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ABSTRACT 

The manual process of comparing biological recordings from electrophysiological 

experiments to their mathematical models is time-consuming and subjective. To address this 

problem, we have created a blended system that allows for objective, high-throughput, and 

computationally inexpensive comparisons of biological and mathematical models by developing 

a quantitative measure of likeness (error function). Voltage recordings from biological neurons, 

mathematically simulated voltage times series, and their transformations are inputted into the 

error function. These transformations and measurements are the action potential (AP) frequency, 

voltage moving average, voltage envelopes, and the probability of post-synaptic channels being 

open. The previously recorded biological voltage times series are first, translated into 

mathematical data to input into mathematical neurons, creating what we call a blended system. 

Using the sea slug Melibe Leonina's swimming central pattern generator (CPG) as our circuit to 

compare and the source of our biological recordings, we performed a grid search of the 

conductance of the inhibitory and excitatory synapse found that a weighted sum of simple 

functions is required for a comprehensive view of a neuron's rhythmic behavior. The blended 

system was also shown to be able to act as rhythm directors like pacemakers and drivers of 

Dendronotus Iris swimming interneuron (Si) cells and was able to replicate the perturbations of 

biological recordings. After verification steps using different configurations, calculated mean and 

variance of rhythmic characteristics, as well as recordings created from data augmentation. The 

form of data augmentation introduced can be generalized to other biological recordings or any 

time series. With all these tools developed and expanding the parameter dimensions a hypothesis 

was posited that there is a contralateral electric synapse not previously included in the Melibe 

CPG model.   
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strong inhibitory reciprocation between 1/2L and 1/2R electrically bonded into an HCO 

generating slow 12-14s bursting in the absence of feedback inhibition from 3L/R. An 
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quiescent interneurons of both types follow, while the bilateral inhibition cuts them off 

into even spike trains. Superimposed underneath the biological traces are the 
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inhibitory currents (via [Eq. 5]) injected in the (red) mathematical neurons in the blended 

circuitry, whose traces (red) are  overlaid with the biological originals (in grey) . .......... 41 



xv 

Figure 4.1 Figure showing the error space of the error according to the S variable distance, the 
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the biological recordings to the mathematical neuron. The descent is straightforward, a 

change of one parameter at an iteration and find the minimum value of the error while 

keeping the other parameters constant once the minimum error value of the changing 
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and cycle through all the parameters until it converges to the minimum of the parameters. 
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once it finds the minimum it has found the parameter values that produce the least error. 
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voltage time series. Directly under the original recording is the first transformation, the 

action potential frequency count that counts the number of action potentials within a 
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variable when transforming biological recordings and the S variable of the mathematical 

neuron. Synaptic probability like the voltage moving average smoothens the voltage time 

series though not to a similar degree. The final transformation is the Envelope function 
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local maxima or minima. The envelope function is discussed in more detail in the text. 45 
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xvii 

the action potentials are removed from the voltage times series the limitation of the action 

potential frequency error function is revealed. The transformation cannot differentiate 

between various “inactive” phases. ................................................................................... 50 

Figure 4.5 Error space of synaptic probability distance and the limitations of its respective 

transformation. A) The error with the excitatory and inhibitory conductance parameter 

space. The minimum error time series’ (MET) value in the excitatory and inhibitory 

conductance parameter space is shown by the white asterisk (𝑔𝑖= 0.0013, 𝑔𝑒= 0). B) The 

mathematical neuron’s MET (in grey) is juxtaposed over the corresponding biological 

recording (in red) though the action potential firing frequency was much lower than the 

biological recording. C) The time series where the synaptic probability works as a 

transformation. D) However, when the action potentials are removed from the voltage 

times series the limitation of the synaptic probability distance error function is revealed. 

The transformation does not differentiate between various “inactive” phases much like 

the action potential frequency. .......................................................................................... 51 

Figure 4.6 Error space of voltage moving average distance and the limitations of its respective 

transformation. A) The error with the excitatory and inhibitory conductance parameter 

space. The minimum error time series’ (MET) value in the excitatory and inhibitory 

conductance parameter space is shown by the white asterisk (𝑔𝑖 = 0026, 𝑔𝑒 = 0.0237). B) 

The mathematical neuron’s MET (in grey) is juxtaposed over the corresponding 

biological recording (in red) and shows action potentials firing during the quiescent 

phase. C) The time series where the voltage moving average works as a transformation. 

D) The transformation seen in C is essentially the same as the time series in D. Meaning 



xviii 

the transformation cannot differentiate between a subthreshold rise of action potential and 

that of a burst of action potential firings. .......................................................................... 53 

Figure 4.7 Error space of voltage moving average difference variance and the limitations of its 

respective transformation. A) The error with the excitatory and inhibitory conductance 

parameter space. The minimum error time series’ (MET) value in the excitatory and 

inhibitory conductance parameter space is shown by the white asterisk (𝑔𝑖= 0.0145, 𝑔𝑒= 

0.0237). B) The mathematical neuron’s MET (in grey) is juxtaposed over the 

corresponding biological recording (in red). C) The time series also uses the voltage 

moving average transformation therefore it should have the same limitations. D) The 

transformation seen in C is essentially the same as the time series in D. Meaning the 

transformation cannot differentiate between a subthreshold rise of action potential and 

that of a burst of action potential firings. .......................................................................... 54 

Figure 4.8 Error space of envelope distance and the limitations of its respective transformation. 

A) The error with the excitatory and inhibitory conductance parameter space. The 

minimum error time series’ (MET) value in the excitatory and inhibitory conductance 

parameter space is shown by the white asterisk (𝑔𝑖= 0.0197, 𝑔𝑒= 0.0553). B) The 

mathematical neuron’s MET (in grey) is juxtaposed over the corresponding biological 

recording (in red). C) The time series shows the envelope transformation though the 

limitation is not immediately apparent. D) The limitation can be found while looking at 

the action potential frequency transformation of the third burst. The beginning of the 

burst has a higher frequency which then reaches a lower frequency; therefore, it is unable 

to perceive action potential frequency adaptations or action potential frequencies in 

general. .............................................................................................................................. 56 



xix 

Figure 4.9 The combined error function can adjust to the cellular properties of the mathematical 

neuron. (a) Error space of excitatory and inhibitory synaptic conductance. z-axis is the 

rescaled value error of the error function, the x-axis is the conductance of the inhibitory 

synapses, and the y-axis is the conductance of the excitatory synapse. All best-fit time 

series (whether tonic spiking, borderline or quiescent) find qualitatively similar voltage 

time series. The minimum error shifts lower along the inhibitory conductance as the 

mathematical neuron shifts from a tonic spiking at 𝑔𝑖= 0.01579, 𝑔𝑒= 0.0316; borderline 

at 𝑔𝑖= 0.0118, 𝑔𝑒= 0.0316; to quiescent at 𝑔𝑖= 0.0066, 𝑔𝑒= 0.0395 neuron. Much like 

the curare the minimum error shifts lower along the inhibitory conductance as the 

mathematical neuron shifts from a tonic spiking at 𝑔𝑖= 0.0711, 𝑔𝑒= 0.0711; borderline at 

𝑔𝑖= 0.0789, 𝑔𝑒= 0.0789; to quiescent at 𝑔𝑖= 0.0237, 𝑔𝑒= 0.0474 neuron. Furthermore, as 

should be expected, the minimum error shifts higher along the excitatory conductance. 58 

Figure 4.10 High variation of rhythmic characteristics seen in Melibe CPG recordings while in 

curare bath. ........................................................................................................................ 61 

Figure 4.11 Bi-parametric sweep of the inhibitory and excitatory conductance at a 250 by 250 

resolution measuring the average spike frequency distance per burst period of the 

mathematical neuron. This results in 62500 mathematical time series and each average 

spike frequency distance was measured against the same biological recording. A) The 

histogram of the distance per burst for the mathematical times series with outliers 

removed (𝜇 = 6.8564). This sweep doesn’t differentiate between good or bad fits 

therefore it is a distribution of the average spike frequency distance per burst period in 

inhibitory and excitatory conductance space. B) Bar graph showing the mean and the 

standard error of the mean. Also shows the CEF defined best fit (red dot). The CEF’s 



xx 

average spike frequency distance per burst value equals 1.9 and the z-score of the error 

function’s best fit of -119. ................................................................................................. 62 

Figure 4.12 Measuring the performance of the mathematical neuron using spike frequency. ..... 64 

Figure 4.13 Violin plot showing the distribution of the 𝐷 across the 250 by 250 𝑔𝑖&𝑔𝑒 sweep 

(left). A box plot showing the distribution of with outliers removed (right). ................... 65 

Figure 4.14 Examples of cropped shorter windows from a larger time series. Each one taken as a 

separate time series for a blended system. Shown here is an 80-second-long time series 

with 40 second windows that slide by ten seconds for every window. The first window 

would be from the zero to forty seconds, sliding to another from ten to fifty, another from 

twenty to sixty, and so on until you have the last 40 second window from forty to eighty 

seconds. ............................................................................................................................. 67 

Figure 4.15 Scatter plot of the CEF value against the corresponding z-scores of each of the 

cropped windows. A significant moderate correlation of r = 0.6733 p < 0.01. Indicating 

the best fit according to my CEF is measuring similar rhythmic characteristics to that of 

the average distance per burst measurement. Furthermore, comparing the best fits to 

many voltage recordings that were produced by data augmentation is another piece of 

evidence that they are measuring similar characteristics. ................................................. 68 

Figure 4.16 Parallel coordinate graph showing 6 of the 8 parameter values of 50 mathematical 

voltage time series. To show a single time series comparison in 8 parameter dimensions, 

there are 8 equally spaced vertical parallel axes. Each time series comparison in the octa-

parameter space is represented as a polyline with vertices on the parallel axes. Each 

connected series of line segments represents the parameters of each time series. The 

parameters of each time series were chosen using uniformly distributed random sampling. 



xxi 

Random sampling was used to avoid the convergence to single points on each vertex that 

obscures any differentiation between individual times series parameter sets. The eight 

parameters are the synaptic conductance of the inhibitory (𝑔𝑖𝑛ℎ) and excitatory synapses 

(𝑔𝑒𝑥𝑐), and the added alpha (𝛼𝑖𝑛ℎ, 𝛼𝑒𝑥𝑐), beta (𝛽𝑖𝑛ℎ, 𝛽𝑒𝑥𝑐), and synaptic threshold 

(𝑉𝑡ℎ − 𝑖, 𝑉𝑡ℎ − 𝑒) of both the inhibitory and excitatory synapses. ................................. 69 

Figure 4.17 Parallel coordinate graph showing the final 2 parameter values of 50 mathematical 

voltage time series. To show a single time series comparison in 8 parameter dimensions, 

there are 8 equally spaced vertical parallel axes. Each time series comparison in the octa-

parameter space is represented as a polyline with vertices on the parallel axes. Each 

connected series of line segments represents the parameters of each time series. The 

parameters of each time series were chosen using uniformly distributed random sampling. 

Random sampling was used to avoid the convergence to single points on each vertex that 

obscures any differentiation between individual times series parameter sets. The eight 

parameters are the synaptic conductance of the inhibitory (𝑔𝑖𝑛ℎ) and excitatory synapses 

(𝑔𝑒𝑥𝑐), and the added alpha (𝛼𝑖𝑛ℎ, 𝛼𝑒𝑥𝑐), beta (𝛽𝑖𝑛ℎ, 𝛽𝑒𝑥𝑐), and synaptic threshold 

(𝑉𝑡ℎ − 𝑖, 𝑉𝑡ℎ − 𝑒) of both the inhibitory and excitatory synapses. ................................. 70 

Figure 4.18 No significant differences in the first six parameters. Box plots of the good and bad 

fits showing their distributions. The categorized parameters in bad fit groups in blue and 

good in orange shown in box plots. The populations for each parameter had a Wilcoxon 

rank sum\ Mann-Whitney test performed on them. Relatively small sample size as to not 

amplify any difference to the point of significance for even the irrelevant differences. .. 72 

Figure 4.19 A significant difference in the synaptic threshold in the excitatory synapses. The 

good fit range of the excitatory synaptic threshold is outside the typical range. In fact, 



xxii 

most of the good fits are under the action potential threshold of -40mV. Box plots of the 

good and bad fits showing their distributions. The categorized parameters in bad fit 

groups in blue and good in orange shown in box plots. The populations for each 

parameter had a Wilcoxon rank sum\ Mann-Whitney test performed on them. Relatively 

small sample size as to not amplify any difference to the point of significance for even 

the irrelevant differences. .................................................................................................. 73 

Figure 4.20 The hypothesized change to the configuration illustrated in the diagram. Here on the 

top left is the current reduced configuration it is changed to the diagram on the top right 

of the new hypothesized configuration. The biphasic response from the amalgamated Si 

1,2,4 cell to Si3 is replaced with an electrical synapse and a fast inhibitory synapse. This 

is hypothesized from the biphasic response experiments you can see that the inhibition 

starts before the excitation this can be explained with a combination of an electrical 

synapse and a fast inhibitory synapse. .............................................................................. 74 

Figure 4.21 Heatmap showing any correlation in the good fits between each of the parameters. 

As shown in the heatmap here there were no strong correlations between any of the 

parameters and some even show significance, but the correlation is though still weak. .. 75 

Figure 5.1 A blended system using Dendronotus Si1 voltage recording to create an HCO rhythm 

in mathematical neurons. A diagram of the blended configuration of the biological Si1 

neuron excites two quiescent mathematical neurons (Left). A previously recorded voltage 

time series of Dendronotus swimming interneuron (Si1) with its respective blended 

synaptic release probability, shown over the two mathematical neurons’ voltage time 

series and their respective synaptic release probability (Right). The inhibitory and 

excitatory synapses are denoted by • and ▲, respectively. The black synapses represent 



xxiii 

the mathematical synapses driven by the biological recordings from the Si1 neuron. With 

M1 (Blue) and M2 (Green) representing two mathematical neurons and Si1 representing 

the previously recorded swimming interneuron (Black). ................................................. 76 

Figure 5.2 A blended system using Dendronotus Si3 voltage recording to create an HCO rhythm 

in mathematical neurons. A diagram of the blended configuration of the biological Si1 

neuron excites one quiescent mathematical neuron and inhibits another tonic-spiking 

neuron (Left). A previously recorded voltage time series of Dendronotus swimming 

interneuron (Si3), with its respective blended synaptic release probability, shown over the 

two mathematical neurons’ voltage time series and their respective synaptic release 

probability (Right). The inhibitory and excitatory synapses are denoted by • and ▲, 

respectively. The black synapses represent the mathematical synapses driven by the 

biological recordings from the Si1 neuron. With M1 (Blue) and M2 (Green) representing 

two mathematical neurons and Si3 representing the previously recorded swimming 

interneuron (Black). .......................................................................................................... 77 

Figure 5.3 How a blended system with inhibitory synapses reacts to perturbations seen in the 

biological recordings. Here on the top is biological recordings from two Melibe Si1 cells 

that ipsilaterally inhibit tonic spiking mathematical neurons. One of the Si1 voltage 

recordings shows that the top voltage recording of the biological neuron was perturbed 

shortly after it begins bursting indicated by the red arrow. This causes the termination of 

the burst and the initiation of the Si1 neuron burst. The mathematical neurons replicate 

the activity of the mathematical ones, though they replicate the neuron that is not directly 

synapsed to them. .............................................................................................................. 78 



xxiv 

Figure 5.4 How a blended system with excitatory synapses reacts to perturbations seen in the 

biological recordings. The biological recordings from two Melibe Si1 cells that 

ipsilaterally inhibit excite quiescent mathematical neurons. One of the Si1 voltage 

recordings shows that the top voltage recording of the biological neuron was perturbed 

shortly after it begins bursting indicated by the red arrow. This causes the termination of 

the burst and the initiation of the Si1 neuron burst. The mathematical neurons replicate 

the activity the mathematical ones, though this time they replicate the neuron that is 

directly synapsed to them.................................................................................................. 78 

Figure 6.1 The normal swim case where math neuron voltage time series is superimposed on the 

biological voltage recordings of their respective Si3 neurons does not meet the threshold 

of a good fit. You can also see when zoomed in the action potentials in the mathematical 

neurons are thicker than the biological recordings. The error value according to the CEF 

is 0.2710. Which according to the previously mentioned cutoff of 2.2 would be 

considered a bad fit. So now we have an example of how a voltage time series can pass 

the eye test but not be considered a good fit. In the table, we can also see where the 

mathematical neuron has gone wrong in the weighted error value column. The synaptic 

distance is responsible for most of the error with the variance of the moving average 

difference being the least. This tells us that the phase is relatively close, but the voltage of 

the mathematical neuron is shifted lower relative to that of the biological recording. ..... 79 

Figure 6.2 The curare case where math neuron voltage time series is superimposed on the 

biological voltage recordings of their respective Si3 neurons. For this case, we have an 

error value of 0.0730 which is low even lower than any of the other best fits found by the 

bi-parameter sweeps or octa-parameter sampling. This is possibly from using a limited 



xxv 

number of parameters to tune in the sweeps and sampling specifically only using synaptic 

parameters, while the hand-tuned blended system had even the fast subsystem parameters 

tuned, which is responsible for the firing of action potentials among other things. When 

zoomed in the action potentials in the mathematical neurons are similar in shape to that of 

the biological recordings though not perfectly aligned. This gives us an example of how a 

hand-tuned blended system gives us a CEF good fit. In the table, we can still see where 

the mathematical neuron has gone wrong in the weighted error value column. Again, the 

synaptic distance is responsible for most of the error and in this case the envelope is the 

least. This tells us that the voltage of the mathematical neuron is not shifted either lower 

or higher relative to that of the biological recording but rather the spiking frequency is 

off. ..................................................................................................................................... 81 

Figure 6.3 The inhibitory blended system where math neuron voltage time series is superimposed 

on the biological voltage recordings of their respective Si3 neurons. For this case, we 

have an error value of 0.0715 which is comparable to the hand-tuned curare case. When 

zoomed in the action potentials are thicker in shape than that of the biological recordings. 

This shows that the action potential shape could possibly not be represented by the CEF 

since the curare swim case also didn’t have thicker action potentials but a similar CEF 

value. Again the synaptic distance is responsible for most of the error however the spike 

count error is close with the envelope being the least. This tells us that the spike 

frequency is off. ................................................................................................................ 83 

Figure 6.4 The excitatory blended system where math neuron voltage time series is 

superimposed on the biological voltage recordings of their respective Si3 neurons. For 

this case, we have an error value of 0.0727 which is comparable to the two previous 



xxvi 

cases. And like the previous case when zoomed in the action potentials in the 

mathematical neurons are thicker in shape than that of the biological recordings. In the 

table, we can see again the synaptic distance being responsible for most of the error with 

the envelope being the least and the higher than the previous variance difference. This 

tells us that the action potential characteristics are responsible for most of the error 

though likely from the spike frequency since there is a high error in spike count and the 

voltage of the mathematical neuron is not shifted either lower or higher relative to that of 

the biological recording though not as in phase as the previous cases as shown by the 

variance difference. ........................................................................................................... 85 

  

  



xxvii 

LIST OF ABBREVIATIONS  

AP: Action Potential 

CPG: Central Pattern Generator 

HCO: Half-Center Oscillator 

PIR: Post-Inhibitory Rebound 

3-CCN: 3-Cell Computational Network 

Si: Swimming Interneuron 

FTM: Fast Threshold Model 

EI: Excitatory-Inhibitory 

HH: Hodgkin-Huxley 

TTX: Tetrodotoxin 

ODE: Ordinary Differential Equation 

CEF: Combined Error Function 

AB: Anterior Burster 

PD: Pyloric Dilator 

LP: Lateral Pyloric 

PY: Amalgamated Pyloric 

BCI: Brain Computer Interface 

ANN: Artificial Neural Network 

SNIC: Saddle-Node on an Invariant Circle 

MET: Minimum Error Time-series 



1 

1 INTRODUCTION  

The dynamics involved in Neuroscience specifically the networks of neurons are complex 

and require new innovative methodologies to analyze and understand them. The complex 

dynamics seen in these networks of neurons are rhythmic. Neuronal behavior is seen in motor, 

sensory, and cognitive functions. One such behavior is rhythmic oscillations, and disruptions or 

non-normal behavior to these rhythms are associated with a number of brain disorders, namely 

Alzheimer’s disease, Parkinson’s disease, schizophrenia, epilepsy, and autism. Furthermore, 

sleep heartbeats, respiration, circulation, and locomotion like swimming, walking, and flying are 

all rhythms that are generated from networks of neurons [1-9]. Therefore, understanding the 

principles that generate the rhythms can offer hypotheses that could lead to treatments for these 

disorders. n addition to regulating motor movements, it has been suggested that transient forms 

of central pattern generators (CPGs) and their rhythmic patterns are involved in the functioning 

of the cortex [10]. 

Some neuronal networks create rhythms as an emergent behavior. In other words, rhythms 

are generated as a result of the interactions between the neurons in the networks as opposed to 

rhythms that rely on endogenous bursting neurons. These neurons create rhythms that go back 

and forth between a firing and quiescent phase when isolated from any input from other neurons. 

The study of emergent behavior has been the focus of studies currently. The importance of 

rhythms in various motor, sensory, and cognitive functions remain significant, irrespective of 

whether they originate from emergent or endogenous behavior [2]. 

These rhythm-generating neural networks are small biological neural networks called central 

pattern generators (CPGs) [1-3,7]. For example, the rhythms that control sleep, heartbeats, 

respiration, circulation, and locomotion such as swimming, crawling, walking, or flying originate 
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from CPGs [1-3, 6,7]. Bursting patterns like those seen in CPGs were also seen in disordered 

synchronization during epileptic seizures [11-13]. These CPGs are defined as small networks 

made of biological interneurons or motor neurons that create oscillations between an active 

action potential firing and a quiescent phase with the quiescent phase characterized by a lack of 

or minimal action potential firing. These interneurons of the CPG interact with each other for a 

CPG to create the different bursting biological rhythms mentioned. 

1.1 Central Pattern Generators 

Another important discerning feature of CPGs is that they create their rhythms in 

isolation from any external input, such as sensory feedback or from higher CNS levels [2, 14-

22]. For instance, though a CPG can have a similar function its connectivity between its 

interneurons can be different from one species to another. However, even with varied 

connectivity, there are some connections between a small number of neurons that are always 

present [23]. Though the movement and internal patterns in invertebrates and vertebrates are 

sometimes dissimilar there are motifs that are believed to be shared. Therefore, the study of 

invertebrate CPGs, their operational mechanisms, and the creation of computational and 

mathematical tools to assist with the study of both will offer insights into vertebrate CPGs. 

Understanding these simple networks would be the first step to understanding more complex 

ones since there are preserved characteristics even between simple and complex CPGs. 

There are two main parts of a CPG’s behavior, the dynamical properties of the individual 

neurons and the dynamical properties of the synapses that connect them to one another. CPGs 

create many vital rhythmic motor behaviors, and the rhythms can be created by a minimal 

number of interneurons [1-3,7]. There is a consensus among researchers that though CPGs may 

not create their rhythms exactly alike they still have certain characteristics that are still seen in 
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both vertebrates and invertebrates [1, 2, 4, 5, 7, 8, 24-31]. The fact that these characteristics are 

preserved in both vertebrates and invertebrates indicates their evolutionary importance and the 

need to study the characteristics. Furthermore, creating tools that would help study and analyze 

them would assist in the quest of understanding the preserved characteristics of CPGs in 

vertebrates and invertebrates. The dynamic robustness of CPGs has recently been a topic of 

study in the field alongside whether a single CPG can generate multiple rhythms. The question of 

how multiple rhythms can be generated by a single circuit has been researched and shown to be 

possible through mathematical modeling and shown to also be true for biological CPGs. For the 

mathematical model, it was shown that with the proper stimulation a CPG can transition the CPG 

from one attractor rhythm to another, for example, the switching of gaits of horses from walking 

to trotting to canter to bound. 

There are different types of CPG designs such as the pacemaker configuration which is 

characterized by an endogenous bursting neuron that directs the other neurons of the CPG which 

in turn can modulate the rhythm of the pacemaker neuron. Another type of CPG produces 

rhythms from a network of interneurons that do not burst isolation. Since there are no 

endogenous bursting neurons in this CPG type then the rhythm emerges entirely from the 

synaptic interaction between the non-rhythmic neurons, called emergent rhythms. These 

emergent rhythms in a CPG dictate how their target organ moves, such as the stride made by leg 

muscles. In the field of CPG research, the rhythms dictating these movements of organs are 

assumed that both invertebrate and vertebrate CPGs have generalized components, which can be 

functional or structural. Understanding these generalized components is a priority for 

researchers.  
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1.1.1 Half-Center Oscillator 

Another type of CPG is known as a half-center oscillator (HCO) which is made of two 

neurons or groups of neurons that create an antiphase bursting because they reciprocally inhibit 

one another. In other words, when one of the neurons fires action potentials the other does not, 

and when the action potential firing stops the quiescent neuron begins firing action potentials. 

HCOs were first hypothesized to explain the rhythmic movements of flexion and extensor 

muscles on the limbs of mammals. Since they were first proposed HCOs have been found in 

many CPG rhythms such as the leech heart, lamprey, tadpole, zebrafish larvae, and sea slug 

swimming. Since HCOs are seen across a wide variety of locomotive organisms it points to the 

importance of HCOs in CPGs and their ability to create locomotive rhythms. 

HCOs are seen in both invertebrate and vertebrate CPGs. HCOs were posited as the 

mechanism by which the extensor and flexor muscles in vertebrates interact to create limb 

locomotion. Furthermore, to create the locomotive rhythm of multi-limbed, multi-jointed limbs 

and multiple gaits of multi-limbed organisms multiple HCOs were combined by synaptically 

coupling the interneuron group of one HCO to another. Sometimes coupling them in a reciprocal 

inhibition configuration creates an HCO between HCOs [8, 14, 32-36]. Even with CPGs and 

HCOs being observed in organisms and modeled in mathematical simulations, the role of the 

synaptic dynamics on CPGs remains unclear [26, 37-41]. The emergent rhythms of CPGs and 

HCOs are still being researched using biological and mathematical methods [8, 9, 14, 28, 32, 34, 

35, 36, 42]. Though HCOs are important to CPGs' production of rhythmic behaviors, a single 

HCO does not explain how CPGs create multiple rhythmic motifs which for instance explains 

the different gaits of vertebrates [43-45]. 
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An HCO alone can be considered a kind of CPG. However, in the case of the sea slugs 

Melibe and Dendronotus’ swimming CPG, many HCOs combine to create the rhythm for their 

lateral bending swimming. Therefore, gaining any insight into the mechanisms of how rhythms 

are generated in Melibe and Dendronotus will also give us an understanding of an essential 

component of CPGs, namely the HCO [8, 9, 14, 28, 32, 34, 35, 36, 42]. Another testament to the 

importance of HCOs is their widespread presence in diverse organisms even in both vertebrates 

and invertebrates [14, 31, 46-49].  

The mechanisms of HCOs have been studied previously and have been shown to run on 

two principles, namely escape and release [50-56]. One neuron is inhibited until it escapes while 

the depolarized neuron releases the inhibited neuron. By using these two principles HCO models 

are developed. However, there are other factors at play in developing HCO models, such as 

whether the individual neurons are intrinsic bursters. Some CPGs such as those of Melibe and 

Dendronotus were found to be non-intrinsic bursters [36, 57]. As one interneuron of the Melibe 

CPG is inhibited its contralateral counterpart fires action potentials tonically. The assumption is 

that having a diverse combination of neurons with differing intrinsic combinations conserves 

energy more efficiently. This is because endogenous bursters might require more energy and 

complexity to transition from being quiescent to firing in isolation. HCOs consisting of non-

bursters that are synaptically coupled have been shown to be theoretically possible.  

By modeling HCOs from non-endogenous bursters previous studies have gone about 

creating non-bursters, modeling the synaptic connections, exploring how the characteristics of 

the non-bursters and synaptic connections affect the model HCO, finding the working range of 

HCO for two parameters, and toggling the HCO from quiescent to antiphase bursting through 

synaptic dynamics [58]. An HCO has also been shown to theoretically hold multiple rhythms if 



6 

the neurons are endogenous bursters [59]. All the rhythms produced are still bursting however 

they burst in a synchronized fashion or with slightly shifted phases [60]. There is another 

mechanism that assists in making an HCO, post-inhibitory rebound (PIR) [61-63]. This is the 

depolarization caused by the overcompensation of an inhibited cell after it ceases to be inhibited. 

This mechanism can make an intrinsic quiescent cell fire in the absence of any external 

excitation.  
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2 MELIBE LEONINA SWIM CPG 

There are common dynamics shared in the motion between invertebrates and vertebrates, 

including humans, therefore study of the Melibe swim CPGs would give us insight into the 

mechanisms of human locomotion. Neurological disorders have been linked to the disruption of 

CPGs. Furthermore, vertebrates also have a similar forebrain circuit to invertebrates [64]. The 

simplicity of invertebrate CPGs offers an opportunity to study the rhythmogenesis of more 

complex vertebrate CPGs, like those of mammals.  The level of complexity seen in vertebrate 

CPGs is higher than in vertebrates, however, the study of simple invertebrate CPG will give us a 

foundation for understanding complex ones in the future.  

CPGs can be found throughout the nervous system whether in the spinal column of 

vertebrates, the brains of invertebrates, or the peripheral nervous system. Previous research has 

already shown that vertebrates and invertebrates share mechanisms to create rhythms [64]. Since 

the mechanisms are shared it can therefore be inferred that understanding the workings of simple 

CPGs will lead to insight into the more complex CPGs.  

For example, invertebrate CPGs are simpler than mammalian CPGs in both their circuitry 

and the experiments required to study them. One CPG that is representative of the simplicity of 

invertebrate CPGs is the sea slug swim CPG. The initial assumption was because of the simple 

locomotion sea slugs use to swim than their CPG would reflect their locomotive simplicity [65]. 

This characteristic makes the sea slug swim CPG a prime candidate to start understanding simple 

CPGs and the first step in understanding complex CPGs. How to compare a sea slug’s swimming 

locomotion to that of four-limbed mammalian locomotion may not be obvious, however, 

understanding how simple locomotion is generated will no doubt give us an understanding of 

more complex locomotion. There are several sea slugs that swim in a similar fashion and are 
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well-studied, such as Tritonia, Aplysia, Dendronotus, Clione, Lymnaea, and Melibe [35, 49, 57, 

66-68]. The sea slug swims CPG chosen for this study is that of Melibe Leonina. 

Melibe, like other sea slugs, swims by moving their body from side to in locomotion called 

lateral bending. As mentioned previously, lateral bending is a simple locomotion whose 

simplicity was believed to be reflected in its swim CPG’s configuration [69]. Furthermore, since 

CPGs are an essential part of the nervous system then understanding them would lead to a better 

understanding of the underwriting mechanisms of the nervous system, much like how 

understanding CPGs that produce simple locomotion would allow us to comprehend CPGs that 

are responsible for complex locomotion like that seen in four-limbed mammals [24, 70-72]. 

CPGs are seen throughout the nervous system since they are the origins of biological rhythmic 

activity. Which is why they are unavoidable when studying locomotion. 

Previously, three-cell networks were able to be configured to create multiple rhythms from a 

single network of a 3-cell computational network(3-CCN) [73]. This 3-CCN is a network of 

computational neurons coupled together by computationally modeled chemical and electrical 

synapses, with the chemical synapses being either excitatory or inhibitory. A 3-CCN with these 

chemical and electrical synapses was able to produce multiple distinct patterns. The goal of the 

research was to ascertain how the coupling configuration of the synapses in a 3-CCN affects its 

ability to produce multiple distinct patterns [74-76].  

These networks were also put together in a way that resembles that of biological CPGs. As 

an obvious next step, CPGs consisting of four cells were studied. The biological examples of 

four-cell network CPGs were the crustacean stomatogastric ganglion (STG) [77, 78] and sea slug 

swim CPGs of Melibe Leonina and Dendronotus iris. Though it was later discovered that the 

Melibe swim CPG consisted of eight cells and the Dendronotus swim CPG of six cells. Though 
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the rhythms of CPGs might appear to be orderly and regular with little variation, they actually 

have been shown to create nonregular bursting patterns that are described as chaotic [79].  

 

 

Figure 2.1 Biological recordings from Melibe electrophysiological experiments done by 

Sakurai. (A) Postulated circuitry of Melibe swimming CPG circuit grouped into the two neuron 

populations that make up the half-center oscillator (HCO), where R and L denote the right and 

left swimming interneuron, respectively. The first group consists of the first left swimming 

interneuron(1L), the second left swimming interneuron(2L), the third right swimming 

interneuron(3R), the fourth right swimming interneuron(4R), while the second group has their 

contralateral interneurons (B) Electrophysiological Voltage recording of Melibe swimming CPG 

neurons. Shows that the 1L, 2L, and 3R neurons have similar burst phases, 4R also has a similar 

phase but is not shown here. The dashed axons represent slowly activated synapses, the jagged 

lines the electrical synapse, and the solid synapse fast activated synapse. 

 

It was originally believed that the Melibe swim CPG was made up of four neurons but was 

later found to have four more for a total of eight [33, 35]. Electrophysiological recordings and 

experiments gave researchers the evidence to diagram and map out the intrinsic nature and 

synaptic configuration of the Melibe swim CPG. Initially, the interneurons of the CPG were 

assumed to consist of tonic spikers and quiescent neurons, though it was later found to consist of 

only tonic spikers. The eight neurons are organized in four pairs with each neuron in the pair 

being contralaterally symmetrical in the Melibe brain. Each pair of contralateral have a 
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configuration of mutual inhibition between the pair, in other words, an HCO configuration. By 

definition, an HCO has the least amount of neurons and synaptic connections to be called 

microcircuits. 

These four pairs of swim interneurons are labeled Si1 (swimming interneuron 1), Si2, Si3, 

and Si4 with each neuron of a pair being contralateral to the other in the brain (Figure 2.1A). For 

instance, the Si2s consists of the left Si2 (LSi2) and the right Si2 (RSi2) [36]. The Si pairs 

connect to each other through a combination of chemical and electrical synapses. The chemical 

synapses consist of both inhibitory and excitatory synapses. There are electrical synapses 

connecting the two Si1s to each other along with their mutual inhibition. In addition to the 

electrical synapses between Si1s, there are also electrical synapses between all Si1s and Si2s. 

Finally, there are electrical synapses between the Si4s and their contralateral Si1s and Si2s. For 

example, there is an electric synapse between the left Si4 (LSi4) and the right Si1 (RSi1) as well 

as between the LSi4 and the right Si2 (RSi2). Some of these electrical synapses are critical for 

the first steps of the mathematical modeling of the Melibe swim CPG. 

The chemical synapses were also found to differ not only in terms of their neurotransmitter 

release but also in the relative speed at which the presynaptic release affects the postsynaptic 

interneuron. Furthermore, the intrinsic properties of the interneurons in isolation, i.e., tonic 

spiking or quiescent were also different. The circuit today came about after several adjustments 

to the configuration or the intrinsic properties of the interneurons because of new experimental 

results [65]. 

2.1 Melibe Leonina swim CPG models 

Previously, the mathematical model of the biological CPG was reduced in complexity in 

order to ease the computational cost of simulating the mathematical model [63]. Because the 
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models were being developed alongside the biological the mathematical models were updated 

with the new findings of the electrophysiological experiments. When the modeling of the Melibe 

swimming CPG began there were no experiments showing the activity of the Si cells in isolation 

and were believed to be endogenous bursters. Though they were found to be nonendogenous 

bursters the mathematical CPG was able to generate similar rhythms to those seen in the 

biological CPG. In the next iteration of the model all the mathematical neurons were set to fire 

action potentials in isolation, i.e., tonic spikers. To connect the mathematical neurons fast-

threshold model (FTM) synapses were used for simplicity and any changes between the synapses 

were in their conductance and reversal potentials. 

2.1.1 Previous models 

However, as subsequent electrophysiological experiments were conducted it became 

apparent that the Si cells differed in their activity in isolation [65]. Furthermore, it was found that 

the CPG consists of two HCOs bursting in antiphase though each has a different approach. In 

terms of the different activity of the Si cells in isolation, the electrophysiological experiments 

showed that one pair of Si cells were tonic spikers as previously set, however, the other was 

altered to be quiescent in isolation.  

In addition to the model needing updating after the electrophysiological experiments, the 

simulations using the mathematical CPG could not accurately replicate the rhythms seen in the 

biological recordings. This inability to accurately replicate the biological rhythms was believed 

to be because FTM synapses were not sufficiently biophysically realistic. This led to a change in 

the synapses in the model. Since, the FTMs were binary and lacked any dynamics, meaning they 

were instantaneous in their change from being off or on, they were replaced with alpha synapses. 
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This replacement did lead to an improvement in the model’s performance; however, more 

updates were needed after more experiments were done. 

For instance, Si2s and Si3s were thought to have categorically different activity in 

isolation, however, both were found to be tonic spiking in isolation though they differed in spike 

frequency and inhibitory reversal potential. Specifically, Si3s were first thought to be quiescent 

in isolation. 

2.1.2 Simplification of the model 

As previously mentioned, the Melibe swim CPG is a network of biological neurons. 

Initially, the Melibe swim CPG was believed to be consisting of four interneurons that were 

designated into two contralateral pairs. However, later experiments discovered two new pairs of 

interneurons. Each of these pairs has shown to be mutually inhibitory between their contralateral 

counterpart, each of which can be hypothesized to be HCOs. The synapses that connected one 

pair to another were excitatory, electrical, inhibitory, slow, and fast. The electrical synapses 

connect the Si1s to ipsilateral Si2s, and contralateral Si4s. In addition, Si2s also electrically 

synapse to and chemically excite their contralateral Si4s. The Si1s also chemically excite their 

ipsilateral Si3s and contralateral Si4s. On the other hand, the Si2s excite the contralateral Si3s 

and Si4s. Furthermore, the Si1s have an atypical synaptic connection to their contralateral Si3s. 

This synapse has a biphasic postsynaptic response to the stimulation from the Si1s, meaning the 

Si3s initially become hyperpolarized and then become depolarized during the stimulation. The 

Si3s also inhibit their contralateral Si1s. As mentioned previously, the electrical synapses are 

critical for the first steps of the mathematical modeling of the Melibe swim CPG. 
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Figure 2.2 Simplification steps of Melibe swim CPG previously done by Alacam [1]. The 

left diagram (a) represents a reduced configuration of the ipsilateral interneuron 1 and 2 into a 

single neuron(1/2L,1/2R) because of their identical bursting phase. The right diagram (b) is 

reduced by replacing neuron 4 with a strong synapse also because of its similar bursting phase. 

The dashed axons represent slowly activated synapses, the jagged lines the electrical synapse, 

and the solid synapse fast activated synapse. 

 

In previous studies, a reduction in the complexity of the Melibe circuit was posited since 

complexity made mathematical modeling more difficult [65]. This reduced mathematical model 

was done in two steps. The first step is merging the Si2s and their ipsilateral Si1s (Figure 2.2A). 

This is done because of the strong electrical synapses between them which results in them firing 

in phase of each other. This time however because the Si1s mutually inhibit each other, the same 

as the Si2s, when they are merged the mutual inhibition between the aggregate Si1/2 neurons 

was set to be three times stronger than they were before the merging.  

Second, replacing the effect of Si4s on the CPG with a strong inhibiting synapse from 

their contralateral Si1/2s to their ipsilateral Si13s (Figure 2.2B). This is done because of the 

strong electrical and excitatory synapse between the Si1/2s and their contralateral Si4s. Also 

because the Si4s inhibit their contralateral Si3s. In terms of rhythmic behavior, the Si4s also 
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burst in phase with the Si1/2s, therefore the Si1/2s could be seen as indirectly synapse to their 

ipsilateral Si3s, which also causes a slowing of the synaptic effect. The indirect synapse, in-

phase bursting, and electrical synapse lead the authors to replace the Si4s with a slowly growing 

and decaying synapse from Si1/2s to their ipsilateral Si3s. With this the eight-interneuron 

network is reduced to four; a pair of aggregate Si1/2 and a pair of Si3 cells. 

This model was verified experimentally by comparing the effects of one variable that can 

be changed in the biological CPG and the mathematical model, namely the activity of cells [65]. 

Simulations showed that the strength of the inhibition between the amalgamated Si1/2s control 

burst duration, which was verified in experiments by suppressing Si1s decreases burst durations. 

Si1s suppression mutes the synapses between Si1s and their contralateral Si2s, this is equivalent 

to reducing the synaptic strength of the Si2s. Therefore, the experiments verified the 

mathematical model’s assumption. One further step of simplification involves exposing the CPG 

to curare, but this will be expounded upon when the curare case is introduced. 

2.1.3 Network Bursting 

We briefly touched on the concept of network bursting as the hypothesis for the main 

mechanism of rhythmogenesis in the biological CPG. Some experiments were done that showed 

that perturbing the network changed the network's rhythm but did not stop the bursting from 

happening [65].  

Previous work has shown how network bursting emerges, usually from tonic spiking cells 

[79]. Three mechanisms were found to generate and maintain network bursting in HCOs: post-

inhibitory rebound (PIR), escape, and release. Post-inhibitory rebound we have already defined 

as a depolarization after inhibition from another neuron has ceased to inhibit which possibly 

causes an intrinsic quiescent neuron fire in the absence of any external excitation. PIR generates 
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a rhythm by sequentially rebounding the counterpart of one HCO neuron by inhibiting the 

counterpart, much like a perpetual motion machine. The escape and release mechanisms have 

also been discussed briefly as an inhibited neuron “escapes” its inhibition while the depolarized 

neuron releases the inhibited neuron. HCOs have been observed to be bistable, network bursters 

when the mutual inhibition is sufficiently strong, and initiating while maintaining network anti-

phase bursting when the balance of initial phases must be fulfilled [80]. An HCO consisting of 

two tonic spiking neurons is bistable since the neurons can either tonically spike or network 

burst.  

Another coupling configuration other than the mutual inhibition seen in HCO is that of 

the excitatory-inhibitory (EI) module [81]. In this module, a tonic spiking neuron excites a 

quiescent neuron that in turn inhibits the exciting tonic spiking neuron. This indirect negative 

feedback under certain conditions has been shown to create network bursting. However, both 

neurons can be tonic spiking if there is a balance between the initial phases and coupling 

strength, which is the same condition for a tonic spiking and quiescent neuron configuration. EI-

modules were also found to be bistable, and their phase lag can fluctuate between one-quarter 

and one-half if the inhibitory synapse becomes more delayed. his configuration is also seen in 

Dendronotus iris with the addition of an electrical synapse between them. However, this 

configuration has not been seen in Melibe Leonina specifically. Though it could be present in an 

indirect manner as seen in the simplified diagram (Figure 2.2B), where the amalgamated can be 

the excitatory neuron and its contralateral Si3 neuron as the inhibitory neuron in an EI-module. 

However, there is no evidence of any electrical synapse between them, unlike Dendronotus iris 

swim CPG. 
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2.1.4 Plant model 

To examine these different coupling configurations mathematical models were used and 

arguably could only be done using mathematical models. However, new mathematical and 

computational techniques are necessary to understand the many different types of behavior seen 

in biological neural networks. Mathematical models are one such tool that has long been used in 

many ways by different fields, from biology to computer science. Mathematical modeling has 

been done in biology since Fibonacci modeled the population growth of rabbits. Today, 

mathematical models have more complex and more accurate models for population dynamics in 

addition to creating models that assist in drug development, robotics, and neuroscience.  

Mathematical modeling in neuroscience is used to help with the interpretation of 

experimental results as well as forming hypotheses that can be tested by biological experiments. 

One goal of our work is to create useful mathematical and computational tools that can be used 

to study neurons. Computational and mathematical tools are more time and cost-efficient 

methods than biological experiments, which can also be used to study and predict neuronal 

behavior. 

To understand the generalized components of CPGs, modelers have used mathematical 

and computational techniques to discover and categorize the principles under which CPG 

networks work. Researchers elucidate the principles using test studies from experiments and 

models which have been key in unlocking CPGs’ functional and structural components [15, 51, 

82-86]. Mathematical models have been useful in gaining insight into the principles that all 

CPGs operate under. These mathematical models can be divided into the biophysically realistic 

and the phenomenological. The biophysical models describe the known molecular mechanisms 



17 

used in the neuron to recreate electrical activity, such as ion channel behavior. On the other hand, 

the phenomenological models simplify the activity to on or off [51, 82-84, 87]. 

To recreate the CPG of Melibe Leonina and Dendronotus iris initially a mathematical 

model that parabolically burst and endogenously burst was searched for. This was because the Si 

cells in the Melibe Leonina CPG were hypothesized to be endogenous bursters. Parabolic 

bursting is when the spike frequency at the beginning and end of the burst were lower than the 

middle. This led the researchers to the Plant model [88-90]. The model was created to simulate 

the R15 neurons in the abdomen of the sea slug Aplysia Californica and has been linked to their 

ability to lay eggs [91-97]. 

 

Figure 2.3 Melibe swim CPG using TTX on the axons crossing contralaterally in the 

pedal commissure showed that the Si cells were tonic spiking. (A) Diagram showing the synapses 

that were chemically lesioned using the sodium channel blocker tetrodotoxin (TTX). (B) Bursting 

shown in electrophysiological voltage recordings done on the Si2L, Si2R, and Si3R cells under 

normal conditions. (C) Loss of bursting and observed tonic spiking of isolated neuron shown in 

electrophysiological voltage recordings done on the Si2L, Si2R, and Si3R cells after TTX 

application to the pedal commissure where the axons project along. 
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The Plant model has been partitioned into a fast and slow component [90]. The fast 

component comprises the currents that are present in the original Hodgkin-Huxley (HH) model, 

namely the fast sodium-calcium inward, fast potassium, and a leak current. Specifically, the fast 

mechanisms responsible for the quick firing of action potentials are taken from the HH model. 

The additional currents placed into the slow component which differentiate the Plant model from 

the original HH model affect both the action potentials and the source of the action potential 

adaptation and voltage recovery needed for the endogenous bursting seen in R15 neurons. These 

currents are the tetrodotoxin (TTX)-resistant sodium-calcium inward and calcium-dependent 

potassium currents. TTX stands for neurotoxin called Tetrodotoxin that blocks sodium channels 

which are necessary for action potential and mostly responsible for the depolarizing current of a 

neuron. Therefore, any depolarizing current are from channels that are TTX-resistant. However, 

as previously stated, it was later found that the neurons in Melibe's swim CPG were not 

endogenous bursters. In other words, the neurons in Melibe's swim CPG did not burst 

independently. Furthermore, swimming interneuron (Si) cells were found to not burst in isolation 

and cannot burst when perturbed by a non-rhythmic external current making it a "latent" burster. 

This rhythmic characteristic was shown in TTX experiments using TTX on the axons crossing 

contralaterally in the pedal commissure of the Melibe swim CPG, the Si cells were found to be 

tonic spiking, even in the presence of a non-rhythmic injected current (Figure 2.3A). These 

findings then bring us to the previously stated understanding that the Melibe swim CPG is an 

emergent-network-level burster, meaning the bursting created by the swim CPG is achieved by 

the interaction between the Si cells, not any one interneuron (Figure 2.3B). The TTX 

experiments also showed that the action potential frequency in Si3 neurons is higher than in the 

Si2s. 
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To reiterate, the Plant model is an HH model with two additional currents, the original 

HH currents are categorized as fast components while the two additional currents are placed into 

the slow category [1].  In terms of the fast mechanisms, they are responsible for simulating a 

neuron's action potentials. Later the Plant model was modified to allow the neuron to switch 

between being an endogenous bursting, tonic spiking, or quiescent neuron, called an Si-model 

[65]. To modify the Plant model the dynamics of the slow currents were altered to prevent the 

model from bursting, whether endogenously or latently. Therefore, by definition, the Si-model 

either spikes tonically or is quiescent. To achieve this change in its dynamics two bifurcation 

variables were added [3]&[4]. Once this change is achieved and a network of Si-model neurons 

are connected to create a rhythm we can now say it is an emergent network-level rhythm. 

Furthermore, a tonic spiking Si-model only differs from a quiescent one in the intrinsic 

parameters and external perturbations from other mathematical neurons or externally applied 

currents. 

The mathematical model we use for our neurons is the Si model, which is still a 

conductance-based Hodgkin-Huxley model [65]. The Si model and the original Plant model in 

terms of currents are identical. The model consists of an inward sodium and calcium (II), 

outward potassium (IK), slow TTX-resistant calcium (IT) and an outward calcium-sensitive 

potassium (IKCa), and leak currents: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −𝐼𝐼 − 𝐼𝐾 − 𝐼ℎ − 𝐼𝐾𝐶𝑎 − 𝐼𝑇 − 𝐼𝑙𝑒𝑎𝑘 − 𝛴𝐼𝑠𝑦𝑛. 

[1] 

The h-current (Ih) is another depolarizing current that activates when the membrane 

voltage falls under -50mV. The h-current is added to this model to prevent the deep 

hyperpolarization that was observed in the Plant model. The Isyn is synaptic currents from 

presynaptic to the postsynaptic neurons. 
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The Si model makes its adjustments in the outward calcium-sensitive potassium current 

(IKCa). 

IKCa = g𝐾𝐶𝑎

Ca

Ca + 0.5
(V − EK), 

 

[2] 

The first bifurcation parameter (ΔCa) is added to the reversal potential for the differential 

equation of [Ca]: 

d[Ca]

dt
= ρ[Kc x (ECa − V + ΔCa) − Ca]. 

 

[3] 

The second bifurcation parameter (Δx) is added to the steady state of the x gating 

variable: 

x∞(V) =
1

1 + e−0.15(V+50−Δx)
. 

 

[4] 
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Figure 2.4 Si model phase space at x-shift = 0. 2 dimensional projections of a single 

modified Plant model neuron that is 6 dimensions. The calcium concentration is taken as the x-

axis with the x-variable taken as the y-axis. These two variables were chosen for their close 

relation to the two added bifurcations parameters (x-shift and calcium-shift) in the modified 

Plant model and part of the slow subsystem of the model. The x-nullcline, seen in black, the 

calcium concentration nullclines, seen in red, and the saddle node on an invariant circle (SNIC) 

line in green show where the rate of change of a particular variable is zero. The calcium 

concentration nullcline which is the dashed red line is an attracting equilibrium and it intersects 

with the x-nullcline. The x-nullcline has different branches, the bottom branch illustrated as a 

solid black line is an attracting equilibrium while its grey dotted branch is repelling. The SNIC 

line, for the purposes of the plant model, separates where the model fires action potentials above 

the SNIC and is quiescent under the line. Above the SNIC the large grey area represents the 

projections of the periodic orbit manifold, the black line that runs through the manifold is 

average x along the periodic orbit. The bursting of the Plant model is due to the hysteresis which 

when the attracting lower branch of the x-nullcline overlaps x-average curve along the calcium 

concentration axis. A) When the calcium-shift is set to negative 70mV the slope of the calcium 

concentration nullcline intersects with the periodic orbit manifold projection and stays orbiting 

at the intersection of the calcium concentration nullcline and the x-average, resulting in a tonic 

spiker even when it starts as quiescent. B) In the original Plant model, the calcium concentration 

nullcline intersects the unstable branch of the x-nullcline this results in a trajectory of a bursting 

periodic orbit shown in blue. C) When the calcium-shift is set to 80mV the calcium concentration 

nullcline’s slope decreases and edges close the bottom branch of the x-nullcline it begins 

subthreshold oscillating, and the trajectory never goes above the SNIC once it falls from above 

the SNIC. 
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Adding the two bifurcation parameters to the slow currents of the Plant model was to 

modify the slow dynamics and prevent it from bursting. Biologically, these bifurcation 

parameters are possible deviations of the reversal potential. For instance, ΔCa shifts the reversal 

potential of calcium, which can range from 80mV to 140mV. The ΔCa, Δx parameter area has 

been explored in a previous study [81]. Specifically, if the Δx=-2mV then the bursting of the 

model begins to be eliminated and only bursts when ΔCa is in a narrow range of [-45, -43] mV. 

Anything less than this range the model becomes a tonic spiker and anything above the range 

makes the model quiescent. As the Δx decreases the endogenous bursting is eliminated for all 

ΔCa values. Furthermore, to account for the difference in action potential frequencies of Si2s and 

Si3s their ΔCa was set to -44mV and -54mV, respectively. 

 

Figure 2.5 Si model phase space at x-shift = -4. 2 dimensional projections of a single 

modified Plant model neuron that is 6 dimensions, at x-shift = -4. The calcium concentration is 
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taken as the x-axis with the x-variable taken as the y-axis. Note the shape of the x nullcline when 

you set the x-shift to -4. The three changes of note are first the shifting of the intersection of the x 

average where the x nullcline moves up and to the right along the SNIC (dashed green line), 

second the appearance of another stable branch (solid black line) that begins at the intersection 

of the x nullcline and the x average, third the lower stable branch (solid black line) is moved to 

the right and no longer overlaps the x average. This lack of overlapping causes a loss of 

hysteresis and therefore a loss of bursting. This is apparent in the three phase planes shown with 

three different calcium-shift values. A) the phase plane when the calcium-shift is set at negative 

70 again the neuron again becomes a tonic spiker though it is now in firing at a higher 

frequency. B) When the calcium-shift equals zero the calcium concentration nullcline intersects 

with the newly formed stable branch which results in a quiescent neuron even when it begins 

firing. C) The calcium-shift is set to 145mV and the calcium concentration nullcline now 

intersects with the unstable branch of the x nullcline leading to subthreshold oscillations even 

when it begins in a firing start point. 

 

A single Plant model neuron is 6 dimensional in terms of the number of differential 

equations in the model. However, the dynamics of the whole system can be illustrated in the 2-

dimensional slow system, namely by having the calcium concentration and the x variable as the 

two axes [81]. On the 2D plane, we plot the x-nullcline, seen in black, the calcium concentration 

nullclines, seen in red, and the SNIC line in green (Figure 2.4). The nullclines are simply the 

values at which the rate of change of a particular variable (in this case either the x-value or 

calcium concentration) these nullclines can either be stable or unstable in other words they are 

either attracting or repelling the system's state. The SNIC line stands for saddle node on an 

invariant circle, for the purposes of the plant model it separates where the model fires action 

potentials above the SNIC and is quiescent under the line. The center is the original Plant Model 

where calcium-shift and x-shift are both equal to zero. The calcium concentration nullcline 

which is the dashed red line is an attracting equilibrium and it intersects with the x-nullcline. At 

this point let me describe the different branches of the x-nullcline, the bottom branch illustrated 

as a solid black line is an attracting equilibrium while its grey-dotted branch is repelling. Also, 

above the SNIC, the large grey area represents the projections of the periodic orbit manifold, the 
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black line that runs through the manifold is average x along the periodic orbit. One last concept 

that is relevant is hysteresis which in simple terms is a system whose state depends on its history. 

In terms of the Plant model hysteresis is possible when the attracting lower branch of the x-

nullcline overlaps the x-average curve along the calcium concentration axis. So, in the original 

Plant model the calcium concentration nullcline intersects the unstable branch of the x-nullcline 

this results in a trajectory of a bursting periodic orbit shown in blue. When the calcium-shift is 

set to negative 70mV the slope of the calcium concentration nullcline increases and intersects 

with the periodic orbit manifold projection. This causes the system to stay orbiting the 

intersection of the calcium concentration nullcline and the x-average, resulting in a tonic spiker 

even when it starts as quiescent. Now, when the calcium-shift is set to 80mV on the right, the 

calcium concentration nullcline slope decreases and edges close to the bottom branch of the x-

nullcline, it then begins subthreshold oscillating, and the trajectory never goes above the SNIC 

once it falls from the x average. 

The transformation of the shape of the x nullcline is what happens to the x nullcline when 

you set the x-shift = -4 (Figure 2.5). The three main changes are first the shifting of the 

intersection of the x average and the x nullcline moves up and to the right along the SNIC, 

second is the appearance of another stable branch that begins at the intersection of the x nullcline 

and the x average, third the lower stable branch is moved to the right and no longer overlaps the 

x average. This lack of overlapping causes a loss of hysteresis and therefore a loss of bursting. 

This is apparent in the three-phase planes shown with three different calcium-shift values, in the 

center when the calcium-shift equals zero the calcium concentration nullcline intersects with the 

newly formed stable branch which results in a quiescent neuron even when it begins firing. On 

the left phase plane when the calcium-shift =-70 again the neuron again becomes a tonic spiker 
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though it is now firing at a higher frequency. Now on the right, the calcium-shift = 145mV and 

the calcium concentration nullcline now intersects with the unstable branch of the x nullcline 

leading to subthreshold oscillations even when it begins in a firing start point. 

 

Figure 2.6 Si model phase space at x-shift = -1.7. 2 dimensional projections of a single 

Plant model neuron that is 6 dimensions, at x-shift = -1.7. The calcium concentration is taken as 

the x-axis with the x-variable taken as the y-axis. The x-nullcline, seen in black, the calcium 

concentration nullclines, seen in red, and the saddle node on an invariant circle (SNIC) line in 

green show where the rate of change of a particular variable is zero. At x-shift = -1.7 is an 

intermediate case where the x nullcline has an upper stable branch but the model still bursts. A) 

Shows a tonic spiker due to the calcium concentration nullcline intersecting with the x average 

both cases are like when x-shift = -4. B) The phase plane figure with the calcium-shift = 0 it 

intersects with the upper branch and reaches a quiescent stable state. C) However, unlike the x-

shift=- 4 case when the calcium concentration nullcline intersects with the unstable branch of 

the x nullcline the neuron bursts and creates and a bursting periodic orbit. The bursting still 

happens here because the overlapping of the x average and the lower stable branch of the x 

nullcline allows for hysteresis to happen. 

 

An intermediate case where the x nullcline has an upper stable branch but still bursts at x-

shift =-1.7 offers an illustration of hysteresis (Figure 2.6). The middle phase plane figure with the 
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calcium-shift =0 intersects with the upper branch and reaches a quiescent stable state and the left 

figure shows a tonic spiker due to the calcium concentration nullcline intersecting with the x 

average both cases are similar to when x-shift =-4, however unlike when the x-shift =- 4 cases 

when the calcium concentration nullcline intersects with the unstable branch of the x-nullcline 

the neuron bursts and creates a bursting periodic orbit. The bursting still happens here because 

the overlapping of the x-average and the lower stable branch of the x-nullcline allows for 

hysteresis to happen. 

2.1.5 Synapse model 

Once the Si-model was appropriately configured the proper synaptic model was initially 

believed to be the FTM synapses. The FTM synaptic model simplifies the entire workings of a 

synapse into a current that instantaneously opens and closes dependent on the presynaptic 

membrane potential. Though there are benefits to using the FTM synaptic model such as 

simplifying the dynamics of the networks they have no temporal dynamics. Without these 

dynamics, it precludes any slow synapses and if slow synapses are needed for the proper function 

of a circuit, then FTMs will not be appropriate. These slow synapses were found to be in the 

biological Melibe swim CPG and were shown to be necessary for their rhythms. Specifically, the 

FTM synapses would work in a control case but not when the swim CPG was exposed to a 

curare bath. The curare and other experiments will be discussed later. 
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Figure 2.7 Observed biphasic synaptic response from a Melibe sea slug. (A) Diagram 

showing the experimental setup of stimulating the 1R neuron while recording the voltage of the 

3L neuron. With the biphasic response being represented in the diagram as an inhibitory circle 

then an excitatory triangle terminal illustrating the biphasic response starts with an inhibition 

then excitation. (B) A stimulation that causes an AP frequency of 15 Hz, the 1R synapses to the 

3L initially causes a hyperpolarization of 2mV, however, at around 0.25 seconds after the 

hyperpolarization the 3L neuron begins to depolarize by the 1R action potentials marked by the 

asterisk (*). Once 3L reaches its pre-perturbed voltage level (dashed line), it continues to 

depolarize. 

 

However, the synaptic coupling from the Si1 cells to the contralateral Si3 cells in the 

Melibe swimming CPG is not a simple excitatory or inhibitory synapse. As mentioned 

previously, the synapse is dynamic with a biphasic response (Figure 2.7). This means that when 

the right Si1 fires action potentials this initially causes hyperpolarization in postsynaptic left Si3 

then becomes excitatory so it's a mix of inhibition and excitation. To simulate a realistic synaptic 

variable the model synapse must meet specific requirements. The first property is summation 

which can be divided into spatial and temporal summation. The synaptic current and the key 

variable that differentiates it is the S variable. However, because of FTM’s simplicity, it also is 

not dynamic, which prevents it from any summation. 
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To properly model the synaptic behavior of the Melibe swim CPG the FTM synapses 

were replaced with alpha synapses because they were more biologically plausible as well as 

slowly growing and decaying as needed to replace the slow indirect synapse from the Si4 to its 

contralateral Si3. 

Here is the current equation for synapses: 

𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛𝑆(𝑡)(𝑉𝑝𝑜𝑠𝑡(𝑡) − 𝐸𝑟𝑒𝑣),  

 

[5] 

Previous work found the dynamics in the Wang and Rinzel posited alpha synapse by 

making the S equation into a differential equation [51, 92].  

dS

dt
=

α(1 − S)

1 + e−k(Vpre−Vth)
− βS. 

[6] 

Biologically, alpha corresponds to the strength of the binding of the neurotransmitters to 

the post-synaptic receptors. In contrast, beta corresponds to the combination of diffusion, 

enzymatic metabolizing or inactivation, and re-uptake into the presynaptic neuron of the 

neurotransmitters in the synaptic cleft. While the synaptic reversal potentials dictate whether the 

synapses are inhibitory or excitatory. For example, a synapse will be inhibitory when V (t) > 

Erev, or excitatory with V (t) < Erev. Therefore, setting the reversal potential less than the spike 

threshold the synapse will always be inhibitory and can be set to above a spike’s peak to always 

make the synapse excitatory. Though this is a much more biologically realistic representation of 

the synaptic process, it does not offer a delay that would be necessary for a biphasic response 

seen in the CPG.  
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Figure 2.8 Setting up a mathematical synapse to simulate the neuromodulatory activity of 

the 2R neuron synapsed to the 3L neuron. (A) The stimulation frequency of 0.25 Hz is too low to 

accumulate in the synapse function but does begin accumulating at 1 Hz. (B) At α = 0.5 and β = 

0.01, the S average begins to saturate at 9 Hz frequency stimulation and has a low S average at 

2 Hz. This simulates the activity in figure 5B*. 

 

The desired response of the average S to action potential frequency is a nonlinear one 

with an apparent inflection point. At low frequencies which include the beginning of an action 

potential train, the S average should be zero or near zero then increase and saturate in a 

sigmoidal fashion [98]. This ideal response is contrasted with the closest the alpha synapse can 

get to the shown ideal (Figure 2.8). This was done by sweeping different alpha and beta values 

and using a curve-fitting machine learning algorithm to find the optimum alpha and beta values 

that fit a logistic function with the shown maximum slope. 

In search of a appropriate synaptic model to recreate the delay of a biphasic response, one 

further synapse is the dynamic synapse which was used to model facilitated synapses. This was 

done by presenting another variable M to the synaptic current: 

𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛𝑆(𝑡)𝑀(𝑉𝑝𝑜𝑠𝑡(𝑡) − 𝐸𝑟𝑒𝑣),  

 

[7] 

dM

dt
= (

1

1 + e−(V+40)
− M)/𝜏𝑀, 

[8] 
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where 𝜏𝑀= 4000. The inserted variable M did allow the synapse to delay as well as 

potentiate. 

However, because slow synapses operate secondary messenger cascades, they create a 

nonlinear relationship between the pre-synapse and post-synapse that possibly results in a 

nonlinear delay or high pass spike frequency filter. The logistic synapse was then created, named 

for its similarity to the logistic model of population and its sigmoidal shape [81]. This logistic 

synapse offers modelers the ability to have a nonlinear delay that can be used as a high pass 

filter. To produce a synapse with this, delay the solution was relatively simple in that we just 

multiplied the rising term by S which resulted in the very slow initial rise we were looking for.  

𝑆′(𝑡) = 𝛼 𝑆 (1 − 𝑆) 𝑓∞(𝑉𝑝𝑟𝑒) − 𝛽(𝑆 − 𝑆0), [9] 

2.1.6 Control, curare, and TTX cases  

There were three cases that were pivotal in furthering the understanding of the dynamics 

and rhythmic characteristics of the neurons and their synapses of the Melibe swim CPG. These 

cases were the control, curare, and TTX. The control case denotes voltage recordings that were 

taken when the CPG is in a saline solution. In this case, the Si2s and contralateral Si3s are phase 

locked. With a burst duration lasting 2-4 seconds. This is the case that FTM synapses were able 

to recreate. The final rhythmic characteristic of the control case is that there is a delay between 

the Si2s and contralateral Si3s. 

The curare case is when the Melibe swim CPG is bathed in curare. Curare is a neurotoxin 

that can cause paralysis found in some south American plants. The distinguishing feature of 

curare is that it works only on cholinergic neurons, meaning neurons that release acetylcholine 

by working as a competitive acetylcholine antagonist. In the Melibe swim CPG, the Si3 cells are 

the only cholinergic neurons, therefore when the biological CPG is bathed in curare, the Si3 cells 

are not able to send synaptic signals but still able to receive signals. Experiments with curare 
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were done to take advantage of the fact that Si3s were the only cholinergic to further simplify 

and reduce the Melibe swim CPG. Furthermore, the resulting further simplified CPG (Figure 

3.2A) still produces an anti-phase HCO even without the inhibition coming from the Si3s. 

Specifically, the reciprocal inhibitory synapses between the Si3s and the contralateral inhibitory 

synapses to the contralateral Si2s are muted (Error! Reference source not found.A). Now, we 

have a simplified Melibe CPG model, that is still able to produce an antiphase HCO rhythm.  

The curare case is simpler since Si3s are muted then the Si1/2 amalgamated cells are 

solely responsible for the rhythm’s generation in the CPG. The hypothesis therefore was that 

Si3s were simple followers of their contralateral Si1/2 amalgamated cells because of the 

excitation form the Si1/2 amalgamated cells to the contralateral Si3s. However, the HCO rhythm 

during a curare bath does have different characteristics from the control case. For instance, the 

burst duration of the CPG increases in curare from 2-4 seconds to 12-13 seconds. The burst 

duration is controlled by the Si2s, specifically it was found that it was controlled by their slow 

components and mutual inhibitory synaptic strength. In terms of the slow components influence 

on the burst duration because the slow components dictate the recovery period of a neuron going 

from quiescent to active. Additionally, the synaptic strength also affects the recovery period as 

was shown that with the increase of the synaptic strength the burst duration increases. However, 

once the inhibitory synaptic strength reaches a certain degree one cell completely inhibits the 

other. 

Computational experiments showed that increasing the synaptic strength alone between 

the Si2s were unable to recreate a 2-4 second burst duration in the curare case [65]. Therefore, 

the CPG requires the contralateral inhibition from the Si3s (muted in the curare case) to Si2s to 

shorten the burst duration according to the computational models. This was also verified in 
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electrophysiological experiments that hyperpolarized the Si1 cells that resulted in the reduction 

of the burst duration. By hyperpolarizing the Si1s this is equivalent to reducing the synaptic 

strength between the Si1\2 amalgamated cells in the reduced model. Therefore, the 

electrophysiological experiments were in line with the computational models. 

As previously mentioned, the curare case is also where the use of FTM synapses break 

down in their ability to recreate the rhythm. Namely, the slow synapse that replaces the slow 

indirect synapse from the Si4 to its contralateral Si3 cannot be an FTM synapse. FTM synapses 

cannot be slow since they lack any dynamics, in other words they are always fast. In terms of 

rhythmic behavior, the Si4s also burst in phase with the Si2s, therefore the Si2s could be seen as 

indirectly synapse to their ipsilateral Si3s, which also causes a slowing of the synaptic effect. 

The indirect synapse, in-phase bursting, and electrical synapse lead the authors to replace the 

Si4s with a slowly growing and decaying synapse from Si2s to their ipsilateral Si3s. 

The third and final case of this section is the TTX experiment. In this experiment TTX 

was injected into the pedal commissure of the Melibe brain (Figure 2.3). The pedal commissure 

in the Melibe brain houses the axons that are crossing contralaterally to their Si counterparts. As 

previously mentioned, TTX blocks the depolarizing sodium-calcium current. This experiment 

essentially isolates all the Si cells and allowed previous modelers to correct the assumptions of 

their initial models. For instance, the Si cells were found to be “non-latent” bursters, meaning 

they do not burst in isolation or when perturbed by a constant current. Additionally, the 

endogenous state of the neurons was all tonic spiking. This result led to the realization that the 

Melibe swim CPG is an emergent-network-level burster, i.e., the CPG’s bursting rhythm is 

generated by the coordination between the Si cells, not orchestrated by one single endogenously 
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bursting neuron. Finally, it was observed that Si2s had higher action potential firing frequency 

than the Si3 cells from the TTX experiments.  
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3 BLENDED SYSTEM 

To examine those CPGs that are multicellular new analytical tools were necessary to analyze 

the multidimensional problem of CPGs. By leveraging mathematical models many experiments 

on the mathematically modelled CPG can be done in a fraction of the time compared to 

biological experiment. These new tools should allow modelers to offer hypotheses from their 

analysis on the biological CPGs. Furthermore, as mentioned previously, the ability to change 

specific parameters are not currently possible or is prohibitively difficult to be done on biological 

models, mathematical models on the other hand can change parameters with relatively no 

difficulty. This therefore makes mathematical modeling necessary to the understanding of CPGs.  

Modeling CPGs using mathematical techniques has been used to examine the emergent 

rhythms of the Melibe CPG. Specifically, to search for principles that can be generalized to all 

CPGs. The emergent behaviors of CPGs can be modeled using simple mathematical models. 

Furthermore, techniques have also been developed to identify these complex behaviors through 

bi-parametric sweeps. However, sweeping only two parameters is not ideal for systems as 

complex as a CPG. Nonetheless, sweeping more than two parameters comes with inherent 

difficulties namely being able to visualize or interpret the data. Another use of new tools would 

be for parameter optimization though using cost-function based parameter optimization requires 

an appropriate cost function, optimizing algorithm, and initial conditions. Nonetheless, these new 

tools can be used to creating biologically realistic mathematical models that recreate the 

rhythmic characteristics of the biological counterpart.  
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Figure 3.1 Converted electrophysiological recordings from Spike2 version 8 software. 

The recordings are subsequently made into a time-series figure (shown here). One vector is the 

time that each voltage sample was taken. For each time value there is a voltage value of the 

samples of the first left swimming interneuron (Si1L), first right swimming interneuron (Si1R), 

third left swimming interneuron (Si3L), third right swimming interneuron (Si3R), respectively. 

The sampling rate is also shown as 1.05 milliseconds. 

 

3.1 Blended synapse 

Comparing biological voltage recordings from electrophysiological experiments to the 

mathematical models that are attempting to simulate them when done manually can at best be 

time-consuming and worst subjective. To tackle the issue inherent in manual processing we posit 

a different type of system, called a blended system. The goal of this system is to allow for 

objective, high-throughput, and computationally expensive comparisons of biological and 

mathematical models. Using this blended system coupled with a quantitative measure of likeness 

(i.e., error or cost function) gives modelers the ability to examine the parameter space in an 

objective and automated process that is not computationally expensive or time-consuming. The 

inputs of the error function are measurements of the voltage recordings from biological Si cells, 

mathematically simulated voltage time series, along with their transformations. These 

transformations are the action potential (AP) frequency, voltage moving average, voltage 

envelopes, and the probability of open post-synaptic channels. The first step of the blending is 

the previously recorded biological voltage time series are translated into mathematical data via a 

synaptic model that are input into mathematical neurons (Figure 3.1). 
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Therefore, using the curare reduced model that is still able to produce antiphase HCO 

rhythms a blended synapse model is created. Recall that the curare reduced model “mutes” the 

Si3 cells in the Melibe swim CPG since the Si3 cells are the only cholinergic neurons in the CPG 

and curare works as a competitive acetylcholine antagonist (Figure 3.5A). At this point is where 

the methodology posited in this study differs from the past methodologies of computational 

neuronal modeling. The usual mode of operation would be to recreate the proposed 4-cell 

network by recreating four computational neurons and synaptically connecting in the same 

configuration which is what has been done previously with this model [32]. On the other hand, 

the methodology proposed in this study first takes one further step of simplification. This 

simplification is done by finding a way to translate the voltage values of a biological recording to 

a form that can be input into mathematical neurons. Biological voltage recordings are taken from 

the Si cells of Melibe’s swimming CPG shown in (Figure 3.2A). To translate these recordings, 

we input the voltage values, into a synaptic function [6]. This can be done because the voltage 

recordings can be output and saved which in turn can be read by program functions. The synaptic 

function is the previously mentioned alpha synapses that simulate the synaptic output, in terms of 

the probability of post-synaptic channels opening, since it is a probability, it will be a value of 0 

to 1. By input of the voltage recordings into the alpha synapse and integrating the equation, we 

have what we dubbed a blended synapse where the biological recordings are outputting 

computational synaptic probability (Figure 3.2C).  

In other words, in a non-blended synapse (i.e., fully computational synapse) the 

presynaptic voltage (𝑉𝑝𝑟𝑒) [6] in a mathematical neuronal circuit would be from another 

mathematical neuron’s voltage. However, the blended synapse replaces a mathematical neuron’s 

voltage with the sequential voltage values from the biological voltage recording. The integrating 
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happens at each time step, for every sequential voltage value the synaptic equation is solved. 

This process will be given in more detail and discussed later. However, the parameters of the 

computational components for the blended synapse must be adjusted for the dynamics observed 

in experiments.  

The dynamics here refers to the delay of the biphasic response seen between the Si2 and 

contralateral Si3 cell (Figure 2.7). As previously mentioned, the nonlinear relationship between 

the pre-synapse and post-synapse possibly caused by secondary messenger cascades results in a 

nonlinear delay or high pass spike frequency filter. This need for a high pass filter synapse 

brought about the creation of the logistic synapse, named for its similarity to the logistic 

population model’s sigmoidal shape in relation to spike frequency. This logistic function can 

function as an alpha synapse but also has the ability for the synapse to delay the voltage. 

 

Figure 3.2 Blended synapse in curare bath: transforming the biological voltage 

recordings taken in curare bath to mathematical synaptic probability. (A) Previously recorded 

biological voltage recordings of 1L, 1R (which represent the voltages 1/2L and 3L), 3L, and 3R 
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in a curare bath. (B) Action potential frequency of the voltage recordings seen in (A). (C) The 

synaptic probability of 1/2R and 3R transformed from the biological voltage recordings in (A). 

 

Now using the logistic synapses along with the synaptic blending, a CPG that is a mix of 

biological recordings and the Si-model mathematical neurons. When a network of biological 

recordings and mathematical neurons are connected to each other synaptically, said network we 

call a blended system. A diagram of the blended system when configured like that of the 

simplified Melibe CPG (Figure 3.3A). The configuration of the blended system is composed of 

two recordings of biological neurons (blue and shaded red circles) and two mathematical neurons 

(red circles). The biological neurons are illustrated as strongly mutually inhibited because they 

represent a neuron that is an amalgamation of Si1, 2, &4 nonendogenous bursting neurons that 

generate an HCO rhythm and are mutually inhibiting each other in each individual pair. The blue 

synapses that synapse to the mathematical neurons denote the blended synapse while the blue 

portions represent the biological recordings. These synapses represent the blended synapses that 

are translating the biological recordings into a synaptic input to mathematical neurons. As a 

reminder, the Si-model neurons are set as nonendogenous bursters or latent bursters. The 

mathematical synapses (blue synapses on math neurons) “project” from the two recordings of 

biological neurons (blue circles) onto the mathematical neurons, with triangle and circle synaptic 

terminals representing excitatory and inhibitory blended synapses, respectively. 
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Figure 3.3 The 4-cell blended system with 2 bio and 2 math interneurons in normal swim. 

(A) The 4-cell swim CPG in a normal case and blended network where the biological bursters 

1/2R and 1/2L project counter-laterally an excitatory dive and bi-laterally an exhibition resp., 

onto the interneurons 3L/R and the mathematical models ML/MR. (B) In vitro, strong inhibitory 

reciprocation between 1/2L and 1/2R electrically bonded into an HCO generating slow 12-14s 

bursting in the absence of feedback inhibition from 3L/R. An excitatory drive from the   

alternating bursters 1/2L and 1/2R makes the counter-lateral quiescent interneurons of both 

types follow, while the bilateral inhibition cuts them off into even spike trains. Superimposed 

underneath the biological traces are the corresponding synaptic probabilities emulated through 

[6]to model excitatory and inhibitory currents (via [5]) injected in the (red) mathematical 

neurons in the blended circuitry, whose traces (red) are  overlaid with the biological originals 

(in grey). 

 

The biological recording is also shown (Figure 3.3), seen in blue along with the translated 

synaptic probability in the same time series. The two-time series shown in grey are mathematical 

neurons after they were hand-tuned to create a mathematical voltage trace that passes the “eye 

test.” The integration for the simulation of mathematical portions occurs in parallel to the 

biological recording (Figure 3.4). In other words, at each integration step, mathematical portions 

are updated with the biological voltage value of the corresponding time. When using this 

method, it is imperative to adjust the integration step as it should be equal to the sampling rate of 

the biological recordings, so they operate at the same “speed.”  
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Figure 3.4 A flowchart of how a blended synapse and mathematical neurons are 

integrated simultaneously to create a blended system. (a) Shows the added step of shifting a 

predetermined biological voltage recording that is not part of a standard ODE solver. (b) The 

standard integration of a numerical integration algorithm. 

 

Furthermore, the integration of the blended synapse must be done concurrently with the 

mathematical neurons to input the blended synapse current into the mathematical neurons. This 

simultaneous integration poses a problem for the standard functions that solve ordinary 

differential equations (ODEs) and are found in programming libraries. Those ODE solvers that 

are found in libraries cannot integrate a system while having a given variable that changes at 

every interaction outside the standard integration algorithm, in the case of this study the given 

variable is the biological recording, shown in Figure 3.4. An ODE solver integrates at each time 

step, beginning with an initial value. After the initial value, each subsequent time-integration step 

relies solely on the results of the previous time-integration step. However, the combined 

synapses integrate according to the results of biological recordings. This approach is comparable 

to setting an initial value at each time step. 
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To address this problem, an ODE solver was developed employing the iterative Euler 

method of integration approximation iterative method. At each cycle of integration, this ODE 

solver makes an approximation. Once one integration step is solved, the blended synapse 

integrates the mathematical neuron while simultaneously solving the blended synapse at the 

same integration step which follows the voltage time series from biological measurements in 

each consecutive iteration. When the blended system produces its voltage time series for the 

mathematical neurons, we can compare it to the voltage time series of the Si3L and Si3R cells, 

which are the biological neurons that the blended system is intended to imitate. The flowchart 

diagram in Figure 3.4 describes this procedure and illustrates the differences between the two 

ODE solvers. 

 

Figure 3.5 Superimposing mathematical traces onto the goal biological voltage 

recordings. (A) The 4-cell swim CPG in a curare bath and blended network where the biological 

bursters 1/2R and 1/2L project counter-laterally an excitatory dive and bi-laterally an exhibition 

resp., onto the interneurons 3L/R and the mathematical models ML/MR. (B) In vitro, strong 

inhibitory reciprocation between 1/2L and 1/2R electrically bonded into an HCO generating 

slow 12-14s bursting in the absence of feedback inhibition from 3L/R. An excitatory drive from 

the   alternating bursters 1/2L and 1/2R makes the counter-lateral quiescent interneurons of both 

types follow, while the bilateral inhibition cuts them off into even spike trains. Superimposed 

underneath the biological traces are the corresponding synaptic probabilities emulated through 
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[6]to model excitatory and inhibitory currents (via [5]) injected in the (red) mathematical 

neurons in the blended circuitry, whose traces (red) are  overlaid with the biological originals 

(in grey) . 

 

Next, we move onto the blended system in the condition of curare bathe. To reiterate, the 

Si3 cells (red) in the Melibe swim CPG are the cholinergic neurons and therefore muted in 

curare. These Si3 cells are the neurons that the mathematical neurons are trying to simulate. A 

voltage time series of the biological Si3 recordings is superimposed on the mathematical 

neurons’ voltage time series trying to emulate the Si3 cells Figure 3.5. From the temporal 

resolution shown in Figure 3.5 the two-time series appear to be good fits, the bursts begin and 

end at the same time, much like the normal swim condition it passes the “eye test.” However, at 

a higher temporal resolution, you can tell that the action potentials do not align. This brings us to 

an important point and question. What dictates the similarity between these time series? What 

characteristics should we consider? The spike frequency of the action potentials? Their spike 

amplitudes or width? The synaptic probability? And what other characteristics and 

measurements should be considered?  
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4 ERROR FUNCTIONS 

Initially, the S variable was used to compare the biological recording and the 

mathematical neuron that is trying to emulate it. To achieve this an objective function that can 

differentiate between the biological recording and the computational neuron was required, i.e., an 

error function. The error initially used is the Euclidian distance of the difference between the S 

variable of the computational neuron and the biological recording it is trying to emulate. An 

initial high throughput process for parameter optimization was also used.  

 

Figure 4.1 Figure showing the error space of the error according to the S variable 

distance, the calcium-shift, and the x-shift. The S variable distance is the Euclidian distance of 

the difference between the S variable of the mathematical neuron and the biological recording it 

is trying to emulate. An iterative optimization method called coordinate descent was used to 

optimize a mathematical neuron to emulate the biological recordings of a neuron in the Melibe 

CPG, namely a right SI3 neuron. This is done while blending the biological recordings to the 
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mathematical neuron. The descent is straightforward, a change of one parameter at an iteration 

and find the minimum value of the error while keeping the other parameters constant once the 

minimum error value of the changing parameter is found the same is done to the next parameter 

and find its minimum value and cycle through all the parameters until it converges to the 

minimum of the parameters. In this case the number of parameters is two, the calcium-shift and 

the x-shift. Therefore, once it finds the minimum it has found the parameter values that produce 

the least error. The limitations of this method of optimization are discussed in the text. 

 

An iterative optimization method called coordinate descent was used to optimize a 

computational neuron to emulate the biological recordings of a neuron in the Melibe CPG, 

namely a right Si3 neuron (Figure 4.1). This is done while blending the biological recordings to 

the computational neuron that is attempting to be optimized using blended synapses seen in 

Figure 3.2. The descent is straightforward, you change one of the parameters at an iteration and 

find the minimum value of the error while keeping the other parameters constant, once you find 

the minimum error value of the changing parameter you switch to the next parameter and find its 

minimum value and cycle through all the parameters until it converges to the minimum of the 

parameters. In this case, the number of parameters was limited to two, the calcium-shift and the 

x-shift. Therefore, once the algorithm finds the minimum it has found the parameter values that 

produce the least error. However, this coordinate descent has some limitations one of which is 

that the objective function must be smooth, or it runs into the possibility of getting stuck in 

nonstationary points. And like other optimization methods, it runs the risk of settling in a local 

minimum rather than a global minimum if the error function is not convex. For instance, if the 

initial values for x-shift and calcium-shift are set to being outside this potential well there is no 

guarantee that it will find its way to the global minimum. 

4.1 Transformations 

So, the question is not only how we define similarity, but also how to ensure that there is 

a potential well that guarantees to settle at the global minimum. This characteristic is known as 
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convexity. In other words, what measurements should be used to differentiate one voltage time 

series from another that will also be convex? First, the options are limited since only voltage 

recordings are available, therefore, all the information must be either transformed or the original 

voltage time series.  

 

Figure 4.2 Transformations on voltage time series. At the top, the original recording of 

the voltage time series. Directly under the original recording is the first transformation, the 

action potential frequency count that counts the number of action potentials within a certain time 

frame. Next time series down is the moving average of the voltage. The result of the moving 

average smoothens the original voltage time series resulting in the loss of action potentials. Next 

is the synaptic probability that is a blended synapse S variable when transforming biological 

recordings and the S variable of the mathematical neuron. Synaptic probability like the voltage 

moving average smoothens the voltage time series though not to a similar degree. The final 

transformation is the Envelope function that outlines the signal and gives an upper and lower 

outline, spline interpolation over local maxima or minima. The envelope function is discussed in 

more detail in the text. 
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The original recording of the voltage-time series is shown in the first panel of Figure 4.2. 

The first transformation (Figure 4.2 second panel), is the action potential frequency count, which 

counts the number of action potentials within a certain time frame. Next is the moving average of 

the voltage (Figure 4.2 third panel), for those unfamiliar with moving averages, it is calculated 

by taking the average of a time frame and then taking the average of the next time frame which is 

a time frame shifted single step: 

𝑉̂ =
1

𝑘
∑ 𝑉𝑖

𝑁

𝑖=𝑁−𝑘+1

, 
[10] 

As is evident, the result of the moving average smooths the original voltage time series 

(Figure 4.2 third panel). The most striking result of the transformation is the loss of action 

potential. Next is the synaptic probability that has previously been mentioned (Figure 4.2 fourth 

panel), this is basically a blended synapse S variable when transforming biological recordings 

and the S variable of the mathematical neuron. Synaptic probability like the voltage moving 

average smooths the voltage time series though not to a similar degree. The last transformation is 

the envelope function (Figure 4.2 fifth panel), the main function of this transformation is to 

outline the signal and it gives you an upper and lower outline, using spline interpolation over 

local maxima or minima. A spline is a piecewise polynomial, which is a polynomial that has 

different definitions at different intervals. Interpolation, for the uninitiated, is a type of estimation 

that finds new data points based on a set of known points in our case these known points are the 

local maxima or minima. For example, when there are action potentials firing, the envelope 

function will connect the top of one action potential to another. Resulting in the outline shown 

(Figure 4.2 fifth panel). 



47 

 

Figure 4.3 Transformations on voltage time series with no action potentials. Shows the 

limitations and information missed by the transformations. At the top, the original recording of 

the voltage time series that does not have action potentials. Directly under the original recording 

is the first transformation, the action potential frequency count that counts the number of action 

potentials within a certain time frame and does not differentiate between subthreshold 

oscillations. Next time series down is the moving average of the voltage. For this time series the 

moving average voltage has no action potentials to smoothen. Next is the synaptic probability 

that is a blended synapse S variable when transforming biological recordings and the S variable 

of the mathematical neuron. Synaptic probability like action potential frequency does not 

differentiate between subthreshold oscillations. The Envelope function that outlines the signal 

and gives an upper and lower outline, spline interpolation over local maxima or minima appears 

to be able differentiate between the two relatively easily. The envelope function is discussed in 

more detail in the text. 

 

However, these transformations have inherent limitations. Specifically, there is a loss or 

missing of information because of the transformation. To first illustrate these limitations, we 

observe their effect on a different voltage time series. This times series only has subthreshold 

oscillations, in other words, there are no firing action potentials (Figure 4.3 first panel). Each 
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evidently show a loss of information, especially the action potential frequency and synaptic 

probability transformations (Figure 4.3 second and fourth panel). The voltage moving average 

transformation though not as obvious also missed information and will be discussed in more 

detail later (Figure 4.3 third panel). Similarly, the envelope transformation appears to be able to a 

good candidate for an error function, but this claim does not stand up to scrutiny as will also be 

shown (Figure 4.3 fifth panel). 

Let us begin with how to investigate the transformations and compare the transformations 

of the biological voltage recordings with its corresponding mathematical neuron time series. To 

change the mathematical neuron two parameters were swept, the conductance of the contralateral 

excitatory and ipsilateral inhibitory blended synapses seen in the simplified diagram Figure 3.5A.  

Each of these coordinates represent the conductance of the synapses on the x and y axes with 

their respective value in terms of the error function used on the z axis. In other words, for each 

point a simulation is run where the biological recordings of the Si1 cells are inputted into the 

mathematical neurons via blended synapses at their respective conductance and have a certain 

error value for the difference between the Si3 neurons and the mathematical neurons that are 

trying to emulate them. For all the figures in (Figure 4.4Figure 4.8) with each point of the figures 

using the same biological recording, in other words all the mathematical recording are being 

compared to one biological recording. The first error function (Figure 4.4) used to measure the 

difference between the two times series was the action potential frequency count. With this 

function the absolute value of the action potential count within a certain time frame of the 

biological recording is subtracted by the action potential frequency count of the corresponding 

mathematical neuron. Next the moving average voltage and calculated the L2 norm difference 

between the biological and mathematical voltage average was used (Figure 4.6). The L2 norm or 
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Euclidean norm is the square root of the sum of squares of the coordinates of a vector. In this 

case, the moving average voltage difference between biological and mathematical is the vector. 

The third function (Figure 4.7) also used the moving average voltage difference; however, it 

measures the variance of the difference’s absolute value. The fourth function (Figure 4.5) like the 

second takes the L2 norm difference between the biological and mathematical but uses their 

synaptic probability. The fifth and final function (Figure 4.8) uses the envelope function and 

takes the L2 norm difference of the lower envelope and adds the L2 norm difference of the upper 

envelope then apply the sigmoid function to them. A sigmoid function is a function that has a 

characteristic S shape curve. Note that the figures don’t seem to be similar, so they are each 

capturing different rhythmic characteristics that are not equivalent. Therefore, different 

information is being measured in each case. 
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4.2 Individual Error Functions 

 

Figure 4.4 Error space of action potential frequency and the limitations of its respective 

transformation. A) The error with the excitatory and inhibitory conductance parameter space. 

The minimum error time series’ (MET) value in the excitatory and inhibitory conductance 

parameter space is shown by the white asterisk (𝑔𝑖 = 0.0171, 𝑔𝑒= 0.0711). B) The mathematical 

neuron’s MET (in grey) is juxtaposed over the corresponding biological recording (in red) it is 

meant to simulate and shows a similarity. C) The time series where the action potential 

frequency works as a transformation. D) However, when the action potentials are removed from 

the voltage times series the limitation of the action potential frequency error function is revealed. 

The transformation cannot differentiate between various “inactive” phases. 

 

Nonetheless, the different information being measured by each of the transformations 

show benefits as well as limits. Beginning with the action potential frequency (Figure 4.4), with 

the minimum error shown by the white asterisk in the excitatory and inhibitory conductance 

parameter space. In other words, it is the trace with the least error and therefore the most similar 

according to the action potential frequency error function. The mathematical neuron’s voltage 

times series (in grey) is shown juxtaposed over the corresponding biological recording (in red) 
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that it is meant to simulate and shows a similarity. The time series that the action potential 

frequency works is shown in (Figure 4.4C), for each time interval in the voltage time series with 

action potentials they are counted. However, suppose the action potentials are removed from the 

voltage times series as seen previously (Figure 4.3 first panel) and shown in (Figure 4.4D). The 

removal of action potentials reveals the limitation of the action potential frequency error 

function. Any change in the voltage under threshold is completely missed (Figure 4.4D), which 

is expected since this error function counts action potentials and action potentials don’t fire under 

threshold. Resulting in an action potential frequency transformation that is flat even when there 

is a subthreshold burst of activity in the voltage time series. Meaning the transformation cannot 

differentiate between any inactive phases. 

 

Figure 4.5 Error space of synaptic probability distance and the limitations of its 

respective transformation. A) The error with the excitatory and inhibitory conductance 

parameter space. The minimum error time series’ (MET) value in the excitatory and inhibitory 
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conductance parameter space is shown by the white asterisk (𝑔𝑖= 0.0013, 𝑔𝑒= 0). B) The 

mathematical neuron’s MET (in grey) is juxtaposed over the corresponding biological recording 

(in red) though the action potential firing frequency was much lower than the biological 

recording. C) The time series where the synaptic probability works as a transformation. D) 

However, when the action potentials are removed from the voltage times series the limitation of 

the synaptic probability distance error function is revealed. The transformation does not 

differentiate between various “inactive” phases much like the action potential frequency. 

 

The next function is the synaptic probability. Again, the minimum error shown by the 

white asterisk in the excitatory and inhibitory conductance parameter space (Figure 4.5). The 

mathematical neuron’s voltage times series juxtaposed over the corresponding biological 

recording is also shown (Figure 4.5B) (red and note that the biological recording is the same as 

in all these simulations). However, unlike the action potential error function the minimum error 

simulation doesn’t fit very well. This is likely due to the alpha being too high while the beta is 

too low, which makes the probability rise quickly and decay slowly. The synaptic probability 

error function can be seen to work because when every action potential in the voltage time series 

fires the synaptic probability rises and decays between those action potentials. Again, after 

removing the action potentials from the voltage times series (Figure 4.5D). Just like the action 

potential frequency function, the removal of action potentials reveals the limitation of the 

synaptic probability distance error function. Again, like the action potential frequency, any 

change in the voltage under threshold is completely missed. Resulting in a synaptic probability 

transformation that is flat even when there is a subthreshold burst of activity in the voltage time 

series. Meaning the transformation cannot differentiate between various “inactive” phases like 

the action potential frequency. 
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Figure 4.6 Error space of voltage moving average distance and the limitations of its 

respective transformation. A) The error with the excitatory and inhibitory conductance 

parameter space. The minimum error time series’ (MET) value in the excitatory and inhibitory 

conductance parameter space is shown by the white asterisk (𝑔𝑖 = 0026, 𝑔𝑒 = 0.0237). B) The 

mathematical neuron’s MET (in grey) is juxtaposed over the corresponding biological recording 

(in red) and shows action potentials firing during the quiescent phase. C) The time series where 

the voltage moving average works as a transformation. D) The transformation seen in C is 

essentially the same as the time series in D. Meaning the transformation cannot differentiate 

between a subthreshold rise of action potential and that of a burst of action potential firings. 

 

The third error function is the voltage moving average distance. The minimum error 

shown by the white asterisk in the excitatory and inhibitory conductance parameter space (Figure 

4.6A). The mathematical neuron’s voltage times series juxtaposed over the corresponding 

biological recording is also shown (Figure 4.6B). However, unlike the two previous error 

functions the minimum error simulation doesn’t stop firing action potentials. The reason for this 

can be seen in on how the transformations view the two voltage traces (Figure 4.6C&D). How 
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the voltage moving average distance works is apparent when seeing the transformation trace, as 

the voltage raises for an extended time the moving average will raise in a lagging manner (Figure 

4.6C). Furthermore, after removing the action potentials from the voltage times series as seen in 

Figure 4.6D. Unlike the two previous error functions, the removal of action potentials doesn’t 

change the moving average transformations. Though change in the voltage under threshold is 

preserved to a degree, however, the transformations of the two voltage times series are 

essentially the same. Meaning the transformation cannot differentiate between a subthreshold 

rise of action potential and that of a burst of action potential firings. In other words, it doesn’t 

pick up individual action potentials, which is a serious limitation. 

 

Figure 4.7 Error space of voltage moving average difference variance and the limitations 

of its respective transformation. A) The error with the excitatory and inhibitory conductance 

parameter space. The minimum error time series’ (MET) value in the excitatory and inhibitory 

conductance parameter space is shown by the white asterisk (𝑔𝑖= 0.0145, 𝑔𝑒= 0.0237). B) The 

mathematical neuron’s MET (in grey) is juxtaposed over the corresponding biological recording 

(in red). C) The time series also uses the voltage moving average transformation therefore it 
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should have the same limitations. D) The transformation seen in C is essentially the same as the 

time series in D. Meaning the transformation cannot differentiate between a subthreshold rise of 

action potential and that of a burst of action potential firings. 

 

The fourth function also uses the voltage moving average transformation, however 

instead of taking the distance it takes the variance of the difference. This measures the phase 

difference between two voltage time series without regard to absolute voltage value. So, if they 

are perfectly juxtoposable regardless of voltage then the error will be zero. As before, the 

minimum error shown by the white asterisk in the same parameter space (Figure 4.7A). On the 

other hand, the mathematical neuron’s voltage times series juxtaposed over the corresponding 

biological recording (Figure 4.6B). However, unlike the previous error function that measures 

the voltage moving average distance the minimum error simulation stops firing action potentials.  

Nevertheless, this error function shares the same blind spot that is present in the voltage moving 

average distance. In other words, it doesn’t pick up individual action potentials as is evident from 

the similarity of the two transformation time series.  
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Figure 4.8 Error space of envelope distance and the limitations of its respective 

transformation. A) The error with the excitatory and inhibitory conductance parameter space. 

The minimum error time series’ (MET) value in the excitatory and inhibitory conductance 

parameter space is shown by the white asterisk (𝑔𝑖= 0.0197, 𝑔𝑒= 0.0553). B) The mathematical 

neuron’s MET (in grey) is juxtaposed over the corresponding biological recording (in red). C) 

The time series shows the envelope transformation though the limitation is not immediately 

apparent. D) The limitation can be found while looking at the action potential frequency 

transformation of the third burst. The beginning of the burst has a higher frequency which then 

reaches a lower frequency; therefore, it is unable to perceive action potential frequency 

adaptations or action potential frequencies in general. 

 

The final single error function is the envelope distance. Again, the white asterisk 

represents the minimum error in the parameter space Figure 4.8. And the juxtaposed 

mathematical and biological time series under of the minimum error time series. Here it can be 

seen what the transformations look like with the blue being the maximum outline and the red 

being the minimum outlines. Unlike all previous error functions, the limitation of the envelope 
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distance error function is not apparent when contrasted with voltage time series that have their 

action potentials removed, since the upper envelope would have less distance between it and the 

lower envelope during the active phases (Figure 4.6C). Furthermore, the inactive phases are 

represented well and are not missed. The limitation of this error function is not obvious. 

However, the limitation becomes apparent when compared with the action potential frequency 

transformation, specifically during the third burst of action potentials. The beginning of the burst 

has a higher frequency which then reaches a lower frequency (Figure 4.6D). Therefore, this error 

function though it captures the timing for the commencement and termination of the burst, it is 

unable to perceive action potential frequency adaptation. Which is an essential rhythmic 

characteristic of oscillations in the Melibe CPG and oscillators in general. So, this last single 

error function also has a critical limitation. 
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4.3 Combined Error Functions (CEF) 

 

Figure 4.9 The combined error function can adjust to the cellular properties of the 

mathematical neuron. (a) Error space of excitatory and inhibitory synaptic conductance. z-axis 

is the rescaled value error of the error function, the x-axis is the conductance of the inhibitory 

synapses, and the y-axis is the conductance of the excitatory synapse. All best-fit time series 

(whether tonic spiking, borderline or quiescent) find qualitatively similar voltage time series. 

The minimum error shifts lower along the inhibitory conductance as the mathematical neuron 

shifts from a tonic spiking at 𝑔𝑖= 0.01579, 𝑔𝑒= 0.0316; borderline at 𝑔𝑖= 0.0118, 𝑔𝑒= 0.0316; 

to quiescent at 𝑔𝑖= 0.0066, 𝑔𝑒= 0.0395 neuron. Much like the curare the minimum error shifts 

lower along the inhibitory conductance as the mathematical neuron shifts from a tonic spiking at 

𝑔𝑖= 0.0711, 𝑔𝑒= 0.0711; borderline at 𝑔𝑖= 0.0789, 𝑔𝑒= 0.0789; to quiescent at 𝑔𝑖= 0.0237, 

𝑔𝑒= 0.0474 neuron. Furthermore, as should be expected, the minimum error shifts higher along 

the excitatory conductance. 

 

To compensate for each of the single error functions a combined error function (CEF) 

was made. To combine the functions a simple weighted sum with each singular error function 
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having a coefficient and added to the others was made. Again, the location of the minimum error 

in the parameter space and below it the minimum error time series juxtaposed over the biological 

recording Figure 4.9.  

Though an objective regularization is not possible in this case through the error function. 

To reduce over-fitting and test the flexibility and validity of the combined error function (CEF) 

we explored the error space of three different endogenous states of the mathematical neuron and 

their METs; that is we found the MET for a tonic spiking, borderline, and quiescent neuron 

according to the CEF. We found that the CEF can find a different 𝑔𝑖 and 𝑔𝑒 coordinate with a 

minimum error for each of the three endogenous states (Figure 4.9). We blended the same 

biological recordings first with tonic spiking mathematical neurons, then borderline neurons, 

followed by quiescent neurons. The MET for the blended system to tonic spiking mathematical 

neurons was at 𝑔𝑖= 0.01579, 𝑔𝑒= 0.0316, while the blending with borderline neurons had a MET 

at 𝑔𝑖= 0.0118, 𝑔𝑒= 0.0316. Finally, the quiescent neurons when blended with the biological 

recordings at 𝑔𝑖= 0.0066, 𝑔𝑒= 0.0395 neurons. Each of these different 𝑔𝑖 and 𝑔𝑒 coordinates had 

similar METs, so much so that there was no discernible difference (Figure 4.9, other METs not 

shown). On the other hand, there was a difference in the error space between each blending with 

the different mathematical neurons found. Specifically, the minimum error shifts lower along the 

inhibitory conductance as the mathematical neuron shifts to less intrinsically active (i.e., from a 

tonic spiking to borderline to quiescent neuron). This is expected since the more quiescent a 

neuron is intrinsic, the less need for an inhibition to suppress spiking during the goal inactive 

phases. 

Now as a form of validation for the CEF, it was applied to another recording but this time 

without curare. And as can be seen the parameter space is not as smooth and the minimum error 
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time series is around a quarter out of phase with the recording (Figure 4.9). The blended system 

with normal swimming biological recordings were recordings where the CPG was not bathed in 

curare. In the absence of curare, the configuration of the biological CPG would be that of (Figure 

4.9 right); the main difference from (Figure 4.9 left) being the mutual inhibitory synapse between 

the Si3 cells are present. In the case of the blended system, this means that the mathematical 

neurons would have two mathematical synapses added to recreate the mutual inhibition. This 

was done by adding mathematical synapses with the conductance kept conductance to not add 

another parameter dimension to sweep along. However, this minimum was found by sweeping 

only two parameters and neither change the dynamics of the synapses. 

When the normal biological recording was used in the blended system the CEF was able 

to find the best-fit minimum time series for the normal swimming recording (Figure 4.9 right). 

Much like the blended system with the curare voltage time series and configuration the best fit 

minimum time series lower along the inhibitory conductance and higher along the excitatory 

conductance as the mathematical neurons change from being endogenous tonic spiking to 

borderline to quiescent. However, the inhibitory and excitatory conductance for the normal 

blended system is not the same as the conductance for the curare blended system and is discussed 

in the next section as seen when comparing the conductance values in (Figure 4.9). 

4.4 Validating CEF 

As a further form of validation, the CEF was compared to other forms of fitting. The first 

fitting method chosen was a fitting that was done on the pyloric central pattern generator in the 

stomatogastric ganglia of lobsters [77]. Also created was a simplified model of the pyloric CPG 

made of three neurons with an amalgamated pacemaker neuron that is an endogenous burster 

consisting of the anterior burster (AB) neuron electrically coupled to two pyloric dilator (PD) 
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neurons, and two types of follower neurons: a single lateral pyloric (LP) neuron and an 

amalgamated pyloric (PY) neuron made up of five to eight neurons. Using this model, they 

created a computational model network of the CPG and searched for combinations of synaptic 

strengths and intrinsic properties that produced patterns within the range of the observed 

rhythmic characteristics in the biological recordings. Some of these rhythmic characteristics were 

burst periods, the delay between the burst onsets, the gap between the termination and the burst 

onsets, and the duration of the burst active phase. So, they recorded from 99 lobsters, calculated 

the mean and standard deviation, and defined a good fit as those within two standard deviations 

of the mean. 

4.4.1 High variance in curare voltage recordings 

 

Figure 4.10 High variation of rhythmic characteristics seen in Melibe CPG recordings 

while in curare bath. 

 

However, as can be seen in a recording of Melibe’s swim CPG in curare Figure 4.10 

there is too much variance and makes using two standard deviations of the mean as a good-fit-

definition inclusive of most rhythmic characteristic measurements difficult. Another thing of 

note that might be asked is why not start with this method as my error function. The limitation of 

this method is looking at means and variance requires prior familiarity with the biological 

recordings’ rhythmic characteristics, while the CEF can differentiate without prior knowledge of 

the rhythmic characteristics (in this case this means the bursts). However, calculating mean and 
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variance is an excellent way to define a good fit though and can be used to validate my error 

function. However, using means and standard deviations of the Melibe swim CPG rhythmic 

characteristics in curare are possible, but a different method must be used than that was to 

analyze the rhythmic characteristics of the pyloric CPG. 

 

Figure 4.11 Bi-parametric sweep of the inhibitory and excitatory conductance at a 250 

by 250 resolution measuring the average spike frequency distance per burst period of the 

mathematical neuron. This results in 62500 mathematical time series and each average spike 

frequency distance was measured against the same biological recording. A) The histogram of the 

distance per burst for the mathematical times series with outliers removed (𝜇 = 6.8564). This 

sweep doesn’t differentiate between good or bad fits therefore it is a distribution of the average 

spike frequency distance per burst period in inhibitory and excitatory conductance space. B) Bar 

graph showing the mean and the standard error of the mean. Also shows the CEF defined best fit 

(red dot). The CEF’s average spike frequency distance per burst value equals 1.9 and the z-score 

of the error function’s best fit of -119. 
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To overcome the high variance seen in Melibe swim CPGs and some of the limitations of 

rhythmic characteristics mean and variance calculations the spike frequency was used. To 

illustrate, as seen in Figure 4.12 the biological voltage recording of the right Si3 neuron in red 

with the mathematical neuron that is meant to simulate the recording in black below it. Under 

these two traces (Figure 4.12 bottom) is their spike frequency transformation in their respective 

colors. The Euclidean distance of the spike frequency difference between the two is taken. First, 

the difference between the mathematical frequency and the biological for an ordinal bin was 

taken. For example, in the fourth ordinal bin seen in the bottom of Figure 4.12 takes the 

difference of the spike count, then squares it, then sum all the bins and take the square root of the 

sum. So far this is just the action potential frequency transformation.  

||D|| = √∑(f(𝑛)
𝑚𝑎𝑡ℎ − f(𝑛)

𝑏𝑖𝑜)
2

N

i=1

, 

[11] 

But to calculate an average that is generalizable to any time series the total distance of 

the entire trace by the number of periods must be divided, giving the average spike 

frequency distance per burst, 

 

𝐷̅ =
||𝐷||

𝑃
. 

[12] 
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Figure 4.12 Measuring the performance of the mathematical neuron using spike 

frequency.  

 

To address the high variance of the recordings in curare the average spike frequency 

distance from the mathematical neuron were taken and tested against the whole parameter 

space’s performance. This was done by doing another bi-parametric sweep of the inhibitory and 

excitatory conductance at a 250 by 250 resolution. This results in 62500 mathematical time 

series and the average spike frequency distance to the biological recording for each mathematical 

times series was measured. A histogram of the distance per burst for the mathematical times 

series with outliers removed is shown in Figure 4.12, with the mean being 6.8564. This sweep 

gives the average of all times series including the bad fits. So, it gives a distribution of the mean 

distance per burst of a parameter couple. This means that the less the error value is compared to 

the mean the better the mathematical times series, so we want a good fit to much less than the 

mean.  
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Figure 4.13 Violin plot showing the distribution of the 𝐷̅ across the 250 by 250 𝑔𝑖&𝑔𝑒 

sweep (left). A box plot showing the distribution of with outliers removed (right). 

 

The violin and box plot showing the mean (Figure 4.13). With its average spike 

frequency distance value being 1.9 and the more pronounced Z-score of the CEF best fit of -119. 

This is a significant z-score which shows how much better the CEF best fit is compared to the 

rest of the parameter space. This takes care of the variance between the bursts because it tests 

against the performance of the mathematical neuron rather than the bursts of the biological 

recording. This is an important step in the analysis because it’s only been shown that the CEF 

passes the eye test but with this Z- score, the first objective validation for the CEF. 

But all of these are still compared to only a few voltage recordings. Therefore, to produce 

a solution for computational neuroscientists in the future that do not have the access to a treasure 

trove of recordings. Voltage was intentionally left out from the term recordings because the 

technique posited in the next section could work for any time series, like calcium imaging 

recordings. 
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4.5 Data Augmentation 

To solve the lack of data inspiration was taken from a data analysis technique called data 

augmentation. There are two ways in data analysis to augment data, one is creating synthetic data 

which is not being used so details of which will be forgone, and the other is by adding slightly 

modified copies of the data. For data analysis, data augmentation is used to reduce overfitting by 

acting as a regularizer, which means that it makes its answer simpler and therefore more 

generalizable. There are several ways used to augment data when training machine learning 

models. For example, to create more images from an image, they can horizontally be flipped and 

still be recognized as the image, yet it is still a different picture. The image can be cropped and 

still be recognizable, or rotate, blur, brighten, or darken. Therefore, from a single image, there 

are now seven. However, which one of these can be used to usefully augment the data depends 

on the data. Let’s take the voltage time series as an example, horizontal flipping wouldn’t be 

appropriate since that would mean looking at the recording in backward time. Rotating, 

brightening, and darkening are not characteristics that have parallels in the voltage times series. 

Rescaling could be done by decreasing the sampling rate however any downscaling could 

possibly miss action potentials. That leaves cropping and though vertical cropping doesn’t make 

sense in voltage time series, but horizontal cropping does. 
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Figure 4.14 Examples of cropped shorter windows from a larger time series. Each one 

taken as a separate time series for a blended system. Shown here is an 80-second-long time 

series with 40 second windows that slide by ten seconds for every window. The first window 

would be from the zero to forty seconds, sliding to another from ten to fifty, another from twenty 

to sixty, and so on until you have the last 40 second window from forty to eighty seconds. 

 

The time series is cropped at different parts to create several shorter time series (Figure 

4.14). For example, a 40-second window is taken from an 80-second-long time series and slides 

by ten seconds for every window. The first window would be from zero to forty seconds, sliding 

to another from ten to fifty, another from twenty to sixty, and so on until the last 40-second 

window from forty to eighty seconds. This was done in practice with longer widows but shorter 

sliding jumps from one window to the next. In other words, 78-second intervals were taken that 

slide 0.01 seconds. This would result in a single time series augmented to 200 windows. Once 

these 200 windows were produced, they would be used for the blended system and measure the 

average distance per burst and their error value according to the CEF. 
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Figure 4.15 Scatter plot of the CEF value against the corresponding z-scores of each of 

the cropped windows. A significant moderate correlation of r = 0.6733 p < 0.01. Indicating the 

best fit according to my CEF is measuring similar rhythmic characteristics to that of the average 

distance per burst measurement. Furthermore, comparing the best fits to many voltage 

recordings that were produced by data augmentation is another piece of evidence that they are 

measuring similar characteristics. 

 

With the 200 best-fit error values according to the CEF and their distance per burst Z-

score were plotted against each other (Figure 4.15). A significant moderate correlation of r 

equals 0.6733 was measured. This indicates that the best fit according to the CEF is measuring 

similar rhythmic characteristics to that of the average distance per burst measurement. 

Furthermore, comparing the best fits to many voltage recordings that were produced by data 

augmentation is another piece of evidence that they are measuring similar characteristics. This 

shows this data augmentation method can give computational neuroscientists access to more 

recordings. Though as a caveat, data augmentation can’t completely compensate for a lack of 
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data and is only meant to complement. When augmenting very little data it is likely to create a 

biased system. 

4.6 Octa-parameter sweeps. 

 

Figure 4.16 Parallel coordinate graph showing 6 of the 8 parameter values of 50 

mathematical voltage time series. To show a single time series comparison in 8 parameter 

dimensions, there are 8 equally spaced vertical parallel axes. Each time series comparison in the 

octa-parameter space is represented as a polyline with vertices on the parallel axes. Each 

connected series of line segments represents the parameters of each time series. The parameters 

of each time series were chosen using uniformly distributed random sampling. Random sampling 

was used to avoid the convergence to single points on each vertex that obscures any 

differentiation between individual times series parameter sets. The eight parameters are the 

synaptic conductance of the inhibitory (𝑔𝑖𝑛ℎ) and excitatory synapses (𝑔𝑒𝑥𝑐), and the added 

alpha (𝛼𝑖𝑛ℎ, 𝛼𝑒𝑥𝑐), beta (𝛽𝑖𝑛ℎ, 𝛽𝑒𝑥𝑐), and synaptic threshold (𝑉𝑡ℎ−𝑖, 𝑉𝑡ℎ−𝑒) of both the inhibitory 

and excitatory synapses. 

 

With this the CEF was satisfactorily validated, and the next step was taken, increasing the 

number of parameters. Since one goal of the study is to study emergent rhythms, the number of 

parameters were set to eight synaptic parameters hence the name Octo-parameter. These eight 

parameters were chosen because previous studies already characterized the intracellular 

properties of Melibe. As before the synaptic conductance of the inhibitory and excitatory 

synapses was used, and now the alpha, beta, and synaptic threshold of both the inhibitory and 

excitatory synapses were added (Figure 4.16&Figure 4.17). G represents the maximal 

conductance of the synaptic current, whereas alpha, beta, and voltage threshold are part of the 
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synaptic probability equation. As previously mentioned, biologically, alpha corresponds to the 

strength of the binding of the neurotransmitters to the post-synaptic receptors. In contrast, beta 

corresponds to the decay from the combination of diffusion, enzymatic metabolizing or 

inactivation, and re-uptake into the presynaptic neuron of the neurotransmitters in the synaptic 

cleft. The voltage threshold is typically set around +20mV in the middle of spikes, between the 

spike threshold around −40mV (sodium channels open) and the spike peak of +40mV. To 

visualize the parameter space in 8-dimensions a parallel coordinate plot was used and is a 

common way to visualize high-dimensional data (Figure 4.16&Figure 4.17).  

 

Figure 4.17 Parallel coordinate graph showing the final 2 parameter values of 50 

mathematical voltage time series. To show a single time series comparison in 8 parameter 

dimensions, there are 8 equally spaced vertical parallel axes. Each time series comparison in the 

octa-parameter space is represented as a polyline with vertices on the parallel axes. Each 

connected series of line segments represents the parameters of each time series. The parameters 

of each time series were chosen using uniformly distributed random sampling. Random sampling 

was used to avoid the convergence to single points on each vertex that obscures any 

differentiation between individual times series parameter sets. The eight parameters are the 

synaptic conductance of the inhibitory (𝑔𝑖𝑛ℎ) and excitatory synapses (𝑔𝑒𝑥𝑐), and the added 

alpha (𝛼𝑖𝑛ℎ, 𝛼𝑒𝑥𝑐), beta (𝛽𝑖𝑛ℎ, 𝛽𝑒𝑥𝑐), and synaptic threshold (𝑉𝑡ℎ−𝑖, 𝑉𝑡ℎ−𝑒) of both the inhibitory 

and excitatory synapses. 
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For this study in order to show a single time series comparison in 8 parameter 

dimensions, there are 8 equally spaced vertical parallel axes. Each time series comparison in the 

octa-parameter space is represented as a polyline with vertices on the parallel axes. In other 

words, each connected series of line segments represents the parameters of each time series. The 

parameters of each time series were chosen using uniformly distributed random sampling which 

means that there is an equal chance for any of the values to be observed, as opposed to a normal 

distribution. The reason for using random sampling and not a parameter sweep as was previously 

done is because using a parameter sweep on parallel coordinates would make the lines converge 

to single points on each vertex and obscure any differentiation between individual times series 

parameter sets. To clarify a parameter sweep is simply searching through the parameter space 

using a predetermined subset of values and trying all possible combinations. Random search, on 

the other hand, is generally faster and used if a larger or high dimensional space was searched, 

because it samples more diverse array combinations, as well as being faster and more control 

over the number of samples generated. For example, to do an 8-dimensional sweep of parameters 

using only two values (the minimum to be called a sweep) for each parameter would result in a 

minimum of 2^8 or 256 time-series parameter combinations. While random sampling can be set 

it to any number of time series parameter combinations. With this the number of time series was 

set to 50 and used k-means clustering to categorize the parameter combinations into good fits in 

orange and bad fits in blue. Then the average value was taken of each parameter of the good and 

bad fits which are shown as the thicker lines on the parallel coordinates.  
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Figure 4.18 No significant differences in the first six parameters. Box plots of the good 

and bad fits showing their distributions. The categorized parameters in bad fit groups in blue 

and good in orange shown in box plots. The populations for each parameter had a Wilcoxon 

rank sum\ Mann-Whitney test performed on them. Relatively small sample size as to not amplify 

any difference to the point of significance for even the irrelevant differences.  

 

The box plots of the parameters categorized into bad fit groups in blue and good in 

orange (Figure 4.18Figure 4.19). With the good and bad are grouped, to test the difference 

between the good and bad fit populations for each parameter, a Mann-Whitney test was 

performed. Again, a relatively small sample size was used for the same reason previously 

mentioned because the sample size can be made so large that it will amplify any difference to the 

point of significance even the irrelevant ones. The only significant difference was found between 

the excitatory synaptic threshold. Furthermore, the good fit range of the excitatory synaptic 

threshold is outside the typical range, In fact, most of the good fits are under the action potential 

threshold of -40mV. This is an interesting find because it indicates that there is a contralateral 

electric synapse between the Si3 neuron and its contralateral Si1 or Si2 which was not previously 

hypothesized by biological experiments.  
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Figure 4.19 A significant difference in the synaptic threshold in the excitatory synapses. 

The good fit range of the excitatory synaptic threshold is outside the typical range. In fact, most 

of the good fits are under the action potential threshold of -40mV. Box plots of the good and bad 

fits showing their distributions. The categorized parameters in bad fit groups in blue and good in 

orange shown in box plots. The populations for each parameter had a Wilcoxon rank sum\ 

Mann-Whitney test performed on them. Relatively small sample size as to not amplify any 

difference to the point of significance for even the irrelevant differences. 

 

Here is the hypothesized change to the configuration illustrated in the diagram (Figure 

4.20). On the top left is the current reduced configuration it is changed to the diagram on the top 

right of the new hypothesized configuration. The biphasic response from the amalgamated Si 

1,2,4 cell to Si3 is replaced with an electrical synapse and a fast inhibitory synapse. This is 

hypothesized from the biphasic response experiments shown in Figure 2.7 where the inhibition 

begins before the excitation and can now be explained with a combination of an electrical 

synapse and a fast inhibitory synapse. However, the electrical synapse can be added from either 

or both Si1s and Si2s to the contralateral Si3s of the diagram without any replacing of the 

biphasic synapse. In other words, the presence of an electrical synapse does not necessarily 

explain the biphasic response. 
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Figure 4.20 The hypothesized change to the configuration illustrated in the diagram. 

Here on the top left is the current reduced configuration it is changed to the diagram on the top 

right of the new hypothesized configuration. The biphasic response from the amalgamated Si 

1,2,4 cell to Si3 is replaced with an electrical synapse and a fast inhibitory synapse. This is 

hypothesized from the biphasic response experiments you can see that the inhibition starts before 

the excitation this can be explained with a combination of an electrical synapse and a fast 

inhibitory synapse.  

 

In addition to testing the difference between the good and bad groups, any correlation 

between the good fits and each of the parameters to show if there are any strong relationships 

between the parameters was done. As shown in the heatmap (Figure 4.21) there were no strong 

correlations between any of the parameters and some even show significance, but the correlation 

is near inexistant. 
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Figure 4.21 Heatmap showing any correlation in the good fits between each of the 

parameters. As shown in the heatmap here there were no strong correlations between any of the 

parameters and some even show significance, but the correlation is though still weak.  

 

 

5 OTHER BLENDED SYSTEMS 

To further explore the blended system Dendronotus iris CPG Si recordings were used to 

create several different configurations that test different HCO emergence models and 

perturbations. Figure 5.1 simplifies the same rhythmic generation seen in Dendronotus iris where 

a tonic spiking neuron excites mutually inhibiting neurons to burst in antiphase of each other. 

The biological recordings shown in black are from a Si1 cell and blended and excite to mutually 

inhibited mathematical neurons and as you can see, they create an antiphase bursting though 

neither of them fires in isolation.  
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Figure 5.1 A blended system using Dendronotus Si1 voltage recording to create an HCO 

rhythm in mathematical neurons. A diagram of the blended configuration of the biological Si1 

neuron excites two quiescent mathematical neurons (Left). A previously recorded voltage time 

series of Dendronotus swimming interneuron (Si1) with its respective blended synaptic release 

probability, shown over the two mathematical neurons’ voltage time series and their respective 

synaptic release probability (Right). The inhibitory and excitatory synapses are denoted by • and 

▲, respectively. The black synapses represent the mathematical synapses driven by the 

biological recordings from the Si1 neuron. With M1 (Blue) and M2 (Green) representing two 

mathematical neurons and Si1 representing the previously recorded swimming interneuron 

(Black). 

 

In Figure 5.2 are the biological recordings of a bursting Si3 in black blended and exciting 

a quiescent mathematical neuron and inhibiting a tonic spiking mathematical neuron that is 

mutually inhibiting each other. And as you can see, they create an antiphase bursting though 

neither of them bursts in isolation. This is characteristic of a pacemaker configuration of bursting 

like those seen in the pyloric CPG. These two show the director paradigm of CPG models.  
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Figure 5.2 A blended system using Dendronotus Si3 voltage recording to create an HCO 

rhythm in mathematical neurons. A diagram of the blended configuration of the biological Si1 

neuron excites one quiescent mathematical neuron and inhibits another tonic-spiking neuron 

(Left). A previously recorded voltage time series of Dendronotus swimming interneuron (Si3), 

with its respective blended synaptic release probability, shown over the two mathematical 

neurons’ voltage time series and their respective synaptic release probability (Right). The 

inhibitory and excitatory synapses are denoted by • and ▲, respectively. The black synapses 

represent the mathematical synapses driven by the biological recordings from the Si1 neuron. 

With M1 (Blue) and M2 (Green) representing two mathematical neurons and Si3 representing 

the previously recorded swimming interneuron (Black). 

 

Next is how a blended system reacts to perturbations seen in the biological recordings. In 

Figure 5.3 on the right is biological recordings from two Melibe Si1 cells that ipsilaterally inhibit 

tonic spiking mathematical neurons. One of the Si1 voltage recordings shows that the top voltage 

recording of the biological neuron was perturbed shortly after it begins bursting indicated by the 

red arrow. This causes the termination of the burst and the initiation of the Si1 neuron burst. The 

mathematical neurons replicate the activity of the mathematical ones, though they replicate the 

neuron that is not directly synapsed to them.  
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Figure 5.3 How a blended system with inhibitory synapses reacts to perturbations seen in 

the biological recordings. Here on the top is biological recordings from two Melibe Si1 cells that 

ipsilaterally inhibit tonic spiking mathematical neurons. One of the Si1 voltage recordings shows 

that the top voltage recording of the biological neuron was perturbed shortly after it begins 

bursting indicated by the red arrow. This causes the termination of the burst and the initiation of 

the Si1 neuron burst. The mathematical neurons replicate the activity of the mathematical ones, 

though they replicate the neuron that is not directly synapsed to them. 

 

On the other hand, if the Si1s ipsilaterally excite quiescent mathematical neurons as seen 

in Figure 5.4 right the mathematical neurons replicate the activity the mathematical ones, though 

this time they replicate the neuron that is directly synapsed to them. 

 

Figure 5.4 How a blended system with excitatory synapses reacts to perturbations seen in 

the biological recordings. The biological recordings from two Melibe Si1 cells that ipsilaterally 

inhibit excite quiescent mathematical neurons. One of the Si1 voltage recordings shows that the 

top voltage recording of the biological neuron was perturbed shortly after it begins bursting 

indicated by the red arrow. This causes the termination of the burst and the initiation of the Si1 

neuron burst. The mathematical neurons replicate the activity the mathematical ones, though this 

time they replicate the neuron that is directly synapsed to them.  
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6 TESTING BLENDED SYSTEMS WITH CEF 

 

Figure 6.1 The normal swim case where math neuron voltage time series is superimposed 

on the biological voltage recordings of their respective Si3 neurons does not meet the threshold 

of a good fit. You can also see when zoomed in the action potentials in the mathematical neurons 

are thicker than the biological recordings. The error value according to the CEF is 0.2710. 

Which according to the previously mentioned cutoff of 2.2 would be considered a bad fit. So now 

we have an example of how a voltage time series can pass the eye test but not be considered a 

good fit. In the table, we can also see where the mathematical neuron has gone wrong in the 

weighted error value column. The synaptic distance is responsible for most of the error with the 

variance of the moving average difference being the least. This tells us that the phase is 

relatively close, but the voltage of the mathematical neuron is shifted lower relative to that of the 

biological recording. 

 

First, let's take this previously shown blended system in the normal swim case (Figure 

3.3). As mentioned before the mathematical neuron appears to pass the “eye test.” However, 

when we superimpose the math neuron voltage time series on the biological voltage recordings 

of their respective Si3 neurons the start and end of the bursts don’t look as good as was first 
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thought (Figure 6.1). You can also see when zoomed in the action potentials in the mathematical 

neurons are thicker than the biological recordings. The error value according to the CEF is 

0.2710. Which according to the previously mentioned cutoff would be considered a bad fit. So 

now we have an example of how a voltage time series can pass the eye test but not be considered 

a good fit.  

Table 1 Error values of hand-tuned normal blended system 

  

In Table 1, we can also see where the mathematical neuron has gone wrong in the 

weighted error value column. The synaptic distance is responsible for most of the error with the 

variance of the moving average difference being the least. This tells us that the action potential 

characteristics are responsible for most of the error while the phase is relatively close, but the 

voltage of the mathematical neuron is shifted lower relative to that of the biological recording. 
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Figure 6.2 The curare case where math neuron voltage time series is superimposed on 

the biological voltage recordings of their respective Si3 neurons. For this case, we have an error 

value of 0.0730 which is low even lower than any of the other best fits found by the bi-parameter 

sweeps or octa-parameter sampling. This is possibly from using a limited number of parameters 

to tune in the sweeps and sampling specifically only using synaptic parameters, while the hand-

tuned blended system had even the fast subsystem parameters tuned, which is responsible for the 

firing of action potentials among other things. When zoomed in the action potentials in the 

mathematical neurons are similar in shape to that of the biological recordings though not 

perfectly aligned. This gives us an example of how a hand-tuned blended system gives us a CEF 

good fit. In the table, we can still see where the mathematical neuron has gone wrong in the 

weighted error value column. Again, the synaptic distance is responsible for most of the error 

and in this case the envelope is the least. This tells us that the voltage of the mathematical 

neuron is not shifted either lower or higher relative to that of the biological recording but rather 

the spiking frequency is off. 

 

Next, let's take the previously mentioned blended system in the curare case (Figure 3.5). 

Whose mathematical neurons had an apparent close similarity to the biological recordings and 

answering the question is it good enough? For this case, we have an error value of 0.0730 

(Figure 6.2) which is low even lower than any of the other best fits found by the bi-parameter 
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sweeps or octa-parameter sampling. This is possibly from using a limited number of parameters 

to tune in the sweeps and sampling specifically only using synaptic parameters, while the hand-

tuned blended system had even the fast subsystem parameters tuned, which as you may recall is 

responsible for the firing of action potentials among other things. When zoomed in the action 

potentials in the mathematical neurons are similar in shape to that of the biological recordings 

though not perfectly aligned. This gives us an example of how a hand-tuned blended system 

gives us a good fit according to the CET.  

Table 2 Error values of hand-tuned curare blended system 

 

In Table 2, we can still see where the mathematical neuron has gone wrong in the 

weighted error value column. Again, the synaptic distance is responsible for most of the error 

and in this case the envelope is the least. This tells us that the action potential characteristics are 

responsible for most of the error and the voltage of the mathematical neuron is not shifted either 

lower or higher relative to that of the biological recording. 
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Figure 6.3 The inhibitory blended system where math neuron voltage time series is 

superimposed on the biological voltage recordings of their respective Si3 neurons. For this case, 

we have an error value of 0.0715 which is comparable to the hand-tuned curare case. When 

zoomed in the action potentials are thicker in shape than that of the biological recordings. This 

shows that the action potential shape could possibly not be represented by the CEF since the 

curare swim case also didn’t have thicker action potentials but a similar CEF value. Again the 

synaptic distance is responsible for most of the error however the spike count error is close with 

the envelope being the least. This tells us that the spike frequency is off. 

 

Next is the two other blended systems previously mentioned and their reaction to 

perturbations (Figure 5.3Figure 5.4). Here is with the biological Si1s inhibiting the mathematical 

neurons. For this case (Figure 6.3), we have an error value of 0.0715 which is comparable to the 

hand-tuned curare case. When zoomed in the action potentials in the mathematical neurons are 

thicker in shape than that of the biological recordings. This shows that the action potential shape 

could possibly not be represented by the CEF since the curare swim case also didn’t have thicker 

action potentials but a similar CEF value.  
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Table 3 Error values of hand-tuned perturbed inhibitory synapsed blended system 

 

In Table 3, we can still see where the mathematical neuron has gone wrong in the 

weighted error value column. Again, the synaptic distance is responsible for most of the error 

however the spike count error is close with the envelope being the least. This tells us that the 

action potential characteristics are responsible for most of the error though likely from the spike 

frequency since there is a high error in spike count and the voltage of the mathematical neuron is 

not shifted either lower or higher relative to that of the biological recording. 



85 

 

Figure 6.4 The excitatory blended system where math neuron voltage time series is 

superimposed on the biological voltage recordings of their respective Si3 neurons. For this case, 

we have an error value of 0.0727 which is comparable to the two previous cases. And like the 

previous case when zoomed in the action potentials in the mathematical neurons are thicker in 

shape than that of the biological recordings. In the table, we can see again the synaptic distance 

being responsible for most of the error with the envelope being the least and the higher than the 

previous variance difference. This tells us that the action potential characteristics are 

responsible for most of the error though likely from the spike frequency since there is a high 

error in spike count and the voltage of the mathematical neuron is not shifted either lower or 

higher relative to that of the biological recording though not as in phase as the previous cases as 

shown by the variance difference. 

 

Next is when the biological Si1s are exciting the mathematical neurons (Figure 5.4). For 

this case (Figure 6.4), we have an error value of 0.0727 which is comparable to the two previous 

cases. And like the previous case when zoomed in the action potentials in the mathematical 

neurons are thicker in shape than that of the biological recordings.  
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Table 4 Error values of hand-tuned perturbed excitatory synapsed blended system 

 

In Table 4, we can see again the synaptic distance being responsible for most of the error 

with the envelope being the least and the higher than the previous variance difference. This tells 

us that the action potential characteristics are responsible for most of the error though likely from 

the spike frequency since there is a high error in spike count and the voltage of the mathematical 

neuron is not shifted either lower or higher relative to that of the biological recording though not 

as in phase as the previous cases as shown by the variance difference.  
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7 CONCLUSION 

In Summary, to take one further step of simplification a blending of previously recorded 

voltage time series with mathematical neurons was done. This blending required the 

development of an ODE solver that we ourselves developed. And configured like that of the 

simplified Melibe’s swimming CPG. The blended system was also shown to be able to act as 

rhythm directors like pacemakers and drivers of Dendronotus Si cells. As well as replicate the 

perturbations of biological recordings. Further showcasing the flexibility of the using blended 

systems. The CEF created could be used as an essential tool to create high throughput programs 

because of its convexity and ability to parallel the post hoc measurements.  Since it was verified 

using different configurations, calculated mean, and variance of rhythmic characteristics, as well 

as recordings created from data augmentation. The form of data augmentation introduced can be 

generalized to other biological recordings or any time series really. With all these tools 

developed and expanding the parameter dimensions a hypothesis was posited that there is a 

contralateral electric synapse not previously included in the Melibe CPG model. Finally, I used 

the CEF on the hand-tuned blended systems and offered hypotheses of the deficiencies of each 

hand-tuned voltage time-series. 

Our posited blended systems are built by connecting previously recorded and mathematical 

neurons. These systems can offer advantages in preliminary neuroscience research, specifically 

in the field of brain computer interface (BCI). Like blended systems BCIs interact with 

biological neurons, however instead of previously recorded neurons they connect to living ones. 

The most promising potential of BCI is their potential to restore vision, hearing, and locomotion. 

However, the current algorithms being developed do not capture the full picture of a biological 

neuron's qualitative voltage rhythmic activity. 
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To address this problem, we have created an error function that measures the difference in 

neural activity between the biological recording and mathematical time-series. We found that 

combining five functions via a weighted summation (CEF) results in a robust functionality that 

can differentiate between voltage time-series. Individually, these functions were shown to be 

insufficient to qualitatively mimic the target biological recording. The CEF we hypothesize 

should also give a perfect match if the CEF's value was zero. 

Furthermore, because of the convex nature of the error function's parameter space, it can be 

used as the cost function in Artificial Neural Networks (ANN) to train a neural network to 

qualitatively mimic the voltage time series of a mathematical network with limited input 

parameters. We also used the error function to explore the likeness of a mathematical CPG that is 

driven by previously recorded biological CPG. 

As mentioned in the previous section, the conductance parameters for the METs differed 

between the curare-bathed and normal biological CPG. The difference is not what we would 

expect to see since curare has no direct effect on non-cholinergic neurons and their synapses. 

However, since the curare blended system has very long inactive phases then the transitions from 

back and forth between inactive and active phases need not be immediate. In other words, the 

time series are more forgiving to weaker excitatory and inhibitory conductance. Therefore, the 

excitatory and inhibitory conductance parameters of the normal blended system should be 

expected and work on the curare blended system. 

The error function described in this paper can offer developers of circuits that interact with 

biological neurons a more comprehensive error function. Ultimately, this can improve the 

automation of parameter optimization of mathematical neurons. However, the CEF can be 



89 

computationally expensive and further innovation in creating an error function could benefit the 

computational neuroscience field.   
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8 DATA AVAILABILITY 

The error function code is available in GitHub repository 

(https://github.com/jbourahmahGSU/Voltage-recording-Error-function.git). An example of the 

blended system code that blends the Melibe recordings with the Si models neurons 

(https://github.com/jbourahmahGSU/Blended-System.git). Voltage recordings that were used are 

available upon request.  

https://github.com/jbourahmahGSU/Voltage-recording-Error-function.git
https://github.com/jbourahmahGSU/Blended-System.git
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APPENDICES  

Appendix A 

The governing equation of the Si model neuron derived by Kirchhoff's Current Law and 

is the Hodgkin-Huxley model with additional currents, 

Cm

dV

dt
= −II − IK − Ih − IKCa − IT − Ileak − ΣIsyn. 

The Hodgkin-Huxley (HH) model describes the currents across the neuronal membrane 

through different channels, including an inward sodium (Na+) and calcium (Ca2+) current (𝐼𝐼),  

II = gIm∞
3 h(V − EI), 

where 𝐸𝐼 =30mV for the reversal potential and 𝑔𝐼= 4nS for its maximal conductance, and the 

gating variable is 

m∞(V) =
αm(V)

αm(V) + βm(V)
, 

αm(V) = 0.1
50 − Vs

1 + e(50−Vs)/10
,  βm(V) = 4e(25−Vs)/18. 

The h variable is defined as  

dh

dt
=

h∞(V) − h

τn(V)
, 

h∞(V) =
αh(V)

αh(V) + βh(V)
 and τh(V) =

12.5

αh(V) + βh(V)
, 

αh(V) = 0.07e(25−Vs)/20,  and βh(V) =
1

1 + e(55−Vs)/10
, 

Vs =
127V + 8265

105
. 

The next current in the HH potassium (K+) current (𝐼𝐾),  

Ik = gkn4(V − Ek), 
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dn

dt
=

n∞(V) − n

τn(V)
,  n∞(V) =

αn(V)

αn(V) + βn(V)
, 

τn(V) =
12.5

αn(V) + βn(V)
 

αn(V) = 0.01
55 − Vs

e(55−Vs)/10 − 1
,  βn(V) = 0.125e(45−Vs)/80, 

where 𝐸𝐾 =-75mV for the reversal potential and 𝑔𝐾= 0.3nS. 

The additional currents of the Si model are the slow TTX-resistant sodium-calcium current (𝐼𝑇),  

𝐼𝑇 = 𝑔𝑇𝑥(𝑉 − 𝐸𝐼) 

where 𝐸𝐼 =30mV for the reversal potential and 𝑔𝑇= 4nS for the maximal conductance, and the 

activation variable being 

dx

dt
=

x∞(V + Δx) − x

τx
, 

x∞(V) =
1

1 + e−0.15(V+50−Δx)
, 

with the time constant 𝜏𝑥= 100 ms. The second added current is the outward calcium dependent 

potassium current (𝐼𝐾𝐶𝑎),  

IKCa = g𝐾𝐶𝑎

Ca

Ca + 0.5
(V − EK), 

where 𝐸𝐾 =-75mV for the reversal potential and 𝑔𝐾𝐶𝑎= 0.03nS for the maximal conductance and 

dCa

dt
= ρ[Kc x (ECa − V + ΔCa) − Ca], 

with 𝜌=0.00015ms-1 and 𝐾𝑐=0.00425mV-1. 

leak current (𝐼𝑙𝑒𝑎𝑘), 

Ileak = gL(V − EL), 
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Next, is the hyperpolarized-activated depolarizing h-current (𝐼ℎ), with  𝐸ℎ =70mV for the 

reversal potential and 𝑔ℎ= 0.0006nS for the maximal conductance 

Ih = gh

y(V − Eh)

(1 + e−(V−63)/7.8)3
, 

and the activation variable being 

dy

dt
= gh

y(V − Eh)

(1 + e−(V−63)/7.8)3
. 

 

and synaptic current (𝐼𝑠𝑦𝑛),  from another neuron 

Isyn = gsynS(Vpost − Erev), 

with S being governed by 

dS

dt
=

α(1 − S)

1 + e−k(Vpre−Vth)
− βS. 

Appendix A.1 

The square root of the sum of squares (SRSS): 

||X|| = √∑|Xi|2

N

i=1

. 

Formulas of the error functions: 

Spike count difference, where m is the number of spikes of either the biological voltage 

recording or the that of the model neuron, 

Δspikes = |mspike
bio − mspike

mod |, 

Synaptic distance, where the SRSS of the difference between the biological voltage recording S 

variable and the model neuron are taken, 
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||S||2 = √∑(Si
bio − Si

mod)
2

N

i=1

, 

Voltage moving average distance, where the SRSS of the difference between the moving average 

of the biological voltage recording and the model neuron are taken, 

||V̂|| = √∑(V̂i
bio − V̂i

mod)
2

N

i=1

, 

With the moving average of the voltage is defined as, 

V̂ =
1

k
∑ Vi

N

i=N−k+1

, 

Variance of the difference in the moving average, with 𝜇 being the mean of |V̂i
bio − V̂i

mod| 

𝑠2 =
1

𝑁 − 1
√∑(|V̂i

bio − V̂i
mod| − μ)

2
𝑁

𝑖=1

, 

Sigmoidal of the envelope distance 

||E|| = fσ(||L|| + ||U||); 

SRSS of the lower envelopes difference 

||L||2 = √∑(Li
bio − Li

mod)
2

N

i=1

, 

SRSS of the upper envelopes  difference 

||U||2 = √∑(Ui
bio − Ui

mod)
2

N

i=1

, 

And the sigmoidal function used 
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fσ(x) = (1 + e(−a(x−c)))
−1

. 

The weighted sum used for the combination of the error functions into a combined error function 

WS = w1 Δspikes + w2|S| + w3|V̂| + w4s2 + w5|E|, 

Where w1= 0.10, w2= 0.58, w3= 0.10, w4= 0.19, w5= 0.03. 
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