the individual classifiers.
The difference is statistically significant even after Bonferroni correction (to

account for multiple sites) with corrected p-values below 1.8 × 10−33.
Results thus motivate the use of differential privacy for sharing of brain
imaging and genetic data to enable quick access to data which is either hard
to access for logical reasons or not available for open sharing at all.

selection was involved as each and every feature was used. Using
these features we repeated the following procedure 100 times:

1. Split the complete set of 389 subjects into class-balanced train-
ing and test sets comprising 70% (272 subjects) and 30%
(117 subjects) of the data, respectively. The training set was
split into N + 1 = 11 class-balanced subsets (sites) of 24 or 25
subjects each.

2. Train a differentially private SVM on N = 10 of these subsets
independently (sites with private data).

3. Transform the data of the 11th subset (aggregator) using the
trained SVM classifiers (as described above).

4. Train both a differentially private classifier (fully-private) and
a standard logistic regression classifier (public-use) on the
transformed dataset (combined classifier).

5. Compute the individual error rates on the test set for each of
the N = 10 sites. Compute the error rates of a (differentially

private) SVM trained on the data of 11th dataset and the aggre-
gate classifier in Equation (8) that uses differentially private
results from all of the sites.

The results that we obtained in this procedure are summarized
in Figure 2 for the mixed private-public (Figure 2A) as well as
the fully-private (Figure 2B) cases. The 10 sites with private data
all have base-line classification error rates of a little over 20%,
indicating the relative difficulty of this classification task and
highlighting the effect of the noise added for differential privacy.
That is, on their own, each site would only be able to learn with
that level of accuracy. The distribution of the error rates across
experiments is given to the right. The last column of each fig-
ure shows the error rate of the combined classifier; Figure 2A
shows the results for a public aggregator, and Figure 2B for the
private aggregator. In both cases the error rate of the aggregated
classifier is around 5%, which is a significant improvement over
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a single site. Additionally, the distribution of the error of the
combined classifier is more tightly concentrated about its mean.
To quantify the significance of the improvement we performed
2-sample t-tests for the distribution of the error rates of the
combined classifier against error rate distributions of classifiers
produced at individual sites. The largest Bonferroni corrected
p-value was 1.8 × 10−33. The experiments clearly show the ben-
efits of sharing the results of differentially private computations
over simply using the data at a single site. Even though the clas-
sifier that each site shares is a noisy version of what they could
learn privately and thus less accurate, aggregating noisy classi-
fiers produces at multiple sites dramatically lowers the resulting
error.

4. DISCUSSION
Data sharing interfaces must take into account the realities of neu-
roimaging studies—current efforts have been very focused on the
data structures and ability to query, retrieve and share complex
and multi-modal datasets, usually under a fixed model of central-
ized warehousing, archiving, and privacy restrictions. There has
been a remarkable lack of focus on the very important issues sur-
rounding the lack of DUAs in older studies and also the privacy
challenges which are growing as more data becomes available and
predictive machine learning becomes more common.

We must consider several interlocking aspects when choos-
ing a data sharing framework and the technology to enable it.
Neuroimaging and genetics data present significant unique chal-
lenges for privacy. Firstly, this kind of data is very different from
that considered by many works on privacy—images and sequence
data are very high-dimensional and highly identifiable, which
may set limits on what we expect to be achievable. Secondly, we
must determine the data sharing structure—how is data being
shared, and to whom. Institutional data holders may allow other
institutions, individual researchers, or the public to access their
data. The structure of the arrangement can inform which privacy
technology is appropriate (Jiang et al., 2013). Thirdly, almost all
privacy-preserving data sharing and data mining technologies are
still under active research development and are not at the level
of commercially deployed security technologies such as encryp-
tion for e-Commerce. A privacy-preserving computation model
should be coupled with a legal and policy framework that allows
enforcement in the case of privacy breaches. In our proposed
model, sites can participate in a consortium in which only dif-
ferentially private data derivatives are shared. By sharing access to
the data, rather than the data itself, we mitigate the current pro-
liferation of individually-generated DUAs, by allowing local data
holders to maintain more control.

There are a number of challenges in building robust and scal-
able data sharing systems for neuroinformatics. On the policy
side, standards and best practices should be established for data
sharing within and across research consortia. For example, one
major challenge is attribution and proper crediting for data used
in large-scale studies. On the technology side, building federated
data sharing systems requires additional fault-tolerance, secu-
rity, and more sophisticated role-management than is typically
found in the research environment. As noted by Haeberlen et al.
(2011) implementing a differentially private system introduces

additional security challenges without stricter access controls.
Assigning different trust levels for different users (Vinterbo et al.,
2012), managing privacy budgets, and other data governance pol-
icy issues can become quite complicated with differential privacy.
On the statistical side, we must extend techniques from meta-
analyses to interpret statistics computed from data sampled under
heterogenous protocols. However, we believe these challenges can
be overcome so that researchers can more effectively collaborate
and learn from larger populations.
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