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ABSTRACT 
Title: Relative Energy Deficiency in Female Collegiate Track & Field Athletes.  
Background: Energy deficiency and its consequences have long been studied in female 
athletes because of it’s potential for increasing risks of illness and injury. Sustaining an 
energy deficient diet while training and during competition may result in muscle loss and 
reduction in performance. Studies suggest that athletes competing in sports focusing on 
appearance or a lean physique are at high risk for energy deficiency. In 2014, the IOC 
developed the concept of ‘Relative Energy Deficiency in Sport’ (RED-S) to include new 
components not previously included in the Female Athlete Triad.  A study has not yet 
been completed applying the RED-S paradigm in collegiate track and field athletes.  
Objective: The purpose of this study was to examine the prevalence of RED-S in female 
collegiate track and field athletes. It was hypothesized that the majority of collegiate track 
and field athletes experience RED-S. It was also hypothesized that a greater percentage of 
distance runners experience RED-S than other track and field athletes, including 
throwers, jumpers, and sprinters. The components of RED-S assessed were menstrual 
function, bone health, and energy expenditure.  
Methods: This study was a descriptive cross-sectional study, obtaining data through the 
use of a questionnaire and a relative energy expenditure index on a population of 12 
female collegiate track and field athletes.  Data were obtained through the use of a LEAF-
Q questionnaire, a three-day food and exercise recall, and body composition analysis.  
Results: The 12 athletes were a combination of distance runners (n=5), throwers (n=2), 
and sprinters (n=5). Average subject characteristics were: age (20.6 ±1. 44 years), height 
(165.6 ±7.5cm), weight (63.58 ± 16.97kg), and body fat percentage (20.9± 7.2). Average 
energy intake over three days was 2146 kcal (±627), and the average predicted energy 
expenditure was 2380 kcal (±458). Average hours spent in a catabolic (52.8 ± 24.0), 
highly catabolic (37.5 ± 25.0), anabolic (19.2 ± 24.0), and highly anabolic state (12.4 ± 
21.0). Subjects were in a negative energy balance state the majority of the days analyzed, 
and 75% of the population had at least one day of dietary recall below 45 kcal/kg 
FFM/day. Spearman’s rho analysis found a significant inverse correlation between Day 1 
hours spent in optimal energy balance (± 400 kcal) and body fat percent (p=0.024, rs= -
0.643), and significant positive correlation between Day 1 hours spent in optimal energy 
balance (± 400 kcal) and fat free mass percentage (p=0.03, rs=0.625). Spearman’s rho 
analysis also found an inverse correlation between Day 1 hours spent in an energy deficit 
(<-400 kcals) and fat free mass percentage (p=0.03 rs= -0.626), and a positive correlation 
between Day 1 hours spent in an energy deficit and body fat percentage (p=0.026, 
rs=0.636). Seven out of twelve participants scored ≥ 8 on the LEAF-Q putting them at 
risk for RED-S.  
Conclusion: The study highlights the misleading effect of averaging multiple days of 
dietary recall on energy balance. When participant’s dietary recalls were assessed day by 
day the majority of hours were spent in a catabolic state, however when the three days of 
the recall were averaged the severity of the hours spent in a catabolic state lessened. The 
associations in this study are consistent with previous studies evaluating the relationships 
between energy balance deficits and body composition, indicating that longer duration 
spent in an energy deficit is associated with lower lean and higher fat mass. The findings 
from the LEAF-Q show that 58% of participants were at risk for RED-S, and half of all 
participants had or were experiencing menstrual dysfunction. 
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CHAPTER I 
 

INTRODUCTION 
 

Background: Relative Energy Deficiency in Sport 

Energy deficiency has long been reported in athletes, and in particular it has been 

widely prevalent in athletes in weight sensitive sports such as gymnastics, wrestling, 

diving, and cross country running1. Energy deficiency can be related to many factors such 

as an athlete intentionally restricting energy intake to make a certain weight class or lean 

physique, or because of an eating disorder or disordered eating, or unintentionally due to 

a knowledge deficit in nutrition education1. Sustaining an energy deficient diet while 

exercising causes an athlete to be in a catabolic state, leading to muscle mass breakdown 

and an increase in body fat percentage2. Maintaining energy balance within a relatively 

narrow range (+/- 400 kcal) has been linked to higher fat free mass and lower body fat 

percentage2. Previously, the “Female Athlete Triad” has been the term used to describe 

female athletes with one or more components of the triad, which includes disordered 

eating, amenorrhea, and osteoporosis3. In 2014, the International Olympic Committee 

(IOC), introduced a new term, “Relative Energy Deficiency in Sport” (RED-S) to replace 

the Female Athlete Triad, so that male athletes, recreational athletes, and a broader range 

of health concerns and consequences would be included1. The IOC concluded that the 

Female Athlete Triad failed to incorporate all those individuals experiencing symptoms  
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of energy deficiency, as well as limiting the consequences of consuming an energy 

deficient diet to three areas.  RED-S includes a broader range of potential health and 

performance consequences for both male and female athletes.  

 

 

Who is at Risk? 

Athletes at risk for RED-S include, potentially, all active individuals and 

particularly those exercising strenuously and elite athletes with a high level of 

competitive stress. Energy deficiency and its related consequences have been studied in 

recent years, with some studies suggesting that athletes participating in sports with 

weight classifications or lean physiques are at a greater risk for developing energy 

deficiencies, disordered eating, and other energy deficient-related consequences. A 

number of earlier studies found that female track and field athletes and, in particular, 

female distance runners are at high risk of having conditions related to RED-S4. Some 

studies have reported that there is no significant difference between lean sports and other 

sports when it comes to risk for developing energy deficiency and having RED-S 

components. Studies have found that a large proportion of athletes experience 

components of RED-S, but are unaware of the health and performance consequences they 

may experience in the short and long term1.  

 

The Performance and Health Sequelae of RED-S 

Short-term effects of low energy availability can lead to a decrease in athletic 

performance, increase susceptibility to illness, and increase the development of nutrient 
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deficiencies such as anemia1. In the long term, health consequences due to sustaining an 

energy deficient diet include an effect on metabolic rate, immunity, protein synthesis, 

growth and development, cardiovascular health, psychological, endocrine, hematological, 

and gastrointestinal1. Components such as energy deficiency, menstrual function, and 

bone health have widely studied previously in track and field athletes1. Menstrual 

dysfunction is a consequence of having low energy intake among other causative 

variables including, hormonal imbalances, inadequate body fat stores, excessive exercise, 

and luteinizing hormone (LH) pulsatility1. Research shows that an inadequate energy 

intake can disrupt the LH pulsatility by affecting the gonadotropin-releasing hormone 

which plays a role in menstrual function5 Low energy intake also has an impact on other 

metabolic hormones such as cortisol, insulin, grehlin, and leptin1. RED-S also has a 

significant impact on bone health1. Peak bone mass occurs at approximately 19 years old 

in females1. Estrogen is responsible for increasing the absorption of calcium into the 

bone6. With estrogen deficiency and a low energy availability, a decrease in bone mineral 

density can occur7. Likewise, an increase in cortisol due to stress, psychological or 

physiological, can have a negative effect on bone mineral density8.   A reduction in bone 

mineral density puts athletes at greater risk for fractures and bone related injuries1. 

Energy balance, menstrual status, and bone health are three components that have been 

studied previously under the term the Female Athlete Triad, and majority of previous 

research focus on these three components. Having a component or various components of 

RED-S can lead to a reduction in performance, loss in muscle mass, injury, and adverse 

health effects in the immediate and long term future1. Identifying athletes at risk for 
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RED-S can prevent or stop the progression of these health consequences by referring the 

athletes to health professionals for medical advice and education.  

 
Purpose and Hypothesis 

The purpose of this study is to examine the prevalence of RED-S in female 

collegiate track and field athletes. It is hypothesized that the majority (>50%) of 

collegiate track and field athletes experience RED-S. It is also hypothesized that a greater 

percentage of distance runners will experience RED-S than other track and field athletes, 

including throwers, and sprinters/jumpers. The components of RED-S that this study will 

focus on will be menstrual function, bone health, gastrointestinal function, and energy 

expenditure.  

The development and further study of RED-S is vitally important to protect the 

health of adolescent and adult athletes in both the short term and long term. Potential 

consequences of having an energy deficiency in the short term include fatigue, anemia, 

illnesses, and infections1. A study has not yet been completed applying the RED-S 

paradigm in collegiate track and field athletes and this is a reason for this study.  
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CHAPTER II 

LITERATURE REVIEW 

 
 

Energy Deficiency 

Energy deficiency occurs when energy expenditure exceeds energy intake. This 

may occur in all active individuals, when the energy expended by resting metabolic rate 

(RMR), thermic effect of food (TEF), and physical activity exceeds the energy consumed 

from food and fluid9. This energy inadequacy may result from the athlete unintentionally 

or intentionally consuming insufficient energy, because of disordered eating or an eating 

disorder, or through purposeful dietary restriction for aesthetic or weight classifications 

associated with their specific sport1. In 2004, a study completed on NCAA Division I 

athletes from various sports found that the majority of female athletes reported that they 

wanted to lose at least 5 lbs10. Additionally, 25% of female athletes that responded to the 

questionnaire indicated that they restrict carbohydrate and fat in their diet to avoid weight 

gain10. This study found that most male and female athletes consumed under the 

recommended amount of carbohydrates and protein, and that male athletes were 

consuming excess fat10. This study highlights the prevalence of athletes at risk for 

consuming an energy deficient diet and highlights the macronutrients athletes are more 

likely to restrict.   

Staying in an adequate energy balance has been linked to having a higher fat free 

mass and lower body fat percentage2. It has been suggested by previous research, that 
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eating small, frequent meals have an effect on increased fat loss11. A meta-analysis 

studied this suggestion and found that increased eating frequency appeared to reduce fat 

mass and body fat percentage and increase fat free mass percentage12. Maintaining 

energy balance throughout the day can aid in avoiding large energy deficits and 

surpluses, which, can have negative effects on body composition and decrease athletic 

performance.  

Many athletes are at risk for developing disordered eating and eating disorders1. 

Disordered eating describes similar behaviors as those with eating disorders, but they 

may not fit the specific criteria in order to be diagnosed with a specific eating disorder 

such as anorexia nervosa (AN) or bulimia nervosa (BN)13. According to The Academy of 

Nutrition and Dietetics “The most significant difference between an eating disorder and 

disordered eating is whether or not a person's symptoms and experiences align with the 

criteria defined by the American Psychiatric Association”13. Inadequate energy 

consumption may increase illness and injury risk10. Sustaining an energy deficient diet 

while training and competing at an intense level leads to overtraining, a loss in muscle 

mass, and a reduction in performance14. A study completed on elite female gymnasts and 

runners found a significant relationship between greater duration of hours spent in an 

energy deficit (<-300 kcals) and higher body fat percentage2.  Inadequate energy intake in 

adult and adolescent athletes has been estimated to be less than 45 kcals/kg FFM/day1. 

Energy intake above 45kcals/kg FFM is optimal for athletes in order to supplement for 

their large expenditure through exercise14. Disordered eating, and possibly other factors, 

has been equated to an intake of less than 30 kcals/kg FFM/day1. In a recent study, it was 

found that of 25 athletes that were on a Division 1 Track and Field Team, 92% had 



 

 

7 

energy intake below 45 kcals/kg FFM/day, with a further 52% of athletes below 30 

kcals/kg FFM/day4. The mean intake for this specific population was 30.8 kcals/kg 

FFM/day, which falls significantly below the optimal energy intake of 45 kcals/kg 

FFM/day4. Energy deficiency is widespread throughout sport, and is particularly 

prevalent in female athletes15. Disordered eating is prevalent in approximately 20% of 

adult and 13% of adolescent female elite athletes in appearance sports1. In an alternate 

study, it was concluded that, of a population of NCAA Division I athletes competing in 

both lean and non-lean sports, 20% of female athletes and 16% of male athletes displayed 

symptomatic behaviors for an eating disorder which is similar percentages to the previous 

study16.  

 

The Female Athlete Triad 

The American College of Sports Medicine defines the Female Athlete Triad as “a 

health concern for active women and girls who are driven to excel in sports. It involves 

three distinct and interrelated conditions: disordered eating (a range of poor nutritional 

behaviors), amenorrhea (irregular or absent menstrual periods) and osteoporosis (low 

bone mass and microarchitectural deterioration, which leads to weak bones and risk of 

fracture)”3. Low energy availability has a causative effect on an athlete developing the 

other triad components, amenorrhea and osteoporosis17. The Female Athlete Triad can 

have many negative effects in both the short term and long term. Researchers state that in 

the short term, it can lead to stress fractures, osteopenia, fatigue, infertility, and impaired 

endothelial function18. In the long term, athletes are at increased risk for cardiovascular 

disease and osteoporosis19.  It has been reported, athletes experiencing amenorrhea have 
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similar bone mineral density to postmenopausal women, putting them at increased risk 

for stress fractures and osteoporosis20. In 2006, a study to examine the prevalence of the 

female athlete triad was conducted on 112 US collegiate female athletes competing in 

seven different sports. The researchers grouped the athletes into lean sports versus non 

lean sports. It was reported that 28 athletes (25%) had disordered eating, 29 athletes 

(26%) had menstrual dysfunction, and two athletes (2%) had low bone mineral density. 

Ten athletes had two of the components of the female athlete triad, with the majority of 

these athletes experiencing disordered eating and menstrual dysfunction as their two 

components. Only one athlete had all three components of the female athlete triad. This 

study highlighted that there is a high prevalence of athletes with at least one component 

of the female athlete triad at the collegiate level. The study also found that there was no 

significant difference in the prevalence of female athlete triad components between 

groups, lean versus non lean sports21. Previous literature suggests that low energy intake 

along with menstrual dysfunction can disrupt bone formation and reabsorption, leading to 

low bone density and bone related disorders such as stress fractures, osteoporosis, and 

other skeletal disorders1. An energy deficient diet along with estrogen deficiency in 

exercising women is associated with increased osteoclast activity and decreased 

osteoblast activity leading to a decrease in bone formation and bone density22. The 

authors concluded the importance of female athletes avoiding an energy deficit diet, 

which is linked to hypoestrogenism, to avoid bone related disorders22.  

Recently, a study was published examining the prevalence of the female athlete 

triad and energy deficiency in professional and competitive distance runners in Denmark 

and Sweden. Of a population of 40, 15 subjects had optimal energy availability 
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(≥45kcals/kg FFM/day), 17 had reduced energy availability (<45kcals/kg FFM/day), and 

8 had low energy availability (<30 kcals/kg FFM/day). Subjects with a low energy 

availability had a 79% higher energy expenditure than those with adequate energy 

availability. Ten subjects were diagnosed with eating disorders and one was diagnosed 

with disordered eating. Furthermore, 60% (n=24) of the total population were diagnosed 

with menstrual dysfunction and 45% (n=18) had impaired bone health. This study 

highlights the extent in, which energy deficiency and its potential consequences occur in 

the sport of distance running23. In another study completed on Division 1 female athletes 

in 2014, it was found that lean sport athletes (cross country and acrobatics) were more 

likely to report a missed menstrual cycle as normal than non-lean sports15. Similarly, a 

study conducted in Australia in 2012, found that 45% of total participants, lean sports, 

non-lean sports, and gym/fitness activities, were unaware that amenorrhea had an effect 

on bone health, with 22% of those involved in lean sports stating they would not seek 

medical assistance if they were experiencing amenorrhea. Also, only 10% of a total of 

180 participants in this study were able to name the three components of the female 

athlete triad. The authors concluded that very few Australian women that exercise are 

aware of the damaging effects of menstrual function has on bone health, and encouraged 

that education be in place to make them more aware so that appropriate actions are taken 

to delay or stop menstrual dysfunction and bone degradation24.  

 

Relative Energy Deficiency in Sport (RED-S) 

The first use of the term ‘Female Athlete Triad’ was in 1992. Since then a new 

term was developed to replace the Female Athlete Triad. Relative Energy Deficiency in 
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Sport (RED-S) was published as a consensus of the International Olympic Committee in 

20141. The IOC concluded that the Female Athlete Triad is an outdated and a gender-

specific term1.It has been found that male athletes also show signs of some of the 

components of the female athlete triad, such as the energy insufficiency and low bone 

mineral density1. The term, RED-S, includes recreational athletes and dancers that may 

not consider themselves athletes, but experience energy deficiency and its related 

components, whereas the Female Athlete Triad did not include these populations1.  RED-

S includes new components, such as metabolic rate, immunity, protein synthesis, growth 

and development, cardiovascular health, psychological, endocrine, hematological, and 

gastrointestinal1. RED-S symptoms have been reported to be more prevalent in weight-

sensitive sports focusing on lean physiques1.  

The National Collegiate Athletic Association Study surveyed 1445 student 

athletes from 11 NCAA Division I schools assessing the prevalence of eating disorders 

and disordered eating among athletes. From the population surveyed, 1.1% of female 

athletes met the criteria to be diagnosed with bulimia nervosa, and none of the athletes 

met the criteria to be diagnosed with anorexia nervosa. However, the study reported that 

9.2% of female athletes were found to have “clinically significant problems with bulimia 

nervosa” and 2.85% of female athletes were found to have “clinically significant 

problems with anorexia nervosa”. Additionally, 10% of the female athletes reported 

binge eating on a weekly basis, and 5.5% of female athletes reported purging by taking 

laxatives or diuretics, or vomiting, on a weekly or greater basis25. This study displays the 

significance and requirement for the future study of RED-S in athletes at the collegiate 

level. 
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Relative energy deficiency can have an immediate effect on the endocrine system. 

Many hormones are affected by having low energy availability such as a decrease in 

leptin, IGF-1, insulin, and triiodothyronine (T3), and an increase in cortisol and grehlin1. 

A reduction in T3 and IGF-1 can lead to a decrease in protein synthesis in the body, 

leading to a reduction in muscle mass1. High levels of grehlin and low levels of leptin 

have been associated with hypogonadism with leads to decreased LH pulsatility which 

has an effect on menstrual function, which can lead to amenorrhea26.  

Menstrual dysfunction is particularly an area of great interest in distance runners, 

as it has been reported that 65% of collegiate female long distance runners report having 

secondary amenorrhea, one of the sequelae of RED-S1. In a another study, it was reported 

that 56% of a population of collegiate female athletes surveyed believed that missing a 

menstrual cycle was normal15. Secondary amenorrhea refers to a female who has had a 

menstrual cycle, but has experienced an absence of three consecutive menstrual cycles1.  

In addition to menstrual dysfunction, many distance runners experience bone 

related injuries such as stress fractures and stress reactions27. These can occur for a 

variety of reasons, including menstrual dysfunction, excessive exercise, inadequate 

intake, poor bone health, and a low body mass index. Energy deficiency can cause the 

body to conserve energy and neglect certain body functions. In females, energy 

deficiency can lead to a loss in menstrual function also known as amenorrhea when the 

cycle stops for 3 months or longer. In connection with amenorrhea, these female athletes 

have low levels of estrogen, which inhibits the formation of adequate bone density28. 

Estrogen is a hormone that promotes bone density and is found to be decreased in women 

that are energy deficient29. Low levels of estrogen have been linked with a decrease in 
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osteoblast activity and an increase in bone turnover29. Additional to estrogen, cortisol 

plays a role in bone health also. Cortisol is a stress hormone, and has been associated 

with bone resorption when an individual in an energy deficiency needs to use amino acids 

to produce supplemental energy through gluconeogenesis30. Cortisol blocks the bone 

from absorbing calcium, which leads to a decrease in bone formation31. Disruption in 

calcium homeostasis leads to a reduction in bone mineral density32. Cortisol levels can 

increase due to physiological and psychological factors30. Cortisol levels are thought to 

increase when athletes are completing endurance training, in response to intense exercise, 

and possibly due to psychological arousal during or before competition33. In a study of 71 

exercising women, it was found that cortisol levels were higher, and bone mineral density 

levels were lower in women that were amenorrheic34. Energy deficiency, menstrual 

function, and bone health are three inter-related components that are involved in the 

RED-S paradigm. 
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CHAPTER III 

METHODS 

 
 
RECRUITMENT STRATEGY 
 

This study was reviewed and approved by the Georgia State University 

Institutional Review Board. Recruitment to the study entailed requesting the coach first if 

we could do the study on his team, and then discussing with the athletes at a team 

meeting the purpose and nature of the study. Interested athletes were invited to contact 

the student PI for an appointment to discuss the consent form and to obtain a signed 

consent for participation (Appendix A). IRB-approved consent was required from the 

athletes to include them in the study, and there was no coercion from the coach or any 

member of the team to participate in the study.  

 

INCLUSION & EXCLUSION CRITERIA 
 

Inclusion criteria for the study included being a female member of the Georgia 

State University Track and Field team. There were no exclusion criteria for the study.  

All members of the Georgia State University Women’s Track & Field team were eligible 

to participate in the study. 
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PARTICIPANTS 
 

There were approximately 12,801 NCAA Division I female Track and Field 

athletes in 201435. With a confidence of 95% and a margin of error of 5%, this would 

require a sample size of 373 in order to be generalized to other collegiate track and field 

populations. This study used a convenience sample of 12 athletes. A total of 12 out of 29 

(41%) female athletes from a Division I track and field team consented to participate in 

the study. No participants dropped out of the study. The athletes were a combination of 

distance runners (n=5), throwers (n=2), and sprinters (n=5). This population was chosen 

due to a limited number of RED-S studies being completed on collegiate female track and 

field athletes previously. Ages of participants ranged from 18-22 years of age. Each 

participant was given a unique identification number to provide confidentiality. Data 

were obtained through the use of a questionnaire and a three-day food and exercise recall. 

The questionnaire gathered information on illnesses, injury, GI function, and menstrual 

function to gain data to assess if the participants had symptoms or were at risk for RED-

S.  Participants also completed a three-day dietary and activity recall, which was the three 

days immediately before their appointment (Appendix B). For instance, if a participant 

had an appointment on a Thursday, their dietary and exercise recall would be Monday, 

Tuesday, and Wednesday. 

 

DATA ACQUISITION PROCEDURES 
 

All data collection took place in a lab on Georgia State University campus from 

the 4th through the 24th of February, 2016. All data were coded and each subject was 
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provided their code so that personal information could be shared with them at the 

conclusion of the study. Data were stored on a password protected computer in a locked 

lab with limited access. Data stored on the computer did not have any personally 

identifiable information, and hard copies of the completed questionnaires were stored in a 

locked file cabinet in a secure lab with limited access. Tools used to collect data from 

participants included food intake/activity recall, relative energy expenditure index, and a 

LEAF-Q screening questionnaire (see Appendix C).  

All subjects met once with researcher, during, which time all anthropometric data, 

dietary and exercise recall, and LEAF-Q questionnaire was collected. Anthropometrics 

including height, weight, and body composition were taken on each participant. A 

stadiometer was used to measure height in inches, which was later converted to 

centimeters. A Tanita scale, model BC-418, was used for weight and body composition, 

which equated for clothes worn by participants. Weight was taken in pounds and later 

converted to kilograms. Participants were instructed to remove shoes and socks prior to 

having their height, weight, and body composition taken. 

Participants were asked the time (hourly) they ate and the approximate amount 

and type of food they ate at each meal over the past three days prior to their appointment, 

this was recorded on the NutriTiming® Data Entry Form (Appendix B). The Student PI 

aided participants with estimating the amount of food consumed by using pictures of 

food. Participants were also asked about their activity over the three days and to rate the 

intensity of the activity based on a scale, 1 (resting, reclining) to 7 (exhaustive) 

(Appendix B). 
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DATA ANALYSIS 

The relative energy expenditure index assessed hours spent in a positive 

(anabolic) or negative (catabolic) energy balance each of the three days and also averaged 

the three 24-hour periods.  Optimum energy balance was equated to +/- 400 kcal, with 

energy balance >+400kcal termed energy surplus and energy balance <-400kcal termed 

energy deficit. An energy deficit (<-400 kcals) has been associated with a higher body 

fat2. The program used for energy balance assessment was NutriTiming®, which 

estimates energy expended using the Harris-Benedict equation to predict REE and a 

MET-based relative intensity activity scale. Energy intake was estimated using the USDA 

Nutrient Database for standard reference, version 26. Food items that were reported, but 

were not listed in the database, were added using nutrition labels.  

The LEAF-Q assessed whether athletes had components of RED-S by asking a 

series of questions relating to injury, GI function, and menstrual function and scored 

athletes based on their responses36. Based on the small sample size (n = 12), abnormal 

distribution of the data was assumed and therefore statistical analyses were conducted 

using non-parametric statistical methods. Descriptive statistics, Mann Whitney U test, 

Spearman’s rho correlations, and Pearson correlations were run on the dataset. Statistical 

analyses were performed using SPSS, version 20.0. Statistical significance was set at P < 

0.05. 

 



 

 17 

CHAPTER IV 

RESULTS 

 
 
ANTHROPOMETRIC DATA 
 

The twelve athletic participants ranged in age from 18 to 22 years, with the mean 

age 20.6 years. The weight range was 48kg to 107.9kg with the mean weight of 

participants 63.6kg. Participants ranged in height from 154.9cm to 181.6cm with the 

mean height 165.6cm. 

 

Table 1: Subject Characteristics (N=12) 

 
Minimum Maximum Mean Std. Deviation 

Age 18 22 20.58 1.44 
Weight (kg) 48.00 107.91 63.58 16.97 
Height (cm) 154.94 181.61 165.63 7.45 

 
 
 

The BMI of participants ranged from 18.7kg/m2 to 37.7kg/m2, the mean BMI was 

22.96 kg/m2. Body fat had a wide range, 5.91kg to 42.91kg, with the mean body fat 

14.3kg. Likewise, body fat percentage ranged from 12.3% to 39.8%, the mean was 

20.93%. Fat-free mass spread from 41.9kg to 65kg, with the mean fat-free mass 49.3kg. 

Fat-free mass percentage ranged from 60.2% to 87.7%, with the mean 79.1%. Total body 

water (TBW) of the twelve participants had a minimum of 30.7kg and maximum of 

47.6kg, with the mean TBW 36.1kg. 
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Table 2: Subject’s Anthropometric Data  (N=12) 

  Min Max Mean 
Std. 

Deviation 
Body Mass Index 18.7 37.7 22.96 5.04 
Body Fat (kg) 5.91 42.91 14.31 9.99 
Body Fat (%) 12.3 39.8 20.93 7.17 
Fat-Free Mass (kg) 41.91 65.00 49.27 7.89 
Fat-Free Mass (%) 60.24 87.69 79.05 7.15 

Total Body Water (kg) 30.73 47.55 36.07 5.75 
 
 
 
ENERGY BALANCE 
 
 Table 3 shows the mean energy intake over the three days was 2146kcal (+/-624 

kcal). The mean energy expenditure over the three-day period was 2380 kcal (+/-458 

kcal). Energy intake ranged from 750 kcal to 3755 kcal, with energy expenditure ranging 

from 1663kcal to 4334 kcal.  Day 1, Day 2, and Day 3 the mean caloric intakes were 

1964 kcal (+/- 743 kcal), 2094 kcal (+/- 856 kcal), and 2378 kcal (+/- 855 kcal) 

respectively. Mean energy expenditure on Day 1 was 2305 kcal (+/-726 kcal), Day 2 was 

2480 kcal (+/-581 kcal), and Day 3 was 2355 kcal (+/-452 kcal). The mean energy 

expenditure on Day 1 and Day 2 exceeded the mean energy intake of those individual 

days respectively. When the three days of energy intake and expenditure recalled were 

averaged, energy intake was 2145 kcal and energy expenditure was 2380 kcal, resulting 

in a negative total energy balance for the population.  

 Assessing the participant’s hourly energy balance equated how many hours were 

spent in a catabolic (<0 kcal), highly catabolic (<-400 kcal), anabolic (>0 kcal), highly 

anabolic (>400 kcal) state over the three-day recall period. The mean hours spent in a 
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catabolic state (<0 kcal) by the participants was 52.8 hours (+/-23.9 hours) of 72 total 

hours, which was 73% of total hours. The mean hours spent in a highly catabolic state (<-

400kcals) was 37.5 hours (+/-25.01 hours), which was 52% of total hours. The mean 

hours spent in an anabolic state (>0 kcal) was 19.2 hours (+/-24 hours), 27% of total 

hours. The mean hours spent in a highly anabolic state by participants was 12.4 hours (+/-

21 hours), 17% of total hours. When the 3-day recall was averaged, participants on 

average were spending 17 hours (+/-9.2 hours) out of the 24 hours per day (71%) in a 

catabolic state (<0 kcal), with 13 (+/-10.2 hours) of those hours (54%) in a highly 

catabolic state (<-400kcal). In comparison, participants were only spending a mean of 6 

hours (+/-9.2 hours) per day (25%) in an anabolic state (>0 kcal) with 4 (+/-9.2 hours) of 

these hours (17%) in a highly anabolic state (>+400 kcal). 

 

Table 3 : Energy Intake/Expenditure and Energy Balance for the Total 
Population (N=12) 

 Min Max Mean Std. Deviation 
Day 1 Kcals In 1228 3755 1964 744 
Day 2 Kcals In 750 3441 2095 856 
Day 3 Kcals In 1182 3537 2378 854 
Average calories in 1054 3127 2146 624 
Day 1 Kcal Out 1663 4334 2305 726 
Day 2 Kcal Out 1895 3943 2480 581 
Day 3 Kcal Out 1781 3137 2355 452 
Average calories out 1888 3279 2380 458 
Hours Catabolic 7.00 72.00 52.83 23.99 
Hours High Catabolic .00 68.00 37.50 25.01 
Hours Anabolic .00 65.00 19.17 23.99 
Hours High Anabolic .00 56.00 12.42 20.94 
Avg of days Catabolic hours .00 24.00 17.33 9.25 
Avg of days High Catabolic hrs .00 24.00 13.58 10.24 
Avg of days Anabolic hrs .00 24.00 6.66 9.25 
Avg of days High Anabolic hrs .00 24.00 4.33 9.22 
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 Table 4 shows the daily caloric intake and expenditure for each of the 

participant’s three-day dietary recalls, along with the averaged three-day daily caloric 

intake and expenditure. It can be observed in many of the participants that there is 

variability in the calories they consume day to day. For instance, participant with ID 

number 10, consumed 1745 kcal on Day 1, 3441 kcal on Day 2, and 2601 kcal on Day 3. 

On Day 2 the participant consumed almost double the calories she consumed the previous 

day. This trend can also be seen in many of the other participant’s dietary recalls. When 

the three days of dietary recall are averaged it washes out the low and high energy intakes 

of participants. For instance, the participant with the ID number 3, had an average energy 

intake of 2376 kcal and energy expenditure of 2027 kcal, which would leave her in an 

optimum energy balance (+/-400 kcals). However, on Day 1 the participant was in a 

highly catabolic state (<-400kcal) as she had a daily energy intake of 1393 kcal and daily 

energy expenditure of 2045 kcal, leading to a negative energy balance of -652 kcal. This 

trend can be observed in many of the other participants also. 
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Table 4: Individual Energy Intake and Expenditure 

ID	
  
Day 1 
Kcal 

In 

Day 1 
Kcal 
Out 

Day 2 
Kcal 

In 

Day 2 
Kcal 
Out 

Day 3 
Kcal 

In 

Day 3 
Kcal 
Out 

Avg 
Kcal    

In 

Avg 
Kcal 
Out 

1	
   2668 1663 3323 2148 2566 2051 2853 1954 
2	
   1316 1861 1655 2020 2740 1781 1904 1888 
3	
   1393 2045 2199 2156 3537 1881 2376 2027 

4	
   3755 2457 3056 1895 2569 2037 3127 2130 
5	
   1228 2756 750 3943 1182 3137 1054 3279 
6	
   1491 1857 2500 2420 2146 2557 2045 2278 
7	
   2353 1886 1372 2813 1390 2509 1705 2403 
8	
   1639 2258 1764 2242 1461 2391 1622 2297 
9	
   1655 1869 1921 2433 3498 1876 2358 2059 
10	
   1745 2660 3441 3196 2601 3089 2596 2982 
11	
   2607 2015 2045 2166 3393 2591 2681 2257 
12	
   1719 4334 1112 2328 1453 2364 1428 3008 

  

 Table 5 represents the individual participants and the hours they spent during the 

72 hours of dietary and exercise recall in either a catabolic (<0 kcal), highly catabolic (<-

400 kcal), anabolic (>0 kcal), highly anabolic (>+400 kcal), or optimum energy balance 

(+/-400 kcal). It can be observed that 9 out of 12 participants spent at least 66% of the 

total 72 hours in a catabolic state, with two of the participants spending all 72 hours in a 

catabolic state. It can also be observed that 7 out of the 12 participants spent a least half 

of the total hours (36 out 72 hours) in a highly catabolic state (<-400 kcal). In 

comparison, only 3 out of 12 of the participants spent majority of hours in an anabolic 

state with two of these participants spending the majority of their hours in a highly 

anabolic state (>+400lkcal). The most hours spent in optimum energy balance (+/-

400kcal) was by ID number 11 who spent 49 hours out of 72 hours in optimum energy 
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balance. The lowest hours spent in optimum energy balance was a total of 4 out of 72 

hours. Ten participants spent less than 36 hours in optimum energy balance.  

 
Table 5: Individual Hourly Energy Balance 

ID 
Hours 

Catabolic 
(<0 kcals) 

Hours Highly 
Catabolic (<-

400kcals) 

Hours 
Anabolic 
(>0 kcals) 

Hours 
Highly 

Anabolic 
(>+400 
kcals) 

Hours Spent in 
Energy Balance 
(+/-400 kcals) 

1 7 0 65 56 16 
2 65 38 7 0 34 
3 49 25 23 12 35 
4 9 0 63 56 16 
5 72 68 0 0 4 
6 65 29 7 0 43 
7 59 53 13 6 13 
8 70 60 2 0 12 
9 64 42 8 5 25 
10 72 65 0 0 7 
11 31 9 41 14 49 
12 71 64 1 0 8 

 
 
Kcals/kg FFM/day 
 
 Table 6 displays the kcal/kg FFM/day for each of the 12 participants. Five 

participants (42%) had <30kcals/kg FFM/day for at least one of their dietary recalls, with 

nine participants (75%) in total having <45kcal/kg FFM/day for a least one day of their 

dietary recall. In comparison, when the three days of dietary intake were averaged only 

two participants (17%) fell below <30 kcals/kg FFM/day and six participants (50%) fell 

below <45kcal/kg FFM/day. This shows that by averaging it can appear that athletes have 
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adequate energy intake as the high intake days wash out the low intake days, however 

when assessed day by day they are experiencing inadequate energy intake on some days.  

 
 

Table 6: Calories per Kilogram of Fat Free Mass 
ID 

number 
kcal/kg 

FFM Day1 
kcal/kg FFM 

Day2 
kcal/kg FFM 

Day3 
kcal/kg FFM 

Average 
1 62.18 77.44 59.8 66.49 
2 31.27 39.32 65.10 45.24 
3 30.89 48.77 78.44 52.69 
4 81.31 66.17 55.63 67.71 
5 18.89 11.54 18.18 16.22 
6 31.06 52.08 44.71 42.6 
7 48.74 28.42 28.79 35.32 
8 32.90 35.41 29.33 32.56 
9 39.49 45.84 83.47 56.26 
10 28.44 56.08 42.39 42.31 
11 60.89 47.76 79.24 62.61 
12 29.73 19.23 25.13 24.70 

 

 

LEAF-Q 

 Participants answered the LEAF-Q and after their responses were equated using a 

scoring key based on specific responses. The higher the score the greater the athlete 

would be at risk for RED-S. 58% (n=7) of the participants scored ≥8 on the LEAF-Q 

putting them at risk for RED-S. Three distance runners (N=5), three sprinters (N=5), and 

one thrower (N=2) scored at risk for RED-S. The lowest RED-S score was 3, and the 

highest RED-S score was 20. The mean RED-S score was 8.7 (+/-5.63). Five participants 

(42%) scored below 8, putting them at decreased risk for RED-S. The LEAF-Q 
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questionnaire and scoring key can be found in Appendix C. Participants responded to 

questions based on injury, gastrointestinal, and menstrual function. Three of the 

participants were taking oral contraceptives, two using them as a form of contraception 

and one participant using it to prevent their menstruation stopping. The age participants 

started menstruation was categorized into three categories, <11 years of age (n=1), 12-14 

years of age (n=9), and >15 years of age (n=2). Of the twelve participants, five 

participants previously experienced secondary amenorrhea and one participant was 

currently experiencing secondary amenorrhea. 

 
CORRELATIONS 

A Mann Whitney U Test showed that the distribution of fat-free mass percentage, 

body fat percentage, and Day 1 hours spent in optimum, surplus, and deficit energy 

balance was the same when comparing those categorized at risk for RED-S (LEAF-Q 

score =/>8) to those that were categorized not at risk for RED-S (LEAF-Q score <8). Due 

to this statistical finding all correlations were conducted on the entire population and not 

categorized into separate groups based on their RED-S score.  

Table 7: Non-Parametric Test of Null hypothesis (Mann Whitney U Test) 
Null Hypothesis Sig. Decision 

The distribution of Fat-Free Mass (%) is the 
same across categories of RED-S Score 0.755 Retain the null hypothesis 
The distribution of Body Fat (%) is the same 
across categories of RED-S Score 0.639 Retain the null hypothesis 
The distribution of Day 1 hrs in EB= +/-400 
is the same across categories of RED-S Score 0.530 Retain the null hypothesis 
The distribution of Day 1 hrs in EB> +400 is 
the same across categories of RED-S Score 0.755 Retain the null hypothesis 
The distribution of Day 1 hrs in EB<-400 is 
the same across categories of RED-S Score 0.639 Retain the null hypothesis 
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 A Spearman’s rho was used to assess correlations between fat-free mass 

percentage, body fat percentage, and hours spent in a catabolic, highly catabolic, 

anabolic, or highly anabolic state. Results can be observed in Table 8. No statistical 

significance was found between the variables, but the data shows there is a trend between 

spending a longer duration of hours in a catabolic or highly catabolic state and having a 

lower fat free mass percentage and higher body fat percentage. Conversely, the longer 

duration spent in an anabolic state the higher the fat free mass percentage and lower the 

body fat percentage.  

 

Table 8: Spearman’s rho Correlation Between Energy Balance Over a Non-

Averaged 3-day Recall Period and Body Composition (N=12) 

  
Hours 

Catabolic 

Hours 
High 

Catabolic 
Hours 

Anabolic 

Hours 
High 

Anabolic 
Fat-Free 
Mass (%) 

Correlation -0.337 -0.375 0.337 0.194 
Sig. (1- tailed) 0.142 0.115 0.142 0.272 

Body Fat 
(%) 

Correlation  0.355 0.393 -0.355 -0.215 
Sig. (1- tailed) 0.129 0.103 0.129 0.251 

 

The same trend as seen in the Spearman’s rho can also be observed when a 

Pearson correlation was performed on the data (Table 9), with a longer duration spent in a 

catabolic and in a highly catabolic state resulting in lower fat-free mass percentage, and 

higher body fat percentage, and the more hours spent in an anabolic state resulting in a 

higher fat free mass percentage, and lower body fat percentage. However, no statistical 

significance was found.  
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Table 9: Pearson Correlation Between Energy Balance Balance Over a 

Non-Averaged 3-day Recall Period and Body Composition (N=12) 

  
Hours 

Catabolic 

Hours 
High 

Catabolic 
Hours 

Anabolic 

Hours 
High 

Anabolic 

Fat-Free 
Mass (%) 

Correlation -0.288 -0.387 0.288 0.249 
Sig. (1- 
tailed) 0.182 0.107 0.182 0.218 

Body Fat 
(%) 

Correlation 0.291 0.390 -0.291 -0.250 
Sig. (1- 
tailed) 0.18 0.105 0.18 0.216 

Table 10: Spearman’s rho correlation between Day 1 Energy Balance 

and Body Composition (n=12) 

    
Fat-Free Mass 

(%) 
Body Fat  

(%) 

Day 1 Kcal In 
Correlation 0.168 -0.161 
Sig. (2- tailed) 0.602 0.617 

Day 1 Kcal Out 
Correlation  -0.119 0.123 
Sig. (2- tailed) 0.713 0.704 

Day 1 Hrs in EB= +/-400 
Correlation  0.625* -0.643* 
Sig. (2- tailed) 0.030 0.024 

Day 1 Hrs in EB> +400 
Correlation  0.188 -0.188 
Sig. (2- tailed) 0.559 0.558 

Day 1 Hrs in EB <-400 
Correlation  -0.626* 0.636* 
Sig. (2- tailed) 0.03 0.026 

Day 1 Hrs in anabolic 
Correlation 0.439 -0.451 
Sig. (2- tailed) 0.153 0.141 

Day 1 Hrs in catabolic 
Correlation  -0.439 0.451 
Sig. (2- tailed) 0.153 0.141 

Day 1 ending kcal 
Correlation  0.175 -0.172 
Sig. (2- tailed) 0.587 0.594 
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A Spearman’s rho was used to assess correlations between fat free mass 

percentage, body fat percentage, and daily energy intake, expenditure, hours spent in 

optimum energy balance, energy surplus, and energy deficit, hours spent in anabolic and 

catabolic, and the ending calories for the day. This correlation was completed for each of 

the three days. There was a significant correlation between participants who spent a 

longer duration of hours in an optimum energy balance (+/-400 kcal) and a higher fat free 

mass percentage (p=0.03, rs=0.625) and lower body fat percentage (p=0.024, rs= -0.643) 

on Day 1 of dietary and exercise recall (Table 10). Statistical significance was also found 

between those participants who spent longer durations in an energy deficit (<-400 kcal) 

having lower fat free mass percentage (p=0.03 rs= -0.626), and higher body fat 

percentage (p=0.026, rs=0.636) on Day 1 (Table 10).  

 
 

A spearman’s rho correlation on Day 2 data showed that those participants that  

had higher energy expenditure had lower fat free mass percentage (p=0.003, rs= -0.776)  

and higher body fat percentage (p=0.003, rs=0.785) (Table 11). There also was a trend 

between those participants who spent a longer duration of time in an optimal energy  

balance and having a higher fat free mass (p=0.065, rs= -0.549) and lower body fat  

percentage (p=0.077 rs=0.529), though no statistical significance was found (Table 11). 
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Table 11: Spearman’s rho correlation between Day 2 Energy Balance and 

Body Composition (N=12) 

  
Fat-Free Mass 

(%) 
Body Fat  

(%) 

Day 2 Kcal In 
Correlation  -0.077 0.067 
Sig. (2- tailed) 0.812 0.837 

Day 2 Kcal Out 
Correlation  -0.776* 0.785* 
Sig. (2- tailed) 0.003 0.003 

Day 2 Hrs in EB= +/-400 
Correlation  -0.549 0.529 
Sig. (2- tailed) 0.065 0.077 

Day 2 Hrs in EB> +400 
Correlation 0.244 -0.244 
Sig. (2- tailed) 0.445 0.444 

Day 2 Hrs in EB <-400 
Correlation  0.086 -0.070 
Sig. (2- tailed) 0.790 0.829 

Day 2 Hrs in anabolic 
Correlation  0.066 -0.067 
Sig. (2- tailed) 0.837 0.837 

Day 2 Hrs in catabolic 
Correlation  -0.066 0.067 
Sig. (2- tailed) 0.837 0.837 

Day 2 ending kcal 
Correlation  0.154 -0.165 
Sig. (2- tailed) 0.633 0.609 

 
 

A significant correlation was found on Day 3, when those participants who had  

higher energy expenditure had lower fat free mass percentage (p=0.002, rs= -0.797)  

and higher body fat percentage (p=0.001, rs=0.813) when a spearman’s rho was used to  

analyze the data (Table 12). 
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Table 12: Spearman’s rho correlation between Day 3 Energy Balance and 
Body Composition (N=12) 

 

    
Fat-Free 
Mass (%) 

Body Fat 
(%) 

Day 3 Kcal In 
Correlation  0.154 -0.182 
Sig. (2- tailed) 0.633 0.571 

Day 3 Kcal Out 
Correlation  -0.797* 0.813* 
Sig. (2- tailed) 0.002 0.001 

Day 3 Hrs in EB= +/-400 
Correlation  -0.106 0.084 
Sig. (2- tailed) 0.774 0.795 

Day 3 Hrs in EB> +400 
Correlation  0.277 -0.301 
Sig. (2- tailed) 0.383 0.341 

Day 3 Hrs in EB <-400 
Correlation -0.292 0.322 
Sig. (2- tailed) 0.357 0.307 

Day 3 Hrs in anabolic 
Correlation  0.352 -0.378 
Sig. (2- tailed) 0.261 0.225 

Day 3 Hrs in catabolic 
Correlation  -0.352 0.378 
Sig. (2- tailed) 0.261 0.225 

Day 3 ending kcal 
Correlation  0.343 -0.375 
Sig. (2- tailed) 0.276 0.230 
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CHAPTER V 

DICUSSION AND CONCLUSION 

 
 

This study sought to determine the prevalence of RED-S in female collegiate 

track & field athletes. 58% of participants scored =/>8 on the LEAF-Q, putting them at 

risk for RED-S. This rejects the null hypothesis that the majority of track & field athletes 

would be at risk for RED-S. Despite the small sample of participants in this study, this 

statistic show the need for a RED-S screening process for female collegiate track and 

field athletes. If athletes at risk for RED-S go unnoticed, they are at risk for developing 

the many consequences included in the RED-S terminology that occur due to energy 

deficiencies. No difference was found between the disciplines of track & field athletes 

when considering their risk of having RED-S, with three sprinters (n=5), three distance 

runners (n=5), and one thrower scoring (n=2) =/>8 on the LEAF-Q putting them at risk 

for RED-S. This finding does not reject the null hypothesis that a greater number of 

distance runners will be at risk for RED-S than sprinters and throwers. Additional to the 

RED-S score, six of the twelve participants were or previously had experience 

secondary amenorrhea, which closely compares to previous research reporting that 65% 

of collegiate female distance athletes experience secondary ammenorrhea1. 

This study highlights the effect of averaging multiple days of dietary recall can 

have on perceived results. When participant’s dietary recalls were assessed day by day 

the majority of hours were spent in a catabolic state, however when the three days of the 

recall were averaged the severity of the hours spent in a catabolic state lessened. A day of
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high energy intake can mask out the other days of low energy intake by providing an 

average energy intake that appears to fall in optimum energy balance with average energy 

intake lying +/-400 kcal within energy expenditure. However, these athletes are 

experiencing days of energy deficit, which can build up over time to cause health 

consequences such as those included in the RED-S terminology. In this specific 

population, it is important to consider the results of this study and assess athlete’s energy 

balance hourly, day by day, to provide a more precise estimate of energy intake and 

expenditure.  

The associations in this study are consistent with previous studies evaluating the 

relationships between energy balance deficits and body composition, indicating that 

longer duration spent in an energy deficit energy balance is associated with lower lean 

mass and higher body fat percentage2. Spearman’s rho analysis found a significant 

inverse correlation between Day 1 hours spent in optimal energy balance (± 400 kcal) and 

body fat percent (p=0.024, rs= -0.643), and significant positive correlation between Day 1 

hours spent in optimal energy balance (± 400 kcal) and fat free mass percentage (p=0.03, 

rs=0.625). Spearman’s rho analysis also found an inverse correlation between Day 1 

hours spent in an energy deficit (< -400 kcals) and fat free mass percentage (p=0.03 rs= -

0.626), and a positive correlation between Day 1 hours spent in an energy deficit and 

body fat percentage (p=0.026, rs=0.636). A trend between spending a longer duration of 

hours in a catabolic or highly catabolic state and having a lower fat free mass percentage 

and higher body fat percentage was also observed, though no significance was found.  

Due to the small sample size, the data collected can be generalized to the Georgia 

State Track and Field team specifically, and can serve as a reference for other female 
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collegiate track and field teams. Screening for RED-S in track and field athletes, and 

specifically distance runners who may be at higher risk due to the aesthetic image 

sometimes expected of them, needs to be improved to decrease the risk for RED-S and its 

consequences. 

 
 
 
STUDY LIMITATIONS 
 

A limitation to this study was the small sample size (n=12). Another limitation to 

the study was the three-day dietary and exercise recall as it is possible that the study 

participants underreported/over-reported energy intake or improperly estimated portion 

size, which is a known limitation to all dietary recalls. A study on elite gymnasts found 

that 61% of respondents underreported energy intake37. Additionally, it is possible that 

some food items were unreported due to the participant forgetting certain components of 

their food intake as many participants found it difficult to remember their recall the day 

that was three days prior to their appointment. Also, energy expenditure varied greatly 

from participant to participant with some participants completing their recall on high 

intensity exercise days, whereas others completed their recall on days with no or low 

exercise. In future research studies, it would be beneficial to obtain data from different 

exercise intensity days such as one day of low activity, one day of moderate activity, and 

one day of high intensity activity. Lastly, due to the sensitive topic of the study, it is 

possible that there was selection bias as some of the invited subjects that did not 

participate in the study may have chose not to participate due to possibly experiencing 

some of the components that were being studied.  

 



 

 

33 

 
FUTURE RESEARCH 
 

Future research studying the prevalence of RED-S in male collegiate athletes 

would be vitally important to highlight the scope of male athletes at risk while it also 

could be compared to the prevalence of RED-S in female colligate athletes. Also, a study 

on the prevalence of RED-S in different collegiate sports, for example weight-sensitive 

sports versus other sports would be an important area of research for the RED-S 

paradigm versus previous literature that studied the prevalence of the Female Athlete 

Triad in different sports. Lastly, future studies could look at the prevalence of those with 

RED-S in high school and professional athletes compared to that of colligate athletes. 

Other data that could be collected to strengthen future studies would be to assess 

immunological, menstrual, bone health, cardiovascular, metabolic, and hematological lab 

values in relation to energy balance.  

 
 
CONCLUSIONS 
 

Previously, it has been recommended to average three-day recalls in order to get 

an optimal estimate of energy intake38. This study highlights the effect of averaging 

multiple days of dietary recall can have on the perceived energy balance status. When 

participant’s dietary recalls were assessed day by day the majority of hours were spent in 

a catabolic state, however when the three days of the recall were averaged the severity of 

the hours spent in a catabolic state lessened. The associations in this study are consistent 

with previous studies evaluating the relationships between energy balance deficits and 

body composition, indicating that longer duration spent in a negative energy balance is 

associated with lower lean and higher fat mass and longer duration of time spent in an 
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optimal energy balance is associated with a higher fat free mass and lower body fat 

percentage6. The findings from the LEAF-Q show that 58% of participants were at risk 

for RED-S, and half of all participants previous had or were currently were experiencing 

menstrual dysfunction. The identification of athletes with RED-S is vitally important to 

halt the progression of health related consequences such as menstrual dysfunction, 

decreased bone density, and other health consequences1.  The use of a screening tool such 

as the LEAF-Q can serve as a quick assessment tool to highlight those athletes that need 

additional medical attention by using a scoring scale to rank athlete’s answers based on 

current health status and past medical history.  
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Appendix B 

 

Instructions:  Completing this form will help us understand whether  the amount of energy (calories) you consume comes close to 

matching the energy (calories) you expend.  This form provides a way of entering your  energy expended by using an ‘Activity 

Factor’, and your  energy consumed by using a description of the foods and drinks you ate.  The information is entered by hourly 

units, so you don’t have to remember  precisely the time you had an activity or  ate some food.  Rather, you are asked to enter  when 

you had an activity, its intensity by using the activity factor  scale, and how  long you did it (example: I had a slow jog between 10 

and 11 in the morning that lasted for  30 minutes).  Use the NutriTiming Activity Factor  Scale Descriptions to help you figure out the 

best factor  to enter  when describing an activity.  When entering food, describe the food and the way it was prepared fully (example: 

chicken breast with no skin that was baked; or  fried, battered chicken breast, etc), and the amount you consumed (example: 1 

apple; 1 ½ cups; 15 red grapes; 1 large banana, etc.).  A factor  of 1.5 is considered normal daytime activity, and we will assume a 

factor  of 1.5 unless you indicate otherwise.  A factor  of 1 is equal to sleep, and a factor  greater  than 1.5 suggests you are doing 

something more vigorous than normal daytime activity.  Please enter  a full 24 hours of all your  activities and all the foods/drinks you 

consume.  Use the example below to help you understand how to enter the information.  

NutriTiming Activity Factor ScaleNutriTiming Activity Factor Scale

Factor Description

1 Resting, Reclining:  Sleeping, reclining, relaxing 

1.5 Rest +: Normal, average sitting, standing daytime activity 

2.0 Very Light: More movement, mainly with upper body. Equivalent to tying shoes, typing, brushing teeth 

2.5 Very Light +: Working harder than 2.0 

3.0 Light: Movement with upper and lower body. Equivalent to household chores 

3.5 Light +: Working harder than 3.0; Heart rate faster, but can do this all day without difficulty 

4.0 Moderate: Walking briskly, etc. Heart rate faster, sweating lightly, etc but comfortable 

4.5 Moderate +: Working harder than 4.0. Heart rate noticeably faster, breathing faster 

5.0 Vigorous: Breathing faster and deeper, heart rate faster, must take occasional deep breath during sentence for conversation 

5.5 Vigorous +:  Working harder than 5.0. Breathing faster and deeper, and must breath deeply more often to carry on 
conversation 

6.0 Heavy: You can still talk, but breathing is so hard and deep you would prefer not to.  Sweating profusely. Heart rate very high 
6.5 Heavy +: Working harder than 6.0. You can barely talk but would prefer not to. This is as hard as you can go, but not for long 

7.0 Exhaustive: Can’t continue this intensity long, as you are on the verge of collapse and are gasping for air. Heart rate is 
pounding 

Begin 
Hour

End Hour
Activity 
Factor

Activity 
Description

Food/Drink Description Food/Drink Amount

****Begin'Example********Begin'Example********Begin'Example********Begin'Example********Begin'Example********Begin'Example****

12am 7am 1.0 Sleep

7am 8am 1.5 Nothing'Special Whole'Wheat'Waffles'(FrozenBKellogg) 3

Maple'Syrup 2'Tablespoons

1'%'Milk 1'Cup

Orange'Juice'(from'concentrate) 1.5'Cups

Coffee 2'Cups

1'%'Milk'for'Coffee 2'Tablespoons

10am 11am 5.0 Jog'30'minutes Gatorade 16'Ounces

12noon 1pm 1.5 Nothing'Special Medium'size'beef'sandwich'with'white' 1'Sandwich

bread,'mayonnaise,'leWuce,'and'tomato.

Coffee 2'Cups

ArYficial'Coffee'Creamer 2'Packets

Apple'Pie 1'Slice'(small)

5pm 6pm 4.0 Walk'1'hour Water 16'ounces

7pm 8pm 1.5 Nothing'Special Lasagna'with'ground'beef'and'cheese Large'Plate

LeWuce'Salad'with'Tomatoes'and'Cucumbers Medium'Size'Salad

Blue'Cheese'Salad'Dressing 1'Tablespoon

Red'Wine 1'Medium'Glass

10pm 11pm 1.5 Nothing'Special Popcorn'(air'popped;'no'buWer) 100'Calorie'Pack

NutriTiming® Data Entry Form
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Name:________________________________________  Age: ____Years   Date of Birth:____/____/________            
               MM               DD              YYYY

Gender: M or F         Height:  ____Feet ___Inches   Weight: ____ lbs.      

Date Analyzed:       ___/____/____     Time last meal eaten before date analyzed: _____________
        M       DD           YYYY

Begin 
Hour

End 
Hour

Activity 
Factor

Activity 
Descriptions

Food/Drink 
Descriptions

Food/Drink 
Amounts

NutriTiming® Data Entry Form
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Appendix C 
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Appendix D 
 
NUTRITIMING ENERGY BALANCE EXAMPLE 
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