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PRIME CHARACTERISTIC ASPECTS IN THE STUDY OF STANLEY-REISNER

RINGS AND MONOMIAL IDEALS

by

IRINA ILIOAEA

Under the Direction of Florian Enescu, PhD

ABSTRACT

This dissertation investigates Stanley-Reisner rings and monomial ideals in connection

to some important concepts in characteristic p commutative algebra, such as Frobenius

complexity, and complexity sequence, and strong test ideals in tight closure theory. The

Frobenius complexity of a local ring R measures asymptotically the abundance of Frobenius

operators of order e on the injective hull of the residue field of R. It is known that, for Stanley-

Reisner rings, the Frobenius complexity is either −∞ or 0. This invariant is determined by



the complexity sequence {ce}e of the ring of Frobenius operators on the injective hull of the

residue field. One of our main results shows that {ce}e is constant for e > 2, generalizing work

of Àlvarez Montaner, Boix and Zarzuela. This result settles an open question mentioned by

Àlvarez Montaner in [26]. Moreover, we use Cartier algebras to describe a large class of

strong test ideals. One of our main results gives a full description of test ideals associated

to Cartier algebras in Stanley-Reisner rings. An important consequence of our result states

that a bound for the degree of integral dependence that an arbitrary element in the tight

closure of an ideal satisfies over the respective ideal is given by a combinatorial invariant,

which is the number of facets of the Stanley-Reisner ring considered.

INDEX WORDS: Commutative algebra, Simplicial complexes, Stanley-Reisner rings,
Frobenius operators, Frobenius algebras, Complexity sequence, Frobe-
nius complexity, Cartier algebras, Strong test ideals, Tight closure,
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CHAPTER 1

INTRODUCTION

The development of characteristic p techniques has been relevant in commutative algebra

and birational geometry. Over the past years, positive characteristic commutative algebra

became an important area of research. In this dissertation, we will study topics such as

Frobenius operators, Cartier algebras and strong test ideals.

The Frobenius map, which is the map that associates to each element of a ring its

pth power, plays a crucial role in characteristic p commutative algebra. This map and

the concepts associated to it led to important results in commutative algebra. In particular,

Frobenius operators on the injective hull have been studied by many commutative algebraists,

such as Hochster, Huneke, Smith, Lyubeznik, Singh, Schwede, Enescu, Yao, Sharp, Katzman,

to name a few.

This dissertation studies monomial ideals, and in particular Stanley-Reisner rings, in

relation to some concepts from positive characteristic commutative algebra. Namely, we

study Frobenius complexity, and in particular the complexity sequence, and the notion of

strong test ideal.

Lyubeznik and Smith started investigating the ring of Frobenius operators in connection

to one of the most intriguing conjectures in tight closure theory, the localization problem.

They raised the question about the finite generation of the ring of Frobenius operators on

the injective hull of the residue field of a local ring in [25]:

Question 1.0.1 (Lyubeznik, Smith). Is F(ER) always finitely generated as a ring over R?

In [21], Katzman found a ring with infinitely generated Frobenius algebra. Enescu and

Yao were motivated by this question to introduce a new invariant in [9], called the Frobe-

nius complexity, which gives an asymptotical way of measuring the abundance of Frobenius

operators on the injective hull of the residue field of a local ring. Àlvarez Montaner, Boix
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and Zarzuela considered the finite generation question in the case of Stanley-Reisner rings

in [27]. They showed that:

Theorem 1.0.2 (Àlvarez Montaner, Boix and Zarzuela). The Frobenius algebra F(ER)

associated to a Stanley-Reisner ring R is either principally generated or infinitely generated.

They also found the description of the complexity sequence for a class of Stanley-Reisner

rings. In [19], I fully described the complexity sequence for any Stanley-Reisner ring. My

results settled an open question in the field, mentioned by Àlvarez Montaner in [26].

Theorem 1.0.3. Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for

e > 0. Let I 6 S be a square-free monomial ideal in S and R = S/I its Stanley-Reisner

ring. Then,

{ce}e>0 = {0, µ+ 1, µ, µ, µ, . . .},

where the ideal Jp is the unique minimal monomial ideal defined in Definition 3.3.2 and

µ := µS(Jp) is the minimal number of minimal monomial generators of Jp.

Tight closure theory was introduced by Craig Huneke and Mel Hochster in 1986. Using

tight closure theory, algebraists were able to simplify many proofs by using characteristic p

techniques, come up with stronger formulations of well-known existing results and produce

new theorems.

Tight closure theory provides a closure operation on ideals and submodules. To every

ideal we associate a larger ideal containing it related to the Frobenius map. This new ideal

turns out to be helpful in studying the original ideal. It is well-known the fact that computing

the tight closure of an ideal in a particular ring can be a very difficult problem. There are not

that many examples of such computations in the literature. Huneke introduced the notion

of strong test ideal in [18] which helps in providing interesting concrete information about

the integral elements that belong to the tight closure of an ideal.

Using Cartier algebras, I found in joint work with Enescu, a large class of strong test

ideals in [8]. Having a larger class of strong test ideals is very important because it gives
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us a better bound for the minimal degree of the equation of integral dependence that an

arbitrary element in the tight closure of an ideal satisfies over the respective ideal.

Our results have a combinatorial flavor; in this dissertation, we investigate rings that

come from combinatorial commutative algebra in relation to tight closure theory. Stanley-

Reisner rings constitute an important class of such rings. These rings are obtained by assign-

ing to combinatorial objects, called simplicial complexes, algebraic objects, called Stanley-

Reisner rings.

One theorem we proved in [8] tells us that the number of facets of the simplicial complex

associated to our ring represents the minimal number of generators of our test ideal. Hence,

we obtained that a bound for the degree of integral dependence that an arbitrary element

in the tight closure of an ideal satisfies over the respective ideal is given by a combinatorial

invariant, the number of facets of the ring.

Theorem 1.0.4 ([8]). Let k be a field of characteristic p and S = k[[x1, . . . , xn]]. Let

I 6 S be a square-free monomial ideal in S and R = S/I its Stanley-Reisner ring. Let

∆ be the simplicial complex associated to the Stanley-Reisner ring R. The ideal given by

(xF : F ∈ F(∆)) is a strong test ideal. Therefore, in the ring R, for every ideal J 6 R and

every element x belonging to J∗, x satisfies a degree fmax(∆) equation of integral dependence

over J , where fmax(∆) is the number of facets of the simplicial complex ∆.
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CHAPTER 2

PRELIMINARIES

In this chapter, we set up the notations and introduce the main concepts. Moreover,

we will state known results which will be used in the later chapters of the dissertation.

2.1 Rings of Positive Prime Characteristic

Let R be a Noetherian ring of positive prime characteristic p. Let F : R → R be the

Frobenius map, that is, F (r) = rp. We have that

(a+ b)p = ap + bp, (a · b)p = ap · bp,

for all a, b ∈ R. Therefore, the Frobenius map is a ring homomorphism. Let F e : R→ R be

the e-th iteration of the Frobenius map, that is, F e(r) = rq, where q = pe, e ∈ N. The ring

R is a reduced ring (i.e. it does not have any nilpotent elements) if and only if the Frobenius

map F : R→ R is injective, by [7].

If R is a reduced ring and Q(R) is the total ring of fractions of R, we define the

collection of qth roots of R as follows:

R1/q := {s ∈ Q(R) : sq ∈ R}.

It is easy to note that R1/q is closed under addition and multiplication and that the map

R → R1/q, which sends r to r1/q is an isomorphism of rings. Therefore, R1/q is a ring

abstractly isomorphic to R. Moreover, the inclusion R ⊂ R1/q can be naturally identified

with the e-th iteration of the Frobenius endomorphism F e of R. This gives R1/q the module

structure over R as follows: r ∗ s = r · s, for any r ∈ R and s ∈ R1/q.

Definition 2.1.1. A ring R is called F -finite if R1/q is finitely generated as a module over

R, for some (or equivalently, any) q.
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Example 2.1.2. (i) Any perfect field k of characteristic p (any field which satisfies kp =

k) is F -finite.

(ii) Any complete local ring with F -finite residue field is F -finite. For instance, let k be a

perfect field of characteristic p and let S = k[[x1, . . . , xn]] be the formal power series

ring in n variables over k. Then,

S1/q = k1/q[[x
1/q
1 , . . . , x1/q

n ]] = k[[x
1/q
1 , . . . , x1/q

n ]] =
⊕

16λ1,...,λn6q−1

S (̇xλ11 · · ·xλnn )1/q.

Therefore, S1/q is a free S-module with basis {xλ1/q1 . . . x
λn/q
n }06λi6q−1.

The following properties of F -finite rings are well-known and they are presented in [17].

Proposition 2.1.3. Let R be an F -finite ring. Then the following hold:

(i) If S is a multiplicative closed set of R, then S−1R is F -finite.

(ii) If I ⊆ R is an ideal of R, then the quotient ring R/I is F -finite.

(iii) If x is an indeterminate, then the polynomial ring in R[x] and the formal power series

ring R[[x]] are F -finite.

The class of F -pure rings has been introduced by Hochster and Roberts in [16]. They

play a very important role in tight closure theory and have been studied by Fedder, Goto

and Watanabe before tight closure theory came about.

Definition 2.1.4. A monomorphism f : R → S is pure if f ⊗ 1M : R ⊗M → S ⊗M is

injective, for all R−modules M. If the Frobenius map F : R→ R is pure, then we say that

R is F -pure.

It follows from the definition that if R is F-pure then xp ∈ I [p] implies that x ∈ I, for

any ideal I.

For an F -pure ring R, the Frobenius map is injective, therefore R is reduced (i.e. has

no nilpotent elements).
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Definition 2.1.5. A ring R is called F -split if the inclusion map i : R → R1/q splits as a

map of R-modules, i.e. if there exists a map φ ∈ HomR(R1/q, R) such that φ ◦ i = idR.

Remark 2.1.6. The inclusion map R→ R1/q splits for some q if and only if it splits for all q.

It is easy to note that any F -split ring is F -pure. If R is F -finite or complete local, then

R is F -pure if and only if R is F -split.

Proposition 2.1.7. (i) A ring R is F -pure if and only if RP is F -pure, for every P ∈

Spec(R).

(ii) An F -finite local ring of prime positive characteristic is F -pure if and only if its com-

pletion R̂ is F -pure.

Kunz found a way of describing that a ring of prime positive characteristic p > 0 is

regular in terms of the Frobenius endomorphism on R. His result states the following:

Theorem 2.1.8 ([24], Kunz). A ring R is regular if and only if the Frobenius endomorphism

F e : R→ R is flat for some e(or equivalently, for any e).

Kunz Theorem shows that any regular ring is F -pure. In the next chapter, we will

present a criterion for F -purity for quotients of regular local rings due to Fedder. By applying

Fedder’s criteria for F -purity one can show that:

Example 2.1.9. (i) Using Proposition 3.1.7, one can show that Stanley-Reisner rings

are F -pure as follows: if S = k[[x1, . . . , xn]], I ⊆ S is a square-free monomial ideal

and R = S/I is the Stanley-Reisner ring associated to I, the element (x1 · · ·xn)p−1 is

contained in the colon ideal (I [p] : I) and it does not belong to m[p].

(ii) Let k is a field of prime characteristic p and R = k[x, y, z]/(x3 +y3 +z3). One can show

that if p ≡ 1(mod 3), R is F -pure and if p ≡ 2(mod 3), R is not F -pure.

2.2 Tight Closure

Let R be a Noetherian commutative ring of prime positive characteristic p. Let e > 0

and q = pe. For any ideal I of R, we denote by I [q] the ideal generated by {iq : i ∈ I}.
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For any ideals I and J, we have that (I + J)[q] = I [q] + J [q], (IJ)[q] = I [q]J [q] and

(In)[q] = (I [q])n, for any positive integer n.

For any ring R, we denote by Ro the set of elements of R not contained in any minimal

prime of R. If R is an integral domain, Ro = R \ {0}.

Definition 2.2.1 ([13]). Let I 6 R. Then the tight closure of I is the ideal

I∗ = {x ∈ R : there exists c ∈ Ro such that cxq ∈ I [q], for all q = pe � 0}.

We recall here the definition of the integral closure of an ideal I:

Definition 2.2.2. Let I 6 R. Then the integral closure of I in the ring R is the ideal

denoted by I and consisting of elements x in R which satisfy an integral dependence relation

xn + a1x
n−1 + . . .+ an−1x+ an = 0,

such that the coefficients satisfy ai ∈ I i, for any 1 6 i 6 n.

A different way of defining the integral closure of an ideal in a ring is the following:

Definition 2.2.3. Let I 6 R. Then the integral closure of I in the ring R is the ideal

denoted by I and consisting of elements x in R for which there exists c ∈ Ro such that

cxn ∈ In, for infinetely many n.

Since I [q] ⊆ Iq and using the second definition of the integral closure of an ideal in a

ring it is easy to note that I∗ ⊆ I. One of the most powerful results connecting tight and

integral closure of an ideal in a ring of prime characteristic is the following:

Theorem 2.2.4 (Briançon-Skoda Theorem). Let R be a Noetherian ring of positive prime

characteristic and let I be an ideal of R generated by at most n elements. Then for all m > 0,

Im+n ⊆ (Im+1)∗.
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As a consequence of this result:

Proposition 2.2.5. For any x ∈ R, (x)∗ = (x).

Proposition 2.2.6. For any ideals I and J of R, the following assertions hold:

(i) I ⊆ I∗ ⊆ I

(ii) If I ⊆ J, then I∗ ⊆ J∗.

(iii) I ⊆ I∗ = (I∗)∗

(iv) (I + J)∗ = (I∗ + J∗)∗

(v) (I · J)∗ = (I∗ · J∗)∗

(vi) (I ∩ J)∗ ⊆ I∗ ∩ J∗

(vii) 0∗ =
√

0

(viii) x ∈ I∗ if and only if the image of x in R/P , x lies in (IR/P )∗, for any minimal prime

ideal P of R.

Part (viii) of the Proposition 2.2.6 above shows that it is enough to study tight closure

in integral domains.

Computing the tight closure of an ideal in a given ring is a very difficult problem. The

following results give us a way of finding elements in the tight closure of an ideal in a given

ring.

Proposition 2.2.7. If R ⊆ S is a finite R-algebra extension and S is an integral domain,

then IS ∩R ⊆ I∗.

Proposition 2.2.8 (Colon capturing). Let R be a regular domain, S a finite R-module and

x1, . . . , xn ∈ R elements in R which generate a height n ideal in R. Then the following holds

(x1, . . . , xn−1) :S xn ⊆ ((x1, . . . , xn−1)S)∗.
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We will present a class of ideals defined using the tight closure operation on ideals.

Definition 2.2.9. A ring R is called weakly F -regular if every ideal in R is tightly closed,

i.e., if I∗ = I, for any I ⊆ R ideal in R. A ring R is called F -regular if every localization

RP is weakly F -regular, for every P ∈ Spec(R).

Proposition 2.2.10. Any regular ring is weakly F -regular.

Proposition 2.2.11. Any direct summand of a (weakly) F -regular domain is (weakly) F -

regular.

Proposition 2.2.12. Given a Noetherian ring R of prime characteristic p, the following

assertions are equivalent:

(i) R is weakly F -regular

(ii) Rm is weakly F -regular, for any maximal ideal m of R

(iii) Every m-primary ideal of R is tightly closed.

Therefore, in order to show that a ring is weakly F -regular it is enough to prove that

any localization at any maximal ideal of the ring is weakly F -regular. However, an open

question in the field, referred to as the localization problem in tight closure theory asks the

following question: are weakly F -regular and F -regular rings the same?

For some classes of rings such as Gorenstein rings, Q-Gorenstein rings, images of Goren-

stein rings of dimension at most 3, uncountable affine algebras, the two notions coincide. One

can actually show that for Gorenstein rings it is enough to check that only some particu-

lar classes of ideals of the ring are tightly closed in order to prove that the ring is weakly

F -regular:

Proposition 2.2.13. Let (R,m) be a Gorenstein local ring. Then R is a weakly F -regular

ring if and only if every parameter ideal in R is tightly closed. Moreover, R is a weakly

F -regular ring if and only if one parameter ideal in R is tightly closed.
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Definition 2.2.14. Let R be a reduced F -finite ring. We will call R a strongly F -regular

ring if for every c ∈ R \Ro, there exists at least one q such that the map R→ R1/q sending

1→ c1/q splits as a map of R-modules.

It is easy to observe that any strongly F -regular ring is F -split.

Proposition 2.2.15. (i) A reduced F -finite ring R is strongly F -regular if and only if RP

is strongly F -regular, for every P ∈ Spec(R).

(ii) A reduced F -finite local ring R is strongly F -regular if and only if R̂ is strongly F -

regular.

Proposition 2.2.16. Every strongly F -regular local ring is a domain.

Theorem 2.2.17. An F -finite regular ring is strongly F -regular.

Theorem 2.2.18. If R is a direct summand of a strongly F -regular ring, then R is strongly

F -regular ring .

These results give us many ways of testing if a ring is strongly F -regular or not.

Example 2.2.19. (i) Stanley-Reisner rings are not domains, hence they are not strongly

F -regular.

(ii) Let R = k[x, y, z]/(xy−z2). One can show that R ∼= k[s2, st, t2] represents a direct sum-

mand of the polynomial ring k[s, t]. Since k[s, t] is a strongly F -regular ring (because

it is an F -finite regular ring), R is strongly F -regular as well.

Any strongly F -regular ring is weakly F -regular. They are conjectured to be the same

for F -finite rings. This conjecture is relevant in the field because it would prove that weakly

F -regularity commutes with localization.

2.3 The Algebra of Frobenius Operators

Now we will define a new R-algebra structure on R: for any e > 0, as a ring R(e) equals

R while the R-algebra structure is defined by rs = rqs, for all r ∈ R, s ∈ R(e), where q = pe.
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We have that R(e) is the R-bimodule: let R(e) be equal to R as an abelian group, whose left

R-module structure is given by the usual multiplication and whose right R-module structure

is defined by the Frobenius map as follows r ∗ s = rs and s ∗ r = rqs for any r ∈ R and

s ∈ R(e). Let M be a left R-module. Similarly, we will use the Frobenius endomorphism to

define a new left R-module structure on M. We will denote the new R-module by M (e). For

any e > 0, we let M (e) be equal to M as a set and as an abelian group and the R-module

on the left is defined as follows: r ∗m = rqm, for all r ∈ R, m ∈ M (e). We can note that

M (e) = R(e) ⊗RM When R is reduced, R(e) is isomorphic to R1/q as left modules over R.

We have the natural R-module isomorphism:

R(e) ⊗R R/I ∼= R/I [q].

Definition 2.3.1. An eth Frobenius operator (or eth Frobenius action) of M is an

additive map φ : M → M such that φ(rm) = rqφ(m), for all r ∈ R and m ∈ M . The

collection of eth Frobenius actions on M is an R-module, denoted by F e(ER).

Let φ : M −→ M be an eth Frobenius operator. It is easy to see that this map can be

identified with an R-module homomorphism φ : M −→M (e). Moreover, this Frobenius action

naturally defines an R-module homomorphism fφ : R(e) ⊗R M −→ M, where fφ(r ⊗ m) =

rφ(m), for all r ∈ R and all m ∈M. Note that here we regard R(e) as an R−R(e)-bimodule

as follows: R(e) has the usual structure as an R-module given by: R(e) = R on the left, while

on the right we have the twisted Frobenius multiplication: r ∗ s = rsq, for any r ∈ R and

s ∈ R(e).

Now we have a natural R-module isomorphism:

F e(M) = HomR(R(e) ⊗RM,M) ∼= HomR(M,M (e)),

defined by P (φ) = fφ. The R-module structure on F e(M) is given by the natural multi-

plication by a scalar (rφ)(m) = rφ(m), for any r ∈ R, φ ∈ F e(M) and m ∈ M. It is

easy to see that P is additive and P (sφ)(r ⊗ m) = r((sφ)(m)) = r(sφ(m)) = rsφ(m) =
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s(rφ(m)) = sP (φ)(r ⊗m). Therefore, we obtain that P (sφ) = sP (φ), for all s ∈ R and all

φ ∈ HomR(M,M (e)).

Definition 2.3.2. The algebra of Frobenius operators on M is defined by

F(M) = ⊕e>0F e(M).

The ring operation on F(M) is given by the usual composition of maps as multiplication.

If φ ∈ F e(M), ψ ∈ F e′(M) then φψ := φ◦ψ ∈ F e+e′(M). Note that under this multiplication,

the ring F(M) is noncommutative since in general φψ 6= ψφ.

The ring operation on F(M) defines a module structure F e(M) over F0(M) =

EndR(M). This makes F e(M) an R-module, by restricting the scalars of the canonical

map R −→ EndR(M). We have that (φ ◦ r)(m) = φ(rm) = (rqφ)(m), for all r ∈ R, m ∈ M

and φ ∈ F e(M). Hence, φr = rqφ, for all r ∈ R and φ ∈ F e(M).

Let R{F e} be the noncommutative associative ring extension of R generated by one

variable x which satisfies xr = rqx, for every r ∈ R, where q = pe. There exists a ring

homomorphism R{F e} → EndZ(R) which sends R → EndZ(R) and x → F e. Since R ⊂

R{F e} and R is a subring of R{F e}, every R{F e}−module is an R−module. Conversely,

any R{F e}−module is an R−module with an action F e. Therefore, in order to define an

R{F e}−module structure on an R−module M, one has to define an additive map φe : M →

M which satisfies φe(rm) = rqφe(m), for any r ∈ R and any m ∈ M, which is equivalent to

defining a Frobenius operator on the R−module M. Hence, we obtain that F e(M) represents

the sets on R{F e}−module structures on M. In [25], Lyubeznik and Smith showed that

(i) F(R) ∼= R{F}

(ii) F(Hd
m(R)) ∼= R{F}, where Hd

m(R) denotes the top local cohomology module of a

complete local ring (R,m) of positive dimension d which satisfies the Serre’s condition

S2.

One can note that ER has an F(ER)-module structure defined as follows: φ ∗ x = φ(x),

for any φ ∈ F(ER) and x ∈ ER.
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Lyubeznik and Smith characterized strong F -regularity in terms of Frobenius structures

in [25]:

Theorem 2.3.3 ([25, Theorem 4.1]). A reduced F -finite local ring is strongly F -regular if

and only if ER is a simple F(ER)-module.

Another criteria of F -purity is due to Sharp in [31]:

Theorem 2.3.4 ([31, Theorem 3.2]). Let (R,m, k) be a local ring. Then R is F -pure if and

only if there exists an injective Frobenius action on ER.

2.4 Frobenius Complexity

2.4.1 Complexity of Skew-Algebras

Let A be a N-graded, noncommutative ring, A = ⊕e>0Ae, such that A0 = R is a

Noetherian commutative ring. Let A satisfy the following condition: aR ⊆ Ra, for all

r ∈ R = A0, a ∈ A homogeneous. Such a ring is called an R−skew-algebra.

Let Ge := Ge(A) be the subring of A generated by elements of degree less than or

equal to e. Note that Ge ⊆ Ge+1, for all e. Moreover, (Ge)i = Ai, for all 0 6 i 6 e and

(Ge)e+1 ⊆ Ae+1. We will denote the minimal number of homogeneous generators of Ge as a

subring of A over A0 = R by ke.

Proposition 2.4.1. The minimal number of generators of the R-module
Ae

(Ge−1)e
equals

ke − ke−1, for all e.

Definition 2.4.2. The sequence {ke}e is called the growth sequence for A. The com-

plexity sequence is given by {ce = ke − ke−1}e. The complexity of A is

cx(A) = inf{n > 0 : ce = O(ne)}.

If there is no n > 0 with ce(A) = O(ne), by convention we have that cx(A) =∞.

It is obvious that cx(A) = 0 when A is finitely generated as a ring over R.
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Remark 2.4.3. (i) It is easy to note that cx(A) = 0 if and only if A is finitely generated

as a ring over R, if and only if {ce(A)}e>0 is eventually zero.

(ii) One can show that cx(A) > 0 implies cx(A) > 1.(The sequence {ne}e converges to 0,

for 0 < n < 1 as e −→∞. Hence, if we assume cx(A) = n > 0, then ce(A) = O(ne) with

0 < n < 1. Since {ne}e converges to 0, as e→∞, the sequence {ce(A)}e is eventually

0. But this implies cx(A) = 0, which contradicts our assumption. Therefore, we must

have cx(A) > 1.)

(iii) We have that cx(A) = 1 if the sequence {ce(A)}e>0 is bounded above, but not eventually

zero.

Let ER := ER(k) denote the injective hull of the residue field k.

Definition 2.4.4. The Frobenius complexity of the ring R is defined by

cxF (R) = logp(cx(F(ER))).

Also, let {ke := ke(F(ER))}e be the Frobenius growth sequence and {ce := ce(F(ER))}e

the complexity sequence.

Remark 2.4.5. (i) If (R,m, k) is a local, d-dimensional and Gorenstein ring, ER = Hd
m(R).

In [25], Lyubeznik and Smith proved that F(Hd
m(R)) is generated by the canonical

Frobenius action F on Hd
m(R). Therefore, F(ER) is principally generated as a ring

over R and cxF (R) = −∞.

(ii) Let R a normal, Q−Gorenstein ring of positive dimension d and with the canonical

module relatively prime to p. In [23], Katzman, Schwede, Singh and Zhang proved

that F(ER) is principally generated as a ring over R and cxF (R) = −∞

(iii) In [21], Katzman gave an example of a ring R such that F(ER) is not finitely generated

as a ring over R. The ring is R = k[x, y, z]/(xy, xz). One can note that this ring is a

Stanley-Reisner ring. Later on, we will see that we can prove that cxF (R) = 0.
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(iv) The Frobenius complexity of a ring is 0, if the complexity sequence {ce}e is bounded

but not eventually 0. Àlvarez Montaner, Boix and Zarzuela showed that the Frobenius

complexity of the completion of any Stanley-Reisner ring is either 0 or −∞.

(v) Based on Remark 2.4.3 (ii), we have that the Frobenius complexity cannot take nega-

tive values.

(vi) In [9], Enescu and Yao computed the Frobenius complexity for the determinantal rings

obtained by moding out the 2 × 2 minors of a 2 × 3 matrix of indeterminates. They

showed that the Frobenius complexity can be positive, irrational and depends on the

characteristic.

2.4.2 The T-Construction

In [23], Katzman, Schwede, Singh and Zhang introduced an important example of an

R-skew algebra.

Let R be an N-graded commutative ring of characteristic p with R0 = R.

Definition 2.4.6. Let Te = Rpe−1 and T (R) = ⊕eTe = ⊕e>0Rpe−1. A ring structure on

T (R) is defined by

a ∗ b = abp
e

,

for all a ∈ Te and b ∈ Te′ .

This operation together with the natural addition inherited from R defines a noncom-

mutative N-graded ring. Note that T0 = R and if a ∈ Te, r ∈ R, then

a ∗ r = arp
e

= rp
e

a = rp
e ∗ a,

for all e > 0. Hence T (R) is a skew R-algebra.

Let (R,m, k) a local normal complete ring. For any divisorial ideal I (i.e. an ideal of

height one), we denote by I(n) its nth symbolic power. Let ω denote the canonical ideal of
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R. The anticanonical cover of the ring R is defined as

R = R(ω) =
⊕
n>0

ω(−n).

In [23], Katzman, Schwede, Singh and Zhang found a new description for the ring of Frobe-

nius operators on the injective hull of the residue field of R using the T−construction of the

anticanonical cover of the ring R.

Theorem 2.4.7 ([23, Theorem 3.3], Katzman, Schwede, Singh, Zhang ). Let (R,m, k) be a

local normal complete ring and ω its canonical ideal. Then there exists an isomorphism of

graded rings:

F(ER) ∼= T (R(ω)).

2.5 Strong Test Ideals

Let R be a Noetherian ring of characteristic p. In an attempt of understanding which

elements in the integral closure of an ideal belong to its tight closure, Huneke introduced the

notion of strong test ideal in [18]. He asked whether there exists a uniform bound on the

degree of the integral equations satisfied by the elements in the tight closure of an ideal in

the given ring.

Test elements are an important tool in tight closure theory since they annihilate all the

tight closure operations.

Definition 2.5.1. An element c ∈ R is called a test element if cI∗ ⊆ I, for all the ideals

I of R.

In [15], Hochster and Huneke showed that test elements exist in a large class of rings:

Theorem 2.5.2. Let R be a reduced excellent local ring. Then for every c ∈ Ro with Rc

regular, there exists n such that cn is a test element.

Kunz showed that F−finite rings are excellent. Hence, test elements exist in any reduced

F−finite local ring.
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Definition 2.5.3. Let R be a ring in which test elements exist. The ideal generated by all

the test elements is called the test ideal of the ring R and it is denoted by τR.

From the definition, we have that τI∗ ⊆ I.

Definition 2.5.4. Let T be an ideal of R such that T ∩ Ro 6= ∅. Then T is a strong test

ideal for R if and only if TI∗ = TI, for all ideals I 6 R.

Remark 2.5.5. If a strong test ideal exists, T ⊆ τR.

Huneke has observed that the minimal number of generators of a strong test ideal T is

a bound for the minimal degree of an integral dependence equation that an element x ∈ I∗

satisfies over I, see Theorem 2.1 in [18].

Now, we will give the definition of the tight closure of a module.

For an R-module M , let F e(M) = R(e) ⊗R M . For a submodule N ⊆ M we denote

N
[q]
M = Im(F e(N)→ F e(M)) and for x ∈M , we let xq denote the image of 1⊗ x in F e

R(M).

Definition 2.5.6. Let M be a finitely generated R-module and N a submodule in M, we

define the tight closure of N in M as follows:

N∗ = {x ∈M : there exists c ∈ Ro such that cxq ∈ N [q]
M , for all q = pe � 0}.

If M is not a finitely generated R−module, we will use the notion of finitistic tight

closure of N in M, as follows:

Definition 2.5.7. Let M be an R-module and N ⊆ M an R-submodule of M . We call

the finitistic tight closure of N in M, denoted by N∗fgM the set of elements u ∈ M for

which there exists a finitely generated submodule L ⊆ M such that u ∈ (N ∩ L)∗L. We call

N tightly closed in the finitistic sense in M if N∗fgM = N.

Definition 2.5.8. The big test ideal is defined as τb(R) = ∩MAnnR(0∗M).

The finitistic test ideal of R is ∩I6RI : I∗ and is denoted by τfg(R).

The big test ideal and the finitistic test ideal are conjectured to be the same.
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Remark 2.5.9. Let (R,m, k) be a local ring. In [14], Hochster and Huneke showed that the

big test ideal is the annihilator of the finitistic tight closure of 0 in the injective hull of the

residue field of R, τb(R) = AnnR(0∗fgER
). Moreover, we have that the finitistic test ideal can be

expressed as τfg(R) = AnnR(0∗ER). We can note that τfg(R) ⊆ τb(R). Moreover, if (R,m, k)

is complete by Matlis duality we have that 0∗fgER
= AnnER(τb(R)) and 0∗ER = AnnER(τfg(R)).

In [33], Vraciu showed the following:

Theorem 2.5.10. If (R,m) is a Noetherian local reduced ring of prime characteristic p such

that the big test ideal commutes with completion, i.e., τb(R)R̂ = τb(R̂), then the big test ideal

τb(R) is a strong test ideal. Moreover, if (R,m) is complete, then the finitistic test ideal

τfg(R) is a strong test ideal.

2.6 Cartier Algebras

Definition 2.6.1. A p−e−linear map ψe : M −→ M is an additive map that satisfies

ψe(r
pem) = rψe(m), for all r ∈ R, m ∈M. We denote the set of p−e−linear maps by Ce(M).

We have that Ce(M) = HomR(M (e),M). It is easy to see that if we compose a p−e−linear

map and a p−e
′−linear map we get a p−e+e

′−linear map. Moreover, each Ce(M) is a right

module over C0(M) = EndR(M).

Definition 2.6.2. The Cartier algebra on M is

C (M) = ⊕e>0Ce(M) = ⊕e>0 HomR(M (e),M).

Note that this is a noncommutative ring and C0(M) = EndR(M) is not central in R, so this

object is not an R-algebra in the classical sense.

Definition 2.6.3. Let C be the Cartier algebra on R and let D be a graded-subring of C

such that D0 = C0 ' R and De 6= 0 for some e > 0. An Cartier algebra pair on R is a

pair of the form (R,D).
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Definition 2.6.4. Let q = pe and φ : R1/q → R be an R-linear map. An ideal J 6 R is

called φ-compatible if φ(J1/q) ⊆ J . An ideal J is called D-compatible if φ(J1/q) ⊆ J , for

all φ ∈ De and all e > 0.

Schwede has showed how to associate a test ideal to a Cartier subalgebra on R in [29, 30].

Definition 2.6.5. The test ideal associated to the pair (R, φ), denoted τ(R, φ) is the

unique smallest φ-compatible ideal that intersects nontrivially Ro.

The test ideal associated to the pair (R,D), denoted τ(R,D) is the unique smallest

D-compatible ideal that intersects Ro nontrivially.

The existence of test ideals associated to pairs was proved by Schwede based upon a

technical result of Hochster and Huneke on test elements.

Lemma 2.6.6 ([30, Lemma 3.6],[15, Theorem 5.10]). Let R and φ be as above. Then there

exists an element c in Ro such that for all d 6= 0 there exists n ∈ Z>0 with

c ∈ φn((dR)1/pne).

This allows us to state the existence result for test ideals for R and φ : R1/q → R,

respectively a subalgebra D of C , mentioned above.

Theorem 2.6.7 ([29, Theorem 3.18],[30, Lemma 3.8 and Theorem 7.13]). Let R, φ and c be

as in the above Lemma. Then τ(R, φ) exists and equals

∑
n>0

φn((cR)1/pne).

The test ideal of an algebra pair (R,D) is

τ(R,D) =
∑
e>0

∑
φ∈De

τ(R, φ).

In [8], we proved the following:
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Theorem 2.6.8 ([8, Theorem 2.4]). Let φ : R1/q → R be an R-linear map. Then τ(R, φ) is

a strong test ideal in R.

Moreover, if (R,D) is an algebra pair, then the test ideal τ(R,D) is a strong test ideal.

Remark 2.6.9. This result recovers earlier results of Vraciu and respectively Takagi on strong

test ideals. Vraciu showed that the test ideal τb(R) is a strong test ideal in R in [33]. A

consequence of a result by Hara and Takagi, Lemma 2.1 in [12], shows that τ(R,C ) = τb(R).

2.7 Simplicial Complexes and Stanley-Reisner Rings

In this section, we will introduce an important class of rings in combinatorial commu-

tative algebra defined using square-free monomial ideals.

Let V = {x1, . . . , xn} be a finite set. We will call a (finite) simplicial complex ∆ on

V a collection of subsets of V such that F ∈ ∆, whenever F ⊆ F ′ for some F ′ ∈ ∆, and

such that {xi} ∈ ∆, for any i = 1, . . . , n.

The elements of ∆ are called faces and the maximal faces under inclusion are called the

facets of the simplicial complex. Let F(∆) denote the set of facets of the simplicial complex

∆. Since any simplicial complex is uniquely generated by its facets, whenever F(∆) =

{F1, . . . , Fm}, we will write ∆ =< F1, . . . , Fm > .

The dimension, dim(F ), of a face F is the number |F | − 1. The dimension of the

simplicial complex ∆ is dim(∆) = max{dim(F ) : F ∈ ∆}.

By convention, the empty set ∅ is a face of dimension −1 of any non-empty simplicial

complex. Any face of dimension 0 is called a vertex and any face of dimension 1 is called

an edge.

We denote by fi, the number of faces of ∆ of dimension i. We have f0 = n and f−1 = 1.

The d-tuple

f(∆) = (f0, f1, . . . , fd−1)

is called the f-vector of ∆.

A nonface of ∆ is a subset of the vertex set of ∆ which is not an element of ∆.
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A simplicial complex ∆ is called pure if all the facets of ∆ have the same dimension,

namely dim(∆).

A simplicial complex ∆ is a Cohen-Macaulay complex over k if k[∆] is a Cohen-Macaulay

ring.

Proposition 2.7.1. Any Cohen-Macaulay simplicial complex is pure.

Definition 2.7.2. Given a finite simplicial complex ∆ on the vertex set {x1, . . . , xn} and a

field k, the corresponding Stanley-Reisner ring, denoted k[∆] is obtained by taking the

quotient ring formed by the polynomial ring k[x1, . . . , xn] and its ideal I∆ generated by the

square-free monomials corresponding to the non-faces of ∆:

I∆ = (xi1 · · ·xir : {xi1 , . . . , xir} /∈ ∆),

k[∆] =
k[x1, . . . , xn]

I∆

.

.

On the other hand, if I is a square-free monomial ideal, then k[x1, . . . , xn]/I ∼= k[∆],

for some simplicial complex ∆.

For each F ⊂ V subset of V we denote by xF =
∏
xi∈F

xi and PF = (xi : xi ∈ F ).

Example 2.7.3. Let ∆ be the simplicial complex generated by the facets F1 = {x1, x2} and

F2 = {x2, x3, x4}. Then the nonfaces of ∆ are {x1, x3} and {x1, x4}. The Stanley-Reisner

ring associated to ∆ is k[∆] = k[x1, x2, x3, x4]/(x1x3, x1x4).

Proposition 2.7.4. Let ∆ be a simplicial complex on the vertex set V = {x1, . . . , xn}. Then

the minimal primary decomposition of the Stanley Reisner ideal associated to ∆ is given by

I∆ =
⋂

F∈F(∆)

PF c ,



22

where F(∆) is the set of the facets of ∆ and F c = V \ F the complement of F . Moreover,

dim(k[∆]) = dim(∆) + 1.

Example 2.7.5. In the Example 2.7.3, we have that the minimal primary decomposition of

the ideal I∆ is given by I∆ = (x1) ∩ (x3, x4).

Definition 2.7.6. Let ∆ a simplicial complex. We define the Alexander dual of ∆:

∆V = {F c : F /∈ ∆}.

Remark 2.7.7. One can show that the Alexander dual of the simplicial complex ∆, denoted

by ∆V , is a simplicial complex.

Proposition 2.7.8. Let I∆ = PF c1 ∩ . . . ∩ PF cm be the minimal primary decomposition of

I∆, where F1, . . . , Fm are the facets of the simplicial complex ∆. Then the square-free ideal

associated to the Alexander dual I∆V is generated by the monomials xF c1 , . . . , xF cm .

Example 2.7.9. The Alexander dual of the simplicial complex ∆ in the Example 2.7.3

is generated by the facets {x2, x3} and {x2, x4}. The square-free ideal associated to the

Alexander dual is generated by I∆V = (x1, x3x4) and the Stanley-Reisner ring associated to

the Alexander dual is k[∆V ] = k[x1, x2, x3, x4]/(x1, x3x4).
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CHAPTER 3

PREPARATORY RESULTS

In this chapter, we will present the preparatory results which will be needed later on in

this dissertation.

3.1 Fedder’s Lemma

In this section, we will present a result due to Fedder in [10]. Proposition 3.1.7 gives

us a nice criteria for F -purity for a quotient of a regular local F -finite ring. We will follow

Fedder’s work in [10] to provide complete proofs for the results presented.

Throughout this section, let S be an F -finite regular local ring, I ⊆ S an ideal in S

and R = S/I. We will denote by ωR the canonical module of the ring R. We will need the

following theorem in [7]:

Theorem 3.1.1 ([7, Theorem 3.3.7]). Let (R,m) be a Cohen-Macaulay ring.

(a) The following assertions are equivalent:

(i) R is Gorenstein

(ii) ωR exists and ωR ∼= R.

(b) Let (R,m)→ (S, n) be a local homomorphism of Cohen-Macaulay local rings such that

S is a finite R−module. If ωR exists, then ωS exists and ωS ∼= ExttR(S, ωR), where

t = dim(R)− dim(S).

Proposition 3.1.2. If (S,m) is an F -finite regular local ring of characteristic p, then S(1)

is a regular local ring which is free as a left S-module.

Proposition 3.1.3. Let (S,m) be a F -finite regular local ring of characteristic p. Then we

have that

HomS(S(1), S) ∼= S(1)
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as left S(1)-modules.

Proof. By Proposition 3.1.2, S(1) is a regular local ring which is free as an S-module. Hence,

we are under the hypothesis of Theorem 3.1.1 and we obtain that

HomS(S(1), S) ∼= HomS(S(1), ωS) ∼= ωS(1)
∼= S(1),

as left modules over S(1).

Proposition 3.1.4 ([10, Lemma 1.6]). Let (S,m) be a F -finite regular local ring of charac-

teristic p. Let I ⊆ S be an ideal in S and R = S/I. Let f be a generator of HomS(S(1), S)

as a left S(1)-module, J ⊆ S(1) an ideal in S(1) and s ∈ S(1). Then sf(J) ⊆ I if and only if

s ∈ (IS(1) : J).

Proof. Let {si}i be a basis for S(1) as a left module over S. Then we have that s̃if ∈

HomS(S(1), S) defined by s̃if(t) = f(s̃it), for any s̃i, t ∈ S(1). Note that for any s ∈ S(1), the

map sf ∈ HomS(S(1), S) is defined as sf(t) = f(st), for any s, t ∈ S(1).

Then sf(J) ⊆ I if and only if sf(rS(1)) ⊆ I, for all r ∈ J if and only if srf(S(1)) ⊆ I,

for all r ∈ J. Thus, srf : S(1) → I if and only if srf(si) = ri ∈ I, for all i if and only if

srf = (
∑

i ris̃i)f if and only if sr =
∑

i ris̃i ∈ IS(1), for all r ∈ J. Therefore, we showed that

sf(J) ⊆ I if and only if s ∈ (IS(1) : J).

Corollary 3.1.5. Under the assumptions of Proposition 3.1.4, there exists an isomorphism

ψ : (IS(1) : J)/IS(1) ∼= HomS(S(1)/J, S/I), given by ψ(s) = (sf), where sf is the homomor-

phism defined by sf(t) = sf(t), for t ∈ S(1)/J.

Proof. We will first show that the map ψ is well-defined. Let s1 = s2 ∈ (IS(1) : J)/IS(1).

This implies that s1 − s2 ∈ IS(1). We have f((s1 − s2)t) ∈ f(IS(1)) ⊆ If(S(1)) ⊆ IS = I,

which implies (s1 − s2)f(t) ∈ I. Hence we obtain ψ(s1) = ψ(s2). It is easy to see that

the map ψ is a homomorphism. Now we will prove that ψ is injective and surjective. Let

ψ(s) = 0. Then sf(t) = 0, for all t ∈ S(1)/J. This implies sf(t) ∈ I, for all t ∈ S(1). By
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Proposition 3.1.4, we have that sf(S(1)) ⊆ I if and only if s ∈ IS(1) : S(1). Therefore,

s ∈ IS(1) which proves that s = 0. Hence, ψ is injective. Since S(1) is a free S-module, every

homomorphism φ ∈ HomS(S(1)/J, S/I) induces a commutative diagram

S(1) S(1)/J 0

S S/I 0

π

φ0 φ

π

There exists φ0 ∈ HomS(S(1), S) such that φ ◦ π = π ◦ φ0. Moreover, φ0 = sf for some

s ∈ S(1) and φ(t) = φ(π)(t)) = π(φ0(t)) = π(sf(t)) = sf(t). Therefore, φ = sf. Hence,ψ is

surjective.

Corollary 3.1.6. Let S be a F -finite regular local ring, I ⊆ S an ideal in S and R = S/I.

There exists an isomorphism ψ : (I [p] : I)/I [p] ∼= HomR(R(1), R), given by ψ(s) = (sf), where

f is any S(1)-module generator for HomS(S(1), S).

Proof. Since S(1) as a ring is just the ring S, the ideal IS(1) in S(1) becomes identified with

I [p] in S. Now the conclusion follows directly from Corollary 3.1.5.

Proposition 3.1.7 ([10, Proposition 1.7]). Let (S,m) be a F -finite regular local ring, I ⊆ S

an ideal in S and R = S/I. Then, R is F -pure if and only if (I [p] : I) 6⊂ m[p].

Proof. Let f be the S(1)-module generator for HomS(S(1), S). We know that R is F -pure if

and only if the map R→ R1/p splits. Hence it is enough to show that R→ R1/p splits if and

only if there exists a map φ = sf ∈ HomR(R(1), R) with Im(φ) 6⊂ mR, where mR denotes

the maximal ideal of the ring R. For the first implication, since F : R → R1/p splits, there

exists an R-linear map φ : R1/p → R with φ ◦ F = id. If Im(φ) ⊂ mR then Im(φ) 6= R.

Therefore, 1 /∈ Im(φ) which contradicts the fact that φ(1) = 1. For the other implication,

since there exists a map φ = sf ∈ HomR(R(1), R) with Im(φ) 6⊂ mR, using Proposition 3.1.4

we have that sf(φ) ⊆ mR if and only if s ∈ (mRS
(1) : S(1)) = mRS

(1) = m[p]. Therefore, we

have that s /∈ m[p] which proves that Im(sf) contains a unit. Hence the map φ : R1/p → R

is surjective which shows that the map F : R→ R1/p splits.
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3.2 The Ring of Frobenius Operators on the Injective Hull

Let (R,m, k) be a complete local ring in positive prime characteristic p. The ring op-

eration on F(ER) is given by the usual composition of functions as multiplication. Given

φe ∈ F e(ER) and φe′ ∈ F e
′
(ER) we have φeφe′(x) := (φe ◦ φe′)(x), for any x ∈ ER and

e, e′ > 0.

Definition 3.2.1. Let (R,m, k) a local ring. Given an R-module M, we call the Matlis

dual of M : MV := HomR(M,ER(k)).

One can note that this is a contravariant exact functor from the category of R−modules

to itself.

Theorem 3.2.2 ([7, Theorem 3.2.13]). (Matlis duality) Let (R,m, k) be a complete Noethe-

rian local ring and ER = ER(k) the injective hull of the residue field of the ring R. Then

(i) RV ∼= ER and EV
R
∼= R

(ii) For every R-module M, there exists a natural map M → (MV )V . Under this map,

R→ (RV )V and ER → (EV
R )V are isomorphisms.

(iii) If we denote by A(R) the category of Artinian R−modules and by F(R) the category

of finite R−modules and if we let M ∈ A(R) and N ∈ F(R), then MV ∈ F(R) and

NV ∈ A(R). Furthermore, (MV )V ∼= M and (NV )V ∼= N.

Using Theorem 3.2.2(i), we have that F0(ER) = HomR(ER, ER) = EV
R
∼= R.

The ring of Frobenius operators F(ER) is a graded skew R-algebra since it is an N-

graded noncommutative ring and φR ⊆ Rφ, for any φ ∈ F(ER) homogeneous. One can

check that by choosing φ ∈ F e(ER), r ∈ R and x ∈ ER as follows:

φr(x) = φ(rx) = rp
e

φ(x).

Hence we obtain φr = rp
e
φ, for any φ ∈ F e(ER) and any r ∈ R.
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3.2.1 The Ring of Frobenius Operators on the Injective Hull of Regular Local Rings

Let (S,m) regular complete local ring, I ⊆ S an ideal of S and R = S/I. Let ES denote

the injective hull of the residue field of S and ER denote the injective hull of the residue field

of R. An important result in the literature states that:

Lemma 3.2.3 ([2, Lemma 3.34]). If S is a regular local ring, I ⊆ S an ideal of S and

R = S/I, then ER = AnnES(I) ⊆ ES.

Proof. Using the properties of the Hom functor, we have the following isomorphism of func-

tors:

HomS(−, ES) ∼= HomR(−,HomS(S/I, ES)) = HomR(−,AnnES(I)).

Since ES is an injective S-module, the functor HomS(−, ES) is exact and by the isomorphism

above we obtain that the S-module AnnES(I) is injective as well. Both k and AnnES(I) are

S-modules killed by I, so they are R-modules. We have the following extension of S-modules

k ⊆ AnnES(I) ⊆ ES

and we know that k ⊆ ES is an essential extension. This shows that k ⊆ AnnES(I) is

an essential extension of R-modules. hence using the fact that AnnES(I) is an injective

R-module, we proved that AnnES(I) equals ER.

It is a well-known fact presented in Proposition 3.5.4 in [7] that for a regular local

ring S, ES is isomorphic to the top local cohomology module of S, i.e. ES ∼= Hn
m(S),

where n = dim(S). The Frobenius map on S induces a natural canonical Frobenius map on

Hn
m(S), denoted by F e

S. The next result gives a nice interpretation of the Frobenius ring of

operators on the injective hull of the residue field of the quotient ring of a local regular ring.

Blickle showed the isomorphism below in [2]. Sharp reformulated this result using a different

terminology in [31]. We are going to present a proof of this result using our notations. Note

that (I [pe] :S I) is the ideal generated by the elements u ∈ S with uI ⊆ I [pe], for any e > 0.
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Corollary 3.2.4 ([2, Proposition 3.36],[31, Lemma 2.5]). Let (S,m, k) regular complete local

ring of positive prime characteristic p, I ⊆ S an ideal of S and R = S/I. Let e > 0 and

q = pe.

There exists an isomorphism of R-modules:

F e(ER) ∼=
I [pe] :S I

I [pe]
.

Therefore,

F(ER) ∼=
⊕
e>0

I [pe] :S I

I [pe]
.

Proof. Since (S,m, k) is a regular local ring, we have that ES ∼= H
dim(S)
m (S), using Proposition

3.5.4(c) in [7]. Moreover, Lyubeznik and Smith showed that F e(Hdim(S)
m (S)) ∼= S{F e} in

Example 3.7 in [25]. Therefore, the Frobenius ring of operators on ES, F e(ES) is generated

by the canonical Frobenius action on ES, namely F e
S : ES → ES, F

e
S(x) = xp

e
, for any

x ∈ ES. Hence, each eth Frobenius action φ on ES is of the form φ(x) = uF e
S(x), for every

x ∈ ES, for some u ∈ S.

Claim 1 Let φ be a Frobenius action on ES given by φ(x) := uF e
S(x), for any x ∈ ES.

Then φ induces a Frobenius action on ER if and only if u ∈ (I [pe] :S I).

Proof of Claim 1 By Lemma 3.2.3, we know that ER = AnnES(I) ⊆ ES. For the

implication ” ⇐= ”, let x ∈ ER. We want to show that φ(x) ∈ ER. Let a ∈ I. Since

u ∈ (I [pe] :S I), au ∈ I [pe]. Hence, there exists a1, . . . , at ∈ I and s1, . . . , st ∈ S with

au =
t∑
i=1

sia
pe

i . So, aφ(x) = auF e
S(x) =

t∑
i=1

sia
pe

i F
e
S(x) =

t∑
i=1

siF
e
S(aix) = 0, for any x ∈

ER = AnnES(I), because aix = 0, for any i. Since a was arbitrarly chosen, we obtain that

φ(x) ∈ ER, for any x ∈ ER. For the other implication ” =⇒ ”, we assume that φ induces

a Frobenius action on ER, i.e. φ : ER → ER. Let a ∈ I. Since φ(x) ∈ ER = AnnES(I), for

any x ∈ ER, we have that aφ(x) = auF e
S(x) = 0, for any x ∈ ER. Since a ∈ I, we have the

inclusion uI ⊆ AnnS(F e
S(ER)).

Claim 2 We will now prove that AnnS(F e
S(ER)) = I [pe].

Proof of Claim 2 We have that F e
S(ER) = F e

S(AnnES(I)) ∼= F e
S(HomS(S/I, ES)) ∼=

S(e) ⊗S F e
S(HomS(S/I, ES)) ∼= HomS(S(e) ⊗S S/I, S(e) ⊗S ES), because S/I is a finitely
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generated S−module and S is a regular ring which implies that S(e) is a flat S−module.

One can note that S(e)⊗S S/I ∼= S/I [pe] and using Example 3.7 in [25] we have that S(e)⊗S

ES ∼= ES. Therefore, we obtain F e
S(ER) ∼= HomS(S/I [pe], ES) ∼= AnnES(I [pe]). Now using

Theorem 3.2.2, AnnS(F e
S(ER)) = AnnS(AnnES(I [pe])) = I [pe].

Claim 3 If there exists an eth Frobenius action φ ∈ F e(ER), then there exists u ∈

(I [pe] :S I) such that φ(x) = uF e
S(x), for any x ∈ ER.

Proof of Claim 3 We recall that F e(ER) = HomR(R(e)⊗RER, ER). Since φ ∈ F e(ER),

the eth Frobenius action φ is an R-homomorphism φ : R(e) ⊗R ER → ER. After tensoring

the canonical surjection π : S(e) → R(e) by ER and composing it with φ :

S(e) ⊗ ER → R(e) ⊗ ER → ER

we obtain the S−homomorphism α := φ ◦ π ◦ id : S(e)⊗ER → ER defined by α(s⊗ x) = sx,

for any s ∈ S and x ∈ ER. Since S is a regular ring, S(e) is a flat S-module and by tensoring

the exact sequence

0 −→ ER
i−→ ES| ⊗S S(e)

we obtain the exact sequence

0 −→ S(e) ⊗S ER
id⊗Si−−−→ S(e) ⊗S ES.

Since ES is an injective S-module there exists an S-homomorphism α′ : S(e)⊗SES → ES

which makes the diagram below commute

S(e) ⊗ ER ER

S(e) ⊗ ES ES

α

id⊗i i

α′

i.e. α′ ◦ (id ⊗ i) = i ◦ α. Hence, we obtain α′ ∈ HomS(S(e) ⊗S ES, ES) = F e(ES) with

α′(s ⊗ x) = sx, for any s ∈ S and x ∈ ES. Using Lyubeznik and Smith result in [25],
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there exists u ∈ S with φ(x) = uF e
S(x), for any x ∈ ES. Since ER ⊆ ES, we have that

φ(x) = uF e
S(x), for any x ∈ ER and using Claim 1 we obtain u ∈ (I [pe] :S I). This proves the

desired isomorphism.

Given u ∈ (I [pe] :S I) the corresponding Frobenius action on ER is given by r → u·F e
S(r),

for any r ∈ ER, where F e
S : ES → ES denotes the standard Frobenius operator defined by

F e
S(r) = rp

e
, for any r ∈ ES. The R−module structure on

F e(ER) ∼=
I [pe] :S I

I [pe]
.

is given by the usual multiplication, as follows: r ∗ uF e
S = r · uF e

S.

Let u ∈ I [pe] :S I

I [pe]
and u′ ∈ I [pe

′
] :S I

I [pe′ ]
. The algebra multiplication on F(ER) via the

isomorphism

F(ER) ∼=
⊕
e>0

I [pe] :S I

I [pe]
.

is given by u ∗ u′ = u · (u′)pe , for any e, e′ > 0. One can note that

u ∗ u′ ∈ I
[pe+e

′
] :S I

I [pe+e′ ]
,

which shows the R−algebra structure of F(ER).

Remark 3.2.5. Given 0 6= φ ∈ F1(ER), there exists u ∈ (I [p] :S I) with φ = uF, where

F : ER → ER denotes the canonical Frobenius operator on ER. In Proposition 4.5 in [20],

Katzman showed that the e−th iteration of φ, denoted by φe = φ ◦ . . . ◦ φ equals uνeF e ∈

F e(ER), where νe = 1 + p + . . . + pe−1 and F e : ER → ER is the canonical eth Frobenius

operator on ER.

The injective hull of the residue field of the formal power series ring S = k[[x1, . . . , xn]]

can be described as ES(k) = k[x−1
1 , . . . , x−1

n ]. For example, Brodmann and Sharp presented

this result in Example 12.4.1 in [6]. We will give a sketch of the proof here. The C̆ech
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complex of S with respect to the maximal ideal m = (x1, . . . , xn) :

0 −→ C0 d0−→ C1 d1−→ . . . −→ Cn−1 dn−1

−−−→ Cn −→ 0

can be described as

0 −→ S
d0−→

n⊕
i=1

Sxi
d1−→ . . . −→

n⊕
i=1

Sy(i)
dn−1

−−−→ Sx1···xn −→ 0,

where y(i) = x1 · · ·xi−1 · xi+1 · · ·xn, for any 1 6 i 6 n. The top local cohomology module of

S equals

Hn
m(S) = Coker(Sy(i)

dn−1

−−−→ Sx1···xn) ∼=
Sx1···xn

Im(
⊕n

i=1 Sy(i) → Sx1···xn)
.

The k-vector space Sx1···xn has {xa11 · · ·xann : (a1, . . . , an) ∈ Zn} as a base.

For each i = 1, . . . , n, Im(Sy(i) → Sx1···xn) is a k−vector subspace with base {xa11 · · ·xann :

(a1, . . . , an) ∈ Zn, ai > 0}. We denote by N− := {n ∈ Z : n < 0} the set of negative integers.

Hence via the isomorphism above the top local cohomology module Hn
m(S) is a k-vector

space with base {xa11 · · · xann : (a1, . . . , an) ∈ (N−)n}. Therefore, we obtain that Hn
m(S) is

the polynomial ring k[x−1
1 , . . . , x−1

n ]. Now since S is a regular local ring ES ∼= Hn
m(S) =

k[x−1
1 , . . . , x−1

n ]. One can note that the S-module structure on ES can be described as follows:

xi(x
a1
1 · · ·xann ) =

 xa11 · · ·x
ai−1

i−1 x
ai+1

i+1 · · · xann , if ai < −1

0, if ai = −1.

for any (a1, . . . , an) ∈ (N−)n and 1 6 i 6 n.

3.3 The Frobenius Complexity of Stanley-Reisner Rings

Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for e > 0. Let

I 6 S be an ideal in S and R = S/I. In [21], Katzman described the eth Frobenius actions

that come from Frobenius actions of lower degree e′, with e′ < e. For any e > 0 denote

Ke := (I [pe] :S I) and
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Le :=
∑

16β1,...,βs<e,β1+...+βs=e

Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
.

Proposition 3.3.1 ([21, Proposition 2.1]). For any e > 1, let F<e be the R-subalgebra of

F(ER) generated by F0(ER), . . . ,F e−1(ER). Then

F<e ∩ F e(ER) = Le.

Therefore, (Ge−1)e ∼=
Le + I [q]

I [q]
and ce = µS

(
I [q] :S I

Le + I [q]

)
.

Let x1 denote the product of all the variables, i.e. x1 = x1 · · ·xn.

Definition 3.3.2. We define Jq to be the unique minimal monomial ideal satisfying the

equality

(I [q] : I) = I [q] + Jq + (x1)q−1.

We will consider the case of Stanley-Reisner rings such that the simplicial complex

associated to it has no isolated vertices for the remaining part of this section.

Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for e > 0. Let I 6 S

be a square-free monomial ideal in S and R = S/I the Stanley-Reisner ring associated to I.

Let αk = (αk1, . . . , αkn) ∈ {0, 1}n, 1 6 k 6 r, be distinct vectors. The support of the

vector αk is defined as supp(αk) = {i : αki = 1}.

Let Iαk = (xi : i ∈ supp(αk)), for every 1 6 k 6 r and xαk = xαk11 · · ·xαknn such that

Iα1 + Iα2 + · · ·+ Iαr = (x1, . . . , xn).

In [27], Àlvarez Montaner, Boix and Zarzuela found a formula for the colon ideals

(I [q] : I) based on the minimal primary decomposition of the ideal I.

Proposition 3.3.3 ([27, Proposition 3.2]). If I = Iα1∩Iα2∩ . . .∩Iαr is the minimal primary

decomposition of the ideal I, then

(I [q] :S I) = (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr) = (I [q]

α1
+ (xα1)q−1) ∩ · · · ∩ (I [q]

αr + (xαr)q−1).

We will present a different proof of this proposition based on a result of Sharp in [31]:
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Proposition 3.3.4 ([31, Proposition 2.8]). Let I,Q1, . . . , Qs ( S be ideals of S such that

I = Q1 ∩ . . . ∩Qs is the minimal primary decomposition of I. Then the following assertions

hold:

(i) I [q] = (Q1 ∩ . . .∩Qs)
[q] = Q

[q]
1 ∩ . . .∩Q

[q]
s is the minimal primary decomposition of I [q].

(ii) If P ∈ Ass(I), then (I [q] :S I) ⊆ (P [q] :S P ).

(iii) Since 0 6= I 6= S, we have (I [p] :S I) 6= S. If P1 :=
√
Q1 is a minimal prime ideal of I,

then P1 is a minimal prime ideal of (I [p] :S I) and the unique P1−primary component

of (I [p] :S I) is (Q1
[p] :S Q1).

Now we will present our alternative proof of Proposition 3.3.3.

Proof. We will use the following assertions which hold in general for any ideals I, J, Ii, Ji :

(
⋂
i

Ji) : I =
⋂
i

(Ji : I)

J : (
⋂
i

Ii) ⊇
∑
i

(J : Ii).

Using Proposition 3.3.4 (i), we have that I [q] = I
[q]
α1 ∩ I

[q]
α2 ∩ . . . ∩ I

[q]
αr is the minimal primary

decomposition of the ideal I [q]. Moreover, using the assertions about colon ideals above we

obtain that

I [q] : I = (I [q]
α1

: I) ∩ . . . ∩ (I [q]
αr : I) ⊇

r⋂
i=1

r∑
j=1

(I [q]
αi

: Iαj).

Hence,

I [q] : I ⊇ (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).

For the other inclusion, one can note that since I is a square-free monomial ideal, the ideals

Iαi are generated by variables. Therefore, Iαi are the minimal prime ideals of I and based

on Proposition 3.3.4 (ii), we obtain that (I [q] :S I) ⊆ (I
[q]
αi :S Iαi), for any i. Hence we obtain

the second inclusion

I [q] : I ⊆ (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).
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This proves that the equality holds

(I [q] :S I) = (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).

It is easy to note that since the ideals Iαi are generated by variables, namely Iαi = (xj : j ∈

supp(αi)) we have that the colon ideal equals

(I [q]
αi

:S Iαi) =
⋂

j∈supp(αi)

(I [q]
αi

: (xj)) =
⋂

j∈supp(αi)

(I [q]
αi

+ (xq−1
j )) = (I [q]

αi
+ (xαi)q−1),

for any i. This completes the proof of the proposition.

Remark 3.3.5. (i) Since the ideals in the intersection are monomial ideals, one can com-

pute the minimal monomial generators of the ideal (I [q] : I) by taking the least common

multiples of the minimal monomial generators of the ideals (I
[q]
αi + (xαi)q−1).

In this way, we can see that the minimal generators xγ = xγ11 · · ·xγnn of (I [q] : I) satisfy

γi ∈ {0, q − 1, q}.

(ii) One can notice that the formula obtained for (I [q] : I) depends only on q and on

the vectors αi’s. Since the vectors αi are invariants of the ideal I, we can obtain the

minimal monomial generators of (I [q] : I) from the minimal monomial generators of

(I [p] : I) by changing p into q.

Example 3.3.6. Let I = (x1x5, x2x5, x2x3, x2x4). Then

(I [q] : I) = (xq1x
q
5, x

q
2x

q
5, x

q
2x

q
3, x

q
2x

q
4, x

q−1
1 xq−1

2 xq5, x
q
2x

q−1
3 xq−1

4 xq−1
5 ,

xq−1
1 xq−1

2 xq4x
q−1
5 , xq−1

1 xq−1
2 xq3x

q−1
5 , xq−1

1 xq−1
2 xq−1

3 xq−1
4 xq−1

5 )

and therefore

Jq = (xq−1
1 xq−1

2 xq5, x
q
2x

q−1
3 xq−1

4 xq−1
5 , xq−1

1 xq−1
2 xq4x

q−1
5 , xq−1

1 xq−1
2 xq3x

q−1
5 ).
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Lemma 3.3.7. We have that Jq 6= 0 if and only if there exists a generator xγ ∈ (I [q] : I)

having γi = q, γj = q − 1 and γk = 0 for some 1 6 i, j, k 6 n.

Proof. It is trivial to see that if there exists xγ ∈ (I [q] : I) with γi = q, γj = q− 1 and γk = 0

for some 1 6 i, j, k 6 n, then Jq 6= 0.

Let us assume that Jq 6= 0. By Remark 3.3.5, if xγ ∈ Jq, then xγ = xγ11 · · · xγnn must

have γi ∈ {0, q − 1, q}, for all i ∈ {1, . . . , n}.

Moreover, xγ = lcm(xθ1 , . . . , xθr), where xθi ∈ (I
[q]
αi + (xαi)q−1), for i ∈ {1, . . . , r}.

If γi 6= 0, for all i ∈ {1, . . . , n}, then (x1)q−1 divides xγ, hence xγ ∈ (x1)q−1.

If γi 6= q, for all i ∈ {1, . . . , n}, then we must have xθi ∈ ((xαi)q−1), for all i ∈ {1, . . . , r}.

But that happens only if xγ ∈ (x1)q−1.

If γi 6= q − 1, for all i ∈ {1, . . . , n}, then there exists at least one xθi ∈ (I
[q]
αi ), hence we

have that xγ ∈ I [q].

Therefore, if Jq 6= 0, then there exists at least one generator xγ ∈ Jq with γi = q,

γj = q − 1 and γk = 0 for some 1 6 i, j, k 6 n.

In [27], Àlvarez Montaner, Boix and Zarzuela found that there are only four cases that

may occur, considering the minimal primary decomposition of the ideal I and the heights of

the ideals Iαi :

Proposition 3.3.8. There are only four posibilities for the minimal generators of (I [q] : I):

(i) Assume ht(Iαi) > 1, for all i = 1, . . . , r.

(a) (I [q] : I) = I [q] + (x1)q−1.

(b) (I [q] : I) = I [q] + Jq + (x1)q−1, Jq ( I [q] + (x1)q−1.

(ii) Assume ht(I) = 1 and and there exists an i ∈ {1, . . . , r} such that ht(Iαi) > 1.

In this case, (I [q] : I) = Jq + (x1)q−1, with Jq ( (x1)q−1.

(iii) Assume ht(Iαi) = 1 for all i ∈ {1, . . . , r}.

Then (I [q] : I) = (x1)q−1.
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The Frobenius algebra F(ER) is principally generated in cases (i.a) and (iii) and is infinitely

generated in cases (i.b) and (ii).

As a direct consequence of this result, Àlvarez Montaner, Boix and Zarzuela showed

that:

Theorem 3.3.9 ([27, Proposition 3.4]). The Frobenius algebra F(ER) associated to a

Stanley-Reisner ring R is either principally generated or infinitely generated.

Corollary 3.3.10. If R is a Stanley-Reisner ring, the Frobenius complexity of R is either

−∞ or 0.

Proof. By Theorem 3.3.9, we know that the Frobenius algebra F(ER) associated to a Stanley-

Reisner ring R is either principally generated or infinitely generated. If F(ER) is principally

generated, we have that cx(F(ER)) = 0, which implies cxF (R) = −∞. In the case when

F(ER) is infinitely generated, Remark 3.3.12(ii) shows that the complexity sequence {ce}e>2

is bounded by the minimal number of generators of the ideal Jp. Remark 2.4.3 (iii) implies

cx(F(ER)) = 1, which proves that cxF (R) = 0, in this case.

As a consequence of Proposition 3.3.8 and Proposition 5.1.9, we obtain the following

result:

Corollary 3.3.11. Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for

e > 0. Let I 6 S be a square-free ideal in S and R = S/I its Stanley-Reisner ring. The ring

of Frobenius operators F(ER) is principally generated as an R-skew algebra if and only if

the R-module
I [pe] :S I

I [pe]
is cyclic. Moreover, if F(ER) is principally generated as an R-skew

algebra, then it is generated by (x1)p−1F, where F : ER → ER is the canonical Frobenius

operator on ER.

Proof. Using Remark 5.1.5, we know that in order to prove that F(ER) is principally gen-

erated as an R-skew algebra it is enough to show that F(ER) is homogeneously principally

generated as an R-skew algebra. Now the conclusion follows directly from Proposition 5.1.9.

Proposition 5.2.3 gives us the second statement of our claim.
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Remark 3.3.12. (i) In the case when F(ER) is infinitely generated, F1(ER) has µ + 1

minimal generators, µ of them being the minimal generators of Jp and (x1)p−1. Each

graded piece F e(ER) adds up µ new generators coming from Jq.

(ii) The complexity sequence {ce}e>2 is bounded by the minimal number of generators of

the ideal Jp, i.e. ce 6 µS(Jp), for any e > 2. Note that c1 = µ+ 1 and c0 = 0.

Definition 3.3.13. Let Supp(Jq) be the set of all the supports of the minimal monomial

generators of Jq. We define Γ := Supp(Jq) to be the support set of the ring R. Then (Γ,⊆)

is a partially ordered set.

Definition 3.3.14. Let Γ be the support set of a Stanley-Reisner ring R = S/I. Let Min(Γ)

be the set of elements in Γ which are minimal with respect to inclusion. We call Γ minimal

if Γ 6= ∅ and Min(Γ) = Γ.

Definition 3.3.15. Let Γ be the support set of a Stanley-Reisner ring R = S/I.

We call Γ nearly minimal if Γ 6= ∅ and for every γ ∈ Γ which is not minimal in Γ with

respect to ⊆ there exists at most one element γ′ ∈ Γ with γ′ ( γ.

Example 3.3.16. Let I = (x1x2, x1x3, x2x4). Then

Jq = (xq1x
q−1
2 xq−1

3 , xq−1
1 xq2x

q−1
4 ).

The support set is

Γ = {(1, 2, 3), (1, 2, 4)}.

In this case, Γ is minimal.

Example 3.3.17. The support set of the ideal in Example 3.3.6 is

Γ = {(1, 2, 5), (2, 3, 4, 5), (1, 2, 4, 5), (1, 2, 3, 5)}.

In this case, Γ is not minimal, but it is nearly minimal.

Example 3.3.18. Let I = (x1x2, x1x3x4, x1x3x5). Then
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Jq = (xq−1
1 xq3x

q
5, x

q−1
1 xq3x

q
4, x

q−1
1 xq−1

2 xq−1
3 xq5, x

q−1
1 xq−1

2 xq−1
3 xq4, x

q−1
1 xq2).

The support set is Γ = {(1, 2), (1, 3, 4), (1, 3, 5), (1, 2, 3, 4), (1, 2, 3, 5)}. Since (1, 2, 3, 4) con-

tains (1, 2) and (1, 3, 4), Γ is not nearly minimal in this case.

Question 3.3.19. Is the Frobenius complexity of a Stanley-Reisner ring preserved by taking

the Alexander dual?

We will give an example of a Stanley-Reisner ring R having cxF (R) = 0 such that the

Stanley-Reisner ring associated to its Alexander dual has cxF (RV ) = −∞. This example is

presented in [5]. Let I = (x1x3, x1x4, x2x3, x2x4) = (x1, x2) ∩ (x3, x4). Then, the Alexander

dual has

IV = (x1, x3) ∩ (x1, x4) ∩ (x2, x3) ∩ (x2, x4) = (x1x2, x3x4).

Since Jq(I
V ) = 0 we obtain cxF (RV ) = −∞. We obtain that Jq(I) 6= 0, hence cxF (R) = 0.

Therefore, we have an example of a Stanley-Reisner ring having an infinetely generated

Frobenius algebra of operators on ER, whose Alexander dual has a principally generated

Frobenius algebra of operators.
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CHAPTER 4

MAIN RESULTS

In this chapter, we will present our main results following our work in [19] and [8].

4.1 On the Frobenius Complexity sequence of Stanley-Reisner Rings

The work in this section will be presented based on our results in [19]. In this section,

we will prove that the complexity sequence {ce}e>0 of the Frobenius algebra of operators of

the injective hull of the residue field of any Stanley-Reisner ring with non-empty support set

stabilizes starting with e = 2.

Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for e > 0. Let I 6 S

be a square-free monomial ideal in S and R = S/I the Stanley-Reisner ring associated to I.

We will assume that the simplicial complex associated to the ring R has no isolated vertices

and use the notations introduced in the previous section.

Lemma 4.1.1. Let e > 0 an integer and suppose that Jq 6= 0. Let xγe be a minimal monomial

generator of Jq. If there exists a minimal monomial generator xγ
′
e of Jq with supp(γ′e) (

supp(γe), then there exists at least one variable xk such that

degxk(x
γe) = q − 1 and degxk(x

γ′e) = q.

Proof. We will prove the lemma by contradiction. Assume not. Then, for all the variables

xk with degxk(x
γ′e) = q, we have that degxk(x

γe) 6= q − 1, therefore degxk(x
γe) ∈ {0, q}, by

Remark 3.3.5.

But since supp(γ′e) ( supp(γe), we have that degxk(x
γe) > 0. Hence, degxk(x

γe) = q.

Then, we have that xγ
′
e divides xγe , which is a contradiction.

Definition 4.1.2. Let e > 0 an integer and suppose that Jp 6= 0. Let xγ ∈ Jp a minimal

monomial generator. Using Remark 3.3.5, we have a bijective correspondence between the
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minimal monomial generators of Jp and the minimal monomial generators of Jq. Under this

map, there exists xγe ∈ Jq which corresponds to xγ ∈ Jp. We define Me(γ) ⊆ Ke to be the

ideal generated by the minimal monomial generators xδ ∈ Jq with supp(xδ) ⊆ supp(xγe) =

supp(xγ).

Lemma 4.1.3. Let e > 0 an integer and suppose that Jp 6= 0. Let xγ ∈ Jp a minimal

monomial generator. Let 1 6 β1, . . . , βs < e with β1 + . . .+ βs = e.

Then,

xγe ∈ Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
if and only if

xγe ∈Mβ1(γ)(Mβ2(γ))[pβ1 ] · · · (Mβs(γ))[pβ1+···+βs−1 ].

Proof. Let xγe ∈Mβ1(γ)(Mβ2(γ))[pβ1 ] · · · (Mβs(γ))[pβ1+···+βs−1 ].

Since Mβi(γ) ⊆ Kβi , we obtain that xγe ∈ Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
.

Now, let xγe ∈ Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
. Then for every i ∈ {1, . . . , s}, there exists

mβi ∈ Kβi such that xγe = mβ1m
pβ1

β2
· · ·mpβ1+···+βs−1

βs
·m, for some m ∈ S.

If there exists at least an i with supp(mβi) 6⊆ supp(xγe), there exists at least one xk ∈

supp(mβi) \ supp(xγe). But this contradicts the equality xγe = mβ1m
pβ1

β2
· · ·mpβ1+···+βs−1

βs
·m.

Therefore, we must have that supp(mβi) ⊆ supp(xγe), for all i ∈ {1, . . . , s}.

Hence, xγe ∈Mβ1(γ)(Mβ2(γ))[pβ1 ] · · · (Mβs(γ))[pβ1+···+βs−1 ].

Proposition 4.1.4. Let e > 2 an integer and suppose that Jq 6= 0. If all the minimal

monomial generators of Jq are not contained in Le, then ce = ce+1, for all e > 2.

Proof. Let e > 2 and let xγe a minimal monomial generator of Jq. We know that xγe is not

contained in Le. So, we obtain that 0̄ 6= xγe ∈
(
I [q] :S I

Le + I [q]

)
. Since xγe was arbitrarly chosen

in Jq and ce = µS

(
I [q] :S I

Le + I [q]

)
, we have that ce = µS(Jq), for all e > 2. Therefore, ce = ce+1,

for all e > 2.

Remark 4.1.5. In order to show that the complexity sequence {ce}e>0 stabilizes starting with

e = 2, it is enough to show that all the minimal monomial generators of Jq are not contained

in Le.
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We will first show that the complexity sequence {ce}e>0 stabilizes starting with e = 2

for Stanley-Reisner rings with nearly-minimal support set.

Theorem 4.1.6. Let e > 0 an integer and suppose that Jq 6= 0. Let xγe be a minimal

monomial generator of Jq. If Γ is nearly minimal, then xγe is not contained in Le.

Proof. Since Γ is nearly minimal, there exists at most one xγ
′
e ∈ Jq, with supp(γ′e) ( supp(γe)

and supp(γ′e) minimal with respect to ⊆ in Γ.

By Lemma 3.3.7, we have that

xγe = xqi1x
q−1
i2

x0
i3
xγ4i4 · · ·x

γn
in

and

xγ
′
e = xqj1x

q−1
j2

x0
j3
x
γ′4
j4
· · ·xγ

′
n
jn
.

We will show that xγe /∈ Le.

If xγe ∈ Le, there exists 1 6 β1, . . . , βs < e with β1 + . . . + βs = e with xγe ∈

Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
.

Using Lemma 4.1.3, we have that xγe ∈Mβ1(γ)Mβ2(γ)[pβ1 ] · · ·Mβs(γ)[pβ1+···+βs−1 ], where

Mβi(γ) := (xγβi , xγ
′
βi ), for all i ∈ {1, . . . , s}. In particular, Me(γ) := (xγe , xγ

′
e).

Then there exists mβi ∈ Gβi such that mβ1m
pβ1

β2
· · ·mpβ1+...+βs−1

βs
divides xγe .

By Lemma 4.1.1, there exists at least one variable xk such that

degxk(x
γe) = q − 1 and degxk(x

γ′e) = q,

for all e > 0.

Since degxk(mβi) > pβi − 1,

degxk(x
γe) = q − 1 > (pβ1 − 1) + . . .+ (pβs − 1)pβ1+...+βs−1 = q − 1.

Therefore, we should have equality.

Hence, we have that mβi is divisible by xγβi , for all i.

Now, if we look at the degree of xi1 , we have that
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degxi1 (xγe) = q > pβ1 + pβ1pβ2 + . . .+ pβ1+...+βs−1pβs ,

which gives a contradiction.

Therefore, xγe /∈ Le.

Now, we will drop the condition on the support set and we will show that the complexity

sequence stabilizes for any Stanley-Reisner ring as presented in [19].

Theorem 4.1.7. Let e > 0 an integer and suppose that Jq 6= 0. Let xγe be a minimal

monomial generator of Jq. Then, xγe is not contained in Le.

Proof. Let xδ
(i)
e ∈ Jq be a minimal monomial generator with

supp(δ
(1)
e ), . . . , supp(δ

(k)
e ) ( supp(γe),

where k > 0. Note that if k = 0, all the minimal monomial generators of xγe have minimal

support. Note that

Me(γ) := (xγe , xδ
(j)
e : j = 1, . . . , k).

We want to show that xγe /∈ Le.

If xγe ∈ Le, there exists 1 6 β1, . . . , βs < e with β1 + . . . + βs = e with xγe ∈

Kβ1K
[pβ1 ]
β2
· · ·K [pβ1+···+βs−1 ]

βs
.

Using Lemma 4.1.3, we have that xγe ∈ Mβ1(γ)(Mβ2(γ))[pβ1 ] · · · (Mβs(γ))[pβ1+···+βs−1 ],

where

Mβi(γ) := (xγβi , x
δ
(j)
βi : j = 1, . . . , k), for all i ∈ {1, . . . , s}.

Then there exists mβi ∈Mβi(γ) such that mβ1m
pβ1

β2
· · ·mpβ1+...+βs−1

βs
divides xγe .

By Lemma 4.1.1, we have the following:

For any j ∈ {1, . . . , k}, there exists at least one variable xo(j) ∈ supp(δ(j)
e ) with

degxo(j)(x
γe) = q − 1 and degxo(j)(x

δ
(j)
e ) = q,

for all e > 0. If mβs is a multiple of xδ
(j)
βs , for some j ∈ {1, . . . , k}, using the Lemma 4.1.1

there exists xo(j) ∈ supp(δ(j)
e ) with
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degxo(j)(x
γβs ) = pβs − 1 and degxo(j)(x

δ
(j)
βs ) = pβs .

Then, we obtain that

degxo(j)(x
γe) = q − 1 > degxo(j)(mβs) · pβ1+...+βs−1 > q,

which is a contradiction.

Therefore, we must have that mβs is a multiple of xγβs .

Now for those variables xr with degxr(x
γe) = q, we have that

degxr(x
γe) = q > degxr(mβs) · pβ1+...+βs−1 > q,

so we must have equality.

That means that degxr(mβ1m
pβ1

β2
· · ·mpβ1+...+βs−2

βs−1
) = 0, which implies that mβj is not a

multiple of xγβj , for all j ∈ {1, . . . , s− 1}.

In particular, we have that mβs−1 is a multiple of x
δ
(j)
βs−1 , for some j ∈ {1, . . . , k}.

Using the Lemma 4.1.1 again, we know that there exists a variable xt ∈ supp(δ(j)
e ) with

degxt(x
γβs−1 ) = pβs−1 − 1 and degxt(x

δ
(j)
βs−1 ) = pβs−1 .

Hence

degxt(x
γe) = q − 1 > degxt(mβs−1) · pβ1+...+βs−2 + degxt(mβs) · pβ1+...+βs−1

> pβs−1 · pβ1+...+βs−2 + (pβs − 1) · pβ1+...+βs−1 = q,

which gives us a contradiction.

We proved that xγe /∈ Le.

Corollary 4.1.8. Let R be a Stanley-Reisner ring such that the simplicial complex associated

to it has no isolated vertices. Then the complexity sequence of the Frobenius algebra of

operators on the injective hull of the residue field of the ring R is given by

{ce}e>0 = {0, µ+ 1, µ, µ, µ, . . .},

where µ := µS(Jp).

Remark 4.1.9. Corollary 4.1.8 implies Theorem 4.9 in [5].
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So far, we worked with Stanley-Reisner rings satisfying Iα1+Iα2+· · ·+Iαr = (x1, . . . , xn),

and we showed that for these rings, the complexity sequence stabilizes starting with e = 2.

Now our main goal will be to extend this result to all the Stanley-Reisner rings, by

dropping the condition on the supports of the minimal prime ideals in the minimal primary

decomposition of the ideal I. Let ce,R := ce(F(ER)).

Theorem 4.1.10. Let (S,m) −→ (T, n) be a flat, local extension of regular local rings and

let I 6 S be an ideal in S.

Let R :=
S

I
and R′ :=

T

IT
. Then, ce,R = ce,R′ , for all e > 0.

Proof. We know that ce,R = µS

(
I [q] :S I

Le,R + I [q]

)
and ce,R′ = µT

(
(IT )[q] :S (IT )

Le,R′ + (IT )[q]

)
, for all

e > 0.

Since S −→ T is a flat extension of rings, we have that (IT )[q] :S (IT ) = (I [q] :S I)T,

for all e > 0. Hence, we obtain that Le,R′ = LeT. Moreover, (IT )[q] = I [q]T, for all e > 0.

Therefore,ce,R′ = µT

(
(I [q] :S I)T

(Le,R + I [q])T

)
, for all e > 0.

Let A := (I [q] :S I), B := (I [q]+Le) and M :=
A

B
. Now in order to show that ce,R = ce,R′ ,

for all e > 0, it sufices to prove that µS(M) = µT (T ⊗S M).

It is enought to show that µK

(
M

mM

)
= µK

(
T ⊗S M

n(T ⊗S M)

)
, where K is the residue

field S/m.

Let K :=
S

m
and L :=

T

n
. By tensoring the exact sequence

0 −→ n −→ T −→ L −→ 0| ⊗S M

we obtain the following exact sequence

. . . −→ Tor1(L,M) −→ n⊗S M −→ T ⊗S M −→ L⊗S M −→ 0.

Hence, we have that Im(n⊗S M −→ T ⊗S M) = Ker(T ⊗S M −→ L⊗S M).

By the Fundamental Theorem of Isomorphism,

T ⊗S M
Ker(T ⊗S M −→ L⊗S M)

∼= Im(T ⊗S M −→ L⊗S M).
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But the map T ⊗S M −→ L⊗S M is surjective, therefore

Im(T ⊗S M −→ L⊗S M) = L⊗S M.

Moreover, it is easy to see that Im(n⊗S M −→ T ⊗S M) = n(T ⊗S M).

Hence, we showed that

T ⊗S M
n(T ⊗S M)

∼= L⊗S M.

In order to complete the proof, we will show that µL(L⊗S M) = µK

(
M

mM

)
.

We have that

L⊗S M ∼= L⊗K
S

m
⊗S M ∼= L⊗K

M

mM
.

Hence, µL(L⊗S M) = µL(L⊗K
M

mM
). It is easy to see that

µL(L⊗K
M

mM
) = µK

(
M

mM

)
,

which completes the proof.

Corollary 4.1.8 and Theorem 4.1.10 give us the following result

Theorem 4.1.11. Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for

e > 0. Let I 6 S be a square-free monomial ideal in S

and R = S/I its Stanley-Reisner ring. Then,

{ce}e>0 = {0, µ+ 1, µ, µ, µ, . . .},

where µ := µS(Jp).

Proof. Let Iα1 + Iα2 + · · · + Iαr = (x1, . . . , xm), where 1 6 m < n. Since k[[x1, . . . , xm]] ⊆

k[[x1, . . . , xn]] is a flat local extension of regular local rings, we are under the hypothesis of

Theorem 4.1.10. Corollary 4.1.8 combined with Theorem 4.1.10 give us the desired conclu-

sion.
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Remark 4.1.12. Using the notations in the proof of 4.1.11, one can notice that

µk[[x1,...,xm]](Jp) = µS(Jp).

Remark 4.1.13. Hence, we showed that the Frobenius complexity sequence, which is a positive

characteristic invariant of our ring is in fact a combinatorial invariant introduced by Àlvarez

Montaner, Boix and Zarzuela in [5], the number of maximal free pairs of the simplicial

complex associated to our ring. Moreover, our result shows that the complexity sequence is

independent on the characteristic of the ring in this case.

In [26], Àlvarez Montaner defined the generating function of a skew R-algebra using the

complexity sequence.

Definition 4.1.14. (see Definition 2.1 in [26]) The generating function of F(ER) is defined

as

GF(ER)(T ) =
∑
e>0

ceT
e.

Note that in [26] the author takes c0 = 1. As a consequence of Theorem 4.1.11, we

obtain the generating function of the Frobenius algebra of operators on the injective hull of

the residue field of any Stanley-Reisner ring.

Corollary 4.1.15. Let k be a field of characteristic p, S = k[[x1, . . . , xn]] and q = pe, for

e > 0. Let I 6 S be a square-free monomial ideal in S, R = S/I its Stanley-Reisner ring.

Then the generating function of the Frobenius algebra of operators is

GF(ER)(T ) = (µ+ 1)T +
∑
e>2

µT e =
(µ+ 1)T − T 2

1− T
.

Proof. Note that by Definition 2.4.3, c0 = 0. Using the Theorem 4.1.11, we have that c1(R) =

µ+ 1 and ce = µ, for every e > 2.

We will end this section presenting the formula we obtained for the complexity sequence

of the T-construction of Stanley-Reisner rings. Let ∆ be a simplicial complex generated by
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the set of facets F(∆) = {F1, . . . , Fm}. Let k be a field of characteristic p and R = k[∆] =

k[x1, . . . , xd]/I∆ the Stanley-Reisner ring associated to the simplicial complex ∆.

Theorem 4.1.16. The complexity sequence of the T-construction of the ring R is given by

ce =
m∑
i=1

c|Fi|,e −
∑
i 6=j

c|Fi∩Fj |,e +
∑

16i<j<k6m

c|Fi∩Fj∩Fk|,e − . . .+ (−1)m−1c|F1∩...∩Fm|,e.

Proof. We recall that the T−construction of the Stanley-Reisner ring R = k[∆] is

T (R) = ⊕eTe = ⊕e>0Rpe−1

whose ring structure is defined by a ∗ b = abp
e
, for all a ∈ Te and b ∈ Te′ . The zero

degree component of T (R) is R0 = k. It is easy to note that Te = Rpe−1 is an k−vector

space with basis given by the monomials in R = k[∆] of total degree pe − 1. Keeping the

same notations that we used to define the complexity sequence in the first chapter, we let

Ge−1 := Ge−1(T (R)) be the k−vector space generated by the monomials that can be written

as products of monomials of degree pi − 1, where i 6 e − 1. Moreover, (Ge−1)e consists of

these monomials having total degree pe− 1. The general term of the complexity sequence of

T (R), ce := ce(T (R)) is the number of minimal monomial generators of the k−vector space

Te
(Ge−1)e

of degree pe − 1 which cannot be written as products of monomials of degree pi − 1

with i 6 e− 1. Since I∆ = (xF : F /∈ ∆), the minimal monomial generators of the k−vector

space
Te

(Ge−1)e
come from the following sets of monomials

M(e)
j := {xajFj := x

ai1
i1
· · · xaidid : ai1 + . . .+ aid = pe − 1, ai1 , . . . , aid > 0},

with 1 6 j 6 m and 1 6 i1, . . . , id 6 d. We will denote by c|Fj |,e the number of minimal

monomial generators of M(e)
j , which cannot be written as products of monomials of M(k)

j

with k 6 e−1. In order to compute ce(T (R)), we have to consider all these sets of monomials

M(e)
j and exclude the monomials that appear with repetitions. The principle of inclusion
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and exclusion applied on the sets M(e)
j states that

|
m⋃
j=1

M(e)
j | =

m∑
j=1

|M(e)
j | −

∑
16j1<j26m

|M(e)
j1
∩M(e)

j2
|+ . . .+ (−1)m+1|M(e)

1 ∩ . . . ∩M(e)
m |.

This allows us to compute the complexity sequence of the T−construction of k(∆) as follows

ce =
m∑
i=1

c|Fi|,e −
∑
i 6=j

c|Fi∩Fj |,e +
∑

16i<j<k6m

c|Fi∩Fj∩Fk|,e − . . .+ (−1)m−1c|F1∩...∩Fm|,e.

4.2 Strong Test Ideals associated to Cartier Algebras

In this section, I will present results on strong test ideals for Stanley-Reisner rings

following joint work with Enescu that has appeared in [8].

Let (R,m, k) denote a local F -finite reduced ring of prime positive characteristic p. We

have stated in the first chapter Huneke’s remark which states that the number of minimal

generators of a strong test ideal represents an uniform bound for the minimal degree of the

equation of integral dependence of an arbitrary element x ∈ I∗ over I, where I is an ideal

of R. Therefore, having a larger class of strong test ideals can give a better bound. In [22],

Katzman and Schwede have produced an algorithm, which was implemented in Macaulay2,

that computes all φ-compatible ideals of a surjective R-linear map φ : R1/q → R.

Let φ : R1/q → R a surjective R-linear map. In order to compute the test ideal τ(R, φ),

which is the smallest φ-compatible ideal with respect to inclusion, we have to intersect all

the φ-compatible prime ideals .

By Fedder’s Lemma 4.2.4, we know that there exists an S-linear map Φ : S1/q → S

which is compatible with I such that φ = Φ/I. Now, if we want to determine the φ-

compatible prime ideals, Lemma 2.4 in [22] tells us that it is enough to determine the

Φ-compatible prime ideals that contain I, since there is a bijective correspondence between

the φ-compatible ideals and the Φ-compatible ideals containing I.
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Next, we have to eliminate from this list the set of minimal primes of the ideal I,

otherwise by intersecting them and moding out the result by the ideal I we obtain the zero

ideal. Then the class of the ideal obtained after intersecting the remaining ideals modulo I is

the test ideal τ(R, φ). Therefore, we have a concrete way of computing strong test ideals for

F-pure rings. The following is an example due to Katzman and, further studied by Katzman

and Schwede in [22], which illustrates this idea. In the following examples, we will generally

use the same letter to denote an element of S and its image in S/I, when it is harmless to

do so, to avoid complicating the notation.

Example 4.2.1. Let k = F2 and let S = k[[x1, . . . , x5]]. Let I be the ideal generated by the

2× 2 minors of

 x1 x2 x2 x5

x4 x4 x3 x1

 .

Consider R = S/I. The ring R is Cohen-Macaulay reduced and two dimensional.

Let φ : R1/2 → R an R-linear map constructed as follows:

Let S1/2 = k[[x
1/2
1 , . . . , x

1/2
5 ]] which is a free S-module with basis {xλ1/21 x

λ2/2
2 · · · xλ5/25 }06λi61.

Construct ΦS : S1/2 → S, an S-linear map, by sending x
1/2
1 x

1/2
2 . . . x

1/2
5 to 1 and the other

basis elements to zero.

Now fix z ∈ (I [2] :S I) \ m[2]. For an element s ∈ S/I we let φ(s1/2) =

ΦS(z1/2s1/2) modulo I.

This defines an R-linear map φ : R1/2 → R.

For the choice z = x3
1x2x3 + x3

1x2x4 + x2
1x3x4x5 + x1x2x3x4x5 + x1x2x

2
4x5 + x2

2x
2
4x5 +

x3x
2
4x

2
5 +x3

4x
2
5, Katzman and Schwede have applied their algorithm [22] and obtained the list

of all φ-compatible prime ideals of R. The list of φ-compatible prime ideals is as follows

R, (x1, x4), (x1, x4, x5),

(x1 + x2, x
2
1 + x4x5), (x1 + x2, x

2
2 + x4x5), (x3 + x4, x1 + x2, x

2
2 + x4x5),
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(x1, x2, x5, x3 + x4), (x1, x2, x4), (x1, x2, x5), (x1, x3, x4),

(x1, x2, x3, x4), (x1, x2, x4, x5), (x1, x3, x4, x5), (x1, x2, x3, x4, x5).

From this list we can easily identify the unique smallest φ-compatible ideal. Lemma 2.4

in [22] tells us that we have to keep the Φ-compatible prime ideals that contain the ideal I

and eliminate the minimal primes of I from this list.

We have that the set of minimal primes of I is given by

Min(I) = {(x1 + x2, x
2
1 + x4x5), (x1, x2, x5), (x1, x4, x3)}.

The list of Φ-compatible prime ideals that contain I and are not in the list of the minimal

primes of I is given by

(x1, x2, x4, x5), (x1, x2, x3, x4, x5), (x1, x2, x5, x3 + x4), (x1, x2, x3, x4), (x1, x3, x4, x5).

Next, by intersecting them and taking the class modulo I we obtain the test ideal of the pair

(R, φ)

τ(R, φ) = (x1, x2x5, x3x4 + x2
4).

Therefore, in this ring, every element x belonging to I∗ satisfies a degree 3 equation of

integral dependence over I.

Example 4.2.2. Let k = F2 and S = k[[x1, x2, x3, x4]]. Let I = (x1x3, x1x4, x2x3, x2x4) and

R = S/I. Let φ : R1/2 → R an R-linear map constructed as follows:

Let S1/2 = k[[x
1/2
1 , . . . , x

1/2
4 ]] which is a free S-module with basis {xλ1/21 x

λ2/2
2 x

λ3/2
3 x

λ4/2
4 }06λi61.

Construct ΦS : S1/2 → S, an S-linear map, by sending x
1/2
1 x

1/2
2 x

1/2
3 x

1/2
4 to 1 and the other

basis elements to zero.

Let z = x1x2x3x4 an element contained in (I [2] : I) \ m[2]. The choice of the element z

guarantees that the map φ is surjective from Fedder’s Lemma. By applying the algorithm
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of Katzman and Schwede [22], we will get the list of φ-compatible primes

R, (x4), (x4, x3), (x4, x3, x2), (x4, x3, x1), (x4, x3, x2, x1),

(x4, x2), (x4, x2, x1), (x4, x1), (x3), (x3, x2), (x3, x2, x1),

(x3, x1), (x2), (x2, x1), (x1).

Using this list, one can obtain the unique smallest φ-compatible ideal. The set of minimal

primes of I is Min(I) = {(x1, x2), (x3, x4)}.

The Φ-compatible prime ideals that contain the ideal I and are not minimal primes of

I are the following

(x4, x3, x2), (x4, x3, x2, x1), (x4, x3, x1), (x4, x2, x1), (x3, x2, x1).

After intersecting them in R = S/I we obtain the test ideal of the pair (R, φ) is

τ(R, φ) = (x3x4, x1x2).

Therefore, in this ring, every element x belonging to I∗ satisfies a degree 2 equation of

integral dependence over I.

We notice that the number of generators of τ(R, φ) is actually the number of facets of

the simplicial complex ∆ associated to the square-free monomial ideal I. In the next section,

Corollary 4.2.11 will show that this happens for all Stanley-Reisner rings.

4.2.1 The Case of Stanley-Reisner Rings

Let k be a perfect field of characteristic p, S = k[[x1, . . . , xn]] be the formal power series

ring in n variables over k and q = pe, for e > 0. Let I 6 S be a square-free monomial ideal

in S and R = S/I. We denote by ∆ the simplicial complex associated to the Stanley-Reisner

R. Let fmax(∆) be the number of facets of the simplicial complex ∆.
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The map ΦS : S1/q → S that sends the element x
q−1/q
1 . . . x

q−1/q
n to 1 and all the other

basis elements to zero is called the trace map.

Remark 4.2.3. Under the assumptions above, HomS(S1/q, S) is a free S1/q-module with gen-

erator ΦS. Therefore, for every S-linear map Φ : S1/q → S, there is z ∈ S such that

Φ(s) = ΦS(z1/qs), for every s ∈ S1/q.

Now we can apply Corollary 3.1.6 and Proposition 3.1.7 to obtain the following essential

result as a consequence of Fedder’s work in [10]:

Theorem 4.2.4 (Fedder’s Lemma, [10]). Let S = k[[x1, . . . , xn]], where k is a perfect field

and R = S/I for some ideal I 6 S. Then if φ : R1/q → R is any R-linear map, then there

exists an S-linear map Φ : S1/q → S which is compatible with I such that φ = Φ/I.

Moreover, φ is surjective if and only if z /∈ m[q], where Φ(s) = ΦS(z1/qs) and ΦS is the

trace map on S. Furthermore, there exists an isomorphism

HomR(R1/q, R) ∼=
I [q] : I

I [q]
.

Corollary 4.2.5. Let I ⊆ S be a square-free monomial ideal and R = S/I. Then, z =

(
∏n

i=1 xi)
q−1 ∈ (I [q] :S I) \ m[q]. Therefore, z = (

∏n
i=1 xi)

q−1 defines an R-linear surjective

map φ : R1/q → R, φ = Φ/I with Φ(s) = ΦS((
∏n

i=1 xi)
q−1/qs), for all s ∈ S1/q.

Proof. Since I is a square-free monomial ideal and the minimal primary decomposition of I

can be written as I = Iα1 ∩ Iα2 ∩ . . . ∩ Iαr , where αk = (αk1, . . . , αkn) ∈ {0, 1}n, 1 6 k 6 r,

are distinct vectors, and Iαk = (xi : i ∈ supp(αk)), for every 1 6 k 6 r.

By using Proposition 3.3.3, we obtain that lcm((xα1)q−1, (xα2)q−1, . . . , (xαr)q−1) is an

element contained in (I [q] :S I) that is not in m[q].

But lcm((xα1)q−1, (xα2)q−1, . . . , (xαr)q−1) divides (
∏n

i=1 xi)
q−1 because xα1 , . . . , xαr are

square-free monomials. Hence, (
∏n

i=1 xi)
q−1 ∈ (I [q] : I) \mq.

Therefore, by Theorem 4.2.4 the R-linear map φ : R1/q → R, given by z = (
∏n

i=1 xi)
q−1

is a surjective map.
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Proposition 4.2.6 ([4, Corollary 1.5]). Let Φ : S1/q → S an S-linear map and z ∈ S such

that Φ(s) = ΦS(z1/qs), for every s ∈ S1/q. Let J 6 S an ideal in S. Then J is Φ-compatible

if and only if J ⊆ (J [q] :S z).

Definition 4.2.7. Let K ⊂ S be an ideal in S and q = pe, for e > 0. Then Ie(K) denotes

the smallest ideal I such that I [q] ⊇ K. The ideal Ie(K) is called the e-th root ideal of K.

We have that the following elementary properties of the e-th root ideals hold.

Proposition 4.2.8 ([4, Proposition 1.3]). Let K1, . . . , Ks ⊂ S ideals in S. Then the follow-

ing statements hold:

(a) Ie(
s∑
i=1

Ki) =
s∑
i=1

Ie(Ki);

(b) Let h ∈ S and write

h =
∑

06a1,...,an6q−1, a=(a1,...,an)

hqax
a1
1 · · ·xann .

Then Ie(h) is the ideal generated in S by all ha appearing in the expression above.

Proposition 4.2.9. Let S = k[[x1, . . . , xn]], where k is a perfect field of characteristic p.

Let Φ : S1/q → S given by Φ(s) = ΦS(z1/qs), for every s ∈ S1/q and z = (
∏n

i=1 xi)
q−1.

The set of Φ-compatible prime ideals consists of the set of ideals generated by variables, i.e.

(xi1 , . . . , xik), where 1 6 i1, . . . , ik 6 n.

Proof. In order to see that the ideals generated by variables are Φ-compatible we will use

Proposition 4.2.6. For example, if we consider the ideal (xi1 , . . . , xik), it is easy to see that

(x1 . . . xn)q−1(xi1 , . . . , xik) ⊆ (xqi1 , . . . , x
q
ik

). By using Proposition 4.2.6, we obtained that

(xi1 , . . . , xik) is Φ-compatible.

On the other hand, we have to show that the ideals generated by variables are the only

Φ-compatible prime ideals. In order to prove this, it is enough to show that if an ideal, say

J is a prime Φ-compatible ideal then J is monomial since every prime monomial ideal is an

ideal generated by variables.
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Let J a Φ-compatible prime ideal and let f ∈ J a polynomial in J . Then f =
∑r

i=1 fi

is the decomposition of f as a sum of monomials. We have to show that each monomial

component fi of f is contained in J .

Since zf ∈ J [q], then Ie(zf) ⊆ J , where z = (x1 . . . xn)q−1. But by Proposition 4.2.8 (a),

Ie(zf) =
∑r

i=1 Ie(zfi). Moreover, Proposition 4.2.8 (b) gives that fi ∈ Ie(zfi), for 1 6 i 6 r.

Hence, each fi is contained in J . Therefore, J is a monomial prime ideal.

To sum up, all the Φ-compatible ideals are the ideals generated by variables.

Proposition 4.2.10. Let I ⊆ S be a square-free monomial ideal and R = S/I. Let φ :

R1/q → R be the R-linear map given by z = (
∏n

i=1 xi)
q−1, i.e. φ = Φ/I with Φ(s) =

ΦS((
∏n

i=1 xi)
q−1/qs), for all s ∈ S1/q . Then the test ideal associated to the pair (R, φ) is

given by

τ(R, φ) = (xF : F ∈ F(∆)),

where ∆ is the simplicial complex associated to the ideal I.

Proof. Given φ : R1/q → R an R-linear map, there exists an S-linear map Φ : S1/q → S

which is compatible with I such that φ = Φ/I by Theorem 4.2.4, where Φ(s) = ΦS(z1/qs)

and ΦS is the trace map on S. Moreover, φ is surjective if and only if z /∈ m[q],

But according to the Corollary 4.2.5, z = (
∏n

i=1 xi)
q−1 defines an R-linear surjective map

φ : R1/q → R , i.e. φ = Φ/I with Φ(s) = ΦS((
∏n

i=1 xi)
q−1/qs) for all s ∈ S1/q. Using Lemma

2.4 in [22], we have that there is a bijective correspondence between the φ- compatible ideals

and the Φ-compatible ideals containing I.

Proposition 4.2.9 gives the list of Φ-compatible prime ideals. We want to compute

τ(R, φ), which is the smallest φ-compatible ideal with respect to inclusion. Since, in an

F -pure ring, the φ-compatible ideals are closed under primary decomposition, we need to

intersect all the φ-compatible prime ideals. By Lemma 2.4 in [22], to determine the list of

all φ-compatible prime ideals, we first find the Φ-compatible prime ideals that contain the

ideal I. Then we remove the minimal primes of I from the list given by Proposition 4.2.9.

After this, τ(R, φ) is the image of the ideal obtained after intersecting all these remaining
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ideals modulo I.

Consider now the simplicial complex ∆ associated to the ideal I. Let F(∆) =

{F1, . . . , Fm} the set of facets of ∆ and

I = I∆ =
⋂

F∈F(∆)

PF c

the primary decomposition of the ideal I.

So we have that the set of minimal primes of I is Min(I) = {PF c}. Proposition 4.2.9

tells us that the set of Φ-compatible prime ideals consists of all the ideals generated by

variables. Hence, the set of Φ-compatible prime ideals that contain I and are not in the set

of minimal primes of I are the following ideals

(PF cj , xi : i ∈ Fj),

for every 1 6 j 6 m. Therefore, by intersecting them, we obtain

m⋂
j=1

(PF cj ,
∏
i∈Fj

xi)

=
m⋂
j=1

(PF cj , xFj).

Now, we obtain the test ideal τ(R, φ) by taking the intersection

m⋂
j=1

(PF cj , xFj)

modulo the ideal I. Since I = I∆ = (xF : F /∈ ∆), all the monomials in the intersection

m⋂
j=1

(PF cj , xFj)
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are killed by moding out by the ideal I, except xF1 , . . . , xFm . Hence,

τ(R, φ) = (xF1 , . . . , xFm).

Corollary 4.2.11. Let I ⊆ S be a square-free monomial ideal and R = S/I. Let φ :

R1/q → R be the R-linear map given by z = (
∏n

i=1 xi)
q−1, i.e. φ = Φ/I with Φ(s) =

ΦS((
∏n

i=1 xi)
q−1/qs) for all s ∈ S1/q .

Then the test ideal associated to the pair (R, φ) is fmax(∆)-generated, where ∆ is the

simplicial complex associated to the ideal I.

Therefore, in this ring, every element x belonging to I∗ satisfies a degree fmax(∆) equa-

tion of integral dependence over I.
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CHAPTER 5

FURTHER REMARKS AND CONCLUSIONS

In this chapter, we will present directions in which our work could be continued and

further results to motivate them. The Frobenius complexity of a local ring in positive prime

characteristic p is an important invariant but there are just a few classes of rings in the

literature for which we know the answer. When the algebra of Frobenius operators on the

injective hull is principally generated, the Frobenius complexity of the ring is known to be

equal to −∞. In the future, we would like to find other classes of rings such that their ring

of Frobenius operators is principally generated as a skew algebra over the ring considered.

We will start by investigating when is an R-skew algebra principally generated and then we

will move to the case of monomial ideals.

5.1 Principally Generated Skew R-Algebras

Definition 5.1.1. Let A be an R-skew algebra. We call A principally generated as an

R-skew algebra if there exists a generator a0 ∈ A such that any element a ∈ A can be

expressed as a polynomial in a0 with coefficients in R. Moreover, the R-skew algebra A is

called homogeneously principally generated as an R-skew algebra if A is generated

by a homogeneous generator a0 as an R-skew algebra.

Proposition 5.1.2. Let A = ⊕e>0Ae be an R-skew algebra and assume there exists 0 6= b

an R-torsion-free element in A1. If A is principally generated as an R-skew algebra, then A

is homogeneously principally generated as an R-skew algebra.

Proof. Let a0 be the generator of A as an R-skew algebra. Then we can write a0 = a1 +

. . . + ak, with ai ∈ Ai, for any i and k > 1. We have that there exists a polynomial P with

coefficients in R such that b = P (a0) =
∑n

i=1 ria
i
0, ri ∈ R, for any i. The degree one terms

in the left hand side must be equal to the right hand side ones in b =
∑n

i=1 ri(a1 + . . .+ ak)
i.
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Hence, we get b = r1a1. One can note that since b = r1a1 is an R-torsion-free element, a1 is

an R-torsion-free element as well. There exists a polynomial Q with coefficients in R such

that a1 = Q(a0) =
∑n

i=1 sia
i
0 =

∑m
i=1 si(a1 + . . . + ak)

i with si ∈ R, for any i. Looking in

degree one in the last equality, we obtain a1 = s1a1, which implies (s1− 1)a1 = 0. Since a1 is

R-torsion-free, s1 = 1. Now if we look in degree 2 of the equality a1 = s0 + (a1 + . . .+ ak) +

. . . + sm(a1 + . . . + ak)
m, we get that a2 + s2a

2
1 = 0. Hence, a2 is a polynomial in a1 with

coefficients in R. In the same way looking in degree 3, we obtain that a3 is a polynomial

in a1 with coefficients in R and so on. In conclusion, each ak is a polynomial in a1 with

coefficients in R which proves that a0 = a1 + . . .+ ak is a polynomial in a1 with coefficients

in R. This shows that one can assume A principally generated by a1 ∈ A1 as an R-skew

algebra, i.e. homogeneously principally generated.

Proposition 5.1.3. Let R be an F -pure local ring of positive prime characteristic p. If

F(ER) is a principally generated R-skew algebra, then F(ER) is a homogeneously principally

generated R-skew algebra.

Proof. Let φ0 be the generator of F(ER) as an R-skew algebra. Then we can write φ0 =

f1 + . . . + fk with fi ∈ F i(ER), for any i. Since R is F -pure local ring, there exists φ ∈

F1(ER) an injective Frobenius operator by Theorem 2.3.4. There exists a polynomial Q

with coefficients in R such that φ = Q(φ0) =
∑m

i=1 ri(f1 + . . . + fk)
i with ri ∈ R for any

i. The degree 1 terms in each sides should be equal so we get φ = r1f1 with r1 ∈ R. Since

φ is an injective Frobenius action, f1 is injective as well. Moreover, if rf1 = 0 for some

0 6= r ∈ R, then rpf1 = 0. Hence f1(rx) = 0, for any x ∈ ER. But f1 is an injective

Frobenius operator on ER, so rx = 0, for any x ∈ ER. Now since ER is a faithful R-

module, we obtain r = 0. There exists a polynomial P with coefficients in R such that

f1 = P (φ0) = P (f1 + . . . + fk) =
∑n

i=1 ai(f1 + . . . + fk)
i with ai ∈ R. By setting the degree

one Frobenius operators in both sides equal, we obtain f1 = a1f1 and so (a1−1)f1 = 0 which

implies a1 = 1. Hence, f1 = a0 +(f1 + . . .+fk)+ . . .+an(f1 + . . .+fk)
n. Now looking in degree

2, we obtain f2 + a2f
2
1 = 0 which shows that f2 is a polynomial in f1 with coefficients in R.

By induction, it follows that every fi is a polynomial in f1 with coefficients in R. Therefore,
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φ0 = f1 + . . . + fk is a polynomial in f1 with coefficients in R. So one can assume f1 to be

the generator of F(ER) as an R-skew algebra, which shows that F(ER) is a homogeneously

principally generated R-skew algebra.

Question 5.1.4. Which condition on R implies that F(ER) is principally generated as an

R-skew algebra if and only if F(ER) is homogeneously principally generated as an R-skew

algebra?

Remark 5.1.5. Since Stanley-Reisner rings are F -pure, showing that F(ER) is principally

generated as an R-skew algebra is equivalent to proving that F(ER) is homogeneously prin-

cipally generated as an R-skew algebra by Proposition 5.1.3.

In general, we are interested in finding the answer to the question:

Question 5.1.6. Which condition on R implies that an R-skew algebra A is principally

generated if and only if A is homogeneously principally generated as an R-skew algebra?

In Proposition 5.1.2, we showed that the existence of a nonzero torsion free element in

degree one guarantees the equivalence between homogeneously principally generated R-skew

algebras and principally generated R-skew algebras.

Proposition 5.1.7. Let R be a local ring of positive prime characteristic p. The ring of

Frobenius operators F(ER) is homogeneously principally generated as an R-skew algebra if

and only if there exists φ0 ∈ F1(ER) such that F e(ER) is an R-cyclic module generated by

φe0, for any e > 1.

Proof. First, we assume that F(ER) is homogeneously principally generated as an R-skew

algebra by φ0 ∈ F e0(ER). We will show that e0 = 1. Let ψ ∈ F1(ER). There exists a

polynomial P with coefficients in R such that ψ = P (φ0) =
∑m

i=1 aiφ
i
0, with ai ∈ R, for

any i. Since φm0 ∈ F e0m(ER), the degree of the right hand side of the equality ψ = a0 +

a1φ0 + . . .+ anφ
m
0 equals e0m and it must be equal to the degree of the left hand side, which

is 1. Hence, we obtain e0m = 1, which implies e0 = m = 1, so φ0 ∈ F1(ER). Moreover,

ψ = a0 + a1φ0 which shows that F1(ER) is an R-cyclic module generated by φ0 ∈ F1(ER).
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Let e > 2 and φ ∈ F e(ER). There exists a polynomial Q with coefficients in R such that

φ = Q(φ0) = b0 +b1φ0 + . . .+bnφ
n
0 with bi ∈ R, for any i. Since, the degrees of the right hand

side and left hand side must be equal we obtain n = e. Since F(ER) is an internal direct

sum of F e(ER) over e > 0, we can assume F e(ER) generated by φe0. We proved the desired

conclusion, i.e. F e(ER) is an R-cyclic module generated by φe0, for any e > 1. For the other

implication, if F e(ER) is an R-cyclic module with generator φe0, for any e > 1 it is easy to

see that F(ER) is homogeneously principally generated as an R-skew algebra by φ0.

Remark 5.1.8. Using Corollary 3.2.4, one can note that checking the cyclicity of the R-

module of eth Frobenius operators on ER, F e(ER) is equivalent to showing that the R-module

I [pe] :S I

I [pe]
is cyclic. Hence, we can reformulate Proposition 5.1.7, as follows:

Proposition 5.1.9. Let S be a complete regular local ring of positive prime characteristic p,

I ⊆ S an ideal in S and R = S/I. The ring of Frobenius operators F(ER) is homogeneously

principally generated as an R-skew algebra by φ0 = uF ∈ F1(ER), with u ∈ (I [p] :S I) and

F : ER → ER the canonical Frobenius operator on ER if and only if the R-module
I [pe] :S I

I [pe]

is cyclic, generated by uνe , for any e > 1, with νe = 1 + p+ . . .+ pe−1.

Proof. This result follows directly from Proposition 5.1.7 and Corollary 3.2.4.

This result motivates the following question:

Question 5.1.10. Let S be a complete regular local ring of positive prime characteristic p,

I ⊆ S an ideal in S and R = S/I. Can one show that the following assertions are equivalent:

(i) The R-module
I [q] :S I

I [q]
is cyclic, for any q

(ii) The R-algebra F(ER) is principally generated?

In [27], Àlvarez Montaner, Boix and Zarzuela showed that for Stanley-Reisner rings

R, the R-algebra F(ER) is principally generated if and only if the R-module
I [q] :S I

I [q]
is

cyclic generated by (x1)q−1, for any q. An unanswered question in [27] was whether one

can read the principally generation of the Frobenius algebra of operators F(ER) from the
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simplicial complex associated to the Stanley-Reisner ring R. This question was addressed

by Àlvarez Montaner and Yanagawa in [28]. They found a combinatorial characterization

of Stanley-Reisner rings having F(ER) principally generated as an R-algebra. Theorem 4

in [28] states that F(ER) principally generated as an R-algebra if and only if the simplicial

complex ∆ associated to the Stanley-Reisner ring R does not have free faces. We recall here

the definition of a free face of a simplicial complex presented in [28]:

Definition 5.1.11. Let ∆ be a simplicial complex on the vertex set {1, . . . , n}. We call a

face F ∈ ∆ a free face if F ∪ {i} is a facet of ∆ for some i /∈ F and F ∪ {i} is the unique

facet of ∆ containing F.

Example 5.1.12. Let ∆ be the simplicial complex on the vertex set {x1, x2, x3, x4} generated

by the facets F1 = {x1, x2} and F2 = {x3, x4}. One can easily note that the free faces of ∆

are the faces: {x1}, {x2}, {x3} and {x4}.

With this question in mind, Boix and Zarzuela asked whether there is any sort of connec-

tion between the number of minimal monomial generators of Jq as defined in Definition 3.3.2

and the number of free faces of the simplicial complex associated to the Stanley-Reisner ring

given. They proved in Theorem 3.16 in [5] that the number of minimal monomial genera-

tors of Jq equals the number of non-empty maximal free pairs of the simplicial complex ∆

associated to the Stanley-Reisner ring considered. Boix and Zarzuela defined the notion of

a free pair in [5], which extends the notion of free pairs as follows:

Definition 5.1.13 ([5, Definition 3.8]). Let ∆ be a simplicial complex on the vertex set

{1, . . . , n}. Let F,G non-empty subsets of {1, . . . , n}.

(i) We call (F,G) a pair of ∆ if F ∩G = ∅ and if F ∪G is a face of ∆.

(ii) We call (F,G) a free pair of ∆ if (F,G) is a pair of ∆ and if F ∪G is the unique facet

of ∆ containing F.

Remark 5.1.14. One can note that if F is a free face of ∆ and i /∈ F is the vertex such that

F ∪ {i} is the unique facet of ∆ containing F, then (F, {i}) is a free pair of ∆.
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Boix and Zarzuela introduced a partial order on the set of free pairs of a simplicial

complex, as follows:

Definition 5.1.15 ([5, Definition 3.10]). Let ∆ be a simplicial complex and FP (∆) the set

of all the free pairs of ∆. Given two free pairs (F,G) and (F ′, G′) ∈ FP (∆), we say that

(F,G) 6 (F ′, G′) iff F ∪G = F ′ ∪G′, F ⊇ F ′ and G ⊆ G′.

Definition 5.1.16 ([5, Definition 3.11]). A free pair (F,G) ∈ FP (∆) is called a maximal

free pair if it is a maximal element in the poset FP (∆).

Theorem 3.16 in [5] describes the bijective correspondence between the number of min-

imal monomial generators of Jq defined as in Definition 3.3.2 and the number of maximal

free pairs of the simplicial complex associated to the Stanley-Reisner ring given, as follows:

any maximal free pair (F,G) of ∆, corresponds to the minimal monomial generator of Jq,

defined as

A(F,G) =

(∏
i∈F

xqi

)( ∏
i/∈F∪G

xq−1
i

)
.

Next, we will illustrate using an example this bijective correspondence:

Example 5.1.17. Let k be a field of characteristic p and q = pe, for any e > 0. Let

I = (x1x3, x1x4, x2x3, x2x4) ⊆ k[[x1, x2, x3, x4]] a square-free monomial ideal and R = S/I

its Stanley-Reisner ring. One can compute the colon ideal in Macaulay 2 and obtain

(I [q] : I) = I [q] + (xq1x
q−1
3 xq−1

4 , xq−1
1 xq−1

2 xq3, x
q−1
1 xq−1

2 xq4, x
q
2x

q−1
3 xq−1

4 ) + (x1x2x3x4)q−1,

for any q, which shows that Jq = (xq1x
q−1
3 xq−1

4 , xq−1
1 xq−1

2 xq3, x
q−1
1 xq−1

2 xq4, x
q
2x

q−1
3 xq−1

4 ). One can

easily note that the simplicial complex associated to the Stanley-Reisner ring R is generated

by the facets F1 = {1, 2} and F2 = {3, 4}. The maximal free pairs of ∆ are: ({1}, {2}),

({3}, {4}), ({4}, {3}) and ({2}, {1}). Using the bijective correspondence above, we can obtain

the minimal monomial generators of Jq without explicitly computing the colon ideal (I [q] : I).
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5.2 Monomial Ideals and The Frobenius Algebra of Operators

Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal power series ring

in n variables over k. Let I 6 S be a monomial ideal in S and R = S/I the quotient ring.

Let

Me :=
I [pe] :S I

I [pe]
,

for any e > 1.

Lemma 5.2.1. There exists a bijective correspondence between the minimal monomial gen-

erators of I [p] :S I and the minimal monomial generators of I [q] :S I, for any e > 1. Moreover,

this will induce a bijective correspondence between the minimal monomial generators of M1

and the minimal monomial generators of Me, for any e > 1.

Proof. If I = Iα1 ∩ Iα2 ∩ . . . ∩ Iαr is the minimal primary decomposition of the ideal I, then

since the Frobenius map is flat we have that

I [q] = I [q]
α1
∩ . . . ∩ I [q]

αr .

Therefore,

(I [q] :S I) = (I [q]
α1

:S I) ∩ . . . ∩ (I [q]
αr :S I).

Let I := (x
aj
δj

: j > 1), where x
aj
δj

= x
aj,1
δj,1
· · ·xaj,nδj,n

, where aj,i > 0, 1 6 δj,i 6 n for any

1 6 i 6 n.

Let Iαi := (x
bi,k
βi,k

: 1 6 k 6 n), where 1 6 βi,k 6 n and bi,k > 0, for any 1 6 i 6 r. Then

(I [q] :S I) =
r⋂
i=1

(I [q]
αi

:S I) =
r⋂
i=1

⋂
j>1

(I [q]
αi

:S x
aj
δj

) =

=
r⋂
i=1

⋂
j>1

((x
qbi,k
βi,k

: 1 6 k 6 n) : (x
aj
δj

)) =

=
r⋂
i=1

⋂
j>1

(
lcm(x

qbi,k
βi,k

, x
aj
δj

)

x
aj
δj

: 1 6 k 6 n

)
.
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We have that

lcm(x
qbi,k
βi,k

, x
aj
δj

)

x
aj
δj

=

 xβ
max(qbi,k,aj,l)−aj,l
i,k , if βi,k = δj,l

x
qbi,k
βi,k

, if βi,k 6= δj,l

=

 x
qbi,k−aj,l
βi,k

, if βi,k = δj,l

x
qbi,k
βi,k

, if βi,k 6= δj,l.

or

=

 x0
βi,k
, if βi,k = δj,l

x
qbi,k
βi,k

, if βi,k 6= δj,l.

Hence, any minimal monomial generator of I [q] :S I is of the form
∏n

i=1 x
ciq−di
i , where ci, di >

0, for any 1 6 i 6 n. In this way, we obtain a bijective correspondence between the minimal

monomial generators of I [p] :S I and the minimal monomial generators of I [q] :S I, for any

e > 1, which induces a bijective correspondence between the minimal monomial generators

of M1 and the minimal monomial generators of Me, for any e > 1.

Proposition 5.2.2. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I 6 S be a monomial ideal in S and R = S/I

the quotient ring. Then the following assertions are equivalent:

(i) F1(ER) is a principally generated R-module

(ii) There exists e0 such that F e0(ER) is a principally generated R-module

(iii) F e(ER) is a principally generated R-module, for any e > 1

Proof. Using Proposition 3.1.4, we have that the R-module generated by the eth Frobenius

operators on ER, F e(ER) is principally generated if and only if the R-module
I [q] :S I

I [q]
is

cyclic.

The implication (i)⇒ (ii) is trivial.

For the implication (ii) ⇒ (iii), we will use the bijective correspondence between the

minimal monomial generators of Me0 and the minimal monomial generators of Me, for any
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e0, e > 1 in Lemma 5.2.1.

Let e > 1 an arbitrary integer. Since F e0(ER) is a principally generated R-module, we

have that Me0 is a cyclic R-module. Let xγe0 be the minimal monomial generator of Me0

over R. By the bijective correspondence described in the proof of Lemma 5.2.1, we have that

the exists a minimal monomial generator xγe in Me which corresponds to xγe0 via this map.

Moreover, the bijective correspondence in Lemma 5.2.1 shows that Me is a cyclic R-module

as well.

(iii)⇒ (i) Trivial.

Proposition 5.2.3. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I ⊆ S be a monomial ideal in S and R = S/I

the quotient ring. Then the ring of Frobenius operators F(ER) is homogeneously principally

generated as an R-skew algebra by xγF, with xγ =
∏n

i=1 x
cip−di
i , where ci, di > 0, for any

1 6 i 6 n and F : ER → ER the canonical Frobenius operator on ER if and only if ci = di,

for any 1 6 i 6 n.

Proof. We first assume that the ring of Frobenius operators F(ER) is homogeneously prin-

cipally generated as an R-skew algebra. By Proposition 5.1.7, we can assume that the

homogeneous generator φ0 of F(ER) as an R-skew algebra is of degree 1, i.e. φ0 ∈ F1(ER).

Using Corrolary 3.2.4 and Lemma 5.2.1, we have that φ0 = xγF =
∏n

i=1 x
cip−di
i F, where

ci, di > 0, for any 1 6 i 6 n and F : ER → ER is the canonical Frobenius operator on

ER given by F (x) = xp, for any x ∈ ER. Using Lemma 5.2.1, we have a bijective corre-

spondence between the minimal generators of the colon ideals (I [pe] :S I), for any e > 0. We

will denote by xγe =
∏n

i=1 x
cip

e−di
i , for any e > 0. Since F(ER) is an R-skew algebra, we

have that F e(ER) ◦ F e′(ER) ⊆ F e+e′(ER) must hold, so composing an eth Frobenius action

with an e′th Frobenius action will be an (e+ e′)th Frobenius action. For simplicity, we will

translate this condition in terms of the generators of the colon ideals using the bijection in
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Corollary 3.2.4. Hence, we obtain

xγe ∗ xγe′ = xγe · (xγe′ )pe =
n∏
i=1

x
(cip

e−di)+(cip
e′−di)pe

i =
n∏
i=1

x
(cip

e+e′−di)
i x

(ci−di)pe
i .

Therefore, in order to have xγe ∗ xγe′ ∈ F e+e′(ER), we must have ci > di, for any 1 6

i 6 n. By Proposition 5.1.7, we know that every F e(ER) is cyclic as an R-module. Since

xγ generates F1(ER), its eth iteration xγ ∗ · · · ∗ xγ = (xγ)νe will generate F e(ER), for any

e > 1, where νe = 1 + p + . . . + pe−1. On the other hand, the bijective correspondence

described in Lemma 5.2.1 produces an eth Frobenius action xγeF e ∈ F e(ER). Since xγeF e =∏n
i=1 x

(cip
e−di)

i F e ∈ F e(ER) =
∏n

i=1 x
(cip−di)νe
i F e, the following inequalities cip

e − di > (cip−

di)νe must hold, for any i. One can note that this is equivalent to (di−ci)(p+ . . .+pe−1) > 0,

for any i. This implies that di > ci, for any i. Hence we obtain that ci = di, for any i. The

other implication follows since if ci = di, for any i then the generator of the Frobenius algebra

of operators is given by xγ =
∏n

i=1 x
ci(p−1)
i . Each graded piece F e(ER) of F(ER) is generated

by (xγ)νe =
∏n

i=1 x
ci(p

e−1)
i . In conclusion, F(ER) is homogeneously principally generated as

an R-skew algebra by xγF.

Using Proposition 3.3.4(iii) due to Sharp in [31], we recover the colon formula 3.3.3 for

a large class of monomial ideals, as follows:

Proposition 5.2.4. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I 6 S be a monomial ideal in S with no embedded

associated primes. Let I =
⋂r
i=1 Iαi be the minimal primary decomposition of I. Then

(I [q] :S I) = (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr) = (I [q]

α1
+ (xa1δ1 )q−1) ∩ · · · ∩ (I [q]

αr + (xarδr )q−1),

where Iαj := (x
aj,1
δj,1
, . . . , x

aj,n
δj,n

) and x
aj
δj

= x
aj,1
δj,1
· · ·xaj,nδj,n

, with aj,i > 0, 1 6 δj,i 6 n for any

1 6 i 6 n and for any 1 6 j 6 r.

Proof. Using Proposition 3.3.4 (i), we have that I [q] = I
[q]
α1 ∩ I

[q]
α2 ∩ . . . ∩ I

[q]
αr is the minimal

primary decomposition of the ideal I [q]. Moreover, using the assertions about colon ideals
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which we already considered in the proof of Proposition 3.3.3, we obtain the inclusion

I [q] : I = (I [q]
α1

: I) ∩ . . . ∩ (I [q]
αr : I) ⊇

r⋂
i=1

r∑
j=1

(I [q]
αi

: Iαj).

This shows that the following inclusion holds:

I [q] : I ⊇ (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).

In order to obtain the other inclusion, we will use the fact that I has no embedded asso-

ciated primes, i.e. Min(I) = Ass(I). Since every Pi :=
√
Iαi ∈ Min(I), we can now apply

Proposition 3.3.4(iii) to get:

I [q] : I ⊆ (I [q]
αi

:S Iαi),

for any i. Therefore, we obtain

I [q] : I ⊆ (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).

This proves the first desired formula:

(I [q] :S I) = (I [q]
α1

:S Iα1) ∩ . . . ∩ (I [q]
αr :S Iαr).

In order to show the second equality, we have to note that since I is a monomial ideal, its

primary components are ideals generated by powers of variables, i.e. Iαj := (x
aj,1
δj,1
, . . . , x

aj,n
δj,n

)

and x
aj
δj

= x
aj,1
δj,1
· · ·xaj,nδj,n

, with aj,i > 0, 1 6 δj,i 6 n for any 1 6 i 6 n and for any 1 6 j 6 r.

It is easy to check that

I [q]
αj

:S Iαj = (I [q]
αj
, (x

aj
δj

)q−1),

for any j. Together with the first equality this proves that

I [q] : I =
r⋂
i=1

(I [q]
αi

:S Iαi) =
r⋂
i=1

(I [q]
αj
, (x

aj
δj

)q−1),
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which completes the proof.

Example 5.2.5. Let p = 5 and S = Z5[[x1, x2, x3, x4]].

Let I = (x2
1x3, x1x

2
2, x1x2x3, x

2
2x4, x2x3x4). The minimal primary decomposition of I is

given by I = (x2
1, x2)∩(x2

2, x3)∩(x1, x4). Since Ass(I) = Min(I) = {(x1, x2), (x2, x3), (x1, x4)},

I has no embedded associated primes. One can check in Macaulay 2 that I [5] : I = (I
[5]
α1 :

Iα1) ∩ (I
[5]
α2 : Iα2) ∩ (I

[5]
α3 : Iα3). Moreover, Proposition 5.2.4 shows that I [q] : I = (I

[q]
α1 :

Iα1) ∩ (I
[q]
α2 : Iα2) ∩ (I

[q]
α3 : Iα3) holds for any q = 5e and e > 0.

Example 5.2.6. Let p = 5 and S = Z5[[x1, x2, x3, x4]].

Let I = (x2
1x

2
3, x

2
1x4, x1x2x4, x2x3x4, x2x

2
3, x

2
2x4). The minimal primary decomposition of

I is given by I = (x2
1, x2) ∩ (x1, x

2
2, x3) ∩ (x2

3, x4). One can easily note that Min(I) 6= Ass(I),

i.e. I has embedded associated primes. Using Macaulay 2, we found x3
1x

9
2x

5
4 ∈ (I [5] : I)\(I [5]

α1 :

Iα1) ∩ (I
[5]
α2 : Iα2) ∩ (I

[5]
α3 : Iα3), which shows that colon formula in Proposition 5.2.4 does not

hold for the ideal I.

Now, using the formula for the colon ideal in Proposition 5.2.4 we can describe the colon

ideal as follows:

Definition 5.2.7. Let I 6 S be a monomial ideal. We define Jq to be the unique minimal

monomial ideal satisfying the equality

(I [q] : I) = I [q] + Jq.

Example 5.2.8. Let k a field of positive prime characteristic p and S = k[[x1, x2, x3]].

Let I = (x2
1x

3
2, x

3
2x3, x

2
1x3). We obtain (I [q] : I) = (x2q

1 x
3q
2 , x

3q
2 x

q
3, x

2q
1 x

q
3, (x

2
1x

3
2x3)q−1), for any

q = pe and any e > 1. Therefore, we have Jq = ((x2
1x

3
2x3)q−1), for any q.

Example 5.2.9. Let p = 3 and S = k[[x1, x2, x3, x4]]. Let I = (x1x2, x
2
1x3, x2x3, x2x4).

One can compute the colon ideal (I [3] : I) = (x3
1x

3
2, x

6
1x

3
3, x

3
2x

3
3, x

3
2x

3
4, x

4
1x

2
2x

2
3, x

2
1x

3
2x

2
3x

2
4), hence

J3 = (x4
1x

2
2x

2
3, x

2
1x

3
2x

2
3x

2
4).

Remark 5.2.10. The complexity sequence {ce}e>0 is bounded by the minimal number of

generators of the ideal Jp, i.e. ce 6 µS(Jp), for any e > 0. Note that c1 = µ and c0 = 0.
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In the case of Stanley-Reisner rings, Corollary 3.3.11 states that F(ER) is homoge-

neously principally generated as an R-skew algebra if and only if
I [q] :S I

I [q]
is cyclic as an

R-module. Moreover, Proposition 3.3.8 shows that this R-module is cyclic if and only if it

is generated by (x1)q−1, for any q. We proved a similar result for monomial ideals in Propo-

sition 5.2.3. However, in the case of monomial ideals assuming that
I [q] :S I

I [q]
is cyclic as an

R-module does not imply that the generator of this R-module is of the form presented in

Proposition 5.2.3 and hence it does not guarantee that the algebra of Frobenius operators

F(ER) is homogeneously principally generated as an R-skew algebra.

Question 5.2.11. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I ⊆ S be a monomial ideal and R = S/I the

quotient ring. Is it enough to assume that
I [q] :S I

I [q]
is cyclic as an R-module, for some q (or

equivalently, for any q) in order to show that the Frobenius algebra of operators F(ER) is

(homogeneously) principally generated as an R-skew algebra?

In Proposition 5.1.9, we have the extra assumption on the generator of R−module

I [q] :S I

I [q]
, for any q, which guarantees the principally generation of the Frobenius algebra of

operators F(ER) by a homogeneous generator in degree one. We do not know if dropping

this assumption on the generators would still imply that the Frobenius algebra of operators

F(ER) is homogeneously principally generated. If this is not true, one should be able to find

a counterexample and hence answer the following question:

Question 5.2.12. Can we find examples of ideals I in a complete regular local ring S with

I [q] :S I

I [q]
cyclic as an R-module, for any q and such that the Frobenius algebra of operators

F(ER) is not homogeneously principally generated?

If I is a square-free monomial ideal and R is the Stanley-Reisner ring associated to

it, we know that this is not possible since if
I [q] :S I

I [q]
is cyclic as an R-module implies that

I [q] :S I

I [q]
is generated by (x1)q−1 using Definition 3.3.2.

Remark 2.4.5(i) tells us that if R is a Gorenstein ring, the Frobenius algebra of operators

F(ER) is principally generated as an R-algebra. The converse is not true. There exist
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examples of rings which are not Gorenstein with principally generated Frobenius algebra of

operators on the injective hull of the residue field. Àlvarez Montaner, Boix and Zarzuela gave

examples of such rings in [27], Example 4.2. We do not have a good understanding of when

is the Frobenius algebra of operators F(ER) principally generated as an R-algebra. In [3],

Blickle stated that if R is an F -finite normal ring, then the principally generation of the

Frobenius algebra of operators F(ER) is equivalent to R being Gorenstein. This statement

was quoted by Àlvarez Montaner and Yanagawa in [28]. We have a counterexample for

this statement. There exists an F -finite normal ring not Gorestein having the Frobenius

algebra of operators F(ER) principally generated over R. This ring is a quasi-Gorenstein

ring, presented in Example 5.1 in [32]. We will first give the definition of a quasi-Gorenstein

ring.

Definition 5.2.13 ([1, Definition 2.1]). A local ring (R,m, k) is called quasi-Gorenstein

if Hd
m(R) ∼= ER(k).

Example 5.2.14. Let k be a field of characteristic char(k) 6= 3. Let R be the Segre product

of the cubic Fermat hypersurfaces: R := k[x, y, z]/(x3 + y3 + z3)#k[a, b, c]/(a3 + b3 + c3).

By [11], R is a quasi-Gorenstein, normal domain of dimension 3 and depth 2. Since R is

not a Cohen-Macaulay ring, R is not Gorenstein. Using Definition 5.2.13, we have that

the Frobenius algebra of operators F(ER) ∼= F(Hd
m(R)). In Example 3.7 in [25], Lyubeznik

and Smith showed that for any d−dimensional local ring satisfying Serre’s S2 condition,

F(Hd
m(R)) is principally generated by the canonical Frobenius action as an algebra over R.

Our ring R is normal, so it satisfies Serre’s S2-condition. Hence, the Frobenius algebra of

operators F(ER) is principally generated as an R-algebra. To sum up, the ring R is an

example of a normal F -finite ring not Gorenstein having the Frobenius algebra of operators

principally generated as an R-algebra.

In fact, there exists another example of a ring which is not Gorestein having the Frobe-

nius algebra of operators F(ER) principally generated over R. This example was presented

in Example 4.5(1) in [23].
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Another question that we would like to answer is the following:

Question 5.2.15. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I ⊆ S be a monomial ideal with no embedded

associated primes in S and R = S/I the quotient ring. Is the ring of Frobenius operators

F(ER) either (homogeneously) principally generated or infinitely generated?

More specifically, this question asks whether finitely generation implies principally gen-

eration in the case of monomial ideals. We do not have a concrete description of the minimal

generators of the colon ideals similar to the one in Lemma 3.3.7 for the Stanley-Reisner case.

Hypothetically, the ideal
I [p] :S I

I [p]
could have at least two minimal generators of the form

(x
aj
δj

)p−1 = (x
aj,1
δj,1
· · · xaj,nδj,n

)p−1, with aj,i > 0, 1 6 δj,i 6 n for any 1 6 i 6 n. In this case, the

algebra of Frobenius operators F(ER) could be finitely generated without being necessarily

homogeneously principally generated as an R-skew algebra. However, we do not have an ex-

ample of such a monomial ideal I, nor do we have a proof showing that this cannot happen.

One way of investigating this question is using the formula we found in Proposition 5.2.4 in

order to describe the minimal generators of the colon ideal (I [p] :S I). Moreover, we would

like to answer this question in general:

Question 5.2.16. Let k be a field of characteristic p and S = k[[x1, . . . , xn]] the formal

power series ring in n variables over k. Let I ⊆ S be a monomial ideal and R = S/I the

quotient ring. Is the ring of Frobenius operators F(ER) either (homogeneously) principally

generated or infinitely generated as an R-skew algebra?

To answer this question, one would need to understand better the structure of the colon

ideal (I [p] :S I) for any monomial ideal I. The number of associated primes of the ideal

I plays an important role as well. We will illustrate this in the next examples. We start

by fixing a Stanley-Reisner ring having two, respectively three associated primes. For each

of these rings, we will find conditions on the associated primes which would guarantee the

principally generation of the Frobenius algebra of operators.
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Example 5.2.17. Let I = P1∩P2, be a square-free monomial ideal with Ass(I) = {P1, P2}.

Since I is a square-free monomial ideal, P1 and P2 are ideals generated by variables. Let

P1 := (xi1 , . . . , xis) and P2 := (xj1 , . . . , xjt), for some s, t > 1.One can note that (P
[q]
1 :S P1) =

(P
[q]
1 , (xi1 · · ·xis)q−1) and (P

[q]
2 :S P2) = (P

[q]
2 , (xj1 · · ·xjt)q−1), for any q. By Proposition 3.3.3,

we obtain

(I [q] :S I) = (P
[q]
1 , (xi1 · · ·xis)q−1) ∩ (P

[q]
2 , (xj1 · · ·xjt)q−1)

= (I [q], (xi1 · · ·xis)q−1xqjl , (xj1 · · ·xjt)
q−1xqik , (xi1 · · ·xis · xj1 · · ·xjt)

q−1 : 1 6 k 6 s, 1 6 l 6 t),

for any q. One can note that (xi1 · · ·xis)q−1xqjl ∈ I [q] if and only if jl ∈ {i1, . . . , is} and

(xj1 · · · xjt)q−1xqik ∈ I
[q] if and only if ik ∈ {j1, . . . , jt}. Proposition 5.1.9 states that F(ER)

is homogeneously principally generated as an R-skew algebra if and only if
I [q] :S I

I [q]
is cyclic

as an R-module by xγe and xγe = (xγ1)νe , where νe = 1 + p + . . . + pe−1, for any e > 1.

Hence, F(ER) is homogeneously principally generated as an R-skew algebra if and only if

ik ∈ {j1, . . . , jt}, for any k ∈ {1, . . . , s} and jl ∈ {i1, . . . , is}, for any l ∈ {1, . . . , t}. That

happens if and only if {i1, . . . , is} = {j1, . . . , jt}, i.e. I = P1 = P2 = (xi1 , . . . , xis). In this

case, F(ER) is homogeneously principally generated as anR-skew algebra by (xi1 · · ·xis)p−1F,

where F : ER → ER denotes the canonical Frobenius action on ER. Hence, if I is a square-

free monomial ideal with two nonembedded associated primes, the Frobenius algebra of

operators cannot be principally generated as an R-skew algebra.

Example 5.2.18. Let I = P1 ∩ P2 ∩ P3, be a square-free monomial ideal with Ass(I) =

{P1, P2, P3}. Since I is a square-free monomial ideal, P1, P2 and P3 are ideals generated

by variables. Let P1 := (xi1 , . . . , xis), P2 := (xj1 , . . . , xjt) and P3 := (xk1 , . . . , xkr) for

some s, t, r > 1. One can note that (P
[q]
1 :S P1) = (P

[q]
1 , (xi1 · · ·xis)q−1), (P

[q]
2 :S P2) =

(P
[q]
2 , (xj1 · · ·xjt)q−1) and (P

[q]
3 :S P3) = (P

[q]
3 , (xk1 · · ·xkr)q−1), for any q. By Proposition 3.3.3,

we obtain

(I [q] :S I) = (P
[q]
1 , (xi1 · · ·xis)q−1) ∩ (P

[q]
2 , (xj1 · · ·xjt)q−1) ∩ (P

[q]
3 , (xk1 · · ·xkr)q−1)
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= (I [q], (xi1 · · ·xis)q−1xqjlx
q
km
, (xj1 · · ·xjt)q−1xqiux

q
km
, (xk1 · · ·xkr)q−1xqiux

q
jl
,

(xi1 · · ·xis · xj1 · · ·xjt)q−1xqkm , (xj1 · · · xjt · xk1 · · · xkr)
q−1xqiu , (xi1 · · ·xis · xk1 · · ·xkr)

q−1xqjl ,

(xi1 · · ·xis · xj1 · · ·xjt · xk1 · · ·xkr)q−1 : 1 6 u 6 s, 1 6 l 6 t, 1 6 m 6 r),

for any q. By Proposition 5.1.9, F(ER) is homogeneously principally generated as an R-

skew algebra if and only if
I [q] :S I

I [q]
is cyclic as an R-module by xγe and xγe = (xγ1)νe ,

where νe = 1 + p + . . . + pe−1, for any e > 1. Hence, F(ER) is homogeneously prin-

cipally generated as an R-skew algebra if and only if
I [q] :S I

I [q]
is cyclic as an R-module

by (xi1 · · ·xis · xj1 · · ·xjt · xk1 · · ·xkr)q−1, for any q. This happens if and only if the follow-

ing conditions hold: {i1, . . . , is, j1, . . . , jt} = {1, . . . , n}, {j1, . . . , jt, k1, . . . , kr} = {1, . . . , n},

{i1, . . . , is, k1, . . . , kr} = {1, . . . , n}, {i1, . . . , is, jl, km} = {1, . . . , n} or {jl, km} is the support

set of one of I ′s generators, for any 1 6 l 6 t, 1 6 m 6 r, {j1, . . . , jt, iu, km} = {1, . . . , n}

or {iu, km} is the support set of one of I ′s generators, for any 1 6 u 6 s, 1 6 m 6 r,

and {k1, . . . , kr, iu, jl} = {1, . . . , n} or {iu, jl} is the support set of one of I ′s generators,

for any 1 6 u 6 s, 1 6 l 6 t. For simplicity, we assume I ⊆ K[[x1, x2, x3]], with K

a field of positive prime characteristic p. One can note that the conditions above imply

that F(ER) is homogeneously principally generated as an R-skew algebra if and only if

I = (x1, x2) ∩ (x2, x3) ∩ (x3, x1), i.e. I = (x1x2, x2x3, x3x1).

In the next example we show that for monomial ideals with two nonembedded associated

primes, the Frobenius algebra of operators cannot be principally generated as an R-skew

algebra.

Example 5.2.19. Let I = P1 ∩ P2, be a monomial ideal with Ass(I) = Min(I) =

{
√
P1,
√
P2}. Since I is a monomial ideal, P1 and P2 are ideals generated by powers

of variables. Let P1 := (xa1i1 , . . . , x
as
is

) and P2 := (xb1j1 , . . . , x
bt
jt

), for some s, t > 1 and

a1, . . . , as, b1, . . . , bt > 0. One can note that (P
[q]
1 :S P1) = (P

[q]
1 , (xa1i1 · · ·x

as
is

)q−1) and

(P
[q]
2 :S P2) = (P

[q]
2 , (xb1j1 · · ·x

bt
jt

)q−1), for any q. By Proposition 3.3.3, we obtain

(I [q] :S I) = (P
[q]
1 , (xa1i1 · · ·x

as
is

)q−1) ∩ (P
[q]
2 , (xb1j1 · · ·x

bt
jt

)q−1)
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= (I [q], (xa1i1 · · · x
as
is

)q−1xqbljl , (x
b1
j1
· · ·xbtjt)

q−1xqakik
, (xa1i1 · · ·x

as
is
·xb1j1 · · ·x

bt
jt

)q−1 : 1 6 k 6 s, 1 6 l 6 t),

for any q. Since Min(I) = {
√
P1,
√
P2}, there exists ik /∈ {j1, . . . , jt} and jl /∈ {i1, . . . , is}

for some 1 6 k 6 s and 1 6 l 6 t. One can then note that xqakik
(xb1j1 · · ·x

bt
jt

)q−1 /∈ I [q] and

xqbljl (xa1i1 · · · x
as
is

)q−1 /∈ I [q]. Hence, the R-module
I [q] :S I

I [q]
is not cyclic and this implies that

F(ER) is not homogeneously principally generated as an R-skew algebra.
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