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ABSTRACT 

The photoionization cross sections of small fullerenes (C28, C32, C40, C44, and C50), and the outer and 

near-outer shells of atoms (noble gases, alkaline earth) confined endohedrally inside a C60 molecule are 

calculated employing a time-dependent local density approximation formulation.  Plasmon and con-

finement resonances are found to be a general feature of these cross sections, and dramatic 

interchannel coupling effects, significantly increasing the atomic cross sections, are exhibited in all cases 

in the vicinity of the C60 plasmons.  Hybridization effects, the mixing of the atomic and cage bound state 

wave functions, are also found, but no systematics of the hybridization present themselves. Also, in the 

case of Ar@C60, Inter-atomic Columbic decay (ICD) has been found and studied. 
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INTRODUCTION 

The study of the photoionization of systems composed of atoms entrapped in fullerene molecules, 

termed endohedral fullerenes [1], is an increasingly active field of inquiry [2,3,4].  From a technological 

point of view, there is the promise of applications in a wide range of areas, including quantum computing 

[5], drug delivery [6], photovotaic materials [7], and hydrogen storage [8], to cite a few.   In addition, these 

studies allow us to understand how a trapped atom responds to an external stimulus, in this case the fuller-

ene cage.  Most of the investigations that have been performed have been theoretical [2,3,4], but recently 

experimental studies have been reported [9,10,11]. 

Theoretical studies have been carried out using several different models for the interaction of 

the enclosed atom with the surrounding fullerenes [2,4], and these models have been incorporated in a 

variety of theoretical techniques [2,3,4,12,13,14,15,16,17,18].  A number of different confined systems 

have been looked at in these various theoretical studies.  In this research, we report on a systematic 

study of the photoionization of the outer and near outer shells of the noble gas atoms (He, Ne, Ar, Kr 

and Xe), small alkaline earth (Be, Mg, and Ca) confined in the C60 fullerene, and also, small fullerenes Cn 

(n=28, 32, 40, 44, and 50). The aim is to elucidate the similarities and differences of the effects of con-

finement across the different sets of atoms and fullerenes. 

In the following chapters, extensively, discussion of the theory and calculational methodology 

are presented.  Next a detailed account of the results are presented and discussed.   

 

1. COLLISIONS AND PHOTOIONIZATION 

1.1 Introduction  

One of the methods to probe microscopic quantum system is through collisions, and we can ex-

plore some of the properties of such systems by this method. Atoms, ions, molecules, and clusters are 
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microscopic quantum systems; atoms are the simplest types of these systems.  We need tools to probe 

these microscopic quantum systems which can be electromagnetic radiation,  , particles such as 

          , atom, ion, or molecule. If we investigate the system by light, it is called spectroscopy, and 

the term collisions is used when the system is studied by bombarding with particles. And the important 

question is that, “if there is any relation between spectroscopy and collisions?” 

Consider a system in an excited state; it can decay through a radiative channel and emit light. A 

quantum system can also absorb the light, and the result of this absorption can be the excitation of the 

quantum system, or transition to continuum states of the system that is called photoionization. In some 

cases a bound to bound transition can take place at the same energy as a bound to continuum transi-

tion, and in such cases we have resonance. 

The ”probability” of photoelectron emission, or a bound to continuum transition, is generally 

known as the photoionization cross section. The direction of the photoelectron with respect to the di-

rection of the incident electromagnetic radiation and the direction of the polarization of the light can be 

measured, and it is called as angular distribution. By measuring these two properties we have the com-

plete set of compatible observables for photoelectron process. This is now a very powerful tool which is 

called as “photoelectron spectroscopy” to study condensed matter and surface analyses.  

Generally, what we are doing is measuring the transition matrix element,         ,         is the 

transition matrix operator that is the physical interaction between the quantum system and the probe 

that is responsible for this transition. The main questions are how the initial and final states are de-

scribed, and also how the interaction is represented. In quantum systems we cannot have exact solution 

for that, so in order to have solution for these quantum systems, one has to make approximations for all 

of them, such as, initial states, final states, and transition operator. All these processes are done to find 

the value of the matrix elements which will be a measure of the probability amplitude, and the square of 

that gives the transition probability. 
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Now to answer the question that how the photoionization and scattering are related to each 

other, we should take a close look at each of the processes individually, 

Photoionization: In photoionization process the photon or electromagnetic wave is absorbed by the tar-

get (the simplest target is an atom) and an excited state is formed; a continuum state consisting of an 

ion and an electron, 

           E
(1.1) 

Electron-ion scattering/Radiative recombination:  Radiative recombination is the electron-ion scattering 

process that is the inverse process of photoionization.  An electron impinges on a positive ion and re-

combines to form a neutral target, with the excess energy being emitted in the form of a photon,  

           E
(1.2) 

A related process is electron-ion elastic scattering,  

           E
(1.3) 

In this process, the initial state is completely different from the initial state of the photoionization pro-

cess, but the final states can be exactly the same.  So how are these two processes related? 

In order to find the relation between photoionization and elastic electron-ion scattering we 

need to investigate symmetry in atomic processes, which in this case the symmetry is time reversal 

symmetry. In electron-ion scattering, a beam of mono-energetic electrons is shot at an ion, as a target, 

so the position of the target and the direction of the electron beam are known, in other words the en-

trance channel is unique. The scattered particles could go essentially in any direction, although the 

probabilities of finding particles in any direction are not the same. While in photoionization an atom has 

absorbed photon and knocked out an electron in to the continuum, and this electron is detected by de-

tector. Therefore we have unique direction for the photoelectron, or the exit channel is unique. So, the 

boundary conditions for scattering and photoionization are different. 
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For photoionization, the boundary condition is called the ingoing boundary condition, where we 

have an outgoing plane wave in a specified direction representing the photoelectron.  On the other 

hand, relevant to electron-ion collisions, there are outgoing boundary conditions which describes as a 

plane wave, an incident electron in a specified direction.  First we will talk about collisions, and then, 

using time reversal symmetry we can easily have photoionization formalism. 

1.2 Collisions (scattering) 

Incident mono-energetic electrons are represented by plane waves and the asymptotic wave 

function, including the scattering, is [19] 

     
                    

     

 
       

E
(1.4) 

Because in the time-dependent Schrödinger equation the stationary states are represented by       , 

the net phase for spherical wave is        , so the surface of constant phase propagates outward 

since 

             
  

  
 

 

 
        E

(1.5) 

the scattering wave functions can be represented by a sum of products of radial wave functions and 

spherical harmonics of the form 

                E
(1.6) 
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Figure1.1 Outgoing wave boundary conditions relevant to scattering 

 

with the radial wave functions governed by 

    
 

 
   

      

    
  

  
                                                                                                                     E

(1.7) 

If      
    

 
  the differential equation can be written as, 

  
  

  

  

   
       

      

    
                

E
(1.8) 

To get an idea how to solve the complete differential equation, let’s solve the differential equation for 

two special cases. First, since we know the solution for        (that can be considered as a spherical 

potential), which is the free particle or plane wave,  

          
  

  

  

   
  

      

    
                

E
(1.9) 

Second, if l    , the s-wave case,  

       
  

  

  

   
                 

E
(1.10) 

      
  

   
                                 

    

 
    

E
(1.11) 
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The solution is 

                              E
(1.12) 

 

           
     

 
   

        

 
   

) 

Since 
        

 
 is undefined when    , we pick the sin part only, and the normalization constant will be 

    , so 

              
        

 
    

E
(1.13) 

This is the s-wave (l=0) solution for the free particle (V=0). Then, we have to go from special case to 

general case, 

    
 

 
    

      

  
  

  

  
              

E
(1.14) 

Again the radial equation for free particle is: 

            
 

 
        

      

  
                   

    

 
     

E
(1.15) 

for all values of l including l=0. If we consider the solution for the radial differential equation of the free 

particle to be 

                       E
(1.16) 

then, substituting in the above equation,  

   
   

               
   

                  E
(1.17) 

Now, by making one more differentiation with respect to r, the recursion relation is 

  
   

                  E
(1.18) 

So, by having the solution for l=0, the solutions for the higher values of l can be calculated.  

In other words, we can introduce an operator that can calculate the solution for any l, 
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E

(1.19) 

The solution for l=0 is 

              
        

 
        

    

 
     

       

  
    

E
(1.20) 

and the solution for any value of l is 

       
 

 

 

  
 
 

              
 

 

 

  
 
 

    
       

  
    

E
(1.21) 

              
     

  
    

 

 

 

  
 

        

 
               

E
(1.22) 

 

 

 

  
 
       

 
  

 

 
 
        

 
 

       

  
     

E
(1.23) 

Asymptotically      , the second term  vanishes, 

 

 

 

  
 
       

 
  

 

 

        

 
 

       
 
 

    

  
 

              
 
 
 

  
    

E
(1.24) 

Since the effect of the operator  
 

 

 

  
 is known, to get the lth solution we have to do it l times, so the as-

ymptotic radial solution for V=0 (special case of spherical symmetry) and any value of l is 

 
    

    
               

 
 
 

 
   

E
(1.25) 

i.e., the non-zero angular momentum gives the asymptotic solution a phase shift with respect to the l=0 

solution. 

But what if we have spherical potential not equal to zero? If V≠0 the arguments inside parenthe-

ses have further shifted by another phase shift       which will depend on orbital angular momentum 

quantum number, l, and energy, k. It is called scattering phase shift, and since this quantity is the only 

part of the solution that carries the effect of potential, all the physical information about the collision 

dynamics will be contained in it. For more information, see Appendix A. 
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For the case that has shown in figure1.1 the asymptotic scattering solution (1.3) can be expand-

ed in spherical waves.  We can expand             in spherical harmonics as  

                    
            

  

    

 

   

  

E
(1.26) 

If we chose     to be in the z-direction, which makes sense owing to the azimuthally symmetry of the 

problem,                           , where     , and        , so that 

                   

  

    

 

   

   

E
(1.27) 

We know the solution for radial part          
               

 

 
       

 
  and angular part,      , so the 

only thing that should be determined the coefficient   . To calculate this coefficient the orthogonality 

relation of the       is used, 

     
 

  

            

 

   

               
 

  

         
E 

     
 

  

           
 

    
         

E
(1.28) 

which can be integrated by parts to obtain, 

             
             

  

 

  

       
     

  
        

              

  

   
 
  

       
 
     

 
     

  
     

       
 
     

 
     

  
     

         
  
 

 

  
   

E
(1.29) 

and by knowing the asymptotic form of spherical Bessel function, the coefficient    can be determined, 

        
      

  
 

 

 
   

E
(1.30) 

             E
(1.31) 

So that 
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E

(1.32) 

By using the identity 

           
  

    
     

         

  

    

       

E
(1.33) 

the equation (1.32) can be written as 

              
 

   

            
              

  

    

   

E
(1.34) 

which is the first part of the asymptotic relation of scattering (1.3). We know that we can use Schröding-

er equation for solving scattering problem therefore  

     
          

     
    

  
    

             
E

(1.35) 

and the solution for (1.35) is 

    
           

  

    

 

   

                       

E
(1.36) 

These two ways of writing the solution, (1.3) and (1.36) are the equal, so that we can write  

    
                                    

    
    

 
                     

               
  

    
            

       
  
 

 

  
 

  

    

 
    

 
    

 

   

 

                             

      
  
 

         
  
 

 

    
 

  

    

 

   

 
    

 
        

E
(1.37) 

In equation (1.36) the radial part is the solution of radial Schrödinger equation (1.14), and for the as-

ymptotic region with the potential the solution is 
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E
(1.38) 

Then equating coefficients of       in (1.37) and (1.38), we find 

        
    

      
                         

E
(1.39) 

If this coefficient is substituted in (1.38) then the scattering amplitude can be easily calculated as a func-

tion of        

       
 

   
                            

 

   

  
E

(1.40) 

1.2.1 Boundary conditions 

Scattering boundary conditions 

For scattering, the incident wave is given by 

                              
       

  
 

 

  
 

   

E
(1.41) 

                              
 

     
  
 

 
  

      
  
 

 

    
 

   

E
(1.42) 

                            
               

    
 

   
E

(1.43) 

Then, we can write the incident wave as 

             
 

    
                                     

 

 
E

(1.44) 

The total wave function, which is the sum of the incident wave and the scattered wave, can be written in 

the same format as (1.44), but with the scattering phase shift; therefore, the total wave function is 
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                             E
(1.45) 

               
 

    
                                                

 

  
E

(1.46) 

The question is that what the coefficients cl are, or what is the boundary condition by which cl can be 

determined?  If the incident wave function (1.44) is subtracted from total wave function (1.46) the scat-

tered wave function will be the result and from that the cl can be calculated, 

                           

 
 

    
                         

                            

 

    
        

E
(1.47) 

Also we can get scattered wave function by substituting the scattering amplitude (1.40) in  

            
    

 
       

E
(1.48) 

            
    

 
  

 

   
                           

 

   

   
E

(1.49) 

And by comparing (1.47) and (1.49) the coefficient cl can be determined as 

         E
(1.50) 

This is the solution with outgoing wave boundary conditions, 

               
 

    
                                                     = 

 

    
                                    

 

 
    

 
 

 

   
                           

 

   

   

E
(1.51) 

and the time dependent total wave function is 

    
                         

    

 
                    

 

 
   

E
(1.52) 
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This solution includes a plane wave is in the z direction plus  outgoing spherical waves.  

Photoionization boundary conditions 

As seen in figure1.2, for photoionization, in this case an atomic system, absorbs electromagnetic 

radiation, a photon, and ejects a photoelectron in a continuum state.  In this situation, the exit channel 

is unique and we have no net flux of electrons prior to the absorption of the photon. This final state 

wave function for the photoionization process is almost exactly the same as scattering wave function 

but with time reversal.  This suggests that we can make a connection between these two processes with 

time reversal symmetry. 

In classical mechanics, the equations of motion are symmetric with respect to     . In other 

words, the laws of classical mechanics work equally well under the transformation      and this is 

known as  time reversal symmetry.  But now, what is time reversal symmetry in quantum mechanics? 

 

 

 
Figure 1.2 Incoming wave boundary conditions relevant to photoionization 
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There are uncertainty relations between generalized position and momentum and also between 

time and energy.  Since there is no operator for time in quantum mechanics, the foundation of the time 

and energy uncertainty principle is completely different from what we have in position and momentum. 

So, what exactly is meant by time reversal in quantum mechanics?   The time evolution operator is given 

by 

                   
 

 
         

E
(1.53) 

The time reversed state is       and 

    
 

 
              

 

 
             

E
(1.54) 

Since 

    
 

 
          

 

 
         

E
(1.55) 

   
 

 
       

 

 
                 

E
(1.56) 

The       can be cancelled from both side, and if   is linear operator and 

               E
(1.57) 

Operating on both sides on an arbitrary eigenstate of the Hamiltonian, 

                                        E
(1.58) 

                          E
(1.59) 

Thus         is also eigenstate of Hamiltonian but with the eigen value    .  Consider a free particle 

with eigenvalue   . If the time reversal operator operates on that, we have free particle with negative 

energy, and that is not correct. So the time reversal operator is not linear operator. If   is anti-linear 

operator, 

               E
(1.60) 

                                      E
(1.61) 
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                         E
(1.62) 

In other words,    is an anti-linear operator.  So when time reversal operator in quantum mechanics op-

erate in addition to      we must have        [20]. 

Consider collision and photoionization as one dimensional problem: 

 
Figure1.3 Collision process in one dimension 
 

In this case (collision), figure1.3, the electron comes from left (A≠0), i.e.,  the entrance channel is unique. 

The incident electron can be reflected (B≠0) or transmitted (F≠0), but in region III there is no wave com-

ing from right to left (G=0). In other words G=0 is the boundary condition for this process where the 

electron is moving from left to right. 

1.3 Photoionization 

In photoionization, an atomic system absorbs electromagnetic radiation and by this absorption a 

continuum electron is created.  In this case for this emitted electron there is a unique exit channel. As-

suming the electron escapes to the left in figure1.4, since there is no free electron in the initial state it 

can be simulated by the dashed arrows so that there is no electron flux in initial state. 

In this case, the unique exit channel leads to A≠0, and as a result of initial state simulation the B 

and G coefficients also are not zero, but since there is no wave coming from left to right in region III the 

coefficient F would be zero. So F=0 is the boundary condition for photoionization.       
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Figure1.4 photoionization in one dimension 

 
So in a collision the outgoing wave is in the final state, and in photoionization the ingoing wave is 

in the initial state. Now we can say that these two states are connected to each other by the time rever-

sal symmetry. 

To calculate the total wave function for the photoionization process, we operate with the time 

reversal operator on the total scattering wave function which conforms to outgoing boundary condi-

tions to obtain the solution with ingoing boundary conditions, 

               
 

    
                                                

 

  
) 

In this case we choose          since the time reversal operator involves complex.  This choice is called 

ingoing boundary condition, 

               
 

    
                                                   

 

 
E 

 
 

    
                                            

 

   E
(1.63) 

The incident plane wave in scattering, as     is 

     
 

    
                                    

 

   
E

(1.64) 
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By subtracting the plane wave function from total wave function, the scattered wave function can be 

calculated (note that this scattered wave function is calculated with ingoing boundary condition). 

            
     

 
  

 

   
                             

 

   

  
E

(1.65) 

So the total wave function, with the ingoing wave boundary condition, is 

      
            

       

 

    
                                    

 

 
     

 
 

 

   
                          

 

    

E
(1.66) 

Now to get photoionization total wave function relevant to photoionization, we operate with the time 

reversal operator on (1.66), first (    ), 

      
            

       
    

 
 

 

   
                         

 

   
E

(1.67) 

We get the time dependent wave function by multiplying the total wave function with      , 

      
                             

    

 
 

 

   
                         

 

          
E

(1.68) 

Then to complete operating time reversal operator we should change t to –t in (1.68), 

      
                                  

         

 
 

 

   
                         

 

    
E

(1.69) 

The first term is the plane wave which is moving from left to right, representing the emitted photoelec-

tron, and in the second term the numerator of the ratio is the ingoing wave and all the angles should be 

measured with respect to the unique exit channel, so by changing      we have the correct picture 

of photoionization, 
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E

(1.70) 

Thus the solution of photoionization comes from the solution of collision though the time reversal sym-

metry [21,22].                                                                      

2.OSCILLATOR STRENGTH, PHOTOIONIZATION CROSS SECTION, AND ANGULAR DISTRIBUTION 

2.1 Introduction 

In the photoionization process the transition takes place from bound state to a continuum state, 

and this transition is effected due to the interaction between the electromagnetic field and quantum 

atomic system.   The matrix element for photoionization is given generally as 

          E
(2.1) 

where      is the initial state wave function,       is the final state wave function and   is the transition 

operator.  This matrix element is the probability amplitude for the transition from an initial state to the 

final state, and  

           
 

 E
(2.2) 

gives us transition probability, and this will be proportional to the intensity of absorption.  To calculate 

the matrix element, we need to obtain the initial and final state wawe functions, and the transition op-

erator.  And by knowing matrix element, in addition to photoionization cross section, the angular distri-

bution and spin-polarization parameters of the photoelectron emission can be calculated.   

For initial state one can use the Independent Particle Approximation (IPA), Hartre- Fock (HF) for 

non-relativistic self-consistent calculation, Dirac-Fock (DF) for relativistic self consistent calculation, Mul-

ti Configuration Hartree-Fock (MCHF) or multi-configuration Dirac-Fock (MCDF) if electron correlation is 

taken into account for non-relativistic or relativistic calculation, or Local Density Approximation (LDA) 

that we will talk about it in the next chapter.   
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It has been discussed above that the asymptotic form of the final state wave function for a non-

relativistic free photoelectron wave function according to ingoing wave boundary condition is 

           
     

 
                 

        

   
   

 

 
E

(2.3) 

If an electromagnetic wave is incident along the z-axis with polarization along the x-axis, the photoelec-

tron direction, defined by      makes angle of   with respect to polar axis (z axis) as shown in figure 2.1. 

The angular distribution of photoelectrons is determined, in the dipole approximation, by a single pa-

rameter known as the asymmetry parameter,  .   

 
Figure2.1 Photoionization and angle of the ejected photoelectron 

2.2 Photoionization cross section 

In the photoabsoption process, an atomic system absorbs a photon which excites the system.  

For a single-electron system, the Hamiltonian including the interaction with the electromagnetic field is 

given by [23,24,25], 

   
 

  
    

 

 
              

 

 
                   

   

 
    

E
(2.4) 

  
 

  
     

  

  
          

 
  

   

 
                                        

   

 
    

E
(1.5) 

In a weak field, i.e. few photons, the quadratic term can be ignored compared to the linear term 

(see Appendix B).  Then, using Coulomb gauge            , 
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E
(1.6) 

where, 

    
   

  
            

 

  
              

E
(2.7) 

and   is the perturbation order parameter,      is the electron charge,   is the mass of the electron, 

and    is the speed of light. By using first order perturbation and Fermi golden rule the expression for 

transition rate (transition probability per unit time) for photoabsorption resulting in a transition from 

initial state      to a final continuum state      effected by the transition perturbation operator is 

        

  
   

      

  
 

 

                       
 

             
E

(2.8) 

to an excellent approximation.  This transition rate is calculated for the particular case, the electromag-

netic wave is polarized along vector     and the electron is ejected along vector    , we may have 

unpolarized wave or possibility for the electron to eject in different angle. 

Differential cross section is defined as  
                                     

                                             
 . 

 
  

  
 
   

  

 
           

  
 

    
    

E
(2.9) 

By using the Maxwell equations and applying coulomb gage the intensity,     , can be calculated. 

                                 E
(2.10) 

                 
 

 

   

  
    

E
(2.11) 

                      E
(2.12) 

       
 

  
            

  

   
  

       
E

(2.13) 

And by substituting (2.8) and (2.13) in (2.9), and also use the fine structure constant (  
  

  
), the       

differential cross section is 
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E

(2.14) 

We can write the relation in terms of energy also, 

 
  

  
 
   

  

 
       

    
                        

 

           
E

(2.15) 

Along the     vector there may be other degenerate states with the transition    , so there is not a 

unique transition. Therefore the differential cross section should be multiplied by the number of states 

that have the transition with the same energy (See Appendix C), so, 

 
  

  
 
   

  

 
       

      
                        

 

 
 

  
 

 

 
  

  
     

E
(2.16) 

Now, the matrix elements can be calculated and substituted in (2.15). In first Born approximation the 

final state can be approximated as a plane wave so that 

                            
 

   
                                      

E
(2.17a) 

Since    is orthogonal to     

  
  

   
                 

                    
E

(2.17b) 

And if the angle between        and    is  , then                so that 

                        
     

   
            

                    
E

(2.17c) 

If (2.17c) is substituted into (2.16) the size of the box will be cancelled, and the result is independent of 

 .  The integral in (2.17c) is proportional to the Fourier Transform of the initial state wave function. If 

the initial state is describes by a hydrogenic 1s wave function,     
 

  
 

 

  
 

 

 
 

  
  

  ,  then the integral in 

(2.17c) is 
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(2.18) 

and the differential cross section can be calculated by substituting (2.18) in (2.17c) and then in (2.16), 

 
  

  
 
   

  

  
      

 

    
 

    
        

       
           

 
  

 
  

  
     

E
(2.19) 

In the high energy Born approximation the kinetic energy of the photoelectron is much larger than its 

ionization energy [25], 

   
    

 

  
        

    
 

  
     

    
 

  
  

 

  
 

   

   
 

  

   
 

  

  
      

E
(2.20) 

and if the polarization vector is along the x axis, then               : 

 
  

  
 
   

  

 
    

    
 

 

    
 

 
          

   
  

 
      

     
E

(2.21) 

For unpolarized light the average value of       should be used, 

        
 

  
          

 

 

  

 

    
E

(2.22) 

which gives 

 
  

  
 
   

           

 
    

    
 

 

    
 

 

           
  

 
          

E
(2.23) 

and total cross section is 

      
           

   
  

  
 
   

           

   
    

  

  

 
 

 

  
 

  

  
     

E
(2.24) 

By knowing     
    

 

  
  the total cross section for unpolarized light in first Born approximation is 

      
           

 
    

  

  

 
  
 

 
   

 
 

  
 
  

    
    

E
(2.25) 
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As can be seen in (36), the cross section in this approximation goes as            . If a non-

hydrogenic wave function is used in this calculation the cross section would be proportional to     ,   is 

the principle quantum number [26,27]. 

2.3 Oscillator Strength 

2.3.1 Classical Oscillator Strength 

Consider a classical interaction between electromagnetic wave and the electrons of an atomic 

system. The classical model assumes that the electrons oscillate about a certain mean position as they 

respond to the electromagnetic wave. As a result, there will be an induced dipole moment so the mac-

roscopic terms like atomic polarizability, polarization, or susceptibility can also be defined for this sys-

tem. An electromagnetic field and its electric intensity vector is described as 

         
            E

(2.26) 

With this electric field (2.26), the force on each atomic electron is given by         so that 

 
    

   
         

E
(2.27) 

Also a damping term, due to unspecified degrees of freedom, can be considered, 

 
    

   
           

   

  
    

E
(2.28) 

and this damped oscillator is driven by the external field (2.26), 

 
    

   
           

   

  
      

            
E

(2.29) 

The well-known solution for this damped-driven equation is 

        
 

 

  

    
         

                              
E

(2.30) 

where   is the frequency of the driving force, and      is the natural frequency of the oscillator. Note 

that the displacement goes to zero as    goes to zero; that means we have an induced dipole moment, 

or induced oscillating dipole moment.  
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Now we want to find the connection between oscillator strength, atomic polarizability, and the  

photoionization cross section. Atomic polarizability is defined as induced dipole moment per unit of   

electric field. 

                                          
    

     
    

E
(2.31) 

and also we know that dipole moment is proportional to displacement. 

        E
(2.32) 

So, by using (2.26), (2.30), (2.31), and (2.32) the atomic polarizability is 

  
     

     
 

    
 
 

  

    
         

          

     
        

  
  

 

 

    
         

    

E
(2.33) 

Since        , by factoring out          in the denominator we have 

   
  

 

 

                  
    

        
 

 
  

 

 

               
    
     

 

    
E

(2.34) 

If (2.33) is substituted in (2.30) we get displacement in terms of the polarizability, 

        
      

 
             

E
(2.35) 

And by substituting (2.35) into (2.32), the dipole moment is 

                           E
(2.36) 

To calculate cross section, at first the following question should be answered: What is the average pow-

er pumped to the atomic system by electromagnetic field?  To answer this question we will start with 

classical definition of the average power, 

    
 

 
        

 

 
 

  

  
   

 

 
 

      

  
   

 

 
   

  

 
        

 

 

 

 

 

 

 

 

      

E
(2.37) 

This is a real physical quantity so that 
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E
(2.38) 

By knowing the definition of electric field,     
  

 
      

        ,  the real part is 

   
  

 
    

  

 
                         

E
(2.39) 

And also the real part of the other term is 

                                  E
(2.40) 

             
   

 
                                          

E
(2.41) 

By substituting (2.41) and (2.39) in (2.38) we get 

      
 

 
  

  
  

 
 
                             

                            
  

 

 

      

E
(2.42) 

Only the first and the last term in curly bracket are time dependent and for calculating those terms for 

large interval of time      , since before    ,    was zero we can integrate them from      

    , so that 

               
 

 
     

    

    

  

E
(2.43) 

Since (2.43) will not zero at      , and if the frequency is zero there will be no oscillation, these two 

terms do not contribute in the integral. So (2.42) can be written as, 

      
   

 

 
                      

   
 

 
            

E
(2.44) 

Finally, the average power pumped into atomic system by electromagnetic field is given by 

       
   

 

 
             

E
(2.45) 

From equation (2.33), by multiplying both numerator and denominator by the complex conjugate of the 

denominator, the imaginary part of the polarizability can be calculated as 
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(2.46) 

Since        we have 

         
  

      

  
 

         
 

  
  
 

 
 

 

    

E
(2.47) 

If (2.47) is substitute in (2.45) we get 

      
    

 

  

  
 

            
  
 

 
 

 

    

E
(2.48) 

Now, we  define differential oscillator strength as 

  

  
 

 

 

  
 

            
  
 

 
 

 

    

E
(2.49) 

This is so defined that if one integrates the oscillator strength over the range of frequency from    to 

    the result would be unity (Appendix D). Then the average power pumped to the atomic system by 

electromagnetic field in terms of differential oscillator strength is given by 

      
 

 

    
 

 

  

  
    

E
(2.50) 

2.3.2 Quantum Mechanical Oscillator Strength 

In this part we will develop a quantum mechanical counterpart of the classical oscillator strength 

by using perturbation theory.  Assuming the perturbed state of    with energy    is  

              
 

    
           

 
    

 

 

   
E

(2.51) 

and the full Hamiltonian with the perturbation is  

                          E
(2.52) 

By using time dependent perturbation theory, we get 
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E
(2.53) 

where            
 

 
     .    

The dipole moment due to the mixing     and     is 

                            
 

 
          

          
 

 
              

 

 
E

(2.54) 

and substituting (2.53) in (2.54) gives  

     
  

 
          

     

  
         

 
      

  
         

 

 

          
E

(2.55) 

And a quantum mechanical definition of polarizability emerges by identifying the quantum dipole mo-

ment (66) as                         , and the quantum definition of the polarizability is then 

     
  

 
 

  

  
         

 

    
E

(2.56) 

so the oscillator strength is 

    
     

 
              

E
(2.57) 

In the quantum mechanical definition the oscillator strength, for a given transition it can be ei-

ther positive (in case of absorption      ) or negative (in case of emission       ), and, like the 

classical definition, the sum rule is valid here; it is known as the Thomas-Reiche-Kuhn sum rule (see Ap-

pendix E), 

    

 

    
E

(2.58) 

The equation (2.58) is the sum rule for a one-electron atom; if we have N-electron atom, the definition 

for oscillator strength is generalized to 
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E
(2.59) 

and the sum rule becomes 

    
   

 

    
E

(2.60) 

By considering all final states in (2.51), we can write 

                
   

   

 

   

 

 

    

E
(2.61) 

so that the area under the total cross section is proportional to the sum of all oscillator strength which, 

owing to the sum rule, is equal to the number of initial state electrons in the target system. 

2.4 The Angular Distribution of Photoelectrons: 

The presence of angle dependent terms in the differential cross section means that the photoe-

lectrons are not emitted isotropically but exhibit a characteristic angular distribution. To obtain angular 

distribution we start off with matrix element (2.17a) which can be written as 

                        
 

   
                     

E
(2.62) 

Also           can be expanded in terms of  
 

 
 , and by taking the leading term 

             E
(2.63) 

giving an approximation known as the “Dipole Approximation”. This approximation is good for large 

wavelengths or low energies.  In this approximation, the matrix element, 

                        
 

   
             

E
(2.64) 

This form of the matrix element is called the momentum or velocity form of the matrix element. Since 

we have the well-known commutation relation between momentum and position, the matrix element 

can also be written in position or length form 
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E
(2.65) 

                        
 

 
   

 

  
           

 

  
                 

E
(2.66) 

so it can be written 

                           E
(2.67) 

This result is correct for exact wave functions.  For approximate wave functions, the discrepancy be-

tween length and velocity forms gives some measure of the accuracy of the wave functions. Then, if 

(2.66) is substituted in (2.14), we have 

 
  

  
 
   

  

 
       

    
  

 

  
                

 

          
E

(2.68) 

Notice that the initial and final states are eigenfunctions of the unperturbed Hamiltonian, and from the 

previous chapter the final state of the photoelectron 

          
            
           

               
       

  
 

    

  
 

   

E
(2.69) 

And with the ingoing boundary condition,           , so 

          
            
                      

  

    
   

  
       

     

 

    

 
       

  
 

    

  
 

    

E
(2.70) 

then we can write 

                    
           

   

    
E

(2.71a) 

where 

                   
  

       E
(2.71b) 

and the hydrogenic initial state is 

                     
  

      E
(2.72) 
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x 

Considering the light polarization is along x axis,       ,  and the angle between     and x axis is         

(figure 2.3). Therefore the transition matrix element is 

                                       
  

 
  

               

E
(2.73) 

 
Figure2.2 Representation of the photoionization process with the photon incident along the z-axis.    is the angle between 

the polarization axis,       and the direction of the photoelectron    , and   is the angle between the projection of     , in 

the xy--plane and the polarization. 

 
It is useful to introduce a term that is called re-normalized spherical harmonics as follows 

  
        

  

    
  

        

E
(2.74) 

so we can write the matrix element as 

               
             E

(2.75) 

Now, by having final state (2.71a) and initial state (2.72) the matrix element can be calculated, 

               
                      

           

   

    
                    

         
E

(2.76) 

Then, 

                                       
 

 

     
        

            
        

   

 
E

(2.77a) 
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E

(2.77b) 

To get the matrix element of re-normalized spherical harmonics, we use the Wigner-Eckart theorem, 

      
                                               

            
   

E
(2.78) 

and, 

              
      

              
E

(2.79) 

where    is the greater of the l and l’, and    
      

 
. 

Then, if (2.78) and (2.79) are substituted in (2.77b) we have 

                                         
               

            
   

   

 
E

(2.80) 

Now we can substitute (2.80) in (2.68), 

 
  

  
 
   

  
   

 

    
                                     

               
          

           

                                                                        
               
           

                                           

E
(2.81) 

Note that in dipole approximation       , so we do not need to sum   from zero to infinity. 

Therefore we have only four terms. And by introducing energy dependent angular distribution asym-

metry parameter,  , the relation (2.81) simplifies to 

 
  

  
 
   

  

 
      

  
               

E
(2.82) 

called the Cooper-Zare formula [28], where the angular distribution asymmetry parameter is given by 

  
            

                  
                                   

              
             

  
  

E
(2.83) 

Because the total cross section and differential cross section are positive quantities, and by knowing that 

         
 

 
           and the limits for  ,  the limits for   are 
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(2.84) 

 
3.DENSITY FUNCTIONAL THEORY (DFT), LOCAL DENSITY APPROXIMATION (LDA), AND TIME DEPEND-

ENT LDA (TDLDA) 

3.1 Introduction 

Density functional theory is a very powerful tool used in many-body quantum computational 

physics. Unlike the other methods, instead of solving Schrödinger equation with many variables (posi-

tion of the nucleus and each of the electrons), in this method we try to solve a differential equation for 

electron density, that has only three variables for each point in space, and we use that to calculate wave 

functions and their energies. For this method some approximations must be used.  In this work, the Lo-

cal Density Approximation (LDA), and Time-Dependent LDA (TDLDA) are used these methods are dis-

cussed in detail in this chapter.      

3.2 Density Functional Theory (DFT) 

Density functional theory is based upon two mathematical theorems that were proposed and 

proved in 1964 by Hohenberge and Kohn [29] .These two theorems are: 

1. The electron density       in the ground state is a functional of the potential      . 

2. The potential       is unique functional of the density      . 

In other words, together, these theorems are equivalent to the assertion that the ground state energy 

   is minimum with respect to variations in the electron density       .   

By introducing the concept of functional variation, these two theorems can be stated more pre-

cisely. The energy of the ground state,   , characterizes the entire system. The electron density,       , 

depends upon the position,   . The functional derivative of the ground state energy with respect to the 

electron density, 
   

       
 , is a function of     ; this gives the change in the ground state energy at each 
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point as a function of the variation in density at that point. So, if F is a functional with linear and quad-

ratic dependences on the electron density, the functional derivative is 

                          
                                

E
(3.1) 

   

       
                                

E
(3.2) 

The total number of electrons in a system is usually fixed, N, and that is a constraint on the variation 

with respect to the density. The variation with constraints is handled by introducing Lagrange multipli-

ers.  So, the functional derivative of the ground state with respect to the electron density is equal to a 

Lagrange multiplier, which is constant, 

   

       
     

E
(3.3) 

               
E

(3.4) 

The single particle Hamiltonian for a single electron includes the kinetic energy,  , the nuclear 

potential energy,      , the self-consistent potential owing to the electrostatic fields of the other elec-

trons (the Hartree potential),       , and         which is a central-field approximation to the effects of 

exchange and correlation.   The sum of       , and         are an approximation to the excat potemtila in 

(3.1).  Furthermore, the kinetic energy term can be similarly constructed;  for non-interacting particles 

we have 

  
  

  
           

 

 

          
E

(3.5) 

According to the Hohenberg and Kohn theorem, the ground state energy including kinetic energy can be 

represented in terms of density. But how is (3.5) represented by the density?  The simplest way is using 

Thomas-Fermi approximation. Thomas and Fermi (TF) in the 1920s [30,31] suggested looking at atoms 

as uniformly distributed electrons (negative charged cloud) around nuclei in six dimensional spaces 
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(momentum and coordinate).   Using the Thomas-Fermi approach, the kinetic energy of the system can 

be written as a functional of the local electron density (see Appendix F) as 

                                   
 

  
          

E
(3.6) 

So, the first step for constructing a functional for the ground state energy is to add the TF kinetic energy 

to potential, (3.1) 

    
 

  
                                             

     
             

         
    

E
(3.7) 

Then by using (3.3) the chemical potential is 

  
 

 
           

   
             

        

        
    

E
(3.8) 

The, (3.8) can be solved to give the density as a functional of the screened potential 

      
 

   
                       

   
                     

        

        
    

E
(3.9) 

This result is not numerically very accurate. In order to increase the accuracy, the kinetic energy term 

must be changed to a better form. This can be done by introducing terms which involve the gradient of 

the density. This has been investigated extensively by Von Weizsacker in 1935 [32,33], 
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(3.10) 
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(3.11) 
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(3.12) 
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(3.13) 

The modern theory uses the wave function form of kinetic energy as given (3.5). Additional improve-

ments in the ground state energy are achieved by adding terms which include the effect of exchange 

and correlation. 
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3.3 Local Density Approximation (LDA) 

In this section we discuss the second remarkable paper on the Density Functional Theory by Kohn 

and Sham in 1965 [34]. They added some features to the theory which brought it to the form which is 

used today. Their theory is called Local Density Approximation (LDA). Their paper made a big contribu-

tions to the kinetic energy,        , and exchange-correlation,          , terms, that would be added to 

electron nucleus potential and self consistent terms 

                                 
     

             

         
    

E
(3.14) 

Kohn and Sham suggested a way to calculate kinetic and exchange-correlation terms that is the basis for 

LDA. 

3.3.1. Exchange-Correlation term 

Suppose         is the ground state energy per electron from the exchange and correlation in 

electron gas of uniform density   .  The total ground state energy from exchange-correlation is then 

               E
(3.15) 

where N is the number of electrons. If we express the number N as an integral over all space of the den-

sity, the exchange-correlation energy of the ground state is 

                     
E

(3.16) 

Kohn and Sham suggested that the inhomogeneous electron gas can be treated by replacing the con-

stant density,   , by the actual electron density,       

                          
E

(3.17) 

This assumption is the basis of the Local Density Approximation, LDA, version of Density Functional, DFT. 

This is a very good approximation when the density is slowly varying with the position,   . The Kohn-
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Sham method was a great improvement, since it cast the potentials as due to functional derivatives of 

the ground state energy terms, 

    
     

      
    

E
(3.18) 

The total LDA potential is given by 

                             E
(3.19) 

where        ,       , and       are respectively the exchange-correlation, self consistent, and the elec-

tron nucleus potentials.  

3.3.2. Kinetic energy term 

To calculate the kinetic energy the Kohn-Sham treatment, one simply uses the eigenfunction de-

scription of (3.5), so that in atomic units, 

             
        

 

   
E

(3.20) 

3.3.3. Ground state energy and electron density 

The ground state energy is the sum of the kinetic energy, (3.20), and potential energy, (3.19).  By 

taking the functional derivative of each of the terms of the ground state energy with respect to the 

Hermitian conjugate of the eigenfunction   
 , we have 

   

   
  

  

   
  

  

   
    

E
(3.21) 

Since the potential energy is a functional of density and the wave function   
 enters only though the 

electron density, the second term of the (3.21) can be written 

  

   
  

  

      

      

   
  

  

      
     

E
(3.22) 

And, for the kinetic term, it is 
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E
(3.23) 

Now, the variation of the eigenfunctions must be done with constraint of conserving the number of 

electrons, which introduces the Lagrange multiplier  , 

 

   
 
                    

E
(3.24) 

                                    E
(3.25) 

           
 

 

   
E

(3.26) 

The density is determined by summing over all the densities of the N electrons.  Then (3.25) and (3.26) 

are used to calculate the ground state energy self-consistently. The Schrödinger-like equation (3.25) is 

solved for the eigenfunction    for each occupied state  . These eigenfunctions are used to calculate the 

electron density, and the electron density is used to calculate the potential terms. This process is iterat-

ed until self-consistency is achieved. 

The final results of this calculation are two important quantities: (i) The electron density      , 

and (ii) The ground state energy   . The ground state energy is determined self-consistently in the 

eigenfunctions, and since we have the eigenfunctions, the density is the sum of the squares of the abso-

lute eigenfunctions.  Thus, the ground state energy can be written 

           
 

 

             
 

 
                  

E
(3.27) 

and the kinetic energy term can be evaluated using Kohn-Sham equation (3.25), 

       

 

      
     

             

         
                                        

E
(3.28) 

By using the definition of the exchange-correlation potential     as a functional derivative of the terms 

in the ground state energy the last term in (3.28) can be simplified to 
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E

(3.29) 

                                               
 
 
    

  
 
       

  
E

(3.30) 

This term is positive since the exchange-correlation energy is decreasing with increasing density. 

We used the eigenfunctions for the    and the eigenvalues for the   , but it is a mistake to think 

of these functions as representing wave function and energy of the one-electron state. There is no Ham-

iltonian defined for single electron. Therefore, there would be no wavefunction and energy eigenvalue 

for single electron. The way to think about these quantities is that    and    are just quantities which 

are computed while solving the LDA equations. So, the terms “Kohn-Sham eigenfunctions” and “Kohn-

Sham eigenvalues” are used for them. The only quantities that have physical interpretations are the 

ground state energy and electron density, which, at least in principle, can be measured experimentally. 

So far, since for filled shell atoms the spin plays a minor role in the theory, as it can be seen in 

the LDA equations (3.25), we haven’t considered spin of electrons in our calculation. For atoms that the 

shells are partially filled with electrons, the number of up spin-electrons may be different than the 

down-spin ones; in this case the exchange-correlation potential depends upon the spin of the electrons. 

In order to calculate partially filled shell atoms, the separate equations for each spin component plus the 

spin dependent exchange-correlation potential must be considered. These coupled equations make cal-

culation for unfilled shells much more complicated. These equations are discussed in Lundqvist and 

March [35]. All of our calculations will be for filled shell atoms, where the spin component, except for 

rules about the number of electrons in an orbital, is unimportant. 

By using LDA we have simple calculations and accurate results, but one should not forget that LDA 

is only an approximation for solving complicated DFT equations. The first approximation is used in the 

kinetic energy term. The kinetic energy is not a functional of density and is derived from independent 

particle states. The theorem of Hohenberg and Kohn says that the entire ground state energy is a func-
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tional of the electron density, and since the kinetic energy term is treated differently we make an ap-

proximation. The second approximation is using a local spherically-symmetric function for exchange-

correlation potential. The theorem is that the exchange-correlation potential is a function of the elec-

tron density, so making it a local function of electron density is an approximation. 

3.4. Linear and Non-linear Response 

Most experiments in atomic and condensed matter physics measure the response of a system to a 

relatively weak perturbation.  For instance, measurement of the absorption and photoionization of inci-

dent electromagnetic waves, electrical current in response to an applied electric field, magnetization 

induced by applied magnetic field, etc.  Linear response means that the measured signal is directly pro-

portional to the intensity of the perturbation, and the higher order response functions are proportional 

to higher powers of the strength of the perturbation. It is obvious that if the external incident or induced 

field is strong the concept of perturbation is not valid, and the power series description breaks down. 

3.4.1. Response Function  

The propagation of the electromagnetic waves in a medium is governed by Maxwell’s equations in 

the semiclassical theory of radiation. In particular, the displacement      and the electric field     are relat-

ed by 

               E
(3.31) 

 where     is the polarization or the induced dipole moment density of the medium. In linear response 

theory, the induced polarization is proportional to the electric field, so  

              E
(3.32) 

where   is the dielectric tensor. The polarization may contain non-linear terms as well, 

                                                    E
(3.33) 

where the superscript denotes the power of the electric field in each term [36].  The response functions 

can be shown as follow [37] 
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E
(3.34) 

where the summation convention on repeated subscripts is implied and the       
   

 are the response 

functions that are the subject to conditions which result from causality, and from the fact that the polar-

ization must be real if the electric field is real. The susceptibilities are appropriately summed Fourier 

transforms of the response functions, 

     
   

                       
 

  
      

   
                        

 

 
E

(3.35) 

where   refers to the sum over all terms obtained by permutation of                   , and  

     
   

                      

             
                   

                                                  

                            

E
(3.36) 

As an example, the induced polarization for a monochromic, long wavelength field up to third order in 

electric field can be written as 

                                                                    

                                    

E
(3.37) 

The first term is due to the permanent dipole moment, the second term is the linear response, and leads 

to the standard linear dielectric function.  The third term represents a static moment proportional to the 

square of the electric field and describes optical rectification [38], the forth term describes second har-

monic generation, and the fifth term leads to the nonlinearly of the refractive index, while it is responsi-

ble for the third harmonic generation.  
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3.4.2. Perturbation Theory 

Usually, time dependent perturbation theory is starting point for the description of the response 

of the system (e.g. atom or molecule) to an external field. So, in this section the derivation of the linear 

and non-linear susceptibilities using standard perturbation theory is presented. 

          Consider for a system, that governed by an unperturbed time-independent Hamiltonian         , a 

time-dependent perturbation, 

                         E
(3.38) 

where       is such that 

                 E
(3.39) 

Assume that at      the system is in a particular, normalized, non-degenerate state with the 

eigenstate   
   

     of the unperturbed Hamiltonian         , with energy   
   

 , 

             
            

   
   

 

 
              

E
(3.40) 

Also, it is assumed that the total Hamiltonian is Hermitian, the perturbation is significantly smooth and 

continuous in all time such that the normalization of      implies that the wave function is normalized 

for all the times. So, the system is governed by time-dependent Schrödinger equation, 

                        
 

  
              

E
(3.41) 

Consider a case that static perturbation turned on adiabatically. One could introduce the ansatz, 

                            E
(3.42) 

where        is the normalized eigenfunction of the total Hamiltonian, and    is the corresponding per-

turbed eigenvalue, that can be expanded in perturbation series, 

                

 

   

  
E

(3.43) 
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E

(3.44) 

By substituting these two expansions in (3.41) we have: 

                           E
(3.45) 

                                                 E
(3.46) 

                                                                             

 

   

 
E

(3.47) 

with  

                       E
(3.48) 

                                       

   

   

                

E
(3.49) 

and 

                         

 

   

  
E

(3.50) 

It is useful to introduce a wave function        with the so-called intermediate normalization, 

                     
         

    

 
   

E
(3.51) 

                

 

   

  
E

(3.52) 

               E
(3.53) 

                         E
(3.54) 

Then, it can be calculated that 

           E
(3.55) 

           E
(3.56) 
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(3.57) 

          
 

 
                 

 

 
                                     

E
(3.58) 

The wave function normalization to the appropriate order must be considered while calculating the ex-

pectation values.  Now we are interested in the solution of (3.41) using time-dependent perturbation 

theory, 

             
 

  
                

E
(3.59) 

             
 

  
                                                

E
(3.60) 

and we know that 

              

 

   

           
E

(3.61) 

A careful and consistent treatment of the secular and normalization terms that arise in the case of time-

dependent perturbation has been given by Langhoff [39]. Time-dependent generalizations of (3.45) to 

(3.47) obtain.  Considering a perturbation with sinusoidal time dependence of frequency  ,  

                                         E
(3.62) 

one has, 

              
               

              E
(3.63) 

              
                

                
           E

(3.64) 

with  

                   
   

                      E
(3.65) 

                    
   

                   
   

    
   

           E
(3.66) 

As can be seen, the first corrections involve changers to the energy of    , the second order shifts are 

    , etc. e.g.,  
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(3.67) 

The standard method of solution is to expand the perturbed functions in the complete set of 

eigenfunctions of the unperturbed Hamiltonian,          . Using static perturbation theory, if we choose 

the orbital                  in (3.55) we will have 

  
         

            

  
   

  
 
   

        

   

 
E

(3.68) 

For the case of long wavelength monochromatic electromagnetic waves incident on a dilute gas of at-

oms using this approach, the lowest order susceptibilities are 

               
       

       
 

   

 
E

(3.69) 

           
   

 
  

           

          
 

          

       
  

   

 
   

 
   

           

          
      

 
          

              
   

E
(3.70) 

where    is the number density of atoms, and 

                     

And 

E
(3.71) 

              E
(3.72) 

is a unit vector in the direction of the electric field, and   used for the summation of the terms that 

have both signs. 

3.5. Time-Dependent LDA (TDLDA) 

 It was assumed in the previous section that the eigenvalues and eigenfunctions for the unper-

turbed states are exactly known. Obviously, this is rarely the case, and the unperturbed eigenvalues and 

eigenfunctions are calculated in some approximate way, usually using a variational scheme such as 

Hatree-Fock, or LDA. In these cases, using a perturbation scheme that is consistent with the variational 
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principle to obtain the unperturbed states is important.  For example, for Hartree-Fock the starting point 

would be the Dirac-Fernkel time-dependent variational method [40].  

A local density approximation for the frequency dependent exchange-correlation potential using 

linear response theory was provided by Gross and Kohn [41]. Assuming an unperturbed inhomogeneous 

electronic system,          is the density of this system in a nondegenerate ground state of the external 

static potential      . If we have a small perturbing potential           , and corresponding density re-

sponse           , we get the relation between the Fourier components of these two quantities as 

                                               
      

E
(3.73) 

where the              is the density-density response function (defined below).  In the local density ap-

proximation, the density                     results  from a system which contains non-interacting par-

ticles in a single-particle potential     
            

   
      .  Thus, 

                          
         

   
         

E
(3.74) 

where           
     is the density-density response function of the non-interacting Kohn-Sham ground 

state corresponding to     
   

       that is given in terms of the Kohn-Sham eigenfunctions and 

eigenvaues,  

         
             

      
              

        

             
   

  
E

(3.75) 

where the          are the occupation numbers. 

The exchange-correlation part of     
   

 is defined as 

    
                       

           

        
         

   
        

E
(3.76) 

    
                        

                 
E

(3.77) 

where     depends upon the unperturbed ground state density, 
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E
(3.78) 

assuming that the inverse response functions exist.  In case of an homogeneous electron gas     is 

known, and the Lindhard expression takes the place of     .  So, 

   
          

  

  
           

E
(3.79) 

where         is the local field factor [42]. 

Assuming (i)          is sufficiently slowly varying so that         
  , and (ii)             is sufficiently 

slowly varying that can be replaced by            in (3.77), the time-dependent local density approxima-

tion for the electron gas is obtained, 

    
             

                             E
(3.80) 

It is obvious that these assumptions will break down when the frequency of the applied field is near an 

electronic resonance of the system. Nevertheless, this scheme provides very accurate results for linear 

and nonlinear response in many situations. 

           The time-dependent local density approximation (TDLDA) is actually linearized time-dependent.  

In other words, the prefix time-dependent is used to denote the process of calculating the potential is 

self-consistently. This method of calculating polarizability and cross section is called the time-dependent 

local density approximation (TDLDA).  

3.6. Photoionization    

As we discussed, the time-dependent local density approximation (TDLDA) can be used to calcu-

late the response of a system (e.g., atoms or molecules) to a time-dependent electric field. Consider a 

response of a single atom to electromagnetic waves. Dipole polarizability, which is a function of fre-

quency, is used to calculate photoionization cross section. For small frequency the polarizability is real, 

but for large frequency the atom can absorb the radiation and photoionize an atom. In this case the 

polarizability is a complex quantity and its imaginary part is related to the photoionization cross section, 
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E
(3.81) 

The LDA expression for dipole polarizability as a function of  , using (2.67) and(2.68), is 

                   

  

         
 

         
 

 

         
  

E
(3.82) 

where   is infinitesimal, and           . By calculating the imaginary part of (3.82) and using (3.81) 

with the Fermi golden rule expression for the absorption cross section, we have 

            
     

 
                             

  

  
E

(3.83) 

Now we define the threshold frequency     in relation to the ionization energy of the atom as 

                   Using LDA the ionization energy can be calculated very accurately. It can be done by 

finding the difference between the LDA self-consistent calculated ground state energy of the atom with 

N electrons, and another calculation for atom with N-1 electrons, 

                           E
(3.84) 

It can be shown that the eigenvalue of the highest occupied density functional orbital is the exact ioniza-

tion potential [43].   

In this research, the dipole polarizability is calculated using TDLDA, which is a complex quantity for 

frequencies larger than the ionization threshold. Since the LDA formalism is good for ground state prop-

erties but not for the excited state properties, TDLDA is used for photoionization cross section calcula-

tions.  

Consider the LDA expression for the polarizability as a function in (3.82).  In the case of the LDA 

calculation, the perturbation is z instead of the self-consistent potential. The factor    denotes that the 

initial state      is occupied, and factor        denotes that the final state      is empty so it is equal to 

unity.  Thus, the summation of matrix elements for finding polarizability is 
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(3.85) 

  
                 

 

             

           
  

E
(3.86) 

The first order change in   
          is calculated by operating on both sides of (3.86) by           , 

so that 

             
                              

 

                        

 

  
E

(3.87) 

The right hand side shows that the occupied states must be subtracted out, but, it turns out that this 

term is quite small, so there is no need to restrict the summation in (3.87) over m to unoccupied states. 

Then, averaging (3.82) with the expression obtained by interchanging the summation variables i and m, 
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(3.88) 

or  

      
  

 
           

  

        
 

         
 

 

         
   

E
(3.89) 

By interchanging the dummy variables i and m, it can be shown that        so that the final expression 

becomes 

                     

  

 
 

         
 

 

         
   

E
(3.90) 

By comparing (3.90) and (3.82) we see that there is no longer a restriction that the final state m must be 

unoccupied. For example, in the argon atom, the 3s and 3p subshells are fully occupied. In calculating 

polarizability, virtual transitions       and       are included with the former positive and the 

later negative. Thus, they cancel each other exactly, and do not affect the result. But this cancellation 

only occurs for the real part of the polarizability. But for calculating the photoionization cross section the 
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imaginary part of the polarizability is used, and unwanted transitions in photoionization spectra are ex-

cluded by avoiding the discrete values of frequency in the summation where they occur. 

In TDLDA, the inhomogeneous differential equation in (3.87) is replaced by 

             
                            

E
(3.91) 

                  
       

                  
      

      

 

 
E

(3.92) 

                          
E

(3.93) 

where            is the self-consistent potential. 

There are two possibilities in the solution of (3.93).  First if         , then    
            

 , and there will be no photoionization. The other possibility is that        ; in this case the pho-

toionization can occur for the electrons in i shell. In this process the electron absorbs the ingoing elec-

tromagnetic wave and leaves the atom. Therefore, we need to solve (3.91) with the ingoing boundary 

condition.  The Greens functions for the atomic orbitals can be written as 

             
        

      

       
 

    
E

(3.94) 

  
               

                               
          

    
E

(3.95) 

           E
(3.96) 

Note also that this same procedure can be used to find   
         .  

The factor    in the Greens function leads to the ingoing boundary condition. The first term on the 

right hand side of (3.95) is only present when     , because only then is there a homogeneous solu-

tion to the homogeneous differential equation. The eigenfunction     
     is the electron final state 

eigenfunction, when is exits the atom. Note that  , the coefficient of the homogeneous solution in 

(3.95), can take any value and (3.95) is still a solution.   Thus, the value of   should be chosen by physical 

arguments to insure the correct boundary conditions. 
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Since the homogeneous term corresponds to the incoming plane wave in the scattering case, and 

we do have any incoming plane wave in photoionization case, the value for   is zero. The electron 

eigenfunctions for the outgoing continuum states, which are discussed explicitly in chapter 2, are 
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(3.97) 
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(3.98) 

The radial part        is the solution of the homogeneous differential equation. 

  
  

   
 

      

  
                      

E
(3.99) 

and the asymptotic form for the solution is 

         
 

  
             

  

 
   

E
(3.99) 

The equation (3.99) is second order, so it has two solutions; the second one,       , has the asymptotic 

limit –
 

  
              

  

 
  and is irregular at origin. In any case, to obtain the correct asymptotic 

form , the outgoing wave solution is 

                       E
(3.100) 

The radial part of the Green’s function, after averaging over angle, is 

      
     

 

  
                  

E
(3.101) 

where    and    are the lesser and greater of       , respectively. In the photoionization (ingoing 

boundary condition) case the solution for inhomogeneous differential equation using Green’s function’s 

method is 
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(3.102) 
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and the asymptotic form is 

   
                        E

(3.103) 
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(3.104) 

These equations were derived and solved by Zangwill and Soven [44]. 

3.6.1. Numerical Methods  

In order to solve homogeneous equation, we define 

                E
(3.105) 

so that the numerical solution in the asymptotic       region is 

                                          E
(3.106) 

                                      
  

 
   

E
(3.107) 

where    and    are spherical Bessel and Neumann functions, respectively.  Also, this asymptotic solution 

has two constants; amplitude    and phase shift  . These two constants are obtained by fitting the nu-

merical solution at two different points to the analytical formula (3.107). This procedure is to calculate 

the eigenfunction which is a solution to the inhomogeneous equation. Now, for solving inhomogeneous 

equation we define a new variable as follows to be the solution for inhomogeneous equation with ingo-

ing boundary conditions, 

                    E
(3.108) 

We start of by calculating the LDA solution.  In this case all the radial functions (      ) are real, 

except those states where the electron is in an outgoing wave. Only the outgoing wave has complex part 

that contributes in calculating cross section. The method is a simple variation which was suggested by 

Senatore and Subbaswamy [45] as follows: 

1. Define       , where     and      are determined as follows: 
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2.      is the solution for homogeneous equation as        by iterating outwards form the 

origin with the initial conditions that      and     . The asymptotic form for that, 

                                   
  

 
   

E
(3.109) 

3. The constants are obtained by fitting the numerical solution at two points of the analytical form. 

4.      is calculated by iterating the inhomogeneous equation          outwards from the 

origin with the initial values of          , where             for the outgoing wave. The 

asymptotic form for      is 

                                   
  

 
   

E
(3.110) 

5. The constant  , and the function      are 

                  
  

  
          

E
(3.111) 

                         
  

  
              

E
(3.112) 

6. By substituting the asymptotic relation for      and     in (3.112) we get 

                       
  

 
                   

  

 
     E

(3.113) 

Since the         term is canceled,  (3.114) is pure outgoing wave, 

                
  
 

   

where, 

E
(3.114) 

               E
(3.115) 

The function      is regular at origin and, as r become larger, it becomes an outgoing wave; also it is a 

solution to the inhomogeneous differential equation. Since      has an imaginary part, it contributes to 

the photoionization cross section.  Then, equation (3.81) can be rewritten as, 
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E

(3.116) 

where   is fine structure constant, and the imaginary part of      contributes to the imaginary part of 

the perturbed density     . 

Coefficient   is given in to different relations, (3.104) and (3.115). Since these two equations give 

the same numerical result, the theory is consistent. Also this identity provides a check on numerical ac-

curacy of the calculation. 

The above procedure is the LDA calculation of the cross section, where the external potential is z 

instead of    . We use a somewhat different procedure if the full self-consistent field is used for external 

potential in (3.91), since both      and     are complex.  In this case, every function in           is com-

plex and contributes in the cross section calculation. As a result, the numerical procedure needs to be 

different when                  is complex. Specifically, the procedure is: 

1.        the eigenfunctions           go to zero outside of the atom.  

a. Define       , with the same condition that discussed before.  

b. By integrating outward form origin         and         are determined. 

c. Define         such that: 

       with the boundary conditions:               

         with the boundary conditions:              

and determine         and         . 

d. Now we have values for    and   .  The functions and their derivative must be equal 

                      , E
(3.117) 

                               
 

    
 

   
 
  E

(3.118) 

where a and b are unknown. The quadratic equation are solved to find these two unknown constant; 

thus, the solution for     is obtained for all values of r.  
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2. For         the eigenfunctions are outgoing waves and the procedure is the same as in 

LDA with some modifications. Like the previous case      is real since this function does not 

involve     .       is complex and has different asymptotic form, 

                                           
  

 
                 

  

 
   

E
(3.119) 

The real and imaginary parts of       has different phase shifts (  ,   ), so the coefficient   

in (3.112) becomes 

                         
   

  
     

          
       

E
(3.120) 

                                      E
(3.121) 

                                                   E
(3.122) 

By using the self-consistent potential in computing the photoionization cross section, all the 

eigenfunctions will be complex. However, the numerical methods are the same, except that complex 

numbers are used in computing. 

4. RESULTS AND DISCUSSION 

4.1. Introduction  

In this research, since the interest is in low-energy photoionization, starting at the threshold of the 

valence shells, it is crucial to employ a theoretical model which includes coupling of the atomic photoioniza-

tion channels with the huge low-energy plasmon resonances of the surrounding fullerene [2,3,4]. Further-

more, since the valence electron wave functions of an atom are typically of large spatial extent, it is neces-

sary to allow for the possibility of mixing of the initial state wave functions of the atom with those of the C60 

shell, i.e., hybridization of the atomic wave functions.  Thirdly, the inclusion of correlation is of importance 

to ensure the accuracy of the calculations. A methodology which includes all of these effects is our jellium-

based time-dependent local density technique which includes interchannel coupling, hybridization and sig-
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nificant aspects of correlation [46].  This methodology has been used in the past and has predicted a huge 

increase of atomic photoionization channels owing the interaction with the plasmons of C60 (interchannel 

coupling) [47,48,49] along with significant effects of hybridization [46,50].  

In the following section, a brief discussion of the theory and calculational methodology are present-

ed.  Next a detailed account of the results are presented and discussed.   

4.2. Calculation  

Nonrelativistic density functional theory is used to obtain the structure of the C60 fullerene cage.  In 

the formulation for the C60 ground state, the four valence electrons (2s22p2) of each carbon atom are delo-

calized, a total of 240 delocalized electrons, while the core C4+ ions (each consisting of a carbon nucleus plus 

two very tightly bound 1s electrons) are represented by a classical spherical jellium shell (with radius 

        , thickness Δ), and a constant potential depth    [51]; the details of the calculation were present-

ed in [17].  The energy levels and designations of the electronic states of the free C60 molecule are shown in 

Table4.1.  The entrapped noble gas atom is placed at the center of the C60 shell and the Kohn-Sham equa-

tions for the 240 + N-electron system (240 cage electrons and N=2 for He, N=10 for Ne, N=18 for Ar, N=36 

for Kr, N=54 for Xe,…) are then solved to obtain the ground state wave function of the system in the local 

density approximation (LDA). As the exact form of     is unknown in a local formalism like LDA (since the 

exact exchange interaction is non-local), A widely-used parametric exchange-correlation potential is used in 

the calculation [52].  The parameters    and Δ are determined by requiring both charge neutrality and ob-

taining the experimental value, 7.54 eV, for the first ionization potential. This procedure yields Δ=1.5, in ex-

cellent agreement with experiment [53]. 

Table 4. 1. Calculated binding energies of the occupied states of free C60 in atomic units (au). 
1s -1.392378 

1p -1.369104 

1d -1.322853 

1f -1.254177 

1g -1.163832 

1h -1.052725 
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1i -0.921855 

1j -0.772279 

2s -0.645068 

2p -0.618723 

1k -0.605075 

2d -0.567211 

2f -0.491933 

1l -0.421323 

2g -0.394359 

2h -0.276164 

 

To remove the unphysical self-interactions in the LDA potential, a self-interaction correction was in-

troduced into the potential [54,55].  The importance of doing this is that the potential with this correction 

has the correct asymptotic form. However, since the self-interaction correction is orbital-dependent, this 

renders the LDA potential orbital specific, i.e., electrons in the different states are subject to somewhat dif-

ferent potentials. 

A time-dependent LDA (TDLDA) method [12] is employed to calculate the dynamical response of the 

system to the external dipole field, i.e., the photoionization cross section. The perturbation z, the dipole 

interaction for linearly polarized light, induces a frequency-dependent complex change in the electron den-

sity arising from dynamical electron correlations. This can be written, using the LDA susceptibility  , as 

                  
                  

E
(4.1) 

With 

                          
         

        
      

    

  
 
    

         
E

(4.2) 

where the second and third terms on the right-hand side are, respectively, the induced change of the 

Coulomb and the exchange-correlation potentials.  In addition to the external perturbation z,    also 

includes the dynamical field produced by important electron correlations. The photoionization cross sec-

tion is then calculated as the sum of independent partial cross sections         corresponding to a dipole 

transition        as 
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E

(4.3) 

where details of the calculation of the continuum wave functions      is given in [17]. Clearly, replacing    

in (4.4) by z yields the LDA cross section that entirely omits any correlation. 

4.3. Valence Photoionization of Noble Gas Atoms Confined in the Fullerene C60 

4.3.1. He@C60 

Using the density functional methodology, described above, calculations have been performed for 

the energies and wave functions of the ground states of the free He atom and the free C60 molecule, along 

with the energy levels and wave functions for He@C60.  In the combined system, He@C60, an interesting 

phenomenon occurs ─ hybridization.  This effect is depicted in Figure4.1 where the wave functions of the 

free He 1s (localized in the atomic potential), the free C60 2s (localized in the C60 shell potential), and the 

wave functions of these s-states in the combined He@C60 system, which are termed 1s+ and 1s-, are shown.  

It is clear from Figure4.1 that these s-state wave functions in the He@C60 system have significant amplitude 

in both the atomic and shell regions of the combined potential, i.e., a hybridized mixture of atomic and shell 

states.  This phenomenon was seen earlier [50] and can be explained qualitatively via perturbation theory.  

The mixing coefficient from that point of view is the matrix element of the perturbing potential between 

the unperturbed atomic and shell states divided by the (unperturbed) energy difference.  This suggests that 

the He 1s state, 1.028 au, lies roughly half way between the 1s (1.392 au) and 2s (0.645 au) of free C60 (see 

Table4.1), so there is no near-degeneracy.  But, as seen in Figure4.1, there is a large overlap between He 1s 

and C60 2s, which results a large interaction matrix element and significant hybridization. On the other hand, 

there is essentially no hybridization between the 1s of He and the 1s of C60, even though the energy differ-

ence between these states is about the same as the 1s of He with the 2s of C60, because there is almost no 

overlap between the two 1s wave functions.  The fact that there is no hybridization between states of dif-

fering angular momentum results because the Hamiltonian of the system is spherically symmetric and, 
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thereby, commutes with the orbital angular momentum operator; thus, the matrix element of the Hamilto-

nian between states of different orbital angular momentum vanishes. 

 

Figure4.1 Wave functions of 1s of free He, 2s of C60 and hybridized states of He@C60 

 
It is of interest to note that the binding energies of the two hybridized states, 1s+ and 1s-, are about 

0.663 au and 0.687 au, quite close to the energy of the unperturbed C60 2s state (0.645 au) but quite far 

from the 1s energy (1.028 au) of free He.  This is not accidental.  In the combined system, the potential of 

the He atom perturbs the shell states, while the shell potential perturbs the 1s of He.  Since the shell poten-

tial is so much larger than the atomic potential, in a general sense, it is evident that, in the combined sys-

tem, the atomic energy levels should be altered much more than the energies of the shell states.  This is 

exactly what is found numerically for He@C60.  Furthermore, as a corollary, this implies that in cases where 

there is no hybridization, the atomic energies of the combined system will experience much greater chang-

es from the unperturbed energies than what will be the case for the shell state energies. 



58 

 

 
Figure 4.2 Cross sections of 1s of free He, 2s of C60 and hybridized states of He@C60 

 

Using these initial-state wave functions, the photoionization cross sections are obtained using the 

TDLDA methodology as described in the previous section.  Since He has just a single 1s shell, and this 1s is 

hybridized, as discussed above, it is no longer possible to ask how the confining shell modifies the He pho-

toionization cross section; all one can do is look at the cross sections of the various subshells of the com-

bined He@C60 system.  In Figure4.2, the cross sections for the hybridized states, 1s+ and 1s-, are shown, 

along with the cross sections of the states that mix to form these hybridizations, free He 1s and free C60 2s. 

The free He 1s cross section is seen to be featureless and monotone decreasing from the threshold value of 

about 8 Mb.  The free C60 2s cross section is significantly larger, more than 30 Mb, in the threshold region 

(note the log scale), which is somewhat below the He 1s threshold, where it contributes to the well-known 

plasmon resonance in free C60 [2,3,4].  At higher energy, it falls off very rapidly, falling below the He 1s cross 

section around the He 1s threshold despite a second maximum in the 40 eV region contributing to the se-

cond (much smaller) C60 plasmon, and dropping much faster than He 1s at still higher energies.  In addition, 
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the free C60 2s cross section exhibits numerous minima which are analogous to the Cooper minima of at-

oms.  Thus, since the mixing of these state in the 1s+ and 1s- wave functions is roughly 50-50, it must be that 

the 1s+ and 1s- cross sections emulate C60 2s in the near-threshold region, where the C60 2s cross section is 

by far the larger, and will be much closer to the He 1s cross section at higher energies for a similar reason; 

this is exactly what is seen in Figure 4.2.  Near threshold both 1s+ and 1s- cross sections are quite large, 

compared to He 1s, reflecting the influence of C60 2s, and at the larger energies, they are close to He 1s.  In 

the intermediate energy region, where the two unperturbed cross sections are comparable, the 1s+ and 1s- 

cross sections are complicated owing the existence of interferences in the coherent addition of the matrix 

elements; the deep Cooper minimum in the 1s+ cross section at about 50 eV, which is not where the unper-

turbed C60 2s cross section shows a Cooper minimum, exemplifies this behavior.  

However, this cannot be the entire story.  Looking carefully at Figure 4.2, it is noted that both the 1s+ and 1s- 

cross sections maximize at about 100 Mb in the threshold region; far larger than the free C60 2s cross sec-

tion.  It is, thus, evident that the 1s+ and 1s- cross sections are not simply fractions of the free C60 2s cross 

section determined by the squares of the relative amplitudes of the discrete C60 2s and hybridized wave 

functions in the shell region, depicted in Figure 4.1.  This implies that the change in the total potential en-

gendered by the He atom inside the C60 cage changes not only the initial discrete wave function , e.g., hy-

bridization, but also the final state wave functions and the interchannel coupling among them.  It is known 

that interchannel coupling has a large effect upon the atomic photoionization cross sections of non-

hybridized states trapped atoms in the plasmon region [3,56,4], so it is no surprise that significant 

interchannel coupling exists for hybridized states as well.  And this is why the 1s+ and 1s- cross sections are 

both significantly larger than the free C60 2s cross section in threshold region which is also the energy region 

of the lower-energy C60 plasmon; the interchannel coupling caused mixing of the 1s+ and 1s- channels with 

the matrix elements of the (very large) C60 photoionization channels contributing to the plasmon. 
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At the higher energies, shown in Figure 4.3, it is evident that both the 1s+ and 1s- cross sections are 

dominated by the contribution of He 1s.  The 1s+ and 1s- cross sections are seen to be about equal in magni-

tude, except for the oscillations exhibited by both; oscillations not seen in the unperturbed He 1s cross sec-

tion.  These oscillations are known as confinement resonances, or confinement oscillations [57,58,55,59], 

and are the result of interferences of the continuum photoelectron wave emerging directly, and after re-

flection from the inner or outer edges of the confining potential.  These oscillations are ubiquitous, and al-

ways occur for atoms confined in a potential [60,58].  The details of these confinement oscillations differ 

from atom to atom and even from subshell to subshell within a given atom.  Looking at Figure 4.3, it is seen 

that the 1s+ and 1s- cross sections exhibit these oscillations of the same amplitude and period, which simply 

reflects the geometry of the confining potential [57].  However, the details of the phases of these oscilla-

tions, exactly where the maxima and minima are, also involve the details of the atomic wave functions.  This 

notion shall be reinforced as the photoionization cross sections of the other noble gases are presented be-

low.  Note also that interchannel coupling is not important for the atomic cross sections in the higher ener-

gy region where the C60 photoionization channels are not much larger than the atomic cross sections; here 

they are smaller so that any mixing does not cause any appreciable change in the atomic cross sections. 
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Figure4.3 Cross sections of 1s of free He, 2s of C60 and hybridized states of He@C60 at higher energies 

 

4.3.2.  Ne@C60 

Looking at Ne@C60, the situation differs somewhat in that the entrapped atom, Ne in this case, is it-

self a multishell system.  The 1s and 2s discrete wave functions, whose binding energies are calculated to be 

33.17 au and 1.71 au respectively, do not exhibit any near-degeneracy with the energy levels of C60 (Ta-

ble4.1) and do not overlap appreciably with the C60 1s or 2s wave functions; as a result they are not hybrid-

ized.   

The Ne 2p state, on the other hand, with energy 0.89 au, does overlap the C60 2p, which is bound by 

0.62 au, and is hybridized, much like the He 1s case.  The situation is shown in Figure 4.4 where it is seen 

that the hybridized wave functions of the combined Ne@C60 system, labeled 2p+ and 2p-, are roughly a     

50-50 admixture of Ne 2p and C60 2p. 

The binding energies of the two hybridized p-states of the Ne@C60 system are found to be 0.64 au 

and 0.66 au; quite close to the unperturbed 2p state of free C60.  This is substantially the same as the He 
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case, discussed above, and occurs for the same reason: The Ne potential perturbs the C60 by only a small 

amount percentagewise, but the C60 potential exerts a significant perturbation on the Ne atom, thereby re-

sulting in the hybridized levels being much closer to unperturbed C60 than unperturbed Ne. 

 
Figure4.4 Wave functions of 2s of free Ne, 2s of C60 and hybridized states of Ne@C60 
 

The cross sections for the free Ne and C60 2p states, the states that mix to form the hybrids, are 

shown in Figure 4.5, along with the hybridized state cross sections.  The free Ne 2p cross section is seen to 

be relatively flat and featureless, except for the autoionizing resonances leading up to the 2s ionization 

threshold; these are      resonances. The non-resonant cross section is seen to be a bit below 10 Mb 

over the entire range shown.  The free C60 2p, on the other hand shows a cross section which maximizes at 

close to 100 Mb in the 20 eV (plasmon) region; and shows another maximum in the 35 eV region, the region 

of the second C60 plasmon, which is somewhat obscured by a Cooper minimum just at 40 eV.  The       

resonances are also seen in both the 2p+ and 2p- cross sections occur at higher photon energy than is the 

case in free Ne.  This occurs because the Ne 2s threshold energy in Ne@C60 increases by about 2.5 eV, as 
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compared to free Ne; thus, the resonances are about 2.5 eV higher.  Note that these resonances occur at 

exactly the same energies in the 2p+ and 2p- cross sections, as they must; the resonance energies are a 

property of the resonances themselves, not the channels that they decay to.  However, it is clear that the 

manifestation of these resonances in rather different in the 2p+ and 2p- cross sections, as seen in Figure 4.5. 

In any case, in the threshold (plasmon) region, it is seen from Figure 4.5 that both the 2p+ and 2p- cross sec-

tions are larger than the free C60 2p cross section, similar to what was found for the He@C60 case.  And as in 

the He case, the reason for this is the interchannel coupling of these channels with the photoionization  

channels of C60 that contribute to the plasmons. 

 
Figure4.5 Cross sections of 2p of free Ne, 2s of C60 and hybridized states of Ne@C60 

 

At the higher energies, the cross section is dominated by the atomic 2p-like behavior since the C60 

shell cross sections are much smaller here, as seen in Figure 4.6.  In addition, the confinement oscillations in 

both 2p+ and 2p- cross sections are quite evident. These behaviors are quite the same as was seen in the 

He@C60 case, and for the same reasons.   The fact that the C60 shell cross sections for the 2p (and other) 
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channels are so small in the higher photon energy region is a result of the delocalization of the valence or-

bitals.  With increasing energy, the matrix element is generated closer and closer to the nucleus, and delo-

calized orbitals by their very nature, have small amplitude near the nucleus.  Actually, the model potential 

used herein over-emphasizes this effect somewhat by “smearing out” the effect(s) of the 60 carbon nuclei 

of the C60.  However, even using a more realistic model, these delocalized orbitals would not have much 

amplitude in the vicinity of the carbon nuclei, so the argument remains valid; at the higher energies the 

cross sections of the delocalized C60 states will be much smaller than the cross sections of the atomic orbit-

als, hybridized or not. 

 
Figure4.6 Cross sections of 2p of free Ne, 2p of C60 and hybridized states of Ne@C60 at higher energies 

 

The 2s wave function of Ne is not hybridized in Ne@C60, as discussed above.  Furthermore, its ioniza-

tion threshold is well above the plasmon region, so the C60 cross section is small which means that one 

wouldn’t expect much in the way of interchannel coupling.  In other words, the 2s photoionization cross 
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section of confined Ne should be pretty much like the cross section for free Ne, except for the confinement 

oscillations brought about by the geometry of the confinement.  This is exactly what happens, as seen in           

Figure 4.7.  These results are quite similar to what is predicted using a simple static model of the C60 poten-

tial on the trapped atom where interchannel coupling with C60 shell photoionization channels is omitted 

[57]. 

 
Figure4 ‎0.7 Cross sections of 2s of free Ne, 2s of Ne inside Ne@C60 

 

The confinement resonances are seen to decrease in amplitude with increasing energy, just as the 

simple model predicts [54,55,56].  This agreement with the simple model further suggested by the 1s cross 

section of the trapped Ne atom, shown in Figure 4.8.  Here again, an atomic-like cross section is seen, mod-

ulated by confinement resonances.  It must be pointed out, however, that, since the 1s photoionization of 

the carbon atoms of the shell are omitted from the present calculation, any interchannel coupling of the Ne 

1s cross section with the C 1s from the shell is, of course, omitted.  But, interchannel coupling is only im-
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portant when a channel with a small cross section is degenerate with a large one [57].  In this case, since the 

Ne 1s threshold is well above the C 1s threshold, the total cross section for the1s of all 60 carbon atoms of 

the shell, which can be estimated from the cross section for free carbon [58,59], is only slightly larger than 

the Ne 1s cross section.  Thus, the omission is not likely to have a significant effect on the 1s photoioniza-

tion of trapped Ne.  In any case, scrutiny of the 1s and 2s photoionization of encaged Ne gives a good indi-

cation of where the simple model might be useful. 

 
Figure4.8 Cross sections of 1s of free Ne, 1s of Ne inside Ne@C60 

4.3.3.  Ar@C60 

A previous calculation of 3p photoionization of Ar@C60 has been reported [47] using the same meth-

odology as used herein, but completeness dictates that some of that presentation should be repeated.  The 

situation for caged argon, Ar@C60, is somewhat different than the previous cases in that no significant hy-

bridization results in this case [47].  Of the Ar wave functions, only the 3p orbital shows any hybridization at 

all, as shown in Figure 4.9.   Due to the entrapment, the C60 2p orbital acquires a small “image” of the atom-

ic 3p wave at small distances, and the Ar 3p wave function exhibits a bit of the C60 2p wave function at in-
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termediate distance from the center of the molecule.  In other words, although they are slightly perturbed, 

the Ar 3p and C60 2p wave functions retain their essential characters in the Ar@C60 molecule. 

 
Figure4.9 Wave functions of 3p of free Ar, 2p of C60 and atomic and shell states inside Ar@C60 

 

The 3p photoionization cross sections for free and confined Ar are shown in Figure 4.10 where a re-

markable difference between the two is noted;  the confined 3p cross section is almost two orders of mag-

nitude larger that its counterpart in free Ar.  With increasing energy, this difference gets smaller, but re-

mains until about 40 eV, or just above the higher-energy plasmon in C60.  To emphasize how large this dif-

ference really is, the integrated oscillator strength for the 3p of free Ar from threshold to 40 eV is found to 

be about 4.85, or most of the six electrons in the 3p subshell.  By way of comparison, the integrated oscilla-

tor for 3p of the confined atom is 60.2!  This is greater than the total number of electrons in the Ar atom, 

not merely the six of the 3p subshell.  Thus, since there is no appreciable hybridization of the 3p discrete 

wave function, this phenomenon must be due to correlation in the final (continuum) state of the photoioni-

zation process, interchannel coupling with the C60 photoionization channels.  Furthermore, since the shell 

contains 240 non-localized electrons, it is evident that an appreciable fraction of the strength is transferred 
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to the Ar 3p channel via interchannel coupling.  Mathematically, this can be represented using the Fano 

continuum configuration interaction formalism [60].  Defining the unperturbed (free) Ar 3p dipole matrix 

element as       , and the perturbed matrix element (perturbed by interchannel coupling) as M3p(E), then 

the perturbed matrix element, at energy E, is given by 

                   

      
   

 
      

        

    
  

     
     E

(4.4) 

where      and     are the unperturbed final continuum state wave functions for 3p photoionization of 

free Ar and nl photoionization of the C60 shell,                  , and the sum is over all of the delocalized 

electrons of the C60 shell.  In the threshold region, where the perturbed 3p cross section is so much larger 

than the unperturbed, the second term in (4.4), the interchannel coupling term, dominates owing to the 

strength of the matrix elements of the delocalized electrons,    , which collectively form the huge plasmon 

in this energy region.  With increasing energy, the interchannel coupling contributions become smaller, as 

the     decrease with energy and the energy denominator in (4.4) reduces the contributions from the low-

energy plasmon region, and by 40 eV, interchannel coupling is relatively unimportant. 

Looking at the higher energy region, shown in Figure4.10, the Cooper minimum [61] in the free 3p 

cross section is seen in the 40 eV region, and this Cooper minimum is reproduced in the confined cross sec-

tion just a few eV higher.  Above the Cooper minimum region, the free and confined cross sections are quite 

similar, except for the confinement oscillations exhibited by the confined cross section. Since the Cooper 

minimum is so sensitive to any kind of interaction with the system or correlation effect [62], it is clear that 

the effect(s) of the cage on the 3p cross section is quite small, from the energy of the Cooper minimum re-

gion and above; this indicates further that the simple static model should be adequate in this energy region. 

Also evident in both the free and confined 3p cross sections are the 3s→kp resonances which appear as 

window resonances in both cases; these window resonances are known experimentally for the free Ar at-

om. However, it is also seen that these resonances show up at lower photon energy in the confined case, 
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reflected the fact that the Ar 3s subshell is less bound in the confined case.  It is also seen that the confine-

ment affects not only the position of these resonances, but their detailed shape and width as well, thereby 

indicating that the interaction with the confining shell affects, not only the binding energies of the confined 

atom, but the dynamics of transition processes as well. 

 
Figure4.10 Cross sections of 3p of free Ar and 3p Ar inside Ar@C60 

 

The calculated photoionization cross section of the 3s subshell of free and confined Ar is presented in      

Figure4.11.  For free Ar, the dominant feature in the cross section is a very deep Cooper minimum at about 

40 eV.  It is known that this feature results from interchannel coupling within the free Ar atom [63]; the re-

sult also agrees reasonably well with experiment [64].  In the confined case, at the lower energies, near the 

3s ionization threshold, the 3s cross section is enhanced considerably, by a factor of five or so, owing to 

interchannel coupling with the photoionization channels of the C60 shell.  This is similar to what happens for 

3p, as discussed above, but the effect is much smaller since the shell cross sections drop very rapidly above 

the first plasmon at about 20 eV.  Furthermore, the confinement oscillations are clearly seen in the confined 
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Ar 3s cross section above about 30 eV and, as expected, their amplitudes diminish with increasing energy.   

The details of the Cooper minimum are altered somewhat from the free case owing to a combination of the 

dynamical effects of interchannel coupling, along with the confinement oscillations. 

 
Figure4.11 Cross sections of 3s of free Ar and (3p Ar) inside Ar@C60 

4.3.4. Kr@C60 

The situation for Kr is rather similar to that for Ar.   The 4p wave function of Kr and the 2p orbital of C60 are 

very slightly hybridized, as shown in Figure 4.12; this is almost exactly like the situation for Ar. In addition, 

also like Ar, the outer ns, the 4s in this case, is not hybridized at all.   The calculated free and confined Kr 4p 

cross sections are shown in Figure 4.13 in the lower energy region where it is seen that interchannel cou-

pling in the confined case increases the cross section by almost two orders of magnitude in the threshold 

region; as in the Ar case, this occurs because the photoionization cross section (matrix element) for the C60 

channels in the plasmon region, just below 20 eV, is so much larger than the atomic cross section.  At the 

end of the plasmon region, about 40 eV, this inequality no longer exists and the free and confined cross sec-

tion more or less come together, except for the confinement resonances for the trapped atom.  The win-
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dow resonances,      , just below the opening of the 4s channel are also seen in the free cross section, 

and at lower energies in the confined cross section reflecting the decrease in binding energy engendered by 

the confinement. 

 
Figure4.12 Wave functions of 4p of free Kr, 2p of C60 and atomic and shell states inside Kr@C60 

 

 At higher energies, shown in Figure 4.14, a broad Cooper minimum is seen in both free and con-

fined cross sections along with strong resonances in the 100 eV region, just below the 3d threshold, in both 

cases.  Then a second maximum in the cross sections are seen as they recover from the Cooper minima.  

Thus, above about 40 eV, except for confinement resonances and shifts in energy due to the cage potential, 

the free and confined results are almost the same; this means that in the energy region from 40 eV, the 

simple static model should be a reasonable approximation, in this case. 
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Figure4.13 Cross sections of 4p of free Kr and 4p Kr inside Kr@C60 

 
Figure4.14 sections of 4p of free Kr and 4p Kr inside Kr@C60 at higher energies 
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The 4s cross sections are shown in Figure 4.15, and they behave rather like the 3s of Ar.  In the 

threshold region, about 25 eV, the confined cross section is enhanced via interchannel coupling by a factor 

of about four.  And this enhancement decreases with increasing energy as we move to the edge of the 

plasmon region at about 35 eV.  Both free and confined cross sections are seen to exhibit Cooper minima; 

again the primary cause of these Cooper minima is interchannel coupling among the atomic photoionization 

channels, but the Cooper minimum in the confined case is perturbed by the confinement potential along 

with the attendant confinement oscillations.  

 
Figure4.15 Cross sections of 4s of free Kr and 4p Kr inside Kr@C60 

 

A similar situation is exhibited for Kr 3d photoionization as seen in Figure 4.16.  Owing to the     

shape resonance [65], the cross section for free Kr is rising from threshold.  And, since the threshold energy, 

over 100 eV, is so far above the plasmon region of C60, interchannel coupling is of essentially no conse-

quence.  Thus, the cross section for the confined case is essentially just the free cross section modulated by 
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confinement oscillation, clearly seen in Figure 4.16.  Evidently the high initial-state angular momentum (this 

is the first d-state encountered) engenders no new behavior related to confinement. 

 
Figure4.16 Cross sections of 3d of free Kr and 3d Kr inside Kr@C60 

4.3.5. Xe@C60 

Some aspects of the photoionization of confined Xe have been reported on previously [46] but some 

repetition is necessary herein to fully depict the evolution along the sequence of noble gas atoms.  Similar 

to Ar and Kr, the outer p-subshell, 5p in this case, is only slightly hybridized, as seen in Figure 4.17.   

Unlike the previous two cases, however, the outermost s-subshell, 5s, displays significant hybridiza-

tion, as shown in Figure 4.18.  The hybridization is with the 2s of C60, just as was the case with confined He, 

discussed above.  The mixing is seen to be roughly 50-50.  The theoretical binding energy of Xe 5s is calcu-

lated to be 0.839 au, which is reasonably close to 2s binding energy in free C60 of 0.645 au (Table 4.1).   The 

binding energies of the hybridized orbitals, 5s+ and 5s-, are 0.733 au and 0.665 au; the latter is close to the 

free C60 2s binding energy, but the former is roughly half way between the two.  This is different than the 

previous cases of hybridization where the hybridized orbitals were found to have binding energies quite 
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close to the free C60 component.  This is because in this case, the atomic potential, which supports 54 elec-

trons, is not so very small compared to the shell potential.  

 
Figure4.17 Wave functions of 5p of free Xe, 2p of C60 and atomic and shell states inside Xe@C60 

 
Figure4.18 Wave functions of 5s of free Xe, 2s of C60 and hybridized states of Xe@C60 
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The calculated free and confined 5p cross sections are displayed in Figure 4.19, and a picture similar 

to the corresponding outer np subshell in Ar and Kr is seen.  As in those cases, the confined cross section is 

almost two orders of magnitude larger than the atomic cross section owing to interchannel coupling with 

the huge C60 plasmon excitations; The confined 5p cross section displays the effects of coupling with both of 

the plasmons, the larger one at the lower energies and the smaller one at the higher energies.  Above the 

energy region of the plasmons, the confined cross section is similar to the free 5p cross section, except for 

the confinement oscillations.   The window resonances,      , seen in the atomic cross section below 

the opening of the 5s channel, are difficult to pick out in the confined cross section since they occur in a re-

gion of many resonances involving transitions to hole states in the C60 shell.  There must actually be two sets 

of resonances, a        series and a        series, but they do not appear to show up as window 

resonances in the confined case.  This differs from the Ar and Kr cases, evidently because of the hybridiza-

tion of the 5s orbital in confined Xe.  This is an effect of hybridization that has not been known previously.  

 
Figure4.19 Cross sections of 5p of free Xe and 5p Xe inside Xe@C60 
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The cross sections for the hybridized 5s+ and 5s- states of the combined Xe@C60 system are shown in        

Figure 4.20, along with the cross sections of 5s of free Xe and 2s of free C60.  It is striking that both the 5s+ 

and 5s- cross section are approximately an order of magnitude larger than the cross sections of the free Xe 

and free C60 constituents of these hybridized states.  Clearly then, interchannel coupling in the final contin-

uum states also plays a crucial role in the determination of these cross sections.  In fact, evidence of the 

influence of the C60 plasmons is seen in the maxima in the 20 eV region and the maxima a bit below 40 eV.  

In any case, this is another instance of both the initial state and the final state of a photoionizing transition 

losing their identity in the combined system. 

The 4d cross sections for the free and confined systems are presented in Figure 4.21.  Since the 4d 

threshold energies are well above the plasmon region, no important interchannel coupling effects of the 4d 

cross section with the shell channels are expected, and none are seen.  However, significant confinement 

oscillations are evident. Note that confinement oscillations in the 4d subshell of Xe@C60 have been ob-

served experimentally [10,11] and show prominent peaks at photon energies of about 90 eV and 110 eV, as 

compared to the present results which show the peaks at roughly 100 eV and 120 eV.   This discrepancy in-

dicates that, although the present calculations are qualitatively correct, there are some quantitative defi-

ciencies.  The major contribution to the difference is probably due to the error in the 4d binding energy 

which is too large for free Xe by about 7.5 eV, 75 eV vs. 67.5 eV [64].  Assuming that the same difference 

persists for the confined atom, this accounts for 75% of the difference; in other words, the peaks are only 

off by about 2.5 eV as a function of photoelectron energy.  The remaining discrepancy is probably due to 

the use of a jellium spherical square well to approximate the field of the 60 C4+ ions of the C60 shell.  In any 

case, the notion that confinement oscillations might be mythical, as suggested recently [66], is certainly not 

borne out.  In addition to the smooth nonresonant cross section, Rydberg resonances are seen in the 150 

eV and the 190 eV regions of the cross sections.  These are the resonances leading up the 4p and 4s thresh-
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olds, respectively.  The resonances are displaced slightly between the free and confined cross sections ow-

ing to the slight differences in threshold energies engendered by the confinement. 

 
Figure4.20 Cross sections of 5s of free Xe, 2s of C60 and hybridized states 

 
Figure 4.21 Cross sections of 4d free Xe and 4d Xe inside Xe@C60 
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Lastly, the free and confined 4p cross sections are shown in Figure 4.22.  The 4p cross sections are 

small and the confined cross section similar to the free, except for the confinement oscillations.  However, 

the confined cross section is everywhere about 10% below the free cross section indicating that the con-

finement induces more than simply a modulation about the free cross section.  Most likely, the small overall 

decrease in cross section arises from small differences in interchannel coupling among the atomic photoion-

ization channels.  The Rydberg resonances below the opening of the 4s channel are seen in this case, just as 

in the 4d cross section. 

 
Figure4.22 Cross sections of 4p free Xe and 4p Xe inside Xe@C60 

 

4.4. Valence photoionization of small alkaline earth atoms endohedrally confined in C60 

4.4.1. The ground state 

Table 4.2 lists LDA single-electron configurations of Be@C60, Mg@C60 and Ca@C60 using Coulomb 

notation, and identifies the nature of s and p orbitals. Several of these orbitals invoke additional radial 
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nodes in order to satisfy the Pauli Exclusion Principle. However, with only exceptions of the atomic va-

lence orbitals, effects of these extra nodes on the shape of other orbitals are extremely weak, virtually 

retaining these orbitals rather pure. The radial component of the LDA potentials, calculated by the oc-

cupancy weighted averaging of all the orbitals of an endofullerene, are presented in Figure 4.23(a) for 

the three systems. As expected, the depth of the atomic cusp gradually increases as the size of the atom 

grows. But the potential in the C60 shell region remains unchanged. This is because, even though the or-

bital-specific potentials (not shown) corresponding to Pauli-modified atomic valence levels do alter over 

the shell region, the effect washes out in the averaging process, since these orbitals being s-type hold 

only two electrons. 

Figure 4.23(b) shows the radial probability densities of the valence electrons which are 2s, 3s and 

4s, respectively, for the three free atoms. We use the symbol     , with        , to denote the levels 

of the confined atom, while technically these wavefunctions are 4s, 5s and 6s of the compound system 

due to the mixing induced by two additional nodes (Table 4.2). As seen in Figure 4.23(b), the relative 

strength of the mixing grows with the increase of the atomic size, consequences of which on the pho-

toionization mechanism over the plasmon active energy region and beyond will be revealed in the fol-

lowing section. In Figure 4.23(a), the positions of the corresponding binding energies of captive atomic 

levels are included, the explicit values of which along with those for free atoms are noted in Table 4.3, 

that suggests the decrease of binding energies from the mixing. We also show in Figure 4.23(a) a few 

highlying   (single-noded) and   (nodeless) C60 states in order to aid our later discussions. 

 

Table 4. 2. Ground state configurations of the endofullerene compounds. 

Be@C60 Mg@C60 Ca@C60 

1s (Be 1s) 1s (Mg 1s) 1s (Ca 1s) 

2s (C60 1s + a weak atomic node) 2s (Mg 2s) 2s (Ca 2s) 

3s (C60 2s + a weak atomic node) 2p (Mg 2p) 2p (Ca 2p) 

4s (Be 2s + two shell nodes) (2s@ Be) 3s (C60 1s + two weak atomic nodes) 3s (Ca 3s) 

higher l states are C60 states 3p (C60 2p + one weak atomic node) 4s (C60 1s + three weak atomic nodes) 

 4s (C60 2s + two weak atomic nodes) 3p (C60 2p + two weak atomic nodes) 

 4p (C60 3p + one weak atomic node) 4p (Ca 3p + one weak shell node) 
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 5s (Mg 3s + two shell nodes) (3s@ Mg) 5s (C60 2s + three weak atomic nodes) 

 higher l states are C60 states 5p (C60 3p + two weak atomic nodes) 

  6s (Ca 4s + two shell nodes) (4s@ Ca) 

  higher l states are C60 states 

 

 
Figure4.23 (a) Average radial LDA potentials for systems: Be@C60, Mg@C60, and Ca@C60. (b) Radial probability densities of 
free and confined atomic levels. The positions of inner and outer edges of the C60 hull are also indicated 

 

The radial derivative of the potential, a measure of the photoionizing force, is shown for the case 

of Mg@C60. The valence levels of the three confined atoms and some high-lying π and σ levels of C60 are 

indicated. Radial probability densities of free and confined atomic levels are shown in figure4.23 (b). The 

positions of inner and outer edges of the C60 hull are also indicated. 

Table 4. 3. Valence binding energies (eV) of free and confined atoms. 

 Be@C60 Mg@C60 Ca@C60 

   -9.49 -7.94 -6.25 

    -7.57 -5.87 -4.04 

 

4.4.2. Low energy plasmonic region 

Figure 4.24 shows the TDLDA cross sections for the valence levels     of the three confined at-

oms, along with their free atomic counterparts, for photon energies up to 30 eV (Mounted on the broad 
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cross section shapes of the confined atoms are narrow single-electron autoionizing resonances). First, a 

confinement induced general trend of the Cooper minima, appearing at the above-threshold region, to 

shift higher in the energy is noted. Second, the energy range in Figure 4.24 is also the region where the 

C60 giant plasmon is excited. Therefore, the results also show dramatic enhancements in the ionization 

of confined atoms, peaking at about 16 eV, which are expected from the atom-C60 dynamical 

multielectron coupling [46,47,48]. However, the degree of this enhancement is clearly different from 

one system to another; in particular       exhibits the largest cross section while       the small-

est. In order to uncover the reason of this trend, consider the TDLDA dipole matrix element in equation 

(4.3), denoted by     in a decomposed single and multi electron picture, 

                       E
(4.5) 

where   is the (LDA) matrix element involving the single electron operator  . The structure of   , which 

obviously involves     (4.2), can be alternatively expressed in the well known Fano scheme based on a 

perturbative interchannel coupling framework [47] as, 

          

         
 

          
         

    
  

      
    

E
(4.6) 

In equation (4.6),         and        are the unperturbed final continuum channel wave functions of 

    and     photoionization channels respectively, and the sum is over the photoionization channels of 

the atom plus all the delocalized electron (coherent) channels of the C60 shell. Separating out the atomic 

channels from the sum and associating those terms with the LDA matrix element      we can rewrite 

equation (4.5) as, 

           
             

     E
(4.7) 
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Figure4.24 The valence ionization cross sections corresponding to confined and free atoms, for the three endofullerenes, 
calculated in TDLDA over the C60 plasmon region 

 
where the first term on the right hand side is approximately the TDLDA matrix element of the free atom 

and the second term, represented by equation (4.6) but without the atomic channels, embodies the 

plasmonic enhancement. The     photoionization cross section,        
 

, in TDLDA therefore in-

volves the coherent superposition of the atomic TDLDA and the enhancement contributions: 

        
         

     
      

    
          

     E
(4.8) 

in which      
       

 
 

. 

The matrix element within the integral of equation (4.6) is known as the interchannel coupling 

matrix element. Going from Be to Mg to Ca, the increasing mixing of     initial state wave function 

with C60 orbitals (Figure4.23(a)) ensures increasing overlaps, resulting in higher values of the 

interchannel coupling matrix elements. However, along the same atomic sequence there also arises a 

different effect that counters this trend as follows. Figure 4.23(b) (and Table 4.3) indicates a gradual de-
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crease of the     binding energies from Be to Ca, causing the valence level energetically moving away 

from the C60   and   occupied bands (indicated in Figure 4.23(b)). Since the proximity of the ionization 

thresholds of interacting channels produces stronger overlaps between their continuum wavefunctions, 

the effect described above will lower the value of the coupling from Be to Ca. It is therefore expected 

that the competition of these two compensatory effects will keep the value of      
, and hence      

, 

largely unaltered. Consequently, the comparative differences in      up the sequence will primarily be 

influenced by the free atomic matrix element    
     via the interference term in the square bracket on 

the right hand side of equation (4.8). That is exactly what is found: the free atomic TDLDA matrix ele-

ments   must have increased from Mg to Ca to Be, since their cross sections in Figure 4.24 increase 

likewise. Therefore, from the above argument, this must also be the trend for the enhanced cross sec-

tions of the confined atoms, as clearly seen in the same figure. 

4.4.2. High energy oscillatory region 

At photon energies above the plasmonic range (roughly >50 eV) the valence     ionization cross 

sections show oscillations as a function of the photon energy as seen in Figures 4.25(a–c) for the three 

systems considered; the curves are seen to oscillate around the corresponding free atom    cross sec-

tions. Since the many-electron effects largely weaken over this energy region, the single-electron LDA 

results, obtained by excluding the component     of the induced potential in equation (4.2), are enough 

to describe this oscillatory behavior. In Figures 4.25(a) and 4.25(b) we also present results from refer-

ence [16] for Be@C60 and Mg@C60 that compare fairly well with the current LDA results within the limi-

tation of their differences in formalism; for Ca@C60, reference [16] includes a multiconfiguration split-

ting, making its comparison with our jellium-based result rather difficult. 

Within the LDA framework the physical mechanism producing the oscillations can be qualitatively de-

scribed by the acceleration gauge formalism. In this formalism, the dipole photoionization amplitude 

from equation (4.3), but ignoring correlations, can be expressed as, 
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E
(4.9) 

which embodies the notion that the electron in the potential     requires a force 
  

  
 to escape the sys-

tem. This ionizing force offered by the average radial potential of the compound is displayed in Figure 

4.23(a), but only for Mg@C60, which produces characteristic peaks at the inner and the outer edges, 

           and           , of the C60 hull, suggesting the possibility of photoemissions from these 

locations. Note further in Figure 4.23(a) that, a rather strong force is also available in the central atomic 

region where the potential changes rapidly. Therefore, since the bound wavefunction      are non-

vanishing over all these force-sites, as is evident from the probability densities presented in                 

Figure 4.23(b), the photoemissions will actually occur from all three sites, significantly interfering with 

each other owing to the coherence. Additionally, the reflection of the atomic photoelectrons from the 

hull edges will further enrich the interference, adding features in the modulation that can be best deci-

phered by the Fourier photo-spectroscopy [67], as we demonstrate in figure 4.25. 

The detailed expressions of the general structure of the matrix element, has been derived earlier 

[67,68]. Following reference [68], we obtain the     ionization amplitude at energies above the C60 

plasmon region, as 

            
            

                   
  
         

     
          

  
     

                

E
(4.10) 
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Figure4.25 LDA cross sections of the confined and free atomic valence levels for (a) Be@C60, (b) MgC60 and (c) Ca@C60. For the 
former two systems previous results by Stener et al. [39] are also presented for comparison. The carbon 1s ionization 
threshold is noted. 
 

in which the photoelectron momentum              in atomic units,    is the average depth of 

the hull potential, and    and    are the values of     wavefunction at, respectively,    and   . In 

equation (4.10),     
     is very nearly equal to the    matrix element of an isolated atom and the second 

term on the right hand side denotes the reflection induced oscillations in momentum space with fre-

quencies    and   , the inner and the outer diameter of the hull; the factor          
  

 
  rapidly be-

comes unity with increasing k. The third term on the right hand side represents the portion of the over-

lap integral over the hull region, producing two collateral emissions from the hull edges, where non-zero 

ionizing forces exist (Figure 4.23(a)); as evident, these contributions produce two frequencies,    and 

  , in momentum space. Going from confined Be to Ca, since the     probability density over the cen-

tral region slowly diminishes with its corresponding increase in the hull region, the values of    and    

also grow, as Figure 4.23(b) indicates. This evolutionary behavior places, in general, a larger emphasis on 

the oscillation character of the cross section along the sequence – a feature clearly exhibited in            

Figure 4.25: oscillations are weakest and strongest respectively for 2s@ Be and 4s@ Ca. 
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The determination of the cross section involves interferences among atomic, reflective and col-

lateral hull ionization modes. Upon squaring the modulus of equation (4.10) we find, 

        
         

         
    

     
         

       E
(4.11) 

where          
        

, which represents the interferences. Note that since both reflec-

tive and collateral effects are generally small relative to the direct ionization, we have disregarded the 

quadratic reflective, quadratic collateral and reflective-collateral interference terms in equation (4.11). 

Evidently, the cross section contains the same frequencies as in the matrix element equation (4.10):   , 

   from the reflective and   ,    from the collateral emissions. This is in clear contrast to the known 

oscillations in free C60 [53]. In Figure 4.26 the Fourier transform magnitudes (FTM) of confined-to-free 

cross section ratios for     ionizations of the three systems are shown. These reciprocal spectra yield 

four peaks at the expected radial positions. The height of each peak represents the strength of the re-

spective oscillation via the factor in front of the corresponding oscillatory term in equation (4.10). We 

note the following: (i) the reflective structures are generally smaller than the collateral ones for all the 

systems. This is because while with increasing photoelectron momentum the reflection probability de-

creases, a faster electron can better resolve the force structure at the hull edges. (ii) The collateral peaks 

become progressively taller going from Be to Ca, since    and    are increasingly larger along the se-

quence (Figure 4.23(b)). (iii) In general for all three systems the    collateral peak is higher then the    

peak, since       without exceptions. 

State-selective measurements of photoelectrons from confined atoms can in principle be carried 

out by the standard technique of electron spectroscopy. But, the photon energy must not intrude on the 

carbon K-shell continuum to ensure that the C4+ core is not ionized. Hence, we examined if the FTM of 

cross section ratios for energies not exceeding 290 eV is capable of delineating the effect. Barring some 

off-sets, the peak positions are very well reproduced (Figure 4.25), implying that the effect should be 

discernible in the experiment and must be included to interpret the data. 
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Figure4.26 Fourier transform magnitudes of confined-to-free LDA cross section ratios over extended and limited (up to car-
bon K edge) energy ranges 

4.5. Photoionization of Small Fullerenes Cn (n=28, 32, 40, 44, 50) 

4.5.1. Introduction 

In experimental atomic physics many interesting phenomena are observed due to correlated elec-

tron motion. For infinitely extended object, surface or bulk matter, electron correlations induced collec-

tive phenomena, that are describe in terms of plasmons. For large system like carbon clusters one type 

of plasmon excitation are describe as a surface resonance of negative charge density (delocalized elec-

trons) oscillates like fluid against the positive background (ions). For C60 in gas phase, a giant resonance 

of this surface plasmon was first observed around 20 eV photon energy [69]. Theoretically, this reso-

nance was predicted by calculating the response of the C60 system to the external electromagnetic field 

using random-phase approximation [70]. Also due to the spherical symmetry of the C60 in some other 

theoretical approximation this resonance are reported [71,72]. 
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A different class of photoionization cross section calculations of C60 has emerged that considered 

each carbon atom in C60 has 4 delocalized electrons, and 60 C4+ ions formed a classical jellium shell 

[51,73,9]. In this model, the ion cores are fixed in the C60 structure and the dynamics of the 240 delocal-

ized remaining electrons are treated self-consistently. The description of this surface plasmon resonance 

requires inclusion of many body effects by electron correlation. In two ways these correlations can be 

included: (i) the random phase approximation (RPA) (ii) time dependent local density approximation 

(TDLDA), both types of calculations have revealed the surface plasmon resonance [70,51,74,75]. The 

new photoionization cross section calculation using jellium-based TDLDA for single ionized C60 have 

shown the second surface plasmon resonance around 40 eV [17], that has good agreement with recent 

experimental result for this second resonance [76]. Also, using the same method, calculations have been 

done for endohedral fullerene (Atome@C60) by putting different atoms at the center of C60 [49,77]. In 

these calculations very interesting phenomenon known as hybridization, due to the overlap of the near 

degeneracy same symmetry wave functions of the trapped atom and C60 shell, is happened, that           

completely changes the photoionization cross sections of the mixed states. 

In this section, using the same method as above (jellium-based TDLDA), we describe our calcula-

tions and present results for the photoionizations of small fullerenes Cn (n=28, 32, 40, 44, 50). The rea-

son that we choose these fullerenes is that for all of them the near spherical isomers can be found 

[78,79,80,81,82] so that approximating them as spherical is justified. 

4.5.2.Total cross section 

The total photoionization cross sections calculated in the TDLDA for each fullerene are represent-

ed in figures 4.27-4.31. For all the cases two regions of enhancement, surface plasmon resonances, 

around 20 ev and 40 eV can be seen. A phase-coherent interchannel coupling mechanism is found to 

cause enhancements in subshell cross sections, the constructive superposition of enhancements from 
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various subshells exactly at the energies of plasmon excitations generates the collective resonances. The 

first one that has lots of autoionization resonances is known as giant dipole surface plasmon resonance 

[17]. The second plasmon resonance is far weak. This structure was reported in the recent experiment-

theory joint study on C60 ions [9], and also for neutral C60 [76]. Furthermore, these resonances for all 

cases are down shifted in energy with increasing the number of carbon atom in fullerenes (table 4.4).   

Table 4. 4. Positions of the plasmon resonances in a variety of small fullerenes.  

Fullerene First plasmon resonance(eV) Second plasmon resonance (eV) 

C28 20.00 41.96 

C32 17.96 39.94 

C40 17.48 39.83 

C44 15.92 39.69 

C50 15.46 37.14 
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Figure4.27 Total cross section of C28 
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Figure 4.28 Total cross section of C32 
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Figure ‎0.29 Total cross section of C40 
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Figure‎0.30 Total cross section of C44 
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Figure4.31 Total cross section of C50 



93 

 

4.5.3.Oscillator strength 

Since the total oscillator strength for a photoabsorption process equals the number of electrons in 

the target [83], this means that, in these cases generally, the oscillator strength should be increasing 

with  increasing number of electron (4 × n).  But this sum is true for the sum over two regions, discrete 

and continuum, and the present calculation is only over the continuum region ; however, knowing the 

total, the split of  oscillator strength  between these two regions can be made,  as shown in table 4.5. 

Table 4. 5. Distribution of oscillator strength between discrete and continuum region for small fullerenes. 

Fullerene Oscillator strength in continuum Oscillator strength in discrete 

C28 101.1 112-101.1=10.9 

C32 95.9 128-95.9=32.1 

C40 133.9 160-133.9=46.1 

C44 157.2 176-157.2=18.8 

C50 149 200-149=51 
In the table it is seen that oscillator strength in the continuum generally increases with the 

number of electrons, but this increase is certainly not monotonic.   This illustrated that, to understand 

the oscillator strength distribution, the detailed molecular structure must be understood and not simply 

the number of electrons. 

4.6. Resonant Auger-intercoulombic hybridized decay in the photoionization of endohedral fullerenes 

Intercoulombic decay (ICD), originally predicted by Cederbaum [84] and observed initially for Ne 

clusters [85], is a unique, naturally abundant nonradiative relaxation pathway of a vacancy in atom A in 

a cluster or molecule. An outer electron of A fills the vacancy and the released energy, instead of emit-

ting a second electron of A as in standard Auger ionization, transfers to a neighboring atom B via Cou-

lomb interactions to ionize B. Repulsion between holes in A and B may lead to fragmentation. Over the 

last decade and a half, a wealth of theoretical [86] and experimental [87] research has gone into study-

ing ICD processes in weakly bound atomic systems. These involve the observation of ICD in rare gas 

dimmers [88], rare gas clusters [89], surfaces [90], and small water droplets [91,92]. ICD followed by 

resonant Auger decay has been identified in Ar dimers using momentum resolved electron-ion-ion coin-
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cidence spectroscopy [93,94]. Ultrafast ICDs of a dicationic monomer in a cluster to produce a cluster 

tricataion [95] or multiply excited homoatomic cluster [96] were predicted. Also, time domain meas-

urements of ICD in He [97] and Ne [98] dimers have recently been achieved. Besides fundamental sci-

ence contexts, low energy ICD electrons find potential medical applications in the treatment of malig-

nant cells [99]. 

Of particular interest is the resonant ICD (RICD) where the precursor excitation to form an inner-

shell vacancy is accomplished by promoting an inner electron to an excited state by an external stimu-

lant, generally electromagnetic radiation [100,101] or, more recently, charge particle impact [102]. A 

theoretical study of RICD followed by Ne       excitations in MgNe clusters suggested the leading 

contribution of RICD among other interatomic decay modes [103]. Photoelectron spectroscopy with Ne 

clusters for       excitations measured the signature of RICD processes [100]. Similar excitations in 

the double photoionization of Ne dimers were utilized to observe RICD by tracking the formation of en-

ergetic Ne+ fragments [101]. Most recently, strong enhancement of the HeNe+ yield, as He resonantly 

couples with the radiation, is detected [104], confirming an earlier prediction [105]. 

Atoms confined in fullerene shells forming endofullerene compounds are particularly attractive 

natural laboratories to study RICD processes. There are two compelling reasons for this: (i) such materi-

als are highly stable, have low-cost sustenance at the room temperature and are enjoying a rapid im-

provement in synthesis techniques [106]; and (ii) the effect of correlation of the central atom with the 

cage electrons have been predicted to spectacularly affect the atomic photoionization [47]. A first at-

tempt to predict ICD in endofullerenes was made by calculating ICD rates for Ne@C60 [107]. While some 

speculation on the role of Coulomb interaction mediated energy transfer from atom to fullerene to 

broaden Auger lines has been made [108,109], no studies, theoretical or experimental, of RICD reso-

nances in the ionization cross section of endofullerenes have been performed. Furthermore, ICD of 

endofullerene molecules can uncover effects not yet known. This is because: (i) endofullerenes being 



95 

 

spherical analogues of asymmetric dimers consisting of an atom and a cluster can also induce reverse 

RICD processes, the decay of cluster innershell excitations through the continuum of the confined atom, 

of uniquely different character than the forward RICD; and (ii) possibilities of atom-fullerene hybridized 

final states, predicted to exist abundantly in these systems [50,77], can significantly alter the properties 

of intercoulombic processes. 

In this research, we show that for an Ar atom endohedrally sequestered in C60, ICD pathways of 

photogenerated innershell holes, both in the central atom and the fullerene, can coherently mix with 

degenerate intracoulombic Auger pathways to produce final states with shared holes in atom-fullerene 

hybrid levels. Figure 4.32 presents a schematic of the process which illustrates this hitherto undetected 

mode that can be called the resonant hybrid Auger-intercoulombic decay or RHA-ICD. 

 
Figure 4.32 Schematic of coherent mixings of onecenter Auger decays (green) of core holes with responding ICDs (red) in the 
spectra of Ar-C60 hybrid electrons 

 

A jellium based time-dependent local density approximation (TDLDA), with the Leeuwen and 

Baerends (LB) exchange-correlation functional to produce accurate asymptotic behavior for ground and 

continuum states (109), is employed to calculate the dynamical response of the system to the external 

electromagnetic field produced by the incident photon. The Ar nucleus is placed at the center of the 
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sphere where the chemically inert noble gas atom is known to localize. In solving the Kohn-Sham equa-

tions to obtain the ground state wave function, a few essential optimizations were adopted [46]. The 

model has enjoyed earlier success in co-discovering with experimentalists a high energy plasmon reso-

nance [9], interpreting the energy-dependent oscillations in C60 valence photo-intensity data [53], and 

predicting giant enhancements in the confined atom’s photoresponse from the coupling with C60 

plasmons [47]. Significant ground state hybridization of Ar 3p is found to occur with the C60 3p orbital, 

resulting in two levels,            and           , from respectively, the symmetric and 

antisymmetric modes of mixing, the spherical analogs of bonding and antibonding states in molecules or 

dimmers, 

                                         
   E

(4.12) 

where      . Such atom-fullerene hybridization was predicted earlier [50] and detected in a photoe-

mission experiment on multilayers of Ar@C60 [110]. In fact, the hybridization gap of 1.52 eV between 

            and            in our calculation is in good agreement with the measured value of 

           [110]. We use the symbol nl@ to denote the levels of the confined atom and @nl to repre-

sent the levels of the doped C60. 

Figure 4.33 shows the 3p photoionization cross section of free Ar calculated using TDLDA. Two Au-

ger window-resonances at 27.2 eV and 28.6 eV correspond to regular autionizing states formed by two 

lowest innershell excitations         . We also present in Figure 4.33 the cross sections for C60 @7h, 

which is the highest occupied (HOMO) level of C60   symmetry (one radial node), and for @2s, which is 

the state at the bottom of the π band. Both these cross sections exhibit a host of routine autoionizing 

resonances corresponding to C60 innershell excitations which also appear in the C60 total cross section 

(shown) at about the same energies. Three rather weak features, labeled as A, B, and C in Figure 4.33, 

are noted in the @7h and @2s curves which do not have partners in the free C60 cross section. However, 

these are Ar-to-C60 ICD resonances, resulting from the decay of Ar 3s@ vacancies from     
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            excitations, through C60 @7h and @2s continua. Slight red-shifts in the position of the-

se resonances compared to their free Ar counterparts are due to some adjustments in 3s ground and np 

excited energies arising from confinement. Note that these structures are from participant RICD pro-

cesses only, as the spectator RICD is not included within TDLDA. 

Figure 4.34 displays cross sections, over the same energy range of Figure 4.33, for the 

endofullerene hybrid levels,           . Features A, B, and C in these curves are resonances that 

 
Figure4.33 Photoionization cross sections of free Ar 3p and empty C60 compared with the results for C60 @7h and @2s levels 
in Ar@C60. Three Ar-to-C60 ICD resonances (labeled as A,B,C) amongst regular autoionizing resonances are identified in the 
C60 @7h and @2s cross sections. 

 

emerge from the decay of                 excitations through the continuum of these hybrid 

levels. These features are similar in shape to the autoionizing resonances in free Ar 3p (included in Fig-

ure 4.34) and appear at the same Ar-to-C60 RICD energies (Figure 4.33). Remarkably, they are significant-

ly stronger, particularly for           , than the Ar-to-C60 RICDs. Another dramatic effect can be not-
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ed: The empty C60 3p cross section in Figure 4.34 shows autoionizing resonances corresponding to Auger 

decays of C60 innershell vacancies. But the structures at the corresponding energies in hybrid channels 

from the decay of C60 vacancies through the hybrid continuum are order of magnitude larger than the 

autoionizing resonances in empty C60. We particularly identify the resonances labeled as 1 to 4 in Figure 

4.34. In essence, Ar and C60 innershell vacancies decay significantly more powerfully through the pho-

toionization continua of        hybrid levels than they do through the continua of pure C60 levels. 

These resonances are qualitatively different than the standard RICD. We show below that they emerge 

from a coherent interference between resonant Auger and intercoulombic channels that produce divid-

ed vacancies in the final state, vacancies shared by the confined atom and the confining fullerene. 

The TDLDA matrix elements for the dipole photoionization of            levels, in the 

perturbative interchannel coupling framework introduced by Fano [60], can be written as [49], 

              
         

        E
(4.13) 

where the single electron (LDA) matrix element                   ;     and      are respective-

ly corrections from continuum-continuum and bound-continuum channel couplings.      constitutes 

the many-body contribution of relatively smooth nonresonant ionization cross section, while the reso-

nance structures originate from      [60], 

       
        

 
      

       

        
  

       

  

    

E
(4.14) 

in which the      refer to interacting discrete       and continuum                   channel 

wavefunctions;        and        are LDA bound-to-bound excitation energies and matrix elements, 

respectively. The excited states of the endofullerene are found to be hybridized, implying that innershell 

electrons from pure levels are excited to the hybrid levels. But we do not expect significant differences 

in        from this effect between free and confined Ar. 
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Figure4.34 Photoionization cross sections of free Ar 3p and C60 3p levels compared with those of their hybrid pair 

 

This is because, even though hybrid excited waves develop structures at C60 shell, the Ar 3s 

wavefunction continues to localize on Ar (Figure 4.32), qualitatively unaffecting the overlaps. Obviously, 

an identical reason also ensures practically unchanged C60 inner excitation matrix elements from the 

doping.  

Following (4.12), the hybridization of the continuum channels in (4.14) assumes the form 

                               
    E

(4.15) 

In (4.15) we used @ to indicate the inclusion of the modifications of the continuum waves of the con-

fined Ar and doped C60. Using (4.15) in (4.14), and recognizing that the overlap between a pure Ar bound 

state and a pure C60 bound state is negligible, we can separate the  atomic and fullerene regions of      

integration to obtain. Obviously, if       produces Ar innershell holes, resulting to resonances A, B, 

and C in Figure4.34, then the first term on right-hand-side of (4.16) represents the ordinary 

intracoulombic Auger decay in Ar, while the second term denotes the Ar-to-C60 RICD. Conversely, for C60 
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inner vacancies (resonances 1-4 in Figure 4.34), the first and second term, respectively, present reverse 

RICD (C60- to-Ar) and C60 Auger processes. The decays are shown schematically in Figure 4.32. 
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(4.16) 

For the ionization cross sections, which involve the modulus squared of the amplitude, two im-

portant mechanisms play out: First, Auger and intercoulombic decay pathways in (4.16) combine coher-

ently to induce resonances, allowing the creation of shared outershell vacancies. Therefore, this decay 

pathway can be called resonant hybrid Auger-intercoulombic decay (RHA-ICD). Note that both the terms 

in (4.16) are large, owing to substantial overlaps between innershell bound states and             

hybrid wavefunctions. This partly explains why the features identified in Figure 4.34 are stronger than 

corresponding autoionizing and ICD resonances. Second, the resonances in the matrix element   
    

also interfere with the nonresonant part      
   , (4.13), which is generally stronger for hybrid levels 

than pure C60 levels [77]. This interference, consequently, enhances RHA-ICD resonances compared to 

their Auger partners in pure C60 channels, as seen for structures 1-4 in Figure4.34. The results exhibit 

completely different resonance shapes for Ar-to-C60 RICDs (Figure4.33) compared to corresponding RHA-

ICDs (Figure 4.34), although their lifetimes increase only slightly. Noticeably, the lifetime (130 fs) of the 

Auger feature 1 decreases to about 40 fs for the respective RHAICDs (Figure 4.34), while there is a strong 

shape-alteration for the feature 4. Lastly, hybrid final-state vacancies may have unique consequences 

for the spectator type RHAICD: the post-decay repulsive force will considerably increase compared to 

RICD, since a half vacancy will reside too close to a full vacancy either on Ar or on C60, allowing stronger 

fragmentation forces.    

RICD systems are visualized as natural antenna receiver pairs at the molecular scale [104] where 

the antenna couples to the incoming photon and transfers energy to the receiver to perform. RHA-ICD 
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processes, predicted here, can enhance the efficiency of the ultimate output by enabling the antenna to 

also contribute to the emission resonantly with the receiver through a quantum coherence. The effect 

may have significant utilization in nanoscale antenna technology [111]. 

5.CONCLUSION 

Calculations of the photoionization of the outer and intermediate subshells of the noble gas atoms He 

through Xe, confined at the center of the fullerene molecule C60, have been performed using a time-

dependent local density approximation methodology.  The results show confinement oscillations are pre-

dicted generally in the confined cross sections of all subshells of all atoms.  In the lower energy region, the 

region of the plasmons in the free C60 cross section, it was found that interchannel coupling dramatically 

increased the cross sections of the entrapped atoms in all cases.  Mixing between bound state wave func-

tions of the C60 shell and the enclosed atom, hybridization, was found in a number of cases, but there ap-

pear to be no obvious systematics to which subshells of which atoms are hybridized.  It was also noted that 

the binding energies of the hybridized states tended to be much closer to the energies of the C60 compo-

nent of the hybrid, and this was explained in terms of the relative sizes of the perturbation to each state.  It 

is important to note that these effects should be generally in evidence for the photoionization of any atom 

confined at the center of C60. 

It was also shown that at energies away from the C60 plasmon resonances, i.e., above the photon en-

ergy of 40 eV or so, in cases where there is little or no hybridization, that the simple static model should be 

adequate to describe the photoionization of confined atoms.  From a practical point of view, this means 

inner subshells with biding energies greater than about 40 eV; not only do they miss the plasmon region, 

but their wave functions are so compact that there is essentially no overlap with the shell wave functions, 

so that no hybridization occurs. 

 The only relevant experimental results involve studies of the 4d subshell Xe@C60 [11]which con-

firmed the existence of confinement resonances.  A detailed comparison [11] with essentially the same cal-
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culation reported in this paper showed good qualitative agreement, but quantitative discrepancies; some of 

the reasons for these were discussed. 

And where do we go from here?  Among the improvements/enhancement that are required is a re-

laxation of spherical symmetry, which would allow the treated of atoms trapped inside a fullerene but off-

center, and atoms confined in nonspherical fullerenes.  In addition, the K-shell photoionization of the car-

bon atoms making up the C60 shell, which is omitted in the present calculation, needs to be included.  Final-

ly, at the higher photoelectron energies, where the photoelectron wave length becomes comparable with 

the separation of the carbon atoms in the fullerene shell, the discrete nature of these contributions to the 

potential must be included as opposed to a smeared-out jellium model.  Clearly much work needs to be 

done.  

This study of the photoionization of three different alkali earth atoms confined at the center of a C60 

molecule reveals a number of insights. The phenomenon of hybridization, the mixing of atomic and shell 

wave functions, is seen. The details of this hybridization is, however, quite atom-dependent; it depends up-

on the proximity of atomic energy levels to energy levels of the confining C60 of the same symmetry. In all 

cases, in the energy vicinity of the giant plasmon in C60, there is a dramatic enhancement of the valence 

cross section of the caged atom, an effect that is explained in terms of interchannel coupling between the 

C60 photoionization channels and the atomic channels. The analysis reveals the interference with the atomic 

ionization amplitude, not the extent of atom-C60 wavefunction mixing, to be the key in determining the rela-

tive enhancement that increases from Mg to Ca to Be. In addition, well above the plasmonic region, the va-

lence cross sections of all three atoms exhibit confinement resonances, oscillations engendered by the in-

terference of photoelectron waves emitted directly with those (i) scattered from the inner and outer 

boundary of the confining potential and (ii) emerged directly collaterally from these boundaries. These os-

cillations for each of the atoms differ in detail from one another, but the Fourier transform of the cross sec-

tions reveals geometric information on the confining shell which is, of course, exactly the same for all three 
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atoms. However, the orbital-mixing plays a crucial role in altering the intensity of the collateral oscillation 

component which grows maximally for Ca, since the mixing yields the highest number of collateral electrons 

for this system. Unfortunately, owing to the difficulty of producing these confined atom systems in quantity, 

there is as yet no experimental scrutiny of these systems. It would be highly desirable to measure these 

cross sections quantitatively and to look at these systems via photoelectron spectroscopy to separate indi-

vidual channels. Such studies could answer many questions as well as provide a benchmark for theoretical 

calculations. 

The photoionization cross section of small fullerenes Cn (n=28, 32, 40, 44, 50) are calculated in a 

TDLDA framework that include all essential many-body correlations to treat the motion of 4n delocalized 

electrons for each case. The carbon ion cores are represented by a spherical jellium shell. For each of 

them, the total cross section result shows two plasmon resonances around 20 eV and 40 eV to the pho-

toionization cross section. Also, a phase-coherent interchannel coupling mechanism is found to cause 

enhancements in subshell cross sections, the constructive superposition of enhancements from various 

subshells exactly at the energies of plasmon excitations generates the collective resonances. Total oscil-

lator strength is increasing with n due to the increasing in the number of electrons (4×n) in different 

fullerenes, Cn, but this increase is not uniform in the range 0 eV and 60 eV. The rest of the strength for 

each case would be either at high energies or in the discrete; and because the cross sections are very 

small at high energies most of the rest of the oscillator strength would go to the discrete region. The 

peak positions of both the plasmons are down-shifting in energy as n increases. 

In addition, we used the TDLDA methodology to calculate a variety of single-electron resonances in 

the photoionization of Ar@C60. Ar-to-C60 ICD resonances are calculated for the first time. A different class of 

resonances decaying into atom-fullerene hybrid final state vacancies has been found which arise from the 

interference of the intracoulomb autoionizing channel with an intrinsically connected intercoulomb chan-

nel. These resonances are significantly stronger than both regular ICD and Auger resonances, which make 
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them amenable for experimental detection. They are likely to exist generally in the ionization continuum of, 

not only atomic endofullerenes, but of molecules, nanodimers, and fullerene onions that support hybridized 

electrons as well.    

In future, we need to expand our present capabilities to study more complex systems such as non-

spherical carbon clusters such as non-spherical fullerens, double layer fullerens, and carbon nano-tubes, 

also atoms and molecules trapped inside them. Such systems have shown very interesting properties exper-

imentally and have been suggested for a number of possible applications.  We would also like to study the 

photoelectron angular asymmetry parameters and phase shifts. The phase shifts can be used to determine 

the time delay of the photoelectrons [112]. 

Further, while the TDLDA methodology is a useful tool to understand the qualitative behavior of a 

complex system, R-matrix methods would be much more quantitatively accurate.  Thus, we would like to 

move in the direction of looking at the photoionization of fullerene and endohedral fullerenes with R-

matrix; this could involve large numbers of basis states and channels in a parallelized code environment.   

Furthermore, for accuracy in heavy systems, we would like to employ the R-matrix version based on the 

Dirac Equation, so as to include relativistic interaction ab initio.  And once done for photoionization, elec-

tron impact ionization could be done with the same codes. 

Finally time-dependent behavior is becoming increasingly important, especially as experiments are 

now being performed at the attosecond level, particularly for short and intense laser interactions with at-

oms and molecules.  A time-dependent R-matrix approach is an ideal methodology to attach these prob-

lems non-perturbatively.  Starting with simple atoms to prove the technique, we could then move on to 

more complex systems.  The idea would be to understand the physics of how the pulse duration and inten-

sity affect the reaction, along with how the existence of correlation within the target system, affects the 

results. 
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APPENDICES 

Appendix A 

We want to solve the equation (1.14), 
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As      any physical scattering potential will become very weak. And the question is that, what do we 

mean by weak? 

Assuming the potential is weak then the solution for (A.4) can be written as, 

                    E
(A.6) 

And in this assumption         is weakly depend on r. Now by substituting (A.6) in (A.5) we can have, 
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And because         is weakly depend on r the first term can is negligible so, 
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Now we can see how weak the potential should be: If the V(r) is Coulomb potential which means 

  
       

 

 
 , then the         would not be independent on r, which means this method is not 

working for Coulomb potential, but it works for all potentials that in the asymptotic region go to zero 

faster than Coulomb potential. 

So the potential should have this form, 
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Since         is nearly constant we can write, 
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Finally, we can have, 
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And in terms of spherical outgoing wave and ingoing wave we have, 
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Appendix B 

In (30) there are linear term and quadratic term, 
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The ratio of the quadratic term to linear term would be, 
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For small field quadratic term is much weaker than linear term. 

Appendix C 

Calculating the number of degenerate states: 

If we consider three orthogonal axes of         .  

The number of states in the unit of volume in this coordinate will be, 

           E
(C.1) 

And each of these states will contribute to the transition    , with the same matrix element, 

                       To find this number we use Box Normalization, and Born Von Karman boundary condi-

tion. In the box with the length L how many wavelength can be fit. 
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The number of states in volume element is, 
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From (C.3) we can find  
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For free electron, 
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So, 
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From (C.3),  
 

 
 can be calculated and substituted in (C.7), 
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The number of states in volume element can be determined by substituting (C.8) and (C.9) in (C.1), 
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Now the degenerate states should be calculated and added up, 
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Finally, 
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Appendix D 

By having the definition for Dirac delta function and Oscillator strength, 
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Or, 
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Appendix E 

Form (2.57) 
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By using (2.66) the (E.2) can be written in two forms, 
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Now we can write oscillator strength as sum of these two terms, 
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If we sum over all final states, 
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And add three components of x, y, and z, 
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Appendix F 

In uniform 3 dimension system of spin ½ Fermions, the Fermi momentum kF  is related to the density by 

the following relation, 
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The kinetic energy of this system is, 
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And the total number of the fermions would be, 



118 

 

     

     

  
 

     
        

  

 

 
 

   
  

  
E

(F.3) 

So by substituting (F-3) and (F-1) in (F-2) the kinetic energy per unit of volume or per particle for uniform 

system can be calculated as follows, 
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But for non-uniform system where the density is a function of position      , we can have the same rela-

tion as (F-1) with position-dependent the Fermi momentum, 

      
  

     

   
 

E
(F.5) 

And the kinetic energy would be, 
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