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SOME NOVEL INTERVAL ESTIMATION METHODS

by

XINJIE HU

Under the Direction of Gengsheng Qin, PhD

ABSTRACT

In medical diagnostic studies, the Youden index is a summary measure widely used in the

evaluation of the diagnostic accuracy of a medical test. When covariates are not considered,

the diagnostic accuracy of the test can be biased or misleading. By incorporating information

from covariates, we propose and compare various confidence intervals for the covariate-

adjusted Youden index and its optimal cut-off point. In ROC analysis, the area under the

ROC curve (AUC) is a popular one number summary index of the discriminatory accuracy

of a diagnostic test. Adjustment for covariate effects can greatly improve the diagnostic

accuracy of a test for individual patient. AUC Regression is widely used to evaluate the

effects of the covariates on the diagnostic accuracy. Using side information provided by the

influence function, empirical likelihood methods are proposed for inferences of AUC in the

presence of covariates. For parameters in the AUC regression model, it is shown that the

asymptotic distribution of the influence function-based empirical log-likelihood ratio statistic



is a standard chi-square distribution. Hence, confidence regions for the regression parameters

can be easily obtained without any variance estimates.

The latter half of this dissertation focuses on empirical likelihood (EL) based interval

estimation methods for correlation coefficient (CC) and coefficient of variation (CV). Un-

der normal distribution assumptions, there are many types of confident intervals for CC

or CV, such as the GPQ-based ‘exact’ interval, the Z transformation-based interval, and

maximum likelihood-based intervals. However, the exact method is computationally cum-

bersome, and approximation methods can’t be applied when the underlying distribution is

unknown. Therefore, we propose influence function-based empirical likelihood intervals for

CC and CV. Extensive simulation studies are conducted to evaluate the finite sample per-

formances of the proposed EL-based intervals in terms of coverage probability. Finally, we

illustrate the proposed methods with real examples.

Key words: AUC Regression, Bootstrap, Coefficient of Variation, Correlation Co-
efficient, Covariates, Empirical Likelihood, Fisher Z-transformation,
Generalized Pivotal Quantity, Influence function, Jackknife, ROC
Curve, Youden Index.
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PART 1

INTRODUCTION

Since the normality assumption for the underlying distribution of population may not be

easily guaranteed, and in many cases, the underlying distribution is not normal or unknown,

the parametric methods inferences become quite involved. In this dissertation, we focus on

developing the non-parametric interval estimation methods for the parameter of interests. In

part 2, we apply the MOVER method and binomial proportion confidence intervals for the

covariate-adjusted YI and its optimal cut-off point with/without normal error assumptions.

It is shown that the asymptotic distribution of the influence function-based empirical log-

likelihood ratio statistic is a standard chi-square distribution. Hence, confidence regions for

the regression parameters can be easily obtained without any variance estimates. In part 3-5,

we focus on developing empirical likelihood (EL) based non-parametric methods, particularly

we propose the influence function-based empirical likelihood (IFEL) based interval estimation

method, to construct confidence intervals/regions for the parameters in the AUC regression

model along with the correlation coefficient (CC) and the coefficient of variation (CV) as

well. Extensive simulation studies are conducted to evaluate the finite sample performances

of the proposed EL-based intervals in terms of coverage probability. Finally, we illustrate

the proposed methods with real examples.

1.1 Statistical Evaluation of Diagnostic Tests

In medical diagnostic studies, a continuous-scale test is usually applied to distinguish

diseased and non-diseased populations from each other. Without loss of generality, we assume

that higher test values indicate higher probability of the disease. Assume that X and Y are

values of a continuous-scale test for non-diseased and diseased subjects, respectively. A

subject is classified as diseased (positive) if the subject’s test value is greater than or equal
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to a chosen threshold value “c”. Each threshold value “c” is associated with a probability of

a true positive (TPR) result known as the sensitivity defined by P (X < c) and a probability

of a true negative result (TNR) known as specificity defined by P (Y > c) respectively. The

false negative rate (FNR) is defined as FNR = 1 - TPR and the false positive rate (FPR) is

defined as FPR = 1 - TNR. The receiver operating characteristic (ROC) curve is the plot of

sensitivity (q) versus 1-specificity (1 − p) for all possible threshold values. The ROC curve

has been widely used to evaluate the performance of a test for discriminating diseased and

non-diseased populations.

In ROC analysis, the Youden index (YI) [1] is a commonly used summary measure of

the diagnostic accuracy of a test. The YI of the test is defined as max {p+ q− 1}, in which

the maximum is taken over all p’s and q’s on the ROC curve, or equivalently over all possible

threshold values. The value for YI is between 0 and 1. Then the corresponding threshold

value for YI is called as the optimal cut-off point.

1.2 Covariates Adjustment for the Youden Index

When researchers perform a diagnostic trial, some covariates, like characteristics of

study subjects or operating conditions for the test, may affect test results by influencing

the distributions of test measurements for diseased and/or non-diseased subjects, respec-

tively. Without incorporating the covariates information, ROC analysis may be biased or

misleading. Therefore, it is an intuitive way to incorporate covariates in ROC curve analysis

in order to make use of the additional information. Pardo-Fernandez et al. [2] gave an

excellent review on ROC curve analysis in the presence of covariates.

In order to evaluate the influence of covariates on the YI, some researchers have used

induced-regression methods. They modeled the test/biomarker values through regression

models in each population separately. Pepe [3] and Tosteson et al. [4] specified models

for test results as a function of disease status and covariates. Smith and Thompson [5]

proposed a parametric survival model for modeling the distribution of the screening test

outcome as a function of true disease status and other confounding covariates. Zhou et al.
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[6] extended the models proposed in Pepe by allowing for heteroscedasticity. Zheng and

Heagerty [7] proposed a semi-parametric estimator for the conditional ROC curve, in which

the distribution of the error terms is unknown and allowed to depend on the covariates, but,

as in the previous articles, the effect of the covariates on the conditional means and variances

is modeled parametrically. Recently, Rodŕıguez and Mart́ınez [8] presented a Bayesian semi-

parametric model, in which the error terms are assumed to be normally distributed, but

non-parametric specifications of the conditional means and variances are allowed.

Faraggi [9] used a simple linear regression to model biomarker values from the diseased

and non-diseased populations, and provided adjusted confidence intervals for the YI and

the corresponding threshold value by using a bootstrap method. In section 2 of part 2, we

consider similar linear regression models to those used in Faraggi [9], and compare the GPQ,

BCa, Bootstrap methods for construction of confident interval for adjusted Youden index

along with the optimal cutoff point. While linear regression models may be too simple to

connect covariates and test values within each population, Yao et al. [10] proposed the use

of heteroscedastic regression models for test results and provided a covariate-adjusted esti-

mator for the AUC. Zhou and Qin [11] proposed nonparametric estimators for the covariate-

adjusted YI under heteroscedastic regression models. In section 3 of part 2, we further extend

Zhou and Qin’s work, generalize the approach of Faraggi and propose various confidence in-

tervals for the covariate-adjusted YI and its associated cut-off point under heteroscedastic

regression models with/without normal error assumptions.

1.3 Empirical Likelihood Methods

Empirical likelihood (EL), introduced by Owen [12][13], is a powerful non-parametric

method and its advantages over the normal approximation-based methods have been well-

recognized (see, e.g., Hall and La Scala, [14]). There are a number of advantages to the

EL method over normal approximation methods. For example, EL-based method allows for

confidence intervals/regions construction without a variance estimator; in the EL method,

instead of assuming a symmetric shape for the confidence intervals/regions, the shape is
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automatically determined by the data. Over last two decades, EL has found wide applications

in many areas such as in econometrics, medical studies and survey sampling. Readers are

referred to Owen’s [15] book and references therein. EL-based methods have been successfully

applied to ROC analysis (Claeskens et al.,[16], Qin and Zhou, [17]).

In part 3, we propose two empirical likelihood based confidence intervals for inferences

of AUC regression in the presence of covariates: one is an influence function-based empirical

likelihood confidence interval (IFEL), the other is a Jackknife empirical likelihood confidence

interval (JEL). The proposed new methods allow for confidence region construction without

a variance estimator. We also construct confidence intervals for the covariate-adjusted AUC.

Simulation studies are conducted to compare the relative performance of the proposed EL-

based methods with the existing method in AUC regression. It shows that the proposed

methods have better small sample performances than existing normal approximation-based

confidence region in terms of coverage probability.

In part 4, we apply the influence function-based EL method to construct a confidence

interval for CC and compare it with the existing estimation methods. In part 5, we exam-

ine the EL-based confident intervals including the plug-in empirical likelihood-based PEL

interval, bootstrap-based BPEL interval, the Jackknife empirical likelihood-based JEL in-

terval, and the proposed influence function-based IFEL interval, with the existing intervals

including the Vangel’s approximation-based interval, the bootstrap percentile (BP) inter-

val and GPQ-based ‘exact’ confidence interval for CV under normal/non-normal underlying

distribution assumptions.
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PART 2

CONFIDENCE INTERVALS FOR THE YOUDEN INDEX AND ITS

OPTIMAL CUT-OFF POINT IN THE PRESENCE OF COVARIATES

2.1 Introduction

In literature, two approaches have been used to model the relationship between test val-

ues and covariates. The first approach is to model the dependence of the ROC curve directly

on the covariates (Pepe, Dodd and Pepe [18], Pepe and Cai). However this approach loses

the connection with the cut-off value and does not allow the prediction of the sensitivity

and specificity at a given cut-off point conditional on covariates. The second approach is to

directly model the covariate effects on the test results and through the modeling process ob-

tain the covariate-adjusted ROC curve and its related summary measures. Faraggi [9] used

a simple linear regression to model biomarker values from the diseased and non-diseased

populations, and provided adjusted confidence intervals for the YI and the corresponding

threshold value by using a bootstrap method. In this part, we consider similar linear regres-

sion models to those used in Faraggi, and provide a Generalized Pivotal Quantity (GPQ) (see

Tsui and Weerahandi, [19]) based method for constructing ‘exact’ confidence intervals for

the covariate-adjusted YI and its associated optimal cut-off point. In literature, GPQ-based

inferences have been applied to many problems. For example, Gamage et al. [20] constructed

a generalized confidence region for the difference between two mean vectors; Lee and Lin [21]

developed confidence intervals for the ratio of the means of two normal populations; Tian and

Wilding [22] presented a generalized variable approach for confidence interval estimation of a

common correlation coefficient from several independent samples drawn from bivariate nor-

mal populations; Tian [23] provided confidence intervals for the AUC with normal outcomes

in linear models. Recently, Lai et al. [24] made use of a generalized approach to construct

confidence intervals for the YI and its corresponding optimal cut-off point. Further details
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on generalized confidence intervals can be found in Weerahandi [25][26][27].

While linear regression models may be too simple to connect covariates and test values

within each population, Yao et al. [10] proposed the use of heteroscedastic regression models

for test results and provided a covariate-adjusted estimator for the AUC. Zhou and Qin

[11] proposed nonparametric estimators for the covariate-adjusted YI under heteroscedastic

regression models. Inácio de Carvalho et al. [28] developed a nonparametric Bayesian

covariate-adjusted estimation for the YI. In this part, we further extend Zhou and Qin’s

work and propose various confidence intervals for the covariate-adjusted YI and its associated

cut-off point under heteroscedastic regression models.

In section 2.2, we incorporate information from covariates using induced linear regression

models for test results. In section 2.3, under heteroscedastic regression models, we compare

various confidence intervals including Wilson Score HWS confidence interval, Agresti-Coull

HAC confidence interval, Bootstrap Bias Correction and Acceleration HBCA confidence

interval and ACNA confidence interval for the covariate-adjusted Youden index and its opti-

mal cut-off point with/without normal error assumptions. Extensive simulation studies are

conducted to evaluate the finite sample performance of various confidence intervals for the

Youden index and its optimal cut-off point in the presence of covariates. To illustrate the ap-

plication of our recommended methods, we apply the methods to a dataset on postprandial

blood glucose measurements.

2.2 Linear Regression Models for the Test Results

2.2.1 The Youden Index and Its Associated Cut-off Point

Let X denote the non-diseased test result and Y denote the diseased test result. X and

Y are linear functions of covariates based on:

X|Z = z = β′1z + ε1, (2.1)

Y |Z = z = β′2z + ε2, (2.2)
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where z = (z1, z2, · · · , zp)′ is a p-dimensional vector of covariates associated with the non-

diseased and diseased test results, βt = (βt1, βt2, · · · , βtp)′, t = 1, 2, are p-dimensional column

vectors of unknown parameters, the error terms εi’s are independent random variables, and

εt ∼ N(0, σ2
t ) for t = 1, 2. At a given covariate Z = z, X|Z ∼ N(β′1z, σ

2
1) , and Y |Z ∼

N(β′2z, σ
2
2). From equations (2.1) and (2.2), we can derive the covariate-adjusted YI at a

given cut-off point c:

J(z) = max
c
{Φ
(
β′2z− c
σ2

)
+ Φ

(
c− β′1z

σ1

)
} − 1.

According to Schisterman and Perkins [29], the covariate-adjusted optimal cut-off point c0(z)

is derived as

c0(z) =
β′1z(b2 − 1)− a+ b

√
a2 + (b2 − 1)σ2

1 ln b2

b2 − 1
, (2.3)

where a = β′2z− β′1z, b = σ2

σ1
.

If σ1 = σ2, c0(z) can be replaced by the limit of (2.3) as b→ 1 which is

c0(z) =
β′1z + β′2z

2
. (2.4)

Therefore, by substituting c with c0, the covariate-adjusted YI is given by

J(z) = Φ

(
β′2z− c0(z)

σ2

)
+ Φ

(
c0(z)− β′1z

σ1

)
− 1. (2.5)

Suppose that {(z′i,x, xi) : i = 1, · · · ,m} are random samples of “non-diseased” subjects

from model (2.1) and {(z′j,y, yj) : j = 1, · · · , n} are random samples of “diseased” subjects

from model (2.2). zi,x = (zi1,x, zi2,x, · · · , zip,x)′ and zj,y = (zj1,y, zj2,y, · · · , zjp,y)′ are the

corresponding covariates values in the “non-diseased” and “diseased” samples. We would

like to estimate J(z) and c0(z) at a given z = (z1, z2, · · · , zp)′ based on these samples. Then,

βi’s and σ2
i ’s can be estimated by the following estimators based on the “non-diseased” and
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“diseased” samples, respectively, i.e.,

β̂1 = (Z̃′xZ̃x)−1Z̃′xX̃,

β̂2 = (Z̃′yZ̃y)−1Z̃′yỸ,

σ̂2
1 = (X̃′X̃− β̂1Z̃

′
xX̃)/(m− p),

σ̂2
2 = (Ỹ′Ỹ − β̂2Z̃

′
yỸ)/(n− p),

where X̃ = (x1, · · · , xm)′, Ỹ = (y1, · · · , yn)′ and

Z̃x =


z11,x z12,x · · · z1p,x

z21,x z22,x · · · z2p,x

...
...

...
...

zm1,x zm2,x · · · zmp,x


, Z̃y =


z11,y z12,y · · · z1p,y

z21,y z22,y · · · z2p,y

...
...

...
...

zn1,y zn2,y · · · znp,y


.

Then by substituting above estimates for the corresponding unknown parameters in (2.3)-

(2.5), we obtain the point estimators Ĵ(z) and ĉ0(z) for the covariate-adjusted YI along with

its optimal cut-off point.

2.2.2 Generalized Confidence Intervals

Tsui and Weerahandi [19][25] introduced the generalized confidence interval. They

provided the following definition for the generalized pivotal quantity (GPQ). Suppose that

W is a random variable with a distribution depending on (θ, δ), where θ is a parameter of

interest and δ is a nuisance parameter. Let w be the observed value of W . R(W ;w, θ, δ)

is a function of W,w, θ, and δ. Then R(W ;w, θ, δ) is called a GPQ if it satisfies: 1. The

distribution of R(W ;w, θ, δ) doesn’t depend on the unknown parameters. 2. The value of

R(W ;w, θ, δ) at W = w is θ, which is the parameter of interest.

Note that X|z and Y |z are independently following normal distributions N(β′1z, σ
2
1)

and N(β′2z, σ
2
2), respectively. Next, we will derive the corresponding GPQs for mean and

variance functions: β′1z, β′2z, σ2
1 and σ2

2, at a given covariate Z = z.
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We observe that β′tz, t=1,2 can be consistently estimated by β̂
′
tz, where β̂′1z and β̂′2z

are linear combinations of β̂1 and β̂2 following multivariate normal distributions. β̂
′
tz is

normally distributed following β̂
′
tz ∼ N (β′tz, σ

2
t Vt) for t = 1, 2 with

V ar(β̂
′
tz) = z′V ar(β̂t)z = σ2

t z
′(Z̃′tZ̃t)

−1z ≡ σ2
t Vt. (2.6)

Therefore, we can derive the GPQ for β′1z and β′2z as:

Rβ′1z = β̂′1z−
β̂′1z− β′1z

σ1

√
V1

× σ1

√
V1
ex
eX

= β̂′1z−
Z√
e2
X/σ

2
1

× ex
√
V1

= β̂′1z− Tm−p
√

m

m− p
× ex

√
V1, (2.7)

where eX =
{∑

i(Xi−X̄)2

m

}1/2

with X̄ =
∑

iXi/m, ex is the observed value of eX , and Tm−p

is a Student’s t statistic with degrees of freedom m− p. And

Rβ′2z = β̂′2z− Tn−p
√

n

n− p
× ey

√
V2, (2.8)

where eY =
{∑

j(Yj−Ȳ )2

n

}1/2

with Ȳ =
∑

j Yj/n, ey is the observed value of eY , and Tn−p is a

Student’s t statistic with degrees of freedom n− p.

The GPQs for σ2
1 and σ2

2 are:

Rσ2
1

=
σ2

1

e2X
× e2

x = me2x
χ2
m−p

, (2.9)

Rσ2
2

=
σ2

2

e2Y
× e2

y =
ne2y
χ2
n−p

, (2.10)

respectively.

Then we obtain the GPQ for optimal cut-off point c0(z) by substituting Ra, Rb, Rβ′1z
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and Rσ2
1

for the corresponding quantities a, b,β′1z and σ2
1 in (2.3) and (2.4):

Rc0 =
Rβ′1z(R2

b − 1)−Ra +Rb

√
R2
a + (R2

b − 1)Rσ2
1

lnR2
b

R2
b − 1

. (2.11)

where Ra and Rb are the GPQs for a and b, respectively,

Ra = Rβ′2z −Rβ′1z, Rb =
Rσ2

Rσ1
, and Rσt =

√
Rσ2

t
for t = 1, 2.

When σ2
1 = σ2

2,

Rc0 =
Rβ′1z +Rβ′2z

2
. (2.12)

Therefore, the GPQ for Youden index J(z) is

RJ = Φ

(
Rβ′2z −Rc0

Rσ2

)
+ Φ

(
Rc0 −Rβ′1z

Rσ1

)
. (2.13)

In order to construct 100(1−α)% level generalized confidence intervals for the covariate-

adjusted YI along with its optimal cut-off point, we apply the following algorithm proce-

dure(see also Tian [22], Lai et al.[24]):

1. Compute ex =
{∑

i(xi−x̄)2

m

}1/2

, ey =
{∑

j(yj−ȳ)2

n

}1/2

, β̂′1z and β̂′2z.

2. Let k be the loop number, we choose K = 1000 as the total number of iterations.

Then, for each loop, k = 1, . . . , K,

• Generate Tm−p and Tn−p from Student’s t-distribution with degrees of freedom

m− p and n− p, respectively;

• Generate χ2
m−p and χ2

n−p from χ2 distribution with degrees of freedom m− p and

n− p, respectively;

• Compute Rβ′1z, Rβ′2z, Rσ1 , and Rσ2 according to equations (2.7)-(2.10);

• Compute Rc0,k following (2.11) or (2.12);

• Compute RJ,k following (2.13).
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(end k loop)

3. Compute the 100α/2-th percentile RJ,α/2 and the 100(1−α/2)-th percentile RJ,(1−α/2)

of {RJ,1, RJ,2, . . . , RJ,K}. Then,
(
RJ,α/2, RJ,(1−α/2)

)
is a 100(1 − α)% level confidence

interval for the covariate-adjusted YI.

4. Compute the 100α/2-th percentile Rc0,α/2 and the 100(1−α/2)-th percentile Rc0,(1−α/2)

of {Rc0,1, Rc0,2, . . . , Rc0,K}. Then,
(
Rc0,α/2, Rc0,(1−α/2)

)
is a 100(1−α)% level confidence

interval for the covariate-adjusted optimal cut-off point.

The normality assumption on the test results X|z and Y |z may not be necessarily sat-

isfied in many applications. For test results with non-normal distributions, the transformed

test results could follow normal distributions after using the following Box-Cox transforma-

tion:

X(λ)|z =


Xλ|z−1

λ
, λ 6= 0

log(Xλ|z), λ = 0
, Y (λ)|z =


Y λ|z−1

λ
, λ 6= 0

log(Y |z), λ = 0
,

where the power constant λ can be obtained by maximizing the likelihood functions of the

transformed test results. Then, the proposed GPQ method can be applied to the transformed

test results for inferences on the YI and its associated optimal cutoff.

2.3 Heteroscedastic Regression Models for the Test Results

In section 2.2, we employ linear regressions with normal errors to model the covariate

effects on test results. For test results with non-normal or unknown distributions, Yao et

al.[10] motivated the use of non-parametric heteroscedastic regression models for test results.

Here we utilize the same models as in Yao, et al. [10], and assume that

X|Z = z = µ1(z) +
√
ν1(z)ε1, (2.14)

Y |Z = z = µ2(z) +
√
ν2(z)ε2, (2.15)



12

where z represents the vector of covariates, ε1 and ε2 are independent standard errors having

mean zero and standard deviation one, the range of the variance functions ν1(z) and ν2(z) is

restricted in <+ and finite for all z ∈ <p. In addition, let FZ and GZ denote the cumulative

distribution functions (c.d.f.) of X and Y at given Z respectively, F ∗(·) and G∗(·) denote

the c.d.f. of ε1 and ε2 respectively. Here, the error distributions F ∗ and G∗ are assumed

to be independent of Z. We further assume that for any given covariate value Z = z,

P (Y > X|Z = z) ≥ 0.5, which is equivalent to µ1(z) < µ2(z) if F ∗ and G∗ are symmetric

distributions about 0. This assumption ensures that the value of the YI with given covariate

information is between 0 and 1 inclusive.

2.3.1 Covariate-adjusted Youden Index with the Normal Error Assumption

With the covariate Z, both YI and its associated optimal cut-off point are dependent

on Z. The YI at given Z = z is

J(z) = max
c
{P (Y ≥ c|Z = z)) + P (X ≤ c|Z = z)− 1} (2.16)

= P (X ≤ co(z)|Z = z)− P (Y ≤ co(z)|Z = z) (2.17)

= FZ(co(z))−GZ(co(z)), (2.18)

where co(z) is the optimal cut-off point at given z.

If the errors ε1 and ε2 are assumed to be normally distributed in models (2.14) and

(2.15), the YI at Z = z can be expressed as

JN(z) = Φ

(
µ2(z)− co(z)√

ν2(z)

)
− Φ

(
µ1(z)− co(z)√

ν1(z)

)
≡ θ2N − θ1N , (2.19)

where JN(z) stands for J(z) under the normal distributional assumption for the errors. With

the assumption that µ2(z) > µ1(z), co(z) has the following closed form:

co(z) =
µ1(z)(b2 − 1)− a+ b

√
a2 + (b2 − 1)ν1(z)ln(b2)

(b2 − 1)
, (2.20)
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where a = µ2(z)− µ1(z), b =
√
ν2(z)/

√
ν1(z). When b = 1, we have

co(z) =
µ1(z) + µ2(z)

2
. (2.21)

Under models (2.14)-(2.15), the mean and variance functions µ1, µ2, ν1, and ν2 can

be consistently estimated via the local linear or kernel regression techniques. Let µ̂1, µ̂2,

ν̂1, and ν̂2 be the local linear estimates for µ1, µ2, ν1, and ν2 (see Fan and Gijbels, 1996)

respectively, and coN(z) be the plug-in estimate of co(z). In practice, Hengartner, Wegkamp

and Matzner-Løber’s [30] method can be used to select bandwidths for these local linear

regression estimates. Then the estimator for the covariate-adjusted YI can be defined as

follows:

ĴN(z) = Φ

(
µ2(z)− ĉoN(z)√

ν̂2(z)

)
− Φ

(
µ̂1(z)− ĉoN(z)√

ν̂1(z)

)
≡ θ̂2N − θ̂1N . (2.22)

2.3.2 Covariate-adjusted Youden Index without the Normal Error Assumption

In this section, we assume that the error distributions of εt’s (t = 1, 2) in models (2.14)-

(2.15) are unknown. As mentioned in the Section 2.2, xi, i = 1 · · ·m and yj, j = 1 · · ·n are

test results of random samples from “non-diseased” and “diseased” subjects respectively. zi,x

and zj,y are given covariates based on these samples. We want to estimate J(z) at given z.

To estimate J(z) at given z, we have to estimate the mean functions µi(z)’s, the variance

functions νi(z)’s and the error distributions. We can easily estimate the mean and variance

functions by using the local linear or kernel regression methods. However it is difficult to

obtain good estimates for the error distributions in the heteroscedastic regression models.

Instead of using a complex distribution estimation (e.g., a kernel distribution estimation),

we employ the following procedure to estimate J(z) (see also Yao, et al.[10]).

1. Find the local linear estimates µ̂1, µ̂2, ν̂1, and ν̂2 for µ1, µ2, ν1, and ν2 (see Fan and

Gijbels, [31]).
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2. Find the standardized residuals:

ε̂i,1 =
xi − µ̂1(zi,x)√

ν̂1(zi,x)
, ε̂j,2 =

yj − µ̂2(zj,y)√
ν̂2(zj,y)

.

3. Estimate test values at given Z = z as follows:

x̂i,z = µ̂1(z) +
√
ν̂1(z)ε̂i,1, ŷj,z = µ̂2(z) +

√
ν̂2(z)ε̂j,2.

Then, the covariate-adjusted YI J(z) can be estimated by

ĴE(z) = max
c

[
n−1

n∑
j=1

I(ŷj,z ≥ c)−m−1

m∑
i=1

I(x̂i,z ≥ c)

]

= n−1

n∑
j=1

I(ŷj,z ≥ ĉoE(z))−m−1

m∑
i=1

I(x̂i,z ≥ ĉoE(z))

≡ θ̂2E − θ̂1E ≡ θ̂,

where I(·) is the indicator function, and ĉoE(z) is an empirical estimator for the optimal

cut-off point and defined as ĉoE(z) = median of Ĉ(z) with

Ĉ(z) =

{
c : max

c

[
n−1

n∑
j=1

I(ŷj,z ≥ c)−m−1

m∑
i=1

I(x̂i,z ≥ c)

]}
.

2.3.3 Confidence Intervals for the Covariate-adjusted Youden Index

Zhou and Qin [11] studied the asymptotic properties of the estimator Ĵ(z) for the

covariate-adjusted YI under heteroscedastic regression models with/without the normal error

assumption. Here, we focus on construction of confidence intervals for the covariate-adjusted

YI.
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From (3.3), since

J(z) = P (Y ≥ co(z)|Z = z) + P (X ≤ co(z)|Z = z)− 1 (2.23)

= P (Y ≥ co(z)|Z = z)− P (X ≥ co(z)|Z = z) (2.24)

≡ θ2 − θ1 ≡ θ, (2.25)

we can see that the covariate-adjusted YI J(z) is the difference between two unknown pro-

portions θ2 and θ1, where θ1 ≡ P (X ≥ co(z)|Z = z), θ2 ≡ P (Y ≥ co(z)|Z = z). Since co(z)

can be consistently estimated by ĉo(z) = ĉoN(z) or ĉoE(z), θ1 can be consistently estimated by

θ̂1 = θ̂1N or θ̂1E, and θ2 can be consistently estimated by θ̂2 = θ̂2N or θ̂2E, respectively. Hence,

J(z) can be consistently estimated by Ĵ(z) = ĴN(z) or ĴE(z) with/without the normal error

assumption, respectively.

Under the assumption that the test results from the non-diseased group are independent

of the test results from the diseased group, the variance of Ĵ(z) can be consistently estimated

by

V̂ ar(J(z)) = V̂ ar(θ̂2 − θ̂1) = V̂ ar(θ̂2) + V̂ ar(θ̂1),

where V̂ ar(θ̂1) = θ̂1(1− θ̂1)/n and V̂ ar(θ̂2) = θ̂2(1− θ̂2)/m are consistent estimates for the

variance of θ̂1 and θ̂2, respectively. Therefore, a (1− α)-th Wald confidence interval for the

covariate-adjusted YI can be constructed as follows:

(
J(z)− zα/2

√
V̂ ar(θ̂1) + V̂ ar(θ̂2), J(z) + zα/2

√
V̂ ar(θ̂1) + V̂ ar(θ̂2)

)
, (2.26)

where zα/2 is the upper α
2
-th quantile of the standard normal distribution.

Our simulation studies show that this Wald confidence interval has poor small sample

performance. In order to improve the performance of the Wald confidence interval, we use

the MOVER method (See Zou, [32]) to construct new hybrid confidence intervals for the

covariate-adjusted YI and its optimal cut-off point.
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Let lt and ut (t = 1, 2) be the lower and upper limits of a given 100(1− α)% two-sided

confidence interval for θt, respectively. Then,

lt = θ̂t − zα/2
√
V̂ ar(θ̂t), ut = θ̂t + zα/2

√
V̂ ar(θ̂t),

which implies that the variance of θ̂t can be estimated by V̂ arl(θ̂t) = (θ̂t − lt)
2/z2

α/2 and

V̂ aru(θ̂t) = (ut − θ̂t)2/z2
α/2. After plugging these variance estimates back to equation (2.26),

we get a hybrid confidence interval for the covariate-adjusted YI:

(
J(z)−

√
(θ̂2 − l2)2 + (u1 − θ̂1)2, J(z) +

√
(u2 − θ̂2)2 + (θ̂1 − l1)2

)
.

Here, we propose methods (i) and (ii) to construct the two-sided confidence interval

(lt, ut) for θt.

(i) The Wilson Score Method

l1 =
θ̂1 +

z2
α/2

2m
− zα/2

√
θ̂1(1−θ̂1)

m
+

z2
α/2

4m2

1 + z2
α/2/m

, u1 =
θ̂1 +

z2
α/2

2m
+ zα/2

√
θ̂1(1−θ̂1)

m
+

z2
α/2

4m2

1 + z2
α/2/m

,

l2 =
θ̂2 +

z2
α/2

2n
− zα/2

√
θ̂2(1−θ̂2)

n
+

z2
α/2

4n2

1 + z2
α/2/n

, u2 =
θ̂2 +

z2
α/2

2n
+ zα/2

√
θ̂2(1−θ̂2)

n
+

z2
α/2

4n2

1 + z2
α/2/n

.

The hybrid confidence intervals based on this method are called Hybrid Wilson Score

(HWS) intervals for the covariate-adjusted YI. We use HWS-N or HWS-E denote the corre-

sponding HWS interval for J(z) when θt = θtN or θtE for t = 1, 2.

(ii) The Agresti-Coull Method

l1 = θ̃1 − zα/2

√
θ̃1(1− θ̃1)

m+ z2
α/2

, u1 = θ̃1 + zα/2

√
θ̃1(1− θ̃1)

m+ z2
α/2

,

where θ̃1 = θ̃1N ≡
θ̂1N+z2

α/2
/(2m)

1+z2
α/2

/m
, or θ̃1E ≡

∑m
i=1 I(x̂i,z≥ĉoE(z))+z2

α/2
/2

m+z2
α/2

,
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l2 = θ̃2 − zα/2

√
θ̃2(1− θ̃2)

n+ z2
α/2

, u2 = θ̃2 + zα/2

√
θ̃2(1− θ̃2)

n+ z2
α/2

,

where θ̃2 = θ̃2N ≡
θ̂2N+z2

α/2
/(2n)

1+z2
α/2

/n
, or θ̃2E ≡

∑n
j=1 I(ŷj,z≥ĉoE(z))+z2

α/2
/2

n+z2
α/2

.

The hybrid confidence intervals for J(z) based on this method are called Hybrid Agresti-

Coull (HAC) intervals for the covariate-adjusted YI. We use HAC-N or HAC-E denote the

corresponding HAC interval for J(z) with/without the normal error assumption.

Another confidence interval for θ = J(z), or co(z) is the bootstrap Bias Correction and

Acceleration (BCa) interval defined as

(θ∗([Bγ1]), θ∗([Bγ2])),

where {θ∗b : b = 1, 2, · · · , B} are B (B ≥ 500 is recommended) bootstrap copies of θ̂ =

Ĵ(z), or co(z), θ∗([Bγ1]) and θ∗([Bγ2]) are the [Bγ1]-th and [Bγ2]-th ordered values of {θ∗b}’s

respectively, and

γ1 = Φ

(
q +

q + zα/2
1− p(q + zα/2)

)
, γ2 = Φ

(
q +

q + z1−α/2

1− p(q + z1−α/2)

)
,

with p = 1
6

m+n∑
j=1

φ3
j/(

m+n∑
j=1

φ2
j)

3
2 , q = Φ−1( 1

B

B∑
b=1

I(θ∗b ≤ θ̂)), φj = θ̂(·) − θ̂(−j), θ̂(−j) being θ̂

computed by deleting the j-th observation in the combined sample from the non-diseased

and diseased populations, and θ̂(·) = 1
m+n

m+n∑
j=1

θ̂(−j).

Under the Heteroscedastic Regression Models, the confidence intervals for J(z) and co(z)

based on this BCa method are called the HBCA intervals for the covariate-adjusted YI along

with its optimal cut-off point. We use HBCA-N or HBCA-E denote the corresponding HBCA

intervals for J(z) and co(z) with/without the normal error assumption.

Zhou and Qin (2015) also proposed a bootstrap-based interval for J(z). For comparison
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with our proposed intervals (see simulation studies in next section), we summarize their

bootstrap procedure here.

Let

ĴAC(z) =

∑n
j=1 I(ŷj,z ≥ ĉoE(z)) + z2

α/2/2

n+ z2
α/2

−
∑m

i=1 I(x̂i,z ≥ ĉoE(z)) + z2
α/2/2

m+ z2
α/2

where ĉoE(z) = median of Ĉ(z) is defined in section 2.2.

(1). Find a bootstrap sample of size m, x̂∗i,z’s, with replacement from x̂i,z’s, and a

bootstrap sample of size n, ŷ∗j,z’s, with replacement from ŷj,z’s.

(2). Calculate the bootstrap version of ĴAC(z)

Ĵ∗AC(z) =

∑n
j=1 I(ŷ∗j,z ≥ ĉ∗oE(z)) + z2

α/2/2

n+ z2
α/2

−
∑m

i=1 I(x̂∗i,z ≥ ĉ∗oE(z)) + z2
α/2/2

m+ z2
α/2

,

where ĉ∗oE(z) is the bootstrap version of ĉoE(z).

(3). Repeat step (1) and step (2) B (B ≥ 500 is recommended) times to obtain the set

of bootstrap replications {Ĵ∗bAC(z) : b = 1, 2, . . . , B} and {ĉ∗boE(z) : b = 1, 2, . . . , B} .

Then, the bootstrap variance estimators V ∗(ĴAC(z)) and V ∗(ĉoE(z)) are defined as

V ∗(ĴAC(z)) =
1

B − 1

B∑
b=1

(Ĵ∗bAC(z)− J̄∗AC(z))2

V ∗(ĉoE(z)) =
1

B − 1

B∑
b=1

(ĉ∗boE(z)− c̄∗oE(z))2

where J̄∗AC(z) = 1
B

∑B
b=1 Ĵ

∗b
AC(z), and c̄∗oE(z) = 1

B

∑B
b=1 ĉ

∗b
oE(z).

The bootstrap-based intervals (hereafter ACNA interval) for J(z) and co(z) are defined

as

(
ĴAC(z)− zα/2

√
V ∗(ĴAC(z)), ĴAC(z) + zα/2

√
V ∗(ĴAC(z))

)
, (2.27)(

ĉoE(z)− zα/2
√
V ∗(ĉoE(z)), ĉoE(z) + zα/2

√
V ∗(ĉoE(z))

)
, (2.28)
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respectively.

2.4 Simulation Studies

In this section, we conduct two simulation studies to evaluate the finite sample perfor-

mance of the confidence intervals proposed in sections 2.2 - 2.3.

In the first simulation study, we compare the proposed generalized confidence interval

(GPQ interval) with the BCa interval and two bootstrap-based intervals for the covariate-

adjusted YI along with the optimal cut-off point c0(z) in terms of interval lengths and

coverage probabilities under the linear regression models with normal errors for test results.

The computation procedure of the bootstrap-based intervals is summarized as follows:

1. Draw a bootstrap resample {(z′∗i,x, x∗i ) : i = 1, · · · ,m} from the “non-diseased” sample

{(z′i,x, xi) : i = 1, · · · ,m}, and a bootstrap resample {(z′∗j,y, y∗j ) : j = 1, · · · , n} from

the “diseased” sample {(z′j,y, yj) : j = 1, · · · , n}, respectively.

2. For θ̂ = Ĵ(z) and ĉ0(z), compute the bootstrap copy θ∗ of θ̂ from (2.5) and (2.3),

respectively.

3. Repeat the first two steps B times to obtain the bootstrap replications {θ∗b : b =

1, 2, · · · , B}. Then, the bootstrap estimator V ∗(θ̂) for the variance of θ̂ is defined as

V ∗(θ̂) =
1

B − 1

B∑
b=1

(θ∗b − θ∗)2,

where θ
∗

= B−1
∑B

b=1 θ
∗b.

Two (1 − α)100% (0 < α < 1) level bootstrap-based intervals for θ (= J(z), or c0(z))

can be constructed as follows:

The first one, called BTI interval, is a bootstrap percentile interval for θ defined by

(θ∗([Bα/2]), θ∗([B(1−α/2)])),
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where θ∗([Bα/2]) and θ∗([B(1−α/2)]) are the α/2-th and (1 − α/2)-th quantiles of {θ∗b : b =

1, 2, · · · , B}, respectively.

The second one, called BTII interval, for θ is defined as

(θ̂ − zα/2
√
V ∗(θ̂), θ̂ + zα/2

√
V ∗(θ̂)),

where θ̂ (= Ĵ(z), or ĉ0(z)) is defined in section 2.1.

In the simulation study, the “non-diseased” sample {(z′i,x, xi) : i = 1, · · · ,m} and the

“diseased” sample {(z′j,y, yj) : j = 1, · · · , n} are generated from the following linear regression

models, respectively:

Model 1: Linear Regression Models

X|Z = 6 + 1.5Z + ε1, (2.29)

Y |Z = 7.2 + 2.4Z + ε2, (2.30)

where Z follows the uniform distribution on [1, 5], εt’s follow N(0, σ2
i ) (t = 1, 2) with σ1 = 2

and σ2 = 1.5, and ε1 is independent of ε2. We choose sample sizes (m,n) = (50, 50),

(100, 100), and (30, 50), respectively. Using the simulated samples, we calculate 95% level

confident intervals for the covariate-adjusted YI and the cut-off point c0(z) at a given z where

z’s are chosen to be 40 evenly distributed points in [1, 5]. For computation of the average

upper and lower bounds of these confident intervals, we generate N = 1000 “non-diseased”

and “diseased” samples, respectively. We choose K = 1000 for the calculation of the GPQ-

based intervals, and B = 1000 for the calculation of BCa, BTI and BTII intervals. Figure 2.1

and 2.2 display the 95% level pointwise confidence bands and coverage probabilities of the

confidence intervals for the covariate-adjusted YI and the optimal cut-off point respectively

using BCa, GPQ, BTI and BTII methods under Model 1.

From Figure 2.1, we observe that when sample sizes get bigger, the coverage proba-

bilities of all intervals for the covariate-adjusted YI are closer to the 95% nominal level,

and the average lengths of the intervals become shorter. Among the three bootstrap (BCa,
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BTI, BTII) intervals, BCa intervals have the coverage probabilities farther from the 95%

nominal level than BTI and BTII intervals. When sample sizes are small, the coverage

probabilities of BCa intervals can be far below the 95% nominal level at some values of the

covariate. Comparing the GPQ method with the bootstrap-based methods, we can see that

the GPQ-based intervals have coverage probabilities closer to the 95% nominal level than the

bootstrap-based intervals, and the GPQ method is stable for all cases considered here. All

the confidence intervals have comparable average lengths. In all cases, the computation time

for the bootstrap-based intervals is far longer than that for the GPQ-based intervals. As for

intervals of the optimal cut-off point, similar conclusions can be reached by observing the

results in Figure 2.2. Hence we recommend the GPQ method for inferences on the covariate-

adjusted YI and the associated optimal cut-off point under the linear regression models with

normal errors for test results. In the second simulation study, we examine the finite sample

performances of the HWS (HWS-N, HWS-E) intervals, HAC (HAC-N, HAC-E) intervals,

HBCA (HBCA-N, HBCA-E) intervals, and ACNA intervals for the covariate-adjusted YI at

given Z = z under the following heteroscedastic regression models. At the same time, we

examine the finite sample performances of the HBCA (HBCA-N, HBCA-E) intervals and

ACNA intervals for the optimal cut-off point co(z) under the same regression models.

Model 2: Heteroscedastic Regression Models

X|Z = 6 + 1.5Z + 1.5 sin(Z) +
√

0.4 + Φ(2Z − 6)ε1,

Y |Z = 7.2 + 1.5Z + 1.5 sin(Z) +
√
Z − 0.8 +

√
1.2 + Φ(2Z − 6)ε2,

where Z follows the uniform distribution on [1, 5], both ε1 and ε2 are random error with

mean zero and variance one, and Φ is the c.d.f. of the standard normal distribution. We

evaluate these intervals under the scenario with/without normality assumption for the error

distributions. In the first scenario, both ε1 and ε2 follow the standard normal distribution.

In the second scenario, ε1 and ε2 follow a scaled student t-distribution t4/
√

2 with degree of

freedom 4.
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Similar to the first simulation study, N = 1000 “non-diseased” and “diseased” samples

are generated from Model 2 with/without the normality assumption for the error distribu-

tions, respectively. We choose the sample sizes (m,n) = (50, 50), (100, 100), and (80, 100),

and B = 1000 for calculating 95% level pointwise confidence bands and coverage proba-

bilities of the intervals for the covariate-adjusted YI and the optimal cut-off point co(z) at

a given z where z’s are chosen to be 40 evenly distributed points in [1, 5]. Figures 2.3 -

2.6 display the 95% level pointwise confidence bands for the covariate-adjusted YI and the

optimal cut-off point, and the corresponding coverage probabilities of the HWS (HWS-N,

HWS-E) intervals, HAC (HAC-N, HAC-E) intervals, HBCA (HBCA-N, HBCA-E) intervals,

and ACNA intervals.

When the errors εt’s distributions are the standard normal distribution, from Figure

2.3 - 2.4, we can see that the coverage probabilities of HBCA-N intervals are much more

closer to the 95% nominal level even when z is near the lower/upper bound of the covari-

ates. It indicates that HBCA-N interval has the best performance among the four intervals.

Meanwhile, ACNA intervals perform well too, especially when sample size gets bigger. The

HAC-N intervals perform better than the Wilson score-based HWS-N intervals. When the

sample size increases, the coverage probabilities of HAC-N intervals are closer to the nominal

confidence level. When the errors εt’s distributions are not normal, following the scaled stu-

dent t-distribution t4/
√

2 with variance one, from Figure 2.5, we observe that the coverage

probabilities of HBCA-E and ACNA intervals for the covariate-adjusted YI are farther from

the 95% nominal level at some values of covariates than the other two intervals. So we don’t

recommend them for the covariate-adjusted YI under the heteroscedastic regression models

when errors are not normally distributed. Comparing HAC-E and HWS-E intervals, HAC-

E intervals have better performance and are much more stable than HWS-E intervals in

terms of coverage probability. Under the same model setting (model 2), we also examine the

performance of HBCA-E and ACNA intervals for the optimal cut-off point at given Z = z

when the errors are not normally distributed. From Figure 2.6, we can see that although

the coverage probabilities of ACNA interval are slightly higher than the 95% nominal level
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at the majority values of covariates, it’s still much more stable than HBCA-E. Above all,

we recommend the HAC-E interval for the covariate-adjusted YI and the ACNA interval for

the optimal cut-off point under the heteroscedastic regression models for the test results in

practice.

2.5 Real Data Analysis

For illustrating the application of the proposed methods, we consider a dataset from the

Pima Indians Diabetes Study (Smith et al., 1988). In the dataset, there are 268 cases and 500

controls. The dataset includes nine variables: the number of times pregnant (V1), the plasma

glucose concentration in an oral glucose tolerance test (OGTT) (V2), the diastolic blood

pressure (mm Hg) (V3), the triceps skin fold thickness (mm) (V4), 2-Hour serum insulin (mu

U/ml) (V5), body mass index (weight in kg/(height in m)2) (V6), diabetes pedigree function

(V7), age (years) (V8), disease status (0 or 1) (V9). Five observations having OGTT value 0

were deleted in the data analysis. The OGTT is a standard diagnostic test for diabetes. We

want to know how accurate the OGTT is in detecting diabetes.

Based on the Pearson chi-square test for normality with p-value being 0.001 and 0.023

for cases and controls respectively, we conclude that the OGTT results from the case and the

control groups are not normally distributed. The empirical estimate for the YI of the OGTT

without covariate adjustment is ĴE = 0.446. It indicates that the diagnostic accuracy of the

OGTT is mediocre in detecting diabetes.

Smith and Thompson (1996) considered the age as a potential covariate that could

influence the outcomes of the OGTT. It is interesting to know the effect of age on estimating

the YI. The scatter plots of the OGTT results vs. age among case and control groups (see

Figure 2.7) show that the linear regression models cannot be directly applied to model the

OGTT results here. However, the heteroscedastic regression models (2.14) and (2.15) could

be used to model this dataset. Figure 2.8 presents the local linear regression estimates for

the mean and variance functions for both cases and controls.

Here, we use the OGTT results to obtain three estimates ĴN(z), ĴE(z) and ĴAC(z) with
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the 95% level pointwise HBCA-N and HAC-E bands for the covariate-adjusted YI, and two

estimates ĉoN(z) and ĉoE(z) with the 95% level pointwise HBCA-N and ACNA bands for the

covariate-adjusted optimal cut-off point when the age z is between 21 and 66. From Figure

2.9, we observe that the diagnostic accuracy of the OGTT for younger individuals (age < 30

years) is higher than that for individuals aged from 30 years to 35 years. There is a small

spike which shows a slightly increasing accuracy for 38 years to 40 years old individuals, and

then the accuracy decreases slowly to about 50 years. When testing individuals are getting

older (age > 50 years), the accuracy of OGTT increases, and the confidence bands become

wider as age increases. This probably is due to the sparseness of observations when age is

larger than 50. Based on our simulation studies, we would recommend the nonparametric

estimate ĴE(z) and the HAC-E band for the covariate-adjusted YI to this dataset because

they are more flexible and robust than the ĴN(z) estimate and the HBCA-N band which

need the normal error assumption. Meanwhile, we compute the estimates ĉoN(z) and ĉoE(z)

with the 95% level pointwise HBCA-N and ACNA bands for the optimal cut-off point when

the age z is between 21 and 66. From Figure 2.10, we would recommend the nonparametric

estimate ĉoE(z) and the ACNA band for the optimal cut-off point to this dataset because

they are more flexible and robust than the estimate ĉoN(z) and the HBCA-N band which

need the normal error assumption.

2.6 Discussion

Covariates are important in the evaluation of the diagnostic accuracy of a biomark-

er/medical test. Ignoring the covariates’ effects may lead to biased estimation of the diag-

nostic accuracy and even wrong conclusions. Pepe (2003) gave an introduction to why and

how to adjust for covariates in ROC analysis. Pardo-Fernandez et al. (2013) gave an excel-

lent review on ROC curve analysis in the presence of covariates. One important approach

to incorporate covariates to the ROC analysis is through regression models. In a parametric

framework, Faraggi (2003) used simple linear regression models for the conditional means

with normal errors, in both non-diseased and diseased populations, and provided a simple



25

method for inferences on covariate-adjusted ROC curve. It is well known that the normal

distribution assumption for test results plays an important role in parametric ROC curve

analysis, and the GPQ-based methods can provide ‘exact’ interval estimation for the Youden

index under normal models for test results (see Li et al., 2008, Tian, 2011). In this paper, we

have proposed the GPQ-based interval for the covariate-adjusted Youden index under linear

regression models with the normal error distribution. Our simulation results have shown

that the GPQ-based intervals outperform the bootstrap-based BCa, BTI and BTII intervals

under the same parametric linear models setting, particularly for small to moderate sized

samples which are more applicable and practical in second or third phase medical diagnostic

trial studies. As indicated in the Introduction, the existing method (Faraggi, 2003) for the

covariate-adjusted YI is limited to the simple linear regression models and the normality

assumption for the error distributions. We generalize the approach of Faraggi (2003) and

propose HWS, HAC and HBCA intervals for the covariate-adjusted Youden index under

the heterosedastic regression models with/without the normality assumption for the error

distributions. Our simulation results have shown that the HAC-E interval outperforms other

intervals for the covariate-adjusted Youden index in most cases considered here. Further-

more, ACNA interval for the covariate-adjusted optimal cut-off is much more stable than

the HBCA intervals under heteroscedastic regression models. Therefore, we recommend the

use of the HAC-E interval for the covariate-adjusted YI and the ACNA interval for the

covariate-adjusted optimal cut-off under the heteroscedastic regression models in practice.
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Figure (2.1) The 95% level BCa, GPQ, BTI and BTII confidence intervals for the covariate-
adjusted YI at given Z = z under model 1. Left panel: the 95% pointwise confidence bands
for J(z), the dotted curve lying in the middle is the true value of the covariate-adjusted YI.
Right panel: the coverage probabilities of the BCa, GPQ, BTI and BTII intervals, solid line
is the benchmark as the 95% nominal level.



27

Figure (2.2) The 95% level BCa, GPQ, BTI and BTII confidence intervals for the optimal
cut-off point at given Z = z under model 1. Left panel: the 95% pointwise confidence bands
for c0(z), the dotted curve lying in the middle is the true value of the optimal cut-off point.
Right panel: the coverage probabilities of the BCa, GPQ, BTI and BTII intervals for c0(z),
solid line is the benchmark as the 95% nominal level.
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Figure (2.3) The 95% level HWS-N, HAC-N, HBCA-N and ACNA intervals for the covariate-
adjusted YI at given Z = z under model 2 with the normal error assumption. Left panel:
The 95% pointwise confidence bands for JN(z). Right panel: The coverage probabilities of
the HWS-N, HAC-N, HBCA-N and ACNA intervals for JN(z).
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Figure (2.4) The 95% level HBCA-N and ACNA intervals for the optimal cut-off point at
given Z = z under model 2 with the normal error assumption. Left panel: The 95% pointwise
confidence bands for co(z). Right panel: The coverage probabilities of the HBCA-N and
ACNA intervals for co(z).
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Figure (2.5) The 95% level HWS-E, HAC-E, HBCA-E and ACNA intervals for the covariate-
adjusted YI at given Z = z under model 2 without the normal error assumption. Left panel:
The 95% pointwise confidence bands for J(z). Right panel: The coverage probabilities of
the HWS-E, HAC-E, HBCA-E and ACNA intervals for J(z).
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Figure (2.6) The 95% level HBCA-E and ACNA intervals for the optimal cut-off point at
given Z = z under model 2 without the normal error assumption. Left panel: The 95%
pointwise confidence bands for co(z). Right panel: The coverage probabilities of the HBCA-
E and ACNA intervals for co(z).
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Figure (2.7) The scatter plot of OGTT test vs. Age, left for cases, right for controls. Solid
lines are local linear estimates for the mean functions.

Figure (2.8) Local linear estimates for the mean and variance functions of the OGTT results
from Case and Control groups.
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Figure (2.9) Estimates for J(Age): ĴN (solid), ĴE (dashed), and ĴAC (dot). Point-wise
confidence bands for J(Age): HBCA-N (dotdash) band and HAC-E band (dot).
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Figure (2.10) Estimates for the optimal cut-off(Age): ĉoN(z) (solid), ĉoE(z)(dashed). Point-
wise confidence bands for the optimal cut-off(Age): HBCA-N (dotdash) band, and ACNA
band (dot).



34

PART 3

INFLUENCE FUNCTION-BASED EMPIRICAL LIKELIHOOD

INFERENCES FOR AUC IN THE PRESENCE OF COVARIATES

3.1 Introduction of ROC Curve and AUC

In medical diagnostic studies, ROC curve stands for Receiver Operating Characteristic

curve, which is the plot of sensitivity versus one minus specificity for all possible threshold

values (See Pepe [33], Zhou et al. [34]). The area under the ROC curve (AUC) is a popular

summary measurement of the diagnostic accuracy of a continuous scale test. A subject is

classified as diseased (positive) if the subject’s test value is greater than a chosen threshold

value, and otherwise classified as non-diseased (negative). Let Y D be the test result of a

diseased subject and Y D̄ be the test result of a non-diseased subject. Then the AUC can

be expressed as AUC = P (Y D > Y D̄) (Bamber, 1975). Obviously the value of the AUC

is between 0 and 1. The closer the ROC curve follows the left-hand border and then the

top border of the ROC space, the closer to one the AUC value, and the more accurate the

diagnostic test.

3.2 Motivation

Covariate-adjustments for summary measures of the ROC curve have become crucial

in many diagnostic applications. Since operating conditions for the test or characteristics

of patients like gender, age, race, physical conditions and so on, may affect the test results

by influencing the distributions of test measurements for “diseased” and/or “non-diseased”

subjects. Many researches consider incorporating covariates information when conducting

the regression analysis. Thompson and Zucchini [35] and Obuchowski [36] proposed AUC

regression methods based on the derived variable. Dorfman, Berbaum, and Metz [37] de-

veloped a method by computing jackknife AUC values for each subject. However, these
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methods can only be applied for discrete covariates (Dodd and Pepe[38]).

Normal approximation is a commonly used method for constructing confidence inter-

vals/regions for regression parameters. Dodd and Pepe [38] proposed a regression model

for the AUC summary measure. However, the asymptotic variance of the estimator for the

parametric vector is of a very complicated form and the explicit estimate for the asymp-

totic variance of the parameter vector was not well developed in the literature. Instead,

Dodd and Pepe suggested using bootstrap method to estimate it. Our simulation studies

indicated that the normal approximation-based confidence regions for β have poor coverage

accuracy by using the bootstrap variance estimate. To overcome these problems, in this

part, we will apply two empirical likelihood based methods to construct confidence regions

for β: one is an empirical likelihood confidence region based on influence function, the other

is a Jackknife empirical likelihood-based confidence region. The proposed methods allow for

confidence region construction without a variance estimator. Our simulation study shows

that the proposed methods have better small sample performances than the existing normal

approximation-based method in terms of coverage probability.

3.3 Normal Approximation-based Method

Let θij = P (Y D
j > Y D̄

i |ZD̄
i ,Z

D
j ) be the covariate-specific AUC parameter. Dodd and

Pepe [38] defined the AUC regression model as

θij = g(βTZij),

where Zij denote the observable covariates (ZD̄
i ,Z

D
j ), g is a specified function. Denote

Iij = I(Y D
j > Y D̄

i ). In order to obtain an estimator for β, Dodd and Pepe [38] proposed the

following generalized estimating equation:

nD∑
j=1

nD̄∑
i=1

∂θij
∂β

ω(Zij, β)(Iij − g(βTZij)) = 0, (3.1)
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where N = nD + nD̄ and ω(Zij, β) is a known weight function. They obtained the estimator

β̂ for β from the estimating equation and showed that the distribution of the estimator is

asymptotically normal:

√
nD̄nD
N

(β̂ − β0)
L−→ N(0,Ξ), as N →∞, (3.2)

where Ξ is the asymptotic variance of β̂.

We can observe that if a good estimate for Ξ can be obtained, this asymptotic normal

distribution could be used to construct a confidence region for β. However, the asymptotic

variance Ξ in (3.2) is of a very complicated form. Dodd and Pepe suggested using bootstrap

method to estimate Ξ, and a normal approximation-based confidence region (NA) for β can

be constructed as follows:

CRNA(β) =

{
β :

N

nD̄nD
· (β̂ − β0)TΞ∗−1(β̂ − β0) ≤ χ2

p,1−α

}
(3.3)

where Ξ∗ is the bootstrap estimate for the asymptotic variance of β̂.

3.4 Influence Function-based Empirical Likelihood for the AUC Regression

Empirical Likelihood (EL) is a non-parametric method introduced by Owen [12][13].

EL-based methods have been successfully applied to ROC analysis (Claeskens et al.[16], Qin

and Zhou [17]).

Let {Y D̄
i , i = 1 . . .m} denote a sample of test results from non-diseased subjects fol-

lowing the distribution function F D̄
ZD̄ with covariate vectors ZD̄

i = (ZD̄
i1 , · · · , ZD̄

iq )T , and let

{Y D
j , j = 1 . . . n} denote a sample of test results from diseased subjects following the

distribution function FD
ZD with covariate vectors ZD

j = (ZD
j1, · · · , ZD

jp)
T . Let Y be the

test result of the continuous-scale diagnosis. Then, we can define the placement value

of Y as U = 1 − F D̄
ZD̄(Y ). Particularly, U D̄ = 1 − F D̄

ZD̄(Y D̄) and UD = 1 − F D̄
D̄ (Y D),

where U D̄ follows uniform distribution in (0, 1) and UD measures the discrimination be-
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tween the diseased and non-diseased subjects. The conditional ROC curve is represented by

ROCZ(u) = P (UD < u|ZD), where u = 1 − F D̄
ZD̄(y) is a false positive rate. The covariate-

specific AUC can be expressed as a conditional expectation function of 1 − UD given ZD,

which is AUCZ = E(1 − UD|ZD). The covariate effects on discrimination can be evaluated

by using the AUC regression models (Pepe and Cai, [39]; Dodd and Pepe, [33]). Here, we

consider the following AUC regression model:

AUCZ = E(1− UD|ZD) = g(βTZD), (3.4)

where ZD = (ZD
1 , · · · , ZD

p )T is the p× 1 vector of covariates, g is a specified link function.

To estimate β, we use the GLM re-weighted least squares fitting-based estimation equa-

tion:

n∑
j=1

ω(βTZD
j )[1− UD

j − g(βTZD
j )]ZD

j ≡
n∑
j=1

Hj = 0, (3.5)

where Hj = (1−UD
j −g(βTZD

j ))ω(βTZD
j )ZD

j , and ω(βTZD
j ) is a given scalar weight function,

0 = (0, · · · , 0)T is a p×1 vector and ZD
j is the p×1 vector of covariates for the j−th diseased

subject.

Since the distribution for the test result in the non-diseased population is unknown,

the placement value UD = 1 − F D̄
ZD̄(Y D) is unobservable. However, using the non-diseased

sample {(Y D̄
i ,Z

D̄
i ), i = 1, 2, · · · ,m}, we can estimate the reference distribution F D̄

ZD̄ by its

empirical distribution F̂ D̄
ZD̄ . Hence, the placement value UD

j = 1−F D̄
ZD̄(Y D

j ) can be estimated

by ÛD
j = 1 − F̂ D̄

ZD̄(Y D
j ), and β̂, an estimator for β, can be found by solving the following

estimation equation:

n∑
j=1

ω(βTZD
j )[1− ÛD

j − g(βTZD
j )]ZD

j ≡
n∑
j=1

Ĥj = 0, (3.6)

where Ĥj = (1− ÛD
j − g(βTZD

j ))ω(βTZD
j )ZD

j .

Let {(Yk,Zk), k = 1, · · · , n+m} = {(Y D
1 ,ZD

1 ), · · · , (Y D
n ,Z

D
n ), (Y D̄

1 ,ZD̄
1 ), · · · , (YD̄

m,Z
D̄
m)}.
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From the proof of Lemma 3.1 showed in Appendix A, we obtain that

1√
n+m

n∑
j=1

Ĥj =
1√

n+m

n∑
j=1

Hj +
n

m
[lim
n

1

n

n∑
j=1

ω(βTZD
j )ZD

j ]

× 1√
n+m

m∑
i=1

(∫
I(Y D̄

i ≤ t)dFD
ZD(t)−

∫
F D̄

ZD̄(t)dFD
ZD(t)

)
+ op(1)

=
1√

n+m

n∑
j=1

Hj +
ρA(β)√
n+m

m∑
i=1

∫ (
I(Y D̄

i ≤ t)− F D̄
ZD̄(t)

)
dFD

ZD(t) + op(1)

≡ 1√
n+m

n+m∑
k=1

Wk(β) + op(1),

where ρ = limn
n
m

, A(β) = limn
1
n

∑n
j=1 ω(βTZD

j )ZD
j , and

Wk(β) =

 Hk, if k = 1, · · · , n,

ρA(β)
∫

(I(Yk ≤ t)− F D̄
ZD̄(t))dFD

ZD(t), if k = n+ 1, · · · , n+m.

is the k-th influence function of β.

Using the side information provided by the influence function, the empirical likelihood

for β can be defined as follows

L(β) = sup

{
n+m∏
k=1

pk : p1 ≥ 0, · · · , pn+m ≥ 0,
n+m∑
k=1

pk = 1,
n+m∑
k=1

pkŴk(β) = 0

}
, (3.7)

where

Ŵk(β) =

 Ĥk, if k = 1, · · · , n,
1
m

∑n
j=1 ω(βTZD

j )ZD
j

∫
(I(Yk ≤ t)− F̂ D̄

ZD̄(t))dF̂D
ZD(t), if k = n+ 1, · · · , n+m.

is the k-th estimated influence function, F̂ D̄
ZD̄(t) = 1

m

∑m
i=1 I(Y D̄

i ≤ t), and F̂D
ZD(t) =

1
n

∑n
j=1 I(Y D

j ≤ t).

Using the Lagrange multiplier method, we get that

pk =
1

n+m

1

1 + νT Ŵk(β)
,
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where νT = (ν1, ν2, ..., νp) is the solution to

1

n+m

n+m∑
k=1

Ŵk(β)

1 + νT Ŵk(β)
= 0. (3.8)

Note that
∏n+m

k=1 pk, subject to
∑n+m

k=1 pk = 1, pk ≥ 0, k = 1, 2, ..., n+m, attains its maximum

(n+m)−(n+m) at pk = (n+m)−1. So, the influence function-based empirical likelihood ratio

for β is

R(β) =
n+m∏
k=1

(n+m)pk =
n+m∏
k=1

{1 + νT Ŵk(β)}−1 .

The corresponding influence function-based empirical log-likelihood ratio for β is

l(β) = −2 logR(β) = 2
n+m∑
k=1

log(1 + νT Ŵk(β)). (3.9)

Theorem 3.1. If maxj‖ZD
j ‖ = op(n

1/2), limn,m→∞
n
m

= ρ > 0, g and ω are bounded func-

tions, and β0 is the true parameter vector in the AUC regression model, then the asymptotic

distribution of the influence function-based empirical log-likelihood ratio statistic l(β0) is a

chi-square distribution with p degree of freedom. That is,

l(β0)
L−→ χ2

p. (3.10)

A (1− α) level influence function-based confidence region (IFEL region) for β is

CR(β) = {β : l(β) ≤ χ2
p,α},

where χ2
p,α is the (1− α)-th quantile of χ2

p. By Theorem 3.1, we have that

P{β0 ∈ CR(β)} = P{l(β) ≤ χ2
p,α} = 1− α + o(1).
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3.5 Jackknife Empirical Likelihood Method for the AUC Regression

Jackknife empirical likelihood (JEL), proposed by Jing, Yuan, and Zhou [40], is a power-

ful non-parametric method to overcome the computational difficulties dealing with nonlinear

functionals, with the particular application to U-statistics. The JEL combines jackknife and

empirical likelihood methods. Using the techniques in Jing, Yuan and Zhou [40], we can

define the JEL for β. Let

Tn+m(β) =
1

n+m

n+m∑
k=1

Ŵk(β),

Tn+m,−i(β) =
1

n+m− 1

n+m∑
k=1,k 6=i

Ŵk,−i(β), i = 1, 2, · · · , n+m,

where Ŵk,−i(β) is the Ŵk(β) based on the n + m − 1 observations from {(Yk,Zk), k =

1, · · · , n + m} by deleting the i-th observation (Yi,Zi). Then the jackknife pseudo sample

can be written as:

Wi(β) = (n+m)Tn+m(β)− (n+m− 1)Tn+m,−i(β), i = 1, 2, · · · , n+m.

Applying Owen’s EL to this jackknife pseudo sample, we get the following JEL for β:

LJ(β) = sup

{
n+m∏
k=1

pk : p1 ≥ 0, · · · , pn+m ≥ 0,
n+m∑
k=1

pk = 1,
n+m∑
k=1

pkWk(β) = 0

}
(3.11)

The corresponding jackknife empirical log-likelihood ratio for β is

lJ(β) = 2
n+m∑
k=1

log(1 + νTJWk(β)).

where νTJ = (νJ1, νJ2, ..., νJp) is the solution to

1

n+m

n+m∑
k=1

Wk(β)

1 + νTJWk(β)
= 0. (3.12)
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Using the method similar to that in Jing, Yuan and Zhou [40], it can be proved that the

asymptotic distribution of the empirical log-likelihood ratio statistic lJ(β0) is a chi-square

distributions with p degree of freedom. That is,

lJ(β0)
L−→ χ2

p. (3.13)

Hence, a (1−α) level JEL-based confidence region (JEL region) for β can be constructed

as follows

CRJ(β) = {β : lJ(β) ≤ χ2
p,α},

where χ2
p,α is the (1− α)-th quantile of χ2

p.

3.6 Empirical Likelihood-based Confidence Interval for AUCZ

Pepe and Cai [39] proposed a pseudo likelihood-based inference in ROC regression

model. In this section, we propose an EL-based confidence interval for covariate-specific

AUC in the AUC regression model.

Let CR(β) be a (1−α)-th confidence interval for β. Then we can construct a (1−α)-th

confidence interval for the covariate-specific AUC given a specified covariate ZD as follows:

{AUCZ(β) = g(βTZD) : β ∈ CR(β)}, (3.14)

where g(·) is a one-to-one function.

Let (q0, q1) denote the confidence interval for the covariate adjusted AUCZ . In order to
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compute the confidence interval (see also Zhou et al., [41]), we apply the following equations:

q0 = min{AUCZ(β) : β ∈ CR(β)} = min{AUCZ(β) : l1(β) = c, 0 ≤ c ≤ cα}

≈ min{
N⋃
i=1

(AUCZ(β) : l1(β) = ci)},

q1 = max{AUCZ(β) : β ∈ CR(β)} = max{AUCZ(β) : l1(β) = c, 0 ≤ c ≤ cα}

≈ max{
N⋃
i=1

(AUCZ(β) : l1(β) = ci)},

where N is a large integer number, {c1, c2, ..., cN} is a random sample of size N generated

from the uniform distribution on [0, cα].

In order to estimate q0, q1, we use the following approximation procedure:

1. For b = 1, 2, ..., B, where B is a chosen integer depending on the number of regression

parameters, we generateB vectors for {β(b)} uniformly over CR0 satisfying l1(β(b)) ≤ cα

for b = 1, 2, · · · , B, by smoothing technique (e.g., the local linear method).

2. We approximate CR(β) by CR0 = {β : β̂k − z1−α/2σ̂k ≤ βk ≤ β̂k + z1−α/2σ̂k, k =

1, · · · , p}, where σ̂k is the standard error of β̂k and z1−α/2 is the (1− α/2)-th quantile

of the standard normal distribution.

3.7 Simulation Study

In this section, we conduct two simulation studies to evaluate finite sample performances

of the proposed EL-based methods in the AUC regression. Particularly, we compare the in-

fluence function-based IFEL confidence region, the Jackknife-based JEL confidence region

with the existing normal approximation-based NA confidence region for β in the AUC regres-

sion model in terms of coverage probability. We use the similar AUC regression simulation

setting illustrated in Dodd and Pepe [38].
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Let Y D|ZD ∼ N(µD,ZD , σ2
D) and Y D̄|ZD̄ ∼ N(µD̄,ZD̄ , σ2

D̄
). Then, we have

AUCZ = Φ

µD,ZD − µD̄,ZD̄√
σ2
D + σ2

D̄

 .

We carry out simulation studies with sample size m,n = 30, 50, 100 for both diseased

group and non-diseased group, respectively. By generating 1000 random samples based on

the above simulation setting and applying the usual generalized linear regression method

(GLM), we can obtain estimate β̂ for β and calculate the coverage probabilities of the NA-

based confidence region, JEL confidence region and the proposed IFEL confidence region for

β.

In the study, we choose dimension p = 2, 3 for first and second model, respectively. The

covariates ZD and ZD̄ are assumed to have common components in both models.

Model 1 (p = 2):

µD̄,Z = γ0 + γ1Z,

µD,Z = k0 + k1Z.

The first model is based on the single covariate Z, where the common covariate Z follows

U(0, 10). We choose γ0 = 0, γ1 = 0, k0 = 0, k1 = 0.5. Then the AUC regression model is

AUCZ = Φ

(k0 − γ0) + (k1 − γ1)Z√
σ2
D + σ2

D̄

 = Φ(β0 + β1Z), (3.15)

where we choose σD = 1.2, σD̄ = 1 so that the true parameters β0 = (k0−γ0)/
√
σ2
D + σ2

D̄
= 0,

β1 = (k1 − γ1)/
√
σ2
D + σ2

D̄
= 0.32.

From our simulation results (not reported here), the IFEL region is too conservative

(with coverage probability close to 1) with small sample sizes. In order to get an IFEL-

based confidence region with better coverage accuracy, we propose the following bootstrap
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procedure to construct an IFEL-based region for β .

1. Draw a bootstrap resample {Y ∗D̄i : i = 1, · · · ,m} from the “non-diseased” sample

{Y D̄
i : i = 1, · · · ,m}, and a bootstrap resample {Y ∗Dj : j = 1, · · · , n} from the

“diseased” sample {Y D
j : j = 1, · · · , n}, respectively.

2. Applying GLM method to get the estimate β̂ for β and compute the bootstrap copy

Ŵ ∗
k (β̂) of Ŵk(β̂).

3. Repeat the first two steps B times to obtain B bootstrap copies {l∗b(β̂), b = 1, · · · , B}

of l(β) by (3.9).

Then (1 − α)100% (0 < α < 1) level bootstrap-based IFEL (BIFEL) region for β can

be constructed as follows:

{β : l(β) ∈ (l(β̂)∗([Bα/2]), l(β̂)∗([B(1−α/2)]))},

where l(β)∗([Bα/2]) and l(β)∗([B(1−α/2)]) are the α/2-th and (1−α/2)-th quantiles of {l∗b(β̂), b =

1, · · · , B}, respectively.

The parameter estimates and the coverage probabilities for β are presented in Tables

3.1 - 3.2. From Table 3.1, we can see that the GLM method provides good estimates for β.

Table (3.1) The parameters estimates in the AUC regression model AUCZ = Φ(β0 + β1Z1)

n m β0 β̂0 bias of β̂0 sd of β̂0

30 30 0 -0.0963899 -0.0963899 0.3710366
50 50 0 -0.0340966 -0.0340966 0.2919486
100 100 0 -0.0001580 -0.0001580 0.2245143

n m β1 β̂1 bias of β̂1 sd of β̂1

30 30 0.3201 0.3567006 0.0366006 0.1094567
50 50 0.3201 0.3388887 0.0187887 0.0827232
100 100 0.3201 0.3289982 0.0088982 0.0559346
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From Table 3.2, we observe that the BIFEL confidence region performs the best among three

confidence regions for β. Particularly, when sample size gets bigger, coverage probabilities of

the BIFEL confidence regions are closer to the nominal levels. JEL performs well too. When

sample size is small (m,n = 30), the NA confidence regions have over-coverage problems for

the true regression parameters.

Model 2 (p = 3):

µD̄,Z = γ0 + γ1Z1 + γ2Z2,

µD,Z = k0 + k1Z1 + k2Z2.

In the second model, covariates Z1 and Z2 follow Z1 ∼ U(0, 10) and Z2 ∼ N(1.2, 3),

respectively. We choose γ0 = 0.7, γ1 = −0.3, γ2 = 0.3, k0 = 1, k1 = −0.8, k2 = 1.7. Then

the AUC regression model is AUCZ = Φ(β0 + β1Z1 + β2Z2) with true parameter values

β0 = 0.192, β1 = −0.32, and β2 = 0.896 when σD = 1.2, and σD̄ = 1.

Based on this simulation setting, we do similar computation to obtain parametric esti-

mates for β and coverage probabilities of confidence regions for β. The results are presented

in Tables 3.3 - 3.4.

From Table 3.3, we can see that the estimates for β0 have large biases and standard

errors compared to the estimates in model 1, although the GLM method provides acceptable

estimates for β1 and β2. It’s possibly due to the true placement value U D̄ is unobservable.

Table (3.2) Coverage probabilities of 90% and 95% confidence regions for the parameters
vector in the AUC regression model AUCZ = Φ(β0 + β1Z1)

Level n m BIFEL JEL NA

95% 30 30 0.96 0.96 0.98
50 50 0.91 0.94 0.96
100 100 0.96 0.92 0.94

90% 30 30 0.93 0.90 0.96
50 50 0.85 0.84 0.93
100 100 0.90 0.87 0.89
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Table (3.3) The parameters estimates in the AUC regression model AUCZ = Φ(β0 + β1Z1 +
β2Z2)

n m β0 β̂0 bias of β̂0 sd of β̂0

30 30 0.19205 0.8724950 0.6804450 1.0284150
50 50 0.19205 0.9224847 0.7304347 0.7748316
100 100 0.19205 0.9207765 0.7287265 0.6470202

n m β1 β̂1 bias of β̂1 sd of β̂1

30 30 -0.32009 -0.5046025 -0.1845125 0.3076757
50 50 -0.32009 -0.5021865 -0.1820965 0.2288338
100 100 -0.32009 -0.5162207 -0.1961307 0.2067056

n m β2 β̂2 bias of β̂2 sd of β̂2

30 30 0.89625 1.094424 0.1981746 0.4978437
50 50 0.89625 1.061623 0.165373 0.3940743
100 100 0.89625 1.104876 0.208626 0.3537151

Table (3.4) Coverage probabilities of 90% and 95% confidence regions for the parameters
vector in the AUC regression model AUCZ = Φ(β0 + β1Z1 + β2Z2)

Level n m BIFEL JEL NA

95% 30 30 0.89 0.85 0.86
50 50 0.88 0.81 0.69
100 100 0.92 0.83 0.31

90% 30 30 0.86 0.78 0.79
50 50 0.84 0.75 0.56
100 100 0.88 0.74 0.21
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Table 3.4 indicates that the coverage probabilities of the NA confidence regions are far

below the nominal confidence levels. One possible reason for the poor performances of the

NA method is that the NA-based method is sensitive to the poor estimate for the asymptotic

variance of β̂. JEL regions have under-coverage problems for all the sample sizes. However,

the BIFEL confidence regions have much better coverage accuracy than the NA confidence

regions and JEL confidence regions, particularly for large sample sizes. BIFEL method is

more robust and accurate than the NA-based method and works better than the JEL method

as well. The conclusion that BIFEL confidence region outperforms the other two confidence

regions is consistent with that drawn from the simulation study under model 1.

3.8 A Real Example

In this section, we apply a study of the distortion product otoacoustic emissions

(DPOAE) test to diagnose the hearing impairment. The audiology data is reported by

stover et al. [42] and Dodd and Pepe [38]. The real dataset includes 489 hearing impaired

and 1359 normally hearing subjects who were examined at three frequency (f) and three

intensity (L) settings of the DPOAE device. Each subject was tested in only one ear. The

test result is determined by the negative signal to noise ratio, -SNR. In this real exam-

ple, the covariates are selected to be Xf = frequency HZ/100, XL = intensity dB/10,

XD = (hearing threshold − 20)dB/10. If the audiometric threshold is greater than 20 dB

HL, the disease status variable D = 1; otherwise D = 0.

Then the AUC regression model is based on the logarithm odds function:

log(
AUC

1− AUC
) = β0 + β1 ∗XD + β2 ∗XL + β3 ∗Xf .

By the usual GLM-based estimation method, we obtain the estimate for the parameter

vector in the AUC regression as shown in Table 3.5.

Based on the estimates for the parameters obtained in the AUC regression, we can find

that (1) the AUC odds increase by 3.29% for every 10 dB increase in the hearing threshold
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Table (3.5) Real example: the parameters estimates in the AUC regression

β̂0 β̂1 β̂2 β̂3

2.376277 0.03239957 -0.04215329 0.000273678

(AUC odds, 1.0329); (2) the AUC odds decrease by 4.13% for every 10 dB increase in

intensity (AUC odds, 0.9587); (3) the AUC odds increase 0.03% for every 100 HZ increase

in the frequency. These results are coincide with the result of Dodd and Pepe [38].

Applying the proposed BIFEL and JEL methods, we can construct 95% confidence

regions for the parameters vector β in the AUC regression as follows:

95% BIFEL region: CR(β) = {β : l(β) ≤ 1741.779},

95% JEL region: CRJ(β) = {β : lJ(β) ≤ 4080.825},

In order to construct confidence intervals for the AUC at a specified value of the covariate

vector ZD = (XD,XL,Xf ), we choose covariate vector ZD to be the median of the observed

values for the covariate vector ZD, and choose B = 1000. Then applying the procedure

introduced in section 3.6 and the method proposed in sections 3.4 & 3.5, we obtain that the

estimate for the covariate-specific AUC is 0.9271 at the median covariates. The 95% BIFEL

interval for the AUC is (0.8624, 1), and the 95% JEL interval for the AUC is (0.8227, 1).

Hence if the covariate vector ZD is set to be the median value of the covariates, the test has

relatively moderate to high diagnostic accuracy.
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PART 4

EMPIRICAL LIKELIHOOD-BASED INTERVAL ESTIMATION FOR THE

CORRELATION COEFFICIENT

4.1 Introduction

In literature, many researchers have focused on developing the theoretical methodology

for the correlation between variables. Sir Francis Galton [43] pioneered the theoretical con-

cept of bivariate correlation. Pearson [44] defined a product-moment correlation coefficient

which is an index still in use for quantifying the association between two variables. Pear-

son [45] published a paper entitled “Notes on the History of Correlation” and credited Carl

Friedrich Gauss for developing the normal surface of n correlated variates. Correlation is a

statistic that measures the degree to which two variables move in relation to each other. One

important index related is correlation coefficient (CC), which is a commonly used measure of

a possible linear relationship between two continuous random variables. It is a very popular

tool for analyzing data that arise in many scientific disciplines such as biology, biomedical

and medical research, economics, and agriculture. For more details on the history of the

correlation coefficient, we refer readers to Rogers and Nicewander [46].

4.2 The Goal of this Part

Confidence intervals for the CC can be constructed when the underlying distribution

is a bivariate normal distribution. However, if the joint distribution of two variables is

not normal or unknown, parametric inferences on ρ become quite difficult. On the other

hand, non-parametric inferences on the correlation do not need the assumption of bivariate

normality for the underlying distribution of (X, Y ). Therefore, the primary goal of this part

is to propose new non-parametric confidence intervals for the CC.

In more details, it is shown that the asymptotic distribution of the influence function-
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based empirical log-likelihood ratio statistic is a standard chi-square distribution. Hence,

confidence intervals can be easily obtained without any complicated density function esti-

mates. So we focus on constructing the influence function-based confident interval for CC. In

the methodology part, we will propose two EL-based intervals for the CC, including a plug-in

EL-based interval and an influence function-based EL Interval. Then extensive simulation

studies are conducted to examine the finite sample performances of the proposed intervals

compared with the existing parametric and non-parametric intervals for the CC. Afterwards,

two real examples are used to illustrate our proposed methods. Finally, we conclude this

part with brief discussion. The proof of the main theorem is deferred until Appendix.

4.3 Methodology

Let (X, Y ) be a bivariate random vector with mean µ and covariance matrix Σ:

µ =

µx
µy

 , Σ =

 σ2
x σxy

σxy σ2
y

 .

The correlation coefficient ρ between X and Y is defined as follows:

ρ =
E(X − µx)(Y − µy)√

E(X − µx)2
√
E(Y − µy)2

≡ σxy
σxσy

. (4.1)

Assume that (Xi, Yi), i = 1, . . . , n, are i.i.d. observations for (X, Y ). Pearson’s [44]

product-moment correlation coefficient is

r =

n∑
i=1

(Xi −X)(Yi − Y )√∑n
i=1(Xi −X)2

√∑n
i=1(Yi − Y )2

, (4.2)

where X = 1
n

∑n
i=1Xi, and Y = 1

n

∑n
i=1 Yi. r is a consistent estimate for the CC ρ. It

measures the linear association between Xi’s and Yi’s.

When (X, Y ) follows a bivariate normal distribution, Fisher [47] expressed the density
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function of r as

f1(r) =
2n−3(1− ρ2)

n−4
2 (1− r2)

n−4
2

(n− 3)!π

∞∑
j=0

(2ρr)j

j!
Γ2[

1

2
(n− 1 + j)]. (4.3)

Hotelling [48] modified (4.3) and obtained a new expression for the density of r:

f2(r) =
n− 2√

2π

Γ(n− 1)

Γ(n− 1
2
)
(1− ρ2)

n−4
2 (1− r2)

n−4
2 (1− ρr)−n+ 3

2G(
1

2
,
1

2
;n− 1

2
,
1 + ρr

2
), (4.4)

where G(a, b; c, x) =
∑∞

j=0
Γ(a+j)

Γ(a)
Γ(b+j)

Γ(b)
Γ(c)

Γ(c+j)
xj

j!
is the Gaussian hypergeometric function.

Since G(a, b; c, x) converges more quickly than the infinite series in (4.3), the function in

(4.4) provides a better approximation to the density function with smaller n. Confidence

intervals for the CC may be developed by using these density functions. However, finding

confidence intervals for the CC is computationally cumbersome based on either of these

functions.

4.3.1 Plug-in Empirical Likelihood-based Interval for CC

Empirical likelihood (EL), has been used heuristically for purposes of non-parametric

estimation of parameters of interest. Owen [12][13] showed that EL ratio statistics for various

parameters of an unknown distribution have certain chi-square distributions and may be

used to obtain confidence intervals in a way that is completely analogous to that used with

parametric likelihoods. We find that EL for parameters can be developed and shown to have

properties similar to those for parametric likelihood which has robust property against the

underlying distribution function. The advantages of the EL-based methods are summarized

as follows: (1) EL-based intervals do not require a pivotal statistic; (2) No prior constraints

for the shape of confidence intervals are needed; (3) EL-based intervals are associated with

a Bartlett correction that tolerates low coverage error (See Hall and La Scala, [14]). By

these advantages, EL method has been widely applied to various fields of scientific research.

As we all know, in literature many methods have been proposed for constructing confidence

intervals of the CC, such as Z-transformation based confident interval, maximum likelihood
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based confident interval. However, EL-based methods for the CC have not been developed

well. So, in this section, we attempt to apply the EL method to the construction of confidence

intervals for the CC. Note that

ρ = E(
X − µx
σx

· Y − µy
σy

) =
E(XY )− E(X)E(Y )√

[E(X2)− E(X)2][E(Y 2)− E(Y )2]

is a smooth function of the mean vector m = (E(X), E(Y ), E(X2), E(Y 2), E(XY )). It can

be shown that the asymptotic distribution of the empirical log-likelihood ratio for m is a

chi-square distribution with 5 degrees of freedom. Therefore, one can use this chi-square

distribution to obtain an EL-based confidence region for m, and then find an EL-based

confidence interval for the CC. However, this method involves complicated computation of

a confidence region with five dimensions. Here we propose a plug-in EL confidence interval

for the CC which can be easily implemented in practice.

Let Wi = (Xi, Yi), i = 1, . . . , n. Since the CC ρ satisfies the following equation:

E

(
X − µx
σx

· Y − µy
σy

− ρ
)

= 0,

then the EL for ρ can be defined as follows:

L0(ρ) = sup
p

{
n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi(V (Wi)− ρ) = 0

}
, (4.5)

where p = (p1, . . . , pn) is a probability vector, and V (Wi) = Xi−µx
σx
· Yi−µy

σy
, i = 1, . . . , n.

The population means (µx, µy) and the population standard deviations (σx, σy) are

unknown in practice, but (µx, µy) can be estimated by the sample means (X̄, Ȳ ), and (σx, σy)

can be estimated by the sample standard deviations (SX , SY ). After plugging these estimates

in (4.5), we get the following plug-in EL for the CC:

L̂(ρ) = sup
p

{
n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi(V̂ (Wi)− ρ) = 0

}
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where V̂ (Wi) = Xi−X̄
SX
· Yi−Ȳ

SY
, i = 1, . . . , n.

We can simply obtain the following expression for pi by using the Lagrange multiplier

method:

pi =
1

n
{1 + λ(V̂ (Wi)− ρ)}−1, i = 1, . . . , n,

where λ is a solution of the following equation:

1

n

n∑
i=1

V̂ (Wi)− ρ
1 + λ(V̂ (Wi)− ρ)

= 0. (4.6)

Subject to
∑n

i=1 pi = 1,
∏n

i=1 pi has its maximum n−n at pi = n−1. Hence, the plug-in EL

ratio for ρ has the following expression:

R(ρ) =
n∏
i=1

(npi) =
n∏
i=1

{1 + λ(V̂ (Wi)− ρ)}−1. (4.7)

The corresponding plug-in empirical log-likelihood ratio for ρ is given by

`(ρ) = −2 logR(ρ) = 2
n∑
i=1

log{1 + λ(V̂ (Wi)− ρ)}. (4.8)

Theorem 4.1. If ρ is the true value of the correlation coefficient, then the asymptotic

distribution of `(ρ) is a scaled chi-square distribution with one degree of freedom. i.e.,

A · `(ρ)
d−→ χ2

1,

where the scale constant A = σ2
0/σ

2
V with

σ2
V = V ar[X − µxσx ·

Y − µy
σy

− 2−1ρ((X − µxσx)2 + (Y − µyσy)2)],

σ2
0 = V ar[X − µxσx ·

Y − µy
σy

].

In order to construct a confidence interval for ρ based on Theorem 1, we need to estimate
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the scale constant A. Let

A1i =
Xi − X̄
SX

· Yi − Ȳ
SY

− 2−1r((
Xi − X̄
SX

)2 + (
Yi − Ȳ
SY

)2),

A2i =
Xi − X̄
SX

· Yi − Ȳ
SY

,

σ̂2
V =

1

n

n∑
i=1

(A1i −
1

n

n∑
i=1

A1i)
2,

σ̂2
0 =

1

n

n∑
i=1

(A2i −
1

n

n∑
i=1

A2i)
2.

Then, Â = σ̂2
0/σ̂

2
V is a consistent estimate for the scale constant A, and a (1−α) level plug-in

EL-based confidence interval (called PEL interval) for ρ can be constructed as follows:

{ρ : Â · `(ρ) ≤ χ2
1(1− α)},

where χ2
1(1− α) is the (1− α)-th quantile of χ2

1.

We need the following lemma for the proof of Theorem 4.1.

Lemma 4.1.

(i). n−1/2
∑n

i=1 V̂ (Wi)− ρ
L−→ N(0, σ2

V ),

where σ2
V = V ar[X−µx

σx
· Yi−µy

σy
− 2−1ρ((X−µx

σx
)2 + (Y−µy

σy
)2)].

(ii). 1
n

∑n
i=1(V̂ (Wi)− ρ)2 p−→ σ2

0, where σ2
0 = V ar[X−µx

σx
· Yi−µy

σy
].

The proof of Lemma 4.1 and Theorem 4.1 are deferred until Appendix.

4.3.2 Influence Function-based Empirical Likelihood Interval for CC

Theorem 4.1 tells us empirical log-likelihood ratio statistic for CC is a scaled chi-square

distribution and can be used to obtain confidence interval in a way that is completely anal-

ogous to that used with parametric likelihood. In this section, we will define a new function

called influence function, so that the asymptotic distribution of the empirical log-likelihood

ratio of parameter of interest CC is just a standard chi-squared distribution with one degree
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of freedom.

From the proof of Lemma 4.1 showed in the appendix, we get the following expression:

n−1/2

n∑
i=1

(V (Wi)− ρ) = n−1/2

n∑
i=1

VI(Wi, ρ) + op(1)
L−→ N(0, σ2

V ),

where

VI(Wi, ρ) = (
Xi − µx
σx

· Yi − µy
σy

− ρ)− 2−1ρ[((
Xi − µx
σx

)2 − 1) + ((
Yi − µy
σy

)2 − 1)]

is the influence function for ρ.

Let p = (p1, . . . , pn) be a probability vector. Based on this influence function for ρ, we

can define an influence function-based EL for ρ as follows:

LI(ρ) = sup
p

{
n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piV̂I(Wi, ρ) = 0

}
,

where

V̂I(Wi, ρ) = (
Xi − X̄
SX

· Yi − Ȳ
SY

− ρ)− 2−1ρ[((
Xi − X̄
SX

)2 − 1) + ((
Yi − Ȳ
SY

)2 − 1)].

We can simply obtain the following expression for pi by using the Lagrange multiplier

method:

pi =
1

n
{1 + λIVI(Wi, ρ)}−1, i = 1, . . . , n,

where λI is a solution of the following equation:

1

n

n∑
i=1

V̂I(Wi, ρ)

1 + λI V̂I(Wi, ρ)
= 0. (4.9)

The corresponding influence function-based empirical log-likelihood ratio for ρ is given by

`I(ρ) = 2
n∑
i=1

log{1 + λI V̂I(Wi, ρ)}. (4.10)



56

Theorem 4.2. If ρ is the true value of the correlation coefficient, then the asymptotic

distribution of `I(ρ) is a chi-square distribution with one degree of freedom. i.e.,

`I(ρ)
d−→ χ2

1.

Using Theorem 4.2, a (1 − α) level influence function-based empirical likelihood confi-

dence interval (called IFEL interval) for ρ can be constructed as follows:

{ρ : `I(ρ) ≤ χ2
1(1− α)}.

4.4 Simulation Studies

In this section, simulation studies are conducted to examine the finite sample perfor-

mances of the proposed influence function EL-based confidence intervals. We compared the

new confident interval with existing confident intervals. These intervals are namely the nor-

mal approximation (NAI) interval based on Fisher’s Z-transformation, the hybrid maximum

likelihood and bootstrap interval (NAII), the Generalized Pivotal Quantity (GPQ) based

interval, the plug-in EL-based interval (PEL), and the influence function EL-based interval

(IFEL).

The most commonly used method for the calculation of a confidence interval for the CC

is Z-transformation-based method. This method is proposed by Fisher [49] in 1921. How-

ever, in 1953 Hotelling found that Fisher’s Z-transformation is prone to significant errors

when sample size becomes small, so he derived a modification of Fisher’s Z-transformation.

Weerakkody and Givaruangsawat [50] estimated the CC in the presence of correlated obser-

vations from a bivariate normal population. Sun and Wong [51] developed a likelihood-based

higher-order asymptotic method to obtain confidence intervals for the correlation coefficient.

They recommended the modified signed log-likelihood ratio method over the other approx-

imated methods. They found that approximated methods by Fisher [47] and Hotelling [48]

gave very good coverage probabilities but had asymmetric error probabilities, and the ap-
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proximated method by Ruben (1966) was not satisfactory. Recently, Tian and Wilding

[22] showed that generalized pivotal quantity developed by Weerahandi [52] can be applied

towards constructing confidence intervals for the CC.

4.4.1 Z-transformation-based Confidence Intervals

Z-transformation based confident intervals have been introduced by many authors.

Fisher [47] and Hotelling [48] derived exact forms of the density function of the sample

correlation coefficient. However, obtaining the confidence intervals for the CC based on

each form of the density function is computational intensive. Nie et al. [53] showed that

the maximum likelihood estimator (MLE) r of the correlation coefficient ρ is asymptotically

normal with variance var(r) = (1 − ρ2)2. Then
√
n(r − ρ)/

√
var(r) asymptotically follows

N(0, 1) as n→∞. The density function of r is highly skewed as |ρ| is close to 1. To reduce

the skewness of the distribution of r, Fisher’s [49] Z-transformation, which is defined by

Z(r) = tanh−1(r) = 1
2
log 1+r

1−r , can be used to construct a confidence interval for CC ρ.

Since Z(r) is asymptotically a normal distribution with mean ζ = 1
2
log 1+ρ

1−ρ and variance

1
n−3

, then we have that

Z =

√
n− 3

2
log

(1 + r)(1− ρ)

(1− r)(1 + ρ)

d−→ N(0, 1).

Therefore, we can construct a (1−α) level Z-transformation-based confidence interval (called

NAI interval) for the CC as follows:

I =

{
ρ :

B1 − 1

B1 + 1
≤ ρ ≤ B2 − 1

B2 + 1

}
,

where B1 = 1−r
1+r

e
− 2√

n−3
Zα/2 , B2 = 1−r

1+r
e

2√
n−3

Zα/2 , Zα/2 is (1− α/2)-th quantile of the standard

normal distribution. This confidence interval has good performance for the relatively large

sample sizes, particularly for n ≥ 30, but it doesn’t work very well with small sample sizes.
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4.4.2 Maximum Likelihood-based Confidence Intervals

We introduced Z-transformation based methods in the last section but it can only be

applied towards the construction of confident interval for CC when underlying distribution

is bivariate normal. However, the normality assumption can not be guaranteed in practice.

So in this section, we will apply another normal approximation-based method, the maximum

likelihood method (MLE), to develop a confidence interval for the CC, assuming that the

underlying distribution belongs to a specific bivariate parametric family.

In the following, we choose the bivariate exponential distribution as an example. Bivari-

ate exponential distribution is an important and popular parametric distribution in reliability

theory and survival analysis. Different forms of bivariate exponential distributions exist in

literature such as those of Gumbel (1960), Freund (1961), Marshall and Olkin (1967) and

Block and Basu (1974). Also researchers proposed various forms of both bivariate and multi-

variate exponential distributions and provided many of their useful properties (Freud, [54]).

The most commonly used density function of a bivariate exponential distribution is proposed

by Downton [55]. He provided the following specific form of probability density function for

bivariate exponential distribution:

f(x1, x2; θ) =
µ1µ2

1− ρ
e−

µ1x1+µ2x2
1−ρ I0

2(ρµ1µ2x1x1ρ)1/2

1− ρ
, (4.11)

where θ = (µ1, µ2, ρ), µ1, µ2 > 0, 0 ≤ ρ < 1, and I0(z) =
∑∞

r=0 ( z
2
)2r/r!2 is the modified

Bessel function. The parameter ρ in (4.11) measures the correlation between two bivariate

exponential variables.

Let (Xi, Yi), i = 1, . . . , n be a random sample drawn from Downton’s bivariate expo-

nential distribution. Then the likelihood function of θ based on (Xi, Yi)’s is

L(θ) =
n∏
i=1

f(Xi, Yi; θ).

Al-ssadi and Young [56] derived the maximum likelihood estimator (MLE) θ̂ for θ by
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maximizing L(θ). They showed that θ̂ = (µ̂1, µ̂2, ρ̂)T , and proved that (µ̂1 − µ1, µ̂2 − µ2, ρ̂− ρ)T

asymptotically follows the normal distribution N3(0, V −1) where V = (Vi,j) is a 3× 3 matrix

with

V1,1 =
n

µ2
1

1− 2ρ− ρ2

(1− rho)2
+

ρ2A(ρ)

(1− ρ)4
, V1,2 =

n

µ1µ2

ρ2A(ρ)

(1− ρ)4
+
ρ(1 + ρ)

(1− ρ)2
,

V1,3 =
n

µ1

ρ(1 + ρ)A(ρ)

(1− ρ)5
+
ρ(3 + ρ)

(1− ρ)3
, V2,2 =

n

µ2
2

1− 2ρ− ρ2

(1− ρ)2
+

ρ2A(ρ)

(1− ρ)4
,

V2,3 =
n

µ2

ρ(1 + ρ)A(ρ)

(1− ρ)5
+
ρ(3 + ρ)

(1− ρ)3
, V3,3 = n

(1 + ρ)2A(ρ)

(1− ρ)6
− (1 + ρ)(3 + ρ)

(1− ρ)4
,

where A(ρ) = (1− ρ)5
∫∞

0

∫∞
0

g′2(ρy1y2)
g(ρy1y2)

y2
1y

2
2e
−(y1+y2)dy1dy2, and g(z) = I0(2z1/2).

We can see that the asymptotic variance of θ̂ is of a very complex form. Although

one can apply delta method to construct a confidence interval for ρ using above asymptotic

normal distribution of θ̂, the method requires intensive computation and plug-in estimation of

unknown parameters, and the resulting asymptotic variance estimate is unstable, particularly

when sample size n is small. Therefore, we recommend using the bootstrap procedure to

estimate the asymptotic variance of ρ̂. By generating B (We recommend B ≥ 200) times of

replications ρ̂∗b of ρ̂, for b = 1 . . . B, we can define the bootstrap estimate for the asymptotic

variance of ρ̂ as

V ar(ρ̂∗) =
1

B − 1

B∑
b=1

(
ρ̂∗b −

1

B

B∑
b=1

ρ̂∗b

)2

.

Then a (1− α) level normal approximation-based confidence interval (called NAII) for

the CC can be constructed as follows, which is a hybrid maximum likelihood and bootstrap

interval:

(ρ̂− Zα/2
√
V ar(ρ̂∗), ρ̂+ Zα/2

√
V ar(ρ̂∗)),

where Zα/2 is (1− α/2)-th quantile of the standard normal distribution.
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4.4.3 Generalized Confidence Interval

Let X be an observable random vector with the cdf F (x|v), where v = (θ, δ) is a vector of

unknown parameters, θ is the parameter of interest, and δ is a vector of nuisance parameters.

Let χ be the sample space of possible values of X and let Θ be the parameter space of θ.

An observation from X is denoted by x, where x ∈ χ. Let R = r(X;x, v) be a function of

X, x and v. R is said to be a generalized pivotal quantity if R has a probability distribution

free of unknown parameters, and the observed pivotal, defined as robs = r(X;x, v), does not

depend on the nuisance parameter δ .

Then a two-sided 100(1 − α)% GPQ-based confidence interval for the parameter θ is

(Rα/2, R1−α/2), where Rα/2 and R1−α/2 are the 100(α/2)-th percentile and 100(1 − α/2)-th

percentile of the distribution of R, respectively. More detailed introduction of GPQ-based

confidence intervals can be found in Weerahandi [52] and Hanning et al. [57].

Let {(Xi, Yi), i = 1, . . . , n} be a random sample from a bivariate normal distribution

with mean µ and covariance matrix Σ. An estimator for (µ,Σ) is

(µ̂, Σ̂) =

X
Y

 ,
1

n− 1

 SSx SSxy

SSxy SSy

 , (4.12)

where SSx, SSy and SSxy are sum of squares of X, Y and XY , respectively.

While the CC ρ is a function of parameters (σx, σy, σxy) under normality assumption.

The function of parameters of interest are defined as: (µ, β, σ2
2|1) ≡ (µ, σxy

σ2
x
, σ2

y −
σ2
xy

σ2
x

). Where

the parameters can be estimated by (Mu,Beta, SSx2|1) ≡ (µ̂, SSxy
SSx

, SSy − SSxy2

SSx
).

Then we can define the following pivotal quantities U , U2|1 and VB based on the statistics
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Mu, Beta, SSx, SSy and SSx2|1:

U =
SSx

σ2
x

∼ χ2
n−1, (4.13)

U2|1 =
SSx2|1

σ2
2|1
∼ χ2

n−2, (4.14)

VB = (Beta− β)

√
SSx

σ2
2|1
∼ N(0, 1). (4.15)

Let mu, beta, ssx2|1, ssx and ssy be the observed values of Mu, Beta, SSx2|1, SSx and

SSy, respectively. Then the GPQ for (σ2
x, σ

2
2|1, β) is

(Rσ2
x
, Rσ2

2|1
, Rβ) =

(
ssx

U
,
ssx2|1

U2|1
, beta− Vb

√
1

U2|1

ssx2|1

ssx

)
, (4.16)

Therefore the GPQs for (σ2
y, σxy), Σ and CC ρ are:

(Rσ2
y
, Rσxy) = (R2

βRσ2
x

+Rσ2
2|1
, RβRσ2

x
), (4.17)

RΣ =

Rσ2
x

Rσxy

Rσxy Rσ2
y

 ,

Rρ =
Rσxy√
Rσ2

x
Rσ2

y

. (4.18)

The following Monte-Carlo algorithm procedures can be applied to generate values of Rρ:

1. Calculate the sample mean and covariance matrix from the original sample (Xi, Yi)’s.

2. Generate U , U2|1 and VB using (4.13)-(4.15).

3. Calculate Rρ using (4.16)-(4.18).

4. Repeat the above 1 - 3 for K = 10, 000 times to obtain K values of Rρ.
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Then we can estimate the distribution of Rρ based on the K = 10, 000 generated values

of Rρ. A (1 − α) level GPQ-based confidence interval for the CC can be constructed as(
Rα/2, R1−α/2

)
, where Rα/2 and R1−α/2 are the (α/2)-th and (1 − α/2)-th quantiles of the

10, 000 values of Rρ, respectively.

In the simulation studies, we select the sample size n = 30, 50, 100. We set the CC

ρ to be 0.1, 0.5 and 0.9 to investigate the performance of the proposed methods, when the

dependence between X and Y is weak, moderate, and strong, respectively. We compare

the coverage probabilities and average confident lengths by the proposed methods with the

existing methods, including NAI, NAII, GPQ, PEL and IFEL confident intervals, under

the following four different scenarios. In the studies, we consider the following underlying

distributions, where three scenarios are under bivariate normal distributions and one scenario

is under bivariate exponential distribution.

I. Bivariate Normal Distributions:

• Scenario 1:

X
Y

 ∼ N2

0

0

 ,

 1 σxy

σxy 1



• Scenario 2:

X
Y

 ∼ N2

0

1

 ,

 1 σxy

σxy 2



• Scenario 3:

X
Y

 ∼ 0.9∗N2

0

0

 ,

 1 σxy

σxy 1

+0.1∗N2

0

1

 ,

 1 σxy

σxy 1

,

which is a mixed normal distribution with 90% of observations from the first nor-

mal distribution and 10% of observations from the second normal distribution.

II. Bivariate Exponential Distribution:

• Scenario 4 : (X, Y ) ∼ Biexp (λ1, λ2, λ12), where λ1, λ2, λ12 are parameters of the

bivariate exponential distribution used in Marshall et al. [58].



63

Simulated samples are generated in three scenarios to examine the performance of the

confidence intervals of CC ρ under bivariate normal distributions and one scenario with a

bivariate exponential distribution. Particularly, scenario 1 has bivariate normal distribution

of the same mean, and same variance; scenario 2 has different means, and different variances;

and scenario 3 has a normal mixture model with different means and same variance since

sometimes the underlying distribution is miss-specified. In scenario 4, we choose a bivariate

exponential distribution to generate random samples and evaluate the proposed methods

when the underlying distribution is not normal. The following algorithm procedures proposed

by Marshall et al. [58] are used to generate bivariate exponential random variates with a

specific correlation.

(1) Generate random samples U1 ∼ exp(λ1), U2 ∼ exp(λ2), and U3 ∼ exp(λ12), where

ρ =
λ12

(λ1 + λ2 + λ12)
.

(2) Set X = min(U1, U3), Y = min(U2, U3).

(Xi, Yi)’s generated by using this algorithm is a random sample from the bivariate exponential

distribution with CC ρ.

For each scenario, we run the simulation for 10,000 times to calculate the coverage prob-

ability and average length of the above mentioned intervals. B= 500 bootstrap replications

are used for the calculation of the NAII intervals. The simulation results are shown in Tables

4.1–4.4. From Tables 4.1–4.3, we observe that among the three parametric intervals, NAI and

GPQ intervals have similar performances in most cases. The coverage probabilities of NAI

and GPQ intervals are very close to the nominal level 0.95, except for the cases with ρ = 0.9

under scenario 3 in which NAI and GPQ intervals have severe under-coverage problems,

which indicates they are not robust to the model miss-specification. NAI and GPQ intervals

outperform NAII intervals in most cases except for the cases with ρ = 0.9 in scenario 3.

Comparing the two non-parametric intervals, IFEL intervals outperform PEL intervals in

terms of coverage probability and interval length in most cases under all the scenarios. In
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scenarios 1–2, the parametric NAI and GPQ intervals have slightly better coverage accuracy

that the non-parametric IFEL intervals. However, the non-parametric IFEL intervals per-

form much better than the parametric NAI, NAII and GPQ intervals in scenario 3. When

the normality assumption is violated under scenario 4, NAI and GPQ intervals cannot be

used, the non-parametric IFEL intervals outperform the other intervals. In summary, NAI,

GPQ and IFEL intervals are recommended when the underlying distribution is a normal

distribution, and IFEL interval is preferred when the underlying distribution is non-normal

or unknown.

4.5 Real Data Analysis

In this section, we apply two real examples to demonstrate the application of our pro-

posed methods.

Example 1. Brain Size and Intelligence

Willerman et al. [59] did research on the association between brain size and mental

capacity. In the study, there are 40 right-handed introductory psychology students at a

southern university involved in an experiment, where they received tests in four different

areas based on Wechsler’s [60] Adult Intelligence Scale-revised. The test score measured full

scale IQ score using a Verbal IQ and a Performance IQ score. In order to measure the brain

size of the subjects, Magnetic Resonance Imaging (MRI) was used. The MRI scanned 18

horizontal MR images. Then a computer counted all the pixels with non-zero gray scale

resulting in an index of brain sizes.

The dataset includes several other variables like gender and body size, but here we only

consider an index of brain size as the predictor of intelligence. The data set is available from

the Data and Story Library (DASL) at Carnegie Mellon University. The sample correlation

coefficient between brain size and full scale IQ is r = 0.3337. Since the p-value = 0.9851

by the Shapiro-Wilk multivariate normality test (Shapiro and Wilk, [61]), we accept the

normality assumption for the data. We calculate 95% confident interval under NAI, GPQ
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and IFEL methods for ρ. The results are displayed in Table 4.5.

From the results shown in Table 4.5, we see that NAI, GPQ, and IFEL intervals have

similar lengths. All these intervals indicate that the correlation between brain size and in-

telligence is moderate. There is no strong linear association between brain size and mental

ability.

Example 2. Reading and Mathematical Performance

The relationship between the language proficiency and mathematical performance is

discussed a lot in literature. For instance, MacGregor and Price [62] made a short review

of the literature on the connection between reading comprehension and mathematics per-

formance. They indicated that the ability to read, interpret and comprehend the working

problems significantly affect the result whether they can perform successfully in mathematics.

In this study, we would like to apply a real dataset from the National Center for Ed-

ucation Statistics (NCES) to construct the confidence interval for correlation coefficient

of reading capability and mathematical performance. The dataset (Data source: NCES,

http://nces.ed.gov) covers the average scores in Reading and Mathematics for 4th and 8th

graders in 11 urban areas, including New York City, Boston, Chicago, etc., in 2005. The

sample correlation coefficient is r = 0.9631, which indicates a strong relationship between

the two variables. Based on the Shapiro-Wilk multivariate test for the normality with p-

value equal to 0.0266, we can conclude that dataset follows non-normality for the underlying

distribution. We conduct simulation studies to compare IFEL interval with PEL interval for

ρ. The results are displayed in the Table 4.6. From the results, we can observe that the 95%

IFEL interval for ρ is (0.7808, 0.9680) suggesting that reading and math performances are

highly correlated as many authors have mentioned throughout the history of education.
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4.6 Discussion

The correlation coefficient is a fundamental measurement for the strength of the linear

relationship between two random variables. It’s commonly used for analyzing the relation-

ship between two random variables in scientific areas. Many parametric inferences have been

proposed for the correlation coefficient so far. However, when the underlying distribution

is not normal or unknown, the construction of confident intervals for correlation coefficient

are not well developed. Therefore, in the perspective of developing non-parametric infer-

ences for CC, we propose two empirical likelihood-based non-parametric intervals for the

correlation coefficient including plug-in empirical likelihood confident interval and influence

function based confident interval. It has been shown that empirical likelihood ratio statistics

for parameters of an unknown distribution have certain chi-square distributions and may be

used to obtain confidence intervals in a way that is completely analogous to that used with

parametric likelihoods. We evaluate these intervals through extensive simulation studies and

compare our proposed methods with the existing methods in terms of coverage probabilities

and average confident interval lengths. The simulation results indicate that the GPQ-based

interval performs very well when the underlying distribution is normal while the IFEL inter-

val has better overall performances with finite samples when the underlying distribution is

non-normal or unknown. We recommend the use of the Z-transformation based NAI inter-

val, the GPQ interval and the IFEL interval when the underlying distribution is a normal

distribution, and the use of IFEL interval when the underlying distribution is non-normal

or unknown.
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Table (4.1) Coverage probabilities and average lengths of various 95% confidence intervals
for ρ, scenario 1.

Coverage Probability Average Length
n Method 0.1 0.5 0.9 0.1 0.5 0.9
30 NAI 0.958 0.953 0.949 0.699 0.546 0.156

NAII 0.901 0.911 0.915 0.688 0.532 0.148
GPQ 0.948 0.951 0.950 0.684 0.545 0.159
PEL 0.910 0.916 0.946 0.497 0.519 0.130
IFEL 0.963 0.958 0.949 0.435 0.511 0.147

50 NAI 0.950 0.951 0.951 0.542 0.421 0.114
NAII 0.928 0.904 0.931 0.535 0.409 0.109
GPQ 0.948 0.948 0.948 0.537 0.419 0.116
PEL 0.929 0.939 0.952 0.441 0.424 0.103
IFEL 0.945 0.957 0.957 0.386 0.419 0.113

100 NAI 0.951 0.952 0.952 0.385 0.296 0.078
NAII 0.936 0.940 0.949 0.382 0.293 0.076
GPQ 0.947 0.952 0.953 0.384 0.295 0.078
PEL 0.940 0.955 0.950 0.353 0.313 0.073
IFEL 0.958 0.954 0.951 0.320 0.308 0.080

Table (4.2) Coverage probabilities and average lengths of various 95% confidence intervals
for ρ, scenario 2.

Coverage Probability Average Length
n Method 0.1 0.5 0.9 0.1 0.5 0.9
30 NAI 0.951 0.948 0.946 0.694 0.549 0.156

NAII 0.905 0.911 0.903 0.678 0.521 0.147
GPQ 0.951 0.949 0.950 0.684 0.544 0.158
PEL 0.909 0.935 0.941 0.489 0.521 0.129
IFEL 0.946 0.948 0.957 0.440 0.510 0.146

50 NAI 0.949 0.953 0.947 0.542 0.421 0.114
NAII 0.931 0.934 0.922 0.536 0.413 0.108
GPQ 0.950 0.950 0.951 0.536 0.420 0.115
PEL 0.937 0.949 0.951 0.434 0.423 0.102
IFEL 0.962 0.951 0.954 0.392 0.419 0.114

100 NAI 0.947 0.948 0.949 0.385 0.296 0.078
NAII 0.923 0.946 0.947 0.381 0.293 0.076
GPQ 0.950 0.952 0.949 0.384 0.296 0.078
PEL 0.949 0.952 0.949 0.357 0.315 0.074
IFEL 0.948 0.954 0.954 0.319 0.308 0.079
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Table (4.3) Coverage probabilities and average lengths of various 95% confidence intervals
for ρ, scenario 3.

Coverage Probability Average Length
n Method 0.1 0.5 0.9 0.1 0.5 0.9
30 NAI 0.955 0.954 0.808 0.695 0.567 0.228

NAII 0.903 0.934 0.918 0.682 0.551 0.214
GPQ 0.950 0.947 0.760 0.684 0.563 0.234
PEL 0.905 0.954 0.867 0.484 0.532 0.182
IFEL 0.955 0.940 0.923 0.433 0.520 0.205

50 NAI 0.948 0.949 0.708 0.542 0.435 0.164
NAII 0.919 0.934 0.855 0.531 0.425 0.161
GPQ 0.955 0.945 0.689 0.538 0.432 0.165
PEL 0.928 0.957 0.919 0.428 0.440 0.145
IFEL 0.954 0.946 0.937 0.382 0.430 0.160

100 NAI 0.948 0.941 0.537 0.386 0.305 0.109
NAII 0.938 0.939 0.747 0.382 0.300 0.108
GPQ 0.946 0.941 0.530 0.384 0.304 0.109
PEL 0.942 0.943 0.918 0.353 0.324 0.105
IFEL 0.957 0.959 0.936 0.315 0.317 0.115

Table (4.4) Coverage probabilities and average lengths of various 95% confidence intervals
for ρ, scenario 4.

Coverage Probability Average Length
n Method 0.1 0.5 0.9 0.1 0.5 0.9
30 NAII 0.865 0.818 0.681 0.689 0.665 0.269

PEL 0.876 0.946 0.935 0.490 0.631 0.287
IFEL 0.945 0.956 0.948 0.416 0.574 0.249

50 NAII 0.901 0.870 0.742 0.553 0.553 0.254
PEL 0.940 0.949 0.939 0.448 0.564 0.226
IFEL 0.955 0.943 0.956 0.380 0.456 0.230

100 NAII 0.917 0.902 0.781 0.406 0.420 0.198
PEL 0.951 0.940 0.954 0.371 0.454 0.207
IFEL 0.956 0.953 0.946 0.323 0.405 0.203

Table (4.5) 95% confidence intervals for ρ in example 1

Methods Confidence Interval Length
NAI (0.0157,0.5904) 0.5747
GPQ (0.0088, 0.5845) 0.5757
IFEL (0.0088, 0.5697) 0.5609
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Table (4.6) 95% confidence intervals for ρ in example 2

Methods Confidence Interval Length
PEL (0.8038, 0.9555) 0.1517
IFEL (0.7808, 0.9680) 0.1872
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PART 5

EMPIRICAL LIKELIHOOD-BASED INTERVAL ESTIMATION FOR THE

COEFFICIENT OF VARIATION

5.1 Introduction

The coefficient of variation (CV), as a popular measure for the relative variation of a

random variable, is defined as the ratio of the standard deviation to the mean. It is a useful

statistic for comparing the degree of variation from one data series to another, even if the

means are drastically different from one another. Suppose that {X1, X2, · · · , Xn} is a random

sample from the population X with the distribution function F (x), where X is a random

variable with mean µ and variance σ2. Then, the population coefficient of variation is defined

as k = σ
µ
. The CV k can be consistently estimated by K = S

X̄
, where X̄ = 1

n

∑n
i=1Xi which

is the sample mean and S2 = 1
n−1

∑n
i=1(Xi − X̄)2 which is the sample variance. X̄ and S2

are unbiased estimators for µ and σ2, respectively. We can see that the higher the CV, the

greater the level of dispersion of the variable around it’s mean, and vice versa.

The CV is an alternative and more informative variation measure besides the more

commonly used measurements of variation such as variance (standard deviation), because

when comparing the variation across populations, one needs to standardize and take into

account different units. If the units of populations are not matching, it is not appropriate

to directly compare the variances or standard deviations. Take one simple example, if we

want to analyze the variation in both BMI score and blood pressure of patients, directly

comparing the variances or standard deviations doesn’t make any sense since the scale of

data is different. A lot of similar examples can be found in the scientific study, where the data

with different measurement scale makes the direct comparison invalid or misleading. Hence,

from the perspective of unitlessness, CV is commonly applied and analyzed by researchers

and practitioners to make an important decision, particularly in biology, finance, engineering,
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and agricultural fields (Taye and Njuho, [63]).

Although the CV is a popular measurement index for the relative variation of a random

variable, there is a lack of work for making inferences on the CV in literature. A possible

reason is that the distribution of the sample coefficient of variation K is unknown when the

underlying distribution F (x) is unknown. Even when F (x) is a normal distribution, the

sampling distribution of K has a complicated form (See Hendricks and Robey, [64]):

dFK(v) =
2

π
1
2 Γ(n−1

2
)
e
− n

2σ
2
µ

v2

1+v2 vn−2

(1 + v2)
n
2

n−1∑
i=0

(n− 1)!Γ(n−i
2

)

(n− 1− i)!i!
n
i
2

2
i
2 (σ

µ
)i

1

(1 + v2)
i
2

dv.

Suppose that {X1, X2, · · · , Xn} is a random sample from the normal distribution with

mean µ and variance σ2, Lehmann [65] derived the sampling distribution of K as

X̄
S√
n

∼ NCTn−1(
µ
√
n

σ
),

where NCTn−1(µ
√
n

σ
) is a non-central t-distribution with n− 1 degrees of freedom depending

on the non-centrality parameter µ
√
n

σ
. Using this non-central t-distribution, Hayter [66]

showed how to construct confidence intervals for the CV of a normal distribution. However,

cumbersome calculations still lead to intensive computation. Hayter and Kim [67] considered

the problem of testing the equality of two CV’s.

There have been many researchers in the literature who proposed some simple approx-

imation methods with acceptable coverage accuracy. More recently, Mahmoudvand and

Hassani [68] used approximate methods to construct a confidence interval for a CV for nor-

mally distributed data, Panichkitkosolkul [69] developed confidence intervals for the CV in

a normal distribution with a known population mean. Verrill [70] discussed confidence in-

tervals for the CV when the underlying distribution is a log-normal distribution. Tian [71]

provided a generalized confidence interval for the common coefficient of variation.

It appears to be difficult for constructing an exact confidence interval for the CV due to

the complexity of the distribution function of K. Therefore, it’s necessary for us to develop
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new inferential methods for the CV.

5.2 The Motivation of this Part

When the underlying of population is normally distributed, many methods have been

proposed to construct confidence intervals for the CV, such as by Z-transformation method

or maximum likelihood estimation (MLE) method. However, the normality assumption for

the underlying distribution may not be easily guaranteed, and in many cases, the underly-

ing distribution of the population is not normal or unknown, so parametric inferences on

the CV become quite involved. Since non-parametric inference on the CV does not need a

parametric assumption on the underlying distribution, developing non-parametric empirical

methods for construction of the confidence intervals for the CV become inevitable and im-

portant. By using side information provided by the influence function, empirical likelihood

methods are proposed for inferences of a CV. It is shown that the asymptotic distribution of

the influence function-based empirical log-likelihood ratio statistic is a standard chi-square

distribution. Hence, confidence intervals for the CV can be easily obtained without any

underlying distribution assumption of sample coefficient of variation.

Therefore, the motivation of this part is to propose empirical likelihood-based non-

parametric intervals for the CV when the underlying distribution is unknown. In section

5.4 we also review some of the existing confidence intervals for the CV and then conduct

simulation studies to compare the proposed EL-based confidence intervals with existing

confidence intervals for the CV in terms of coverage probabilities and average interval lengths

including Vangel’s method and generalized confidence interval; A real example is applied to

demonstrate our proposed method, which followed by the conclusions and discussions made

in section 5.6.
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5.3 Empirical Likelihood-based Intervals

5.3.1 Plug-in Empirical Likelihood-based Interval for a CV

As we have introduced in the section 5.2, EL is a popular non-parametric method

for constructing confidence intervals of parameters of interest. With many advantages, EL

method has been widely applied to many fields. The advantages of the EL-based methods

are summarized as follows: (1) EL-based intervals do not require a pivotal statistic; (2) No

prior constraints for the shape of confidence intervals are needed; (3) EL-based intervals

are associated with a Bartlett correction that tolerates low coverage error (See Hall and La

Scala, [14]). However, EL-based methods for the CV have not been developed. So, in this

section, we attempt to apply the EL method to the construction of confidence intervals for

the CV. Observing that the CV k satisfies the following equation:

E(σ − kX) = 0,

then, the EL for k can be defined as follows:

L(k) = su
P
p{

n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piWi(k) = 0},

where P = (p1, ..., pn) is a probability vector, and Wi(k) = σ − kXi, i = 1, · · · , n.

The standard deviation σ is usually unknown in practice, but we can use the sample

standard deviation S to estimate it. Then, a plug-in EL for k can be defined as follows:

L̂(k) = su
P
p{

n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piŴi(k) = 0},

where Ŵi(k) = S − kXi .

Using Lagrange multiplier method, we can obtain the expression for pi, which is

pi =
1

n
{1 + λŴi(k)}−1, i = 1, ..., n,
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where λ is the solution to

1

n

n∑
i=1

Ŵi(k)

1 + λŴi(k)
= 0. (5.1)

Therefore, the plug-in EL ratio for k is:

R(k) =
n∏
i=1

(npi) =
n∏
i=1

{1 + λŴi(k)}−1.

Then the corresponding empirical log-likelihood ratio for k is

l(k) = 2
n∑
i=1

log{1 + λŴi(k)}. (5.2)

Theorem 5.1 below shows that l(k) asymptotically follows a scaled chi-square distribu-

tion. The proof of Theorem 5.1 is similar to the proof of Theorem 4.1 in Part 4.

Theorem 5.1: If k is the true value of the coefficient of variation, then the asymptotic

distribution of l(k), defined by (5.2), is a scaled chi-square distribution with degree of freedom

one. i.e.,

c l(k)
d−→ χ2

1,

where the scale constant c = σ2
2/

2
1 with

σ2
1 = E[

(X − µ)2

2σ
− σ

µ
· (X − µ)− σ2]2, σ2

2 =
σ4

µ2
.

Since the scale constant c is still unknown, in order to construct a confidence interval

for the CV, we have to estimate c.

Let

σ̂2
1 =

1

n

n∑
i=1

[
(Xi − X̄)2

2S
− S

X̄
· (Xi − X̄)− S

2
]2, σ̂2

2 =
S4

X̄2
.

Then, by Slutski’s lemma, ĉ = σ̂2
2/σ̂

2
1 is a consistent estimate for c. Based on Theorem 5.1,

we can construct a 100(1 − α)% level plug-in EL-based confidence interval (PEL interval)
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for k as follows:

{k : ĉl(k) ≤ χ2
1(1− α)},

where χ2
1(1− α) is the (1− α)-th quantile of χ2

1.

Another way to estimate the scale constant c is to use the following bootstrap procedure:

Step 1: Generate a bootstrap sample {X∗1 , · · · , X∗n} from the original sample {X1, · · · , Xn}.

Step 2: Find a bootstrap estimate ĉ∗b of ĉ:

ĉ∗b = (σ̂∗2)2/(σ̂∗1)2,

where σ̂∗1 and σ̂∗2 are the bootstrap copies of σ̂2
1 and σ̂2

2, respectively.

Step 3: Repeat steps 1-2 B times (B ≥ 200 is recommended) to obtain B bootstrap

copies of ĉ∗b : ĉ
∗
1, · · · , ĉ∗B.

Step 4: Estimate the constant c as follows:

c∗ =
1

B

B∑
b=1

ĉ∗b .

Based on Theorem 5.1 and the estimated constant c∗, we can construct a 100(1− α)%

level bootstrap and EL-based confidence interval (BPEL interval) for k as follows:

{k : c∗l(k) ≤ χ2
1(1− α)}.

Two methods of estimation for the scale constant c provide similar final performance in

terms of coverage probabilities. We choose the second way to estimate the scale constant c

in the simulation studies.
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5.3.2 Influence Function-based Empirical Likelihood Interval for a CV

From the proof of Lemma 5.1 in appendix, we get that

n−1/2

n∑
i=1

Ŵi(k) = n−1/2

n∑
i=1

U(Xi, k) + op(1)
L−→ N(0,21 ),

where U(Xi, k) = (Xi−µ)2

2σ
− k(Xi − µ)− σ

2
is the influence function for k.

Let P = (p1, ..., pn) be a probability vector. Based on the influence function for k, the

EL for k can be defined as follows:

LI(k) = su
P
p{

n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piÛi(k) = 0},

where Ûi(k) = (Xi−X̄)2

2S
− k(Xi − X̄)− S

2
.

With Lagrange multiplier method, we can obtain the expression for pi, which is

pi =
1

n
{1 + λIÛi(k)}−1, i = 1, ..., n,

where λI is the solution to

1

n

n∑
i=1

Ûi(k)

1 + λIÛi(k)
= 0. (5.3)

Then, the corresponding empirical log-likelihood ratio for k is

lI(k) = 2
n∑
i=1

log{1 + λIÛi(k)}. (5.4)

Theorem 5.2 shows that lI(k) asymptotically follows a standard chi-square distribution.

Theorem 5.2: If k is the true value of the coefficient of variation, then the asymptotic

distribution of lI(k), defined by (5.4), is a chi-square distribution with degree of freedom

one. i.e.,

lI(k)
d−→ χ2

1.
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Therefore, a 100(1 − α)% level influence function-based empirical likelihood (IFEL)

confidence interval for k can be constructed as follows:

{k : lI(k) ≤ χ2
1(1− α)}.

5.3.3 Jackknife Empirical Likelihood-based Interval for a CV

Jackknife Empirical Likelihood (JEL) method is an approach proposed by Jing, Yuan

and Zhou (2009) for the construction of confidence intervals for a parameter of interest. One

attractive property of the JEL-based method is that the logarithm of the JEL ratio statistic

asymptotically follows a standard Chi-square distribution under some regularity conditions.

Thus, constructing a JEL-based confidence interval is simple in calculation, which motivate

us to develop a JEL-based confidence interval for the CV in this section.

Let V̂ = 1
n

∑n
i=1 Ŵi(k), and V̂i = 1

n−1

∑n
j=1,j 6=i Ŵj,−i(k), i = 1, · · · , n, where Ŵj,−i(k) is

the Ŵj(k) computed with the (n − 1) observations after deleting the i-th observation from

the original sample. Then, the corresponding jackknife pseudo-values are

Wi(k) = nV̂ − (n− 1)V̂i, i = 1, · · · , n.

Since the jackknife pseudo values are asymptotically independent under mild conditions

(Tukey [72], Shi [73]), the standard empirical likelihood method could be applied to these

jackknife samples for constructing an EL-based confidence interval for the CV. Let P =

(p1, ..., pn) be a probability vector. The jackknife empirical likelihood for the CV can be

defined as follows:

LJ(k) = su
P
p{

n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piWi(k) = 0}.

Similarly, using the Lagrange multiplier method, we can get the Jackknife empirical
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log-likelihood ratio for the CV:

lJ(k) = 2
n∑
i=1

log{1 + λJWi(k)},

where λJ is the solution of the equation:

1

n

n∑
i=1

Wi(k)

1 + λJWi(k)
= 0.

Using similar techniques as in Jing et al. [40] and Peng [74], it can be proved that the

Wilks’ theorem for lJ(k) still holds. i.e.,

lJ(k)
d−→ χ2

1.

Therefore, a 100(1− α)% level JEL-based confidence interval for k can be constructed

as follows:

{k : lJ(k) ≤ χ2
1(1− α)}.

5.4 Simulation Studies

5.4.1 Vangel’s method

As we have discussed in the previous sections, due to the complicated distribution func-

tion for the sample CV, constructing an exact confidence interval for the CV become quite

difficult. Therefore, approximation methods were proposed in the literature to avoid cum-

bersome calculations and intensive computations. The core part of approximation methods

is selecting an appropriate pivot quantity. David [75] and Vangel[76] proposed their modi-

fied approximation methods based on different selections for pivot quantity. We provide the

detailed procedure of Vangel’s [76] work below to illustrate his method.
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Vangel [76] defined a class of random variables as shown below:

Q =
K2(1 + k2)

(1 + θK2)k2
,

where θ = θ(k, α) is a known function of k and α, K = S
X̄

is the sample CV.

Suppose that Yv is a random variable following the chi-square distribution with degrees

of freedom v = n − 1, and Wv = Yv
v

. Let t =
χ2
v,α

v
denote the corresponding quantile of Wv

where χ2
v,α is the 100α percentile of the distribution of Yv, and α ∈ (0, 1). The approximation

methods aim to select a proper θ such that Pr(Q < t) ≈ Pr(Wv ≤ t). Vangel [76] proved

that the distribution of Wv is known and is free of K, and he proposed a modified θ:

θ =
v

v + 1
[

2

χ2
v,α

+ 1].

Then, by using the approximate pivot, with a selected θ, a 100(1 − α)% approximate

confidence interval for k is constructed as follows:(
K√

t1(θ1K2 + 1)−K2
,

K√
t2(θ2K2 + 1)−K2

)
,

where t1 =
χ2
v,1−α2
v

, t2 =
χ2
v, α2

v
, and θi = 2

(v+1)ti
+ v

k+1
, i = 1, 2. So, Vangel’s interval is defined

as: (
K[(

u1 + 2

v + 1
− 1)K2 +

u1

v
]−

1
2 , K[(

u2

v + 1
− 1)K2 +

u2 + 2

v
]−

1
2

)
,

where ui ≡ vti, for i = 1, 2.

However, there still exist some shortcomings with McKay and Vangel’s methods. It was

suggested by Mckay himself that his method could only be applied with small values for k,

particularly for k < 0.33 (McKay, [77]). The pivotal quantity may be a complicated value

when we select a large value for k which directly limit the application of these methods.

So these problems strengthen our motivation to develop new non-parametric methods for

construction of confidence interval for the CV.
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5.4.2 Generalized Confidence Interval for a CV

In this section, we provide the detailed procedures to construct GPQ-based confidence

intervals for a single CV when the underlying distribution F follows a normal distribution,

a log-normal distribution and an Inverse Gaussian distribution. Inverse Gaussian distribu-

tion is an important family of skewed distributions which are often used to model income

distributions in economics study.

Let χ be the sample space of possible values of X and x be an observed value of X.

Let R = r(X;x, ν) be a function of (X, x, ν). R is a generalized pivotal quantity (GPQ) if

it satisfies the following two conditions:

(a) It’s distribution free of all the unknown parameters;

(b) The observed pivotal, robs = r(x;x, ν), does not depend on the nuisance parameter δ;

Then, without loss of generality, if robs = θ, then a two-sided (1−α) level confidence interval

for θ is provided by

(Rα/2, R1−α/2).

where Rα/2 and R1−α/2 are the (α/2)-th and (1− α/2)-th quantiles of the distribution of R.

Weerahandi [52] and Hanning et al. [57] presented more details about generalized pivotal

quantity and construction of GPQ-based confidence intervals.

Let {X1, · · · , Xn} be a random sample following Inverse Gaussian distribution IG(µ, λ)

with mean µ and scale parameter λ, the CV k =

√
µ3

λ

µ
=
√

µ
λ
. Then, the maximum likelihood

estimators (MLEs) of µ and λ are µ̂ = X̄, λ̂ = [ 1
n

∑n
i=1 (X−1

i − X̄−1)]−1 respectively, where

X̄ = 1
n

∑n
i=1Xi.

For notational convenience, we define V = λ̂−1. Then X̄ and V are mutually indepen-

dent random variables with distributions X̄ ∼ IG(µ, nλ), nλV ∼ χ2
n−1. Let {x1, ..., xn} be

a given sample from IG(µ, λ). x̄ = 1
n

∑n
i=1 xi and v = 1

n

∑n
i=1 (x−1

i − x̄−1) are the observed

values for X̄ and V . The generalized pivot quantities for λ and µ (see Ye et al. [78]) are
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given by

Rλ =
nλV

nv
∼
χ2
n−1

nv
, (5.5)

Rµ =
x̄

|1 +

√
nλ(x̄−µ)

µ
√
x̄

√
x̄

nRλ
|

d∼ x̄

|1 + Z
√

x̄
nRλ
|
, (5.6)

respectively, where Z ∼ N(0, 1), and
d∼ denotes “approximately distributed” .

Therefore, the GPQ for the CV k is

Rk =

√
Rµ

Rλ

, (5.7)

We propose the following Monte-Carlo algorithm for construction of a GPQ-based con-

fidence interval for the CV:

STEP 1: Compute x̄ and v using the original sample {x1, ..., xn}.

STEP 2: Generate one value of χ2
n−1 from the chi-squared distribution with n−1 degrees

of freedom and one value of Z from the standard normal distribution.

STEP 3: Calculate Rλ and Rµ by using (5.5) and (5.6).

STEP 4: Calculate Rk by using (5.7).

STEP 5: Repeat STEPs 2-4 H times (H ≥ 10000 is recommended) to obtain H copies

of Rk: {Rk,1, · · · , Rk,H}.

Then, a 100(1− α)% GPQ-based confidence interval for the CV can be constructed as

(Rk,α/2, Rk,1−α/2),

whereRk,α/2 andRk,1−α/2 are the 100(α/2)-th and 100(1−α/2)-th percentiles of {Rk,1, · · · , Rk,H},

respectively.

Similarly, when the underlying distribution F follows a normal distribution with mean

µ and standard deviation σ, the CV k = σ
µ
. From Tian [71], we can get a GPQ-based interval

for k. Let {X1, · · · , Xn} be a random sample from N(µ, σ2). Then a sufficient estimator
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for (µ, σ) is (µ̂, σ̂) = (X̄, S), where X̄ = 1
n

∑n
i=1Xi, and S2 = 1

n−1

∑n
i=1(Xi − X̄). The

parameter of interest k can be estimated by K = S
X̄

. Given n observations {x1, ..., xn} for

X ∼ N(µ, σ2), the observed values of X̄ and S2 are x̄ and s2 respectively. Since

U ≡ (n− 1)S2

σ2
∼ χ2

n−1, Z ≡ (
σ2

n
)−1/2(X̄ − µ) ∼ N(0, 1),

the GPQ’s of σ2 and µ are

Rσ2 =
(n− 1)s2

U
, (5.8)

Rµ = x̄− (
Rσ2

n
)1/2Z, (5.9)

respectively.

Therefore, the GPQ for the CV k is

Rk =

√
Rσ2

Rµ

. (5.10)

Using the similar Monte-Carlo algorithm above (see also Tian [71]), we can get a 100(1−

α)% GPQ-based confidence interval for the CV when the underlying distribution F follows

a normal distribution.

5.4.3 Simulation Results

In this section, we conduct simulation studies to compare the newly proposed confidence

intervals with existing confidence intervals in terms of coverage probability (CP) and aver-

age interval length (AL). The intervals being examined are Vangel’s approximation-based

interval, the bootstrap percentile (BP) interval, the proposed PEL interval, bootstrap-based

PBEL interval, the Jackknife empirical likelihood-based JEL interval, the influence function-

based IFEL interval. Another “exact” parametric confidence interval, called Generalized

Pivotal Quantity (GPQ) based interval, is also included for comparison.

We carry out the simulation studies with sample size n = 50, 300, 500, 800, 1000,
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respectively, to examine the finite sample performances of the various intervals for the CV

from smaller sample size to larger sample size. R = 1000 iterations is chosen for calculating

coverage probabilities and average interval lengths of various intervals. B = 1000 bootstrap

replications is chosen for calculating BPEL and BP intervals. H = 10000 replications is

chosen for calculating GPQ-based intervals. Since a larger value of the coefficient of variation

results in bigger relative variation which is of less interest in practice, and Miller [79] indicated

that for normally distributed data encountered in real-life settings, it is not expected that

the CV value will exceed 0.33, we select the true CV values k =0.2, 0.5 to investigate the

performance of all methods mentioned above.

Four underlying distributions, a normal distribution, a log-normal distribution, an In-

verse Gaussian distribution and a Chi-square distribution, are selected to generate random

samples. For the setting with the normal distribution as the underlying distribution, we con-

sider all the methods mentioned above. When the underlying distribution is a log-normal

distribution or an Inverse Gaussian distribution, Vangel’s method cannot be applied to, but

we can apply the GPQ-based method (because log(X) ∼ N(µ, σ2) for a log-normal distri-

bution) and the non-parametric methods. In the other setting, the Chi-square distribution

is selected as the underlying distribution to examine the BP interval and the proposed non-

parametric intervals. Since the normality assumption is invalid here, Vangel and GPQ-based

intervals cannot be applied to this setting.

At 90% confidence level, we calculate the coverage probabilities that the confidence

intervals cover the true value of k. The closer the coverage probability is to the nominal level,

the better performance of the confidence interval. With similar coverage probabilities, the

shorter average length is, the better performance of the confidence interval. The simulation

results are displayed in Tables 5.1-5.4. From Tables 5.1-5.3, we observe that the GPQ-based

interval has the best performance among all intervals regardless of the sample size when the

underlying distribution is a normal distribution or a log-normal distribution or an Inverse

Gaussian distribution. Its coverage probabilities are very close to the nominal level. When

the underlying distribution is a normal distribution, the parametric Vangel intervals have
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good coverage accuracy when n ≥ 500; BP interval and all the EL-based (PEL, BPEL, JEL

and IFEL) intervals have acceptable coverage probabilities as sample size n increases to 300

except the PEL and BPEL intervals that have over-coverage problems when k = 0.2. When

the underlying distribution is a log-normal distribution and k is small (i.e., k = 0.2), JEL and

IFEL intervals have acceptable coverage probabilities as sample size n increases to 300; when

k = 0.5, BP interval and all the EL-based intervals have under-coverage problems. When the

underlying distribution is an Inverse Gaussian distribution, BP interval and all the EL-based

(PEL, BPEL, JEL and IFEL) intervals have acceptable coverage probabilities as sample size

n increases to 500 except the BPEL intervals that have over-coverage problems when k = 0.2.

From Table 5.4, we can see that BP interval, BPEL and JEL intervals undercover the true

value of k when k = 0.5 with small to moderate sample sizes (n = 50, 300, 800), but the

coverage probabilities are closer to the nominal level as sample size n increases to 1000.

BP interval and all the EL-based (PEL, BPEL, JEL and IFEL) intervals have coverage

probabilities close to the nominal level as sample size n ≥ 300 when k = 0.2 except PEL has

over-coverage problems.

Above all, under the normality/log-normality/Inverse Gaussian assumptions, the GPQ-

based intervals have the best performance with good coverage probability and stability.

Therefore, we recommend the GPQ-based intervals for the CV when the underlying dis-

tribution is normal/log-normal/Inverse Gaussian. When the underlying distribution is a

non normal/log-normal/Inverse Gaussian or an unknown distribution, BP interval and the

EL-based intervals for the CV have acceptable coverage accuracy when sample size is big

enough. Since the bootstrap-based BP interval is computationally more intensive than the

EL-based intervals when sample size is big, EL-based intervals for the CV are preferred when

the underlying distribution is unknown and sample size is acceptably large.
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Table (5.1) Coverage probabilities (CP) and average lengths (AL) of various 90% level con-
fidence intervals for the CV. Underlying distribution: Normal distribution N(1, k).

k n Method Vangel GPQ BP PEL BPEL JEL IFEL

0.2 50 CP 0.880 0.902 0.872 0.870 0.962 0.874 0.880
AL 0.065 0.071 0.065 0.071 0.095 0.068 0.072

300 CP 0.894 0.902 0.890 0.940 1.000 0.900 0.900
AL 0.027 0.028 0.027 0.030 0.090 0.028 0.034

500 CP 0.893 0.897 0.885 0.940 1.000 0.895 0.910
AL 0.021 0.022 0.021 0.025 0.071 0.022 0.025

800 CP 0.897 0.903 0.885 0.890 1.000 0.899 0.910
AL 0.017 0.017 0.017 0.019 0.062 0.017 0.019

1000 CP 0.899 0.902 0.891 0.870 1.000 0.902 0.890
AL 0.015 0.015 0.015 0.017 0.060 0.015 0.016

0.5 50 CP 0.887 0.903 0.873 0.940 0.801 0.828 0.880
AL 0.206 0.215 0.195 0.242 0.157 0.191 0.194

300 CP 0.912 0.914 0.894 0.930 0.896 0.891 0.900
AL 0.083 0.083 0.081 0.115 0.080 0.084 0.108

500 CP 0.899 0.898 0.891 0.920 0.891 0.874 0.920
AL 0.065 0.064 0.063 0.076 0.063 0.065 0.080

800 CP 0.895 0.891 0.891 0.890 0.876 0.877 0.900
AL 0.051 0.051 0.050 0.053 0.044 0.048 0.069

1000 CP 0.901 0.897 0.893 0.920 0.892 0.871 0.900
AL 0.046 0.045 0.045 0.047 0.045 0.042 0.060
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Table (5.2) Coverage probabilities (CP) and average lengths (AL) of various 90% level con-
fidence intervals for the CV. Underlying distribution: Log-N(1, [log(k2 + 1)]2).

k N Method GPQ BP PEL BPEL JEL IFEL

0.2 50 CP 0.905 0.855 0.830 0.876 0.861 0.850
AL 0.070 0.064 0.069 0.067 0.070 0.068

300 CP 0.902 0.879 0.950 0.987 0.891 0.920
AL 0.028 0.028 0.033 0.047 0.030 0.031

500 CP 0.889 0.891 0.950 0.999 0.901 0.920
AL 0.021 0.022 0.027 0.046 0.024 0.024

800 CP 0.890 0.874 0.900 1.000 0.899 0.880
AL 0.017 0.018 0.022 0.047 0.020 0.019

1000 CP 0.904 0.886 0.910 1.000 0.924 0.870
AL 0.015 0.016 0.019 0.046 0.018 0.017

0.5 50 CP 0.905 0.779 0.820 0.780 0.789 0.780
AL 0.193 0.177 0.164 0.174 0.210 0.153

300 CP 0.902 0.837 0.830 0.848 0.846 0.890
AL 0.076 0.091 0.093 0.094 0.100 0.096

500 CP 0.889 0.854 0.890 0.858 0.850 0.880
AL 0.058 0.073 0.071 0.076 0.079 0.076

800 CP 0.890 0.845 0.890 0.856 0.844 0.890
AL 0.046 0.059 0.060 0.060 0.063 0.065

1000 CP 0.904 0.859 0.860 0.860 0.852 0.850
AL 0.041 0.053 0.054 0.054 0.056 0.060
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Table (5.3) Coverage probabilities (CP) and average lengths (AL) of various 90% level confi-
dence intervals for the CV. Underlying distribution: Inverse Gaussian distribution IG(1, 1

k2 ).

k n Method GPQ BP PEL BPEL JEL IFEL

0.2 50 CP 0.909 0.870 0.850 0.870 0.870 0.890
AL 0.069 0.063 0.064 0.058 0.069 0.066

300 CP 0.897 0.890 0.910 0.990 0.890 0.930
AL 0.027 0.028 0.029 0.073 0.029 0.030

500 CP 0.887 0.890 0.900 0.980 0.910 0.920
AL 0.021 0.022 0.023 0.060 0.023 0.024

800 CP 0.893 0.880 0.890 1.000 0.920 0.910
AL 0.017 0.017 0.020 0.063 0.019 0.020

1000 CP 0.901 0.890 0.860 1.000 0.940 0.870
AL 0.015 0.015 0.016 0.066 0.018 0.018

0.5 50 CP 0.907 0.800 0.790 0.720 0.820 0.820
AL 0.181 0.172 0.159 0.136 0.203 0.161

300 CP 0.890 0.870 0.920 0.840 0.860 0.910
AL 0.072 0.085 0.088 0.077 0.091 0.095

500 CP 0.890 0.870 0.890 0.860 0.870 0.920
AL 0.055 0.066 0.070 0.064 0.070 0.075

800 CP 0.888 0.860 0.870 0.880 0.870 0.900
AL 0.044 0.053 0.057 0.056 0.056 0.065

1000 CP 0.899 0.900 0.880 0.930 0.900 0.910
AL 0.039 0.048 0.050 0.055 0.051 0.061
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Table (5.4) Coverage probabilities (CP) and average lengths (AL) of various 90% level con-
fidence intervals for the CV. Underlying distribution: Chi-square distribution χ2

1( 2
k2 ).

k n Method BP PEL BPEL JEL IFEL

0.2 50 CP 0.870 0.920 0.815 0.880 0.920
AL 0.062 0.073 0.052 0.066 0.067

300 CP 0.894 0.950 0.911 0.909 0.890
AL 0.027 0.032 0.027 0.028 0.028

500 CP 0.897 0.940 0.903 0.904 0.900
AL 0.021 0.024 0.021 0.021 0.022

800 CP 0.895 0.940 0.898 0.906 0.920
AL 0.017 0.020 0.017 0.017 0.017

1000 CP 0.904 0.940 0.908 0.909 0.890
AL 0.015 0.017 0.015 0.015 0.015

0.5 50 CP 0.839 0.880 0.809 0.744 0.860
AL 0.161 0.167 0.140 0.150 0.159

300 CP 0.873 0.910 0.862 0.851 0.880
AL 0.072 0.077 0.070 0.070 0.079

500 CP 0.889 0.900 0.888 0.878 0.900
AL 0.056 0.062 0.056 0.056 0.063

800 CP 0.871 0.920 0.873 0.875 0.930
AL 0.045 0.048 0.044 0.045 0.050

1000 CP 0.897 0.900 0.889 0.904 0.940
AL 0.040 0.043 0.040 0.041 0.044

5.5 Real Examples

In this section, two real examples are used to illustrate the methods proposed in the

previous sections.

The Beef Council Check-off dataset is obtained from The Data and Story Library

(DASL) at Carnegie Mellon University. The US Congress created the Beef Promotion and

Research Act, the “Beef Checkoff Program”, with passage of the 1985 Farm Bill. By law,

all producers selling cattle or calves must pay $1 per head to support beef/veal promotion,

research and information. We select the average value of products sold (thousands) as the

underlying variable of interest in the dataset. There are 56 observations for the selected

variable. The estimated (sample) coefficient of variation of the average value of products
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sold is K = 0.4733. To construct a confidence interval for the CV, the Shapiro-Wilk test

(Shapiro and Wilk, [61]) is conducted to check for the normality of the distribution of the

variable. The resulting Shapiro-Wilk statistic is associated with a p-value of 0.5037 which

cannot reject the null hypothesis that the dataset is normally distributed. With our simula-

tion results in mind, we can now apply the GPQ-based method. The 90% level GPQ-based

interval for the CV is (0.3973, 0.5872), which indicates that the average values of products

sold have small relative-variation. Therefore, we can conclude that the Beef products sold

in US are of good quality.

The second dataset comes from The Panel Study of Income Dynamics (PSID) which is a

longitudinal survey of the families in USA. The PSID has been conducted by the University

of Michigan since 1968 and data about US families are collected annually. We use the family

income data from year 2000 from the PSID Family Income Plus Files. The dataset consists

of 7,406 families. The sample coefficient of variation for the family income is K = 0.6535.

Obviously, the family income distribution in the US is a skewed (i.e. non-normal) distri-

bution. Therefore, we can apply the newly proposed non-parametric methods to calculate

confidence intervals for the CV. The 90% level BP interval and EL-based confidence intervals

for the CV are displayed in Table 5.5. From Table 5.5, we can see that BP method and all

the EL-based methods produce similar confidence intervals in this example. In particular,

both BPEL and IFEL methods give the same interval for the CV which is (0.585, 0.722).

This interval shows that the relative variation of family income around the mean family

income in USA is at a moderate level. This finding will provide meaningful information on

income inequality for US government.

Table (5.5) 90% level confidence intervals for the CV of the family income in USA

K Method BP PEL BPEL JEL IFEL

0.6535 Upper bound 0.588 0.655 0.585 0.599 0.585
Lower bound 0.720 0.722 0.722 0.749 0.722
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PART 6

CONCLUSIONS AND FUTURE STUDIES

In this dissertation, we generalize the approach of Faraggi [9] and propose HWS, HAC

and HBCA intervals for the covariate-adjusted Youden index under the heterosedastic regres-

sion models with/without the normality assumption for the error distributions. Meanwhile,

we developed influence function based empirical likelihood (IFEL) method to construct con-

fidence intervals/regions for the parameters in the AUC regression along with the correlation

coefficient (CC) and the coefficient of variation (CV), respectively. Through the intensive

simulation studies, we can draw the conclusions as follows.

First, we proposed various confidence intervals for the covariate-adjusted Youden index

along with the optimal cut-off point under linear regression model and heterosedastic re-

gression model. Our simulation results have shown that with normal error assumption, the

GPQ-based intervals outperform the bootstrap-based BCa, BTI and BTII intervals under

the same parametric linear models setting, particularly for small to moderate sized sam-

ples which are more applicable and practical in second or third phase medical diagnostic

studies. Under heterosedastic regression, we apply the MOVER method to construct the

hybrid CI for the covariate-adjusted YI with/without normal error assumption. When the

errors are normally distributed, HBCA-N method outperforms HAC-N, HWS-N and ACNA

method in terms of coverage probabilities. HAC-N intervals performs better than HWS-N

intervals. When the errors are not normally distributed, HBCA-E and ACNA intervals for

the covariate-adjusted Youden Index are farther from the 95% nominal level at some values

of covariates than HAC-E and HWS-E intervals. And HAC-E intervals have better perfor-

mance and are much more stable than HWS-E intervals in terms of coverage probabilities.

Without the normal error assumptions, we also examine the performance of HBCA-E and

ACNA intervals for the optimal cut-off point at given Z = z. ACNA intervals are much
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more stable than HBCA-E intervals, although ACNA intervals are slightly higher than the

95% nominal level at the majority values of covariates. Above all, under the heteroscedastic

regression models, we recommend the HAC-E intervals for the covariate-adjusted YI and

ACNA intervals for the optimal cut-off point for the test results in practice.

In ROC analysis, the area under the ROC curve (AUC) is a popular summary measure-

ment of the discriminatory accuracy of a diagnostic test. AUC Regression is commonly used

to evaluate the effects of the covariates on the diagnostic accuracy. Since the asymptotic dis-

tribution of the influence function-based empirical log-likelihood ratio statistic is a standard

chi-square distribution. Hence, confidence regions based on the influence function for the

regression parameters can be easily obtained without any variance estimates. Hereby, in Part

3, we develop new EL-based statistical methods for the AUC regression including Bootstrap

influence function-based method (BIFEL) and Jackknife empirical likelihood-based method

(JEL). We compare our proposed methods with the existing method by constructing con-

fidence regions for inferences of the AUC regression. Simulation studies indicate BIFEL

confidence regions outperform JEL and NA confidence regions in terms of coverage proba-

bilities. Finally, a real study of the distortion product otoacoustic emissions (DPOAE) test

to diagnose the hearing impairment demonstrates the application of our proposed method.

In Part 4, we proposed an influence function-based empirical likelihood method to con-

struct a confidence interval for the CC. The simulation results indicate that the GPQ-based

interval performs very well when the underlying distribution is normal while the IFEL inter-

val has better overall performances with finite samples when the underlying distribution is

non-normal or unknown. The proposed EL-based intervals are easy to use and can be directly

calculated by implementing the algorithm for computing the standard empirical likelihood

interval (Hall and La Scala [14]). We recommend the use of the z-transformation based

NAI interval, the GPQ interval, and the IFEL interval when the underlying distribution is

a normal distribution, and the use of the IFEL interval when the underlying distribution is

non-normal or unknown.

In Part 5, we proposed an empirical likelihood method based on influence function



92

to construct confidence intervals for the CV. Simulation studies showed that under the

normality/log-normality assumptions, the GPQ-based interval has the best performance

with good coverage probability and stability. When the underlying distribution is a non

normal/log-normal or an unknown distribution, BP interval and the EL-based intervals for

the CV have acceptable coverage accuracy when sample size is acceptably large (n ≥ 1000).

Thus, these non-parametric methods should also be considered for obtaining confidence in-

tervals for the CV when the underlying distribution is unknown. In terms of computation

time, EL-based methods are more efficient than BP-based method especially for large sam-

ple sizes. Hereby, we recommend using GPQ-based interval for the CV when the underlying

distribution is normal/log-normal and EL-based interval when the underlying distribution

is not normal or unknown and sample size is acceptably large.

With the highly developed medical technologies, for some diseases, eg. Brain tumor,

Alzheimer’s Disease, a transitional stage, which is between healthy and unhealthy stage,

could be detected and defined. In order to gain the optimal timing window for medical

interventions, it is necessary to recognize the intermediate stage if it exists. In the future

studies, we may consider extending the original two groups setting into three ordinal groups

setting and redefining the sensitivity, specificity and adding the transitional rate. Then,

the three-dimensional ROC surface will be the measurement of correct classification into

three diagnostic groups used for testing accuracy. It’s necessary and valuable for researchers

to think about how to apply the influence function-based empirical likelihood method to

construct confidence intervals for adjusted YI, optimal cutoff points and make inferences

for the volume under ROC surface (VUS) in the presence of covariates. Do the proposed

non-parametric empirical estimation methods still perform well for the three-groups setting

? Also, in part two, without the normal error assumptions, for the non-parametric empirical

estimation method, we only consider the t distribution as an example. How about application

for the skewed data and the longitudinal data? All above questions and topics are critical for

the future empirical methods studies in biomedical research and other scientific disciplines,

specifically for interval estimation of parameters of interest.
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Appendix A

PROOFS OF PART 3

We need Lemma 3.1 and Lemma 3.2 for the proof of Theorem 3.1.

We denote x⊗2 = xxT , for x ∈ Rp, and denote ‖ · ‖ the Euclidean norm.

Lemma 3.1 Under the conditions in Theorem 1, we have

1√
n+m

n+m∑
k=1

Wk(β)
L−→ N(0,

ρ

1 + ρ
V ).

where

V = V1 + V2,

V1 = lim
n→∞

1

n

n∑
j=1

(ω(βT0 ZD
j )ZD

j )⊗2V arDZD [F D̄
ZD̄(Y D)],

V2 = ρ(lim
n

1

n

n∑
j=1

ω(βT0 ZD
j )ZD

j )⊗2V arD̄
ZD̄ [

∫
I(Y D̄ ≤ t)dFD

ZD(t)].

Proof. From

1√
n

n∑
j=1

Ĥj =
1√
n

n∑
j=1

[1− ÛD
j − g(βT0 ZD

j )]ω(βT0 ZD
j )ZD

j ,

and

1√
n

n∑
j=1

Hj =
1√
n

n∑
j=1

[1− UD
j − g(βT0 ZD

j )]ω(βT0 ZD
j )ZD

j ,

we obtain the following decomposition:

1√
n

n∑
j=1

Ĥj =
1√
n

n∑
j=1

Hj +
1√
n

n∑
j=1

(
UD
j − ÛD

j

)
ω(βT0 ZD

j )ZD
j ≡ I1 + I2.
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From

V ar(I1) =
1

n
V ar(

n∑
j=1

[F D̄
ZD̄

(Y D
j )− g(βT0 ZD

j )]ω(βT0 ZD
j )ZD

j )

=
1

n

n∑
j=1

(ω(βT0 ZD
j )ZD

j )⊗2V arDZD [F D̄
ZD̄

(Y D
j )]

−→ V1

(If ZD
j ’s are i.i.d. random variables, then V1 = E((ω(βT0 ZD)ZD)⊗2V arDZD [F D̄

ZD̄(Y D)])), and

Central Limit Theorem, it follows that I1
L−→ N(0, V1).

For the term I2, using F̂ D̄
ZD̄(t) = 1

m

∑m
i=1 I(Y D̄

j ≤ t), we get that

I2 =
1√
n

n∑
j=1

(
F̂ D̄

ZD̄(Y D
j )− F D̄

ZD̄(Y D
j )
)
ω(βT0 ZD

j )ZD
j

= [lim
n

1

n

n∑
j=1

ω(βT0 ZD
j )ZD

j ]

∫ √
n
(
F̂ D̄
D̄ (t)− F D̄

ZD̄(t)
)
dFD

ZD(t) + op(1)

=

√
n

m
[lim
n

1

n

n∑
j=1

ω(βT0 ZD
j )ZD

j ]

×
√
m

(
1

m

m∑
i=1

∫
I(Y D̄

i ≤ t)dFD
ZD(t)−

∫
F D̄

ZD̄(t)dFD
ZD(t)

)
+ op(1)

L−→ N(0, V2).

For given covariates ZD
j ’s, test results Y D

j ’s for the diseased group and Y D̄
i ’s for the non-

diseased group are independent, so I1 and I2 are asymptotically independent. Therefore,

1√
n

n∑
j=1

Ĥj = I1 + I2
L−→ N(0, V ). (A.1)

with V = V1 + V2.
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Observing that

1√
n+m

n∑
j=1

Ĥj =
1√

n+m

n∑
j=1

Hj +
n

m
[lim
n

1

n

n∑
j=1

ω(βTZD
j )ZD

j ] (A.2)

× 1√
n+m

m∑
i=1

(∫
I(Y D̄

i ≤ t)dFD
ZD(t)−

∫
F D̄

ZD̄(t)dFD
ZD(t)

)
+ op(1) (A.3)

=
1√

n+m

n∑
j=1

Hj +
ρA(β)√
n+m

m∑
i=1

∫ (
I(Y D̄

i ≤ t)− F D̄
ZD̄(t)

)
dFD

ZD(t) + op(1)(A.4)

≡ 1√
n+m

n∑
j=1

Hj +
1√

n+m

m∑
i=1

ρA(β)Bi + op(1) (A.5)

≡ 1√
n+m

n+m∑
k=1

Wk(β) + op(1), (A.6)

where A(β) = limn
1
n

∑n
j=1 ω(βTZD

j )ZD
j , Bi =

∫ (
I(Y D̄

i ≤ t)− F D̄
ZD̄(t)

)
dFD

ZD(t),

ρ = limn
n
m

, and

Wk(β) =

 Hk, if k = 1, · · · , n,

ρA(β)Bi, if k = n+ 1, · · · , n+m.

Lemma 3.1 follows immediately from (A.1), (A.6) and

1√
n+m

n+m∑
k=1

Wk(β) =

√
n

n+m

1√
n

n∑
j=1

Ĥj + op(1).

Lemma 3.2 Under the conditions in Theorem 1, we have that

(i) max
k
‖ Ŵk(β) ‖= op(N

1/2),

(ii)
1

N

N∑
j=1

Ŵk(β)⊗2 p−→ ρ

1 + ρ
V,

where N = n+m.

Proof. (i) Under the conditions in Theorem 1, we have maxj ‖ Hj ‖= op(n
1/2). From
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supy

∣∣∣√n(F̂ D̄
ZD̄(y)− F D̄

ZD̄(y))
∣∣∣ = Op(1), it follows that

‖Ĥj −Hj‖ = ‖(UD
j − ÛD

j )ω(βT0 ZD
j )ZD

j ‖

=
∣∣∣F̂ D̄

ZD̄(Y D
j )− F D̄

ZD̄(Y D
j )
∣∣∣ ‖ω(T0 ZD

j )ZD
j ‖

≤ sup
y

∣∣∣F̂ D̄
ZD̄(y)− F D̄

ZD̄(y)
∣∣∣ ‖ω(βT0 ZD

j )ZD
j ‖ = op(1),

uniformly for j = 1, 2, ..., n. Therefore,

max
j
‖ Ĥj ‖≤ max

j
‖ Hj ‖ + max

j
‖ Hj −Hj ‖= op(n

1/2).

Hence,

max
k
‖ Ŵk(β) ‖≤ max

k
‖ Ĥk ‖ +C max

k
‖ ZD

k ‖= op(N
1/2),

where C is a generic constant.

(ii) From supy

∣∣∣√n(F̂ D̄
ZD̄(y)− F D̄

ZD̄(y))
∣∣∣ = Op(1), and supy

∣∣∣√n(F̂D
ZD(y)− FD

ZD(y))
∣∣∣ =

Op(1), we have that

max
k
‖ Ŵk(β)−Wk(β) ‖≤ max

j
‖ Hj −Hj ‖ (A.7)

+C max
k

∣∣∣∣∫ (I(Yk ≤ t)− F̂ D̄
ZD̄(t))dF̂D

ZD(t)−
∫

(I(Yk ≤ t)− F D̄
ZD̄(t))dFD

ZD(t)

∣∣∣∣+ op(1)(A.8)

= op(1). (A.9)

From the proof of Lemma 3.1, it follows that

1

N

N∑
j=1

Wk(β)⊗2 =
1

N

n∑
j=1

H⊗2
j +

1

N

m∑
i=1

ρ2A(β)⊗2B2
i (A.10)

p−→ ρ

1 + ρ
E(H⊗2

1 ) +
ρ

1 + ρ
· ρA(β)⊗2E(B2

1) (A.11)

=
ρ

1 + ρ
(V1 + V2) =

ρ

1 + ρ
V. (A.12)

Lemma 2 (ii) follows from (A.9) and (A.12) right away.
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The Proof of Theorem 3.1

Using Lemma 3.1, Lemma 3.2 (ii) and the similar argument used in Owen (1990), we

can prove that

‖ ν ‖= Op(N
−1/2). (A.13)

Then, applying Taylor’s expansion, we get that

l1(β0) = 2
N∑
k=1

log(1 + νT Ŵk(β))

= 2
N∑
k=1

(νT Ŵk(β)− 1

2
(νT Ŵk(β))2) + r1N ,

with

|r1N | ≤ C
N∑
k=1

|νT Ŵk(β)|3 ≤ C ‖ ν ‖3 max
j
‖ Ŵk(β) ‖

∑
j

‖ Ŵk(β) ‖2= op(1) .

By (3.8), we have

N∑
k=1

Ŵk(β)

1 + νT Ŵk(β)
=

N∑
k=1

Ŵk(β)[1− νT Ŵk(β) +
(νŴk(β))2

1 + νT Ŵk(β)
] (A.14)

=
N∑
k=1

Ŵk(β)− (
N∑
k=1

Ĥ⊗2
j )ν +

N∑
k=1

Ŵk(β)(νT Ŵk(β))2

1 + νT Ĥj

= 0. (A.15)

(A.13), (A.15) and Lemma 3.2 together imply that

ν = (
N∑
k=1

Ŵk(β)⊗2)−1

N∑
k=1

Ŵk(β) + op(n
−1/2) .
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Again by (3.8), we get that

0 =
N∑
k=1

νT Ŵk(β)

1 + νT Ĥj

=
N∑
k=1

(νT Ŵk(β))[1− νT Ŵk(β) +
(νT Ŵk(β))2

1 + νT Ŵk(β)
] (A.16)

=
N∑
k=1

(νT Ŵk(β))−
N∑
k=1

(νT Ŵk(β))2 +
N∑
k=1

(νT Ŵk(β))3

1 + νT Ĥj

. (A.17)

From (A.13) and Lemma 3.2, we can get

1

n

N∑
k=1

(νT Ŵk(β))3

1 + νT Ĥj

= op(1) ,

then we get

N∑
k=1

νŴk(β) =
N∑
k=1

(νĤj)
2 + op(1) . (A.18)

From (A.13)− (A.18), Lemma 3.1, and Lemma 3.2 (ii), it follows that

l1(β0) =
N∑
k=1

νT Ŵk(β)⊗2ν + op(1)

= (
1√
N

N∑
k=1

Ŵk(β))T (
1

N

N∑
k=1

Ŵk(β)⊗2)−1(
1√
N

N∑
k=1

Ŵk(β)) + op(1)

L−→ χ2
p.

The Proof of Theorem 3.2.

The proof of Theorem 3.2 is similar to that of the main theorem in Jing, Yuan, and

Zhou (2009) and hence omitted here.
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Appendix B

PROOFS OF PART 4

Lemma 4.1

(i). n−1/2
∑n

i=1 V̂ (Wi)− ρ
L−→ N(0, σ2

V ),

where σ2
V = V ar[X−µx

σx
· Yi−µy

σy
− 2−1ρ((X−µx

σx
)2 + (Y−µy

σy
2)].

(ii). 1
n

∑n
i=1(V̂ (Wi)− ρ)2 p−→ σ2

0, where σ2
0 = V ar[X−µx

σx
· Yi−µy

σy
].

Proof of Lemma 4.1

(i). Let V (Wi) = Xi−µx
SX
· Yi−µy

SY
, i = 1, . . . , n. Then, we have the following decomposition:

n−1/2

n∑
i=1

(V̂ (Wi)− ρ) = n−1/2

n∑
i=1

(V̂ (Wi)− V (Wi)) + n−1/2

n∑
i=1

(V (Wi)− V (Wi))(B.1)

+n−1/2

n∑
i=1

(V (Wi)− ρ) ≡ I1 + I2 + I3. (B.2)

For the firm term in (B.2), we have that

I1 = n−1/2

n∑
i=1

(V̂ (Wi)− V (Wi)) (B.3)

= (SXSY )−1n−1/2

n∑
i=1

[(Xi − X̄)(Yi − Ȳ )− (Xi − µx)(Yi − µy)] (B.4)

= (SXSY )−1n−1/2[(µx − X̄)
n∑
i=1

(yi − Ȳ ) + (µy − Ȳ )
n∑
i=1

(Xi − µx)] = op(1). (B.5)
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For the firm term in (B.2), we have that

I1 = n−1/2

n∑
i=1

(V̂ (Wi)− V (Wi)) (B.6)

= (SXSY )−1n−1/2

n∑
i=1

[(Xi − X̄)(Yi − Ȳ )− (Xi − µx)(Yi − µy)] (B.7)

= (SXSY )−1n−1/2[(µx − X̄)
n∑
i=1

(yi − Ȳ ) + (µy − Ȳ )
n∑
i=1

(Xi − µx)] = op(1). (B.8)

For the second term in (B.2), we have that

I2 = n−1/2

n∑
i=1

(V (Wi)− V (Wi)) (B.9)

= (
1

SXSY
− 1

σxσy
)n−1/2

n∑
i=1

(Xi − µx)(Yi − µy) (B.10)

= −ρ(SXSY )−1n1/2[(SX − σx)SY + (SY − σy)σx] + op(1) (B.11)

= −2−1ρn1/2[σ−2
x (s2

x − σ2
x) + σ−2

y (S2
Y − σ2

y)] + op(1) (B.12)

= −2−1ρn−1/2

n∑
i=1

[((
Xi − µx
σx

)2 − 1) + ((
Yi − µy
σy

)2 − 1)] + op(1). (B.13)

As for the third term in (B.2), we have that

I3 = n−1/2

n∑
i=1

(V (Wi)− ρ) (B.14)

= n−1/2

n∑
i=1

[
Xi − µx
σx

· Yi − µy
σy

− ρ]. (B.15)

From (B.2) - (B.15) and the central limit theorem, it follows that

n−1/2

n∑
i=1

(V̂ (Wi)− ρ) = n−1/2

n∑
i=1

[(
Xi − µx
σx

· Yi − µy
σy

− ρ)

−2−1ρ(((
Xi − µx
σx

)2 − 1) + ((
Yi − µy
σy

)2 − 1))] + op(1)

L−→ N(0, σ2
V ).
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Lemma (ii) follows directly from the law of large number and

1

n

n∑
i=1

(V (Wi)− ρ)2 p−→ σ2
0,

as well as ∣∣∣∣∣ 1n
n∑
i=1

(V̂ (Wi)− ρ)2 − 1

n

n∑
i=1

(V (Wi)− ρ)2

∣∣∣∣∣ ≤ Op(1)
1

n

n∑
i=1

|V̂ (Wi)− V (Wi)|

≤ Op(1)
1

n
[|µy − Ȳ |

n∑
i=1

|Xi|+ |µx − X̄|
n∑
i=1

|Yi|+
n∑
i=1

|X̄Ȳ − µxµy|] + op(1)

= op(1).

Proof of Theorem 4.1.

Using Lemma 1 and the similar arguments used in Owen (1990), we can prove that

λ = Op(n
−1/2). Since max1≤i≤n|V (Wi) − ρ| = O(1), a.s., applying Taylor’s expansion to

(4.8), we obtain that

l(ρ) = 2
n∑
i=1

log[1 + λ(V̂ (Wi)− ρ)]

= 2
n∑
i=1

[λ(V̂ (Wi)− ρ)− 1

2
(λ(V̂ (Wi)− ρ))2] + rn,

where

|rn| ≤ C

n∑
i=1

|λ(V̂ (Wi)− ρ)|3 ≤ C|λ|3n = Op(n
−1/2).

From equations (4.6), it follows that

λ =

∑n
i=1(V̂ (Wi)− ρ)∑n
i=1(V̂ (Wi)− ρ)2

+Op(n
−1/2),
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n∑
i=1

λ(V̂ (Wi)− ρ) =
n∑
i=1

(λ(V (Wi)− ρ))2 + op(1).

Therefore, by Lemma 1, we have that

A · l(ρ) = A ·
n∑
i=1

(V̂ (Wi)− ρ) + op(1)

=
σ2

0

σ2
V

· [
∑n

i=1(V̂ (Wi)− ρ)]2∑n
i=1(V̂ (Wi)− ρ)2

+ op(1)

=
σ2

0

n−1
∑n

i=1(V̂ (Wi)− ρ)2
· [σ−1

V n−1/2

n∑
i=1

(V̂ (Wi)− ρ)]2 + op(1)

L−→ χ2
1.

The proof of Theorem 1 is thus completed.

Proof of Theorem 4.2.

Proof of Theorem 4.2 is similar to that of Theorem 1 and hence omitted here.
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