
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

Fall 11-22-2010

Covert DCF - A DCF-Based Covert Timing Channel In 802.11 Covert DCF - A DCF-Based Covert Timing Channel In 802.11

Networks Networks

Russell Holloway

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Recommended Citation Recommended Citation
Holloway, Russell, "Covert DCF - A DCF-Based Covert Timing Channel In 802.11 Networks." Thesis,
Georgia State University, 2010.
doi: https://doi.org/10.57709/1665614

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1665614
mailto:scholarworks@gsu.edu

COVERT DCF: A DCF-BASED COVERT TIMING CHANNEL IN 802.11 NETWORKS

by

RUSSELL D. HOLLOWAY

Under the Direction of Dr. Raheem Beyah

ABSTRACT

Covert channels are becoming more popular as security risks grow in networks. One

area that is promising for covert channels is wireless networks, since many use a collision

avoidance scheme such as carrier sense multiple access with collision avoidance (CSMA/CA).

These schemes often introduce randomness in the network, which provides good cover for a

covert timing channel. In this thesis, we use the 802.11 standard as an example to demon-

strate a wireless covert channel. In particular, most 802.11 configurations use a distributed

coordinated function (DCF) to assist in communications. This DCF uses a random backoff

to avoid collisions, which provides the cover for our covert channel. Our timing channel pro-

vides great improvements on other recent covert channels in the field of throughput, while

maintaining high accuracy. We are able to achieve throughput over 8000 bps using Covert

DCF, or by accepting a throughput of 1800 bps we can achieve higher covertness and 99%

accuracy as well.

INDEX WORDS: Covert channel, MAC misbehavior, Steganography, 802.11 DCF,
Wireless LANs

COVERT DCF: A DCF-BASED COVERT TIMING CHANNEL IN 802.11 NETWORKS

by

RUSSELL D. HOLLOWAY

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2010

Copyright by
Russell David Holloway

2010

COVERT DCF: A DCF-BASED COVERT TIMING CHANNEL IN 802.11 NETWORKS

by

RUSSELL D. HOLLOWAY

Committee Chair:

Committee:

Dr. Raheem Beyah

Dr. Anu Bourgeois

Dr. Yingshu Li

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2010

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Raheem Beyah, for all of his guidance and support

throughout this process.

I would also like to thank Dr. Anu Bourgeois and Dr. Yingshu Li.

Finally, I would like to thank my family and friends for all of their support.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . viii

Chapter 1 INTRODUCTION . 1

Chapter 2 RELATED WORK . 3

Chapter 3 BACKGROUND INFORMATION 6

Chapter 4 PROPOSED SCHEME . 8

Chapter 5 MAXIMIZING THROUGHPUT, ACCURACY, AND COVERT-

NESS . 10

5.1 Throughput . 10

5.2 Accuracy . 12

5.3 Covertness . 16

Chapter 6 COVERT DCF PROTOCOL DESIGN 18

6.1 Covert DCF Sending Protocol . 18

6.2 Covert DCF Receiving Protocol . 21

Chapter 7 IMPLEMENTATION, PERFORMANCE EVALUATION AND

NUMERICAL RESULTS . 24

7.1 Implementation . 24

7.2 Throughput . 25

vi

7.3 Covertness . 26

7.3.1 Throughput Changes . 26

7.3.2 Sorted Backoffs . 28

7.3.3 Two-Sample Kolmogorov-Smirnov Test 29

7.4 Accuracy . 31

7.5 Light Traffic Protocols . 31

Chapter 8 CONCLUSIONS . 33

Chapter 9 FUTURE WORK . 34

REFERENCES . 35

vii

LIST OF FIGURES

3.1 Transmission of packet using DCF . 7

4.1 High level view of scheme . 8

5.1 Theoretical Throughput . 11

5.2 Minimum time required to send packet . 14

5.3 Accuracy Cases . 15

7.1 OPNET Network Layout . 24

7.2 Covert channel throughput comparison (ASCII text) 26

7.3 Standard channel throughput variations for aggressive sender 27

7.4 Standard channel throughput variations for covert sender 27

7.5 Sorted backoff times . 29

7.6 4 Bit Symbol Backoff - Empirical CDF . 30

7.7 7 Bit Symbol Backoff - Empirical CDF . 30

viii

LIST OF TABLES

7.1 Summary of simulations . 25

1

Chapter 1

INTRODUCTION

In today’s society, security is becoming increasingly important in our networks. Initially,

security was not designed into many of the standards and protocols as the architects of the

Internet and standards never expected security to be an issue. However, it has become clear

that security is a major concern. We have seen techniques and security patches applied to

existing technology, as well as seen new technology and systems introduced with at least

some form of security included, at least at the most basic level. Unfortunately, no matter

how much security we continue to add, there will always be people looking to bypass that

security for various reasons.

One popular method for bypassing security protocols is the use of covert channels. By

using covert communication channels, an individual can hide messages and other information

within regular traffic, thus slipping by security protocols (in contrast to overt channels, where

the message is plain and sent openly). Classically, covert channels are classified as either

storage channels or timing channels [1]. Storage channels use some sort of storage medium

to hide messages, and timing channels use timing patterns to hide messages within regular

communication. In this thesis, we focus on covert timing channels.

Covert timing channels pose a great risk to security as they often bypass all security

measures in place altogether. A common example is the Bell-La Padula model, which enforces

high access control and security in government [2]. The access control is very secure in this

model due to two important mandatory access control rules. However, by creating a covert

channel, the access control can be bypassed altogether.

The timing channel we propose is an example of a wireless covert channel that allows for

higher bandwidth covert communication in comparison to other covert channels. One use for

this channel would be command and control of a wireless botnet. We have seen mobile device

2

usage grow dramatically, and many of them now include 802.11 support. Unfortunately, this

growth also leads to additional malicious activity such as the iPhone/Privacy.A attacks which

steal personal data from jailbroken iPhones [3]. It is not hard to imagine botnets forming on

802.11 enabled devices in near future, and it is necessary to prepare ourselves and defenses

for these new forms of malicious activity.

On the other hand, covert channels could provide an added layer of security. For exam-

ple, they could be used to store additional information as part of an access control scheme

as we demonstrated in [4]. While they should not be used as the sole method for access

control since they merely aim to provide security through obscurity, they could provide an

additional layer as part of an overall layered security scheme.

Our covert timing channel, Covert DCF, uses the 802.11 medium access control (MAC)

contention window (CW) in the distributed coordinated function (DCF) to send information.

The CW allows for random backoff to reduce the number of collisions on the wireless medium

and also offers the variability required for a covert channel. A sender can intelligently select

the CW for each outgoing frame [5], making it appear random over time. However, each

choice of the CW can represent a symbol from a codebook, and through these symbols the

covert message can be sent. Note, one instance of this (i.e., reducing the random backoff

time) is considered mac misbehavior [5]. What we illustrate in this thesis, is that not only can

a node improve throughput using mac misbehavior, but it can also send messages covertly.

The receiving node reverses the process. First, the receiving node will calculate the CW

window used by the sender (based on gathered knowledge of the current network), and look

up the corresponding symbol in the codebook.

This scheme can easily be extended to other distributed wireless networks, since by

design they generally include some randomness to avoid collisions on the medium. This

randomness is the source of our timing channel.

The rest of this thesis is organized as follows. In Chapter 2, we present related work.

A brief overview of the 802.11 DCF is presented in Chapter 3, with an overview of our

proposed covert channel following in Chapter 4. Chapter 5 aims at optimizing individual

characteristics for our covert channel. Chapter 6 presents our covert channel in detail. We

present our analysis and results in Chapter 7. Lastly, Chapter 8 presents our conclusions

and we conclude with future work in Chapter 9.

3

Chapter 2

RELATED WORK

In order to fully implement a covert channel as effectively as possible, we must analyze

other covert channel designs, information theory of such channels, and also detection and

prevention methods of these channels.

There have been several designs of covert channels. Previous research has introduced

a good number of storage channels, with more recent research covering a wider range of

protocols and network layers as seen in [6–12]. Several covert timing channels have been

introduced as well such as that in [13], where the authors introduce one of the earlier basic

timing channels using IP inter-packet arrival time (IAT) patterns. This channel obtained

approximately 17 bps. However, it is easy to detect this covert timing channel based on the

regularity of the traffic it generates. Cabuk et al. provide an in-depth study of IP covert

channel detection in [14].

Sellke et al. demonstrate a TCP timing channel which can also be created in such

a way that it can hide among traffic that can be modeled by independent and identically

distributed (i.i.d.) random variables in [15]. It requires the sender and receiver to agree

upon a seed in advance, and the cumulative distribution function (cdf) to model must have

an inverse. However, when the authors make their covert channel traffic computationally

indistinguishable within polynomial time from regular traffic, there is a significant decrease

in the throughput. They demonstrated a maximum of 84 bps throughput for traffic that

is computationally distinguishable from legitimate traffic, or 5bps for the computationally

indistiguishable scheme. While being computationally indistinguishable can help hide the

covert message, the extremely low throughput detracts from the appeal of this method.

A few papers have also been written on 802.11 covert channel schemes as well. One

method we presented in [16] uses rate switching as the covert channel but has a maximum

4

throughput of 96 bps. Furthermore, due to the unreliability of UDP, the rate switching

technique used can have a large effect on UDP traffic. A simple covert storage channel at

the data link layer using the 802.11 sequence and WEP initial vector fields in the header

was introduced in [17].

We can also look at information theory related to covert channels. There are several

papers that discuss the capacity and bounds of timing channels. It is shown in [18] that

channels modeled by a single-server queue have a capacity greater than the service rate

of the queue. Channels with service time distributions which have bounded support are

considered in [19], and [20] analyzes the effects of noise, such as time sharing delays of the

CPU and I/O. Real-time systems are considered in [21], in which operations are performed

at preemption points or within predetermined intervals.

Finally, we can also look at detection and prevention schemes. Because we are perform-

ing MAC misbehavior on our sending node, we need to avoid MAC misbehavior detection

schemes. Rong et al. [22] presented a method for detecting MAC misbehavior by looking at

throughput degradations observed at normal stations. Similar methods for calculating the

traffic gain ratio and traffic degradation ratio were presented in [23]. We presented a scheme

using a Näıve Bayes classifier and the IAT in [24]. In [25], the authors present a scheme that

looks directly at the number of idle slots and the collision probability calculated on each

observed node to determine if it is misbehaving or not.

While there are some detection schemes such as those presented in [26–28] that aim to

modify the 802.11 protocol itself to improve detection capabilities, they are out of the scope

of this thesis and not immediately applicable to the detection of our channel.

Furthermore, there have also been some mitigation schemes introduced that aim to

prevent the use of covert channels without requiring detection of them, as seen in [29, 30].

These schemes usually add some delay or padding to traffic on the network to throw off the

timing of covert timing channels. However, these schemes cannot affect our timing channel

when used on the local wireless network, since no devices sit between the two nodes on the

network. The timing of our packets stems from a fundamental backoff required in current

802.11 networks that cannot be removed without significantly modifying the standard.

Some previous schemes can stay covert well with very little throughput. Other schemes

have higher throughput yet are easily detected. We seek to develop an 802.11 covert channel

5

that optimizes throughput, accuracy, and covertness as necessary for intended usage. In

this work, we are able to achieve throughput of 2500 bps while remaining covert with 85%

accuracy, or 1800 bps while remaining covert with 99% accuracy.

6

Chapter 3

BACKGROUND INFORMATION

The 802.11 MAC uses carrier sense multiple access with collision avoidance (CSMA/CA),

which is a DCF aimed at reducing collisions since they are not as easily detected on wireless

networks as on wired networks. The process is described in full detail in [31], but below we

discuss the essential details necessary for an understanding of our covert channel.

Before a station may transmit, it must sense whether or not the network is busy or

not. This check must be performed at both the physical layer and in the network allocation

vector (NAV), since two nodes may both be in range of an access point (AP), but not each

other.

If the medium is sensed to be busy, then the station must wait until it is no longer in

use before attempting to transmit. There is a required waiting period after the medium is no

longer busy before transmission is allowed. This serves two purposes. First, certain messages

such as acknowledgement (ACK) messages have higher priority than other messages such

as a new packet transmission. To provide higher priority, ACK messages have to wait a

shorter period of time, the Short Interframe Space (SIFS), to access the medium. Other

packets must wait a longer period of time, the DCF Interframe Space (DIFS), in addition

to a random period of backoff time, before transmission.

The random backoff time is required to solve the issue where multiple nodes may be

waiting for the medium to become free, and thus otherwise would all attempt to use the

medium at exactly the same time when the DIFS timer ran out. The random backoff time

is calculated by multiplying a randomly selected number of slots from [0, CW] by slot time,

which is a constant value. The random number of slots is chosen in the range of [0, CW]

where the value of CW starts at CWmin and is doubled every time a collision occurs until

CW = CWmax, at which point it remains at CWmax until a successful transmission takes

7

Figure 3.1. Transmission of packet using DCF

place. At this point, CW is set to CWmin again. This binary exponential backoff is designed

to decrease the probability of collisions while keeping the wait time at a minimum. If at the

end of the waiting period the medium is still free, the station may transmit.

Fig. 3.1 shows the events that take place during transmission of a packet. Of notable

interest is the fact that outside of the random backoff, there are no other random times. In

the next chapter, we use this to our advantage when developing Covert DCF.

In addition to the DCF, there are different physical layers (PHY) that may be used

in 802.11 as well. For example, common PHY are direct-sequence (DS), frequency-hopping

spread spectrum (FHSS), and orthogonal frequency-division multiplexing (OFDM). Each

modulation technique defines the actual length of DIFS, SIFS, slot times, and other timing

characteristics. While our proposed work does not modify or work directly at the physical

layer of the 802.11 protocol, it is necessary to know which PHY layer is being used in order

to perform the necessary calculations for backoff.

8

Chapter 4

PROPOSED SCHEME

Covert DCF stems from the random backoff that is required to take place when sending

new packets. By taking control of this random backoff, we are able to encode different

symbols using various backoff values without drawing immediate attention to our channel

since the randomness helps disguise the channel.

The sender and receiver agree on a pre-defined codebook which maps symbols from

S = {s is a bit string of length l(s)} to backoff values. For example, we may let S = {0002,

0012, 0102, ..., 1112} which sends three bits of information at a time. Symbol 0002 may be

associated with a backoff of 100µs and symbol 0102 with a backoff of 150µs. We describe

how we choose the symbols in more detail in Chapters 5 and 6.

Fig. 4.1 illustrates a high level view of a simple case using our covert channel. In this

example, the receiving node is on the wireless side of the network, and S = {00002, ..., 11112}.

The sender chooses to send the phrase BAD. There may or may not be regular nodes com-

municating on the network.

Figure 4.1. High level view of scheme

9

In the design of Covert DCF, we focus on three important characteristics to consider:

throughput, accuracy, and covertness.

Throughput determines how fast we can send data across the channel. To increase

throughput, we could increase the baud rate β, which is the number of state changes that

take place over any given period of time. In the context of this research, state changes occur

with each packet sent. Alternatively, we can change |S|, the number of symbols within S.

If we let l(s) be the number of bits in element sεS, then throughput can be calculated as

bps = β ∗ l(s) for our channel. Chapter 5 discusses optimizing throughput in more detail.

Accuracy is another important aspect to consider. Without high accuracy, the covert

channel may not be very useful. In overt communication, including the standard 802.11

protocol, accuracy is often achieved through two-way communication and the use of ACK

messages. However, covert channels are often one-way, thus ACK messages are not used and

the channel must function without them. We consider accuracy in more detail in Chapter 5

as well.

Finally, we also wanted to consider covertness. After all, it is covertness which separates

our channel from regular overt channels. It is important to try to balance throughput,

accuracy, and covertness during the design of our channel. We present several methods used

to determine covertness in the next chapter.

10

Chapter 5

MAXIMIZING THROUGHPUT, ACCURACY, AND COVERTNESS

In this chapter, we will analyze and discuss how we can maximize throughput, accuracy,

and covertness. We also discuss any performance changes observed as we optimize each.

Afterwards, we will devise a strategy of optimizing the channel for any particular use.

5.1 Throughput

In order to maximize throughput, we want to optimize both β and |S|. At first glance,

an increase in either should increase the throughput.

We can increase β by minimizing the IAT. In this case, we minimize our choice of

random backoff. For example, if we have |S| = 4, we can minimize the average IAT by using

s1 = 0, s2 = 1, s3 = 2, and s4 = 3 for each symbol si. This will have a smaller average IAT

than if we used s1 = 0, s2 = 10, s3 = 20, and s4 = 30.

Next, we calculate the average backoff for each set S as |S| increases for any given PHY.

By dividing the average backoff by l(s), we are able to determine how long on average each

bit takes to transmit, and in turn calculate the bits per second.

More formally, let S = {s is a bit string of length l(s)} be our symbol set. Further-

more, let our time values be in µs for all calculations. Then the average transmission time

avg trans timel(s) can be calculated as

avg trans timel(s) =

∑2l(s)
k=0 trans timek

2l(s)
(5.1)

where

11

trans timek =DIFS + bok + TxT ime

+ SIFS + ACKTxTime (5.2)

for DIFS, SIFS, and ACKTxTime fixed for any particular PHY. TxTime depends on the

PHY along with payload size. Finally, bok is the backoff as determined using the scheme

mentioned previously, and can be calculated as

bok = k(slot time) (5.3)

where k represents the kth symbol in S.

Note that we are only interested in symbol set sizes that make full use of all bits for

any l(s) length bit string. That is, we define S such that |S| = 2l(s).

Using the average transmission time, we conclude that the time per bit tpbl(s) can be

calculated as

tpbl(s) =
avg trans timel(s)

l(s)
(5.4)

and thus bits per second bpsl(s) is

bpsl(s) =
1000 000µs

tpbl(s)
. (5.5)

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

Bits Per Symbol

B
its

 P
er

 S
ec

on
d

Figure 5.1. Theoretical Throughput

12

In Fig. 5.1, we see an initial increase in throughput as we increase |S|. However, we

observe that it peaks around l(s) = 5 and then begins to drop. This decrease in throughput

is due to the fact that each additional bit we add to s doubles |S|. This exponential increase

in |S| leads to an exponential increase in the average random backoff. On the other hand,

we only see a linear gain in number of bits sent with each additional bit used in S. At

approximately l(s) = 5 we find that the throughput gains by sending a larger number of bits

at a time are outweighed by the significant increase in random backoff.

We find similar results for other PHY. The peak tends to be located when 4 ≤ l(s) ≤ 6

depending on the PHY characteristics and average packet size.

These results form curves similar to those seen in [15].

We find that theoretically our maximum throughput is high. We can theoretically obtain

bit rates far greater than introduced in other covert channels. We must keep in mind that

we have created this scheme specifically to focus on maximizing throughput without regard

to the effects on accuracy and covertness. However, as we will see later in the thesis, we can

maintain high accuracy, covertness, and high throughput at the same time in many cases.

5.2 Accuracy

When considering accuracy, we must consider how many nodes are sending on the

wireless network, where the receiving or listening node is located (wired side or wireless side

of the network), and how much error we are allotted when calculating the number of slots

used during the backoff.

Since accuracy depends on the ability of the receiving node to properly identify the

correct IAT, the number of senders plays an important role. If there is only one sender,

the error in decoding the IAT should be minimal since the sending node always obtains

the wireless medium when desired. However, in the case of multiple senders, another node

may choose a shorter random backoff and access the medium before the malicious node. If

this is the case, the malicious node will have to defer transmission until the medium is free

again. These other transmissions caused by other nodes can cause increases in the IAT when

examining two consecutive packets sent by the malicious node.

Case 1. single sender, wireless receiver: In the first case, high accuracy is easy to obtain.

Since the malicious node does not compete with other nodes for the medium, there should

13

be minimal delays.

Case 2. single sender, wired receiver: Similarly, in single-sender wireless-side, we can also

decode the IAT with high accuracy for the same reason as described in Case 1. However,

there may be slightly larger delays than in Case 1 due to the additional hop required on the

network. We can compensate for these slightly larger delays by using ranges for each symbol

instead of single values. That is, instead of using the set S = {s is a bit string} to represent

our symbols we use A = {S is a unique set of consecutive bit strings}.

Case 3. multiple senders, wireless receiver: In this case, we must account for the fact that

other nodes may use the medium, thus causing the malicious node to delay transmission.

Since the receiving node is located on the wireless side of the network, the receiver can

observe all traffic on the wireless medium. If the receiver senses a frame sent by another

node (either physically or via the NAV) it can simply disregard the information and adjust

its IAT timer accordingly.

Case 4. multiple senders, wired receiver: This last case is the most challenging out of the

four cases. We cannot assume that the receiving node knows when other nodes transmit

on the wireless network. This inability leads to difficulties in calculating the proper IAT

since there may or may not have been delays due to other nodes on the wireless network.

To handle this situation, we must create our codebook in such a way that received symbols

cannot be improperly interpreted.

To do so, we must know the minimum amount of time required for a transmission on

the wireless medium. Before using the covert channel, the sending and receiving nodes must

know the distribution of packet sizes on the wireless network.

By obtaining the distribution of packet sizes, we can calculate the extra delay added per

additional transmission by other nodes. For example, if we know that 95% of packets sent on

the network are 1125-1875 bytes in length, then we can calculate with 95% confidence that

the amount of time required to send a transmission will be between 225.97µs and 331.97µs

(using DS PHY in this case). In this example, we obtain that if we let S = {00002, ..., 11002},

and the receiver decodes it as a value in that range, then no other packets were sent between

our two transmissions, thus the IAT should be decoded correctly. Fig. 5.2 demonstrates the

two decoding possibilities for the lower bound of this example. Using this knowledge, we are

able to choose the proper codebook and symbol set for the network.

14

Figure 5.2. Minimum time required to send packet

We must take note that this will significantly decrease our choice of S, since we can only

use small values for the backoff. In our example above, we cannot make use of all symbols

where l(s) = 4, since any symbols larger than 11002 will require more than 331.97µs to

transmit.

We must also mention that the 802.11 DCF protocol by default selects a random backoff

in the range of [0, CW]. Thus if we continue to use the same scheme with our chosen CW

values, we will see overlap between symbols. For example, if symbol s1 is represented by

CW = 8 and s2 has CW = 3, then there is a 44% chance that s1 and s2 overlap. Instead,

we simply adjust and set our random backoff to the CW value itself. This requires MAC

misbehavior on the sending node, but all other nodes remain untouched.

In addition to the location of the sending and receiving nodes, we should also consider

how much error we allot the receiver node when calculating the backoff slots. Earlier, we

attempted to maximize our throughput by optimizing β. We set each symbol to a single

backoff, without any room for error. While this does help improve our throughput on the

sending node, it can affect the accuracy on the receiving node. To increase accuracy, we

let A = {S is a unique set of consecutive bit strings}. In other words, instead of using the

higher throughput values s1 = 0, s2 = 1, s3 = 2, and s4 = 3 we could use s1 = 0 − 9, s2 =

10 − 19, s3 = 20 − 29, and s4 = 30 − 39. The former case requires an exact calculation on

the number of backoff slots, whereas the latter allows us a little room for error from delays.

15

(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

Figure 5.3. Accuracy Cases

16

5.3 Covertness

Lastly, we want to maximize our covertness. There are several angles from which we

can analyze covertness.

Covertness is often evaluated based on throughput or traffic distribution. In [15], Sellke

et al. demonstrate a covert channel that models a Pareto distribution, similar to Telnet

traffic, at the sacrifice of a low throughput. Some channels introduce their own traffic into

the network, whereas others are more passive such as PSUDP, which modifies pre-existing

DNS queries to embed a storage channel [32].

However, there are also some 802.11 specific detections that we wish to avoid as well.

Because we are performing MAC misbehavior on our sending node, we need to avoid MAC

misbehavior detection schemes similar to those presented earlier.

Similarly, we need to be able to bypass wireless intrusion detection systems (WIDS) and

wireless intrusion prevention systems (WIPS). At the time of this writing, WIDS and WIPS

have seen a lot of development in the field of wireless device management (AP management

and authorization, rogue access point detection) along with traffic analysis, yet as far as

we are aware none currently look for covert channels. Nevertheless, we do not want our

malicious node to create an anomaly displayed on traffic analysis tools.

Consider Motorola AirDefense Enterprise [33], which is a popular commercial WIPS

solution. As of this writing, AirDefense Enterprise provides down to the minute granularity

with regards to traffic data point collection. Thus we need to ensure that our malicious

node’s data points match those of regular traffic. To do so, we only need to ensure that over

any given 60 second window, our traffic averages out similar to that of regular traffic over a

given 60 second window.

In this thesis, we base our covert analysis on:

1. Throughput Changes

(a) sender throughput gain

(b) legitimate node traffic degradation

(c) network throughput change

2. Sorted backoff for traffic regularity

17

3. Two-Sample Kolmogorov-Smirnov test

In all of the above cases, we use data and samples that fit a 60 second window. These

tests allow us to assess our covert channel both visually and quantitatively within the capa-

bilities of WIDS / WIPS.

18

Chapter 6

COVERT DCF PROTOCOL DESIGN

In this Chapter, we will present our protocol used for sending and receiving.

6.1 Covert DCF Sending Protocol

Before we begin using Covert DCF, we must first do some analysis on the network in

order to help us increase our accuracy and covertness. First, we capture traffic on the WLAN

in order to obtain average throughput, traffic distribution, and packet size distribution. The

first two will help us increase our covertness, whereas packet size will help us increase our

accuracy. Note that both the receiver and the sender must have this information.

We also need to know which PHY characteristics are being used. We can obtain this

information using the Radiotap headers [34]. We must note that this information must also

be available to both sender and receiver. As such, if the receiving node is on the wired-side

of the network, then we must assume all traffic uses the same PHY throughout the covert

communication.

Next, the sender will take the bit sequence that represents the covert message and

encode it into the proper delay sequence based on a codebook. The specifics of the codebook

will depend on the requirements for the covert channel, and the location of the receiving

node.

If the receiving node is on the wireless side of the network and within listening distance

of the sending node, then we can use a larger symbol set |S| with a larger baud rate, thus

increasing our throughput.

If the receiving node is on the wired side of the network, we must be able to ensure that

the messages can be decoded with high accuracy. Other sending nodes on the network may

access the medium first, thus causing our IAT to consist of our planned IAT, along with the

19

extra delay involved with the medium being used by other nodes or due to collisions. By

choosing an appropriately small S as discussed in Chapter 5, we are able to correctly decode

the IAT in this situation.

Furthermore, we may choose to increase our allotted error by using ranges of values

instead of single values for our symbols. For networks with heavier delays, a larger range

would be required.

Once the sender has S along with the delay sequence, we must ensure that it closely

matches the traffic throughput and distribution of other nodes. In order to do this, we

rely on traffic-fitting symbols. These are symbols in the codebook that have no meaning to

the sender or receiver - they are used solely for increasing covertness. Alternatively, traffic-

fitting symbols could be time based, such as embedding them in every 5th packet, provided

the receiver knows to ignore every 5th packet. Algorithm 1 below presents our scheme for

inserting traffic-fitting symbols.

Algorithm 1 Sequence Adjustment

1: for all windows do
2: t ⇐ training window
3: m ⇐ message window
4: for all v in t do
5: t prob[v] ⇐ COUNT (v)

SIZE(t)

6: end for
7: n ⇐ m
8: while SIZE(n) < window size do
9: for all v in n do
10: n prob[v] ⇐ COUNT (v)

SIZE(n)

11: end for
12: largest diff ⇐ MAX(t prob[v]− n prob[v])
13: if largest diff > 0 then
14: PUSH n, ld value
15: else
16: for all p in n prob do
17: if p > 0 then
18: PUSH n, p value
19: end if
20: end for
21: end if
22: end while
23: end for

Our goal is to match the empirical cumulative distribution function (ecdf) of the backoffs

20

on our sending node to that of backoffs from a legitimate node. To begin, we need training

data from legitimate traffic that contains at least as many data points as our initial sequence

of symbols we wish to send. We then break both sets down into windows, which allows us

to match distributions within the entire set as well as the over all ecdf.

For each window, we calculate the probabilities of each backoff from our training data.

That is, we may discover that a value of 5 slot times occurs 15% of the time, and a value

of 20 slot times only occurs 5% of the time. We then also calculate the probabilities of our

current sequence we intend to send - this is initialized to the initial sequence and will grow

as we insert traffic-fitting symbols. Next, we adjust the probabilities as needed, but we must

note that we cannot remove symbols from our new sequence, as we rely on them for our

message. We can only add to the sequence.

In our example, say a value of 5 slot times occurs 15% of the time in our training data

and only 10% of the time in our covert sequence. In this case, we simply need to insert more

values of 5 slots into our sequence until it reaches the correct probability.

On the other hand, consider if the same value occurs 15% of the time in the training data

and 20% of the time in our sequence. We cannot simply remove the extra, since we rely on

them for our message. Instead, we increase the probability of other symbols, which increases

the population size thus decreasing the probability of our target value. In particular, we

choose to increase the probability of other symbols which are already too low - this way we

help give them a higher probability and decrease the probability of our target value at the

same time.

When inserting our traffic fitting symbols, we do so using the placement based method.

We may send 1 covert packet per 3 traffic-fitting symbols. This ratio must be known on

both ends so that the proper packets will be thrown out upon decoding.

After one round of this adjustment, our sequence ecdf should be slightly closer to that

of our target ecdf. We repeat this process for multiple rounds, each time re-calcuating the

probabilities of our covert sequence (since they will change each round), and after enough

rounds the ecdf of our covert sequence window and our training window will be similar. If

our initial sequence were similar to begin with, it will take fewer rounds than if it were quite

dissimilar.

Using this method, it allows us to match the ecdf of any training data, regardless of if

21

there is a known distribution with an inverse that matches it, which is a method seen in [15].

When performing our tests, we were unable to find a good fit to a known distribution that

also had an inverse function for our training data.

At this point, we should have a sequence that will have a high throughput, accuracy, and

covertness. A malicious process on the sending node uses this delay sequence for subsequent

traffic. The traffic can be destined for any location, as long as the receiving node is en route.

Algorithm 2 Backoff Selection

Require: use covert ⇐ true
Require: delay seq ⇐ symbol sequence
Require: seq pos ⇐ −1
Require: seq len ⇐ len(delay seq)− 1
1: for all packets to send do
2: if use covert is true then
3: if short retry count+ long retry count = 0 or perform cw is true then
4: seq pos ⇐ seq pos+ 1
5: end if
6: backoff slots ⇐ delay seq[seq pos]
7: if seq pos = seq len then
8: use covert ⇐ false
9: end if
10: else
11: backoff slots ⇐ rand(0, CW) {use standard procedure}
12: end if{send packet}
13: end for

To send, we implement Algorithm 2 in the MAC layer. This algorithm steps through

our sequence of delays sending them appropriately. If we are resending a packet for any

reason such as a collision, then we resend it using the appropriate delay. Once the entire

message has been sent, we return to using the standard MAC protocol.

6.2 Covert DCF Receiving Protocol

The decoding node listens for all packets on the network. Knowing the MAC address or

IP address of the sending node, the decoder can properly choose when to decode a symbol

and when to wait until the appropriate packet is processed to decode the symbol. Note that

the decoder must be either on the same basic service set (BSS), which consists of all stations

sharing a single AP, as the sending node (using the MAC address) or on the network between

the sender and destination address (using the IP address).

22

First, the receiver must calculate the IAT. Next, the receiver calculates the backoff in

terms of µs and from that obtains the number of backoff slots used.

To obtain the backoff slot count, the decoder initializes backoff time bo time = IAT .

Next, the decoder subtracts DIFS, SIFS, payload transmission time TxTime, and ACK

transmission time ACKTxTime. At the end of this process, we can convert the bo time to

actual slots (thus symbols) by dividing it by the slot time for the given PHY. This process

can be seen in Algorithm 3.

Algorithm 3 Symbol Decoding

Require: prev recv time ⇐ 0
Ensure: list of decoded symbols
1: for all packets received do
2: curr recv time ⇐ NOW
3: IAT ⇐ curr recv time− prev recv time
4: bo time ⇐ IAT {initialize}
5: bo time ⇐ bo time− difs time
6: bo time ⇐ bo time− rcvd pk size

rcvd frame drate
{TxTime}

7: bo time ⇐ bo time− sifs time
8: bo time ⇐ bo time− ack pk size

rcvd frame drate
{AckTxTime}

9: decoded slots ⇐ bo time
slot time

10: if remote addr = sender addr then
11: decoded slots ⇐ decoded slots+ offset
12: offset ⇐ 0
13: print decoded slots
14: else
15: offset ⇐ offset+ decoded slots
16: end if
17: prev recv time ⇐ curr recv time
18: end for

If the receiver is on the same BSS as the sending node, the receiver can also compensate

for other traffic on the network to ensure the accuracy remains high regardless of other

traffic. To do so, if a packet is detected from a node other than the sending node, then

the receiver calculates the decoded slots as described above and adds the resulting value to

offset. When a packet arrives from the sending node, the receiving node adds offset to the

number of decoded slots and reset offset to 0. By using this offset, we are able to calculate

the correct backoff that was initially chosen by the sending node even though there may have

been other traffic on the network.

Once the receiver has obtained the set of symbols sent by the sending node, the receiver

23

looks these symbols up in the pre-determined codebook to determine the values represented

by each symbol. If traffic-fitting symbols have been used, the receiver ignores those symbols.

24

Chapter 7

IMPLEMENTATION, PERFORMANCE EVALUATION AND NUMERICAL

RESULTS

7.1 Implementation

To test Covert DCF, we used OPNET to simulate our covert channel. Our simulation

consisted of a BSS consisting of our sending node, one wireless receiving node, one wired

receiving node one hop away, one access point, and 15 regular wireless nodes. The AP was

connected to a switch, which also had connections to Ethernet servers and the IP cloud, as

illustrated in Fig. 7.1.

Figure 7.1. OPNET Network Layout

For our simulations, we chose to use the 802.11g PHY characteristics, since it is both

widely depoloyed and offers 54Mbps data rate. At the application layer, we used FTP as

it can provide many packets back to back which is necessary for a covert timing channel.

However, we also did some analysis on other protocols such as HTTP and present those

results as well.

We ran 100 trials for each configuration of |S| up to l(s) = 12, and a summary of our

results can be found in Table 7.1.

We modified the wlan mac process model in OPNET in order to test our channel.

25

Summary of Simulations

Throughput Covert Accuracy Receiver

8600bps No 85% wireless
5500bps No 99% wireless
2500bps Yes 85% wireless
1800bps Yes 99% wireless
5500bps No 27% wired
900bps No 99% wired
140bps Yes 99% wired

Table 7.1. Summary of simulations

In addition, we made the necessary changes to wlan mac dispatch, wlan workstation, and

wlan station. We added an option to ”enable” or ”disable” covert channel functionality

within each node. Using this switch, we enabled the covert channel on our sending node and

receiving node and disabled it on all other nodes (thus leaving the original configuration for

those nodes).

Our sending node read a message from a standard text file, and using the steps as

described in the previous chapter, created the covert sequence. The receiving nodes were

set to packet capture mode for all packets and decoded the sequence as we have previously

discussed. We ran 100 trials for each configuration of |S| up to l(s) = 12.

7.2 Throughput

Our simulations show that we are able to obtain high throughput using our channel.

Fig. 7.2 shows a comparison of our theoretical throughput as presented in Chapter 5, and

the simulated throughput from sending an ASCII file in plain text, compressed, and CAST5

encrypted versions. We can see that our channel performed similar to our expected perfor-

mance. However, it can be observed that some data points for l(s) > 8 during the plain text

transmission are actually slightly higher than our predicted rates. This can be explained by

distribution of backoffs used for the plain text file. The theoretical throughput was based on

sending completely random symbols, whereas our codebook mapping of our plain text file

consisting of English language ASCII characters, mapped to the lower valued symbols from

S rather than the entire range for ease of calculations. Both compressing and encrypting the

26

message remove this information from the file, thus they follow the theoretical value more

closely.

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

Bits Per Symbol

B
its

 P
er

 S
ec

on
d

theoretical
plain message
compressed message
encrypted message

Figure 7.2. Covert channel throughput comparison (ASCII text)

7.3 Covertness

As mentioned in Chapter 5, we will analyze the covertness of our channel by looking at

throughput changes, sorted backoffs, and two-sample Kolmogorov-Smirnov tests.

7.3.1 Throughput Changes

We will first show that throughput changes can occur using our channel if we assume

an aggressive sender that does not aim to be covert. We will then demonstrate how we can

improve the channel to have little effect on the throughput of the standard communication

channel.

Fig. 7.3 shows various throughput variations of the standard channel communication

assuming we have a very aggressive sender, using a 60 second window. Fig. 7.3(a) shows

us that as we vary |S|, our standard channel throughput varies as well. This makes sense,

because if we use a smaller |S| and use small backoffs, then we will win the contention on the

network more often than other nodes, thus getting an unfair usage of the network. We can

see that between l(s) = 4 and l(s) = 5 is where our node should be if it were not performing

MAC misbehavior. Using l(s) = 3 yields throughput increases similar to those in [35] for

α = 0.5 due to the fact that they use the same set of backoffs. Similarly, Fig. 7.3(b) shows

the traffic degradation of legitimate nodes when Covert DCF is in use.

27

0 0.5 1 1.5 2 2.5

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bits per second

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

overt
2 bit symbols
4 bit symbols
5 bit symbols
6 bit symbols

(a) Malicious node throughput

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bits per second

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

regular
2 bit symbols
4 bit symbols
5 bit symbols
6 bit symbols

(b) Legitimate node throughput

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bits per second

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

2 bit symbols
4 bit symbols
6 bit symbols
overt
5 bit symbols

(c) Network throughput

Figure 7.3. Standard channel throughput variations for aggressive sender

0 2 4 6 8 10 12 14 16 18

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 bit symbols
overt

(a) Malicious node throughput

0 2 4 6 8 10 12 14 16 18

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overt
4 bit symbols

(b) Legitimate node throughput

0 0.5 1 1.5 2 2.5

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 bit symbols
overt

(c) Network throughput

Figure 7.4. Standard channel throughput variations for covert sender

28

However, in Fig. 7.3(c) we see that if our malicious node is very aggressive, the overall

network throughput can actually increase. This is due to the fact that our malicious node

easily wins the contention, and thus on average the backoffs used on the network are much

smaller.

In all graphs in Fig. 7.3, we observe that the closest matches to legitimate traffic falls

somewhere between 4 bit symbol and 5 bit symbol usage.

If we are smart about our usage of the channel, however, we can make it much more

difficult to detect, as seen in 7.4. By embedding some traffic-fitting symbols, or backoffs that

carry no meaning, within our covert message, we are able to get a much closer fit. This does

degrade Covert DCF throughput in exchange for additional covertness. Using this scheme,

our throughput drops to roughly 2500bps from over 8000bps. It is up to the user to determine

how important throughput, accuracy, and covertness are for the channel.

7.3.2 Sorted Backoffs

We can also look at the sorted backoff times as presented in [13]. In [13], the authors

used the sorted backoffs to look for steps in the graph, which represent regularity in the

IAT times. It also provides yet another method for viewing and comparing the distribution

of packets. Fig. 7.5(a) shows the sorted backoff times for aggressive usage of the covert

channel. We can see that if we send 4 bits at a time, the sorted backoffs follow much closer

to that of overt traffic than if we send 7 bits at a time. This is because 4 bit symbols align

to 16 backoffs, and by default overt traffic initially selects a backoff from [0, 15] on 802.11g

networks. If each symbol occupied two backoff slots to increase accuracy, then 3 bit symbols

offer the best match. However, 7 bit symbols are easily detected if heavily used, since many

more backoffs are used than in overt communication.

Again, we can be smarter about our usage. By implementing our traffic-fitting symbols,

we can see that it is much more difficult to detect. Fig. 7.5(b) shows a comparison of the

sorted backoffs for overt communication and the previously easily detected 7 bit symbol

covert channel when we sacrifice throughput for covertness.

29

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

packet bins

ba
ck

of
f

overt
4 bit symbols
5 bit symbols
7 bit symbols

(a) Aggressive usage

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

packet bins

ba
ck

of
f

overt
7 bit symbols

(b) Overt usage

Figure 7.5. Sorted backoff times

7.3.3 Two-Sample Kolmogorov-Smirnov Test

Lastly, we perform some quantitative analysis by comparing the empirical cumulative

distribution functions (ecdf) of legitimate traffic slot times and our covert traffic slot times.

These come directly from the IAT and random backoff. We then perform a Kolmogorov-

Smirnov (K-S) test to determine if it is possible if the two sets of data come from the same

distribution. For the K-S test, we state that the null hypothesis is that the two samples

come from the same distribution, and we use a significance level of α = 0.05.

Fig. 7.6 shows the ecdf for legitimate traffic, traffic consisting of 10% message symbols

and 90% traffic-fitting symbols, and traffic consisting of 100% message symbols without any

traffic-fitting symbols.

We can see that the legitimate traffic distribution and the 10% message symbol traffic

distribution are nearly identical, whereas the message without traffic-fitting symbols stands

out.

Furthermore, if we run a K-S test comparing the legitimate traffic vs. 10% message

symbol traffic and legitimate traffic vs. 100% message symbol traffic, we obtain the p-values

0.6 and 0.001 respectively. Similarly, the K-S test statistics for these were 0.04 and 0.13.

Thus with at the 10% rate, we cannot reject the null hypothesis, but we do reject it if we do

not include traffic-fitting symbols.

However, as we increase the number of bits sent per symbol, it becomes more difficult

to fit the distribution. We must insert many more traffic-fitting symbols to align the two

distributions. Fig. 7.7 shows the same tests performed using 7 bit symbols. We can see that

30

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

slot count

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

legitimate traffic
10% message symbols
100% message symbols

Figure 7.6. 4 Bit Symbol Backoff - Empirical CDF

while the 10% rate is much closer to legitimate traffic than the 100% rate, it still is not quite

aligned with the original distribution. In both cases, we must reject the null hypothesis at

the 5% significance level.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

slot count

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

legitimate traffic
10% message symbols
100% message symbols

Figure 7.7. 7 Bit Symbol Backoff - Empirical CDF

In this sample network traffic, it was possible to remain covert with 4 bit symbols at

the 10% and 25% rates using α = 0.05. On a network with more delays, the distributions of

5, 6, or 7 bit symbols may align with legitimate traffic backoffs more closely, thus allowing

those to be used as well.

We must note that as we increase the number of traffic-fitting symbols, we do lose

throughput since we must send more symbols. At 10%, the length of our covert sequence is

10 times longer than it would be without traffic-fitting symbols, and we obtained throughput

31

of 1367 bps. Similarly, at the 25% rate, the covert sequence will be 4 times longer than

without traffic fitting-symbols 1890 bps.

7.4 Accuracy

To maximize throughput, we chose to separate our symbols by a single slot time in

order to increase β as described earlier. Using this scheme, we found that we were able to

achieve 85% accuracy while the network was under heavy load by adjusting the offset value

for traffic generated by other nodes. However, further inspection showed that many of the

values that were decoded incorrectly were only off by one slot time.

Thus, by allowing each symbol to cover a range of values (as few as two) rather than a

single backoff value, we could easily increase the accuracy. In this case, we let each symbol

occupy two backoff slot positions. In doing so, our accuracy went from 85% to over 99%

for the same message. We must note that this adjustment can also decrease β and thus

the throughput. Our high throughput dropped from an average of 8600bps to an average of

5500bps without traffic-fitting symbols. We could achieve 1890bps with 99% accuracy with

traffic-fitting symbols.

Following our previous findings, we analyzed our results from the wired receiver. We

continued to use A as our symbol set varying |A|. Similar to above, we found that we could

not decode the sequence perfectly using single values. Not surprisingly, we also discovered

that letting each symbol be represented by a range of two values also failed to have high

accuracy due to additional network delays. Using a range of two for each symbol only gave

us an accuracy of 27%. However, by setting our range to fifteen instead of two, we were able

to bring our accuracy back up to over 99%. In order to gain this higher accuracy, we had to

accept a throughput of only 900bps.

7.5 Light Traffic Protocols

As mentioned earlier, we used FTP at the application layer to facilitate back to back

traffic, which is necessary for a covert timing channel. Without this type of traffic, it is

impossible to tell whether or not a given IAT was planned due to the timing channel or

simply delays at the user or application level.

However, we can make an educated guess whether or not delays were from the covert

32

timing channel or user delays by using a timing threshhold. For example, if our maximum

delay used in the covert timing channel is 500µs and the receiving node detects a delay of 3

seconds (after processing any calculated offset), then it is safe to assume this is not part of

the covert timing channel, so we toss the packet.

So let our threshhold value be

threshhold = DIFS + SIFS + TxT ime+ AckTxT ime+ (max slots ∗ slot time).

At the sending node, if two packets are not back to back, then the receiver does not encode

the next symbol for the covert channel. At the receiving node, if a packet arrives above

the threshhold value, the receiver ignores it since the packet did not immediately follow the

previous packet. Otherwise, the receiver assumes the two packets were back to back and

decodes the symbol accordingly.

Using this scheme we can still obtain high accuracy and covertness, but throughput is

significantly reduced if the application level does not generate heavy back-to-back traffic. We

tested using an assortment of light usage traffic (HTTP, SMTP, POP3, etc), and throughput

was approximately 0.03bps - extremely low. A 5kb text file takes approximately 10 days to

transmit at this rate. However, we noticed that by increasing |S|, we could obtain faster

throughputs. By using 10 bits per symbol instead of 5, we were able to get a 50% increase

in throughput. Since we must wait so long for two packets to be sent back to back, it makes

sense to send as much data as possible. We just need to ensure that we do not increase it

too much, or else application level delays and covert timing delays may get confused. We

simply need to ensure that our threshhold is high enough to account for all symbols and low

enough that it does not allow for application level delays to fall below it.

We must note that without heavy back to back traffic, any covert timing channel would

be affected, not just Covert DCF. Timing channels rely on the timing between packets, so

the packets must exist and be ready to be sent when needed.

33

Chapter 8

CONCLUSIONS

In this thesis, we introduced a scheme to implement a covert timing channel that is

applicable for wireless networks that make use of random backoff in order to avoid collisions.

We provided an analysis of aspects resulting in a good covert channel. We demonstrated our

channel using the 802.11g wireless protocol through analysis and simulation.

Thus far, we have shown that it is possible to obtain throughput for our covert timing

channel far greater than that of previous covert timing channels. Our channel also maintains

good accuracy and can operate covertly as well. When both the sending and receiving node

are on the same wireless network, we were able to obtain over 8000 bps throughput with

approximately 85% accuracy, or by slightly modifying our code we were able to increase

accuracy to over 99% while maintaining a throughput over 5000 bps. Adding in covertness

drops our throughput to 1800bps, but we are still able to maintain over 99% accuracy at this

rate while operating in a more covert fashion. In both cases, the network was under heavy

load from regular nodes as well. When the receiving node was an additional hop away on

the wired network, we were still able to maintain over 99% accuracy but at the sacrifice of

higher throughput. We were only able to maintain approximately 900bps throughput in this

case. This figure drops futher if the need to be covert is high.

In comparison with other covert channels, Covert DCF offers a good alternative when

the covert channel is to be used over shorter distances such as wireless LANs or within a

couple hops of the wireless LAN.

34

Chapter 9

FUTURE WORK

In the future, we intend to perform additional investigations of methods to increase

the covertness of Covert DCF and additional analysis for the detection of Covert DCF.

Covert channels will continue to be an interesting area of research in the foreseeable future,

and methods of increasing the covertness of our channel and other covert channels will be

exciting to explore.

35

REFERENCES

[1] “Common methodology for information technology security evaluation,” July 2009.

[2] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical foundations,”
MITRE Corporation, Tech. Rep., March 1973.

[3] Intego, “Hacker tool copies personal info from iphones,” November 2009,
http://www.intego.com.

[4] T. Calhoun, R. Newman, and R. Beyah, “Authentication in 802.11 lans using a covert
side channel,” IEEE International Conference on Communications (ICC)., pp. 1 –6,
jun. 2009.

[5] P. Kyasanur and N. Vaidya, “Detection and handling of mac layer misbehavior in
wireless networks,” in International Conference on Dependable Systems and Networks
(DSN)., jun. 2003, pp. 173 – 182.

[6] L. Ji, H. Liang, Y. Song, and X. Niu, “A normal-traffic network covert channel,” in
International Conference on Computational Intelligence and Security (CIS)., vol. 1,
dec. 2009, pp. 499 –503.

[7] H. Khan, Y. Javed, F. Mirza, and S. Khayam, “Embedding a covert channel in active
network connections,” in IEEE Global Telecommunications Conference (GLOBECOM).,
nov. 2009, pp. 1 –6.

[8] X. Luo, E. Chan, and R. Chang, “Clack: A network covert channel based on par-
tial acknowledgment encoding,” in IEEE International Conference on Communications
(ICC)., jun. 2009, pp. 1 –5.

[9] L. Ji, Y. Fan, and C. Ma, “Covert channel for local area network,” in IEEE Interna-
tional Conference on Wireless Communications, Networking and Information Security
(WCNIS)., jun. 2010, pp. 316 –319.

[10] H. Zhao, Y. Q. Shi, and N. Ansari, “Hiding data in multimedia streaming over net-
works,” in Eighth Annual Communication Networks and Services Research Conference
(CNSR)., may. 2010, pp. 50 –55.

[11] P. Basu and T. Bhowmik, “On embedding of text in audio a case of steganography,”
in International Conference on Recent Trends in Information, Telecommunication and
Computing (ITC)., mar. 2010, pp. 203 –206.

[12] L. Frikha and Z. Trabelsi, “A new covert channel in wifi networks,” in Third Interna-
tional Conference on Risks and Security of Internet and Systems (CRiSIS)., oct. 2008,
pp. 255 –260.

[13] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels: design and detec-
tion,” in CCS ’04: Proceedings of the 11th ACM conference on Computer and commu-
nications security. New York, NY, USA: ACM, 2004, pp. 178–187.

[14] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel detection,” ACM Trans.
Inf. Syst. Secur., vol. 12, no. 4, pp. 1–29, 2009.

36

[15] S. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing channels: Theory to
implementation,” in INFOCOM 2009, IEEE, April 2009, pp. 2204–2212.

[16] T. Calhoun, X. Cao, Y. Li, and R. Beyah, “An 802.11 mac layer covert channel,”
Wireless Communications and Mobile Computing.

[17] L. Frikha, Z. Trabelsi, and W. El-Hajj, “Implementation of a covert channel in the
802.11 header,” Wireless Communications and Mobile Computing, 2008.

[18] V. Anantharam and S. Verdu, “Bits through queues,” IEEE Transactions on Informa-
tion Theory., vol. 42, no. 1, pp. 4–18, Jan 1996.

[19] S. H. Sellke, C.-C. Wang, N. Shroff, and S. Bagchi, “Capacity bounds on timing channels
with bounded service times,” in IEEE International Symposium on Information Theory
(ISIT)., June 2007, pp. 981–985.

[20] I. Moskowitz and A. Miller, “The channel capacity of a certain noisy timing channel,”
IEEE Transactions on Information Theory., vol. 38, no. 4, pp. 1339–1344, Jul 1992.

[21] J. Son and J. Alves-Foss, “Covert timing channel capacity of rate monotonic real-time
scheduling algorithm in mls systems,” 2006.

[22] Y. Rong, S.-K. Lee, and H.-A. Choi, “Detecting stations cheating on backoff rules in
802.11 networks using sequential analysis,” in 25th IEEE International Conference on
Computer Communications (INFOCOM)., apr. 2006, pp. 1 –13.

[23] Z. Lu, C. Wang, and W. Wang, “On the impact of backoff misbehaving nodes in ieee
802.11 networks,” in IEEE International Conference on Communications (ICC)., may.
2010, pp. 1 –5.

[24] A. Venkatarama, C. Corbett, and R. Beyah, “A wired-side approach to mac misbehavior
detection,” in IEEE International Conference on Communications (ICC)., may. 2010,
pp. 1 –6.

[25] A. Toledo and X. Wang, “Robust detection of selfish misbehavior in wireless networks,”
IEEE Journal on Selected Areas in Communications., vol. 25, no. 6, pp. 1124 –1134,
aug. 2007.

[26] M. Raya, I. Aad, J.-P. Hubaux, and A. El Fawal, “Domino: Detecting mac layer greedy
behavior in ieee 802.11 hotspots,” IEEE Transactions on Mobile Computing., vol. 5,
no. 12, pp. 1691 –1705, dec. 2006.

[27] P. Kyasanur and N. Vaidya, “Selfish mac layer misbehavior in wireless networks,” IEEE
Transactions on Mobile Computing., vol. 4, no. 5, pp. 502 – 516, sep. 2005.

[28] L. Guang, C. Assi, and A. Benslimane, “Enhancing ieee 802.11 random backoff in selfish
environments,” IEEE Transactions on Vehicular Technology., vol. 57, no. 3, pp. 1806
–1822, may. 2008.

[29] Y. Wang, P. Chen, Y. Ge, B. Mao, and L. Xie, “Traffic controller: A practical approach
to block network covert timing channel,” in International Conference on Availability,
Reliability and Security (ARES)., mar. 2009, pp. 349 –354.

37

[30] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitigation of timing
channels,” in Proceedings of the 17th ACM conference on Computer and Communica-
tions Security (CCS). New York, NY, USA: ACM, 2010, pp. 297–307.

[31] “IEEE Std 802.11-2007,” 2007.

[32] K. Born, “Psudp: A passive approach to network-wide covert communication,” in Black
Hat USA, 2010.

[33] “Motorola airdefense enterprise,” 2010, http://www.airdefense.net.

[34] “Radiotap,” March 2010, http://www.radiotap.org.

[35] V. Giri and N. Jaggi, “Mac layer misbehavior effectiveness and collective aggressive
reaction approach,” in IEEE Sarnoff Symposium., apr. 2010, pp. 1 –5.

	Covert DCF - A DCF-Based Covert Timing Channel In 802.11 Networks
	Recommended Citation

	tmp.1291144009.pdf.f7f_g

