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OSCILLATORY NETWORK DYNAMICS IN PERCEPTUAL DECISION-MAKING  

 

 

By 

 

 

GANESH CHAND 

 

Under the Direction of Mukesh Dhamala, PhD 

 

 

ABSTRACT 

Synchronized oscillations of ensembles of neurons in the brain underlie human cognition 

and behaviors. Neuronal network oscillations can be described by the physics of coupled 

dynamical systems. This dissertation examines the dynamic network activities in two distinct 

neurocognitive networks, the salience network (SN) and the ventral temporal cortex-dorsolateral 

prefrontal cortex (VTC-DLPFC) network, during perceptual decision-making (PDM). 

The key nodes of the SN include the right anterior insula (rAI), left anterior insula (lAI), 

and dorsal anterior cingulate cortex (dACC) in the brain. When and how a sensory signal enters 

and organizes within the SN before reaching the central executive network including the 

prefrontal cortex has been a mystery. Second, prior studies also report that perception of visual 

objects (face and house) involves a network of the VTC—the fusiform face area (FFA) and para-

hippocampal place area (PPA)—and the DLPFC. How sensory information enters and organizes 



within the VTC-DLPFC network is not well understood, in milliseconds time-scale of human’s 

perception and decision-making. We used clear and noisy face/house image categorization tasks 

and scalp electroencephalography (EEG) recordings to study the dynamics of these networks. 

We demonstrated that beta (13–30 Hz) oscillation bound the SN, became most active around 100 

ms after the stimulus onset, the rAI acted as a main outflow hub within the SN, and the SN 

activities were negatively correlated with the difficult tasks. We also uncovered that the VTC-

DLPFC network activities were mediated by beta (13-30 Hz) and gamma (30-100 Hz) 

oscillations. Beta activities were enhanced in the time frame 125-250 ms after stimulus onset, the 

VTC acted as main outflow hub, and network activities were negatively correlated with the 

difficult tasks. In contrast, gamma activities were elevated in the time frame 0-125 ms, the 

DLPFC acted as a main outflow hub, and network activities—specifically the FFA-PPA pair—

were positively correlated with the difficult tasks. These findings significantly enhance our 

understanding of how sensory information enters and organizes within the SN and the VTC-

DLPFC network, respectively in PDM. 

 

 

 

INDEX WORDS: Electroencephalography (EEG), Neuronal oscillations, Perceptual decision-

making, Salience network (SN), Fusiform face area (FFA), Parahippocampal place area 

(PPA), Dorsolateral prefrontal cortex (DLPFC) 
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1 INTRODUCTION  

1.1 Overview 

Our everyday lives involve making decisions. Whenever there are two or more 

alternatives, one can decide between them. This seems very simple, but as a neurophysicist, an 

obvious wonderment is how the brain carries out this decision. What brain areas are involved? 

How do they coordinate to arrive at a perceptual decision? These are some of the questions, 

answers of which can take us closer to solving mysteries of brain decision-making functions. 

The human brain is a highly complex system consisting of a large number of 

interconnected nerve cells (neurons) carrying out perception, cognition and action. Those 

neuronal connections enable various brain structures to exchange information with each other 

during a perceptual or cognitive task. How neuronal systems interact in cognitive tasks including 

decision-making is not completely uncovered. Perceptual decision-making (PDM) is a process of 

decision-making based on available sensory information and evidence. Prior investigation 

proposes the PDM as an encoding of sensory evidence, planning of actions, and mapping of 

sensory information into action plans (1). Such a sensory information-guided, goal-directed 

behavior is thought to entail the flexible interactions among task-relevant, but widely distributed 

brain areas (2, 3). However, ‘where in the brain’, ‘when in the brain’ and ‘how in the brain’ 

questions are not well answered. In other words, how sensory signal enters and organizes within 

those brain areas before motor-execution are largely unknown. Such understanding is crucial not 

only for basic research questions but also for creating a pipeline to treat the patients who have 

impaired decision-making. My PhD research projects seek to uncover those mysteries in the 
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human brain during PDM processes. The findings of my PhD work have been reported in the 

following first author peer-reviewed journal papers. 

1. Chand GB and Dhamala M. The salience network dynamics in perceptual decision-

making. NeuroImage (Under Revision). 

2. Chand GB, Lamichhane B and Dhamala M. Face or house image perception: beta and 

gamma bands of oscillations in brain networks carry out the decision. Brain Connectivity (Under 

Revision). 

3. Chand GB and Dhamala M. Interactions among the default-mode, salience and central-

executive networks during perceptual decision-making of moving dots. Brain Connectivity 

(Under Revision). 

4. Chand GB and Dhamala M. Oscillatory causal interactions between the salience and 

central-executive networks during perceptual decision-making. NeuroImage (Under Revision). 

5. Chand GB and Dhamala M. Spectral factorization-based current source density analysis 

of ongoing neural oscillations. Journal of Neuroscience Methods 224, 58-65 (2014). 

In the first paper, I investigate the salience network dynamics for the first time in finer 

time-scale (milliseconds). In the second paper, I demonstrate for the first time that the band-

specific oscillatory networks features and their temporal dynamics in visual perception. In the 

third paper, I apply a unified network approach to examine the interactions among the default-

mode, salience and central-executive networks during easier versus harder PDM tasks. The 

fourth paper demonstrates band-specific temporal features between the salience network and 

central-executive network in PDM. The fifth paper (4) is about  the technique, where I propose 

an algorithm that localize neuronal oscillations, especially ongoing/spontaneous oscillations. 

Except my fifth paper, all of the journal papers aim to unravel the underlying brain mechanisms 
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involved in PDM. Here, I include only the first two peer-reviewed journal papers in this 

dissertation.  

1.2 Neuronal oscillations and synchrony 

The human brain consists of billions of neurons—the cells that transmit information 

inside the brain—and each of which have more than 103 synaptic connections which enable 

neuronal assembles to oscillate and synchronize transiently or connect functionally (5). Neuronal 

oscillations can be captured at various measurement scales: at a single neuron level, at local field 

potentials level, and at large-scales level (5, 6). Scalp electroencephalography (EEG) is a 

noninvasive electrophysiological recording technique that measures synchronized activity of 

ensembles of neurons (7). Hans Berger was the first one to record a version of EEG from the 

human in 1924 (8). Since then EEG has become a valuable tool for the study of brain functions 

and dysfunctions (7, 9, 10).  

EEG is relatively convenient to demonstrate the physiological manifestations of 

synchronized activity in a time-scale (i.e., milliseconds) of the human sensory perception and 

decision-making. EEG signals captured from the brain comprise a broad range of synchronized 

oscillatory activities, which are tentatively categorized into several bands: delta (1-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30–100 Hz) (11). These oscillatory 

contents subserve important functions in the brain (12-14). However, an important but unsolved 

question is whether these bands exhibit distinct physiological roles and whether specific 

sensorimotor, perceptual or cognitive operations are tied to them (11, 14). Some of these 

oscillations are illustrated to be a physiological signature of different cognitive states (15, 16) 

with or without tasks. For example, delta oscillation is associated with the deepest stages of 

dreamless sleep (also known as slow-wave sleep) and this has been reported also for learning, 
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motivation, and rewards in the brain (12). The role of theta oscillations is demonstrated in 

working memory processing, emotional arousal and fear conditioning (11, 17, 18).  Alpha 

oscillations are involved in alertness, attention, working memory and short-term memory 

retention (19). Studies have linked beta oscillations with motor functions (20-24). More recently, 

beta oscillations are shown in maintaining accuracy of the task such as during decision-making 

(25, 26). Gamma oscillations have been demonstrated in a wide range of brain processes, 

including focused arousal, multisensory and sensorimotor integration, attention, memory 

formation, and conscious awareness (13, 27-29).  The study of neuronal oscillations in the brain 

is important for understanding of not only healthy brain functions, but also brain dysfunctions 

epilepsy, schizophrenia, autism spectrum disorder, dementia, Alzheimer’s disease and many 

more.   

The conventional approach of analyzing scalp EEG data is to study event related 

potentials (ERPs) patterns over time. However, volume conductions and muscle artifacts that can 

mimic neural synchrony contaminate the ERPs. To resolve these, a recent shift in analysis is the 

transformation of EEG data into source space. Such source space not only provides better 

estimation of synchronized oscillatory activity but also substantially improves the spatial 

resolution of E/MEG measurements (15, 30).   Several techniques have been proposed to achieve 

this goal. One of them is the low-resolution electromagnetic tomography (LORETA), which we 

will discuss with some details in the materials and methods section of chapter 3.  

1.3 Network activity: directed connectivity measure 

Over the past few years, multivariate neuronal recordings have become commonplace to 

investigate how different brain areas work together to achieve thoughts and behavior under 

different tasks and conditions, and how such coordinated brain activity disrupts in diseases. 
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Symmetric measure—mainly cross correlation, ordinary coherence spectra, and phase 

synchronization index—have been applied to evaluate how the different parts of the brain are 

functionally connected. These directionally symmetric measures are also often termed 

“functional connectivity measures”, which are limited to evaluating functional interdependence 

of one neural system over another or vice versa (31). In recent years, asymmetric measures that 

deal with the information flow between the brain areas have been actively applied to functional 

neuroimaging data. These are often referred to “ effective connectivity measures”. One popular 

method is Granger causality, which is based on the theory of linear prediction. In 1956, Wiener 

(32) introduced an idea that if a time series is helpful in predicting another time series, the first 

time series is causal to the second. It was Clive Granger who implemented this idea using 

autoregressive models, and then applied this mathematical framework to investigate causal 

relations in econometric time series (33). The technique is henceforth termed as Granger 

causality (GC). Time domain GC (33, 34) was further generalized in frequency domain by 

Geweke (35, 36). Recent investigations have successfully applied the GC to infer the directed 

connectivity among the brain areas (37-39). 

GC—a data-driven technique—can be mathematically expressed by considering 

simultaneously measured time series. Suppose we have two simultaneously recorded time series 

represented as, 1: X1(1), X1(2), ..., X1(t), ... and 2: X2(1), X2(2), ..., X2(t). GC spectral analyses 

can be used to examine the strengths, directions, and frequencies of interactions between such 

dynamic processes 1 and 2. The GC spectral method is a part of spectral interdependency 

methods. The measures of spectral interdependency are derived from the time series recordings 

of dynamic systems either by using autoregressive modeling (parametric method), or by using 

direct Fourier or wavelet transforms (nonparametric method) (40, 41). For a pair of multivariate 
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stationary processes (i. e., 1 and 2), there are three measures that characterize the spectral 

interdependency between these processes: total interdependence (M1,2), GC (one-way effect or 

directional influence from the first process to the second process, M1→2, or from the second to the 

first, M2→1) and instantaneous causality (measure of reciprocity, M1.2). In general, the total 

interdependence is the sum of directional influences and instantaneous causality frequency by 

frequency (M1,2 = M1→2 + M2→1 + M1.2). The spectral interdependency measures are derived from 

the spectral matrix (S), and/or from the transfer function (H) and noise covariance matrix ( ), 

which can be estimated by the parametric (prediction model building) (42) or nonparametric 

(model-free) approaches applied to these time series (40, 41).  is computed from the residual 

errors of the prediction models and the transfer function matrix H is constructed from the matrix 

inverse of the Fourier transforms of the coefficients in the prediction models. S, H and  can 

also be estimated by using the nonparametric spectral methods (40, 41) without explicitly fitting 

the time series X1(t) and X2(t) in autoregressive models. The GC spectrum from the second time 

series X2 to the first time series X1 (i.e., 2 to 1) at a frequency (f) is defined as 

                                                                      (1.1)       

In N EEG-source waveforms, the frequency-specific causal outflow (F) at a node i can be 

defined as, 

                                                                                                                                                                                                                        

      (1.2) 

Because of the unknown theoretical distributions of spectral GC, establishing statistical 

significance in these measures from experimental time series requires data resampling 

(surrogate) methods such as random permutation.
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2 PERCEPTUAL DECISION-MAKING 

Perceptual decision-making (PDM) deals with decision based on available sensory 

evidence. Even a very simple everyday decision—such as stopping a car at a red light or driving 

it at a green light—is believed to follow a systematic scheme that includes an encoding of 

sensory evidence, planning of actions, and mapping of sensory information into action plans. 

PDM has been extensively investigated using primate electrophysiological recordings (43-46), 

human neuroimaging (3, 47-51), and modeling experiments (52-56). In laboratory settings, the 

study of PDM has been mostly performed in both animals and humans using a stimulus 

categorization task with two or more forced-choice alternatives (1, 45). Those prior studies 

suggest that a distributed network of brain areas carry out PDM (57, 58). However, how a 

sensory signal enters and organizes within those brain areas before reaching the motor area for 

motor execution are still not well understood. The study of PDM is not only interesting in terms 

of choosing appropriate action from several alternatives but also possibly serving as a simple role 

model for more complex decisions in the long run. The present dissertation will focus on the 

following investigations as an attempt to understand PDM processes. More specifically, we will 

discuss oscillatory network dynamics of two distinct neurocognitive networks in PDM: the 

salience network and ventral temporal cortex-dorsolateral prefrontal cortex (VTC-DLPFC) 

network. 

2.1 Salience network 

The human brain makes sense of multiple internal and external inputs that compete for 

attention by determining which ones are salient (59, 60). The term salient here is understood in 

terms of a stimulus or an aspect of stimulus that is distinct from others (61-63). The brain 

dynamically selects specific sensory stimulus for additional processing from a wide stream of 
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incoming sensory inputs. Such saliency detection mechanisms in the brain are conceptualized in 

two ways. The first mechanism is a primitive, automatic, and bottom-up process that filters and 

amplifies the stimulus at multiple levels (64, 65). The second mechanism is a higher-order 

cognitive process that recruits content-specific information, stimulus selection and focusing, and 

enhances access to resources entailed for stimulus-driven goal-directed behaviors including 

making decisions (66-69). The salient mechanism that we discuss in this dissertation is the 

second mechanism of higher-order cognitive processes. Prior studies suggest that the salient 

features of the stimulus are primarily anchored in the right anterior insula (rAI), left anterior 

insula (lAI) and dorsal anterior cingulate cortex (dACC) (67, 69) in the brain, and a network of 

these brain areas is often referred as the salience network (SN).  The SN contributes to a wide 

range of complex brain functions, including communication, social behavior, and sensory 

stimulus-guided goal-directed behaviors (61, 66, 70-72). Investigation of the SN has rapidly 

increased in last few years because emerging evidence shows that atypical engagement of the SN 

is a feature of several neuropsychiatric disorders, such as in autism spectrum disorder (73-77), 

schizophrenia (78-83), and frontotemporal dementia (84-87). Despite extensive study of the SN 

in both health and disease mentioned above, when and how a sensory signal enters and organizes 

within the SN before reaching the central executive network, including the prefrontal cortices, is 

still a mystery. Previous electrophysiological studies focused on individual nodes of SN, either 

on dACC or rAI, have reported of conflicting findings of the earliest cortical activity within the 

network. One group of studies argues that the dACC responds first to the salient event, and its 

interaction with the lateral prefrontal structures implement subsequent behavioral changes (88, 

89). In contrast, the other literatures report that the rAI activates first to the salient event and then 

drives the SN (69, 90). I discuss our study that seeks to resolve these conflicting findings. The 
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details of the salience network dynamics in a perceptual decision-making task will be presented 

in chapter 3.  

2.2 VTC-DLPFC network 

Humans and nonhuman primates depend on their vision to detect, recognize, and classify 

the information present in their surroundings. This process includes a key mechanism in the 

brain called sensory processing. Prior studies suggest that sensory processing begins with the 

integration of available sensory evidence by lower order sensory areas in the brain (91-94). To 

better understand PDM mechanisms in visual processing, several studies have used direction of 

motion discrimination tasks (45, 91, 95) and others have used image categorization tasks (47, 96-

98). One of them is categorizing the images of face and house. A face is a biologically distinct 

stimulus and its perception (and recognition) is considered a highly developed skill in cognitive 

development of humans, such as for acquiring the skills needed for social interaction and 

language (58, 99, 100). A house is also a stimulus category that has a direct connection with 

humans’ life. Neuroimaging studies in humans suggest that a specific brain area within the 

ventral temporal cortex (VTC) responds more to faces than other visual objects (stimuli) and this 

brain area in the right hemisphere is often referred to as the fusiform face area (FFA) (47, 101, 

102). In a similar vein, another brain area within the VTC activates more to houses than other 

visual stimuli, and this brain area in the left hemisphere is often called the parahippocampal 

place area (PPA) (98, 103-105). Studies mostly performed using fMRI (in seconds) reported that 

a higher order cortical area in the brain, named the dorsolateral prefrontal cortex (DLPFC), 

computes higher-level cognitive functions (106-108), including decision-making (1, 109). The 

DLPFC is proposed to compute a decision by comparing the relevant sensory evidence in the 

FFA and PPA for their respective choices (1). However, how a sensory signal enters and 
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organizes within this network has remained a mystery, specifically in the time-scales of human 

sensory perception and cognition. We discuss the detail of the VTC-DLPFC network dynamics 

during perceptual decision-making in chapter 3.  

 

3 OSCILLATORY DYNAMICS OF THE: 1) SALIENCE NETWORK, AND 2) VTC-

DLPFC NETWORK IN PERCEPTUAL DECISION-MAKING 

3.1 Introduction 

3.1.1 Salience network dynamics 

 Prior studies suggest that the salience network (SN)—the rAI, lAI and dACC in the brain 

(67, 69)—plays a crucial role in integrating sensory stimuli to initiate cognitive control (68), to 

implement and maintain task sets (110),  and to coordinate behavioral responses (111). When 

and how a sensory signal enters and organizes within SN in a sensory-driven, goal-directed task 

is not understood. Such understanding can help predict impending perceptual decisions and task 

executions that involve the prefrontal cortex.  

There are two main competing theories that explain the possible ‘driving hub’ of the SN. 

First theory proposes that the dACC monitors performance and signals the need for behavioral 

adaptation (88). Activity in the dACC signals the need for enhanced cognitive control, and 

interaction between the dACC and the lateral prefrontal structures implement subsequent 

behavioral changes (88, 89). In contrast, the second theory suggests that the rAI is a ‘cortical 

outflow hub’ of the SN and it coordinates a change in activity across multiple neurocognitive 

networks, such as the default mode network (DMN) and central executive network (CEN) (68, 

90, 112). Diffusion tensor imaging (DTI) has demonstrated that the structural integrity of the 

white matter connection between the rAI and the dACC predicts behavioral and physiological 
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abnormalities after traumatic brain injury (112). Previous investigations using blood oxygenation 

level-dependent (BOLD) changes in fMRI showed that the rAI, not the dACC, drives the SN (69, 

90) and further suggested that a change in the effective connectivity of the dACC was associated 

with behavioral adaptation (69). As BOLD hemodynamic responses are sluggish, it might in fact 

include processes that happen on longer time-scales (seconds) and, if so, the ‘driving hub’ of the 

SN might even change in millisecond time-scales of neuronal activities. The studies mentioned 

above (69, 89, 90, 113) reported conflicting findings of the earliest cortical activity—whether the 

dACC or the rAI drives the SN. Therefore, how a sensory signal enters SN and organizes within 

before reaching the prefrontal cortex for central executive processing remains a mystery, 

specifically in the time-scales of human sensory perceptions and cognitions. We seek to resolve 

these conflicting reports considering both anterior insulae and dACC in milliseconds time-scale. 

In particular, how the cortical areas of the SN interact, what the temporal flow of underlying 

overall activity in these cortical areas is, and what frequency band(s) of information flow binds 

the SN are largely unknown.  

As the dACC, rAI and lAI are often co-activated, it has been hard to disentangle their 

causal features (69), specifically on longer time-scales such as from fMRI measures. In this 

study, we recorded human scalp electroencephalography (EEG), reconstructed source 

waveforms and investigated the causal relationships between the areas of the SN using spectral 

Granger causality (GC). In this EEG experiment, we used the standard face/house image 

categorization tasks and studied the temporal evolution of activity in the salience nodes and the 

patterns of oscillatory network activity flow binding SN nodes in a network. Adding noise to 

clear images, three noise levels of stimuli were created to examine whether a difficult task (or 

difficult decision) modulates the network activity flow. 
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3.1.2 VTC-DLPFC network dynamics 

The human brain is organized in a large number of functionally specialized but widely 

disseminated cortical and sub-cortical areas. Sensory guided, goal-directed behaviors such as 

PDM—the process that includes encoding of sensory evidence, planning of actions and mapping 

of sensory information into action plans (1)—entails the flexible interactions between task-

relevant areas, but the underlying neural mechanisms regulating such interactions are poorly 

understood. Here we seek to investigate the large-scale neural oscillatory networks involved in 

visual perceptual decisions. 

Sensory processing, including visual processing, comprises encoding of sensory evidence 

by lower order sensory areas (91-94). Neuroimaging studies in the human have repeatedly 

demonstrated that the areas of ventral temporal cortex (VTC) are involved for encoding and 

processing visual information, specifically the right fusiform face area (FFA) and the left para-

hippocampal place area (PPA) for faces and houses, respectively (47, 105). The FFA and PPA 

also process other forms of visual objects, such as birds, fish and insects (98, 114, 115) 

emphasizing the role of bilateral interaction in visual processing (116, 117). In PDM literature, 

the dorsolateral prefrontal cortex (DLPFC) has been proposed to read available sensory evidence 

from the lower order sensory areas (1, 47, 95, 118-121), although the underlying neural 

mechanisms related to such interactions are not well understood. Previous neuroimaging studies 

have mostly focused on sluggish BOLD-fMRI (1, 47, 119) to investigate the network features 

between the FFA, PPA and DLPFC. Therefore, how these brain areas interact in a millisecond 

time-scale, what the temporal flow of underlying overall activity in these brain areas is, and what 

frequency bands of information flow bind them in the network are largely unknown to date.  
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Electrophysiological studies followed by source localization have reported that the FFA 

responds to a face at ~150-180 ms after stimulus onset (122, 123). These studies provide some 

clue about the temporal activation pattern in the VTC—the FFA and the PPA. A recent EEG 

investigation (120) provided a clue that the DLPFC activated at ~170-210 ms after stimulus 

onset, although it was in the somatosensory domain. A systematic source-level activation pattern 

of temporal evolution in the FFA, PPA and DLPFC for visual stimuli, especially face/house 

stimuli, still needs to be resolved. Based on the available literature discussed above, we 

hypothesized that visual processing of the face/house stimuli involves a network that links the 

lower order sensory areas (the FFA and the PPA) and the higher order brain area in the 

prefrontal cortex, the DLPFC. We designed an EEG experiment by using the standard 

face/house discrimination task to test this hypothesis. Furthermore, we added noise on these 

stimuli to test whether a difficult task (difficult decision) is associated with additional network 

activity among the FFA, PPA and DLPFC. 

3.2 Materials and Methods  

3.2.1 Participants 

Twenty-six neurologically healthy human volunteers (21 males, 5 females) of age ranged 

from twenty-two to thirty-eight years (mean: 26.3 years, standard deviation: 4.7 years) 

participated in this study. A written informed consent was collected from the participants prior to 

data collection. The Institutional Review Board of Georgia State University approved the 

experimental protocol. Three participants were excluded from the final analyses because of 

behavior performance and/or unmanageable artifacts and noise present in their EEG data.  
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3.2.2 Stimuli 

We used a total of twenty-eight images of faces and houses (14 images of each category). 

Face images were from the Ekman series (124). Fast Fourier transforms (FFT) of these images 

were computed, providing twenty-eight magnitude and twenty-eight phase matrices. The average 

magnitude matrix of this set was stored. Stimulus-images were produced from the inverse FFT 

(IFFT) of average magnitude matrix and individual phase matrices. The phase matrix used for 

the IFFT was a linear combination of the original phase matrix computed during the forward 

Fourier transforms and a random Gaussian noise matrix. The resulting images all had an 

identical frequency power spectrum (corresponding to the average magnitude matrix) with 

graded amounts of noise as done in previous studies (1, 47, 125). Finally, the stimuli consisted of 

three different noise-levels: 0%, 40% and 55% (i.e., clear stimuli, 40% noisy stimuli, and 55% 

noisy stimuli). The E-Prime 2.0 software was used to display the stimuli and control the task 

sequences. 

3.2.3 Experimental design 

Prior to the experimental task, the participants were briefly explained about the task 

paradigm. Participant sat in a dark room (the only source of light was from the experimenter’s 

computer screen) and viewing distance was ~60 cm (chin rest). Figure 3.1 shows a schematic of 

experimental paradigm used. The experiment consisted of 4 blocks of 168 trials (672 trials in 

total with 224 trials for each noise level). On each trial, a small fixation cross (‘+’ in the middle 

of the screen) was presented for 500 ms. Then a stimulus was presented for 150 ms, followed by 

a black screen with a question mark (‘?’) for 1500 ms, during which time participants were 

allowed to indicate their decision (either face or house) by a keyboard button press. Responses 

after that delay were considered incorrect.  
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Figure 3.1 Experimental design. 
A) Stimuli with three noise-levels, B) task paradigm: stimuli were presented for 150 ms, 
followed by black screen with question mark (‘?’) for 1500 ms during which time 
participants responded with a keyboard button press. 
 

3.2.4 Data acquisition and preprocessing 

EEG data were acquired with a 64-channel EEG system from Brain Vision LLC 

(http://www.brainvision.com). The analog signal was digitized at 500 Hz. The impedances of 

each electrode were kept below 10 kΩ, and the participants were asked to minimize blinking, 

head movements, and swallowing. EEG data were band-pass filtered between 1 and 100 Hz, and 

notch filtered to remove 60 Hz AC-line noises. The eyes blinking were removed using 

independent component analysis (ICA)-based ocular correction. Data from bad electrodes were 

discarded and replaced, when appropriate, by spatial interpolation from the neighboring working 

electrodes.  These preprocessing steps were done using Brain Vision Analyzer 2.0 

(http://www.brainproducts.com).  
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3.2.5 Data Analysis 

The preprocessed EEG data were analyzed in the following main steps:  

3.2.5.1 Computation of ERPs 

Continuous EEG data were segmented into trials of 400 ms duration (post-stimulus: 0 to 

400 ms) based on the stimulus onset times as a reference. The trials that had three standard 

deviations below or above the global mean across time in each subject were considered as 

outliers (126) and they were discarded from the subsequent analysis. 

3.2.5.2 EEG-source and single-trials source waveforms reconstruction 

 All correct trials (ERPs of correct percept) from all three noise conditions were grand 

averaged and imported to BESA software version 5.3.7 (www.besa.de) to reconstruct EEG 

sources. We used the low resolution electromagnetic tomography (LORETA) (127), which is 

also referred as Laplacian weighted minimum norm, to reconstruct the EEG sources. LORETA is 

an extensively used source localization technique in EEG studies for both cortical and deep brain 

structures (10, 122, 128-130), including insula and hippocampus (10, 129, 130). Depth weighting 

strategy implemented in LORETA overcomes the problem of surface-restricted localization 

methods, such as minimum norm estimates (MNE) (131-133).  LORETA uses the Talairach 

atlas coordinates of Montreal Neurological Institute (MNI) MRI average of 305 brains 

and computes the inverse solution at 2394 voxels with spatial resolutions of 7 mm 

(131, 134). It is based on the assumption that the smoothest of all possible neural activity 

distributions is the most plausible one. This assumption is also supported by electrophysiology, 

where neighboring neuronal populations show highly correlated activity while EEG-LORETA 

results are the activity rendered by neighboring voxels with maximally similar activity (122, 132, 

135).  Locations of sources can be constrained to the cortical surface and their orientations 
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perpendicular to the local cortical surface based on neurophysiological information that the 

sources of EEG are postsynaptic currents in cortical pyramidal cell, and that the direction of 

these currents is perpendicular to the cortical surface (136, 137). Peak activities of these sources 

were marked as the network nodes for connectivity analyses. Using single-trials EEG data, we 

fitted dipoles at the locations of peak activation of localized sources of SN—the rAI, lAI, and 

dACC based on our hypothesis—with dipole orientation presented in Table 1. Similarly, we 

also fitted dipoles at the location of peak activation of localized sources of VTC-DLPFC 

network: that is, at the FFA, PPA, and DLPFC (Table 2). The single-trials source signals were 

then extracted using a four-shell spherical head model and a regularization constant of 1% for the 

inverse operator. These source signals were used for the connectivity analyses. 

3.2.5.3 Power and Granger causality spectral analyses 

The power spectra can be computed using parametric and nonparametric approaches (4, 

40, 41). To find the proper model order (which was four), we compared the spectral power from 

both parametric and nonparametric approaches at different model orders and picked the model 

order that rendered the lowest power difference between two approaches.  

As the SN nodes showed a dominant activation at ~75-140 ms (as shown in Table 1), we 

tried to cover dominant activation time frame in a single time frame while computing the power 

and GC spectra at different time windows. We calculated the power and GC spectra from source 

waveforms of SN nodes in four consecutive time frames: 0-75 ms, 75-150 ms, 150-225 ms, and 

225-300 ms to uncover how the nodes and network activity changes with time. Besides time 

frame wise GC calculations, we also computed GC spectra using a sliding window technique 

(138, 139) by selecting a window size of 50 ms and sliding it every 2 ms to further observe how 

GC patterns change over time. The threshold value of GC, for statistical significance, was 
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computed from surrogate data (that is, from SN nodes) by using permutation tests and a gamma-

function fit (120, 140) under a null hypothesis of no interdependence at the significance level p < 

10-4. The causal outflow at a node (See Eq. 1.2) is computed as the total GC flowing out from a 

node minus total GC flowing in to that node in beta band (13-30 Hz). 

For VTC-DLPFC network, as the FFA, PPA, and DLPFC showed dominant activation at 

~130-240 ms (as shown in Table 2), we tried to cover dominant activation time frame of those 

nodes in a single time frame while computing the power and GC spectra at different time 

windows. We calculated the power and GC spectra from source waveforms of FFA, PPA, and 

DLPFC in three consecutive time frames: 0-125 ms, 125-250 ms, and 250-375 ms to uncover 

how the nodes and network activity changes with time. Besides time frame wise GC calculations, 

we also computed GC spectra using a sliding window (138, 139) to further examine how GC 

patterns change over time. The threshold value of GC, for statistical significance, was computed 

from surrogate data (that is, from FFA, PPA, and DLPFC) by using permutation tests and a 

gamma-function fit (120, 140) under a null hypothesis of no interdependence at the significance 

level p < 10-3. The causal outflow at a node (See Eq. 1.2) is computed as the total GC flowing 

out from a node minus total GC flowing in to that node in beta band (13-30 Hz) and gamma (30-

100 Hz), respectively. 

3.2.6 Brain-behavioral correlation.  

The response time (RT) of each participant for each stimulus was recorded. To see the 

brain-behavioral correlation with the increase in noise level in stimuli, RTs were converted into 

z-scores and plotted with GC. The relationship between GC and RT was tested using both 

Spearman’s rank correlation and Pearson’s correlation. If p < 0.05 for both, the correlation was 

considered significant. The results reported here are in terms of Spearman’s rank correlation.  



19 

3.3 Results 

3.3.1 Behavioral results 

The mean performance percent—a ratio of the number of correct responses to the total 

number of responses multiplied by 100 and averaged over all participants—was highest for 

stimuli with 0% noise level (mean: 96.80%, standard deviation: 0.71%) compared to the stimuli 

with 40% noise level (mean: 92.68%, standard deviation: 1.54%) and 55% noise level (mean: 

69.67%, standard deviation: 2.74%). Repeated measures analysis of variance (RMANOVA) 

(141) showed the significant effect of noise levels (task difficulty) on the performance (F(2,44) = 

150.43, p = 0.000003) and the response time (RT) (F(2,44) = 132.74, p = 0.000000). Pair t-test 

post hoc analyses followed by false discovery rate (FDR) multiple comparisons (142) further 

revealed that performance significantly decreased with the increase in noise level (p < 10-3; FDR-

corrected). The mean RT—the time taken to indicate the decision by pressing a keyboard button 

press and averaged over all participants—was shorter for stimuli with 0% noise level (mean: 

434.02 ms, standard deviation: 22.09 ms) compared to the stimuli with 40% noise level (mean: 

484.28 ms, standard deviation: 22.66 ms) and 55% noise level (mean: 565.70 ms, standard 

deviation: 25.73 ms). Pair t-test post hoc analyses followed by FDR multiple comparisons further 

illustrated that the RT significantly increased with the increase in noise level (p < 10-6; FDR-

corrected) as shown in Figure 3.2. 
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Figure 3.2 Behavioral responses for all three noise-levels. 
A) Behavioral accuracy (performance %) significantly decreased, but B) the response 

time significantly increased with an elevated noise in the stimuli. 
 

3.3.2 Brain results 

3.3.2.1 Salience network dynamics 

The average ERPs for correct decisions were used to compute localized sources 

(inverse solutions) in LORETA (127). Figure 3.3 shows the locations of the peak source 

activity (marked by cross-hairs) in time (first row), and the locations and orientations of 
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fitted dipoles in the SN nodes (second row) to obtain the single-trials source 

waveforms.  

 

   

Figure 3.3 Spatiotemporal profiles of peak source-level brain activity over the SN 
nodes. 
The first row shows peak source-level brain activity over the rAI and the lAI at 84 ms, 
and the dACC at 98 ms, and the second row shows the fitted dipoles on those nodes. 

  

The earliest peak activation occurred in the visual area (BA17/18: V1/V2) at ~60 

ms. The activation in the SN nodes started at ~76 ms after the stimulus onset. 

Maximum peak activations occurred at ~84 ms in the rAI and lAI (BA47/13), 

which was followed by activation in the dACC (BA32) at ~98 ms. Table 1 list the ERP source 
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locations, dipole orientations of SN nodes in the source model, and dominant 

activation time frames of cortical sources. The dipoles fitted at the locations and 

orientations shown explained approximately 80% of the variance in the EEG signal for 

trials with correct responses. 

We computed power spectra using the wavelet technique (Figure 3.4) and GC 

spectra using a sliding window (Figure 3.5) to see the activity over the entire time. To 

further access how power and GC spectra change over time, we then performed 

calculations at four time frames. Power spectra computed in four consecutive time 

frames—TF1: 0 ms to 75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms 

to 300 ms—at the rAI, lAI, and dACC showed peak activity in beta band when the 

participants viewed clear stimuli (see Figure A.1).  

Table 1 Anatomical location, dipole orientation, and dominant activation timeframe 
of the SN nodes. 

 

Brain areas Talairach coordinates 
x, y, z (mm) 

Dipole 
orientations 

x, y, z 

Dominant 
activation period 

(ms) 

Right anterior 
insula (rAI) 

35.0, 9.0, -7.0 0.9, 0.3, -0.4 78 – 142 

Left anterior 
insula (lAI) 

-33.0, 11.0, -8.0 -0.9, 0.4, -0.3 76 – 144 

Dorsal anterior 
cingulate cortex 

(DACC) 

4.0, 38.0, 13.0 0.1, 1.0, 0.0 76 – 146 
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Figure 3.4 Power spectra of the SN nodes as a function of time and frequency for 
stimuli with 0% noise. 
The first row (panels A, B, C) shows wavelet power at the rAI, dACC, and lAI for clear 
stimuli (0% noise) with peak beta activity in around 75 ms to 150 ms compared to other 
time frames, and the second row (panels D, E, F) represents the average power (averaged 
over beta band) showing peak activity at ~100 ms in the rAI, dACC, and lAI. 
 

Figure 3.6 shows power comparison of nodes of the SN among TF1, TF2, TF3 and 

TF4. Overall power over the SN nodes in TF2 is significantly higher compared to other 

TFs. GC spectra were computed to assess the oscillatory network interactions among 

the SN nodes. 
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Figure 3.5 Granger causality spectra among the SN nodes as a function of time and 
frequency for stimuli with 0% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 0% noise-level illustrating beta band 
activity. The first row shows GC between dACC-rAI pair, second row shows GC 
between dACC-lAI pair, and third row displays GC between rAI-lAI pair.  
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Figure 3.6 Power comparison of the SN nodes among four consecutive time frames 
for stimuli with 0% noise. 
A) Power comparison the SN nodes among four consecutive time frames (TF1: 0 ms to 
75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) for 
0% noise-level. B) Average power over the SN nodes in TF2 is significantly 
higher compared to other TFs (p represents significant statistical value; n.s. 
represents not significant). 
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Figure 3.7 presents GC spectra as a function of frequency, where horizontal lines 

represent statistically significant threshold value. Beta band network interactions 

between the SN nodes are enhanced in the TF2 (second column) compared to the rest 

of the TFs (other columns).  

 

 

Figure 3.7 Granger causality spectra between all possible pairs of the SN nodes at 
four consecutive time frames for stimuli with 0% noise. 
Granger causality (GC) spectra of all possible pairs between the rAI, lAI, and dACC for 
stimuli with 0% noise-level at four consecutive time frames (TF1: 0 ms to 75 ms, TF2: 75 
ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) mentioned at top of 
each column. 
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The overall connectivity strength of TF2 and TF3 were significantly higher than 

those of others, with the biggest strength in TF2 (Figure 3.8A). Causal outflow 

calculations in TF2 (the time frame of biggest overall connectivity strength) further 

showed the rAI as a main ‘cortical outflow hub’ and the dACC as a main ‘cortical 

inflow hub’ within the SN (Figure 3.8B).  

                 

Figure 3.8 Comparison of overall Granger causality and calculation of net outflow 
for stimuli with 0% noise. 
A) Overall GC connectivity strength among SN nodes is higher in TF2 than others (TF1: 
0 ms to 75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 
ms) for 0% noise-level, and B) net GC outflow of the SN nodes computed at the 
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time frame of highest connectivity strength (TF2) showed the rAI as a main 
outflow hub (p indicates statistically significant difference). 
 

Power spectra were also computed for TF1, TF2, TF3, and TF4 at the rAI, lAI, 

and dACC when participants viewed the stimuli with 40% and 55% noise-levels (see 

Figures A.2, A.4). Power spectra calculations also showed peak activity in the beta 

band. GC spectra were calculated to see the oscillatory network interactions among the 

SN nodes in the entire time window (Figure 3.9 and Figure 3.10). GC spectra were 

computed at four time frames to better assess the time dependence of the oscillatory 

network interactions among the SN nodes. 

Beta band network interactions among the SN nodes were suppressed for noisy 

stimuli compared to clear stimuli in the TF2 (see second columns of Figures 3.7, A.3, 

A.5). Overall causal interactions among the SN nodes were further compared between noise-

levels by paired t-tests to assess the significant effect of task difficulty. We found that the overall 

information flow was significantly suppressed when the noise-level was elevated from 0% to 

40%. Overall causal interactions were further significantly suppressed in the SN when the noise-

level was elevated from 40% to 55% (Figure 3.11). 
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Figure 3.9 Granger causality spectra among the SN nodes as a function of time and 
frequency for stimuli with 40% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 40% noise-level illustrating beta band 
activity. The first row shows GC between dACC-rAI pair, second row shows GC 
between dACC-lAI pair, and third row displays GC between rAI-lAI pair. 
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Figure 3.10 Granger causality spectra among the SN nodes as a function of time and 
frequency for stimuli with 55% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 0% noise-level illustrating beta band 
activity. The first row shows GC between dACC-rAI pair, second row shows GC 
between dACC-lAI pair, and third row displays GC between rAI-lAI pair. 
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Figure 3.11 Comparison of Granger causality strengths among noise levels. 
Granger causality (GC) connectivity strengths among SN nodes among all three noise-
levels in the TF2: 75-150 ms. Overall connectivity strength is significantly 
suppressed with an elevated noise in the stimuli (p indicates statistically 
significant difference). 

 

The difficulty levels—expressed in terms of behavior response times—were found to be 

significant and negatively correlated with the measures of network activity for all possible 

connections between cortical areas of the SN, except for the dACC to lAI flow, in the TF2 (75-

150 ms). The correlation coefficient (r) and the corresponding p-value of all possible connections 

are presented in Figure 3.12 (see Figures A.6, A.7 and A.8 for other TFs). 
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Figure 3.12 Relation between Granger causality and response time. 
Granger causality (GC) decreased with difficulty level of tasks, expressed in terms of 
response time of all three noise-levels, in TF2: 75-150 ms (r represents correlation 
coefficient and p < 0.05 represents statistically significant correlation).  
 

3.3.2.2 VTC-DLPFC network dynamics 

The average ERPs for correct responses were computed for clear stimuli (faces and 

houses, separately) to examine the related ERP features over occipital-temporal channels. Figure 

3.13A is Brain Products 10-20 EEG system showing standard channel information. We found 

first negative peak at ~170 ms so called N170-component. The N170-component of ERPs over 

the right occipital-temporal channels (P6, P8 and PO8) and left occipital-temporal channels (P5, P7 
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and PO7) showed relatively right and left lateralized activity for clear faces and clear houses, 

respectively. Moreover, ERPs for clear faces are relatively higher than that of houses.   

         

Figure 3.13 Event related potentials over the occipital-temporal channels. 
 A) Brain Products 64-channel EEG montage, B) the N170-component of ERPs over the 
left occipital-temporal channels, and C) the N170-component of ERP over the right 
occipital-temporal channels. 
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The average ERPs for correct responses were used for the inverse technique, 

LORETA (127), to find the cortically localized sources. Figure 3.14 shows the location 

of peak source activity (shown by crossing of lines) as it traversed the cortical surface 

(first row), and the locations and orientations of fitted dipoles used to obtain the single-

trials source waveforms (second row). The earliest peak of cortical activity occurred in 

the visual area (BA17/18) at ~60 ms after stimulus onset. We observed activation in 

the areas of ventral temporal cortex (BA37: the right FFA and the left PPA) at ~160 ms, and 

finally in the  left DLPFC (BA9) at ~224 ms. Table 2 lists the ERP source locations, dipole 

orientations of the source model, and dominant activation time frame of cortical sources. 

The dipoles fitted at the locations and orientations shown explained approximately 

80% of the variance in the EEG signal for trials with correct responses.  

                

Figure 3.14 Spatiotemporal profiles of activity over the VTC-DLPFC nodes. 
The first row shows peak activity in the FFA and PPA at 160 ms, and in the DLPFC at 
224 ms, and the second row shows the fitted dipoles at those nodes. 
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We computed GC spectra using a sliding window (Figure 3.15) to see the 

activity over the entire time. To further access how power and GC spectra changes over 

time, we then performed calculations at three timeframes. Power spectra computed in 

the three consecutive time frames—TF1 (0-125 ms), TF2 (125-250 ms), and TF3 (250-

375 ms)—at the DLPFC, FFA and PPA showed peak activity in the beta band and 

gamma band when the participants perceived clear stimuli (0% noisy stimuli). Figure 

3.16 shows the power computed at these nodes in the TF1, TF2 and TF3. Overall power over 

these nodes was compared among these TFs using paired t-test. We found that beta 

power was significantly higher in TF2 compared to other TFs, however gamma power 

was significantly higher in TF1. GC spectra were calculated to assess the oscillatory 

neural network interactions among these nodes. 

Table 2 Anatomical location, dipole orientation, and dominant activation timeframe 
of the VTC-DLPFC nodes. 
 

Brain areas Talairach coordinates 
x, y, z (mm) 

Dipole 
orientations 

x, y, z 

Dominant 
activation 

period 
(ms) 

Right fusiform face 
area (R FFA) 

36.0, -47.0, -16.0 0.6, -0.7, -0.4 140 – 190 

Left parahippocampal 
place area ( L PPA) 

-30.0, -45.0, -10.0 -0.5, -0.8, -0.3 145 – 200 

Left dorsolateral 
prefrontal cortex 

(DLPFC) 

-21.0, 39.0, 28.0 -0.3, 0.9, 0.4 210 – 245 
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Figure 3.15 Granger causality spectra among the VTC-DLPFC nodes as a function 
of time and frequency for stimuli with 0% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 0% noise-level illustrating beta and gamma 
activities. The first row shows GC between DLPFC-FFA pair, second row shows GC 
between DLPFC-PPA pair, and third row displays GC between FFA-PPA pair. 
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Figure 3.16 Power comparison at the VTC-DLPFC nodes among three consecutive 
time frames for stimuli with 0% noise. 
Power comparison at the DLPFC, FFA, and PPA in three consecutive timeframes (TF1: 
0-125 ms, TF2: 125-250 ms, and TF3: 250 ms to 375 ms) for 0% noise-level. Pannels 
(A, B) show beta power is significantly higher in the TF2 compared to other 
TFs; and panels (C, D) show gamma power is significantly higher in the TF1 
compared to other TFs. 
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Figure 3.17 Granger causality spectra among the VTC-DLPFC nodes in three 
consecutive time frames for stimuli with 0% noise. 
Granger causality (GC) spectra of all possible pairs among the FFA, PPA, and DLPFC 
for 0% noise-level in three consecutive timeframes (TF1: 0-125 ms, TF2: 125-250 ms, 
and TF3: 250-375 ms mentioned at the top of each column) showing beta and gamma 
oscillations.  
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Figure 3.18 Comparison of overall Granger causality among three consecutive time 
frames and calculation of net outflow for stimuli with 0% noise. 
Overall Granger causality (GC) strengths among all possible pairs of the FFA, PPA, and 
DLPFC among three consecutive timeframes (TF1: 0-125 ms, TF2: 125-250 ms, and 
TF3: 250-375 ms) for 0% noise-level in beta band (panel A) and in gamma band (panel 
C). Net GC outflow computed at TF2 (highest activity time frame) in beta band 
(panel B) shows VTC (FFA and PPA) as outflow hubs, and net GC outflow 
computed at TF1 (highest activity time frame) in gamma band (D) shows the 
DLPFC as a main outflow hub within the network. 
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Figure 3.17 shows GC spectra as a function of frequency, where horizontal lines 

represent statistically significant threshold value. Beta band network interactions 

among these nodes are enhanced in TF2 relative to the other TFs (other columns). The 

overall connectivity strength between these nodes was significantly higher in TF2 

compared to other TFs (Figure 3.18A). Net outflow calculations at each node in TF2 

(time frame of highest activity in terms of power and connectivity) showed that the 

FFA and PPA as the main outflow hubs and the DLPFC as a main inflow hub in the 

network (Figure 3.18B). In the gamma band, network interactions were enhanced in 

TF1 over the other TFs (other columns). The overall connectivity strength among these 

nodes was significantly higher in TF1 compared to other TFs (Figure 3.18C). Net 

outflow calculations at each node in TF1 (time frame of highest activity in terms of 

power and connectivity) showed the DLPFC as a main outflow hub in the network 

(Figure 3.18D). 

Power spectra were also computed in TF1, TF2 and TF3 at the DLPFC, FFA 

and PPA when participants perceived the stimuli with 40% and 55% noise-levels. 

Power spectra calculations also showed peak activity in beta band and gamma band. 

Both beta and gamma overall powers were significantly enhanced with task-difficulty 

in their respective highest activity timeframe (Figure 3.19).  GC spectra were computed 

to assess the neural network interactions among these nodes.   
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Figure 3.19 Power comparison at the VTC-DLPFC nodes among all three-noise 
levels. 
Power at the DLPFC, FFA, and PPA among all three noise levels: in the TF2 (125-250 
ms) for beta band (A, B), and in the TF1 (0-125ms) for gamma band (C, D) (p indicates 
statistically significant difference). 
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Figure 3.20 Granger causality spectra among the VTC-DLPFC nodes as a function 
of time and frequency for stimuli with 40% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 40% noise-level illustrating beta and gamma 
activities. The first row shows GC between DLPFC-FFA pair, second row shows GC 
between DLPFC-PPA pair, and third row displays GC between FFA-PPA pair. 
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Figure 3.21 Granger causality spectra among the VTC-DLPFC nodes as a function 
of time and frequency for stimuli with 55% noise. 
Granger causality (GC) spectra as a function of entire time window (sliding time in 
milliseconds) and frequency for stimuli with 55% noise-level illustrating beta and gamma 
activities. The first row shows GC between DLPFC-FFA pair, second row shows GC 
between DLPFC-PPA pair, and third row displays GC between FFA-PPA pair. 
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Figure 3.22 Comparison of Granger causality strengths among the VTC-DLPFC 
nodes among all three-noise levels. 
Comparison of Granger causality (GC) connectivity strengths among the FFA, PPA, and 
DLPFC among all three noise levels: in the TF2 (125-250 ms) for beta band (A, B), and 
in the TF1 (0-125ms) for gamma band (C, D). 

 

We computed GC spectra using a sliding window (Figure 3.20 and Figure 3.21) 

to see the activity in entire time for 40% and 55% noise-levels. To further assess how 
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GC spectra change over time, we then performed calculations at three time frames. Beta 

overall network interactions among these nodes were compared between the three noise-levels in 

TF2 by paired t-test to assess the significant effect of task difficulty. We found that beta overall 

information flow was significantly suppressed when the noise-level was elevated from 0% to 

40%. Overall causal interactions among these nodes were further showed decreasing patterns 

when the noise-level was elevated from 40% to 55% (Figure 3.22). One the other hand, gamma 

overall information flow showed increasing patterns, specifically a more enhanced feature 

between the FFA and the PPA (Figure 3.22 C), with the increase in noise level of the stimuli in 

TF1. 

In beta band, we uncovered that the response time (or the difficulty level) was negatively 

correlated with the measures of network activity for all possible connections between the 

DLPFC, FFA and PPA in TF2. In gamma band, the response time (or the difficulty level) was 

positively correlated with the measures of network activity, especially in the FFA-PPA pair, in 

TF1. The correlation coefficient (r) and the corresponding p-value of all possible connections 

are presented in Figures 3.23, 3.24. 

 



46 

 

Figure 3.23 Relation between Granger causality and response time in beta band. 
Granger causality (GC) decreased with difficulty level of tasks, expressed in terms of 
response time for all three noise-levels, in TF2: 125-250 ms in beta band (r represents 
correlation coefficient and p < 0.05 represents statistically significant correlation). 
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Figure 3.24 Relation between Granger causality and response time in gamma band. 
Granger causality (GC) increased with difficulty level of tasks (expressed in terms of 
response time for all three noise-levels), especially in FFA-PPA pair (E, F), in TF1: 0-
125 ms in gamma band (r represents correlation coefficient and p < 0.05 represents 
statistically significant correlation). 
 

3.4 Discussion 

3.4.1 Salience network dynamics 

Behaviorally important events are responsible to activate the SN (67, 68). The AI and 

dACC are among the most frequently activated brain areas in a wide range of functional 

neuroimaging studies (143-146) and they also exhibit strong functional covariance across tasks 
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(66, 144, 147-149). As the SN nodes—the rAI, lAI and dACC—are often co-activated in fMRI 

BOLD responses (69, 150) it is therefore difficult to clearly identify their distinct functional roles 

within a network. In this study, using EEG recordings and perceptual decision-related 

reconstructed EEG sources, we looked at the temporal changes of network activity flow within 

SN. Using spectral GC analyses, we found that beta oscillation bound these nodes in the SN. The 

beta power and beta causal interactions were significantly higher at the nodes and network in the 

time frame 75-150 ms compared to other time frames. The analysis of the net beta causal outflow 

(out – in causality) patterns showed that the rAI acted as a main cortical outflow hub of the SN 

consistent with previous fMRI studies of the SN (69, 90).  We also found that the beta causal 

interactions within the SN were significantly suppressed with the task difficulty (noise level). 

The causal outflow was negatively correlated with the response time. 

We found that the key nodes of SN—the rAI, lAI and dACC—activated at around 100 

ms after stimulus onset. These brain regions have been demonstrated as also being activated for a 

variety of tasks in previous fMRI investigations (67-69). Electrophysiological recordings 

combined with source localization techniques (113, 151) reported that the dACC responds to 

salient events, such as error detection, in the time frame of 80-110 ms. The timing of dominant 

activation of the dACC in our study was consistent with those studies. Similarly, the AI was 

reported as being activated at ~60 ms after stimulus onset, however it was in a thermo-sensory 

domain (152). Previous study on monkeys had found that the AI activated at ~65 ms after 

stimulus onset, however it was in an auditory domain (153). Timings of activations demonstrated 

in our study were not only close in line with previous studies that considered either AI or dACC, 

but also resolved the overall time frame of activations that appeared in rAI, lAI and dACC.  

Power spectra estimated at the rAI, lAI and dACC showed prominent peak 
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activity in the beta band when the participants viewed clear stimuli. Beta oscillations 

were also at work for noisy stimuli. Studies have traditionally reported the association of beta 

oscillations with motor functions (20-24). Beta band that we found was consistent with ones 

observed in previous EEG studies of multisensory (25) and somatosensory (120) perceptions. 

The role of beta oscillations is shown in maintaining better accuracy of the task such as during 

decision-making (25, 26). 

GC spectral analyses demonstrated that inter-areal brain synchronization and 

interactions within the SN are mediated by enhanced beta band neural oscillations. Information 

flow in the beta band was dominantly feedforward from the rAI and lAI to the dACC, similar to 

the propagation of average cortical activity, probably reflecting sensory-driven processes. This 

supports the model of feedforward hierarchical integration process from sensation to those 

ultimately ends up into action (154, 155). Previous investigations that consider nodes of the SN 

have divided into two competing groups. One group supports that activity in the dACC implies 

an enhanced cognitive control (88), and further interactions of the dACC with the lateral 

prefrontal structures implement subsequent behavioral changes (88, 89). Prior studies suggest its 

direct role (156) in response or action selection and conflict monitoring (156, 157). 

Electrophysiological studies (113, 151) suggested that the dACC provides the first cortical signal 

used for salient events, such as error detection. Other studies support that the rAI drives the SN, 

partly because the rAI is shown to be structurally and functionally connected to a wide range of 

cortical regions involved in various aspects of cognitive control. The rAI is functionally 

connected to networks responsible for adaptive behavior, including the SN (67), as well as other 

parts of the fronto-parietal control network (158). DTI tractography has demonstrated that this 

cortical area has direct white matter connections to other key regions within these networks, 
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including the dACC (159), the inferior parietal lobe (160), and the temporo-parietal junction 

(161) making the insula well placed to perform its putative role of evaluating (160), reorienting 

attention (150, 162), and switching between cognitive resources in response to salient events 

(163). In addition to its role in external inputs, the insula is reported to be sensitive to internal 

autonomic signals such as heartbeat, skin conductance, and respiration (164, 165) making it a 

possible hub for interceptive awareness of salient events (66). In the human brain, the AI and 

dACC also share unique features at cellular level. These brain regions contain a special type of 

neuron, so called Von Economo neurons (VENs), which have wider axons and are believed to 

provide rapid relay of control signals from the AI and dACC to the other parts of the brain (166-

169). While there is an ongoing division based on previous studies, our results demonstrate that 

the rAI is a main ‘cortical outflow hub’ and the dACC is a main ‘cortical inflow hub’ of the SN. 

As cortical circuits implementing cognitive processes might engage in highly recurrent 

interactions (170) mediated by bidirectional cortico-cortical connections (171), our results also 

demonstrate that beta networks are bidirectional such as in rAI-lAI pair, however a dominant 

flow is from the rAI to lAI in the time frame of highest activity. With an elevated difficulty level, 

overall connectivity strengths were significantly suppressed in beta networks. This suppression 

might be due to less information flow from the sensory regions to the dACC when stimuli were 

degraded. Since beta oscillations have recently been observed for a better performance (or, 

accuracy) during decision-making processes (25, 26, 172), this suppressed information flow 

might implicate the underlying neuronal mechanisms of the SN that has also been behaviorally 

reflected for an elevated difficulty level. The anatomical inter-areal and laminar neural circuitry 

in the brain might support the occurrence of such oscillatory activities and their modulations in 

cognitive tasks (27).  
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To summarize, the present study enhances our understanding of the SN, with regards to 

the temporal evolution of averaged evoked potentials in the nodes and an oscillatory network that 

appear to organize evoked activity across the SN. We found that the SN became most active at 

around 100 ms after the stimulus onset; the beta-band (13–30 Hz) oscillations bound them in a 

network and the rAI acted as a main outflow hub within SN. The SN activity was negatively 

correlated with the decision response time (decision difficulty). These findings provide important 

insights about how sensory information enters and organizes in the SN before reaching the 

prefrontal cortex for decision-makings.  

3.4.2 VTC-DLPFC network dynamics 

The present study examined the neural oscillatory networks and their dynamics involved 

during PDM for clear visual stimuli (faces and houses) and their degraded ones. The key nodes 

of the network involved in visual processing—the FFA, PPA and DLPFC—often co-activate, 

therefore making it difficult to clearly identify their distinct functional roles within a network, 

specifically using larger time-scale (seconds) measures such as BOLD-fMRI. Here we resolved 

the overall temporal flow of activation (in milliseconds) in the FFA, PPA and DLPFC by source 

localization of EEG recordings. Using GC analyses, we found two distinct oscillatory 

networks—beta band and gamma band—and their temporal dynamics. First, we demonstrated 

that beta power and beta causal interactions at the nodes and the network were significantly 

higher in the 125-250 ms timeframe, the FFA and PPA played as the main outflow hubs and the 

DLPFC as a main inflow hub in the network, and network interactions were negatively 

correlated with task-difficulty. Second, gamma power and gamma causal interactions at the 

nodes and network were significantly higher in the 0-125 ms timeframe, the DLPFC worked as 

an outflow hub in the network, and network interactions (specifically in the FFA-PPA pair) were 
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positively correlated with task-difficulty.   

The earliest peak of cortical activity occurred in the visual cortex (BA17/18) at  

~60 ms after stimulus onset, which was in accord with previous findings (173). Peak 

activation then occurred in the ventral temporal cortex (BA37: the right FFA and the left 

PPA) at ~160 ms. Activation of the FFA and the PPA for perception of faces-houses were 

consistent with fMRI and MEG investigations (98, 99, 102, 105, 174). Moreover, activation time 

frame of the FFA was also similar with prior reports (122, 123). The peak activation observed in 

the  left DLPFC (BA9) at ~224 ms was close in accord with an electrophysiological study that 

reported activation of the DLPFC at ~170-210 ms (120), however it was in a somatosensory 

domain. Activation of the DLPFC in decision-making has been repeatedly reported in previous 

fMRI and EEG studies (1, 47, 95, 118-120). Our findings thus resolved a systematic source-level 

activation pattern of temporal evolution in the FFA, PPA and DLPFC for visual face/house 

categorization tasks.  

Power spectra at the FFA, PPA and DLPFC showed peak activity in the beta 

band and gamma band when the participants perceived clear and noisy faces-houses. 

Prior studies have linked beta oscillations with motor functions (20-24). More recently, beta 

oscillations are shown in maintaining accuracy of the task in decision-making (25, 26). Gamma 

oscillations have been demonstrated in a wide range of brain processes, including focused 

arousal, multisensory and sensorimotor integration, attention, memory formation, and conscious 

awareness (13, 27-29).  These neural oscillatory features reflect distinct aspect of 

neuronal synchronization similar to that observed in auditory-visual (25) and 

somatosensory (120) perceptions. GC spectra among the FFA, PPA and DLPFC also 

demonstrated that inter-areal brain synchronization and interactions were mediated by the beta 
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band and gamma band in the visual perceptions. The anatomical inter-areal and laminar neural 

circuitry in the brain might support the occurrence of such oscillatory activities and their 

modulations in cognitive tasks (27, 172). Anatomical studies have provided the evidence of rich 

connections of the DLPFC with sensory areas of the brain as summarized in a previous review 

(175). The DLPFC receives visual, somatosensory and auditory sensory inputs from the 

occipital, parietal and temporal cortices (176), and its anatomical connection with pre-

motor/motor areas supports the motor outputs (177). 

Beta band power and beta network activity were significantly higher in the 125-250 ms 

time frame after stimulus onset, consistent with average source-level peak activities. Causal 

outflow calculations in this time frame demonstrated that the lower order sensory areas (the FFA 

and PPA) acted as outflow hubs and the DLPFC as an inflow hub. This was supported by the 

model of feedforward hierarchical integration process from sensation to those ultimately ends up 

into action (154, 155). As cortical circuits implementing cognitive processes might engage 

highly recurrent interactions (170) mediated by bidirectional cortico-cortical connections (171), 

our results also demonstrate that interactions were bidirectional, such as in the time frame of 

highest activity (TF2). Overall connectivity strength was significantly suppressed in the beta 

neural network for elevated noise-level in the stimuli. Beta neuronal oscillation has been reported 

for a better accuracy during perception-related tasks (25, 26), so the beta network activity 

suppression in our study might implicate the underlying neural mechanisms of the network that 

have also been behaviorally reflected for an elevated difficulty level. Such suppression might 

result due to less flow of decision-related information among the FFA, PPA and DLPFC when 

the stimuli were degraded.  

In contrast, gamma band results (clear stimuli) demonstrated that it was more dominant in 
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the time frame 0-125 ms compared to the other time frames. Net causal outflow computed in this 

time frame further demonstrated the DLPFC as an outflow hub. This was in accord with a well-

known role of DLPFC in top-down processing for attentional selection of relevant sensory 

information and sensory updating (175). We provided this direct evidence from temporal 

dynamics of gamma oscillatory network activity. Gamma oscillations have been consistently 

reported for perceptual binding (15, 178) for a variety of tasks. Enhanced features of the node 

and the network activity - more prominent effects in a FFA-PPA pair in the network - with task-

difficulty might imply that such bindings are required for behaviorally harder decisions/tasks.  

In summary, we evaluated the timing and oscillatory networks dynamics involved in the 

key nodes - the FFA, PPA and DLPFC - of faces-houses perceptions. We demonstrated that the 

beta band network was most active in 125-250 ms, the FFA and PPA acted as main outflow 

hubs, and the beta network was negatively correlated with the decision response time (task 

difficulty). We further found that the gamma band network was most active in 0-125 ms, the 

DLPFC acted as a main outflow hub, and the gamma network was positively correlated with the 

decision response time. These findings provide us with important insights about how sensory 

information enters and organizes in the FFA, PPA and DLPFC during visual perceptual decision-

making.  

4 SUMMARY AND FUTURE STUDIES 

The present study investigated large-scale neuronal oscillations captured by scalp 

electroencephalography in perceptual decision-making. We used clear and noisy face/house 

image categorization tasks, applied source reconstruction technique, found the nodes of two 

distinct networks, and evaluated directed connectivity analyses among brain areas within each 

network using Granger causality.  
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Prior studies on the salience network have often relied on the sluggish response of 

BOLD-fMRI. Those studies report that the salience network supports cognitive functions, 

including communication, social behavior, and sensory stimulus-guided goal-directed behaviors 

(61, 66, 70-72, 179). Recent findings have shown that the SN is atypically engaged in several 

neuropsychiatric disorders, such as in autism spectrum disorder (73-77), schizophrenia (78-83), 

and frontotemporal dementia (84-87). Despite extensive studies, how sensory information enters 

and organizes within this network was poorly known. Our study in finer time-scale demonstrated 

that the beta oscillations mediated the activity in salience nodes and network, became most 

active around 100 ms after the stimulus onset, and the rAI acted as a main outflow hub within 

network. The Granger causality strengths correlated negatively with the difficult tasks (decision 

response times) within the nodes of the salience network. These findings help to better 

understand when and how a sensory signal enters and organizes within the salience network 

before reaching the central executive network including the prefrontal cortex.  

Studies that recorded BOLD-fMRI signals have also suggested that the VTC (FFA and 

PPA) and DLPFC coordinate in a network to categorize a face or a house (1, 47, 119).  How 

sensory signal enters and organizes within the VTC-DLPFC during decision-making is not well 

understood. We evaluated the VTC-DLPFC network in finer time-scale during perceptual 

decision-making task. We uncovered that the VTC-DLPFC network activities were mediated by 

beta and gamma oscillations. Beta activities significantly enhanced in the time frame 125-250 ms 

after stimulus onset, and the VTC (FFA and PPA) acted as the main outflow hub within the 

VTC-DLPFC network. The Granger causality strengths correlated negatively with the difficult 

tasks (decision response times) within the nodes of VTC-DLPFC network. In contrast, gamma 

activities significantly elevated in the time frame 0-125 ms, and the DLPFC played as a main 
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outflow hub, and Granger causality network activities—specifically the FFA-PPA pair—

correlated positively with the difficult tasks (decision response times). These results significantly 

enhance our understanding of when and how sensory information enters and organizes within the 

VTC-DLPFC network for visual perception. We thus investigated the dynamics of two distinct 

neurocognitive networks in perceptual decision-making task in milliseconds time-scale. To our 

knowledge, there are no studies that report how sensory signals enter and organize within these 

networks on the millisecond time-scale of human perception and decision-making.  

Future studies should direct towards resolving the milliseconds temporal dynamics of 

each network in the brain—there are other networks besides these two—and then elucidating the 

information flow patterns among those networks, such as how information flow pattern alters in 

millisecond time segments. One potential challenge that we need to be aware of is the selection 

of time frames if the nodes are activated at very distinct and widely separated times. Studies have 

begun to examine a unified network approach (multiple networks interactions) (90, 179, 180), at 

least for larger time-scale measures. We believe that our findings will encourage further 

investigation of the interactions within and between networks in a millisecond time-scale.  
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APPENDIX 

 

 

Figure A.1 Power spectra at the rAI (first row), dACC (second row), and lAI (third row) 
for stimuli with 0% noise-level at four consecutive time frames (TF1: 0 ms to 75 ms, 
TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) mentioned at 
the top of each column. 
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Figure A.2 Power spectra at the rAI (first row), dACC (second row), and lAI (third row) 
for stimuli with 40% noise-level at four consecutive time frames (TF1: 0 ms to 75 ms, 
TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) mentioned at 
the top of each column. 
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Figure A.3 Granger causality (GC) spectra of all possible pairs between the rAI, lAI, and 
dACC for stimuli with 40% noise-level at four consecutive time frames (TF1: 0 ms to 75 
ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) 
mentioned at top of each column. 
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Figure A.4 Power spectra at the rAI (first row), dACC (second row), and lAI (third row) 
for stimuli with 55% noise-level at four consecutive time frames (TF1: 0 ms to 75 ms, 
TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) mentioned at 
the top of each column. 
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Figure A.5 Granger causality (GC) spectra of all possible pairs between the rAI, lAI, and 
dACC for stimuli with 55% noise-level at four consecutive time frames (TF1: 0 ms to 75 
ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4: 225 ms to 300 ms) 
mentioned at top of each column. 
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Figure A.6 Granger causality (GC) vs. difficulty level of tasks, expressed in terms of 
response time of all three noise-levels, in TF1: 75-150 ms (r represents correlation 
coefficient and p < 0.05 represents statistically significant correlation). 
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Figure A.7 Granger causality (GC) vs. difficulty level of tasks, expressed in terms of 
response time of all three noise-levels, in TF3: 150-225 ms (r represents correlation 
coefficient and p < 0.05 represents statistically significant correlation). 
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Figure A.8 Granger causality (GC) vs. difficulty level of tasks, expressed in terms of 
response time of all three noise-levels, in TF4: 225-300 ms (r represents correlation 
coefficient and p < 0.05 represents statistically significant correlation). 
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