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ABSTRACT 

Communication networks are vulnerable to natural as well as man-made disasters. The 

geographical layout of the network influences the impact of these disasters. It is therefore, 

necessary to identify areas that could be most affected by a disaster and redesign those parts of 

the network so that the impact of a disaster has least effect on them. In this work, we assume that 

disasters which have a circular impact on the network. The work presents two new algorithms, 

namely the WHF-PG algorithm and the WHF-NPG algorithm, designed to solve the problem of 

finding the locations of disasters that would have the maximum disruptive effect on the 

communication infrastructure in terms of capacity.  
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1 INTRODUCTION  

Computer networking is one of the most exciting and important technological fields of 

our time. The internet interconnects millions of computers, providing a global communication, 

storage and computation infrastructure. The internet finds usage in a variety of applications like: 

1. Communication: Exchanging information by overcoming the barriers of distance and 

time has been made possible by the Internet. Besides, data transfer has become extremely fast 

and reliable. The world becoming a global village can be largely attributed to the Internet and its 

services. 

2. Information: With the Internet, useful information can be obtained with great ease 

which makes it indispensible for students, researchers, market analysts etc. 

3. Entertainment: Games, chat room, browsing websites and audio/video streaming are 

great sources of entertainment. 

4. E-commerce: Business deals and extensive online shopping (regardless of the product 

requirement) are among the promising services provided by the Internet. 

5. Online banking, ticket reservations and job search are also among the other important 

services of the Internet. 

The global communications infrastructure is primarily based on wired networks which 

mainly comprise of copper cables and fiber-optic networks. The type of cable chosen for a 

network is related to the network's topology, protocol, and size. Although the wireless networks 

and satellite internet connections are becoming popular, a large part of the internet is still 

supported by wired networks because of their following advantages: 
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1. Speed 

Wired connections can reach networking speeds of 1,000 Mbps or higher, which is more 

than 10 times faster than a typical wi-fi connection that only reaches up to a few hundred Mbps. 

The wired connection speed is essential in running big corporations where multiple servers and 

computers use the network. There is almost no lag time because each system has its own 

dedicated wired connection to the network, meaning no competitions for obtaining signals, 

which happens a lot in wireless networking. 

A wired network provides connections to the full amount of bandwidth to each user, 

making it faster. It also does not connect to an antenna or Wi-Fi (source of signals for wireless 

networking) that can give weak signals when too far or obstructed. 

Wired networking is also ideal for users who conduct their businesses from home, 

allowing them to download huge video files and print graphical images. Avid gamers also 

benefit from wired networking by speeding up connections for games that can be bandwidth 

hogs. 

 Additionally the equipment in a wired network tends to work up to its maximum 

potential more often than the equipment in a wireless network. All of this leads to less lag and 

better transmission time. 

2. Reliability 

Wired networking uses direct, fixed, physical connections that do not experience 

interference and fluctuations of bandwidth. Wired connections also have fewer dropped 

connections than wireless connections due to interference and signal strength. 
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3. Security 

Wired networks are less vulnerable to network snoopers and eavesdroppers, which are 

common problems in wireless networking. To gain access to a wired network, hackers have to 

use elaborate tools or infiltrate the locations physically, which can be expensive, risky and time-

consuming for them. Wired networks may not need extra security measures that wireless 

networks require, such as use of encryption and passwords for network settings in order to stop 

others from using the connections. 

With wired networking, you may have less to worry about others trying to use your 

connections to get a "free ride" or, worse, access your sensitive and personal files. This is a 

common problem with wireless networking because the signals are easy to intercept. With wired 

networking, you do not have to worry about your neighbor stumbling across your files because 

you do not use a wireless signal that can reach past your property line. Because of these issues, 

the broadband networks can’t be completely replaced by wireless connections in large cities or 

corporations. 

Satellite communication finds great use in transmission services that originate at a single 

point and flow to many points in one direction, such as television and radio signals. A large area 

of coverage is ideal. The relatively long delay between the instant a signal is sent and when it 

returns to earth (about 240 milliseconds) has no undesirable effect when the signal is going only 

one way. [35] However, for signals such as data communications sessions and telephone 

conversations, which go in both directions and are intended to be received at only one other 

point, the large area of coverage and the delay can cause problems. Optic fibers have exceptional 

advantages over satellites in point-to-point communication where large bandwidths are required. 

Today modern optical fibers are capable of transporting information at data rates exceeding 
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several Gbps. In fact, applying the principle of frequency division multiplexing to light in the 

form of wavelength division multiplexing (WDM) enables a single fiber to transport tens or more 

of multi-Gbps transmissions! Optical-fiber transmission has come of age as a major innovation 

in telecommunications. Such systems offer extremely high bandwidth, freedom from external 

interference, immunity from interception by external means, and cheap raw materials (silicon, 

the most abundant material on earth). It is shown that once fiber connects a given pair of cities, it 

becomes the least costly transmission medium, especially compared to fixed satellite service. 

Because of the above mentioned advantages the wired networks, both broadband and 

optic fibers will continue to be in extensive use for a long time to come. It is therefore, necessary 

to continue research and improvement in this area to ensure good performance. 

1.1 MOTIVATION 

The presence of physical links makes the wired network inherently susceptible to 

disasters. The disaster may disconnect entire neighborhoods instantaneously. Highly localized 

disasters can cause heavy damage to wired networks. The disasters could also destroy the 

neighboring paths which could serve as alternate paths to nodes. It therefore becomes necessary 

to safeguard the links of the network from extensive damage. The first step in this regard is to 

gain insight into robust network design by developing the necessary theory to find the most 

geographically vulnerable areas of a network. This can provide important input to the 

development of network design tools and can support the efforts to mitigate the effects of 

regional disasters.  

It is important to note that the problem considers the effect on the physical layer of the 

network and not the network layer. Our long-term goal is to understand the effect of a regional 

failure on the bandwidth, connectivity, and reliability of the Internet, and to expose the design 
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tradeoffs related to network survivability under a disaster with regional implications. Such 

tradeoffs may imply that in certain cases there may be a need to redesign parts of the network 

while in other cases there is a need to protect electronic components in critical areas. The work is 

intended to lay a good groundwork for better design or redesign of networks by determining the 

most vulnerable parts of the network. 

1.2 RELATED WORK 

The issue of network survivability and resilience has been extensively studied in the past (e.g., 

[12], [13], [14], [15]). However, most of the previous work in this area and in particular in the 

area of physical topology and fiber networks (e.g., [16], [17]) focused on a small number of fiber 

failures.  

The theoretical problem most closely related to the problem we consider is known as the 

network inhibition problem [18]. Under that problem, each edge in the network has a destruction 

cost, and a fixed budget is given to attack the network. A feasible attack removes a subset of the 

edges, whose total destruction cost is no greater than the budget. The objective is to find an 

attack that minimizes the value of a maximum flow in the graph after the attack. Several variants 

of this problem were studied in the past (see for example [19] and the review in [20]). However, 

as mentioned above, the removal of (geographically) neighboring links has not been considered 

(the closest to this concept is the problem formulated in [21]).  

When the logical (i.e., IP) topology is considered, widespread failures have been 

extensively studied [22], [23], [24], [25]. Most of these works consider the topology of the 

Internet as a random graph [26] and use percolation theory to study the effects of random link 

and node failures on these graphs. The focus on the logical topology rather than on the physical 

topology is motivated by failures of routers due to attacks by viruses and worms. Based on 
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various measurements (e.g., [27]), it has been recently shown that the topology of the Internet is 

influenced by geographical concepts [28], [29], [30]. These observations motivated the modeling 

of the Internet as a scale free geographical graph [31], [32]. [1] presented results based on real 

physical topologies instead of logical network topologies. 

The problem of identifying the worst-case location of a disaster or attack was introduced 

by [1]. They considered attacks in the form of line segments and circular cuts on bipartite graph 

and general non planar graph. This paper claims to be the first to formulate the new problem 

called the geographical network inhibition problem. It also designed algorithms to solve the 

problem on the several of network models. The first problem was to find the worst case vertical 

line segment cut on a bipartite graph. The algorithm presented in the paper had a time 

complexity of O (N6). The second problem was to find the worst case vertical line segment in a 

general model. The algorithm to the second model had a time complexity of O (N8). The third 

problem presented was to find the worst case circular cut on a general network whose algorithm 

has a complexity of O (N6). However the work in [1] didn’t use any specialized data structure to 

solve the problem which resulted in algorithms with high time complexity.  

The paper [11] attempts to solve the worst case circular cut problem on the general model 

graph using structures that are named hippodromes. Each hippodrome indicates the region 

around a link where an attack needs to occur i.e., a cut needs to be centered, in order to affect 

that link. They present complex algorithms to solve the problem. The paper has also come up 

with a new probabilistic failure model, in which network components in the vicinity of the 

disaster fail with a given probability and provide efficient algorithms for the same. They also 

consider multiple simultaneous disasters and provide approximation algorithms for the same. 



7 

Coincidentally, we were also working on the problem of worst case circular cut using exactly the 

same structure which we named capsule. We however use popular and more practical techniques 

to solve the problem with considerably less time complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

2 NETWORK MODEL AND PROBLEM FORMULATION 

The model considered in this work is a general geometric graph model. It contains N non-

overlapping nodes on a plane. Let the location of node i be given by the Cartesian pair [xi, yi]. 

Assume the points representing the nodes are in general form that is no three points are collinear. 

Denote a link from node i to node j by (i, j). We define pij as the probability of (i, j) existing and 

cij as the capacity of (i, j) where cij ∈ [0,∞). We again assume that cijpij > 0 for some i and j.  

The disaster is modeled as a circular cut of radius r, centered at [x, y]. We define the cut 

as cutr(x, y). Such a cut removes all links which intersect it including the interior of the circle. 

For brevity cutr(x, y) is sometimes denoted as cutr. The performance measure of a cut that is used 

in the paper is called TEC which is the total expected capacity of the intersected links [1]. 

Geographical Network Inhibition by Circles (GNIC) Problem [1]: Given a graph, cut 

radius, link probabilities, and capacities, find a worst case circular cut under performance 

measure TEC.  

Figure 1. Problem Formulation from [1] 
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The GNIC problem finds a point i.e., the center of the worst case cut in the network 

which maximizes the product of link probability and capacity. In our work, we intend to find 

regions(s) of the network instead of points which are most affected in terms of capacity of the 

links for a given cut radius. The problem can thus be stated as follows.  

Worst Hit Region by Circular Cut (WHRCC) Problem: Given a graph, cut radius, 

link probabilities, and capacities, find a worst hit region, such that the sum of capacity of all the 

links that lie (partially or completely) in the region  is maximized.  
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3  WCGM ALGORITHM [1] 

The algorithm proposed in [1] is called the Worst-Case Circular Cut in the General 

Model (WCGM) is shown in figure 2.  

 
Figure 2.  WCGM Algorithm [1] 
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Theorem 1 [1]: Algorithm WCGM has a running time of O (N6) and finds a worst-case 

circular cut which is a solution to the GNIC Problem. 

Proof [1]: The lemmas presented in [1] imply there exists a worst-case cut which 

intersects a link at exactly one point such that the center of this cut lies on the line which 

contains this link or there exists a worst-case cut which intersects two links at exactly one point 

and at least one of the following:  

(i) at least two of the points are distinct and are not diametrically opposite or  

(ii) at least two of the points are distinct and one of them is a node.  

Algorithm WCGM enumerates all these possible cuts. It considers each link, O (N2), and 

finds both cuts which intersect the link at exactly one point and whose center lies on the line 

which contains this link. Then it considers every combination of two links, O (N4), and if the 

links are not parallel it finds every cut (if any exist) which intersect each of the two links at 

exactly one point such that these points are distinct. By Lemma 8 [1] we know there are at most 

20 of these cuts for every pair of links. If the links are parallel, we need only consider circles that 

intersect one of the links at exactly one point and whose boundary intersects the other links 

endpoint. In total, Algorithm WCGM considers O (N4) cuts and since naively checking each cut 

for the total expected capacity removed takes O (N2), the algorithm has a total running time of O 

(N6). 
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4 USING CAPSULE TO MODEL A LINK 

It is easy to see that a link will be damaged when its distance from the center of the 

disaster is less than or equal to r. We define an area around the link, the occurrence of disaster 

within which, will affect the link. The area is capsule shaped such that the distance between the 

link and each of the parallel sides of the capsule is equal to r and the two parallel lines are joined 

on the same side by a semi circle with center at the corresponding endpoint of the link and 

having a radius ‘r’. This area will be called a capsule from now on. The capsule is shown in 

figure 3. 

 
Figure 3. Capsule 
 
The part of the network worst affected by the disaster should lie in one of the intersections of the 

capsules so formed. In the figure 4, the shaded region is more affected than any of the other 

regions formed. 

 
Figure 4. Capsule Intersection 
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5 ASSESSING PLANAR NETWORKS 

A network can be represented as either a planar graph or a non-planar graph. The 

approach discussed in this section transforms any of the two types of network representations 

into a planar graph using capsules. The resulting algorithm can be applied to both kinds of 

networks. However, the algorithm has a lesser running time on planar networks. The non-planar 

case of network is dealt in a different way in the next section.  

A graph is planar if it can be drawn in the plane without any edges crossing. A formal 

definition of a planar graph is as follows: 

A graph is planar if there exists an embedding of the vertices in R2, f: V  R2 and a 

mapping of edges e Є E to simple curves in R2, fe: [0, 1]  R2 such that the endpoints of the 

curves are the vertices at the endpoints of the edge, and no two curves intersect except possibly 

at their endpoints. 

A planar graph divides the plane into regions or faces. There is always exactly one 

infinite region since a finite graph must occupy a finite portion of the plane. The number of 

regions that the planar graph has is given by Euler’s formula. 

5.1 EULER’S FORMULA 

Euler's formula states that if a finite, connected, planar graph is drawn in the plane 

without any edge intersections, and  

• v is the number of vertices,  

• e is the number of edges and  

• f is the number of faces (regions bounded by edges, including the outer, infinitely-large 

region), then  

v − e + f = 2      (1) 
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In terms of f, 

f = e – v + 2      (2) 

Figure 5 shows a simple example of a plane satisfying Euler’s formula. 

 
Figure 5. Planar Graph 

 

In our approach, the given network is represented by a planar graph P = (V, E) with 

vertices v corresponding to the points of intersections of the boundaries of the capsules and 

edges connect pairs of adjacent intersection points along the boundaries of the capsules. The 

number of faces thus formed satisfies Euler’s formula. This is illustrated in figure 6. 

 
Figure 6. Euler’s Formula Applied to Capsules 
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The number of faces formed in terms of the intersection points is given by the following 

theorem: 

Theorem 2 [3]: Let m be the number of points of intersection of boundaries of the capsules, then 

the number of faces f in the graph P is at most m + 2. 

f = m + 2      (3) 

Proof [3]: The proof is based on Euler’s formula for planar graphs. Since P = (V, E) is a planar 

graph, |V| - |E| + |F| = 2, where V, E, F are the sets of vertices, edges, and faces of P, 

respectively. If several boundaries intersect at the same point, then by slightly changing 

boundaries, one can increase the number of faces. Thus for counting purposes, we can assume 

that each point can be intersection of boundaries of at most two capsules. Then each vertex of the 

graph P has degree 4. If we sum up degrees of all vertices, then we count each edge twice, 

therefore, |E| = 2|V|. Thus, |V| - 2|V| + |F| = 2 and the number of faces equals |F| = |V| + 2. 

 
Figure 7. Proof for Theorem 2 
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As an example figure 7 contains 3 capsules intersecting with each other. The number of 

intersection points is 12 and the number of regions formed is 14, conforming to the theorem. 

Figure 8 shows the faces for 3 non-parallel links. 

 
Figure 8. Faces formed in case of non-parallel links 

 

Figure 9 shows the faces formed in case of parallel links. Also, in the figure the distance 

between the links is equal to the radius of the disaster. 

 
Figure 9. Faces formed in case of parallel links 
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6  WORST HIT FACE FOR PLANAR GRAPH (WHF-PG) ALGORITHM 

To identify the most vulnerable part of the network, we propose the Worst Hit Face for 

Planar Graph (WHF-PG) algorithm. 

 

Algorithm Worst Hit Face for Planar Graph (WHF-PG) 

 1:  input: r, radius of cut 
 2:  for every link (i, j)  
 3:   Draw a capsule, C of size r, around the link. 
 4:  for every capsule, C  
 5:  Find the intersection of C with its neighbors. 
 6:   Define the faces 
 7: for every face, f 
 8:  Evaluate the capacity of all links inside face f. 
 9:  return face fmax with the maximum calculated capacity 

 
 

As the algorithm indicates the face with the highest capacity, fmax is the worst hit region 

of the network for the given disaster radius r.  

6.1 COMPLEXITY 

The number of nodes in the network is N. The number of links that can be formed with 

these nodes cannot exceed N2. Since one capsule is drawn per link, their number is also of the O 

(N2). Two capsules can intersect only at a node. A face is formed at every node and around every 

edge. So, the number of faces formed is equal to the sum of the nodes and edges in the graph. 

Hence, the number of faces is O (N2). Summing the capacity of links in every face takes O (N2). 

Therefore, the overall time complexity of the algorithm is of O (N4). 
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7 ASSESSING NON-PLANAR NETWORKS 

The WHF-PG algorithm is more suitable for networks which don’t contain link 

intersections. But a real world wired network contains numerous links passing over the same 

points and links which are not connected to other links but are a part of the network. The number 

of capsules as before is equal to the number of links and is of O (N2) where N is the number of 

nodes in the network. The number of link intersections can potentially be of O (N4). Applying 

the Euler’s formula, we see that the number of faces formed is of O (N4). Evaluating the capacity 

of each face takes O (N2) time. This makes the running time of the WHF-PG algorithm of O 

(N6). A faster algorithm can be produced by making use of the plane sweep technique. Before 

discussing this approach we present an alternative formula for finding the number of faces 

formed by the intersection of capsules. This number is in terms of the capsules in contrast to the 

Euler’s formula which gives the number of faces formed in terms of the number of intersection 

points of capsules and the edges joining those intersection points. 

Regions are formed by the intersection of capsules in combinations of 2, 3, 4…N2. For 

example, in figure 10, region A is formed by the intersection of capsules numbered 1 and 2. 

Region B is formed by capsules 1, 2 and 3. Region C is formed by capsules 1, 2, 3 and 4. So, it is 

seen that a region formed by any combination of the capsules can be a candidate for the most 

affected area. Further, the sum of these combinations is exponential. This gives us an impression 

that the process of identifying regions is enormously time consuming.  
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Figure 10. Regions formed by capsule intersection 

 
However, a very important observation made in reference [4] with respect to the Venn 

diagrams dispels this notion and shows that the total number of regions is polynomial and is in 

fact of O (N2) where N is the number of circles. We extend the same logic to capsules and show 

that only a polynomial number of regions need to be considered to find a region of the network 

with maximum capacity.  

[4] discusses an issue related to Venn diagrams.  Venn diagrams are used to teach elementary 

set theory, as well as illustrate simple set relationships in probability, logic, statistics, linguistics 

and computer science.  Typically we draw Venn diagrams to visualize the intersections among 

two or three sets. We rarely come across Venn diagrams representing four sets. This is because 

the task of arranging four circles is not as straightforward as it is in the case of fewer sets. Trying 

to arrange four circles to represent all possible combinations is practically impossible with Venn 

diagrams. It can however be done with other shapes. But our interest is only in the congruent 

circles. [4] attempts to answers two questions in this regard: 

1. How many regions must a Venn diagram have in order to display all the possible 

intersections among n sets?  

2. How many regions can we create with n circles?  
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The answer to the first question is well known - a Venn diagram for n component sets must 

contain all 2n hypothetically possible zones corresponding to some combination of being 

included or excluded in each of the component sets. 

The second question is solved as follows: To maximize the number of regions, we make sure 

no more than two circles intersect at a given point. Let rn denote this maximum number. Now 

suppose we have n -1 circles drawn already with a total rn-1 regions. How many more regions can 

the addition of one more circle yield? To maximize the number of regions, we draw the nth circle 

so that it intersects the existing n - 1 circles in two distinct points each (nonintersecting and 

tangent circles produce no new regions). When the nth circle intersects an existing circle, it 

creates two new regions: it begins one new region when it enters the existing circle, and starts 

another upon leaving the circle. See figure 11. 

 
Figure 11. Regions formed in Venn diagrams [4] 
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 The above analysis demonstrates that rn = rn-1 + 2(n-1). For large values of n, the 

following substitutions and computations in figure 12 demonstrate that rn = n2 – n + 2. We see 

that n2 – n + 2 = 2n for n = 1, 2, 3, but n2 – n + 2 < 2n for n ≥ 4. There is immense reduction in the 

number of regions formed as compared to the number of regions that are supposed to be formed. 

 
Figure 12. An explicit formula for the maximum number of regions formed by n circles [4] 

  
 Applying the same reasoning to the capsules, we observe that one capsule intersects 

another capsule at a maximum of 4 points to form a maximum of 4 additional regions. There are 

cases where the boundaries of the capsules overlap along the arcs or straight edges where the 

entire segment forms the set of intersection points. These cases (figure 13) can be safely ignored 

as they do not form any additional regions.  
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Figure 13. Capsules intersecting along boundaries 
 

Theorem 3: The number of regions formed by the intersection of n capsules is of the order n2. 

Proof: It is easy to prove analytically that two capsules that do not have a part of their boundary 

in common cannot meet at more than four points. The scenarios in which two capsules intersect 

along an arc or a line are of little interest to us as they don’t form regions. If they should be 

considered, it is enough to count only the endpoints of these overlapping line segments when 

trying to define regions. 

 Suppose there are n-1 capsules and Rn-1 regions already existing. We add an nth capsule. 

Since, the nth capsule intersects every existing capsule at a maximum of four points, the total 

number of intersection points is 4*(n-1). The line or curve joining any consecutive pair of 

intersection points belongs to the nth capsule’s boundary. This line (or curve) lies completely in 

exactly one existing region. This implies that there is one existing region corresponding to every 

pair of consecutive intersection points. For each region that a line of the capsule goes through, it 

adds a region (splits the region into 2 regions). Hence, the number of new regions formed by the 

introduction of a new capsule is at most 4*(n-1) and the maximum total number of regions is at 

most Rn-1 + 4*(n-1) where Rn-1 is the number of existing regions.  
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Figure 14. Proof for Theorem 3 

 

Figure 15 shows the substitutions and computations to arrive at an explicit formula for 

the maximum number of regions formed by the intersecting capsules. 

 
Figure 15. An explicit formula for the maximum number of regions formed by n capsules 
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The formula gives the maximum number of regions formed in terms of the capsule 

number, n. The formula in turn provides an upper bound on the worst-case time complexity of 

the problem of finding the most affected region. For N nodes in the network, the number of 

capsules would at most be O (N2). Applying the formula, the number of regions formed is found 

to be of O (N4). The evaluation of each of these regions to find the worst affected region results 

in a running time of O (N6). This is the time taken if every region had to be evaluated naively in 

the worst-case scenario. 

7.1 PLANE SWEEP TECHNIQUE 

The main reason for using the capsules in this work is to mark the affected regions precisely. The 

fact that still stands is that the worst affected regions lie around the points of link intersections. 

Hence, we need an efficient approach to find these intersection points. In this section we 

introduce one such algorithm called the plane sweep algorithm [34] which will prove to be a 

useful technique in assessing the effect of disasters on non planar networks. Plane-sweep is an 

algorithm schema for two-dimensional geometry of great generality and effectiveness. It works 

for a surprisingly large set of problems, and when it works, tends to be very efficient.  The 

closely related Bentley–Ottmann algorithm uses the plane sweep technique to report 

all K intersections among any N segments in the plane in time complexity of O((N + K) log N) 

The feature of the technique is that intersection points of the originally given segments are found 

during the sweep and considered as forthcoming tasks. No back-tracking is needed and no 

intersecting points are left discovered. Another positive feature of plane sweep is that it is output-

sensitive i.e., its running time is sensitive to the number of intersection points, making it faster on 

graphs having lesser number of intersection points. This provides a large reduction in running 
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time when compared to the straight forward approach of checking every pair of lines for 

intersection which takes O (N4) time. 

  We now discuss the plane sweep algorithm in detail. Let S = s1, s2, s3,…, sn denote the 

line segments whose intersections we wish to compute. Here are the main elements of any plane 

sweep algorithm, and how we will apply them to this problem: 

Sweep line: The name plane-sweep is derived from the image of sweeping the plane from left to 

right with a vertical line called the sweep line stopping at every transition point (event) of a 

geometric configuration to update the cross section. We maintain the line segments that intersect 

the sweep line in sorted order (say from top to bottom). 

Events: Although we might think of the sweep line as moving continuously, we only need to 

update data structures at points of some significant change in the sweep-line contents, called 

event points. 

Different applications of plane sweep will have different notions of what event points are. For 

this work, event points will correspond to the following: 

Endpoint events: where the sweep line encounters an endpoint of a line segment, and 

Intersection events: where the sweep line encounters an intersection point of two line segments. 

Note that endpoint events can be presorted before the sweep runs. In contrast, intersection events 

will be discovered as the sweep executes. For example, in the figure 16, some of the intersection 

points lying to the right of the sweep line have not yet been “discovered” as events. However, we 

will show that every intersection point will be discovered as an event before the sweep line 

arrives here. 
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Figure 16. Intersection Events [7] 
 
 

Event updates: When an event is encountered, we must update the data structures associated 

with the event. It is a good idea to be careful in specifying exactly what invariants you intend to 

maintain. For example, when we encounter an intersection point, we must interchange the order 

of the intersecting line segments along the sweep line. 

Degeneracies: There are a great number of special cases that complicate the algorithm and 

obscure the main points. We will make a number of simplifying assumptions. They can be 

overcome through a more careful handling of these cases.  

(1) No line segment is vertical. 

(2) If two segments intersect, then they intersect in a single point (that is, they are not collinear). 

(3) No three lines intersect in a common point. 

Detecting intersections: We mentioned that endpoint events are all known in advance. But how 

do we detect intersection events. It is important that each event be detected before the occurrence 

of the actual event. The strategy used is as follows. Whenever two line segments become 

adjacent along the sweep line, we will check whether they have an intersection occurring to the 
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right of the sweep line. If so, we will add this new event (assuming that it has not already been 

added). A natural question is whether this is sufficient. In particular, if two line segments do 

intersect, is there necessarily some prior placement of the sweep line such that they are adjacent. 

Interestingly, this is the case, but it requires a proof. The lemma from [7] proves this. 

Lemma: Given two segments si and sj , which intersect in a single point p (and assuming no 

other line segment passes through this point) there is a placement of the sweep line prior to this 

event, such that si and sj are adjacent along the sweep line (and hence will be tested for 

intersection). 

Proof: From our general position assumption it follows that no three lines intersect in a common 

point. Therefore if we consider a placement of the sweep line that is infinitesimally to the left of 

the intersection point, lines si and sj will be adjacent along this sweep line L. Consider the event 

point q with the largest x-coordinate that is strictly less than px. The order of lines along the 

sweep-line after processing q will be identical along the sweep line just prior p, and hence si and 

sj will be adjacent at this point (Figure 17) 

 
Figure 17. Proof for correctness of Plane Sweep Algorithm [7] 
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Data structures: In order to perform the sweep we will need two data structures. 

1. Event queue: This holds the set of future events, sorted according to increasing x-coordinate. 

Each event contains the auxiliary information of what type of event this is (segment endpoint or 

intersection) and which segment(s) are involved. The operations that this data structure should 

support are inserting an event (if it is not already present in the queue) and extracting the next 

event. The x-queue must be a priority queue; it can be implemented as a heap. If events have the 

same x-coordinate, then we can handle this by sorting points lexicographically by (x, y). (This 

results in events being processed from bottom to top along the sweep line). The cost of inserting 

or getting the next element can be performed in O (log n) time each. 

2. Sweep line status: To store the sweep line status, we maintain a balanced binary tree whose 

entries are pointers to the line segments, stored in increasing order of y-coordinate along the 

current sweep line. The operations that we need to support are those of deleting a line segment, 

inserting a line segment, swapping the position of two line segments, and determining the 

immediate predecessor and successor of any item. Assuming any balanced binary tree, these 

operations can be performed in O (log n) time each. 

The Algorithm: The complete plane-sweep algorithm is presented in figures 18 and 19. Figure 

20 shows the contents of the sweep line status data structure as it scans through the plane. 
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Figure 18. Plane Sweep Algorithm [34] 
 
 

 

 
Figure 19. Plane Sweep Algorithm (contd.) 
 

a    left 
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Figure 20. Sweep line status 
 
 

Analysis: The work done by the algorithm is dominated by the time spent updating the various 

data structures (since otherwise we spend only constant time per sweep event). We need to count 

two things: the number of operations applied to each data structure and the amount of time 

needed to process each operation. 

For the sweep line status, there are at most n elements intersecting the sweep line at any time, 

and therefore the time needed to perform any single operation is O(log n), from standard results 

on balanced binary trees. Since we do not allow duplicate events to exist in the event queue, the 

total number of elements in the queue at any time is at most (2n + I). Since we use a balanced 

binary tree to store the event queue, each operation takes time at most logarithmic in the size of 

the queue, which is O (log (2n + I)). Since I ≤ n2, this is at most O (log n2) = O (2 log n) = O (log 

n) time. Each event involves a constant number of accesses or operations to the sweep status or 

the event queue, and since each such operation takes O (log n) time from the previous paragraph, 

it follows that the total time spent processing all the events from the sweep line is 

O ((2n + I) log n) = O ((n + I) log n) = O(n log n + I log n)   (4) 

Thus, this is the total running time of the plane sweep algorithm. 



31 

7.2 MODIFIED PLANE SWEEP TO IDENTIFY REGIONS 

We now discuss modifications to the plane sweep algorithm so that it can be a suitable 

solution to our problem of finding the most affected region of the network. Evidently, the regions 

around line intersections or regions in which lines lie close to each other are more affected than 

regions containing single links. Hence, the first step in finding the region most affected should be 

to find link intersections. We can then find the region formed by the overlapping of 

corresponding capsules to get the worst hit region we are looking for. The plane sweep algorithm 

is an output sensitive algorithm whose running time depends on both the input and the output. 

This feature of the algorithm makes it suitable to be used in our problem. However, we have to 

consider the degeneracies of the algorithm and additional scenarios in our problem that are not 

considered in the basic plane sweep algorithm. The following sub sections discuss the 

approaches taken to deal with the degeneracies. The changes that are to be made on the data 

structures are discussed simultaneously. 

7.2.1 VERTICAL LINES 

The basic plane sweep algorithm assumes for simplicity that the graph doesn’t contain 

any vertical line segments. In our problem, it is necessary for the vertical segments to have their 

vertices processed.  We can avoid the special treatment of these degeneracies. The sweep line 

can be imagined to be “almost” vertical, that is, it forms a counterclockwise angle of infinitely 

small value with the vertical line, as shown in figure 21. With this approach for vertical segments 

the vertex of lower y-coordinate will be the left endpoint or source, thus imposing a 

lexicographic (x, y)-order to refine the x-order.  
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Figure 21. Handling vertical lines in plane sweep algorithm [10] 

 

7.2.2 MULTIPLE INTERSECTIONS 

In case of multiple intersections, the idea is to forbid the insertion of several points 

having the same coordinates but belonging to different pairs of intersecting segments in the event 

queue. The only point stored will mark the intersection between the upmost and the lowest 

segments that intersect at the point. However, all line segments incident at the intersection point 

should be stored with the event in order to fetch the corresponding capsules when finding the 

region of intersection. Hence, the event point will now be associated with a set of line segments. 

This set will be called the pencil. 

Since any event can be a point of multiple line segment intersection, the pencil at an 

existent intersection point has to be updated every time a new segment is found to intersect at 

that point, An example is depicted in figure 22 (a). Here after processing the left endpoints of s1 

and s2, an intersection point is detected and inserted in the event queue. When the algorithm 

processes s3, it also detects the intersection with s3; the already existent intersection point (s1, s2) 

will be replaced by (s1, s3) and the event’s pencil will be updated to (s1, s2, s3). In situations like 

that depicted in figure 22 (b) the event queue keeps only the intersection (s1, sk). The event’s 

pencil will contain segments s1 through sk. 
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Figure 22. Handling multiple intersections in plane sweep [10] 

 

The sweep line status should be modified as follows:  

i. Insertion: A line segment is inserted when its left point is encountered. After insertion the 

segment must be tested against its neighbors in the line status and their eventual 

intersection points will be inserted in the event queue. 

ii. Deletion: A line segment is deleted from the sweep line status when the sweep line 

encounters the line’s right endpoint. At this event, the former neighbors of the deleted 

line segment are checked for intersection. If they intersect, then their intersection point is 

stored in the event queue.  

iii. Swapping: When an intersection event point is reached the segments that intersect here 

 must change place in the structure. This operation is followed by testing these segments 

 against their new neighbors and by inserting their eventual intersections that lie to the 

 right of the current event point in the event queue. If there exists a pencil of segments 

 sharing the current event they form a contiguous sequence of elements in the line status. 

 This sequence is bounded by the two segments that are associated to the event.  At the 

 right of the intersection point the order of line segments in the pencil in the line status is 

 reversed. Only the upper and the lower segment should be tested against their neighbors. 
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7.2.3 DANGLING LINKS 

We use the term dangling to describe those edges of the network which are a part of the 

network but are not connected any other link. They may lie close to a link or a link intersection 

and have a possibility of being affect by the same disaster that affects their close link or link 

intersection. It is therefore necessary to consider such links also during the evaluation. But, such 

lines cannot be detected by the naïve plane sweep algorithm. We try to make use of a variation of 

the plane sweep algorithm which is used to solve the closest pair problem.  

When a new point p is encountered we wish to answer the question whether this point lies 

at a distance less than or equal to r to one of the points on its left. All candidates lie in a half 

circle centered at p, with radius r, where r is the radius of the disaster.  

The key question to be answered in striving for efficiency is how to retrieve quickly all 

the points seen so far that lie inside this half circle to the left of p, in order to compare their 

distance to p. A rectangle query can be answered more efficiently. Thus we replace the half-

circle query with a bounding rectangle query, accepting the fact that we might include some 

extraneous points, such as q. 
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Figure 23. Bounding rectangle [9] 

 

The event queue, as in the basic algorithm stores the points of the set S, ordered by their 

x-coordinate, as events to be processed when updating the vertical cross section. We introduce 

two pointers into the event queue, 'tail' and 'current', which partition S into four disjoint subsets: 

i. The discarded points to the left of 'tail' are not accessed any longer. 

ii. The active points between 'tail' (inclusive) and 'current' (exclusive) are being queried. 

iii. The current transition point, p, is being processed. 

iv. The future points have not yet been looked at. 

The rectangle query in figure 23 is implemented in two steps. First, we cut off all the 

points to the left at distance ≥ r from the sweep line. These points lie between 'tail' and 'current' 

in the event queue and can be discarded easily by advancing 'tail' and removing them from the 

event queue. Second, we consider only those points q in the r-slice whose vertical distance from 

p is less than r i.e., |qy – py| < r. These points can be found in the sweep line status by looking at 

successors and predecessors starting at the y-coordinate of p.  
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8 WORST HIT FACE FOR NON PLANAR GRAPHS (WHF-NPG) ALGORITHM 

We now present the Worst Hit Face for Non Planar Graphs (WHF-NPG) algorithm which 

incorporates the handling of all scenarios discussed in the previous section to detect the worst hit 

face in the given non planar graph. 

 

 Algorithm Worst Hit Face for Non Planar Graph (WHF-NPG) 
 
Input: A set of line segments which represent the links in a non-planar graph 
 Radius of disaster, r 
Output: A region most affected by a disaster of radius r 
 
Data Structures: 

• Event Queue, Q is a priority queue which contains the events to be 
processed and past events that lie in the r-slice 

• Pointers ‘tail’ and ‘current’. The current pointer points to the current event 
being processed. The interval between these two pointers contains the 
events that have been processed and whose distance from the current 
pointer ≤ r  

• Sweep line status structure, T is a balanced tree which contains pointers to 
line segments, stored in increasing order of y-coordinate along the current 
position of the sweep line 

• Every event point has a list of line segments that intersect at it. This list is 
called the pencil.  

 
procedure findIntersections () 

1. capacityOfWHF  0, worstHitRegion 
2. initQ(); initT() 
3. while Q not empty 
4.   do p = nextQ() 
5.   handleEventPoint (p) 
6. return  worstHitRegion 
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procedure handleEventPoint (Event p) 
 
1. if ( leftEndPoint (Event p) ) 
2. s := segment (p) 
3. pencil := updatePencil (s, p) 
4.  insertT(s) 
5.  if (q = intersect (predT(s), s) or intersect(s, succT(s))) 
6.  insertQ (q) 
7.   pencil := updatePencil (s,  q) 
8.  pastList := getPastEventsInBoundingBox() 
9.  defineRegion(pencil, pastList) 
  
10. else if ( rightEndPoint (Event p) ) 
11.  s := segment (p) 
12.  deleteT(s)  
13.  if (q = intersect (predT(s), succT(s)))    
14.  insertQ (q)  
15.   pencil := updatePencil (predT(s), q) 
16.   pencil := updatePencil (succT(s), q) 
17.  pastList := getPastEventsInBoundingBox() 
18.  defineRegion(pencil, pastList) 
 
19. else /* p is an intersection point */ 
20.  (s1, s2) := segments (p) /* Assume s1 is above s2 */ 
21.  reverseT(s1, s2) /* reverse the order of segments between s1 and s2  */ 
22.  if  ( q = intersect (predT(s2), s2) ) 
23.  insertQ (q) 
24.   pencil := updatePencil (s2, q)  
25.  if  ( q = intersect ( intersect (s1, succT(s1)) ) 
26.   insertQ (q) 
27.  pencil := updatePencil (s1, q) 
28.  pastList := getPastEventsInBoundingBox() 

 29.  defineRegion(pencil, pastList)    
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procedure updatePencil (Segment s, Event p) 
 1. Add the segment s to the list of segments associated with the event  

           point p 
end updatePencil 
 
procedure getPastEventsInSlice (Event p) 

1. Returns the list of line segments associated with past events from event 
queue Q, which lie in the slice between pointer tail and event p 

2. Returns predecessors and successors of point p on the sweep line at 
vertical distance ≤ r  

end getPastEventsInSlice. 
 
procedure defineRegion (pencil, pastList) 

1. capsules = Retrieve capsules corresponding to the links in pencil and 
pastList.  

2. regionFormed = Find the region formed by the intersection of all 
capsules. 

3. capacityOfFace = Sum (Capacity of links in pencil and pastList) 
4. if (capacityOfFace ≥ capacityOfWHF) 
5.  capacityOfWHF = capacityOfFace 
6.  worstHitRegion = regionFormed 
7. end if 

 end defineRegion 

 

8.1  COMPLEXITY 

The number of nodes in the non planar graph is N. The number of links is of O (N2). The 

number of link intersections is of O (N4) and the number of regions is of O (N4). The number of 

events that can be encountered by the sweep line is equal to the sum of the number of endpoints 

and the number of intersection points, which is O (N4).   

The operations 'insertT' and 'deleteT' on the sweep line status T are performed in O (log 

N2) time, and 'succT' and 'predT' are performed in O(1). The event queue Q is a priority queue 

that supports the operation 'insertQ'; it can be implemented as a heap. The cost for initializing the 

x-queue remains O (N * log N). Without further analysis one might presume that the storage 
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requirement of the x-queue is O (N +N4), which implies that the cost for calling 'insertQ' and 

'nextQ' is O (log N4). The cost for reversing the order of line segments in the sweep line status is 

O (log N2). The time taken to get the past events is reduced as a result of using the two pointers 

‘tail’ and ‘current’ in the event queue. The retrieval of the past events with respect to the current 

event along both the x and y coordinates can be done in O (log N4). 

The O (log N4) operations on event queue Q and sweep line status are executed at each of 

the endpoints and intersection points. Therefore, the running time of the algorithm is of  

O (N4 * log N4) i.e., O (N4 log N).  
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9 CONCLUSIONS 

This work addressed a very important concern in the field of wired computer networks 

and suggests novel ways to solve the problem. Algorithms have been proposed for both planar 

and non-planar graphs. The WHF-PG algorithm for planar graphs can be applied to evaluate the 

impact of disasters on transoceanic cables which are to a great extent planar in nature. The WHF-

NPG algorithm proposed for non planar graphs finds great usage in evaluating vulnerability of 

networks in cities with high volume of interconnected fibers and backbone networks of an entire 

country. The solution can be applied to other networks like telephone networks as well. The 

knowledge of physical susceptibility helps in the redesigning of network so as to secure the 

network as much as possible. One contribution of the work is to ascertain that the number of 

regions or faces formed by the intersection of the capsules in terms of the number of capsules 

which is of O (n2). The paper provides a proof for the same. The most important contribution of 

the paper is the application of plane sweep algorithm to the non planar network to determine the 

faces. The running time of the proposed algorithm is O (N4 log N), which is less than that 

presented in the previous work. The algorithm can be easily implemented with well known 

simple data structures and hence finds applicability in real time networks. 
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