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Arms or Legs: Isomorphic Dutch Auctions and Centipede Games 
 

By James C. Cox and Duncan James 



Arms or Legs: Isomorphic Dutch Auctions and Centipede Games1 
 
 
Centipede games and Dutch auctions provide important instances in which game theory fails 
empirically. The reasons for these empirical failures are not well understood.  Standard 
centipede games and Dutch auctions differ from each other in terms of their Institutional Format 
(IF), Dynamic Structure (DS), and Information Environment (IE). This paper introduces new 
games that are constructed from centipede games and Dutch auctions by interchanging some of 
their IF, DS, and IE characteristics. The new games are introduced in isomorphic pairs. 
Experiment treatments with pairs of new isomorphic games provide data that yield insights into 
the effects on behavior of games’ IF, DS, and IE characteristics. (JEL C72, C91, D44) 
 

1. Introduction 

Dutch auctions and centipede games both exhibit systematic deviations of behavior in 

experiments from predictions of game theory. Theory for the centipede game predicts unraveling 

to a “take” at the first node in the game tree but failure of this prediction for the traditional two-

person, extensive form of the game is a robust empirical phenomenon (McKelvey and Palfrey, 

1992, 1998; Zauner, 1999). Theory predicts that the Dutch auction is isomorphic to the first price 

sealed bid auction but prices in a fast-clock Dutch auction are lower and prices in a slow-clock 

Dutch auction are higher than prices in comparable first price sealed bid auctions (Cox, Roberson, 

and Smith, 1982; Cox Smith and Walker, 1983; Lucking-Reilly, 1999; Katok and Kwasnica, 

2008). The reasons for these empirical failures of theory are not well understood. This paper 

seeks better understanding of the determinants of behavior in centipede games and Dutch 

auctions by studying new games constructed by interchanging some of the games’ typical 

characteristics. 

 Standard centipede games and Dutch auctions differ from each other in terms of their 

Institutional Format (IF), Dynamic Structure (DS), and Information Environment (IE).  The IF of 

a standard centipede game is an extensive form game tree whereas the IF of a standard Dutch 

auction is a price clock.  The DS of a standard centipede game is alternating opportunity to select 

an action (take or pass) whereas the DS of a standard Dutch auction is simultaneous opportunity 

                                                 
1  Financial support was provided by the National Science Foundation (grant numbers IIS-0630805 and 
SES-0849590).  Helpful comments and suggestions were provided by Amnon Rapoport.    
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to select an action (bid or don’t bid).  The IE of a standard centipede game is public information 

on (money) payoffs whereas the IE of a standard Dutch auction is private information on payoffs 

(because auctioned item values are private). This paper introduces new games that are constructed 

by interchanging some of the IF, DS, and IE characteristics of the standard games. The paper 

reports an experiment with the new games that provides insight into which characteristics of 

games are empirically significant determinants of behavior and which of these significant 

characteristics account for systematic differences between theory and behavior. 

We construct modified centipede games that have the same IE as standard Dutch 

auctions: the independent private values environment in which an agent knows her own payoffs 

but only the probability distribution of others’ payoffs for all decision opportunities. We use 

independent private values (IPV) rather than public information (PI) about payoffs because: (a) 

the unraveling prediction for centipede games is robust to IPV; but (b) the Nash equilibrium bid 

functions for Dutch auctions are not robust to PI about auctioned item values. We construct 

modified Dutch auctions that have the same DS as standard centipede games: alternating (rather 

than simultaneous) opportunities to bid or not bid.  We construct modified centipede games that 

have the same DS as standard Dutch auctions: simultaneous (rather than alternating) opportunities 

to take or pass. We construct modified centipede games that have the same IF as standard Dutch 

auctions: a decreasing price clock. Finally, we construct Dutch auctions with the IF that 

characterizes standard centipede games: an extensive form game tree.  The paired clock and tree 

formats for the modified Dutch auctions are theoretically isomorphic. A theoretical isomorphism 

also holds for the paired clock and tree formats of the modified centipede games. Because the 

paired games are strategically equivalent, any significant differences in behavior between them 

are caused by behavioral significance of characteristics of games that are not captured by existing 

theory of equilibrium strategies. 
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2. Related Literature 

There is a substantial literature on experimental tests of the theory of Dutch auctions and 

centipede games.  We review a few papers. 

 

2.1 Dutch Auctions 

In his book on the history of auctions, Cassady (1967) discusses auction market formats that have 

been used for long historical periods.  He defines “Dutch auction” as follows (Cassady, 1967, p. 

67):  

In this auction the offer price starts at an amount believed to be higher than any 

bidder is willing to pay and is lowered by an auctioneer or a clock device until one of 

the bidders accepts the last offer. The first and only bid is the sales price in the Dutch 

auction. 

One implication of this institutional format is that any bidder who stops the auction near the 

beginning is likely to lose money. This is the defining characteristic of “Dutch auction” that we 

do not change when new modified versions are introduced by changing the standard game’s IF 

and DS characteristics.  

 Vickrey (1961) first explained that the Dutch auction is theoretically isomorphic to the 

first price sealed bid auction in the IPV information environment. This implies that the Nash 

equilibrium bid function is the same function for these two auctions even though the Dutch 

auction has a decreasing price clock, real-time institutional format whereas the first price sealed 

bid auction has a normal form game format. Cox, Roberson, and Smith (1982) tested this 

isomorphism using a Dutch auction digital price clock with two-second price decrement speed.2  

They reported that the isomorphism failed empirically; the Dutch auction produced lower prices 

than the first price auction in laboratory experiments using (induced) independent private values.  

                                                 
2 Dutch flower auctions use very fast clock speeds. Characteristics of the biggest flower auction institution 
are reported at http://www.aalsmeer.nl/00004.asp. 
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Cox, Roberson, and Smith offered two “real time” models of the Dutch auction, using non-

standard assumptions, both of which were consistent with lower prices in the Dutch auction than 

in the first price auction.   One model incorporated a utility from the activity of playing the game 

that was additive to the utility of money payoff from bidding whereas the other model 

incorporated biased application of Bayes’ rule in updating bidders’ expectations about rivals’ 

bidding behavior during an auction. Cox, Smith, and Walker (1983) reported an experimental test 

of the alternative models which led to rejection of the utility of playing the game model in favor 

of the biased Bayes’ rule model.   

 Lucking-Reiley (1999) reported an internet experiment with uncontrolled information 

environment (concerning item values) and an extremely slow Dutch price clock. He found that 

the Dutch and first price auction isomorphism failed but that Dutch prices were higher than prices 

in the first price auction. Katok and Kwasnica (2008) reported an experiment in the IPV 

information environment in which Dutch auction clock speed was a treatment variable. They 

reported that the isomorphism failed and that Dutch auction prices were lower (respectively, 

higher) than prices in the first price auction with a fast (respectively, slow) Dutch price clock. The 

clock format Dutch auctions and centipede games reported below use a 10-second price clock 

speed, which is in the middle of the clock speeds used as treatment variables by Katok and 

Kwasnica (the other two speeds they used were one-second and 30-seconds). Our tree format 

centipede games and Dutch auctions use a comparable 10-second decision opportunity at each 

node in the extensive form game tree.3 

                                                 
3 Turocy, Watson, and Battalio (2007) replicated the result that prices are lower in Dutch auctions than in 
(theoretically-isomorphic) first price auctions using a Dutch auction clock speed that was calibrated to 
approximately equate the total time used by subjects in experiments with either 60 first price auctions or 60 
Dutch auctions. 
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2.2 Centipede Games                       

In a standard centipede game, the payoff of each player is positive at his first decision node. This 

is the defining characteristic of “centipede game” that we do not change when new modified 

versions are introduced by changing the standard game’s IF and IE characteristics. The centipede 

game is typically implemented in a public information environment in which the payoffs of all 

players at all decision nodes are public information.  A sequential move structure is standard.  

Each player has his own decision nodes to choose “take” or “pass.” If a player chooses the action 

“pass,” this leads to an increase in the sum of payoffs across players but hands the next “take” 

opportunity to the other player.  

A typical centipede game included in McKelvey and Palfrey (1992) is shown in Figure 1 

(with payoff of agent 1, or “you” in bold). 

 

 

    Figure 1. A Typical McKelvey and Palfrey Centipede Game 

 

These payoffs differ from those modeled by Aumann (1995) in a notable way; the final node 

payoffs in Aumann’s centipede game are zero for every player. In contrast, the total payoff to all 

players in a typical McKelvey and Palfrey centipede game increases throughout the game. The 

choice of final node payoffs in our centipede games is determined by the pairing with Dutch 

auctions. If the Dutch auction price clock ticks to zero (or to a positive seller reserve price) 
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without any bidder choosing to buy then all bidders receive zero surplus. Hence the natural 

pairing of centipede games with Dutch auctions is to set all players’ payoffs to zero at the final 

node in a centipede game, as in Aumann’s (1995) game.   

The centipede game presents a tension between what economists might suppose to be an 

agent’s wish to obtain a higher payoff for himself, by waiting to take, and a desire to avoid 

getting zero (or a low) payoff by waiting so long that the other player takes first. This tension 

within an agent, and the potential for each agent to develop beliefs about this tension (and other 

possible motivations) in other agents makes the centipede game a potential test-bed for 

hypotheses on a range of subjects.  

 For instance, does the predicted subgame perfect outcome (taking at the first node) occur 

in experiments? McKelvey and Palfrey (1992) found that generally it did not. What are the 

implications of such observations? Can failure to play according to the theoretical prediction be 

taken as evidence of altruism, decision errors, or beliefs that other altruistic or error-prone agents 

might be present in the population from which opponents are drawn? A number of researchers 

have attempted to explain the disparity between the empirical results and the theoretical 

prediction using one or another such explanation. McKelvey and Palfrey (1992) discussed the 

possibility that subjects’ altruism could explain the empirical failure of the unraveling prediction. 

In a subsequent paper, McKelvey and Palfrey (1998) examined the explanatory possibilities of a 

particular error-in-choice model, quantal response equilibrium. Zauner (1999) examined the 

possibility that “independent perturbed payoffs” could explain the data (and estimated the 

magnitude of noise in perceived payoffs needed to do so).  

 Fitting new models to data from a particular game is one way to attempt to understand 

what is going on in that kind of game. Another approach is to vary characteristics of the game in 

order to assess their significance as determinants of behavior. Rapoport, Stein, Parco, and 

Nicholas (2003) varied parameters of the design of the centipede game (such as the number of 

players and the magnitude of the payoffs) in order to assess whether the traditional result of 
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failure to unravel was still observed. They reported that moving from two to three players and 

increasing the size of payoffs appeared to increase the incidence of unraveling. Further work by 

Murphy, Rapoport, and Parco (2006) investigates the effect of moving from n=3 to n=7 players, 

and of changing the proportions according to which total payoffs at a node are allocated across 

the one “winner” and the n-1 “losers.” They find a strong effect from the increase in numbers and 

a milder effect from the change in allocation of payoffs. Our paper also takes the approach of 

varying characteristics of the game in order to better understand its properties. Our paper differs 

from Rapoport, et al. (2003) and Murphy, et al. (2006) in that we focus on systematic variation in 

institutional format and dynamic structure rather than variations in number of players or size of 

the total payoff for all players or the split of total payoff across winners and losers. 

In order to identify the role of institutional format, it is necessary that an exact 

correspondence in message spaces across isomorphic games be maintained. This design principle, 

already put forth for the comparison of the Dutch auction and the first price sealed bid auction by 

Cox, Roberson, and Smith (1982), is similarly applicable to IPV centipede games presented in 

different institutional formats (i.e. clock versus tree). Thus we compare tree format to clock 

format while holding constant dynamic structure (encompassing sequential/alternating versus 

simultaneous move structure) , payoff incrementation per discrete unit of time, and number of 

players. We also compare simultaneous move structure to sequential/alternating move structure 

while holding constant institutional format, payoff incrementation per discrete unit of time, and 

number of players. 

Our paper contributes to the literature by experimenting with the effects of changes in 

institutional format, dynamic structure, and information environment in new games derived from 

standard centipede games and Dutch auctions. If changes in IF, DS, or IE produce significant 

changes in behavior, this would suggest that parameters from models such as quantal response 

equilibrium or independent perturbed payoffs would have to vary across different representations 

of the same game, thus leading one to reflect upon the generality of those models. We look at 
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both Dutch auctions and centipede games in the same study because this allows us to ascertain if 

any dependence of bids or takes on IF, DS, or IE characteristics generalizes across games. 

Additionally, it should be noted that complete unraveling of the centipede game (however 

parameterized) with only two players and few repetitions would be a new type of empirical result. 

 

2.3  Maintained Difference between Dutch Auctions and Centipede Games 

Our experiment implements modified forms of Dutch auctions and centipede games that are 

constructed by changing some of the IF, DS, and IE characteristics of the traditional games. This 

suggests the question of what characteristic(s) of the modified games separate centipede games 

from Dutch auctions. We maintain one distinction between the two types of games: the games are 

always parameterized so that theory predicts unraveling to the first decision opportunity (tree 

node or clock tick) in any centipede game whereas theory predicts interior (to the decision space) 

Nash equilibrium in any Dutch auction. 

 

2.4  Varying Game Forms 

What accounts for the failure of Nash equilibrium bidding theory to predict prices in Dutch 

auctions? Previous literature has offered two explanations: (a) underestimation of the risk of 

letting the clock continue to run as, for example, in the Bayes’ rule miscalculation model (Cox, 

Roberson, and Smith, 1982; Cox, Smith, and Walker, 1983); and (b) bidder impatience as, for 

example, in the model in Katok and Kwasnica (2008). The sequential bid form of the Dutch 

auction that we implement may make the risk from letting the clock continue to run be more 

salient. Furthermore the sequential bid form of the Dutch auction may make impatience more 

pronounced by doubling (from one to two) the number of clock ticks between successive bid 

opportunities. Our experimental design does not address the distinction between the possible 

effects of Bayes rule violation and impatience.  Instead, we ask whether failure of Nash 

equilibrium bidding theory is robust to changes in the IF and DS of the bidding game. 
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 What accounts for the empirical failure of the unraveling prediction in standard centipede 

games? Is it the public information environment, which makes salient the exact opportunity cost 

of the other player from passing at each node? We introduce the independent private values form 

of the centipede game, which makes it impossible for a player to know the other player’s exact 

opportunity cost at any decision node but preserves the pattern of increasing opportunity costs for 

both players. And, just as we do with the Dutch auction, we vary the IF and DS of the game to see 

whether failure of the subgame perfect equilibrium prediction is robust to such changes. 

 

3.  Clock and Tree Formats with Sequential or Simultaneous Moves 

We explain clock and tree formats of Dutch auctions and centipede games with independent 

private values.  Each (clock or tree) format of the Dutch auction or centipede game is developed 

with alternative dynamic structures involving sequential or simultaneous move (bid or take) 

opportunities.  

 

3.1. Sequential-Move Dutch and Centipede Clock Games 

The sequential-bid Dutch auction with clock format is simply the traditional Dutch auction with 

the one change that the bidders alternate price clock ticks at which they are allowed to bid. That 

is, for a given clock reading, only one bidder has the right to bid at that clock price; the other 

bidder(s) would have to wait until the clock counts down to their turn before they would have a 

chance to bid. In the two-bidder, $1.00 price decrement case we utilize in our design, the price on 

the clock starts at 11 and one bidder can bid at price clock readings of 10, 8, 6, 4, or 2 while the 

other bidder can bid at clock readings of 9, 7, 5, 3, or 1. The bidders’ private values for the 

auctioned item are independently drawn from the uniform distribution on [1.01, 1.02, …, 10.99, 

11.00], which supports an interior Nash equilibrium (as shown below in section 4.1).  This 

version of the Dutch auction is presented to bidders as shown in Figure 2 (for the first price tick). 
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   Figure 2. Clock Format Sequential Bid Dutch Auction 

  

The sequential-take IPV centipede game with clock format maintains the DS of 

alternating decision opportunities that characterizes the traditional game but incorporates that DS 

into a price clock IF. The IPV centipede game in clock format (and tree format) replaces the 

public information IE of the traditional centipede game with private information about players’ 

payoffs. In the two-player, $1.00 price tick decrement game we utilize in our design, one player 

can take at price clock readings of 10, 8, 6, 4, or 2 while the other player can take at price clock 

readings of 9, 7, 5, 3, or 1. The players’ private values are independently drawn from the uniform 

distribution on [11.01, 11.02,…, 20.99, 21.00], which supports an unraveling prediction (as 

shown below in section 4.4). This version of the centipede game is presented to subjects exactly  

as the clock auction shown in Figure 2, except the players’ private values (seen in the upper left 

of the display) would be higher (specifically, between 11.01 and 21.00).  
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3.2 Sequential-Move Centipede and Dutch Tree Games 

We use an IPV information environment for our version of the sequential-take centipede game in 

tree format (as well as clock format). Each player has an initial value drawn from a uniform 

distribution on [0.01, 0.02, …, 9.99, 10.00], to which an amount n is added at each subsequent 

decision node n  = 1, 2,…, 10, which supports an unraveling prediction (as shown in section 4.3). 

A player’s payoff from taking at node n (when possible) is jv n , where jv  is the player’s 

private value.  Each player can only see that the other player has some unknown initial value “v 

not i,” to which is added $2.00 at each of the subsequent other player’s decision nodes. The 

centipede game in tree format is presented to the subjects as shown in Figure 3 (with “live” 

decision node indicated by the star at the first node). With each “pass” the star indicating live 

node moves to the right. 

 

    Figure 3. Tree Format Sequential Move Centipede Game 

 

The sequential-bid Dutch auction in tree format (as well as clock format) uses the DS of 

alternating bid opportunities instead of the simultaneous bid opportunities of the traditional Dutch 

auction. The tree format Dutch auction represents the auction with an extensive form game tree 

rather than a price clock. Each bidder has an initial value drawn from the uniform distribution on 

[-9.99, -9.98, …, -0.01, 0.00], to which an amount n is added at each subsequent decision node 
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n , which supports an interior Nash equilibrium (as shown in section 4.2). A bidder’s payoff from 

bidding at a node n  (when possible) is jv n , where jv  is the bidder’s private value for the 

auctioned item. As in traditional IPV Dutch auctions (Vickrey, 1961), each bidder knows his own 

auctioned item value but only knows the distribution from which the other bidder’s value is 

drawn. The Dutch auction in tree format is presented to the subjects exactly as the centipede 

game in Figure 3, except the payoffs are lower (specifically, they are consistent with vj being 

between -9.99 and 0.00). 

 

3.3  Simultaneous-Move Dutch and Centipede Clock Games 

The simultaneous-bid Dutch auction in clock format is the standard form of that auction. The 

simultaneous-take IPV centipede game in clock format differs from the standard centipede game 

in IF, DS and IE: the clock format is used; each player can take at every node; and players’ 

payoffs are private information.  

 

3.4  Simultaneous-Move Centipede and Dutch Tree Games 

The simultaneous-bid Dutch auction in tree format differs from the standard Dutch auction only 

in its IF: a tree format is used rather than a clock format. The simultaneous-take IPV centipede 

game with tree format, shown in Figure 4, differs from the standard centipede game in DS and IE: 

each player can take at every node and players’ payoffs are private information.  
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        Figure 4.  Simultaneous Move Tree Format Games 

 

4.  Theoretical Predictions 

For the two games in each pair to be isomorphic, they need to have the same dynamic structure.  

Implementing this structure entailed a list of features. First, we made the role of time identical 

across clock format and tree format; that is, both formats allowed subjects 10 seconds at a given 

price clock reading or decision node in the tree in which the subject could click with a mouse to 

bid or take.4  If at the end of 10 seconds the subject had not bid or taken, the game advanced to 

the next price clock reading or decision node in the tree; the subject could not actively select “not 

to bid” or “not to take” but could only do so by waiting 10 seconds for the computer to advance 

the game. Second, we set the change in payoff from one decision opportunity to the next one 

(belonging to the other player) equal to $1.00 across all games in all sessions. Third, all games 

were constructed so as to have a default setting of zero payoffs for both players in the event of 

“no bid” in the auction or “no take” in the centipede game. We did this because we needed the 

same end-of-game payoffs across games to preserve isomorphism and because the default of “no 

transaction” is what is natural for Dutch auctions.  Also, the fact that some existing centipede 

                                                 
4 Data reported in Katok and Kwasnica (2008) make clear that clock speed affects outcomes in Dutch clock 
auctions.  This suggests that clock speed could affect outcomes in centipede clock games and that node 
decision time could affect outcomes in Dutch and centipede tree games.  
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experiments were structured with a (0,0) terminal node encouraged us in settling on this 

standardization. 

 

4.1 Predictions for the Sequential-Bid Dutch Auction with Clock Format 

In our sequential Dutch auction with clock format, the odd-price bidder can bid at clock prices of 

9, 7, 5, 3, and 1.  The even-price bidder can bid at clock prices of 10, 8, 6, 4, and 2.  The two 

bidders’ values for the auctioned item are independently drawn from the uniform distribution on 

[1.01, 1.02, …, 10.99, 11.00]. The item values and bids are (of necessity) discrete, hence the bid 

functions are step functions. The risk neutral Nash equilibrium bid functions for odd-price bidder 

and even-price bidder are as follows. Let [ , ]o o o
s s sb l h  denote that values in the range [ , ]o o

s sl h  

support a Nash equilibrium bid of o
sb  on the Dutch price clock by the odd-price bidder, for whom 

{9,7,5,3,1}o
sb  .  Similarly, let [ , ]e e e

t t tb l h  denote that values in the range [ , ]e e
t tl h  support a 

Nash equilibrium bid of e
tb  on the Dutch price clock by the even-price bidder for whom 

{10,8,6,4,2}e
tb  . No values support bids of 9 or 7 by the odd-node bidder. Similarly, no values 

support bids of 10 or 8 by the even-price bidder. The other parts of the of the Nash equilibrium 

bid functions are: 

 Odd-price Bidder: 5[7.25, 11.00], 3[3.59, 7.24], 1[1.01, 3.58] 

 Even-price Bidder: 6[9.32, 11.00], 4[5.41, 9.31], 2[2.00, 5.40] 

The bid functions were solved for numerically. The numerical procedure consists of:  

(1) Initializing each bidder’s probability of bidding at each of the ten clock prices at 

which they can bid at 1/10. 

(2) Calculating the expected value maximizing bids for each bidder, given the 

probabilities of winning (at each price) implied by the opposing bidder’s probabilities of bidding 

in step (1). 
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(3) Updating the probability of bidding at a given price (for each bidder) based on the 

expected value maximizing bids in step (2). 

(4) Looping through steps (2) and (3) until mutual best response bid functions are 

obtained for both bidders. 

 

4.2 Predictions for the Sequential-Bid Dutch Auction with Tree Format 

The odd-price bidder and even-price bidder Nash equilibrium bid functions for the tree-format 

sequential Dutch auction are a translation of the clock-format bid functions, as can be seen from 

the following. Let , 1, 2,jX j   denote the random variables for the two bidders’ item values in 

the clock format auction.  Let jx , 1, 2,j  denote the two bidder’s realized values in the auction. 

Bidder j  knows that her own payoff from bidding at price clock tick t  when it is her turn is 

11tx t   (because the clock price is 10 at tick 1).  Bidder j  does not know bidder 'k s  ( k j ) 

payoff from bidding at any permissible tick  ; instead, it is the random variable 11 .kX    

 Let jY , 1, 2,j   denote the random variables for the two bidders’ item values in the tree 

format Dutch auction and let jy , 1, 2,j   denote their realized values. Bidder j  knows that his 

own value from bidding at any node n  (when it is his turn) is jy n . Bidder j  does not know 

bidder 'k s  ( k j ) value from bidding at node  ; instead, it is the random variable kY  . 

 The clock format and tree format Dutch auctions are isomorphic in the following sense. 

At tick t s  and node n s , the random payoffs from bidding in the clock and tree format 

auctions are, respectively, 11jX s   and jY s . Recall that jX  is uniformly distributed 

between 1.01 and 11.00 whereas jY  is uniformly distributed between -9.99 and 0.00.  Therefore, 

at any tick = node = s , the probability distributions of 11jX s   and jY s  are identical and 
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hence the probability distributions of bids are predicted to be identical in the clock and tree 

format Dutch auctions. 

 

4.3 Predictions for the Sequential-Take IPV Centipede Game with Tree Format 

The tree format centipede game with sequential take opportunities and independent private values 

has a subgame perfect equilibrium similar to that associated with the traditional public value 

centipede game. This can be seen as follows. Let the two players have any two values, 1v  and 2v  

drawn from the support  [0.01, 0.02, …, 9.99, 10.00] for the uniform distribution of values. This 

creates a situation where player 1 could earn 1v +1 at her first take node, 1v +3 at her second take 

node, or 1v +5, 1v +7, or 1v +9 at her successive take nodes, while the second mover could earn 

2v +2, 2v +4, 2v +6, 2v +8, or 2v +10 at her take nodes. The player who does not take earns zero at 

all nodes. If neither player has taken by the time the second player’s final take node has timed out 

(after 10 seconds), both players earn zero. This suggests that if the second player’s final take node 

were to be reached, the second player would take and would earn 2v +10 while the first player 

would receive zero. A rational first player would anticipate this, and take at the preceding node; 

but a rational second player would anticipate this, and take at the preceding node, and so on. This 

argument leads to prediction of a take at the first node. Therefore, the theoretical prediction for 

the IPV centipede game is unraveling to a take at the first node, the same as theory predicts for 

the traditional centipede game with public values. 

 

4.4 Predictions for the Sequential-Take IPV Centipede Game with Clock Format 

The same (unraveling) subgame perfect equilibrium applies to the clock format centipede game, 

as shown by the following.  Let jY , 1, 2,j   denote the two players’ random values in the tree 

format centipede game and let jX , 1, 2,j   denote their values in the clock format game. Let 
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jy  and jx , 1, 2,j   denote the players’ realized values. Player j  knows that his own payoff 

from taking at node n  in the tree game (when it is his turn) is jy n .  Player j  does not know 

player 'k s  ( k j ) payoff from taking (when permitted) at node   in the game tree; instead, it 

is the random variable kY  .  Similarly, player 'j s  payoff from taking at tick t  in the clock 

format centipede game is 11jx t   (because the price on the clock is 10 at tick 1).  Player j  

knows that player 'k s  ( k j ) payoff from taking at tick   in the clock format game is the 

random variable 11kX   . 

 The tree format and clock format IPV centipede games have the same (unraveling) 

equilibrium because of their different uniform distributions of values. At node n s  and tick 

t s , the random payoffs from taking in the tree format and clock format games are, 

respectively, jY s  and 11jX s  .  Recall that jY  is uniformly distributed between 1.01 and 

11.00 whereas jX  is uniformly distributed between 11.01 and 21.00. Therefore, at any node = 

tick = s , the probability distributions of  jY s  and 11jX s   are identical. 

 

4.5  Predictions for the Simultaneous-Bid Dutch Auction with Clock Format 

The risk neutral bid function for the simultaneous-bid Dutch with clock format and values drawn 

from a uniform distribution on [1.01, 1.02, …, 10.99, 11.00] and with each player able to bid at 

10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 are as follows. Let [ , ]s s sb l h  denote that values in the range [ , ]s sl h  

support a Nash equilibrium bid at price sb  on the Dutch price clock. No values support bids of 

10, 9, 8, 7, or 6.  The other parts of the of the Nash equilibrium bid function are: 

 Both Bidders: 5[7.67, 11.00], 4[6.46, 7.66], 3[4.16, 6.45], 2[2.47, 4.15], 1[1.01, 2.46] 

The bid function was solved for numerically. This was done by applying the FindRoot routine in 

Mathematica 6.0 to a system of equations embodying conditions 1 through 4 in Chwe (1988). 
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Chwe’s conditions 1 through 4 characterize the pure strategy Nash equilibrium bid function in a 

first price sealed bid auction with a discrete bid space. Our numerical solution satisfies the 

inequalities in Chwe’s Proposition 1. The theoretical isomorphism between the first price sealed 

bid auction and the Dutch auction is then invoked to apply that solution in the present setting.  

 

4.6  Predictions for the Simultaneous-Bid Dutch Auction with Tree Format 

Arguments similar to those in subsections 4.2 and 4.5 can be used to derive the Nash equilibrium 

bid function for the simultaneous-bid Dutch auction with tree format.  With initial values jX , j  

= 1,2 drawn from the uniform distribution on [-9.99, -9.98, …, -0.01, 0.00] and payoffs for 

exiting at node n  given by jX + n  , the Nash equilibrium strategy function is as follows.  Let 

[ , ]n n nt l h  denote that values in the range [ , ]n nl h  support a Nash equilibrium take at node n .  No 

initial values correspond to taking at any of the first five nodes. The other parts of the Nash 

equilibrium strategy function are: 

Both Bidders: 6[-3.33, 0.00], 7[-4.54, -3.34], 8[-6.84, -4.55], 9[-8.53, -6.85], 10[-9.99, -8.54] 

 

4.7  Predictions for the Simultaneous-Take IPV Centipede Game with Tree Format 

The tree format centipede game with simultaneous take opportunities and independent private 

values has a subgame perfect equilibrium similar to that associated with the traditional public 

value centipede game with sequential take opportunities. This can be seen as follows. Let the two 

players have any two values, 1v  and 2v  drawn from the support  [0.01, 0.02, …, 9.99, 10.00] for 

the uniform distribution of values. This creates a situation where player a would earn av + t if she 

takes at node t = 1, 2, …, 10 while player b would earn bv + t  if he takes at node t. The player 

who does not take earns zero. If both players try to take at the same node, the probability that 

either succeeds in taking (by entering the take response first) is 1/2.  If neither player has taken by 
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the time the final take node has timed out (after 10 seconds), both players earn zero. Therefore if 

node 10 (the final take node) were to be reached, both players would want to take at that node, 

and the probability that either would succeed would by 1/2.  A rational player would anticipate 

this, and consider the expected payoff from taking at node 9.  If player k does not try to take at 

round 9 then player j prefers to take because she would succeed with probability 1 and receive 

payoff jv + 9, which is greater than the expected payoff from waiting until node 10, which is 1/2 

 ( jv + 10).  If player k does try to take at round 9 then player j prefers to take because she would 

succeed with probability 1/2 and receive expected payoff 1/2  ( jv + 9), which is greater than the 

zero amount that would be received from not trying to take at round 9. Therefore each player 

prefers to take rather than pass at round 9.  Similar reasoning shows that each player prefers to 

take rather than pass at round 8, and so on back to round 1. Therefore, the theoretical prediction 

for the simultaneous move IPV centipede game is unraveling to a take at the first node, the same 

as theory predicts for the traditional centipede game with sequential moves and public values. 

 

4.8  Predictions for the Simultaneous-Take IPV Centipede Game with Clock Format 

Arguments similar to those in subsections 4.3 and 4.7 can be used to derive the subgame perfect 

equilibrium strategy function for the simultaneous-take centipede game with clock format. Initial 

values jx , j  = 1,2, are drawn from the uniform distribution on [11.01, 11.02, …, 20.99, 21.00] 

and payoff is j jx p  for taking at clock tick t , with price equal to 11tp t  , for Reasoning as 

above leads to the conclusion that play unravels to a take at the first tick of the price clock at a 

price equal to 10.  
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5.  Experiment Design  

In this section we describe details of the experiment design. In section 3 we described how to 

implement two (isomorphic) versions of each game. We now explain how non-essential 

differences across different games are eliminated by judicious parameterization. We present a 

matrix of treatments and a discussion of treatment sequencing to show how all of this allows for 

an assessment of how observed behavior can be inconsistent with theoretical isomorphisms and 

how such inconsistencies, if observed, can be attributed to behavioral properties of alternative 

institutional formats.   

 In addition to design choices intended primarily to hold constant dynamic structure across 

institutional formats, we also made certain design choices in order to minimize the differences in 

parameterization across treatments. We did this so as to minimize potential sources of confounds. 

First, we used an 11 tick clock or 11 node tree in every treatment. Second, all games utilized an 

independent private values information environment; again, this removes a potential confounding 

difference for interpreting results across games. Third, all games utilized a uniform distribution 

with a support width of $10.00 as the source of independent private values; again, this 

standardization removes an impediment to comparisons across games. Finally, it should be 

pointed out that when all of these design choices were implemented, it left a design where all it 

took to switch between the sequential Dutch auction and the IPV centipede game was a $10.00 

shift in the location (low value, high value, or midrange) of the $10.00 wide uniform distribution 

used to generate independent private values.  

The experiment design implements two key objectives. First, the design can detect 

inconsistencies with theoretical isomorphisms – between the clock and tree formats of the Dutch 

auction and between the clock and tree formats of the IPV centipede game. Second, the design 

allows us to ascertain whether any such violation can be attributed to institutional format; in 

particular, the design allows us to ascertain whether any difference between clock and tree 
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formats is similar or dissimilar in Dutch auctions and centipede games. The experiment includes 

the treatments listed in Table 1. 

Table 1. Experiment Treatments 

 Sequential IPV 

Centipede Games 

Sequential 

Dutch Auctions 

Simultaneous IPV 

Centipede Games 

Simultaneous 

Dutch Auctions 

Tree Format Treatment 1 Treatment 3 Treatment 5 Treatment 7 

Clock Format Treatment 2 Treatment 4 Treatment 6 Treatment 8 

 

If there is a difference in the distributions of bids for Treatment 3 (T3) and Treatment 4 

(T4) then the isomorphism across institutional formats of the sequential Dutch auction fails. If 

there is a difference in the distributions of takes between T1 and T2 then the isomorphism across 

institutional formats of the sequential-take IPV centipede game fails. If such failure is observed, 

are there any generalizable regularities associated with that failure?  For instance, if different 

distributions of bids are observed for T3 and T4, which distribution is closer to the Nash 

equilibrium prediction?  If T1 and T2 yield different distributions of takes, which is associated 

with earlier takes? And does either the clock format or the tree format lead to earlier or later bids 

or takes across games, such that this aspect of the results would appear to be driven by 

institutional format rather than characteristics of the games captured by existing theory? 

With this in mind, the details of sequencing of our design were as follows.  Each 

experiment session took approximately 2 hours. In each session, we ran subjects through three 

treatments with 10 rounds in each treatment. No subject participated in more than one session. 

The first, second, and third sets of 10 rounds are referred to, respectively, as parts 1, 2, and 3. We 

used the following sequences of treatments in parts 1, 2, and 3: T3-T4-T3, T3-T2-T3, T4-T3-T4, 

T4-T1-T4, T2-T1-T2, T2-T3-T2, T1-T2-T1, and T1-T4-T1.  For example, the first listed 

treatment sequence consisted of 10 rounds of T3 in part 1, followed by 10 rounds of T4 in part 2, 

followed by 10 rounds of T3 in part 3. We experimented with these treatment sequences so as to 
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allow for detection of as full as possible set of potential sequencing effects, and to provide for a 

variety of across-subjects and within-subjects comparisons to be made. We deliberately did not 

run T1-T3-T1, T3-T1-T3, T2-T4-T2, or T4-T2-T4 sequences, however. This was because for 

these latter sequences, the only difference in instructions between treatments is the value support 

– all other text in the instructions remains the same – and we were concerned that subjects might 

mistakenly think the instructions were exactly the same, potentially even neglecting to read them.  

Other details of the experiment are as follows. We used an integer clock price decrement 

and node payment increment in all treatments to facilitate quick recognition of payoff information 

by subjects. We used a 2 to 1 experimental dollar to U.S. dollar exchange rate; this was needed to 

keep payments affordable if we were going to keep using a $10.00-wide uniform distribution for 

value draws. We did not just shrink all numbers by 50% to keep payoffs affordable because we 

wanted integer payoff changes between decision opportunities, as noted above. 

 

6. Results  

Experiment sessions were run in the laboratory of the Experimental Economics Center (ExCEN) 

at Georgia State University during 2007 - 2008.  The data are as follows. 

 

6.1 Sequential Dutch Results 

The data show a dramatic difference in behavior across isomorphic versions of the sequential 

Dutch auction employing different institutional formats. This can be seen in a number of ways. 

First of all, one can pool data across all sessions for the same treatment (e.g. all rounds from all 

parts for T4 from all experiment sessions are analyzed as belonging to one distribution) and 

perform rank-sum tests to ascertain whether we can reject the hypothesis that the distribution of 

deviations from predictions for T4 is the same as the distribution of deviations from predictions 

for T3. The rank-sum tests performed on pooled data supports the conclusion  that the distribution 



 23

of deviations is different across the  institutional formats in T3 and T4.5  Specifically, we find that 

such a rank-sum test returns a p-value of 0.0000. 

To further illustrate the nature of the results, consider the following plot of market prices 

(or winning bids) from round 1 of part 1 (for which a rank-sum test of difference in distribution 

between (all) round 1 data from T4 and (all) round 1 data from T3 gives a p-value of 0.000).  

Figure 5 shows bar graphs for the numbers of observations at various market prices (or winning 

bids) for the clock and tree formats. Auction prices increase as one moves up the vertical axis 

from 0 to 10.  Clock ticks for winning bids and tree nodes for successful takes decrease up the 

vertical axis. 
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Figure 5. Bids in Sequential-bid Dutch Auctions 

 

                                                 
5 These tests potentially understate the difference between T4 and T3. There are particular rounds where it 
is practically impossible to detect any difference in behavior across treatments because the drawn values 
are extremely low for all of the subjects. For example, if the Even bidder has a value of, say 2.47, and the 
Odd bidder has a value of 1.80, then almost all the data is going to be in the form of a spike at $2.00 
(barring errors) in both treatments. In such a round, it would be impossible to detect a difference in 
subjects’ approach to bidding (across institutional game formats) even if it otherwise existed. Round 5 in 
Part 1 is one such round. 
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Clearly the distributions of winning bids are very different across institutional formats, with 

higher bids observed in the clock format. Note also that in round 1 of part 1, the risk neutral Nash 

Equilibrium prediction for either format is to bid at 5. 

This leads us to our next point: that in addition to comparing behavior across institutional 

formats, we can compare behavior from a single format to the risk neutral Nash equilibrium 

predicted bids. For the tree format of the sequential Dutch auction, we find that a p-value of 

0.0949 on a rank-sum test on whether the distribution of deviations from theoretical predictions in 

T3 differ from a distribution of zeroes (representing perfect adherence to the theory). The data 

might best be described as noisily “risk neutral” because the average deviation of all pooled data 

in T3 is equal to -0.02672. The average deviation from the predicted bid was a little less than 

three cents (on the side of underbidding) in this experiment in which values were drawn over a 

$10.00-wide interval. Rather than picking up any asymmetry relative to the risk neutral 

prediction, the rank-sum test is instead picking up (to a degree) the substantial, but essentially 

symmetrical, variance around the prediction that exists in the T3 data.  

We can perform a similar analysis for the clock format of the sequential Dutch auction, 

comparing bids therein to the predictions from section 4.1. In making this comparison, we find 

that a rank-sum test of whether the distribution of deviations is different from a distribution 

consisting entirely of zeroes returns a p-value of 0.0000. Here, this reflects consistent 

overbidding, relative to the prediction, on the part of subjects in T4; the average deviation from 

the risk neutral Nash prediction (over all of T4) is 0.6545. 

 Graphically, a time series plot of the average deviation from the theoretical prediction, in 

each round, for each of T3 and T4, shows both how the results differ across treatments and where 

they sit relative to the theoretical prediction in each round. 
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                        Figure 6. Bid Deviations in Sequential-bid Dutch Auctions 

 

6.2 Sequential IPV Centipede Results 

Behavior is also different across institutional formats for the sequential IPV centipede game. 

Pooling all data across rounds, parts, and sessions, we find that the rank-sum test rejects the 

hypothesis that the distribution of deviations from predicted takes is the same across instittutional 

formats (p-value=0.0000).6  

In order to better demonstrate the nature of the results, consider the following plot 

comparing results across institutional formats within a round (round 1 of part 1).  Figure 7 shows 

bar graphs for the data.  The numbers of observations are on the vertical axis.  The horizontal axis 

shows the tree node or clock tick (not clock price) at which  players first take rather than pass in a 

centipede game.  Successful take nodes (resp., clock ticks) for takes increase from 1 to 10 on the 

                                                 
6 Again, this understates the difference across formats. In this case, the reason is that data from both 
formats demonstrates at least some convergence towards the subgame perfect equilibrium over time; thus 
pooling all data mixes data from the end of the experiment, when data from both formats exhibit takes near 
the beginning of the game, with data early in the experiment, when results differ more widely across 
formats. 
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horizontal axis.  Note that this implies that payoffs for successful takes increase to the right along 

the horizontal axis.  The hypothesis that the distributions are the same is rejected with a p-value 

of 0.000 (for data from round 1, part 1).  Clearly, the distributions of  take amounts are different 

across institutional formats. 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Take Node or Tick

N
. O

b
s. Tree Format

Clock Format

 

                               Figure 7. Takes in Sequential-move IPV Centipede Games 

 

Once again, in addition to comparing data across institutional formats, we can also 

compare data from a single format to the theoretical prediction (of taking at the first node). For 

the tree format of the IPV centipede game, we reject that the distribution of deviations is 

indistinguishable from a distribution of zeroes (p-value=0.0000). For the clock format of the IPV 

centipede game, we also reject that the distribution of deviations is indistinguishable from a 

distribution of zeroes (p-value=0.0000). 

In order to better illustrate the statistical results pertaining to the centipede game, the 

following graph plots the time series of the average deviation in “take” from the theoretical  

prediction, for each format. 
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                    Figure 8. Take Deviations in Sequential-move IPV Centipede Games 

 

In general, we find that the difference in behavior persists until comparatively many repetitions of 

the game have been completed, at which point T2 starts to reliably achieve the theoretical 

prediction (in individual rounds) that T1 attained much earlier (in individual rounds). In fact, that 

T1 was able to attain the theoretical prediction so early when n=2 is in itself a novel result in the 

empirical literature on the centipede game. In addition, we should note that moving to an IPV 

environment does not in itself eliminate the failure to unravel typical when using the tree format 

(with n=2 and common information); clearly knowing the other player’s exact payoff information 

is not in itself decisive in generating failure to unravel. 

Finally, in addition to the striking across-subjects results just discussed, the experimental 

design allows for within-subjects comparisons to be made as well. The T1-T2-T1 and T2-T1-T2 

sessions each allow for a regression analysis in which slope and intercept treatment dummies can 

detect structural shifts in an underlying time time trend (of convergence to the subgame perfect 

equilibrium).  
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Avg. Node of Take = a + b1Time + b2Format Dummy  

+ b3TimeFormat Dummy + εt 

 

For the T2-T1-T2 case we find that there are significant changes between treatments. An 

F-test for coefficents jointly zero rejects that the slope and intercept treatment dummies are equal 

to zero (calculated F = 4.56, critical F = 3.35 at 5% level). Graphically, the line fit tells the story. 

 

 

                            Figure 9. Within-subjects T2-T1-T2 Comparisons 
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tree format (rounds 11-20) is associated with subjects postponing the act of taking. Furthermore, 

switching back to the clock format from the tree format is associated with a return to earlier takes 

(in rounds 21-30). While one might claim that the results from rounds 11 through 30 just illustrate 
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be made for the sharp break between round 10 and round 11, which if anything illustrates 

“deconvergence” away from such an equilibrium. 

 In a further check on the ability of changes in game form to perturb play on a within-

subject basis, the T1-T2-T1 session also reveals significant differences in convergence to 

equilibrium across treatments. Switching from the tree format (rounds 1-10) to the clock format 

(rounds 11-20) leads to a break in the series, associated with subjects taking much earlier in the 

clock format. While this could be argued to be evidence of convergence to the SPE (though such 

an argument would incorrectly ignore the role of the time trend variable in controlling for such 

convergence) the switch back to the tree format in rounds 21-30 is associated with a break away 

from the SPE (counter to the time trend); this puts to rest the idea that switching formats does not 

affect play on a within-subjects basis. Statistically the treatments are significant (calculated F = 

12.2151, critical F = 3.35 at 5% level), and graphically the results are as below. 

 

 

                    Figure 10. Within-subjects T1-T2-T1 Comparisons 
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6.3  Simultaneous Dutch Results 

Behavior across isomorphic versions of the simultaneous-bid Dutch auction employing different 

institutional formats is different. Pooling data across all sessions for the same treatment (e.g. all 

rounds from all parts for T7 from all experiment sessions are analyzed as belonging to one 

distribution) and performing rank-sum tests to ascertain whether we can reject the hypothesis that 

the distribution of deviations from theoretical predictions for T8 is the same as that for T7, we 

find that a rank-sum test rejects that the distributions are indistinguishable (p-value=0.0000).7  

For the tree format of the simultaneous Dutch auction, we find that the distribution of 

deviations is significantly different from a distribution of zeroes (p-value=0.0000). Similarly, for 

the clock format of the simultaneous Dutch auction, the distribution of deviations is significantly 

different from a distribution of zeroes (p-value=0.0000). Note that the average deviation for T7 is 

0.6666, while the average deviation for T8 is 1.2565; thus bidding is higher in T8 than in T7. 

 Graphically, a time series plot of the average deviation from the theoretical prediction, in 

each round, for each of T7 and T8, shows both how the results differ across treatments and where 

they sit relative to the theoretical prediction in each round. 

                                                 
7 These tests potentially understate the difference between T7 and T8, for the same reasons given in 
footnote 5. 
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         Figure 11. Bid Deviations in Simultaneous-bid Dutch Auctions 

 

6.4 Simultaneous IPV Centipede Results 

Behavior differs across institutional formats for the simultaneous-take IPV centipede game. 

Pooling all data across rounds, parts, and sessions, we find that the rank-sum test rejects the 

hypothesis that the distribution of deviations from predicted take is the same across treatments (p-

value=0.0000). 

For the tree format of the simultaneous-take IPV centipede game, we find that the 

distribution of deviations is significantly different from a distribution of zeroes (p-value=0.0000). 

In a similar test using data from the clock format of the simulataneous IPV centipede game, we 

find that the distribution of deviations is significantly different from a distribution of zeroes (p-

value=0.0000). 

In order to better illustrate the statistical results pertaining to the simultaneous-take IPV 

centipede game, the following graph plots the time series of the average deviation in “take” from 

the theoretical  prediction for each institutional format. 



 32

-2.5

-2

-1.5

-1

-0.5

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Round

A
vg

. 
d

ev
ia

ti
o

n
 i

n
 r

o
u

n
d

Tree Format

Clock Format

 

Figure 12. Take Deviations in Simultaneous-move IPV Centipede Games 

 

Note that in individual rounds, starting in the fourth round, perfect unraveling is observed in the 

clock format of the simultaneous-take IPV centipede game. In fact, from round 4 onward, 25 of 

27 rounds exhibit perfect unraveling by every pair of subjects across all pooled sessions of the 

experiment. This prevalence of unraveling we believe to be unprecedented for two-player 

centipede games. 

 

6.5 Simultaneous versus Sequential Results: How does Dynamic Structure Matter? 

At this point we have established that Institutional Format (IF) is a significant determinant of how 

people behave in otherwise theoretically-isomorphic games. What about Dynamic Structure 

(DS)? Might the structure of “who moves when” have an impact on behavior beyond that already 

captured in a risk neutral Nash Equilibrium model of bidding, or in a subgame perfect equilibrium 

model of takes in a centipede game? We address this by looking at deviations between actual data 
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and theoretical predictions across games with different Dynamic Structure, but the same 

Institutional Format. 

 While the bid functions for sequential Dutch and simultaneous Dutch are different, one 

can put them on a comparable footing by looking at deviations in the data relative to their 

respective predictions (based on said different bid functions). The prediction across all rounds for 

both the simultaneous and sequential IPV centipede games is for a take at the first node. 

We find that in every comparison – simultaneous Dutch in tree format versus sequential 

Dutch in tree format (p value = 0.0000), simultaneous IPV centipede in tree format versus 

sequential IPV centipede in tree format (p value = 0.0000), simultaneous Dutch in clock format 

versus sequential Dutch in clock format (p value = 0.0000), simultaneous IPV centipede in clock 

format versus sequential IPV centipede in clock format (p value = 0.0000) – the distributions of 

deviations from theory are different across simultaneous and sequential structure games. 

Moreover, the deviations from theory always have the following feature: simultaneous always 

bids higher (resp., takes earlier) than sequential; this is true across all forms of Dutch auction and 

centipede games. Graphically, time series plots of deviations make this clear. 
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                              Figure 13.  Bid Deviaions in Tree Format Dutch Auctions 
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                Figure 14.  Take Deviations in Tree Format IPV Centipede Games 
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                          Figure 15.  Bid Deviations in Clock Format Dutch Auctions 



 35

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Round

A
vg

. 
d

ev
ia

ti
o

n
 i

n
 r

o
u

n
d

Sequential Clock format

Simultaneous Clock
format

 

                 Figure 16.  Take Deviations in Clock Format IPV Centipede Games 

 

Note that these results are not predicted by theory; the implications of move order for 

equilibrium are already in the bid functions used to make the prediction (resp., subgame perfect 

equilbrium prediction of a take at the first node). We are instead dealing with something different 

– something “new”, at least in terms of economists’ awareness of it. Namely, there is something 

about being “on the clock” at the same time as another player in a real time game that makes 

people behave differently than when they alternate “exclusive” turns in a real time game. In 

particular, players in simultaneous versions of a real time game seem less willing to let the game 

continue; this generalizes across Dutch auctions and centipede games. 

 

7.  Summary and Conclusions 

We get some striking results. Winning bids are consistently higher and successful take nodes 

consistently earlier with the clock format than with the tree format for four games with 
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independent private values: sequential-bid Dutch auctions, sequential-take centipede games, 

simultaneous-bid Dutch auctions, and simultaneous-bid centipede games.  

Looking at variations in the centipede game, we find that the rate at which the 

equilibrium is approached can be controlled by variations in IF and DS. Starting with the 

sequential-take IPV centipede game in tree format (at one extreme) we find comparatively late 

unraveling (not unlike findings reported by McKelvey and Palfrey, 1992). But from that baseline 

we find that changing either the DS to simultaneous-take or the IF to clock format leads to earlier 

convergence to the unraveling prediction. The convergence to the unraveling outcome is more 

pronounced with the change in IF than the change in DS. And when we change both the IF and 

DS – arriving then at the simultaneous-take IPV centipede game in clock format – we find 

extremely rapid convergence to the unraveling equilibrium . It is also notable that we find all of 

these results with two-player (n = 2) games. This is important for two reasons: (a) this pushes 

back the boundary for which strong unraveling results have been obtained (Rapoport, et al., 2003 

and Murphy, et al., 2006 report results for n = 3 and n = 7) and (b) holding n constant and 

focusing on (clock and tree) institutional formats has allowed us to generate regularities that 

generalize across games. 

In the Dutch auction, we obtain close to the risk neutral prediction when we use the tree 

format rather than the traditional clock format. The clock format, on the other hand, yields bids 

greater than risk neutral theoretical bids. Overall, we get data that more closely resemble 

theoretical predictions for both Dutch auctions and centipede games when we use the (clock or 

tree) format that is not traditionally associated with that market or game.  

The finding that clock games experience earlier takes than tree games is robust to 

implementations in both sequential and simultaneous dynamic structures, and both centipede 

games and Dutch auctions. That is to say, clock formats reliably produce earlier takes than tree 

formats in a manner than generalizes across different types of games (i.e. markets or stylized 
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game theoretical constructs) and across different structuring (simultaneous or sequential) within 

these types of games. This result holds across all of our treatments. 

What this seems to be telling us is that the institutional format is the primary determinant 

of what have been accepted empirical properties of both Dutch auctions and centipede games. In 

that way, these “stylized facts” of the properties of Dutch auctions and centipede games are 

determined by the clock or tree choice of institutional format in implementation of these games. 

As such: (a) the behavioral properties of the centipede game are not independent of its traditional 

implementation in tree format; and (b) the behavioral properties of the Dutch auction are not 

independent of its traditional implementation in clock format. The institutional formats of these 

games are essential features that drive real behavior, not mere details of implementation. In this 

way, we are finding results for centipede games that correspond to long accepted results that the 

institutional formats of markets are central features that determine their allocation and pricing 

properties (Smith, 1982; Plott, 1982; Friedman and Ostroy, 1995; Zhan and Friedman, 2007).  

Furthermore, we have documented an additional regularity involving dynamic structure. 

Specifically, in all four of our real time games, simultaneous-move structure leads to earlier takes 

than sequential-move structure. This is readily apparent for the centipede game (as the 

equilibrium is the same in all rounds of all implementations), but is also (if less obviously) true 

for the Dutch auction. In the Dutch auction, we find that the deviations from the risk neutral Nash 

equilibrium predictions are greater for the simultaneous-bid auction than the sequential-bid 

auction. In addition, in a number of rounds we find that winning bids in the simultaneous-bid 

Dutch auction are higher than winning bids in the sequential-bid Dutch auction in absolute terms 

as well. This is particularly striking given that (with our parameterization) the bid functions are 

such that the simultaneous-bid Dutch auction should never yield higher prices than the sequential-

bid Dutch auction. 

Overall we find that what might be considered fairly subtle aspects of the received way of 

implementing games in real time do in fact have quite powerful effects. The fact that they had 
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been sitting in the background, bundled into canonical institutions or games, does not mean they 

were not always affecting behavior. And the fact that we now know they are there should help all 

researchers in designing institutions and analyzing data generated therein. In future research we 

aim to search for other such effects, and to shed light on their functioning. 
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