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A CATEGORY-THEORETIC COMPOSITIONAL FRAMEWORK OF PERCEPTRON-BASED

NEURAL NETWORKS PLUS AN ARCHITECTURE FOR MODELING SEQUENCES

CONDITIONED TO TIME-STRUCTURED CONTEXT: AN IMPLEMENTATION OF A

GENERATIVE MODEL OF JAZZ SOLO IMPROVISATIONS

by

RODRIGO CASTRO LOPEZ VAAL

Under the Direction of Mariana Montiel, PhD

ABSTRACT

This work introduces an algebraic graphical language of perceptrons, multilayer perceptrons,

recurrent neural networks, and long short-term memory neural networks, via string diagrams

of a suitable hypergraph category equipped with a concatenation diagram operation by means

of a monoidal endofunctor. Using this language, we introduce a neural network architecture

for modeling sequential data in which each sequence is subject to a specific context with a

temporal structure, that is, each data point of a sequence is conditioned to a different past,

present, and future context than the other points. As proof of concept, this architecture is

implemented as a generative model of jazz solo improvisations.

INDEX WORDS: Deep learning, Neural networks, Category theory, String diagrams,
Long short-term memory, Jazz solo generation.
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CHAPTER 1

INTRODUCTION

The goal of this dissertation is threefold: to present a formal diagrammatic language of

neural networks, to introduce a neural network architecture to model sequences subject to

time-structured context, and to provide an implementation of such an architecture as a jazz

solo generative model.

In order to build a formal diagrammatic language that allows us to rigorously describe

neural network architectures, we turn to the use of string diagrams (a.k.a. wiring dia-

grams), a graphical language for monoidal categories [26]. In recent years, category theory

has seen a surge of applications framed in the context of monoidal categories (for example,

see [1, 3]). Broadly speaking, one important strength of monoidal categories is that they

naturally model compositionality, that is, smaller structures being composed together to

produce larger structures. Strings diagrams provide a graphical framework that enables us

to describe the composition of structures in a way that is both precise and mathematically

justified. In chapter 3, we construct a monoidal category suited to model the morphisms that

constitute different types of neural networks (except convolutional), and use their associated

string diagram representations to describe some of the most fundamental neural network

architectures. For the reader interested in the mathematical foundations of monoidal cat-

egories and string diagrams, in chapter 2 we provide the concepts and definitions that are

(strictly) necessary to construct our desired category in chapter 3.

Along with constructing the diagrams of different neural networks, we also provide in-
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troductory concepts that intend to give a general idea and motivation of neural networks to

the reader unfamiliar with deep learning. A particular emphasis is given to familiarising the

reader with long short-term memory (LSTM) neural networks.

Once we have presented LSTMs and built a graphical notation to describe neural network

architectures, in chapter 4 we use these tools to introduce a novel neural network architecture

that aims to model sequences subject to a context that has a structure in time. Long short-

term memory networks have proved to be an effective tool when dealing with sequential

data [28] and the architecture introduced in this manuscript makes use of LSTM networks

to model data that consists of two aspects: a sequence of signals in which each signal has a

certain duration in time, and a sequence of events that conditions the sequence of signals.

The sequence of events is regarded as a time-structured context to which the sequence of

signals is subject. In other words, the sequential structure of the signals is correlated to

the sequential and time structure of the events. Our architecture aims to implicitly model

such a correlation. As proof of concept, in chapter 5, we present an implementation of this

architecture as a generative model of jazz solo improvisations.

Deep learning applications to music are vast [7], and the use of LSTMs to generate jazz

improvisations is not new [10, 15]. The main purpose of our implementation on jazz music is

to demonstrate that the architecture proposed in chapter 4 is trainable (the loss function that

compares a prediction with its ground truth can be minimized smoothly and consistently),

and that new sequences in the style of the corpus can be generated. However, we also

believe that the architecture would be a strong first step towards developing a thorough
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musical AI project, since its novel time-dependent connection mechanism accounts for the

conditioning of a solo phrase to a chord progression. The desired learning task of our model

is to take a chord progression (chosen by the user) and generate a jazz phrase that “works

well” harmonically with the progression, and that the generated phrase resembles the stylistic

patterns and note choices seen in the training corpus. In the appendix of this manuscript we

provide a complete Python implementation of this model using the deep-learning framework

PyTorch.

Finally, in chapter 6, we discuss the potential reach of our contributions, and possible

lines of research that could be carried out further.
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CHAPTER 2

A GRAPHICAL LANGUAGE OF MONOIDAL CATEGORIES

2.1 Preliminaries

In order to understand the formal background in which the diagrams used in this work are

rooted, namely, string diagrams of monoidal categories, we first need to review the basic

definitions of a category, functor, and natural transformation. For a more in-depth and

detailed introduction see [22, 27].

Definition 2.1.1. A category C consists of

– a collection C0 of objects;

– a collection C1 of arrows (or morphisms);

– two assignments s, t : C1 → C0 which attach two objects s(f), t(f) ∈ C0 to an arrow

f ∈ C1 to specify its source (domain) and target (codomain) respectively;

– a partial composition C1 × C1 → C1 which assigns, to any pair of arrows f, g ∈ C1 such

that t(f) = s(g), their sequential composite arrow f ; g (traditionally written g ◦ f);

– an assignment id : C0 → C1 which assigns to each object A the identity arrow idA :

A→ A;

such that the following properties are satisfied:

(i) source and target are respected by composition: s(f ; g) = s(f), t(f ; g) = t(g);

(ii) source and target are respected by identities: s(idA) = A, t(idA) = A;
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(iii) composition is associative: (f ; g);h = f ; (g;h) whenever t(f) = s(g) and t(g) = s(h);

(iv) composition satisfies the left and right unit laws: if s(f) = A and t(f) = B, then

f ; idB = f = idA; f .

We will often write A ∈ C instead of A ∈ C0 when it is clear from context that we are

talking about an object. Also, we will usually write f : A → B or A
f−→ B for an arrow

f ∈ C1 to state that s(f) = A and t(f) = B.

Definition 2.1.2. For categories C and D, a functor F : C → D is a category morphism

sending each object A ∈ C to an object F (A) ∈ D, and each arrow f : A → B of C to an

arrow F (f) : F (A)→ F (B) of D, such that

(i) F preserves composition: F (f ; g) = F (f);F (g) whenever the left side is well defined;

(ii) F preserves identity morphisms: for each object A ∈ C, F (idA) = idF (A).

Definition 2.1.3. Given categories C,D and functors F : C → D, G : C → D, a natural

transformation τ : F → G consists of a D-morphism τA : F (A) → G(A) for every object

A ∈ C such that, for every arrow A
f−→ B of C, the following diagram commutes:

F (A) G(A)

F (B) G(B)

F (f)

τA

G(f)

τB

.

A natural isomorphism is a natural transformation each of whose morphisms τA, τB in

the diagram above are isomorphisms in D.
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Definition 2.1.4. Given categories C and D, the product category C ×D is the category

whose objects are all ordered pairs (C,D) with C ∈ C0, D ∈ D0, and in which an arrow

(f, g) : (C,D) → (C ′, D′) of C × D is a pair of arrows f : C → C ′ of C, and g : D → D′ of

D. The identity of an object (C,D) is (idC , idD). If (f ′, g′) : (C ′, D′)→ (C ′′, D′′) is another

arrow of C × D, the composition (f, g); (f ′, g′) is defined as

(f, g); (f ′, g′) = (f ; f ′, g; g′) : (C,D)→ (C ′′, D′′) .

Definition 2.1.5. A terminal object in a category C is an object 1 satisfying the universal

property that for every other object A ∈ C there exists one and only one morphism A
!−→ 1.

The terminal object of any category, if it exists, is unique up to unique isomorphism.

Definition 2.1.6. If a category C has a terminal object 1, a global element x of an object

A ∈ C is a morphism x : 1→ A.

When the category has sets for objects and set functions for arrows, any sigleton {∗} is

a terminal object 1, and Hom(1, A) is in a one-to-one correspondence with the elements of

a set A. Hence the name global element.

2.2 Monoidal Categories

Definition 2.2.1. A monoidal category consists of a category C, a bifunctor⊗ : C×C → C,

a distinguished object I ∈ C, and natural isomorphisms αA,B,C : A⊗(B⊗C)→ (A⊗B)⊗C,

λA : I ⊗ A→ A, ρA : A⊗ I → A, such that λI = ρI and the following diagrams commute:
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A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ ((B ⊗ C))⊗D

αA,B,C⊗D

idA⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗idD

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

idA⊗λB

αA,I,B

ρA⊗idB
.

The bifunctor ⊗, often referred to as the monoidal product, assigns to each pair of

objects A,B ∈ C an object A⊗B of C, and to each pair of arrows f : A→ C, g : B → D an

arrow f ⊗g : A⊗B → C⊗D of C. We call I the monoidal unit, α = α , , the associator,

and λ, ρ the left and right unitor respectively. For simplicity, we shall denote the monoidal

category (C,⊗, I, α, λ, ρ) just by (C,⊗, I).

A strict monoidal category is a monoidal category in which the natural isomorphisms

α, λ, ρ are all identity morphisms. We will assume all monoidal categories in this work to be

strict, so we may drop the parentheses sometimes and write A⊗B ⊗ C without ambiguity.

Definition 2.2.2. A symmetric monoidal category is a monoidal category equipped

with natural isomorphisms σA,B : A ⊗ B → B ⊗ A such that σB,AσA,B = 1A⊗B and the
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following diagram commutes

A⊗ (B ⊗ C) A⊗ (C ⊗B) (A⊗ C)⊗B

(A⊗B)⊗ C C ⊗ (A⊗B) (C ⊗ A)⊗B

idA⊗σB,C

αA,B,C

αA,C,B

σA,C⊗idB

σA⊗B,C αC,A,B

.

The morphism σ , is commonly known as the braiding of the monoidal category.

Definition 2.2.3. A lax monoidal functor between two monoidal categories (C,⊗C, IC)

and (D,⊗D, ID) consists of a functor F : C → D, a morphism ψ : ID → F (IC), and natural

transformations ϕA,B : F (A) ⊗D F (B) → F (A ⊗C B), such that the following diagrams

commute

F (A)⊗D (F (B)⊗D F (C)) (F (A)⊗D F (B))⊗D F (C)

F (A)⊗D F (B ⊗C C) F (A⊗C B)⊗D F (C)

F (A⊗C (B ⊗C C)) F ((A⊗C B)⊗C C)

αD

id⊗ϕ ϕ⊗id

ϕ ϕ

F (α)

(2.1)

ID ⊗D F (A) F (IC)⊗D F (A)

F (A) F (IC ⊗C A)

ψ⊗id

λD ϕ

F (λC)

(2.2)
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F (A)⊗D ID F (A)⊗D F (IC)

F (A) F (A⊗C IC)

id⊗ψ

ρD ϕ

F (ρC)

(2.3)

where αC, λC, ρC and αD, λD, ρD denote the associator, left unitor, and right unitor of C and

D respectively. We say that F is a strong monoidal functor if ψ and ϕ are isomorphisms,

and a strict monoidal functor if ψ and ϕ are identities.

2.3 String Diagrams

A category C can be regarded as a directed multigraph G with a rule on how to compose

paths. The nodes of G are the objects of the category, and the edges are the arrows (mor-

phisms) from one object to another. Each node has a loop edge corresponding to the identity

arrow. The associative composition operation of arrows of the category, together with the

coherence laws of how it must behave, constitutes the rule on how to compose paths in the

graph. Roughly speaking, string diagrams correspond to the notion of the line graph of G,

in which the nodes become the edges and the edges become the nodes. The nodes of the line

graph are the morphisms of the category, and the edges are the objects. For this reason, we

will depict an object A ∈ C0 as a string (or edge, wire), and a morphism f ∈ C1 as a node

(or box) connected to the strings of its domain on the left and its codomain on the right:

A
= A ∈ C0 , f

A B
= A

f∈C1−−−→ B .
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In order to omit drawing the direction of the strings, we will read the diagrams from left

to right (we will see that we only require the beginning and the ending of a string to travel

from left to right). The identity of an object will be depicted as

A A = idA .

Alternatively, sometimes we might tag a string with the name of the object on the sides

rather than in the top as in

A f B .

This is justified by the depiction of the identity and the coherence laws of the category, since

A f B = A
idA−−→ A

f−→ B
idB−−→ B = A

f−→ B .

Moreover, the identity will allow us to extend the length of a string arbitrarily, as if we were

attaching as many identities to a string as needed. Also, this will allow us to slide boxes

along strings.

The sequential composition of morphisms f and g will be drawn as connecting the com-

mon wires t(f) and s(g):

(
A f B

)
;
(
B g C

)
= A f g C

B
.

Given that f ; g is itself a morphism of the category, we will allow ourselves to black-box the

composition of f and g as a single box connecting the domain of f to the codomain of g:
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A f g C
B

= A f ; g C

.

Similarly, the monoidal product of a monoidal category (C,⊗, I) will be depicted as a parallel

composition (juxtaposition) of diagrams in the vertical direction, for example

(
A f B

)
⊗
(
C g D

)
=

A f B

C g D
.

As we did with sequential composition, we can represent the morphism f ⊗ g as a single box

with domain A⊗ C and codomain B ⊗D:

A f B

C g D

=
A f B

C g D
f ⊗ g

.

As we see, string diagrams provide a friendly depiction of morphisms connecting inputs (the

incoming wires) to outputs (the outgoing wires). Furthermore, we can observe from the last

diagram that the structure of a monoidal category allows us to start talking about boxes

that connect multiple inputs to multiple outputs, that is, hyperedges in the graph G which

we mentioned at the beginning of this section. To further expand the reach and form of

these hyperedges, in [11, 17] the notion of hypergraph categories is introduced by equipping

each object of a monoidal category with the structure of a special commutative Frobenius

monoid, as we will see in the next section.

Lastly, the fact that the braiding σA,B of a symmetric monoidal category is a natural
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isomorphism A⊗B → B ⊗ A, is represented in diagrams as

A A

B B

∼=
A B

B A

whereas the fact that σB,AσA,B = 1A⊗B, is given by

A A

B B
=

A A

B B .

2.4 Hypergraph Categories and Hopf Algebras

Definition 2.4.1. A monoid object (M,µ, ν) in a symmetric monoidal category (C,⊗, I)

is an object M ∈ C equipped with two morphisms

µ : M ⊗M →M ν : I →M

satisfying the associative law

=

and the left and right unit laws

= =
.
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A monoid is commutative if it also satisfies

=
.

Definition 2.4.2. A comonoid object (M,µ, ν) in a symmetric monoidal category (C,⊗, I)

is an object M ∈ C equipped with two morphisms

δ : M →M ⊗M ε : M → I

satisfying the coassociative law

=

and the left and right counit laws

= =
.

A cocommutative comonoid also satisfies

=
.

A Frobenius monoid consists of a commutative monoid and cocommutative comonoid

on the same object that interact with each other obeying the so-called Frobenius and special

axioms. They are also known as commutative separable algebras [25].
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Definition 2.4.3. Given a symmetric monoidal category (C,⊗, I), a special commutative

Frobenius monoid (A, µF , νF , δF , εF ) consists of an object A together with the morphisms

µ : A⊗ A→ A ν : I → A δ : A→ A⊗ A ε : A→ I

such that (A, µF , νF ) is a commutative monoid, and (A, δF , εF ) is a cocommutative comonoid

obeying the Frobenius axiom

= =

and the special axiom

=

.

Definition 2.4.4. A hypergraph category is a symmetric monoidal category (C,⊗, I)

in which every object is equipped as a special commutative Frobenius monoid such that it

interacts with the monoidal product satisfying

A⊗B

A⊗B
A⊗B =

B

A

B

A
A

B
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A⊗B

A⊗B
A⊗B =

B

A

B

A
A

B

A⊗B =
A

B

A⊗B =
A

B .

Hypergraph categories are also known as well-supported compact closed categories [8].

Now, suppose we have an object with a monoid structure (A, µ, ν) and a comonoid

structure (A, δ, ε) that are not dual of each other, say

µ : A⊗ A→ A ν : I → A δ : A→ A⊗ A ε : A→ I

(we will use the notation for δ and ε in chapter 3 for a specific comonoid structure). In [4], the

authors describe in detail how a pair of a monoid and a comonoid such as the ones described

above interact with each other. In particular, the bimonoid (A, µ, ν, δ, ε) in a symmetric

monoidal category (C,⊗, I) forms what is called a Hopf algebra, and it satisfies

= =
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=
=

.

Analogous laws are satisfied for the dual bialgebra. For a full description of intearcting Hopf

algebras see [4].

Hypergraph categories have a useful feature: they are self-dual and compact closed. One

consequence of these facts is that the wires in a hypergraph category can also flow from

right to left. We won’t go over the deatils here, a more extended explanation can be found

in [11, 12, 17]. For our purposes, it will suffice to have the property that the middle part of

wire can flow from right to left. For example, consider the diagram

.

Observe that the connecting wire on the left (the input) is the same as the connecting wire

on the right (the output). Thus, this diagram can be thought of as a single string whose

endpoints flow from left to right, but whose middle part flow in the opposite direction:

:=

.
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As mentioned in the previous section, hypergraph categories provide more power and

flexibility to build any kind of hyperedges from multiple inputs to multiple outputs. We

will use these properties to construct a suitable symmetric monoidal category equipped with

the structure we need in order to describe the neural network concepts that will be used in

chapter 3.
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CHAPTER 3

A STRING-DIAGRAMMATIC APPROACH OF PERCEPTRON-BASED
NEURAL NETWORKS

This chapter covers some of the basics of neural network (NN) architectures framing them as

string diagrams of a hypergraph category equipped with extra structure. Although nowadays

there are numerous types of NN architectures, we will focus on three of the most fundamental

ones, namely, multilayer perceptron, recurrent, and long short-term memory. Then, we

will use some of these architectures to build a new one that models our sequence problem

described in the next chapter. We begin by building a suitable category and diagram notation

through which these architectures will be described.

3.1 The Categorical Construction

Consider the symmetric monoidal category (Euc,⊗, I) (see definition 2.2.2), where the ob-

jects of Euc are euclidean spaces regarded as affine spaces, and whose arrows are transforma-

tions between Euclidean spaces (these can be linear, affine, nonlinear, etc.). The associative

product ⊗ will function as an abstract monoidal operation that allows us to consider the

juxtaposition of any number of independent transformations simultaneously, that is, the co-

existence of diagrams in parallel. In consequence, we shall regard the unit I as the empty

diagram.

In addition, we will equip every object A ∈ Euc with a special Frobenius monoid struc-

ture (see definition 2.4.3) given by a copy map δ, a discard map ε, a co-copy map µ, and an
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initialize map ν, denoted by

δ : A→ A⊗ A ε : A→ I µ : A⊗ A→ A ν : I → A

providing (Euc,⊗, I) with the structure of a hypergraph category (see definition 2.4.4).

Moreover, every Euclidean space is naturally a monoid object (see definition 2.4.1) under

vector addition, and also under the Hadamard product (element-wise multiplication). In

fact, every object is a ring under these two operations, but for our purposes we only require

the monoid structures of each object. We will denote the monoid structure of an object

M ∈ Euc under vector addition by

+

µ+ : M ⊗M →M

+

ν+ : I →M

whence + is the zero vector, and the monoid structure of M ∈ Euc under the Hadamard

product by

•

µ• : M ⊗M →M

•

ν• : I →M

whence • is the all-ones vector.

There is one additional structure with which we need to furnish our category, and that

is the concatenation of vectors of points of any two Euclidean spaces. Vector concatenation
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is a fundamental operation in deep learning because it allows us to pass a number of vectors

to a network without having to change its arrangement of operations. This is useful when

developing a deep-learning framework because it enables conditioning a network to any

number of vectors without having to rewrite the modules of the framework used to construct

the network, it only requires to change the input size.

Given two row vectors a ∈ Rk, b ∈ Rl, we denote their (horizontal) concatenation by

a t b = [a b] ∈ Rk+l. In order to mesh this operation with our diagrammatic formalism,

we introduce a concatenation operation as the strong monoidal functor t : (Euc,⊗, I)→

(Euc,⊗, I) (see definition 2.2.3) given by the morphisms ϕA,B : A ⊗ B → A t B and

ψ : I → [ ], where [ ] denotes the empty vector, satisfying

A⊗ (B ⊗ C) (A⊗B)⊗ C

A⊗ (B t C) (A tB)⊗ C

A t (B t C)) (A tB) t C

α

id⊗ϕ ϕ⊗id

ϕ ϕ

t(α)

(3.1)

I ⊗ A [ ]⊗ A

A [ ] t A

ψ⊗id

λ ϕ

t(λ)

A⊗ I A⊗ [ ]

A A t [ ]

id⊗ψ

ρ ϕ

t(ρ)

(3.2)

where α denotes the associator of (Euc,⊗, I), and λ, ρ are its left and right unitor respec-
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tively. If we let ϕ and ψ be denoted by

ϕA,B : A⊗B → A tB ψ : I → [ ]
,

then the commutative diagrams above translate into string diagrams as

∼=

and

∼= ∼=

respectively, which clearly correspond to an associativity law, and left and right unit unit

laws of a monoid. This is to be expected since, just as the monoidal product, concatenation

induces a free monoid over Euc. For this reason, the author has decided to denote ϕ and

ψ in an analogous way to the way we denoted a monoid object in definition 2.4.1, with the

difference that the white circle is double-lined. This is to emphasise the fact that we are not

depicting a monoid structure of an object, but rather a free monoid structure of the category

itself.

Finally, to help the interpretability of diagrams, we will usually tag input and output

strings by the name of global elements of the given spaces rather than by the spaces’ names
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themselves, in other words, the strings will carry the names of the points of the Euclidean

space to which it belongs. For example, suppose x ∈ Rn, f : Rn → Rl, and f(x) = y ∈ Rl.

Strictly speaking, in string diagrams x is depicted as the global element morphism

x
1 Rn

where 1 is the Euclidean space with just one point. However, we will allow the following

notation

f
x y

:= x
1

f
Rn Rl

to better distinguish inputs or outputs that are instances of the same object. Moreover, any

operation on a point x ∈ Rn will be assumed to be an operation on its associated vector over

the standard basis.

3.2 Affine Transformations and Training

Among all the transformations from one affine space to another, affine transformations are

at the very heart of neural network architectures (convolutions are equally important, but

we will save their formulation for subsequent work). These transformations, encoded by a

weight matrix W and a bias vector b, carry the trainable parameters with respect to which

an objective function L is minimized. In supervised learning, a dataset usually consists of

pairs of points (x, y) in which y serves as a label or target associated to the point x. In

general, the goal of a machine learning model, such as a neural network, is to take a point x

as an input and to generate a prediction ŷ as an output such that, in average, L(ŷ, y) meets
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an optimizing criterion for all points (x, y) in the dataset. Choosing a convenient vector

representation for x, y, and ŷ, as well as an effective loss function that makes sense for a

given purpose, is of crucial importance to training a model. Such techniques constitute a

vast research area and are not the focus of this work, we refer the reader to [13] for further

details.

There are various methods by which a function can be minimized, but the most used by

far in deep learning are algorithms that are gradient-based. Such algorithms depend on the

gradient of the loss function with respect to the parameters of all affine transformations in-

volved in the architecture, and they update such parameters by some gradient step criterion.

Given the great relevance of affine transformations that harbor trainable parameters of an

architecture, we have decided to dedicate a special kind of shape for the nodes representing

these transformations. Trainable affine transformations will be depicted as colored circle

nodes, with the option of writing in color the sizes of the input and output spaces right

below the incoming and outgoing wires respectively. For example, let : Rn → Rl be the

affine transformation given by

ŷ = xW + b (3.3)

with x, y seen as row vectors (a convection in deep learning). This morphism will be depicted

as the string diagram

x ŷ
n l

. (3.4)

Clearly, the size of the matrix W should be n × l, while b should be a row vector of size
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1× l. Training the architecture (3.4) with l = 1 is known as linear regression (trained on a

suitable dataset where the targets are scalars).

The idea of using colored circles to represent these matrix operations was inspired by

tensor network diagrams [5, 6], although our adoption here differs a little. To our knowledge,

this is not a standard practice in category theory, we just found it visually helpful when

designing architectures.

3.3 Perceptron and Fully Connected Layer

A perceptron architecture is an affine transformation : Rn → R followed by a nonlinear

function f : R→ R, usually referred to as activation function:

f
n 1

. (3.5)

Training this architecture with f being a sigmoid function (a bounded, differentiable, real-

valued function whose domain is all real numbers and its first derivative is non-negative

everywhere) is known as logistic regression. Often, the term sigmoid is reserved for the

specific function

σ(z) =
1

1 + e−z
. (3.6)

We will follow the same convention. When applied to a vector x = [xi], the sigmoid function

acts element-wise: σ(x) = [σ(xi)].

Furthermore, the architecture 3.5 is also what in deep learning is known as a neuron.

Concatenating l different neurons with the same element-wise activation function constitutes
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what it is known as a layer of size l. To simplify the representation of stacked (concatenated)

neurons, we will make use of the following observation.

Observation 3.3.1. Given a pair of transformations : Rn → Rj, : Rn → Rk, and an

element-wise function f , then

x f
n j

x f
n k

= x f
n j + k (3.7)

for some transformation : Rn → Rj+k.

Proof. Let x1×n ∈ Rn, W n×(j+k) = [W n×j W n×k] ∈ Rn×(j+k), b1×(j+k) = [b1×j b1×k] ∈ Rj+k,

and let f be an element-wise function. Then we observe that

[f (x1×nW n×j + b1×j) f (x1×nW n×k + b1×k)] = f ([x1×nW n×j + b1×j x1×nW n×k + b1×k])

= f (x1×n[W n×j W n×k] + [b1×j b1×k])

= f
(
x1×nW n×(j+k) + b1×(j+k)

)
,

which is indeed an affine transformation : Rn → Rj+k followed by f .

Another useful property for re-writing affine transformations to our convenience is the

following.

Observation 3.3.2. Given a pair of transformations : Rn → Rl, : Rk → Rl, there

exists a transformation : Rn+k → Rl such that

x
n l

x′
k l

+ =
x

x′
n+ k l . (3.8)
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Proof. Similar to the proof above, let W (n+k)×l =

[
W n×l
W k×l

]
, b1×(l) = b1×l + b1×l. Then, for

two vectors x1×n ∈ Rn and x′1×k ∈ Rk, we have

(x1×nW n×l + b1×l) +
(
x′1×kW k×l + b1×l

)
=
(
x1×nW n×l + x′1×kW k×l

)
+ (b1×l + b1×l)

=
[
x1×n x′1×k

] [W n×l
W k×l

]
+ (b1×l + b1×l)

=
[
x1×n x′1×k

]
W (n+k)×l + b1×(l) .

By observation 3.3.1, therefore, a layer of l stacked neurons can also be seen as the output

of the transformation

f
n l

. (3.9)

For this reason, the architecture (3.9) is also called a fully connected (FC) layer. Fully

connected layers are found somewhere in almost all neural network architectures, even in

many convolutional networks in which at least one fully connected layer is usually attached

as the last layer. We will dedicate to these types of morphisms their own blackboxed node

FC together with a colored circle mark in the left upper corner corresponding to the affine

transformation they harbor:

x f ŷ = FCx ŷ

.

(3.10)

Drawing a colored circle in the left upper corner of the box, as in the right hand of the
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equation above, is a stylistic choice of the author. To our knowledge, this is not a standard

notation in category theory. The main reasons for this choice are, first, to visually keep

track of what morphisms contain trainable parameters and whether or not they share the

same parameters (shared weights), and secondly, in upcoming diagrams, to also keep track

of how many different affine transformations a morphism contains. Moreover, whenever it is

not of much relevance, we will omit the indices indicating the sizes of the input and output

spaces of a transformation, just as we did in the diagrams above. Such indices are usually

determined by the form of the dataset, or they are a hyperparameter choice of the architect.

In upcoming architectures (when we deal with timesteps), it will come in handy to have

black-boxed node version, denoted as FCs , of several instances of a given FC layer in

parallel as shown in figure 3.1, which can also be written in a compressed way as

FCsx〈0〉 ⊗ · · · ⊗ x〈T 〉 ŷ〈0〉 ⊗ · · · ⊗ ŷ〈T 〉
.

(3.11)

x〈0〉 FC ŷ〈0〉

x〈T 〉 FC ŷ〈T 〉

...
...

... =

x〈0〉 ŷ〈0〉

x〈T 〉 ŷ〈T 〉

...
...FCs

Figure 3.1: Black-boxing T instances of one fully connected layer.
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3.4 Multilayer Perceptron

Consider the architecture of two fully connected layers composed sequentially, say

x f1 f2 ŷ
n k

h
k l

= FCx FC ŷ
h

where h is called hidden layer or hidden state. This architecture is called a multilayer

perceptron, and we will denote it with a node named MLP as in

x FC FC ŷ
h = MLPx ŷ

.

(3.12)

Some people refer to the space to which h belongs as the latent space. The study of the

properties of this space and how it is created during training is an active research area and

it has broad applications such as autoencoders, non-linear dimensionality reduction, word

embeddings, etc. In general, we can regard h in diagram 3.12 as a vector of some space that

summarizes information of x relevant to the prediction ŷ.

In the case of 3.12 above, we say that the MLP has one hidden layer. However, a

multilayer perceptron can consist of more than one hidden layer. This is the case when we

connect sequentially three or more fully connected layers, as in

x FC FC . . . FC ŷ = x MLP ŷ
. . .

.

(3.13)
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Here, each colored circle represents a different trainable affine transformation, which are

represented in the node in the right as well. We refer to the number of hidden layers as the

depth of the network (which equals the number of fully connected layers minus 1). The use

of deeper networks is what inspired the name deep learning.

A fundamental and well-known result in machine learning is the fact that there exists an

integer k and two non-polynomial locally bounded piece-wise continuous functions f1, f2 such

that the morphism 3.12 can approximate any function Rn → Rl to any degree of accuracy.

This is known as the universal approximation property [18, 19]. The fact that multilayer

perceptrons are universal aproximators is what makes neural networks so powerful, and

with the advance of computing power and data collection, they have risen over many other

machine learning techniques in the last decade. The fact that they satisfy the universal

approximation theorem does not directly imply that the choice of k, f1, and f2 is known for

a given desired accuracy, however, many advances have been made in this direction [9, 20, 21].

3.5 Recurrent Neural Network

The idea of building a recurrent neural network (RNN) was motivated by the desire of

modeling sequence problems while taking advantage of the power an MLP. Let us consider

a particular problem as a case study. Suppose we have sequences of points of the form

x〈0〉, x〈1〉, . . . , x〈T 〉, and that for any timestep 0 < t ≤ T , we would like to model the condi-

tional probability P (x〈t〉|x〈t−1〉, x〈t−2〉, . . . , x〈0〉). One thing we could do is to train an MLP

that maps x〈t−1〉 to a prediction x̂〈t〉 (that will be compared to the target x〈t〉), say
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FCx〈t−1〉 FC x̂〈t〉
h〈t〉

.

However, with this construction we can only model P (x〈t〉|x〈t−1〉). The next best thing

we could do is to concatenate all previous vector points x〈t−1〉 t x〈t−2〉 t · · · t x〈0〉, pass

it to the network, and have a prediction x̂〈t〉. However, we observe that as t progresses,

the conditioning becomes larger and larger, so the input size of the network would not be

consistent, so we could not use the exact same transformations for every timestep. An elegant

solution to this dilemma is to make use of the hidden state h〈t〉 by concatenating it to the

next timestep.

An RNN unit is a morphism of the form

h〈t−1〉

x〈t〉
tanh

h〈t〉

h〈t〉

which takes as input the concatenation of h〈t−1〉 and x〈t〉, and outputs two copies of h〈t〉.

The hyperbolic tangent is the standard activation function in these networks, but any other

activation function can be used. We will denote these type of units by a node RNN ,

h〈t−1〉

x〈t〉
tanh

h〈t〉

h〈t〉
=

h〈t−1〉

x〈t〉

h〈t〉

h〈t〉
RNN

.

In our sequence prediction example, one copy of h〈t〉 can be passed to a FC layer to generate
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a prediction, and the other copy is passed to the RNN unit of the next timestep creating the

feedback diagram shown in figure 3.2. With this modification, now h〈t〉 (ideally) contains a

summarized information of x〈t〉 as well as all previous points x〈t−1〉, x〈t−2〉, . . . , x〈0〉), and, in

principle, our conditioning problem is solved.

The diagram in figure 3.2 is what is known as a (forward) recurrent neural network.

We can black-box the entire diagram as one single node named RNNs as in figure 3.3,

which can be written also in a compressed way as

hini

x〈0〉 ⊗ x〈1〉 ⊗ · · · ⊗ x〈T 〉

h〈0〉 ⊗ h〈1〉 ⊗ · · · ⊗ h〈T 〉

h〈T 〉
RNNs

.

(3.14)

Here, hini is called the initial hidden state, and it is mainly used to condition the whole

hini

x〈0〉
h〈0〉RNN

x〈1〉
h〈1〉RNN

...... ...

x〈T 〉
h〈T 〉

h〈T 〉
RNN

Figure 3.2: T recurrent units connected forming an RNN.
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hini

x〈0〉
h〈0〉RNN

x〈1〉
h〈1〉RNN

...... ...

x〈T 〉
h〈T 〉

h〈T 〉
RNN

=

hini

x〈0〉 h〈0〉

x〈1〉 h〈1〉

... ...

x〈T 〉 h〈T 〉

h〈T 〉

RNNs

Figure 3.3: Black-boxing a recurrent neural network into a single
node.

recurrent network to some previous information. For example, it could be the last hidden

state h〈T̃ 〉 encoded by another network, or it could also be just a vector of zeros if such

conditioning is not needed.

Now, let us modify our case study and suppose that instead we would like to model

P (x〈t〉|x〈t+1〉, x〈t+2〉, . . . , x〈T 〉) for 0 ≤ t < T . Following the same reasoning above, we can

emulate a similar formulation by creating a backward RNN unit, which we will denote as

a node RN
←
N , given by

x〈t〉

h〈t+1〉
←

tanh
h〈t〉←

h〈t〉←

=
x〈t〉

h〈t+1〉
←

h〈t〉←

h〈t〉←
RN

←
N
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which takes as inputs the point x〈t〉 and the hidden state of the following time-step denoted

by h〈t+1〉
← . Using this new cell we can construct a backward recurrent neural network

defined by the diagram architecture shown in figure 3.4. We will denote a backward RNN

by a single node RN
←
Ns as in

x〈0〉 ⊗ x〈1〉 ⊗ · · · ⊗ x〈T 〉

hini←

h〈0〉←

h〈0〉← ⊗ h〈1〉← ⊗ · · · ⊗ h〈T 〉←
RN

←
Ns

(3.15)

that instead of modeling the conditional dependence of previous points, it models the condi-

tional dependence of following points. We could achieve the same morphism by just reversing

the order of the original sequence and pass it to a (forward) recurrent network, however, the

main usefulness of a backward RNN is that with it we can construct a bidirectional re-

current neural network by combining 3.14 and 3.15 as in the diagram

h〈0〉←

h〈0〉←
x〈0〉

RN
←
N

h〈1〉←
x〈1〉

RN
←
N

... ......

h〈T 〉←
x〈T 〉

hini RN
←
N

Figure 3.4: Diagram of a backward RNN.
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hini

x〈0〉 ⊗ x〈1〉 ⊗ · · · ⊗ x〈T 〉

h〈0〉 ⊗ h〈1〉 ⊗ · · · ⊗ h〈T 〉

h〈T 〉
RNNs

hini←

h〈0〉←

h〈0〉← ⊗ h〈1〉← ⊗ · · · ⊗ h〈T 〉←
RN

←
Ns

.

Before black-boxing the diagram above, let us rearrange the outgoing wires in a way that will

be more aligned with how deep-learning frameworks organize the ouputs of a bidirectional

RNN. Besides braiding the wires however we want, we will concatenate each h〈i〉 and h〈i〉←

for i = 0 . . . T . Let h〈i〉↔ = h〈i〉 t h〈i〉← , then, it is possible to rearrange the outgoing wires and

black-box the diagram above into a single node denoted by RN
↔
Ns as in the diagram below

hini

x〈0〉 ⊗ x〈1〉 ⊗ · · · ⊗ x〈T 〉

hini←

h〈0〉←

h〈0〉↔ ⊗ h〈1〉↔ ⊗ · · · ⊗ h〈T 〉↔

h〈T 〉

RN
↔
Ns

.

In the above architecture, a hidden state h〈t〉↔ encodes information about x〈t〉, previous

points in the order x〈0〉, . . . , x〈t−1〉, and following points in the order x〈t+1〉, . . . , x〈T 〉.

3.6 Long Short-Term Memory Neural Network

In spite of the usefulness of RNNs, they are considered to be hard to train when T is large,

due to vanishing gradients [2]. One improvement to RNNs are the so-called long short-term

memory (LSTM) neural networks, whose recurrent unit involves a more sophisticated com-
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c〈t−1〉

h〈t−1〉

x〈t〉

σ

tanh

σ

σ

Γf

c̃

Γu

Γo

•

•

+
c

tanh
•
h

h〈t〉

c〈t〉

h〈t〉

Figure 3.5: Internal diagram of an LSTM unit.

position of morphisms which is more robust to vanishing gradients, and, as a consequence,

more efficient handling long time dependencies [14]. An LSTM unit is given by the diagram

shown in figure 3.5, where c is referred to as the memory cell, Γf , Γu, and Γo are the forget,

update, and output gate respectively, and c̃ is sometimes called the candidate cell. For more

details on the conception of such unit, see [14].

From a black-boxed perspective, LSTM units connect to each other in the same way

RNNs do. Let us denote the LSTM unit above by a single node LSTM as follows

c〈t−1〉 ⊗ h〈t−1〉

x〈t〉

h〈t〉

c〈t〉 ⊗ h〈t〉
LSTM

.

Then, in analogy with a (forward) RNN in figure 3.2, we construct a (forward) long short-

term memory neural network which has the form shown in figure 3.6, for some sequence
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cini ⊗ hini
x〈0〉

h〈0〉
LSTM

x〈1〉
h〈1〉

LSTM

...... ...

x〈T 〉
h〈T 〉

c〈T 〉 ⊗ h〈T 〉LSTM

Figure 3.6: Recurrent connections of an LSTM.

x〈0〉, x〈1〉, . . . , x〈T 〉. If we compare figure 3.6 to figure 3.2, we observe that inputs, outputs, and

feedback connections are completely analogous in both diagrams, with the only difference

that an LSTM requires an initial memory cell state c〈ini〉, and outputs an extra string c〈T 〉.

Furthermore, we can black-box the diagram in figure 3.6 and represent it by the single node

cini ⊗ hini

x〈0〉 ⊗ · · · ⊗ x〈T 〉

h〈0〉 ⊗ · · · ⊗ h〈T 〉

c〈T 〉 ⊗ h〈T 〉
LSTMs

.

(3.16)

Similarly, with the same composition of morphisms of a LSTM unit (up to rearrangement

of the input and output wires), we can conceive a backward LSTM unit as a node



37

x〈t〉

c〈t+1〉
← ⊗ h〈t+1〉

←

c〈t〉← ⊗ h〈t〉←

h〈t〉←
LST

←
M

that allows us to construct, in analogy to (3.15), a backward LSTM as the morphism

x〈0〉 ⊗ · · · ⊗ x〈T 〉

cini← ⊗ hini←

c〈0〉← ⊗ h〈0〉←

h〈0〉← ⊗ · · · ⊗ h〈T 〉←
LST

←
Ms

.

(3.17)

With (3.16) and (3.17) we can construct a bidirectional LSTM as follows

cini ⊗ hini

x〈0〉 ⊗ · · · ⊗ x〈T 〉

h〈0〉 ⊗ · · · ⊗ h〈T 〉

c〈T 〉 ⊗ h〈T 〉
LSTMs

cini← ⊗ hini←

c〈0〉← ⊗ h〈0〉←

h〈0〉← ⊗ · · · ⊗ h〈T 〉←
LST

←
Ms

.

By letting h〈i〉↔ = h〈i〉th〈i〉← for i = 0, . . . , T , and rearranging the outgoing wires accordingly,

we are able to denote a bidirectional LSTM by the single node

cini ⊗ hini

x〈0〉 ⊗ · · · ⊗ x〈T 〉

cini← ⊗ hini←

c〈0〉← ⊗ h〈0〉←

h〈0〉↔ ⊗ · · · ⊗ h〈T 〉↔

c〈T 〉 ⊗ h〈T 〉
LST

↔
Ms

.

(3.18)
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3.7 Array Programming

We conclude this chapter with a discussion on an alternative interpretation of what a wire

could also represent in our diagrams.

Given a batch of m training examples (x(i), y(i)), where x(i) and x(i) are row vectors, it

is a common technique in machine learning to stack x(i) as rows of a matrix X, and the

targets y(i) as rows of a matrix Y . Feeding these matrices to a given neural network and

a loss function, as opposed to feeding each (x(i), y(i)) one by one using a for-loop, favors

computational efficiency due to the fact matrix multiplications are done faster than for-

loops in most programming languages that support vector arrays. This technique is known

in machine learning as vectorization or array programming.

The reader can verify that all the diagrams and transformations we have constructed so

far can also be regarded as diagrams whose wires are matrices of the form described above.

To build such a perspective, we just need to make a few minor adjustments. Firstly, we need

to agree that concatenating two matrices is done by rows. Secondly, any activation function

that depends on more than one entry of a vector (e.g. Softmax) should be applied row by

row. Lastly, in an affine transformation encoded by a matrix W n×l and a vector b1×l, such

as the one described by equation 3.3, we need to broadcast the vector b into having a size

m× l. This simply means taking m copies of b and stack them as rows. Then, the vectorized

version of equation 3.3 would look like

Ŷm×l = Xm×nW n×l +Bm×l , (3.19)
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where B is b broadcasted. Besides making a formal adjustment on what the new objects of

the category are, the adjustments above are all we need in order to read the diagrams in the

context of array programming.

However, we consider that array programming relates more to the subject of compu-

tational efficiency than to the algebra of morphisms of neural networks, therefore we have

preferred to treat our wires as just vectors, since our main goal is to describe the composi-

tional nature of these morphisms.
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CHAPTER 4

MODELING SEQUENCES SUBJECT TO A TIME-STRUCTURED
CONTEXT

In this chapter we present a dynamic neural network architecture for modeling sequences

that have a conditioning context with a certain temporal structure, and the sequence points

are not necessarily equally spaced in time. To illustrate the nature of this problem, let us

imagine a hypothetical system that produces a sequence of signals in which each signal,

besides having some other attributes, has a certain duration in time. Let us say that, every

time a signal ends, the system has to decide what signal to produce next and how long it

should last. At the same time, there exists a surrounding sequence of events (a context with

temporal structure) that the system has to also take into account before deciding what signal

to produce next. Each event has a duration in time, and the order in which these events

happen is relevant to the system’s decision. Ideally, when making a decision in a given point

of time, the system should take into consideration not only what previous signals it has

produced, but also the past, present, and future (if available) events and their order. Let us

formulate the problem more precisely.

4.1 Formulation of the Problem

Consider a sequence E = (e〈0〉, . . . , e〈T 〉) of T + 1 events, and a sequence S = (s〈0〉, . . . , s〈T
′ 〉)

of T
′
+ 1 signals. Let l〈k〉 denote the duration in time of the signal s〈k〉. We assume that

the event durations are dicretized and not drawn from a continuous set (the architecture

presented in this chapter can be adapted for the continuous case as well, but we will reserve
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that exposition for future reports). Without loss of generality, let us assume that the duration

of each event is 1 time unit. To achieve this, first we would make a time transformation

such that every event duration is an integer. Then, if an event has a duration of m > 1 time

units, we will split that event into m succeeding identical events of 1 time unit each. The

duration l〈k〉 of a signal should be adjusted to the time transformation above. We believe

this transformation leads to an easier implementation.

Under these assumptions, a training example is a tuple (E, S) with E = (e〈0〉, . . . , e〈T 〉)

and S = (s〈0〉, . . . , s〈T
′ 〉), where each event e〈k〉 has a duration of 1 time unit, and a signal

s〈k〉 has a duration of l〈k〉 time units. For implementation purposes, we will fix T in every

training example (so all sequences have the same duration in time), and we will allow T
′

to

be variable (the dual approach of fixing T
′

and allowing T to be variable is also possible).

Thus, a dataset for us is a set X = {(E(i), S(i)) | i = 0, . . . ,m− 1} of m training examples,

where E(i) = (e〈0〉(i), . . . , e〈T 〉(i)) is a sequence of T + 1 events, and S(i) = (s〈0〉(i), . . . , s〈T
′
i 〉(i))

is a sequence of T
′
i + 1 signals, where, in principle, we can have T

′
i 6= T

′
j for i 6= j. We should

note that the sequences E(i) and S(i) must have the same total duration in time, that is,

T + 1 =

T
′
i∑

k=0

l〈k〉

for all i = 0, . . . ,m− 1. To simplify our presentation, whenever we refer to a single training

example we shall drop the example index everywhere and replace T
′
i with just T

′
.

To have a visual idea of how a tuple (E, S) of sequences are intertwined in time, let us

consider two short and simple examples with T = 3 (so all sequences have a duration of 4

time units). Events and signals will have just two attributes: a letter and a duration in time
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(upper case letters for events, lower case letters for signals).

• Example 1: Let E = (A,A,C,B), and let S = (b, a, c), with l〈0〉 = 2, l〈1〉 = 1/2, and

l〈2〉 = 3/2, as shown in figure 4.1.

Time
0 1 2 3 4

A A C B

b a c

Figure 4.1: Example 1 of time-structure relation between E and S.

• Example 2: Let E = (B,B,C,C), and let S = (d, e, c, c, a, b), with l〈0〉 = 1/2, l〈1〉 = 1/2,

and l〈2〉 = 1, l〈2〉 = 1/2, l〈4〉 = 1/2, and l〈5〉 = 1, as shown in figure 4.2.

Time
0 1 2 3 4

B B C C

d e c c a b

Figure 4.2: Example 2 of time-structure relation between E and S.

Naturally, events and signals can have more than two attributes, but the time attribute is

the most important one for our formulation, since it is the one responsible for a relative time
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relation and conditional dependence between the sequences. This is the motivation behind

building an architecture whose connections vary from one training example to the other,

which we will present in a subsequent section.

4.2 Relative Event Conditional Dependence

Coming back to the hypothetical system we imagined at the beginning of this chapter, if it

was that system the one that produced the sequence of signals in figure 4.1, the information

used in its decision process would be as follows. Let t denote time, and the event e〈k〉 is

considered to be occurring in the time interval [k, k + 1).

– At t = 0: {previous decisions=None, past events=None, current event=A, future

events=(A,C,B) } ⇒ Decision: s〈0〉 = b with l〈0〉 = 2.

– At t = 2: {previous decisions= (s〈0〉 = b with l〈0〉 = 2), past events=(A,A), current

event=C, future events=B } ⇒ Decision: s〈1〉 = a with l〈1〉 = 1/2.

– At t = 5/2: {previous decisions= (s〈0〉 = b with l〈0〉 = 2, s〈1〉 = a with l〈1〉 = 1/2),

past events=(A,A), current event=C, future events=B } ⇒ Decision: s〈2〉 = c with

l〈2〉 = 3/2.

Observe that each time t at which a decision is made, t equals the sum of the time

durations of all previous signals generated up to that point. Moreover, at each decision, the

sequences of past and future events, as well as the current event, are potentially different.

This is what we refer to by relative event conditional dependence. Let us present a more

formal definition, but first, we will need an integer that locates the index current event.
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Definition 4.2.1. Consider a sequence S = (s〈0〉, . . . , s〈T
′ 〉) of points s〈k〉 called signals, each

with an associated duration in time l〈k〉. Let

lk =

⌊
k∑
j=0

l〈j〉

⌋
, 0 ≤ k ≤ T

′
(4.1)

be known as the dynamic index after k time-steps. For convenience, we define l−1 = 0.

The dynamic index at a time-step k equals the integer part of the total time duration

of all the signals (s〈0〉, . . . , s〈k〉). This index allows to express the relative event conditional

dependence at each time-step as follows.

Definition 4.2.2. Given a tuple (E, S) with S as described above, and E = (e〈0〉, . . . , e〈T 〉)

a sequence of points e〈k〉 called events each with an associated duration of 1 time unit. By

relative event conditional dependence of a signal s〈k+1〉 of S with respect to E, we refer

to the conditional dependence of s〈k+1〉 to the set consisting of

– the current event e〈lk〉;

– the sequence of all past events (e〈0〉, . . . , e〈lk−1〉);

– the sequence of all future events (e〈lk+1〉, . . . , e〈T 〉),

where lk is the dynamic index.

The main goal of this chapter is to model sequences of signals of a dataset subject to

a relative event conditional dependence, with the purpose of predicting or generating new

sequences of signals given a particular sequence of events in a way that is aligned with the

distribution of the dataset.
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4.3 Proposed Architecture

Consider a dataset X = {(E(i), S(i)) | i = 0, . . . ,m − 1} as described above, in which each

point of S(i) has a relative event conditional dependence to E(i). We introduce an architecture

consisting of two LSTM neural networks dynamically connected (i.e. the associated string

diagram between LSTMs changes from one training example to the other), followed by

a fully connected layer at each time-step. The dynamic connection between the LSTMs

consists of a concatenation mechanism that aims to account for the relative event conditional

dependence in each training example, as it depends directly on the sequence of dynamic

indices (l0, . . . lTi−1) of each training example.

During training, the architecture can be drawn as the diagram

+

+

LST
↔
Ms

Dynamic

Concatenation

+

LSTMs FCs

.

(4.2)

We make the distinction ”during training” because during prediction or generation (once the

weights are trained), the concatenation mechanism cannot be executed completely before the

LSTMs node since it will depend on the time duration of every signal generated. This is

possible during training because we know all time durations before hand, as we explain

below.

Let us consider a single training example (E, S). The four nodes of the architecture

displayed above are as follows.
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1. A bidirectional LSTM network (see diagram 3.18) takes a sequence e〈0〉 ⊗ · · · ⊗ e〈T 〉

with zero-vectors as initial hidden states, and returns the (bidirectional) hidden states

h
〈0〉
e ⊗ · · · ⊗ h〈T 〉e and extra copies of the first and last hidden state that we will discard:

+

+

e〈0〉 ⊗ · · · ⊗ e〈T 〉 h
〈0〉
e ⊗ · · · ⊗ h〈T 〉e

LST
↔
Ms

.

Ideally, the network will force each hidden state h
〈j〉
e to encode relevant information about

event e〈j〉, the sequence of previous events (e〈0〉, . . . , e〈j−1〉), and the sequence of following

events (e〈j+1〉, . . . , e〈T 〉).

2. A concatenation mechanism takes a sequence s〈0〉⊗· · ·⊗s〈T
′−1〉 and the hidden states

h
〈0〉
e ⊗ · · · ⊗ h

〈T 〉
e , and concatenates to each signal s〈k〉 the hidden state h

〈lk〉
e for 0 ≤

k ≤ T
′ − 1, where lk is the dynamic index (see definition 4.2.1). It also generates the

concatenation of a vector of zeros of the same size as s〈k〉 with the state h
〈0〉
e :

Dynamic

Concatenation

s〈0〉 ⊗ · · · ⊗ s〈T
′−1〉

h
〈0〉
e ⊗ · · · ⊗ h〈T 〉e

(0 t h〈0〉e )⊗ (s〈0〉 t h〈l0〉e )⊗ · · · ⊗ (s〈T
′−1〉 t h

〈l
T
′−1
〉

e )

.

3. A forward LSTM network (see diagram 3.16) takes the output of the concatenation

mechanism and returns hidden states h
〈0〉
s ⊗ · · · ⊗ h〈T

′ 〉
s . It takes as initial hidden state a
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zero-vector, and we discard the extra copy of the last hidden state:

+

(0 t h〈0〉s )⊗ (s〈0〉 t h〈l0〉s )⊗ · · · ⊗ (s〈T
′−1〉 t h

〈l
T
′−1
〉

s )

h
〈0〉
s ⊗ · · · ⊗ h〈T

′ 〉
s

LSTMs

Ideally, each hidden state h
〈k〉
s will encode relevant information about the sequence of

previous signals s〈0〉, . . . , s〈k−1〉, and, through h
〈lk−1〉
e , information about the proper relative

event conditioning.

4. A fully connected layer (see diagram 3.1) takes every hidden state h
〈k〉
s and returns a

signal prediction ŝ〈k〉:

FCs
h
〈0〉
s ⊗ · · · ⊗ h〈T

′ 〉
s ŝ〈0〉 ⊗ · · · ⊗ ŝ〈T

′ 〉

.

Finally, to train the weights of the network, we minimize a loss function that compares the

prediction (ŝ〈0〉, . . . , ŝ〈T
′ 〉) to the ground truth (s〈0〉, . . . , s〈T

′ 〉) for each training example, a

standard method in statistical learning.

Let us illustrate how the concatenation mechanism looks like by examining two examples

analogous to the examples in section 4.1. Again, let T = 3. Our goal is to illustrate

what hidden states h
〈k〉
e are passed to the second LSTM network in order to account for

the relative event conditional dependence. Recall that we are considering the architecture

during training.
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• Example 1: l〈0〉 = 2, l〈1〉 = 1/2, l〈2〉 = 3/2 (see figure 4.3). Observe that at t = 0 there are

no previous signals, hence the zero-vector concatenated to h
〈0〉
e in order to generate a first

signal prediction ŝ〈0〉. The dynamic indices are l0 = bl〈0〉c = 2, l1 = bl〈0〉 + l〈1〉c = 2, so

h
〈l0〉
e = h

〈2〉
e , h

〈l1〉
e = h

〈2〉
e .

Time

0

1

2

3

+

e〈0〉
h
〈0〉
e

e〈1〉
h
〈1〉
e

e〈2〉
h
〈2〉
e

e〈3〉

+

h
〈3〉
e

LST
↔
Ms

+

FC ŝ〈0〉
+

FC ŝ〈1〉

s〈0〉

FC ŝ〈2〉

s〈1〉

LSTMs

Figure 4.3: Dynamic concatenation example 1.

• Example 2: l〈0〉 = 1/2, l〈1〉 = 1/2, l〈2〉 = 1, l〈2〉 = 1/2, l〈4〉 = 1/2, l〈5〉 = 1 (see figure 4.4).

The dynamic indices are l0 = b1/2c = 0, l1 = b1/2 + 1/2c = 1, l2 = b1/2 + 1/2 + 1c = 2,

l3 = b1/2 + 1/2 + 1 + 1/2c = 2, l4 = b1/2 + 1/2 + 1 + 1/2 + 1/2c = 3. Thus, h
〈l0〉
e = h

〈0〉
e ,
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h
〈l1〉
e = h

〈1〉
e , h

〈l2〉
e = h

〈2〉
e , h

〈l3〉
e = h

〈2〉
e , h

〈l4〉
e = h

〈3〉
e .

Time

0

1

2

3

+

e〈0〉
h
〈0〉
e

e〈1〉
h
〈1〉
e

e〈2〉
h
〈2〉
e

e〈3〉
h
〈3〉
e

LST
↔
Ms

+

FC ŝ〈0〉
+

FC ŝ〈1〉

s〈0〉

FC ŝ〈2〉

s〈1〉

FC ŝ〈3〉

s〈2〉

FC ŝ〈4〉

s〈3〉

FC ŝ〈5〉

s〈4〉

LSTMs

Figure 4.4: Dynamic concatenation example 2.

During prediction/generation, once the model is trained, the predictions ŝ〈k〉 should re-

place s〈k〉 as the inputs of the second LSTM, and each duration l〈k〉 should be now the time

duration of the prediction ŝ〈k〉. This is the reason why, during prediction/generation, the

concatenation node cannot be written completely before the second LSTM, since we need

to “wait” for the next predicted signal to know its duration in time, in order to concatenate

the adequate hidden state h
〈lk〉
e in the next time-step.
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Summarizing, the architecture is designed to account for the following dependence. A

prediction ŝ〈k〉 is obtained from the hidden state h
〈k+1〉
s . In turn, the hidden state h

〈k+1〉
s is

obtained from h
〈k〉
s , s〈k〉, and h

〈lk〉
e .

– h
〈k〉
s and s〈k〉 account for the sequence of previous signals (s〈0〉, . . . , s〈k〉). (The state

h
〈k〉
s also encodes some information about previous events, something that can be used

to implement a variation of the architecture, as explained in the next section.)

– h
〈lk〉
e accounts for the relative event conditional dependence.

This is the motivation behind having designed the presented architecture, in order to model

the sequence problem described at the beginning of the chapter.

4.4 Variations

In this section we explore some possible small variations of the proposed architecture above

that can also model our sequence problem.

4.4.1 A Backward LSTM instead of Bidirectional

As we mentioned in the previous section, if we observe the connectivity of the architecture, a

hidden state h
〈k〉
s also encodes information about the event structure due to the concatenation

of the states h
〈l0〉
e , . . . , h

〈lk−1〉
e in the previous time-steps, at least in a less direct way. We could

take advantage of this fact and replace the bidirectional LSTM encoding the event structure

by a backward LSTM (see diagram 3.17), modifying the architecture as
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+

+

LST
←
Ms

Dynamic

Concatenation

+

LSTMs FCs

.

Here, a hidden state h
〈lk〉
e encodes information only about the current event e〈lk〉 and following

events, but the concatenation mechanisms and structure of the second LSTM makes a hidden

state h
〈k〉
s encode information about past events as well.

In addition to the implementation of the original proposed architecture trained on jazz

solos, a version of the variation presented above was implemented as well, yielding equally

promising results.

4.4.2 Concatenation after both LSTMs

Another possibility is to first have both LSTMs and then concatenate their hidden states to

be passed to the fully connected layer, as given by the diagram

+

LSTMs

+

+

LST
↔
Ms

Dynamic

Concatenation
FCs

.
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Here, the (forward) LSTM encodes only the sequential information of S without any condi-

tioning, while the bidirectional LSTM encodes E. Then, the hidden state h
〈k〉
s is concatenated

with h
〈lk〉
e to properly condition the production of the prediction ŝ〈k+1〉.

This variation has not been implemented by the author, but we suspect that similar

results could be achieved.

4.4.3 Online Prediction

An online prediction (in real time) could be trained if we relax the conditioning to be only

current and previous events. This scenario could be possible whenever we would like to

predict signals in real time as new events occur. We can tackle this variation of the problem

by replacing the bidirectional LSTM by a (forward) LSTM, as in

+

+

LST
→
Ms

Dynamic

Concatenation

+

LSTMs FCs

.

During prediction/generation, the event LSTM could process events as they come, and again,

the concatenation would have to be executed one at a time. This variation is convenient

when future events are unknown.

4.5 Trainability

Some of the methods most commonly used to train the weights of a neural network are

gradient-based optimization algorithms. In general, a loss function comparing a prediction
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against the ground truth (and usually some additional penalties such as regularization)

is minimized with respect to all trainable weights by using some version of a gradient-

descent step minimizer. For this, we first need to be able to calculate the gradient of

the loss function with respect to the trainable weights by means of the chain rule (a.k.a.

back-propagation). The diagram of our architecture changes from example to example due

to the dynamic concatenation mechanism which depends on the set of signal durations

{l〈k〉(i)s | k = 0, . . . , Ti} of each example i. This implies that the loss function, and hence, its

derivatives with respect to the weights, will have a different explicit form for each example,

making every gradient step different in form. However, the set of trainable weights does

not change from example to example (shared weights), so, in principle, we should be able to

update the same set of weighs for all examples with some degree of consistency. Nevertheless,

it is not always clear if the value of a loss function associated to such a dynamic architecture

can actually be decreased consistently achieving a sufficiently small value. For this reason,

in the next chapter we present a prototype of this architecture on jazz music data as an

experiment and as proof of concept. Early results show that a loss function can indeed be

decreased consistently and smoothly, with promising musical results.

4.6 Vectorizing the Concatenation Mechanism

When training our network, executing the dynamic concatenation mechanism for each ex-

ample and back-propagating through it can be very costly computationally, specially if it is

implemented using for-loops. For this reason, it would be desirable to vectorize (see section
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3.7) this mechanism and perform it by means of matrix multiplications. Fortunately, during

training, we have all the durations of the signals in each training example, so we know before

hand the indices of the hidden states that should be concatenated to the signals. Then, in

practice, we can vectorize the concatenation mechanism for each example as follows.

As we saw in section 4.3, the concatenation mechanism takes s〈0〉 ⊗ · · · ⊗ s〈T
′−1〉 and

h
〈0〉
e ⊗· · ·⊗h〈T 〉e and yields the concatenations (0th〈0〉s )⊗(s〈0〉th〈l0〉s )⊗· · ·⊗(s〈T

′−1〉th〈lT ′−1〉
s ).

Let the the hidden states and the signals be arranged as rows of the matrices He and Sin,

respectively, and let the first row of Sin be all zeros, that is,

He =

− h
〈0〉
e −
...

−h〈T 〉e −

 , Sin =


0

− s〈0〉 −
...

− s〈T ′−1〉−

 .

Recall that T
′

can be different for each training example, so the number of rows of Sin will

be variable, while the number of rows of He is fixed for all examples. Our goal is to output

the matrix 
− 0 t h〈0〉s −
− s〈0〉 t h〈l0〉e −

...

− s〈T
′−1〉 t h〈lT ′−1〉

e −

 ,

which can also be written as the matrix
− 0 t h〈0〉e −
− s〈0〉 t h〈l0〉e −

...

− s〈T
′−1〉 t h〈lT ′−1〉

e −

 =


0 − h

〈0〉
e −

− s〈0〉 − − h
〈l0〉
e −

...

− s〈T ′−1〉− −h〈lT ′−1〉
e −

 =
[
Sin Hl

]
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where

Hl =


− h

〈0〉
e −

− h
〈l0〉
e −
...

−h〈lT ′−1〉
e −

 .

One way of getting this output via matrix multiplications is to construct a matrix LS for

each training example such that LSHe = Hl , and then concatenate LSHe to Sin. We could

have all matrices LS constructed and stored before training begins, and use them as the

dynamic concatenation mechanism after each pass through the bidirectional LSTM (the one

that outputs He). The matrices LS that we need are the following.

Definition 4.6.1. Let {l0, l1, . . . , lT ′} be the set of dynamic indices of a sequence S of signals

subject to a sequence E of T + 1 events. The placing matrix LS associated to S is the

matrix given by

(LS)ij =



1 if i = j = 0;

1 if j = li−1, i ≥ 1;

0 otherwise;

where 0 ≤ i ≤ T ′, 0 ≤ j ≤ lT ′−1.

Claim: LSHe = Hl if LS is the placing matrix.

Proof: Observe that LS is a (0, 1)-matrix in which each row has exactly one 1, therefore,

multiplication from the left by LS selects out the j-th row of He. The first row (i = 0) of

LS has its 1 in the first position, so the first row h
〈0〉
e of He will always be selected to be the

first row of Hl. For i ≥ 1, LS will select out the (li−1)-th row of He, as desired. �
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Let us construct the placing matrix for the second example in section 4.3, where we have

the dynamic indices l0 = 0, l1 = 1, l2 = 2, l3 = 2, l4 = 3. Thus, the placing matrix is given

LS =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 .

Then, we have that

LSHe =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1



h
〈0〉
e

h
〈1〉
e

h
〈2〉
e

h
〈3〉
e

 =



h
〈0〉
e

h
〈0〉
e

h
〈1〉
e

h
〈2〉
e

h
〈2〉
e

h
〈3〉
e


,

which indeed corresponds to the concatenation connections in figure 4.4.

Each placing matrix depends on the set of time durations of a sequence of signals, and

since during training we know the time durations of the sequences in the dataset, we are

able to construct these matrices before we start training. We found that implementing

the concatenation mechanism as a for-loop or as if-statements slowed down the training

considerably. By using the approach of placing matrices, we were able to decrease the

training time by roughly 86% in the implementation presented in the next chapter.
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CHAPTER 5

A GENERATIVE MODEL OF JAZZ SOLO IMPROVISATIONS

5.1 Introduction

The goal of this chapter is to present a prototype example of a potential use that the

architecture proposed in section 4 could have. Here, we present an implementation trained

over a corpus of jazz solo transcriptions. The full Python/PyTorch code is included in the

appendix of this manuscript.

The corpus consists of 48 Charlie Parker solo transcriptions. The transcriptions are in

the form of lead sheets: they contain the solo notes and the chord symbols of the harmonic

progression. Figure 5.1 shows the first seven measures of a solo transcription in lead sheet

format.

Figure 5.1: Lead sheet of a solo transcription.

These type of transcriptions are usually created by a human who, by listening to a

recording of Parker playing together with other musicians, annotates the notes played by

Parker during his solo. The transcriber also deduces the chord progression by listening to the
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harmony played by one or some of the instruments, and/or it might be a musical piece with a

well known chord progression that the transcriber already knows or to which she has access.

Sometimes, because of several reasons such as poor recording, instruments overlapping too

much, etc., there cannot be a 100% confidence about the accuracy of the transcribed notes

as compared to the actual notes played. However, such ambiguities are usually very few

and/or not too significant.

Moreover, when a jazz band plays a piece, it is understood that the chord progression

is a shared mental scheme that the musicians will navigate together through time, whether

because the chord progression was explicitly stated, or because they share a strong common

background and tradition that allows them to do so. This mental scheme serves as a central

harmonic structure that the musicians deviate from and gravitate towards in their impro-

visations. The annotation of the chord symbols in a solo transcription intends to serve as

a representation of such a mental structure. This structure admits an infinite number of

possible interpretations in the sound space, as long as they fall close enough to the accepted

practices of the style.

Hence, it is worth having in mind that a solo transcription is not an embodiment of

a solo interpretation in the sound space, but a symbolic description of such an interpreta-

tion, projected from a sound space onto a symbolic space of mental schemes. Here, our

implementation is trained on and generates music in the symbolic musical space.
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5.2 Information about the Corpus

As mentioned above, the corpus consists of 48 Charlie Parker solo transcriptions. There is

a total of 2479 measures of music (not counting measures with only rests). The shortest

uninterrupted solo improvisation is 4 measures long (probably from trading 4’s with other

musician), while the longest is 131 measures long. The lowest pitch found in the corpus is

34 (given as a midi pitch number), while the highest is 80, although pitches 35 and 36 are

not present. There is a total of 41 distinct time durations; in ascending order and given as

a fraction of a beat, the set of time durations types is {1/12, 1/8, 1/6, 1/5, 1/4, 1/3, 3/8,

5/12, 1/2, 7/12, 5/8, 2/3, 17/24, 3/4, 5/6, 7/8, 11/12, 1, 7/6, 6/5, 5/4, 4/3, 11/8, 3/2,

19/12, 5/3, 7/4, 11/6, 15/8, 3/2, 19/12, 5/3, 7/4, 11/6, 15/8, 2, 7/3, 5/2, 8/3, 17/6, 3, 27/8,

7/2, 4, 9/2, 5, 11/2}.

5.3 Conditioning Context of a Solo Improvisation

When improvising, there are several factors that might influence a musician’s solo, such as

the melody of the piece, other musicians’ executions and ideas, real-time interactions with

other musicians, etc. One factor that is of great importance is the chord progression. In

tonal jazz styles, the chord progression influences a musician’s note choices in the sense that

her melodic line, contrasted with the chord harmonies, produces a harmonic color that she

intended to produce. With this in mind, a chord progression can be seen as a sequence of

events that condition a sequence of signals (the notes and rests). The time duration of every

chord symbol in the Charlie Parker corpus is an integer, so a chord that has a duration
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m > 1 can be broken down into m consecutive identical chords of duration 1.

A note symbol has two main attributes: a pitch and a duration in time. There are some

extra attributes that a note can have, such as volume, articulation, and others, but for our

model we will only require pitch and time duration. The time duration attribute allows us

to regard an instrument that produces only one note at a time (such as an alto sax) as a

system that produces a sequence of signals. A rest, which also has a time duration, can be

regarded as a signal as well. Thus, each solo transcription in our corpus can be framed as a

sequence of signals conditioned to a context comprised of a sequence of events, such as the

problem formulated in section 4.1.

The pitch of a note will be given as a midi pitch (an integer from 0 to 127). We will assign

to rests the integer 128, which we will regard as the silent pitch. The time duration of a note

will be given in quarter length, that is, the number of beats that a it lasts. For example,

consider the phrase shown in figure 5.2. Each chord symbol has a duration of 2 beats. The

first note F, has pitch 65 and duration 2; the second note A has pitch 69 and duration 1/2, and

the third note G has pitch 67 and duration 3/2. Therefore we can regard this music phrase as

the sequence of signals S = (s〈0〉, s〈1〉, s〈1〉) = (65, 69, 67) with l〈0〉 = 2, l〈1〉 = 1/2, l〈2〉 = 3/2,

conditioned to the sequence of events E = (e〈0〉, e〈1〉, e〈2〉, e〈3〉) = (Dm7,Dm7,G7,G7). Figure

Figure 5.2: Music phrase example I.
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Figure 5.3: Music phrase example 1 as signals and events.

5.3 shows a depiction of (E, S) in a similar format to the examples displayed in figures 4.1

and 4.2 in section 4.1.

Observe that the sequence of durations (l〈0〉, l〈1〉, l〈2〉) is the same as in example 1 in

sections 4.1 (figure 4.1) and 4.3. Therefore, if our architecture were to be trained on this

music example, its string diagram would look like the diagram in figure 4.3.

A music phrase that would induce a string diagram like the one in figure 4.4 is shown in

figure 5.4. In this example we have that E = (G7,G7,C,C) and S = (77, 74, 71, 128, 65, 67)

with l〈0〉 = 1/2, l〈1〉 = 1/2, l〈2〉 = 1, l〈2〉 = 1/2, l〈4〉 = 1/2, l〈5〉 = 1. This example has the

same sequence of time durations as example 2 in sections 4.1 (figure 4.2) and 4.3.

Figure 5.4: Music phrase example II.
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5.4 Constructing the Dataset

Having framed notes as signals and chords as conditioning events, we would like to use

the corpus of solo transcriptions to construct a suitable dataset that our neural network

architecture from section 4.3 can ingest. Recall from section 4.1 that a dataset for our

architecture is a set X = {(E(i), S(i)) | i = 0, . . . ,m − 1} where E(i) = (e〈0〉(i), . . . , e〈T 〉(i)),

S(i) = (s〈0〉(i), . . . , s〈T
′
i 〉(i)), T is fixed, T

′
i is variable, and each event has a duration of 1 time

unit.

We begin by fixing the number of events in each training example (or equivalently, the

time duration of each training example). Since the shortest solo phrase in our corpus is 4

measures long (16 beats), we have chosen T = 15. Bear in mind that this choice is flexible

and somewhat arbitrary, any T < 15 is also possible, and T > 15 is possible by simply

disregarding solos with a duration less than T + 1 beats. (We experimented with T = 3, 7

and 15, with the first two yielding results that adhere better to the chord harmony, and the

later yielding more satisfying results in terms of melodic contour.)

After choosing T = 15, we decided that any four consecutive full measures would con-

stitute a training example. For example, in one solo transcription with a duration greater

than 4 measures, measures 1-4 comprise one training example, measures 2-5 comprise an-

other training example, and so on. In our code we named these solo snips training windows.

Figure 5.5 shows an example of how these windows are selected. There is a total of 2143

training windows in the Parker corpus. The number of notes/rests in each training window

varies from 8 to 81.
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Figure 5.5: Example of selection of training windows.

Next, we choose a vector representation for the notes and the chords. A standard practice

in deep learning is the use of the vector representation known as one-hot encoding, which

consists of representing each data point as a (0, 1)-vector with exactly one 1. Each axis (or

entry) represents a class, so each vector has a 1 in the entry corresponding to the class to

which it belongs. This vector representation orthogonalizes (and normalizes) the different

classes of data points. We will use a similar representation, with the difference that we will

allow more than one 1 in a vector, so the vector classes will be orthogonal but not normal.

(We will use the word “class” in the sense of machine learning classification, and not in the

sense of equivalence classes.)

A vector representing a note will have two 1’s, one indicating the pitch and one indicating

the duration type (and zeros elsewhere). In order to keep the model small, we won’t consider

all 128 possible pitches and all possible time durations available in music notation. Instead,

we will consider only the range of pitches from the lowest to the highest pitch used in the

corpus, and the set of time duration types found in the corpus. Note vectors will have a size
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of 1× 89:

– a 1 in the first 80−34+1 = 47 entries indicates the pitch, where the entry 0 corresponds

to the pitch 34, and the entry 46 corresponds to the pitch 80;

– a 1 in entry 47 indicates pitch 128 or rest;

– a 1 in the other 41 remaining entries indicates the time duration type.

For example, the vector representation of a note with pitch 69 and duration 1/2 would look

like the vector in figure 5.6.

A vector representing a chord will have 24 entries (from 0 to 23). The first 12 entries will

correspond to the note letter of the root of the chord. The last 12 entries will correspond to

the letters of the chord tones (including the root). There can only be one 1 in the first 12

entries, since there is only one root, but the last 12 entries accept any number of 1’s. For

example, the chord G7 has for root the note letter G, and chord tones G, B, D, F; figure 5.7

shows its vector representation. In the jazz tradition, the chord tone letters associated to

Figure 5.6: Example of the vector representation of a note.
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Figure 5.7: Example of the vector representation of a chord.

a chord symbol is somewhat flexible (but still logical). For our python implementation, we

used the chord tones that the python library Music21 assigns to chord symbols.

The Pre-processing Module in the appendix of this manuscript takes a directory with

lead-sheet solo transcription in xml format, and returns a 3-dimensional number array of

events, a list of matrices of signals, a list of duration types, the minimum pitch, and the

maximum pitch. The array of events has size 2143×16×24, which are the number of training

windows, the number of events (chords) in each example, and the size of each chord vector,

respectively. The list of matrices of signals has 2143 matrices Si of size T
′
i × 89, where T

′
i is

the number of signals (notes and rests) in the i-th training window. The module also prints

out information about the corpus, such as the information in section 5.2.

5.5 Training the Neural Network

Once we build the dataset, we are set to train the architecture 4.2. The Training Module

in the appendix contains a python code implementation of the training algorithm. Before

beginning the training algorithm, we use the deep-learning framework PyTorch to define
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the architecture using its neural network modules, as well as the loss function, optimizer,

regularization, and scheduler. One advantage that PyTorch offers is that its automatic

differentiation module handles dynamic architectures, such as ours, extremely well [24]. From

a general perspective, the training process is as follows.

1. Feed the dataset to the network to compute the predictions {ŝ〈k〉(i)}i=0,...,m−1
k=0,...,T

′
i

for all

training windows, where m is the number of training windows.

2. Pass the predictions and ground truths {ŝ〈k〉(i), s〈k〉(i)}i=0,...,m−1
k=0,...,T

′
i

to a loss function that

compares them.

3. Find the gradient of the loss function with respect to all trainable parameters of the

network.

4. Update all trainable parameters by performing a gradient step towards a minimizer of

the loss function.

5. Repeat until the optimization criterion is met.

Now, there are many choices available for the activation functions of the network, hidden

state sizes, loss function, optimizer, learning rate, etc. Below, we share some of the settings

used when training the network on the Parker corpus.

– The activation functions inside the LSTMs are the ones by default, as described in

chapter 3.

– The activation function of the fully connected layer (the last node of the architecture)

is the Sigmoid function.
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– The loss function is the Binary Cross Entropy, which, without taking into account the

regularization term, is the function

L = − 1

m

m−1∑
i=0

T
′
i∑

k=0

[
s〈k〉(i) log ŝ〈k〉(i) + (1− s〈k〉(i)) log (1− ŝ〈k〉(i))

]
,

where 1 is a vector of all 1’s.

– The Adam optimizer as the gradient optimization algorithm (see [16]).

Since our implementation was trained on a personal computer, there was no systematic

search for good values of the hyper-parameters such as the learning rate and hidden state

sizes. Rather, we experimented with a few and selected the ones that yielded promising

musical results. Figure 5.8 shows two examples of the graph of the loss function versus the

number of gradient steps. The graph on the left corresponds to a learning rate of 0.0002,

while the one in the right corresponds to a learning rate of 0.0005. Both trainings used a

cosine scheduler, a weight decay of 1e-8, hidden sizes of 48 and 128 for the first and second

LSTM respectively, and the same seed for the random initialization of the network weights.

Figure 5.8: Loss function values during training with randomly initialized weights.
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Figure 5.9: Loss function values during training with pre-trained weights.

Due to limited computing power, after the first 3000 gradient steps, we stored the weights

and started a new iteration initializing the weights as the previously stored values (so the

weights are not randomly initialized this time). Figure 5.9 shows two examples of such

trainings. In the graph on the left the same cosine scheduler was used, while in the graph

on the right we swithed to a step LR scheduler (every 300 steps by a factor of 0.5). This

process can be repeated many times in the attempt to keep decreasing the value of the loss

function.

As we can see, the learning curves seem smooth enough and the value of the function

can be consistenly minimized, as desired.

5.6 Generating New Solos

Once the weights of the network are trained, we can use the architecture to generate new

sequences of signals subject to sequences of events. The goal is to pass to the network a chord

progression of our choosing and produce a sequence of notes/rests subject to that chord pro-

gression. The Generative Module in the appendix contains the python code implementation
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of the process described below.

There are two main modifications we need to make to our architecture in order to convert

it into a generative model. First, we modify the activation function of the fully connected

layer: instead of the Sigmoid function, we apply a Softmax function to the first 48 entries of

the vector (corresponding to pitch/rest), and another Softmax function to the last 41 entries

(corresponding to the time duration type). For a vector x = [x1, . . . , xn], the Softmax of x

is defined as the vector

Softmax(x) =

 exi
n∑
j=1

exj

 .

By doing this, we will create categorical probability distributions for the pitch/rest and the

time duration so we can then sample from them, instead of just selecting the most likely

values for each attribute. This improves the variability of the sequences generated.

The second modification is the concatenation mechanism. During generation, there is no

ground truth for the signals, hence, as mentioned in section 4.3, the concatenation mechanism

cannot be executed all before the second LSTM (since we don’t know before-hand the set

of dynamic indices of the whole sequence to be generated). Instead, for every signal we

generate, we get its duration to compute the dynamic index, and then in the next time-step

concatenate the corresponding hidden state from the first LSTM.

In order to generate a new sequence of notes, we must provide a chord progression as

conditioning context that will be ingested by the network in vector form. The solo phrase

generated will hopefully “work well” with the chord progression. For example, we passed
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to a trained network the chord progression | F | Em7 A7b9 | Dm7 | Cm7 Faug7 |, which

corresponds to the sequence of events (F, F, F, F, Em7, Em7, A7b9, A7b9, Dm7, Dm7,

Dm7, Dm7, Cm7, Cm7, Faug7, Faug7). We should note that during generation, the length

of the provided chord progression can be any integer, not necessarily equal to the length used

during training. Below are some of the generated phrases we obtained; they were generated

with the same trained weights, they are different thanks to the sampling process.

Generated phrase 1

Generated phrase 2

Generated phrase 3

Generated phrase 4

Generated phrase 5
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For the reader to compare, below are original phrases played by Charlie Parker over the

same chord progression. Notice that some passages are very similar, but no generated phrase

is equal to an original one.

Original phrase 1

Original phrase 2

Original phrase 3

5.7 Further Improvements

As mentioned before, the main goal of the implementation presented in this chapter is to

serve as a prototype experiment of the architecture presented in section 4.3, and to show

that it is trainable, as suggested by the learning curves in figures 5.8 and 5.9. However, we

believe that this implementation could also serve as a first step towards a more complete

and thorough jazz-solo AI project. Below we provide a list of some ideas that could improve

the quality of the generated solos and the overall reach of the model.
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1. Build chord embeddings. The vector representation that we are using for the chords

(figure 5.7) does not completely account for chords whose harmonic function is more

similar than others. For example, consider the vectors C7, Em7b5, and Cm7. The

vector C7 differs from both Em7b5 and Cm7 by just one 1. If we regard the vectors as

points of a 24-dimensional space, the distance (C7,Em7b5) is the same as the distance

(C7,Cm7), however, the harmonic functionality of C7 and Em7b5 should probably be

more similar than those of C7 and Cm7. We would like to infer such similarity from

the training corpus, since different musicians will approach this similarity differently.

One way of tackling this issue is to build vector embeddings for chords. See [23] for

more details.

2. Include the downbeat/upbeat information. We know that in jazz styles like be-bop,

it is important to distinguish between notes played in the downbeat and notes played

in the upbeat. Usually, notes played in the downbeat are chord tones (or available

extensions), and passing notes and non-chord tones are usually played in the upbeats.

Therefore, it would make sense to include this attribute in the vector representation

of each note. In our experiments we noticed that the longer a phrase gets, the more

the note generation loses structural sense of time. We think it would be helpful if at

each time-step we pass to the network information about the offset (modulo 1) that

the next signal will have.

3. Focusing more on the current chord and neighboring chords. We believe that many

jazz musicians would agree that, when improvising a solo, they do not necessarily
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think of the whole chord progression at all times. Sometimes is enough to know only

a few following chords. We could mimic this idea in our architecture by putting more

emphasis in the current chord and the next one, or even perhaps by restricting the reach

of back-propagation in the LSTM that processes the events to just a few time-steps.

4. Larger training corpus. The dataset that we used is probably somewhat small by to-

day’s deep-learning standards. Training on a considerably larger corpus could probably

help the network generalize better to unseen chord progressions.

5. Larger network. Provided that enough computing power is available, increasing the

depth of the network and the size of the hidden states would improve the learning

power of the network. However, if the dataset is still small, this might not be of much

help.

6. Systematic hyper-parameter search. Again, provided that enough computing power is

available, different models corresponding to different sets of hyper-parameters can be

trained simultaneously. Then, the best models would be selected to be cross-validated

and tested. Usually, the hyper-parameter search is a random search or a grid search.

7. Train longer. Training a model for a longer period of time would be desirable, specially

if a systematic hyper-parameter search is used. This also requires access to more

computing power.
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CHAPTER 6

CONCLUSIONS

This dissertation describes the development of a string-diagrammatic language of (non-

convolutional) neural networks that allows us to describe architectures in a rigorous way.

To our knowledge, in the majority of the literature regarding neural networks, the depic-

tion of neural network architectures is not rooted in any formal theory. With the language

proposed in this work, the depiction of a neural networks is no longer just a mere sketch,

but a mathematical body whose algebraic compositional structure is well accounted for. By

continuing to extend this language to more types of neural networks, most importantly, con-

volutional neural networks, we could open new possibilities on how neural networks are built

in practice. For example, the diagrams 3.1, 3.14, 3.16, 3.18 are in one-to-one correspondence

with PyTorch’s neural network modules, their inputs and outputs are the same, as well as

the internal structure. This means that, in principle, one could “code” an architecture by

putting together nodes and strings instead of using written syntax. Although it is not our

goal, this illustrates the convenience of having a formal and coherent graphical language.

In addition, using the graphical language above, we introduced a novel neural network

architecture suited for modeling systems that generate signals with a duration in time, condi-

tioned to a context in the form of a sequence of events. The main novelty of this architecture

consists of a concatenation mechanism that depends on the time-relative dependence of the

sequence of signals with respect to the sequence of events, and a technique to its vectorized

implementation.
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One important question when first designing the architecture above was to investigate if

an architecture with such a highly dynamic computation graph (diagram) would be trainable.

The fact that the diagram of the architecture changes from one training example to the other

(not only in the number of time-steps, but also in the connectivity between LSTMs), implies

that the gradient of the loss function with respect to the trainable parameters is also different

for each training example. Nevertheless, due to the fact that the network shares the same

weights for each example, we can update all the weights of the network in each gradient

hoping that, in average, the value of the loss function can reach a small enough value.

However, although this makes sense theoretically, we tested this assumption in practice by

developing a prototype implementation of the architecture trained on a corpus of 48 jazz

solo transcriptions.

Lastly, we presented the main details of the implementation of the architecture as a

generative model of jazz solo improvisations, and included the Python code. We framed a

solo improvisation based on a chord progression as a sequence of signals conditioned to a

sequence of events, and built a suitable dataset out of a corpus of solo transcriptions. With

this implementation we answered our initial question of trainability of the architecture,

and, in spite of having limited computing power, we were able to train a small architecture

well enough to produce musical results that resemble the corpus. Since we consider that

this implementation can be taken further as a large musical AI project, we provided some

potential additions that can be implemented that could improve the power of the musical

model.
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CHAPTER

APPENDIX

Pre-processing Module

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Sep 11 11:02:10 2019

4

5 @author: Rodrigo Castro

6 """

7

8 import os

9 from music21 import *

10 from fractions import Fraction

11 from random import shuffle

12 import numpy as np

13 import torch

14 from torch.autograd import Variable

15

16

17 #---------------------------------- HELPER FUNCTIONS

--------------------------------------#

18

19 def createSoloDict(directory_in_str):

20

21 print(’Creating a dictonary of all solos ...’)

22 directory = os.fsencode(directory_in_str)

23 solo_dict = {}

24 for file in os.listdir(directory):

25 filename = os.fsdecode(file)

26 if filename.endswith(’.xml’) or filename.endswith(’.musicxml ’):

27 solo_name = os.path.splitext(filename)[0]

28 path = str(directory_in_str + ’/’ + filename

)

29 parsed_solo = converter.parse(path)

30 solo_dict[solo_name] = parsed_solo

31 continue

32 else:

33 continue

34

35 return solo_dict

36

37

38 def inspect_corpus(solo_dict , beats_per_measure =4):

39

40 print(’GETTING SOME INFORMATION ABOUT YOUR CORPUS: ’)

41

42 all_solo_durations = []
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43 total_measures = 0

44 all_note_durations = set()

45 soloist_range = set()

46 never_plays = set()

47 tonalities = []

48 tonality_count = set()

49 beat_types = set()

50 for key in solo_dict.keys():

51 score = solo_dict[key]

52 score_duration_beats = score.quarterLength

53 score_duration_measures = score_duration_beats /

beats_per_measure

54 total_measures += int(score_duration_measures)

55 tonality = score.analyze(’key’)

56

57 all_solo_durations.append(score_duration_measures)

58 tonalities.append(tonality)

59

60 #print(str(key) +’ is ’ + str(int(score_duration_measures)) + ’

measures long;’)

61

62 if score_duration_beats % beats_per_measure != 0:

63 print(f’-Warning: {key} has a measure that is not {

beats_per_measure} beats long:’)

64 for measure_idx in range (1 , int(score_duration_measures +

1) ):

65 if score.measure(measure_idx , indicesNotNumbers = True).

quarterLength % beats_per_measure != 0:

66 print(f’The problem is in measure # {measure_idx + 1}

’)

67 if len(score.getElementsByClass(’Part’)) > 1 :

68 print(f’*Warning: it seems that there is more than one

instrument part in the file {key}’)

69

70 for pitch in score.pitches:

71 soloist_range.add(pitch.midi)

72

73 for item in score.recurse ().getElementsByClass ([’Note’,’Rest’]).

stripTies ():

74 all_note_durations.add(Fraction(item.quarterLength))

75 beat_types.add(Fraction(item.offset %1))

76 if item.quarterLength == Fraction(0, 1):

77 print(f’There is a note with no length: {(key ,item ,item.

activeSite ,item.offset)}’)

78

79 min_pitch , max_pitch = int(min(soloist_range)), int(max(

soloist_range))

80 min_duration , max_duration = int(min(all_solo_durations)), int(max(

all_solo_durations))

81

82 for pitch in range(min_pitch , max_pitch + 1):
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83 if (pitch in soloist_range) == False:

84 never_plays.add(pitch)

85

86 durations_list = list(all_note_durations)

87 durations_list.sort()

88

89 for tone in tonalities:

90 counter = tonalities.count(tone)

91 tonality_count.add((counter ,tone))

92

93 print(f’*There are {int(len(solo_dict))} files in the corpus.’)

94 print(f’*The shortest solo in the corpus has {min_duration} measures.

’)

95 print(f’*The longest solo in the corpus has {max_duration} measures.’

)

96 print(f’*There are in total {total_measures} measures of music.’)

97 print(f’*The lowest midi pitch played in the corpus is {min_pitch},

while the highest midi pitch is’ + \

98 f’{max_pitch }. However , the soloist(s) never played the midi

pitches {never_plays }.’)

99 print(f’*There are {len(durations_list)} different note/rest

durations in the corpus.’)

100 #print(tonality_count)

101 #print(durations_list)

102 #print(beat_types)

103

104 return min_pitch , max_pitch , durations_list

105

106

107 def clean_chords(solo_dict , beats_per_measure =4):

108 print(’Fixing measures with no explicit chord symbol assigned ...’)

109 for key in solo_dict.keys():

110 score = solo_dict[key]

111 harmony.realizeChordSymbolDurations(score)

112 score_duration_beats = int(score.quarterLength)

113 score_duration_measures = int(score_duration_beats /

beats_per_measure)

114 for measure_idx in range(0, score_duration_measures):

115 measure_chords = score.measure(measure_idx , indicesNotNumbers

=True).recurse ().getElementsByClass(’ChordSymbol ’)

116 if [c for c in measure_chords] == []:

117 #print(’Fixing chord in measure ’ + str(measure_idx +1) +

’ in ’ + str(key))

118 last_chord = score.measure(measure_idx -1,

indicesNotNumbers=True).recurse ().getElementsByClass(’ChordSymbol ’)

[-1]

119 last_chord_name = last_chord.figure

120 try:

121 missing_chord = harmony.ChordSymbol(last_chord_name)

122 except:

123 missing_chord_root = last_chord.root().name
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124 missing_chord_pitches = [p.name for p in

last_chord.pitches]

125 missing_chord = harmony.ChordSymbol(root=

missing_chord_root)

126 missing_chord.pitchNames = missing_chord_pitches

127 missing_chord.quarterLength = beats_per_measure

128

129 score.parts [0]. measure(measure_idx , indicesNotNumbers=

True).insert(0, missing_chord)

130 if last_chord.quarterLength % beats_per_measure == 0:

131 score.parts [0]. measure(measure_idx -1,

indicesNotNumbers=True).getElementsByClass(’ChordSymbol ’)[-1].

quarterLength \

132 = beats_per_measure

133 else:

134 score.parts [0]. measure(measure_idx -1,

indicesNotNumbers=True).getElementsByClass(’ChordSymbol ’)[-1].

quarterLength \

135 = last_chord.quarterLength % beats_per_measure

136

137

138 def parse_dict(solo_dict , durations_list ,min_pitch , max_pitch ,

window_size =4, \

139 beats_per_measure =4, transpose=False):

140 all_windows = []

141 dict_len = len(solo_dict)

142 for key_idx , key in enumerate(solo_dict.keys()):

143 score = solo_dict[key]

144 score_duration_measures = len(score.recurse ().getElementsByClass(

’Measure ’))

145 last_window_idx = score_duration_measures - window_size

146 print(f’Splitting {key}, score {key_idx +1}/{ dict_len}’)

147 for window_idx in range(0, last_window_idx):

148 window = score.measures( window_idx , window_idx +

window_size , indicesNotNumbers=True)

149 if window.quarterLength != beats_per_measure*window_size :

150 print(f’Window {(key ,window_idx)} has quarter length {

window.quarterLength}’)

151

152 all_windows.append(window)

153 if transpose ==True:

154 print(f’Processing and transposing window {window_idx

+1}/{ last_window_idx}’)

155 for interval in range(-5,7):

156 if interval == 0:

157 continue

158 #print(’Transposing ’ + str(interval) + ’ half steps

...’)

159 transposed_window = window.transpose(interval)

160 min_pitch += -5

161 max_pitch += 6
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162 all_windows.append(transposed_window)

163 shuffle(all_windows)

164

165 num_windows = len(all_windows)

166 chord_vect_size = 24

167 pitch_vect_size = max_pitch - min_pitch + 2 #include rest as a

pitch

168 duration_vect_size = len(durations_list)

169 note_vect_size = pitch_vect_size + duration_vect_size

170 progression_matrices = []

171 melody_matrices = []

172 for count , window in enumerate(all_windows):

173 print(’Encoding window ’ + str(count +1) + ’/’ + str(num_windows))

174 harmony.realizeChordSymbolDurations(window)

175 window_chords = window.recurse ().getElementsByClass(’ChordSymbol ’

)

176 window_notes = window.recurse ().getElementsByClass ([’Note’,’Rest

’]).stripTies ()

177

178 progression_matrix = np.zeros ([0, chord_vect_size ])

179 for chord in window_chords:

180 chord_vector = np.zeros([1, chord_vect_size ])

181 chord_duration = int(chord.quarterLength)

182 root_idx = chord.root().midi % 12

183 chord_pitches = [p.midi for p in chord.pitches]

184 chord_vector [0,root_idx] = 1

185 for i, chord_pitch in enumerate(chord_pitches):

186 chord_pitch_idx = chord_pitch % 12

187 chord_vector [0, 12 + chord_pitch_idx] = 1

188 for j in range(chord_duration):

189 progression_matrix = np.append(progression_matrix ,

chord_vector , axis =0)

190 progression_matrices.append(progression_matrix)

191

192 melody_matrix = np.zeros ([0, note_vect_size ])

193 for note in window_notes:

194 pitch_vector = np.zeros([1, pitch_vect_size ])

195 duration_vector = np.zeros ([1, duration_vect_size ])

196 if note.isRest:

197 pitch_idx = pitch_vect_size - 1

198 else:

199 pitch_idx = note.pitch.midi - min_pitch

200 pitch_vector [0, pitch_idx] = 1

201 duration = Fraction(note.quarterLength)

202 if duration in durations_list:

203 duration_idx = durations_list.index(duration)

204 else:

205 raise ValueError(’The duration ’ + str(duration) + ’ is

not in durations_list!’)

206 duration_vector [0, duration_idx] = 1

207 note_vector = np.append(pitch_vector , duration_vector , axis
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=1)

208 melody_matrix = np.append(melody_matrix , note_vector , axis =0)

209 melody_matrices.append(melody_matrix)

210

211

212 #check for problems in the length of the chord progressions:

213 ’’’

214 for idx ,window in enumerate(progression_matrices):

215 if window.shape != (16 ,24):

216 print(idx ,window.shape)

217 for chord in all_windows[idx]. recurse ().

getElementsByClass(’ChordSymbol ’):

218 print(chord.quarterLength ,chord)

219 ’’’

220

221

222 #check for problems in the length of the note sequences:

223 ’’’

224 for i,window in enumerate(all_windows):

225 window_notes = window.parts [0]. recurse ().getElementsByClass

([’Note ’,’Rest ’]).stripTies ()

226 if window_notes.quarterLength != 16:

227 print(i,window_notes.quarterLength)

228 ’’’

229

230 return progression_matrices , melody_matrices

231

232

233 def matrices2tensors(progression_matrices , melody_matrices):

234 event_data = np.stack(progression_matrices)

235 E = Variable(torch.from_numpy(event_data))

236 E = E.type(torch.FloatTensor)

237

238 S=[]

239 for window in melody_matrices:

240 window = np.stack(window)

241 window = Variable(torch.from_numpy(window))

242 window = window.type(torch.FloatTensor)

243 S.append(window)

244

245 return E, S, durations_list

246

247

248

249 #------------------------------- PUBLIC FUNCTION

-------------------------------------#

250

251

252 def build_dataset( directory_in_str , filename , beats_per_measure =4,

transpose=False):

253 solo_dict = createSoloDict(directory_in_str)
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254 min_pitch , max_pitch , durations_list = inspect_corpus(solo_dict)

255 clean_chords(solo_dict , beats_per_measure)

256 progression_matrices , melody_matrices = \

257 parse_dict(solo_dict , durations_list ,min_pitch , max_pitch ,

window_size =4, \

258 beats_per_measure =4,transpose=False)

259 E, S, durations_list = matrices2tensors(progression_matrices ,

melody_windows)

260 Training_data = [ E, S, durations_list , min_pitch , max_pitch]

261 torch.save(Training_data , filename)

262

263 #build_dataset(’Divided_solos ’, ’Parker_Dataset.pt’, beats_per_measure =4)

264 #build_dataset(’Divided_solos ’, ’Parker_Dataset_allKeys.pt’,

beats_per_measure =4, transpose=True)

Training Module

1

2 # coding: utf -8

3

4 # <a href="https :// colab.research.google.com/github/irodcast/dynamic_solo

/blob/master/train_model_2.ipynb" target =" _parent"><img src="https ://

colab.research.google.com/assets/colab -badge.svg" alt="Open In Colab

"/></a>

5

6 # In[ ]:

7

8

9 import numpy as np

10 import torch

11 from torch.autograd import Variable

12 import torch.nn.functional as F

13 import matplotlib.pyplot as plt

14 import time

15

16 print(f’PyTorch version: {torch.__version__}’)

17

18 if torch.cuda.is_available ()==True:

19 use_cuda = True

20 print(f’GPU available: {torch.cuda.get_device_name (0)} ({torch.cuda.

device_count ()} count)’)

21

22

23 # In[ ]:

24

25

26 def default_device ():

27 if torch.cuda.is_available ()==True:

28 dflt_device = torch.device(’cuda’)
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29 else:

30 dflt_device = torch.device(’cpu’)

31

32 return dflt_device

33

34

35 def load_data(dir_in_str):

36 E, S_pre , durations_list , min_pitch , max_pitch = torch.load(

dir_in_str)

37 E = E.to(device=dflt_device)

38 S = []

39 for tensor in S_pre:

40 S.append(tensor.to(device=dflt_device))

41

42 return E, S, durations_list , min_pitch , max_pitch

43

44

45 def dimensions(E,S):

46 num_event_examples , num_events , event_emb_size = E.shape

47 num_seq_examples = len(S)

48 signal_emb_size = S[0]. size (1)

49

50 dims = [num_event_examples , num_events , event_emb_size ,

num_seq_examples , signal_emb_size ]

51

52 return dims

53

54

55 def prepare_data(S):

56 S_pre_input = []

57 first_row = torch.zeros(1, signal_emb_size).to(device=dflt_device)

58 for tensor in S:

59 expanded_tensor = torch.cat((first_row , tensor), dim=0)

60 new_tensor = expanded_tensor [:-1, :]

61 S_pre_input.append(new_tensor)

62

63 conditioning_idxs_vectors = []

64 for tensor in S:

65 conditioning_indices = torch.zeros(tensor.shape[0], 1).to(device=

dflt_device)

66 cumulative_duration = 0

67 for row in range(0, tensor.shape [0]-1):

68 vector = tensor[row , :]

69 pitch_idx , rhythm_idx = list(( vector != 0).nonzero ())

70 pitch_idx , rhythm_idx = int(pitch_idx), int(rhythm_idx)

71 duration_type_idx = rhythm_idx - rhythm_idx_ini

72 duration_type = durations_list[duration_type_idx]

73 cumulative_duration += duration_type

74 conditioning_indices[row +1] = int(cumulative_duration)

75 conditioning_idxs_vectors.append(conditioning_indices)

76
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77 lengths_list = []

78 for tensor in S:

79 lengths_list.append(tensor.shape [0])

80

81 S_padded = torch.nn.utils.rnn.pad_sequence(S, batch_first=True)

82 S_packed = torch.nn.utils.rnn.pack_padded_sequence(S_padded ,

batch_first=True , lengths=lengths_list , enforce_sorted=False)

83

84 return S_packed , S_padded , S_pre_input , lengths_list ,

conditioning_idxs_vectors

85

86

87 def create_placing_matrices(conditioning_idxs_vectors , num_events):

88 placing_conditioning_matrices = []

89 for vector in conditioning_idxs_vectors:

90 placing_matrix = torch.zeros(vector.shape[0], num_events).to(

device=dflt_device)

91 for i in range(vector.shape [0]):

92 placing_matrix[i, int(vector[i])] = 1

93 placing_conditioning_matrices.append(placing_matrix)

94

95 return placing_conditioning_matrices

96

97

98 def concatenate_conditioning(S_pre_input ,

encoded_conditioning ,

placing_conditioning_matrices , lengths_list):

99 S_conditioned = []

100 for idx , tensor in enumerate(S_pre_input):

101 placing_matrix = placing_conditioning_matrices[idx]

102 dynamic_conditioning = torch.mm(placing_matrix ,

encoded_conditioning[idx ,:,:])

103 concatenated_input = torch.cat((tensor , dynamic_conditioning), dim

=1)

104 S_conditioned.append(concatenated_input)

105 S_input = torch.nn.utils.rnn.pad_sequence(S_conditioned , batch_first=

True)

106 S_input = torch.nn.utils.rnn.pack_padded_sequence(S_input ,

batch_first=True , lengths=lengths_list , enforce_sorted=False)

107

108 return S_input

109

110

111 # In[ ]:

112

113

114 class event_net(torch.nn.Module):

115

116 def __init__(self, event_emb_size , event_hidden_size ,

event_output_size , num_event_layers ,

num_event_examples , num_directions):
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117 super(event_net , self).__init__ ()

118

119 self.event_emb_size = event_emb_size

120 self.event_hidden_size = event_hidden_size

121 self.event_output_size = event_output_size

122 self.num_event_layers = num_event_layers

123 self.num_event_examples = num_event_examples

124 self.num_directions = num_directions

125

126 self.event_lstm = torch.nn.LSTM(self.event_emb_size , self.

event_hidden_size , self.

num_event_layers , batch_first=True , bidirectional=True)

127 self.event_linear = torch.nn.Linear(self.event_hidden_size*

num_directions , self.event_output_size)

128

129 self.initHidden = self.init_hidden ()

130

131 def init_hidden(self):

132 h_ini = (torch.zeros(self.num_event_layers*num_directions , self.

num_event_examples , self.event_hidden_size), torch.zeros(

self.num_event_layers*num_directions , self.num_event_examples , self.

event_hidden_size) )

133

134 def forward(self, Events):

135 event_lstm_out , event_hidden = self.event_lstm(Events , self.

initHidden)

136 linear_output = self.event_linear(event_lstm_out*num_event_layers

)

137 event_output = torch.sigmoid(linear_output)

138

139 return event_output #event_lstm_out

140

141

142 class signal_net(torch.nn.Module):

143 def __init__(self, signal_emb_size , conditioning_size ,

signal_hidden_size , signal_output_size ,

num_signal_layers , num_signal_examples):

144 super(signal_net , self).__init__ ()

145

146 self.signal_emb_size = signal_emb_size

147 self.conditioning_size = conditioning_size

148 self.signal_hidden_size = signal_hidden_size

149 self.signal_output_size = signal_output_size

150 self.num_signal_layers = num_signal_layers

151 self.num_signal_examples = num_signal_examples

152

153 self.signal_lstm = torch.nn.LSTM(self.signal_emb_size+self.

conditioning_size , self.signal_hidden_size ,

self.num_signal_layers , batch_first=True)

154 self.signal_linear = torch.nn.Linear(self.signal_hidden_size ,

self.signal_output_size)
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155

156 def forward(self, S_input , prev_hidden):

157 signal_lstm_out , signal_hidden = self.signal_lstm(S_input ,

prev_hidden)

158 signal_linear_output = self.signal_linear(signal_lstm_out.data)

159 #signal_output = torch.sigmoid(signal_linear_output)

160

161 return signal_linear_output , signal_hidden

162

163

164 # In[ ]:

165

166

167 dflt_device = default_device ()

168

169 E, S, durations_list , min_pitch , max_pitch = load_data(’

Parker_Dataset_unshuffled.pt’)

170 #E, S = E[0:6,:,:], S[0:6]

171

172 num_event_examples , num_events , event_emb_size , num_signal_examples ,

signal_emb_size = dimensions(E,S)

173 rhythm_idx_ini = max_pitch - min_pitch + 1 + True

174

175 S_packed , S_padded , S_pre_input , lengths_list , conditioning_idxs_vectors

= prepare_data(S)

176 placing_conditioning_matrices = create_placing_matrices(

conditioning_idxs_vectors , num_events)

177

178

179 # In[ ]:

180

181

182 torch.manual_seed (12)

183

184 #Choose dimensions for event LSTM

185 num_event_layers = 1

186 event_hidden_size = 32

187 num_directions = 2

188 event_output_size = 48

189

190 #Choose dimensions for signal LSTM

191 num_signal_layers = 1

192 signal_hidden_size = 128

193 signal_output_size = 89

194 conditioning_size = event_output_size

195

196 #Create 1st LSTM

197 event_forward_pass = event_net(event_emb_size , event_hidden_size ,

event_output_size , num_event_layers ,

num_event_examples , num_directions)

198 event_forward_pass = event_forward_pass.to(device=dflt_device)
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199

200 #Create 2nd LSTM

201 signal_forward_pass = signal_net(signal_emb_size , conditioning_size ,

signal_hidden_size , signal_output_size ,

num_signal_layers , num_signal_examples)

202 signal_forward_pass = signal_forward_pass.to(device=dflt_device)

203 signal_h_ini = (torch.zeros(num_signal_layers , num_signal_examples ,

signal_hidden_size).to(device=dflt_device), torch.zeros(

num_signal_layers , num_signal_examples , signal_hidden_size).to(device=

dflt_device) )

204

205 weights = list(event_forward_pass.parameters ()) + list(

signal_forward_pass.parameters ())

206

207 #Number of parameters

208 num_event_parameters = sum([p.numel() for p in event_forward_pass.

parameters ()])

209 print(f’Number of parameters in LSTM of events: {num_event_parameters}’)

210

211 num_signal_parameters = sum([p.numel () for p in signal_forward_pass.

parameters ()])

212 print(f’Number of parameters in LSTM of signals: {num_signal_parameters}’

)

213

214 print(f’Total number of parameters: {num_event_parameters+

num_signal_parameters}’)

215

216

217 # In[ ]:

218

219

220 LR = 0.05

221 epochs = 3000

222 WeightDecay = 1e-8

223 Momentum = 0.9

224

225 loss_func = torch.nn.BCEWithLogitsLoss ()

226 #loss_func = torch.nn.MSELoss ()

227 optimizer = torch.optim.Adam(weights , lr=LR, betas =(0.9 , 0.999) , eps=1

e-8, weight_decay = WeightDecay )

228 #optimizer = torch.optim.RMSprop(weights ,lr=LR, alpha =0.99 , eps=1e-8,

weight_decay = WeightDecay , momentum = Momentum , centered=True)

229 #scheduler = torch.optim.lr_scheduler.StepLR(optimizer , step_size =300,

gamma =0.5, last_epoch =-1)

230 scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer ,

T_max=epochs , eta_min =0.000001 , last_epoch =-1)

231

232 loss_hist = []

233 for epoch in range(1, epochs +1):

234 t = time.time()

235 optimizer.zero_grad ()
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236 encoded_conditioning = event_forward_pass(E)

237 S_input = concatenate_conditioning(S_pre_input , encoded_conditioning ,

placing_conditioning_matrices , lengths_list)

238 S_hat , _ = signal_forward_pass(S_input , signal_h_ini)

239 Loss = loss_func(S_hat , S_packed.data)

240 Loss.backward ()

241 optimizer.step()

242 loss_hist.append(Loss.item())

243 scheduler.step()

244 #if epoch %200==0:

245 print(f’Epoch: {epoch}, Loss: {Loss} (Learning rate: {scheduler.get_lr

()}, Time: {round(time.time()-t,4)}s’)

246

247 plt.plot(loss_hist [:])

248 plt.xlabel(’Gradient Steps’)

249 vert_label=plt.ylabel(’Loss’)

250 vert_label.set_rotation (0)

251

252

253 # In[ ]:

254

255

256 hyperparameters = {’num_event_layers ’:num_event_layers , ’

event_hidden_size ’:event_hidden_size , ’

num_directions ’:num_directions , ’event_output_size ’:event_output_size ,

’num_signal_layers ’:num_signal_layers , ’

signal_hidden_size ’:signal_hidden_size ,

257 ’signal_output_size ’:signal_output_size , ’

conditioning_size ’:event_output_size ,\

258 ’LR’: LR , ’epochs ’:epochs , ’WeightDecay ’:

WeightDecay , ’Momentum ’:Momentum }

259 model_parameters = [hyperparameters , event_forward_pass.state_dict (),

signal_forward_pass.state_dict ()]

260

261 torch.save(model_parameters , ’model_parameters.pt’)

Generative Module

1

2 # coding: utf -8

3

4 # In[1]:

5

6

7 import numpy as np

8 import torch

9 from torch.autograd import Variable

10 import torch.nn.functional as F

11 from music21 import *
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12

13 print(torch.__version__)

14

15

16 # In[2]:

17

18

19 def default_device ():

20 if torch.cuda.is_available ()==True:

21 dflt_device = torch.device(’cuda’)

22 else:

23 dflt_device = torch.device(’cpu’)

24

25 return dflt_device

26

27

28 def dimensions(E,S):

29 num_event_examples , num_events , event_emb_size = E.shape

30 num_seq_examples = len(S)

31 signal_emb_size = S[0]. size (1)

32

33 dims = [num_event_examples , num_events , event_emb_size ,

num_seq_examples , signal_emb_size ]

34

35 return dims

36

37

38 def net_generate(e, sample=False):

39 event_steps = e.shape [0]

40 encoded_conditioning = event_forward_pass(e.view(1, event_steps , -1))

41 #signal_h_ini = (torch.zeros(num_signal_layers , num_signal_examples ,

signal_hidden_size).to(device=dflt_device) ,\

42 #torch.zeros(num_signal_layers , num_signal_examples ,

signal_hidden_size).to(device=dflt_device) )

43 #hidden = (signal_h_ini [0][0 ,0 ,:]. view(num_signal_layers , 1,

signal_hidden_size), \

44 #signal_h_ini [1][0 ,0 ,:]. view(num_signal_layers , 1,

signal_hidden_size))

45 hidden = (torch.zeros(num_signal_layers , 1, signal_hidden_size).to(

device=dflt_device), torch.zeros(num_signal_layers , 1,

signal_hidden_size).to(device=dflt_device) )

46 signal_prev = torch.zeros(1, signal_emb_size).to(device=dflt_device)

47 prediction_list = []

48 raw_prediction_list = []

49 cumulative_duration = 0

50 while cumulative_duration <= float(event_steps -1):

51 dynamic_idx = int(cumulative_duration)

52 conditioning = encoded_conditioning [0, dynamic_idx , :]. view(1,-1)

53 signal_input = torch.cat(( signal_prev , conditioning), dim =1)

54 signal_input = signal_input.view(1,1,-1)

55 s_hat_pre , hidden = signal_forward_pass(signal_input , hidden )
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56 #s_hat = torch.sigmoid(s_hat) #smoothens the future prob dist

57 s_hat_pitch = F.softmax( s_hat_pre [0, 0, 0: rhythm_idx_ini], dim

= 0 )

58 s_hat_rhythm = F.softmax( s_hat_pre[0, 0, rhythm_idx_ini :], dim =

0 )

59

60 raw_s_hat = torch.cat (( s_hat_pitch , s_hat_rhythm), dim = 0).view

(1,-1)

61 raw_prediction_list.append(raw_s_hat)

62

63 if sample == False:

64 note_max , note_argmax = s_hat_pitch.max (0)

65 rhythm_max , rhythm_argmax = s_hat_rhythm.max(0)

66

67 if sample == True:

68 note_prob_dist = torch.distributions.Categorical(s_hat_pitch)

69 note_argmax = int(note_prob_dist.sample ())

70 rhythm_prob_dist = torch.distributions.Categorical(

s_hat_rhythm)

71 rhythm_argmax = int(rhythm_prob_dist.sample ())

72 #rhythm_max , rhythm_argmax = s_hat_rhythm.max(0)

73

74 s_hat = torch.zeros(1, signal_emb_size)

75 s_hat[0, int(note_argmax)] = 1

76 s_hat[0, int(rhythm_idx_ini + int(rhythm_argmax))] = 1

77 prediction_list.append(s_hat)

78

79 #pitch_idx , rhythm_idx = list((s_hat != 0).nonzero ())

80 #pitch_idx , rhythm_idx = int(pitch_idx), int(rhythm_idx)

81 #duration_type_idx = rhythm_argmax - rhythm_idx_ini

82 duration_type = durations_list[rhythm_argmax]

83 cumulative_duration += duration_type

84

85 signal_prev = s_hat.to(device=dflt_device)

86

87 prediction = torch.cat(prediction_list)

88 raw_prediction = torch.cat(raw_prediction_list)

89

90 return prediction , raw_prediction

91

92

93 def vect2note(vector):

94 note_embedding_size = signal_emb_size

95 assert np.shape(vector) == (note_embedding_size ,)

96 duration_idx = int(np.argwhere(vector[rhythm_idx_ini :]))

97 duration = durations_list[duration_idx]

98

99 if vector[rhythm_idx_ini -1] == 1:

100 nota = note.Rest()

101 nota.quarterLength = duration

102 else:
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103 height = int(np.argwhere(vector [: rhythm_idx_ini -1])) + min_pitch

104 nota = note.Note()

105 nota.pitch.midi = height

106 nota.quarterLength = duration

107

108 return nota

109

110

111 def matrix2melody(melodyMatrix):

112 m,n = melodyMatrix.shape

113 melodyStream = stream.Stream ()

114

115 #To impose a time and key signature:

116 melodyStream.timeSignature = meter.TimeSignature(’4/4’)

117 melodyStream.keySignature = key.Key(’C’)

118

119 for i in range(n):

120 vector = melodyMatrix [:,i]

121 nota = vect2note(vector)

122 melodyStream.append(nota)

123 melody = melodyStream.stripTies ()

124

125 return melody

126

127

128 def enter_progression(event_emb_size , beats_per_measure =4):

129

130 chord_vect_size = event_emb_size

131 progression_matrix = np.zeros ([0, chord_vect_size ])

132 progression_symbols = []

133 chord_list = []

134

135 print(’How many bars long is your progression? (enter an integer): ’)

136 bars = int(input())

137 total_beats = beats_per_measure * bars

138 for beat in range(0, total_beats):

139 progression_symbols.append(’?’)

140

141 progression_display = ’’

142 progression_display_length = total_beats + bars + 1

143 temp_display = progression_symbols [:]

144 for i in range(0, progression_display_length , 5):

145 temp_display.insert(i,’|’)

146

147 for i in range(len(temp_display)):

148 progression_display += temp_display[i] + ’ ’

149

150 print(’Progression status: ’ + progression_display )

151

152 counter = 0

153 while True:



96

154 chord_vector = np.zeros([1, chord_vect_size ])

155

156 print(’Enter a chord:’)

157 chord_name = str(input ())

158

159 print(’How many beats of that chord?’)

160 chord_duration = int(input())

161 total_duration = counter + chord_duration

162 if total_duration > total_beats:

163 break

164 else:

165 chord = harmony.ChordSymbol(chord_name)

166 chord.quarterLength = chord_duration

167 chord_list.append(chord)

168

169 root_idx = chord.root().midi % 12

170 chord_pitches = [p.midi for p in chord.pitches]

171 chord_vector [0,root_idx] = 1

172 for i, chord_pitch in enumerate(chord_pitches):

173 chord_pitch_idx = chord_pitch % 12

174 chord_vector [0, 12 + chord_pitch_idx] = 1

175 for j in range(chord_duration):

176 progression_matrix = np.append(progression_matrix ,

chord_vector , axis =0)

177

178 for i in range(counter , total_duration):

179 progression_symbols[i] = chord_name

180 temp_display = progression_symbols [:]

181

182 for i in range(0, progression_display_length , 5):

183 temp_display.insert(i,’|’)

184

185 progression_display = ’’

186 for i in range(len(temp_display)):

187 progression_display += temp_display[i] + ’ ’

188

189 print(’Progression: ’ + progression_display)

190 counter = total_duration

191 if counter == total_beats:

192 break

193 else:

194 continue

195

196 chord_matrix = torch.from_numpy(progression_matrix)

197 chord_matrix = chord_matrix.type(torch.FloatTensor)

198

199 return progression_display , chord_matrix , chord_list

200

201

202 def predict_new(chord_matrix , chord_list , sample=False):

203
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204 solo_prediction , raw_prediction = net_generate(chord_matrix , sample)

205 solo_prediction = solo_prediction.transpose (0,1)

206 raw_prediction = raw_prediction.transpose (0,1)

207 solo_prediction = solo_prediction.numpy ()

208 raw_prediction = raw_prediction.detach ().numpy()

209

210 solo = matrix2melody(solo_prediction)

211

212 chord_sounds = stream.Stream ()

213 for acorde in chord_list:

214 acorde.writeAsChord = True

215 chord_sounds.append(acorde)

216

217 solo_with_chords = stream.Score()

218 solo_with_chords.insert(0, solo)

219 solo_with_chords.insert(0, chord_sounds)

220

221 return solo_with_chords , solo_prediction , raw_prediction

222

223

224 # In[3]:

225

226

227 class event_net(torch.nn.Module):

228

229 def __init__(self, event_emb_size , event_hidden_size ,

event_output_size , num_event_layers ,

num_event_examples , num_directions):

230 super(event_net , self).__init__ ()

231

232 self.event_emb_size = event_emb_size

233 self.event_hidden_size = event_hidden_size

234 self.event_output_size = event_output_size

235 self.num_event_layers = num_event_layers

236 self.num_event_examples = num_event_examples

237 self.num_directions = num_directions

238

239 self.event_lstm = torch.nn.LSTM(self.event_emb_size , self.

event_hidden_size , self.

num_event_layers , batch_first=True , bidirectional=True)

240 self.event_linear = torch.nn.Linear(self.event_hidden_size*

num_directions , self.event_output_size)

241

242 self.initHidden = self.init_hidden ()

243

244 def init_hidden(self):

245 h_ini = (torch.zeros(self.num_event_layers*num_directions , self.

num_event_examples , self.event_hidden_size), torch.zeros(

self.num_event_layers*num_directions , self.num_event_examples , self.

event_hidden_size) )

246
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247 def forward(self, Events):

248 event_lstm_out , event_hidden = self.event_lstm(Events , self.

initHidden)

249 linear_output = self.event_linear(event_lstm_out*num_event_layers

)

250 event_output = torch.sigmoid(linear_output)

251

252 return event_output #event_lstm_out

253

254

255 class signal_net(torch.nn.Module):

256 def __init__(self, signal_emb_size , conditioning_size ,

signal_hidden_size , signal_output_size ,

num_signal_layers , num_signal_examples):

257 super(signal_net , self).__init__ ()

258

259 self.signal_emb_size = signal_emb_size

260 self.conditioning_size = conditioning_size

261 self.signal_hidden_size = signal_hidden_size

262 self.signal_output_size = signal_output_size

263 self.num_signal_layers = num_signal_layers

264 self.num_signal_examples = num_signal_examples

265

266 self.signal_lstm = torch.nn.LSTM(self.signal_emb_size+self.

conditioning_size , self.signal_hidden_size ,

self.num_signal_layers , batch_first=True)

267 self.signal_linear = torch.nn.Linear(self.signal_hidden_size ,

self.signal_output_size)

268

269 def forward(self, S_input , prev_hidden):

270 signal_lstm_out , signal_hidden = self.signal_lstm(S_input ,

prev_hidden)

271 signal_linear_output = self.signal_linear(signal_lstm_out.data)

272 #signal_output = torch.sigmoid(signal_linear_output)

273

274 return signal_linear_output , signal_hidden

275

276

277 # In[31]:

278

279

280 dflt_device = default_device ()

281

282 E, S, durations_list , min_pitch , max_pitch = torch.load(’Parker_Dataset.

pt’)

283 num_event_examples , num_events , event_emb_size , num_signal_examples ,

signal_emb_size = dimensions(E,S)

284 rhythm_idx_ini = max_pitch - min_pitch + 1 + True

285

286 hyperparameters , event_forward_pass_parameters ,

signal_forward_pass_parameters = torch.load(’model_parameters.pt’,
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map_location=torch.device(’cpu’))

287

288 num_event_layers = hyperparameters[’num_event_layers ’]

289 event_hidden_size = hyperparameters[’event_hidden_size ’]

290 num_directions = hyperparameters[’num_directions ’]

291 event_output_size = hyperparameters[’event_output_size ’]

292 num_signal_layers = hyperparameters[’num_signal_layers ’]

293 signal_hidden_size = hyperparameters[’signal_hidden_size ’]

294 signal_output_size = hyperparameters[’signal_output_size ’]

295 conditioning_size = hyperparameters[’conditioning_size ’]

296

297 event_forward_pass = event_net(event_emb_size , event_hidden_size ,

event_output_size , num_event_layers ,

num_event_examples , num_directions)

298 signal_forward_pass = signal_net(signal_emb_size , conditioning_size ,

signal_hidden_size , signal_output_size ,

num_signal_layers , num_signal_examples)

299 event_forward_pass = event_forward_pass.to(device=dflt_device)

300 signal_forward_pass = signal_forward_pass.to(device=dflt_device)

301

302 event_forward_pass.load_state_dict(event_forward_pass_parameters)

303 signal_forward_pass.load_state_dict(signal_forward_pass_parameters)

304

305

306 # In[33]:

307

308

309 progression_display , chord_matrix , chord_list = enter_progression(

event_emb_size , beats_per_measure =4)

310

311

312 # In[37]:

313

314

315 #chord_matrix = E[1,:,:]

316 solo , solo_prediction , raw_prediction = predict_new(chord_matrix ,

chord_list , sample=True)

317 solo.show()

318 solo.show(’midi’)

319

320

321 # In[38]:

322

323

324 solo.write(’xml’, ’SoloSnips/generated_solo.xml’)
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