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ABSTRACT 

 

 

TECHNICAL AND BEHAVIORAL INTERVENTIONS FOR MEDICATION ADHERENCE 

THROUGH M-HEALTH 

 

BY 

 

XINYING LIU 

08-JULY-2020 

 

Committee Chair: Dr. Upkar Varshney 

                                          Dr. Aaron Baird (Co-chair) 

 

Major Academic Unit: Computer Information Systems 
 

 

       In this research, we present a novel intervention, Carrot and Stick, to improve the outcome 

of one of the self-management tasks, medication adherence (MA), among patients with chronic 

disease(s). Our design incorporates the growing importance of mobile health (m-health) in 

Health Information Technology (HIT) with the users’ dependency on mobile phones to facilitate 

valuable behavioral changes. Drawing on Social Cognitive Theory, Social Exchange Theory, 

Goal-setting Theory, and people’s dependence on smartphones, we develop the functionalities in 

our intervention, including positive and negative reinforcement, goal-setting, and social 

connections. The iterative process of our development follows the Design Science Approach. 

 In the evaluation and validation of our intervention, we not only examine the intervention’s 

impacts on patients through analytical models and simulation but also demonstrate the possible 
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active support of the intervention from healthcare providers based on the current pay-for-

performance (P4P) scheme. Our results suggest that (1) with the help of electronic medication 

container, appropriate reminder design can reduce the patients’ chances of forgetting doses, 

overdosing, and intaking doses at the wrong time, (2) positive reinforcement can help increase 

the probability of the patient achieving expected MA, while negative reinforcement has a further 

impact that is added to the increment, (3) our intervention can assist the patient in saving more 

than $600 per year, and (4) under the current P4P scheme, physicians with the exceptional 

performance or with bad performance are likely to invest in the intervention to change their 

patients’ behaviors, while physicians with good performance are less likely to participate. 

Our research is the first to utilize negative reinforcement in intervention design to enhance 

MA; it is also the first to provide corresponding interventional solutions that are customized 

according to elements derived from theories. Besides, the focus and understanding of healthcare 

providers’ involvement in the incentive program can facilitate the adoption, prescription, and 

implementation of the proposed intervention.  

 

Keywords: Medication adherence, m-health, pay-for-performance, intervention, reinforcement, 

chronic disease management 
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Chapter 1. Introduction 

According to Centers for Medicare & Medicaid Services (CMS) report, U.S. spending on 

healthcare has been kept to more than 17% of the GDP since 2009 (Figure 1). The 2017 data 

shows the total healthcare spending was approximately $3.5 trillion dollars and spending per 

person on average has reached $10K1. And the RAND Corporation’s report in 2017 shows 

within the spending, 90% is for patients with chronic and mental health conditions (Buttorff et al. 

2017). Over the coming years, the prevalence of chronic diseases is predicted to increase as a 

result of the rapid aging of the population and the greater longevity of people with chronic 

conditions (Tunstall-Pedoe 2006). Healthcare systems struggle with coordinating care for people 

with chronic conditions. However, with significant spending on chronic diseases, we have not 

seen the desired quality of care in the outcomes. Heart disease and stroke have led to about one-

third of all deaths every year in the U.S. It is approximately 86,000 in total, and 235 persons per 

day (Benjamin et al. 2018). More than 26.9 million Americans are diagnosed with diabetes, with 

another 7.3 million people are undiagnosed, and both the numbers keep increasing every year. 

The related complications caused by diabetes, such as kidney failure and blindness, also become 

more serious problems over time (Control and Prevention 2020).  

The reasons behind this situation are complicated, but one of them is the re-active approach, 

which predominates the healthcare system. The healthcare providers react to patients’ requests, 

and the patients just get the treatment or prescriptions from the professionals. The patients are 

passive in their healthcare decisions, and it has been observed to be not effective enough in 

managing chronic conditions. Besides receiving appropriate clinical care, the patients and their 

 
1 Data source: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/NationalHealthExpendData/Downloads/highlights.pdf 

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/highlights.pdf
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/highlights.pdf
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family members should take the central role in making informed decisions and managing their 

chronic health conditions on a day-to-day basis.  

 

 

Figure 1: U.S. National Health Expenditure as Percent of GDP 

 

The concept of self-management captures the patient’s involvement in managing their own 

care. It is defined as “the individual’s ability to manage the symptoms, treatment, physical and 

psychosocial consequences, and lifestyle changes inherent in living with a chronic condition” 

(Barlow et al. 2002). There are four task categories in self-management according to Clark et al. 

(1991): 

• Engage in activities that promote health, such as exercise, healthy diets, and social 

activations. 

• Interact with healthcare providers and systems, as well as adhere to the recommended 

treatment protocols. 
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• Monitor physical and emotional status and make informed decisions based on 

symptoms and signs.  

• Manage the impact of the illness on emotions and self-esteem, and relations with 

others. 

  Even though the patient is central in accomplishing these tasks successfully, the 

achievement of optimal outcomes requires the redesign and involvement of more parties. The 

Chronic Care Model (CCM) outlines how should the interactions among six interrelated 

components be facilitated and successfully implemented (Wagner 1998). The self-management 

support component lies in the center of the model, and the other five parts are community 

resources and policies, organization of healthcare, delivery system design, decision support, and 

clinical information systems. The model has been found effective when it is implemented as a 

whole or only partially (Bodenheimer et al. 2002; Tsai et al. 2005).  

  Recently, critical changes are taking place in the organization of healthcare component. The 

national Quality Payment Program (QPP) modifies the healthcare provider’s payment structure. 

The reform, which shifts from the emphasis on the number of services providers perform to 

reward outcomes for patients, requires the providers to pay more attention to patients’ self-

management to achieve higher quality outcomes of chronic disease treatments. It facilitates 

increased participation of healthcare professionals in supporting patients’ self-management. 

Also, within the program, the interoperability of health information is encouraged. The 

integration of health information captured from multiple sources, especially the patient-generated 

data, can provide deeper insights into the patient’s behaviors and better support self-

management. 
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Section 1.1 Research Context 

      Within the four self-management task categories, the poor adherence to recommended 

treatment protocols, especially the prescriptions, is shown to be an ever-present and complex 

problem for decades. Medication adherence (MA) is defined as “the extent to which a patient act 

by the prescribed interval, and a dose of the dosing regimen.”(Cramer et al. 2008). According to 

an estimate in 2011, more than half of Americans with chronic diseases do not take their 

medications as prescribed and are said to be non-adherent with therapy (Brown and Bussell 

2011). This situation persists as 40% to 50% of patients are not adherent to their prescribed 

medications for the management of chronic conditions (Kleinsinger 2018). In addition, MA 

works as “the key mediator between medical practice and patient outcomes” (Kravitz and 

Melnikow 2004). Positive associations between poor MA and clinical outcomes such as re-

hospitalization, morbidity, and mortality have been demonstrated in previous studies (Smith et 

al. 2011). The poor MA is a significant public health problem that imposes a considerable 

financial burden and leads to worsening of diseases. In general, 80% of medication adherence is 

desired for chronic conditions; however, a higher level (95%) may be needed for acute 

conditions (Osterberg and Blaschke 2005). 

        To resolve this critical barrier that hinders healthcare outcomes, a lot of efforts have been 

spent by researchers and healthcare professionals to examine the reasons behind poor adherence. 

Four groups of factors have been identified. The first is inadequate dose frequency and/or 

scheduling (Eisen et al. 1990; Paes et al. 1997); the second is insufficient patient education about 

the disease or poor health literacy (Seltzer et al. 1980); the third includes patients’ demographic 

factors (Beardon et al. 1993; Ren et al. 2002), their beliefs about the effectiveness of treatment 

(Horne et al. 2005), or their motivational factors (DiMatteo et al. 2000); and the fourth is lack of 
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social support (DiMatteo 2004). In practice, the factors that influence medication adherence 

behavior are usually a combination of the above categories. They are sophisticated and could be 

unique to individuals, thereby requiring numerous multifactorial strategies to remove barriers 

and promote adherence. A large number of interventions have been proposed by researchers and 

healthcare professionals to improve the patient’s self-management performance in following the 

prescription. However, effective interventions have been complex and expensive (McDonald et 

al. 2002).  

         In recent years, mobile health (m-health) solutions have been introduced to enhance the 

adherence factor in self-management. M-health is broadly defined as “medical and public health 

practice supported by mobile devices, such as mobile phones, patient monitoring devices, 

personal digital assistants (PDAs), and other wireless devices” (Kay et al. 2011).  It is said to be 

“healthcare to anyone, anytime, and anywhere by removing locational and temporal constraints 

while increasing both the coverage and the quality of healthcare” (Varshney 2009). M-health 

facilitates many self-management interventions in practice based on its supportive 

functionalities, inexpensiveness, and constant accessibility. It is not a replacement for traditional 

healthcare services, but it can change the way healthcare services delivered to be more patient-

centered. It provides patients with healthcare information to help them make better decisions, 

giving them instructions to follow physicians’ advice, and supporting the overall quality of their 

healthcare (Varshney 2014). A systematic review of m-health self-management intervention 

using text messages, including educational information and reminders, to increase MA has 

shown that text messaging is a highly acceptable and feasible intervention. And a majority of 

studies (18 out of 29) found significant improvement in patients’ MA (Park et al. 2015). Elderly 

patients, using a tablet application to enable behavior tracking, are found to have higher MA than 
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patients writing a diary to keep track of their performance (Mertens et al. 2016b). In a program 

enabling patients’ consistent connection with health professionals through m-health, there was a 

significant decrease in the number of hospitalizations during patients’ participation period. The 

essential contributing reason was increased MA (Španiel et al. 2008).  

Section 1.2 Research Questions 

       Although there are promising results from previous intervention studies, there are also major 

weaknesses. An earlier systematic review of m-health interventions has pointed out that there 

was a lack of long-term studies, appropriate statistical and economic analysis, and test of theory-

based interventions (Thakkar et al. 2016). Our review of publications within the last ten years 

has found the lack of theory-based interventions, and the short-term estimation of effectiveness 

are still drawbacks. In addition, even though the motivational factors have been identified among 

significant factors that impact patients’ behaviors, m-health interventions that are designed to 

promote patients’ self-management by influencing their motivations have not been studied. 

Money, voucher, and lottery have been all examined in a clinical setting for their effectiveness in 

promoting MA as the reward, also known as the positive reinforcement. However, short-term 

observation and a small number of participants lead to less than reliable results (Barnett et al. 

2009; Moore et al. 2015; Sen et al. 2014). M-health provides a solution to overcome these 

obstacles because interventions delivered through the mobile platform have significant potential 

to impact the decision-making process of a large population worldwide. Also, a critical 

characteristic of the mobile phone, especially the smartphone, was ignored in the previous 

studies. Smartphone users are highly dependent or almost addicted to mobile applications, such 

as Facebook, Twitter, and many games. This aspect can be used to change patients’ behaviors as 

well. 
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       Thus, this leads to our first three research questions  

       RQ 1: How can motivational factors and users’ dependency on mobile phones be 

incorporated in self-management intervention to promote MA through m-health?  

      RQ2: What is the theory base of such an intervention? How should the intervention be 

applied to different patient types? 

      RQ3: Will the intervention be effective and cost-effective? 

      Based on what we have discussed in the healthcare provider’s payment structure 

transformation and the interoperability of health information, healthcare providers are expected 

to participate in supporting patients’ self-management increasingly. Our fourth research question 

is: 

       RQ4: When would a healthcare provider choose to be an active supporter of the 

intervention? 

Section 1.3 Research Approach 

       The critical prospect of our research is the development of an m-health intervention to 

address the problem of poor MA among patients with chronic diseases. We follow the Design 

Science Approach to utilize theories to generate, evaluate, and improve our novel intervention, 

terms as Carrot and Stick. The functionalities of our intervention are built up based on theories. 

In the validation of our design, we deploy analytical models to assess effectiveness. We also 

leverage the analysis results from a public healthcare dataset, Medical Expenditure Panel Survey, 

to initialize a simulation model to estimate the savings due to our intervention. The participation 

of healthcare providers is also evaluated by testing analytical models.  
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Section 1.4 Research Contributions 

       Our research contributes to the literature in two ways. First, we establish a theoretical 

foundation that helps in narrowing the gap in reinforcement intervention in m-health. Our 

research investigates the utilization of both positive and negative reinforcements. It is the first 

one that utilizes negative reinforcement in intervention design to enhance MA. This unique 

element of negative reinforcement complemented the application of reinforcements in behavior 

change literature. Second, we develop the scenarios of our intervention to cover a variety of 

patient types and illustrate how to set system parameters for these scenarios. The theory base of 

our design facilitates the scenarios to be reliable. From a practice perspective, our study 

contributes a well-designed and valid novel intervention, which fully utilize mobile 

characteristics in modern life to enhance patients’ medication adherence. Also, we transform the 

users’ dependence on smartphones into a promising solution to the long-existing medication poor 

adherence problem. According to our simulation, the intervention can help patients with 

diagnosed diabetes save more than $600 in medical expenditures per year. Our discussion of 

application scenarios provides healthcare professionals baselines to adjust the intervention to 

meet various patients’ needs. And we also examine the participation of healthcare providers in 

delivering the intervention.  
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Chapter 2. Background 

Section 2.1 Chronic Care Model (CCM) 

       Based on the recognition of the critical role of self-management among patients with chronic 

diseases, some deficiencies in the traditional culture and structure of the healthcare system have 

been identified as barriers to effectively meeting patients’ self-management needs. One main 

deviation is that the traditional system, especially the primary care system, is acute care oriented. 

The emphasis on diagnosing, ruling out serious diseases, as well as overwhelming workload to 

treat acute patients diminish healthcare providers’ ability to differentiate the clinical approaches 

for patients with chronic disease (Wagner et al. 1996).  

        In a review of programs to improve chronic care quality and outcomes in western countries 

in the 1990s, the initial CCM was proposed. Focusing on facilitating and supporting patients’ 

self-management from the practice team’s side, the model recognized the importance of 

“evidence-based care” from four significant areas. The four areas are increasing healthcare 

providers’ awareness, expertise, and skills of different methods in treating chronic illness, 

educating and supporting patients, redesigning care delivery to be more team-based and planned, 

and making better use of registry-based information systems (Coleman et al. 2009; Wagner et al. 

1996).  

        Later, these four areas were renamed to be “decision support,” “self-management support,” 

“delivery system design,” and “clinical information systems” in the revised model, along with 

other two additional contextual components, “community resources and policies,” and 

“organization of healthcare.” Together the six components cover the influence of the healthcare 

community, organization, supporting information systems, and practice team in assisting 

productive interactions between informed, activated patients and the prepared, proactive 
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healthcare professionals (Wagner 1998). They fall into two spheres that interact and influence 

systematic change for chronic disease management (Figure 2). Self-management support is on 

the edge between the organization of healthcare and the community, and it is the key to achieve 

informed and activated patients (Wagner et al. 2005).  

 

 

Figure 2: Chronic Care Model (Wagner 1998) 

 

• The Community Resources and Policies component emphasis on developing partnerships 

with community organizations to support and meet patients’ needs. Example actions 

include (a) identifying effective chronic disease management programs and encourage 

appropriate participation of patients, or (b) referring patients to relevant community-

based services. 
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• The Health System – Organization of Healthcare component focus on the role of the 

healthcare organization in program planning that includes measurable goals for better 

care of chronic illness. An example is offering incentives for care providers. 

• Self-Management Support component emphasizes the critical and central role that 

patients have in managing their own care. Example actions include providing educational 

resources, behavioral change interventions, and psychosocial support to patients to assist 

them in managing their care. 

• Decision Support component advocates the integration of evidence-based guidelines into 

daily clinical practice. Actions could be wide dissemination of practice guidelines, or 

providing education and specialist support to the healthcare team when needed. 

• Delivery System Design focuses on an expanded scope of practice for team members to 

support chronic care, as well as allocate tasks appropriately among all team members to 

reduce the overwhelming workload of physicians. Practical actions include clearly 

defining roles of the healthcare team and keeping planned visits and sustained follow-up 

of patients through nonphysician personnel. 

• Clinical Information Systems component encourages the development of registry-based 

information systems targeting on chronic ill patients to provide relevant client data. 

Examples include a surveillance system that provides alerts, recall and follow-up 

information, and identification of relevant patient subgroups requiring proactive care 

through patients’ data (Bodenheimer et al. 2002; Wagner 1998). 

      Evidence indicates that the application of the model in major chronic disease management 

programs reached significant success (Bodenheimer et al. 2002; Wagner et al. 2001). The 

organized and multifaceted support for primary care teams positively affects the care of diabetic 
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patients (McCulloch et al. 1998). When applying the CCM to the care of people with diabetes, 

decreased levels of HbA1c and a decrease in smoking rates among patients are shown as results 

in functional and clinical outcomes (Baptista et al. 2016). Patients with chronic obstructive 

pulmonary disease who received care under the instruction of CCM were found to have lower 

rates of hospitalizations and a shorter length of stay compared with control groups (Adams et al. 

2007). The impact of a more quality-focused payment structure on the four elements contained in 

the health system oval, self-management support, delivery system design, decision support, and 

clinical information systems, has also been examined. The results show positive effects on 

increasing quality of healthcare (De Bruin et al. 2011).  

       Since the implementation of the whole model requires abundant resources and efforts, most 

quality improvement teams working with this model focus their efforts and interventions to 

promote one or more of the four components within health system oval, especially on self-

management support. And it has proven to be a useful framework for patient empowerment, self-

management support, and improving clinical and behavioral outcomes (Siminerio et al. 2005; 

Stellefson et al. 2013; Tsai et al. 2005).  

       With more advanced technology, analytic capabilities, as well as support from national 

programs such as the Health Information Technology for Economic and Clinical Health Act 

(HITECH Act), IT-based systems, such as mobile health applications and web-based patient 

portal, are being increasingly used in facilitating self-management over the past decade (Kitsiou 

et al. 2017; Or et al. 2011). Unlike others, mobile technologies enjoy more extensive usage in 

racial and ethnic minorities and low-income groups and thus have the potential to address health 

disparities in chronic disease management (Mallow et al. 2014). 
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Section 2.2 Reforms in Healthcare Provider’s Payment Structure 

       There are fundamental transformations taking place in healthcare, where instead of rewarding 

the number of services providers perform, outcomes for patients are rewarded. Pay-for-

performance (P4P) is the scheme behind the transformation. P4P is a payment model that 

rewards healthcare providers for meeting pre-established targets and/or punishes them for not 

meeting the objectives in delivering healthcare services by financial incentives (Conrad and 

Perry 2009). Based on their performance, healthcare providers receive either additional or 

reduced payment. P4P is designed to help reach the goal of improving the quality of care as well 

as reducing health expenditures.  

       Several P4P programs were designed to impact one or more of the four components within 

the health system oval in CCM using incentives for healthcare providers. They aimed at 

improving chronic care quality through disease management. Most of the programs were 

estimated according to the effects on healthcare quality measures defined by Donabedian (1980): 

structure measures, process measures, and outcome measures. Table 1 shows measure definitions 

and examples.    

       The studies showed positive effects of P4P on the quality of care delivered. In a study 

examined one P4P program, which targeted on self-management support, decision support, and 

clinical information system components, the result revealed that the program increased the 

probability of an HbA1c test being ordered (Scott et al. 2009). The result implies a positive effect 

on the quality of care in diabetes management. In another study that focused on the same P4P 

program, results indicate that financial incentives promote better clinical management of diabetes 

patients. Physicians who claimed financial incentives were more likely to comply with all 

requirements than those who did not claim incentives when they were asked to what extent they 
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implemented the nationally established minimum requirements to diabetes care (Saunders et al. 

2008). In another program that aimed at changing delivery system design, decision support, and 

self-management support, the majority of the participating physicians improved their 

performances on process indicators and patient outcome indicators. The process indicators 

include the screening of clinical parameters, and an example of the patient outcome indicator is 

blood pressure ≤ 130/80 during the measurement period (Beaulieu and Horrigan 2005). 

Additionally, one other study also found the P4P program was positively related to improved 

delivery of clinical processes of care (Damberg et al. 2010).  

 

Measure Category Measure Definition Example 

Structural Measures Measure the healthcare provider’s capacity, 

system, and process to provide high-quality 

care. 

Whether the healthcare 

organization or individual 

professional uses EHR 

Process Measures Measure what a provider does to maintain or 

improve health. It also supports patients with 

information about the medical care they may 

expect to receive for a given condition that 

contributes toward improving health outcomes. 

The percentage of people 

receiving preventive services 

such as immunizations. 

Outcome Measures Measure the impact of the health care service 

or intervention on the health status of patients. 

Risk-adjustment methods are often required in 

assessing this kind of measure to minimize the 

misleading or even inaccurate information 

about health care quality. 

Surgical mortality rates 

Table 1: Healthcare Quality Measures 

 

      Policymakers and other stakeholders have confidence in the outcomes of which P4P program 

can provide. Started in 2017, CMS initialized the Quality Payment Program (QPP)2, which 

includes the Merit-based Incentive Payment System (MIPS) and the Alternative Payment Models 

(APM) as the two major P4P programs. According to CMS’s report, which summarizes the 

 
2 Program overview: https://qpp.cms.gov/about/qpp-overview 

https://qpp.cms.gov/about/qpp-overview
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participation status and performance of eligible clinicians in 2017 (Medicare and Services 2017), 

more than one million clinicians are eligible to participate, making the program extraordinarily 

influential.  

       The MIPS program has four categories of outcome measurements: Cost, Improvement 

Activities, Promoting Interoperability, Quality. The clinician’s payment adjustment is 

determined by the score they gain in meeting the established standards of measurements. The 

four measurement categories have different weights in calculating the physician’s performance 

score. The adjusted rate spectrum varies across the year, the adjusted rate for clinician’s 2017 

performance ranges from - 4% to 4%, and the rate for clinician’s 2020 performance ranges from 

- 9% to 9%. The clinicians will receive their adjusted payments based on year X’s score in year 

X+2. 

       CMS sets two performance thresholds for each MIPS performance year. The two thresholds 

create four financial adjustments for eligible clinicians: penalty, neutrality, reward, reward + 

exceptional adjustment (Figure 3). Within the penalty group, a fragment of clinicians would 

receive the maximum penalty if their scores are too low to reach the score baseline. The 

Medicare Access and CHIP Reauthorization Act (MACRA) legislation provide CMS with funds 

specifically for exceptional performance until the performance year 2022.  

       Table 2 illustrates how the payments are adjusted for the performance year 2017. MIPS is a 

budget-neutral program, which means CMS pays rewards using the money it collects through 

penalty. Therefore, a scaling factor is applied to positive adjustment to ensure budget neutrality, 

and the actual adjustment rate may be lower than the designed rate. Even though the additional 

adjustment for exceptional performance is not budget neutral, another scaling factor is required 

to distribute the available funds proportionately. 
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Figure 3: Payment Adjustment Conditions 

 

Score 

Points 

0-0.75 0.76-2.9 3.0 3.1- 69.9 70.0 - 100 

MIPS 

Adjustment 

Rate 

-4% -4% < 

Adjust 

Rate < 0 

0 0 < adjust rate ≤ 4% × 

a scaling factor (α) to 

preserve budget 

neutrality 

4% × α < adjust rate ≤ 4% × α + 

10% × a scaling factor (β) to 

proportionately distribute the 

available funds for exceptional 

performance 

Table 2: Illustration of the MIPS system of the Year 2019 Payment Based on the Year 2017 

Performance 
 

 

Section 2.3 M-health in Promoting Interoperability of Health Information 

       The “promoting interoperability” category of measurements in MIPS (details in Appendix 

A) evolves from the electronic health records (EHR) incentive program, also known as the 

Meaningful Use program. Table 3 shows a summary of the objectives of meaningful use 

program across several stages. Following the achievement of the high adoption of EHR systems, 

nearly 9 in 10 (86%) of office-based physicians had adopted an EHR system as of 20173; the 

 
3 Data source: https://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php 

https://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php
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promoting interoperability category moves beyond the existing requirements of meaningful use 

to a new phase of EHR measurement. It emphasizes the patient’s access to health information 

and the exchanging of health information among different providers. It also encourages patients’ 

self-management of their disease conditions and integration of patient’s health-related data from 

multiple resources, including EHRs, m-health Apps, and wearable devices.    

 

Stage Effective Years Main Objectives 

Stage 1 2011 - 2014 • Collect health records electronically and in a standardized 

format. 

• Communicate the collected information to improve care 

coordination processes. 

• Enable reports of clinical quality measures and public health 

information. 

• Engage patients and their family members in their care 

processes. 

Stage 2 

(include 

modified 

Stage 2) 

2014 - 2018 • Achieve more rigorous health information exchange (HIE) than 

Stage 1. 

• Broad adoption of e-prescribing. 

• Transmit patient care summaries across multiple settings 

electronically. 

• Allow more data to be controlled by patients. 

Stage 3 From 2017 • Improve quality, safety, and efficiency to improve health 

outcomes. 

• Enable patient access to self-management tools. 

• Establish patient-centered HIE. 

• Improve population health. 

Table 3: Stages of Meaningful Use Program 

 

       With the legislation supporting EHR meaningful use, patients are granted accessibilities to 

view, download, or transmit their EHR through the patient portal or other eligible platforms. 

There is an increasing number of m-health Apps which are providing such functionalities to 

enhance the patient experience in self-management (Silva et al. 2011). They allow patients to 

access records in EHRs containing current medications, allergies, lab test results, and medical 

treatment. In order to improve the overall quality of users’ healthcare, some of the Apps also 
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provide healthcare information and tools, including disease-related educational information, 

instructions to follow physicians’ advice and medical regimen, and supports in monitoring and 

tracking their own disease conditions. They can help patients make more informed decisions. 

The compatible wireless or Bluetooth-enabled devices, such as wearable devices and electronic 

medication container, add to the capability of capturing consistent patient-generated daily data 

(Lopes et al. 2011). Also, the Apps assist users in forming two-way communication and sharing 

the records with specialists to get timely feedback (Ahmed et al. 2011). 

       Wearable devices include wristbands, smartwatches, wearable mobile sensors, and other 

mobile hub medical devices. They can collect data ranges from exercise routines and sleep status 

(Kim 2014) to blood pressure (Milani et al. 2017) and blood glucose (Heintzman 2016) through 

either user reporting or sensors in Apps that communicate with devices through application 

programming interfaces (APIs) passively. Due to the development of platforms such as Google 

Fit and Apple HealthKit to aggregate data from multiple health Apps, the patient-generated data 

available for self-management rises (Grundy et al. 2017). Also, users can then choose to share 

these data with healthcare providers to give them deeper insights into users’ behaviors and status 

to get better support in future treatments. 

       The electronic medication container, also known as electronic pill container and smart pill 

container, has an advanced setting in preventing multiple dosing and capturing patients’ 

medication intake patterns. The container stays locked beside pre-set time windows for the 

patient to take medication doses. When it is time for the patient to take a dose, the associated 

App will remind the patient. The data of the patient’s medication intake behavior can be tracked 
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and communicated with healthcare professionals if the user agrees4. The data allows the patient 

to adjust actions and enables the healthcare provider to plan interventions if needed.  

       Besides the assistance of patients’ self-management and accessibility to EHRs enabled by 

these m-Health Apps, they also offer another unique capability to integrate patient-generated 

data in their everyday life into EHRs. Combined with API enabled secure data transmission and 

more advanced analytic abilities, this meets the needs of precision in healthcare, which emphasis 

finding the right treatment for the right person at the right time. The role of m-health Apps in 

assisting the interoperability of health information is shown in Figure 4. 

 

 

Figure 4: Data Transmission Between Patient and EHR 

 

 
4 A container example: https://www.elucid-mhealth.com/index.html 

https://www.elucid-mhealth.com/index.html
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       Even though the lack of systematic development of integration standards has hindered the 

interoperability of health information in past years (Kohli and Tan 2016), the efforts from the 

Office of National Coordination (ONC) and many other stakeholders have achieved some 

valuable outcomes. They have established standards, specifications, and additional 

implementation guidance to facilitate effective HIE. Table 4 shows the up to date standards and 

specifications of HIE between patients and EHRs. The syntactic interoperability, which requires 

standard to “define the data format and syntax for data exchange” (Kohli and Tan 2016), is 

supported by HL7® FHIR®. And the semantic interoperability, which requires “data encoding 

standard to deal with the content or meaning of the message as interpreted by humans rather than 

machines” (Kohli and Tan 2016), is assisted with the Current Procedural Terminology (CPT) 

Consumer Friendly Descriptors (CFDs). The HL7® FHIR® DSTU 2 and SMART on FHIR are 

implementation specifications that support the HIE between mobile Apps and other systems.  

       Combined the payment structure reforms with the emphasis on health information 

interoperability, m-health is playing a role with increasing importance in health information 

technology (HIT) and patients’ self-management. Next, we will review the interventions 

delivered through m-health to support patients’ self-management. We focus on the medication 

adherence phenomenon because it has been identified as the critical mediator between medical 

treatment and outcomes for chronic illnesses (Kravitz and Melnikow 2004). 
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Standard or 

Specification 

Facilitated Data Transmission Objective 

View, download 

and transmit data 

from EHR 

Push Patient-

Generated Health Data 

into Integrated EHR 

Direct 

√ √ 

Establish universal health 

addressing and transport for 

participants to send encrypted 

health information directly to 

cryptographically validated 

recipients over the Internet. 

HL7® FHIR® 

DSTU 2 
√  

Support patients or clinicians 

use the provider-approved web 

or mobile application to access 

health data. 

HL7® FHIR® R4 

√  

FHIR aims to simplify 

implementation without 

sacrificing information 

integrity. It leverages existing 

logical and theoretical models 

to provide a consistent, easy to 

implement, and rigorous 

mechanism for exchanging data 

between healthcare 

applications. 

Current 

Procedural 

Terminology 

(CPT) Consumer 

Friendly 

Descriptors (CFDs) 

√ √ 

It is developed to simplify the 

highly technical CPT code 

descriptors into something 

more patient-focused and 

patient-friendly. 

SMART on FHIR 

√ √* 

Designed as a universal API to 

transform EHRs into platforms 

for substitutable mobile Apps. 

HL7® FHIR® 

RESTful API 

 √* 

It defines a set of common 

interactions, 

Create/Read/Update/Delete, 

performed on a repository of 

identified resources. 

HL7® FHIR® 

Patient Reported 

Outcomes 

Implementation 

Guide 

 √* 

It focuses on capturing and 

exchanging patient-reported 

outcome data electronically and 

making the data available to 

both providers and authorized 

researchers. 

* These three are emerging implementation specifications for pushing patient-generated health data into 

integrated EHR 

Table 4: Standard or Specification for Health Information Transmission 
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Chapter 3. Literature Review 

      Assist patients’ adherence to treatment guidelines and medications, and to improve their 

quality of life is one task of effective self-management. To achieve the goal, diverse education 

programs, as well as community initiatives, have rolled out. However, their effectiveness was 

observed to be mixed (Barlow et al. 2002; Janson et al. 2009). To better facilitate self-

management in attaining required MA, we must get a more in-depth insight into the reasons why 

patients are not ideally adherent to their medications and what have been done in previous 

research in promoting MA using interventions. Partial of the content in this and following 

several chapters has already been published in Liu and Varshney (2020), whereas significantly 

more contributions have been made in addition to what has been included in the publication.   

Section 3.1 Reasons of Poor Adherence 

        After examining the related literature, we come up with a classification of various factors 

behind low adherence into four major types, despite the individual differences in their 

medication intake behaviors:  

1. Dose frequency and medication regimen; 

2. Patients knowledge about the disease, also refer to patient education; 

3. Patient characteristics, including  

a) demographic factors, such as gender and age;  

b) beliefs about the effectiveness, side effects, and necessity of the treatments;  

c) motivational or psychological factors;  

4. Social support. 

        In the research establishing the relationship between dose frequency and medication 

regimen, results have been found that the prescribed number of doses per day is inversely related 
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to MA (Paes et al. 1997). Also, the MA improves dramatically as prescribed medication dose 

frequency decreases (Eisen et al. 1990). However, reduced dose frequency can induce 

unexpected outcomes as well. Even though the reduction of dose frequency may decrease the 

number of doses that are missed, it may also increase the risk of overconsumption if patients try 

to make up the dose he/she missed (Claxton et al. 2001). Studies consider the effect of educating 

patients about the disease on patient’s medication-taking behavior has found that "educated" 

patients tended to be more adherent on outpatient follow-up and were less fearful of side effects 

and addiction (Kripalani et al. 2007; McDonald et al. 2002). 

       There are also many studies that focus on the effect of patients’ characteristics on their 

behaviors. Patients who are older and less active in their treatment decisions have been found to 

be less adherent to medications because they are more likely to forget doses (Ren et al. 2002). 

Meanwhile, no significant variation of MA has been found across different gender, general 

practitioner, exemption status, and with a day of the week the prescription is written (Beardon et 

al. 1993). Moreover, research shows that patient beliefs are important predictors of MA. If a 

patient believes in the effectiveness of his/her medication, he/she is more likely to have a higher 

MA (Horne et al. 2005). The patient’s mental status also impacts an individual’s MA, compared 

with non-depressed patients, the odds are three times greater that depressed patients will be non-

adherent with medical treatment recommendations (DiMatteo et al. 2000). Also, clinical trials 

using monetary incentives as external motivation to encourage patients to follow their 

prescriptions have found significant improvement in MA in 12-weeks examination (Moore et al. 

2015) and also a reduced risk of re-hospitalization (Messina et al. 2003). Social support is an 

important factor in promoting patients’ MA as well; for example, adherence is 1.74 times higher 

in patients from cohesive families and 1.53 times lower in patients from families in conflict. 
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Marital status and living with another person also increase adherence modestly for adults 

(DiMatteo 2004). 

       Indeed, in practice, the factors that influence MA behavior are not usually single, but a 

combination of different aspects. The complexity and individual-level differences behind poor 

adherence require multifactorial strategies to remove barriers and promote adherence.  

Section 3.2 M-health Interventions 

       With researchers’ efforts in developing appropriate interventions to address patients’ poor 

adherence behaviors, four intervention categories have been examined to be effective in 

behavioral change: (a) informational interventions, (b) behavioral interventions, (c) family and 

social interventions, and (d) combined interventions (Kripalani et al. 2007).  

        Informational interventions focus on cognitive strategies designed to educate and motivate 

patients by instructional means. The basic idea is that patients who understand their conditions 

and the treatments will be more informed, empowered, and likely to be adherent. Informational 

sessions conducted individually or in a group setting, as well as didactic and interactive 

approaches, were included. Examples of informational interventions are face-to-face oral, 

telephone, written, or audiovisual education; didactic group class; and mailed instructional 

material (not including reminders or prompts to be adherent) (Kripalani et al. 2007; Liu and 

Varshney 2016).  

         Behavioral interventions are strategies designed to influence behavior through shaping, 

reminding, or rewarding desired behavior (reinforcement). The examples include skill-building 

by a health care professional; pillboxes, calendars, a change in packaging, or other steps intended 

to remind the patient; changes in dosage schedule to simplify the regimen or tailor the regimen to 
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the patient's daily routine (i.e., reduce its behavioral demands); and rewards and reinforcement 

(e.g., assessment of adherence with feedback to the patient) (Kripalani et al. 2007).  

 Family and social interventions involved social support strategies, whether provided by family 

or another group. The examples are support groups and family counseling. Group sessions that 

were primarily didactic or educational, rather than supportive, were categorized as informational 

intervention (Kripalani et al. 2007).  

      The combined interventions include combined features of two or more of the preceding 

categories of the interventions. While being more complex, the combined interventions are 

usually more effective than single interventions (Kripalani et al. 2007). 

       As we have discussed, the role of m-health has become more critical in assisting patients’ 

self-management. To present the current research on m-health interventions for MA and to 

discover the gaps in the literature to provide us an opportunity to make our contributions, we 

conduct a comprehensive literature review. 

3.2.1 Literature Search 

       We conduct a review of m-health interventions which used to promote adherence to chronic 

disease treatments and mediations. We do not try to discover the impact of interventions on 

broad self-management of chronic diseases but only focus on MA because of its important role 

in achieving desired clinical outcomes.  

       We searched PubMed, Web of Science, and IEEE digital library databases for relevant 

studies. Titles and abstracts, or titles and topics of English-language articles published in peer-

reviewed journals and conference proceedings from January 2010 to March 2020 were searched. 

The search terms include: “medic* adherence,” “medic* compliance,” “drug adherence,” “drug 

compliance,” “intervention,” “mHealth,” “mobile health,” “m-health,” “mhealth,” and “mobile.”  
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3.2.1.1 Study Eligibility 

        We include original empirical research that evaluated m-health interventions for their effect 

on patient adherence to chronic disease treatments or medications. We also include quantitative 

studies that primarily examine the impact of m-health interventions on disease-specific clinical 

outcomes, e.g., hemoglobin A1c (HbA1c) or blood pressure (BP), if they contain the analysis of 

effects on medication adherence as secondary outcomes. Allowing for the variation in the 

outcomes measured is because it is necessary to have a comprehensive view of the effectiveness 

of interventions delivered through mobile platforms in different stages.  

        We exclude articles that evaluate the intervention on the population of age less than 18, in 

the military, or institutionalized since these groups’ health-related behaviors are significantly 

influenced or even controlled by others. We exclude studies that focus on the usability, 

feasibility, and acceptability features of interventions because of the absence of evidence that 

supports their effectiveness. We also exclude interventions delivered through Web-based 

platforms with mobile access portals if the patients cannot get full functionalities through the 

mobile portal. If the article does not have a specified test or evaluation protocol for the effects of 

the intervention, we exclude it. Besides, literature review articles, commentaries, poster 

presentations, abstracts only, research proposals, study protocols, descriptive articles without 

examining scientific relationships and results, intervention designs without testing, conceptual 

papers are excluded.  

         The full list of inclusion and exclusion criteria is presented in Table 5. 
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Inclusion Criteria 

1. Empirical research articles 

2. Studies that examine a specific chronic disease, or management for those with a chronic 

condition. 

3. Studies that examine at adherence to treatment or medication as primary or secondary 

outcomes. 

Exclusion Criteria 

1. Non-empirical articles (e.g., literature review articles, commentaries, poster presentations, 

abstracts only, research proposals, study protocols, descriptive articles without examining 

scientific relationships and results, intervention designs without testing, conceptual papers). 

2. Only focus on chronic mental illness (e.g., bipolar disorder, schizophrenia). 

3. No human data related to treatment or medication adherence collected (e.g., the descriptive 

analysis of intervention features without showing their impacts). 

4. Studies that only focus on examining usability, feasibility, and acceptability of interventions.  

5. Studies only providing descriptive statistics without further investigating any relationships 

(e.g., the increase in the number of doses that are taken by the patient). 

6. Testing population under age 18. 

7. Testing population is in military or institutionalized (e.g., patients who live in care homes).  

8. Not testing with patients who are diagnosed with chronic diseases (e.g., studies which focus on 

primary prevention among healthy or at-risk groups). 

9. Interventions delivered through web-based platforms, and the accessible mobile portals do not 

have full functionalities (e.g., patients can only receive text reminder through a mobile phone 

or other mobile device but cannot check behavior history).  

10. The testing of the intervention does not follow a clear protocol (e.g., no specific testing 

population assigned, no description of intervention frequency) 

Table 5: Inclusion and Exclusion Criteria 
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       After removing duplicated research from the database search result, articles were screened 

for potential inclusion based on reviewing of title and abstract. After that, reference lists of those 

articles were screened to ensure a comprehensive inclusion of related research. Then, we screen 

full texts of included articles. We exclude articles based on our inclusion and exclusion criteria in 

the detailed screening.  

          In all, we retrieved 575 articles from the database search. 368 research left after removing 

duplicates. Based on the inclusion criteria of empirical research which focus on adherence to 

treatment or medication of chronic diseases, 233 records were excluded. Through screening 

reference lists, we added 33 articles in our records. We assessed the full text of 168 articles, 

including those added through the reference lists screen. In them, a total of 143 articles were 

further excluded, about 1/3 (45 articles) of them is excluded because they only studied usability, 

feasibility, or acceptability. Another 27 research were excluded because they only had 

descriptive analysis or descriptive statistics. In meeting other exclusion criteria, an additional 71 

publications were excluded, leaving 25 research included in our final review list. The detailed 

selection process is shown in Figure 5. 

          We extract information including research objectives, the chronic disease type of the 

research, types of mobile intervention used, design of the evaluation, study samples, outcomes 

measured, and results. Studies were organized for analysis based on the objective of the study 

and the key outcomes measured. The detailed information of our included articles can be found 

in Appendix B. We perform analyses of the data and summarize the findings from these studies.  
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Figure 5: Selection Process 

 

3.2.1.2 Results Summary 

       The number of publications by year is shown in Figure 6. Since no publication from January 

2020 to March 2020 met our inclusion criteria, we do not exhibit the year 2020 in the figure. The 

25 articles examined patient samples from 15 countries, including the United States, India, 

China, South Korea, Australia, and several European countries. Ten of them were conducted in 

the United States, two were in India, and all other countries had 1 for each (Figure 7). It implies 

that the poor MA is not only a problem in the US but also a global concern. The sample sizes and 

study durations both varied widely. The sample sizes ranged from 18 to 1372 participants, and 

the study duration ranged from 2 weeks to 12 months. 

        All articles can be categorized into four study designs: randomized controlled trial, 

longitudinal or pre-test and post-test comparison, quasi-experimental, and crossover (Table 6). In 
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them, randomized controlled trials (RCTs) account for 18 (71%) studies. They assessed 

differences between interventions or differences between intervention and standard care.  

       Several studies focus on the high-risk, vulnerable, or underrepresented patient populations, 

including elderly patients (Mertens et al. 2016a; Yu et al. 2015), members of minority ethnic 

groups (Chandler et al. 2019), and low-income adults (Schnall et al. 2018). In most of the 25 

studies, mobile phones or other related devices were either provided to receive interventions or 

required for study participation. In the research which also examined usability and acceptability, 

the targeted elderly, minority groups, and low-income groups were highly satisfied with m-health 

interventions (Chandler et al. 2019; Schnall et al. 2018; Yu et al. 2015).  

 

 

 

Figure 6: Number of Publications by Year 
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Figure 7: Geographic Information of Publications 

 

 

 

Study Design Diabetes Hypertension 
Coronary 

artery disease 
HIV 

Other or no 

specific diseases 

Randomized 

controlled trial 
4 5 5 1 3 

Longitudinal/Pre- 

and Post-test 
1 0 0 0 2 

Crossover 1a 1a 1 1 0 

Quasi-

experimental 
1b 1b 1b 0 0 

Note: a One article included here examined both diabetes and hypertension 
               b One article included here examined diabetes, hypertension, and coronary artery disease 

Table 6: Studies by Study Design and Disease Type 
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Figure 8: Intervention Tools Used in Studies 

        

       We classified the intervention tools into five categories: SMS, SMS with wireless 

device/system, specialized mobile App, mobile App with wireless or Bluetooth-compatible 

device, or others such as voice or video messaging. We summarize the categories to minimize 

the overlap in methods to facilitate interventions in studies, but there are still studies that used 

more than one category of the method. For example, Chandler (2019) used both SMS and mobile 

App with Blue-tooth compatible device. The proportion of each category is shown in Figure 8. 

       SMS comes with the smartphone or even non-smartphone as a default function. It is the least 

sophisticated method to transmit information to the patient’s mobile device as interventions. 

Nevertheless, more complex interventions, such as contextual dependent messages, can be 

fulfilled when combining SMS with other wireless devices or systems, e.g., electronic 

medication monitoring device. A specialized mobile App is generally designed to meet the 

requirements of intended interventions. Besides delivering interventions, the mobile App also 

helps to track the patient’s behavior changes. If used alone without sensor function or other 

40%

16%

32%

8%

8%

SMS

SMS with wireless device

Mobile App

Mobile App with wireless or

Bluetooth-compatible device
Others
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wireless or Bluetooth-compatible devices, patients need to manually input information into the 

mobile App. However, with the rapid development of wearable devices and sensor technology, 

more data can be captured automatically and synthesized with the mobile App to keep a record. 

These records can be viewed for decision support by both the patient and health care providers. 

3.2.1.3 Impact on Adherence 

       Self-report is the most commonly used method to assess MA (Arora et al. 2014; Bobrow et 

al. 2016; Khonsari et al. 2015; Mertens et al. 2016b; Park et al. 2014), followed by patient’s 

behavior monitoring system (Vervloet et al. 2012; Yu et al. 2015) and pill count based on 

electronic pill container’s record (Brath et al. 2013). Of the 18 RCTs that measured the effect of 

interventions on adherence behaviors, a statistically significant change or difference between 

groups (P<.05 to P<.001) was observed in 10 studies (56%).  

       In the studies we reviewed, simple SMS was the most commonly used intervention delivery 

method. It facilitated medication reminders, patient education, as well as patient-provider 

communications. The message content is predominantly dose reminder (Khonsari et al. 2015; 

Quilici et al. 2013; Shetty et al. 2011; Singh and Varshney 2014; Strandbygaard et al. 2010; 

Vervloet et al. 2012), while some of them also include educational medical information (Arora et 

al. 2014; Kamal et al. 2018; Zolfaghari et al. 2012). The variation in text message intervention 

characteristics is considerable. Most of the studies (8 out of 10) send text messages at a fixed 

frequency (Cook et al. 2015; Ojo et al. 2015). Two studies compare the effect of simple text 

message reminders and personalized text message reminders (Cook et al. 2015; Singh and 

Varshney 2014). In one study, no difference in MA has been found whether messages are based 

on patients’ emotional status or not (Cook et al. 2015). In another study, personalized reminders 

have been found to be effective in increasing MA without increasing undesired drug events, such 
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as taking more doses than prescribed (Singh and Varshney 2014). In the ten articles examined 

the effect of simple SMS on MA, 6 of them found statistically significant differences (Arora et 

al. 2014; Chandler et al. 2019; Khonsari et al. 2015; Myoungsuk 2019; Quilici et al. 2013; 

Strandbygaard et al. 2010). Two articles also found significant improvements in MA using SMS 

with wireless devices (Park et al. 2014; Park et al. 2015). 

      The functionality of sending reminders and educational messages tends to be a more 

integrated function in mobile Apps during more recent years. Besides the simple messages which 

are supported in SMS, mobile Apps facilitate other formats. For example, interactive video 

messages have been examined to help promote MA significantly (Schnall et al. 2018). The 

mobile App-enabled connection to the social network or out-of-home supporter besides 

healthcare providers helped reduce stress caused by the disease and improve MA (Mayberry et 

al. 2019; Yu et al. 2015). However, if the patient does not have family support, social support has 

been found associated with worse test results (Mayberry et al. 2019). Meanwhile, information 

sharing preference has also been found to exist among elderly patients. Some of them are willing 

to share their profile but not their dose loggers with others in the same community, but some are 

willing to share all information (Yu et al. 2015). Also, a study shows that intervention which 

combines both social support and text messages is more effective in improving MA and other 

self-management behaviors as compared to text messages alone (Chandler et al. 2019).  

       Behavior tracking and monitoring through mobile Apps receive increment attention because 

of the emphasis on patients’ self-management. The growing accessibility of EHR from the 

patient side promotes the importance of patient-centered treatments. How to assist the process 

through mobile Apps have significant potential with the development of advanced technology 

(Serlachius et al. 2019). So far, besides the great success of mobile Apps in the work-out 
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industry, it has been found that using the mobile application for following prescription 

instructions shows a higher MA among elderly patients than using diary (Mertens et al. 2016b). 

Additionally, the mobile application that associates with electronic medication container not only 

provides more accurate MA data than self-report but also helps to increase adherence (Yeung et 

al. 2017) and leads to improved control of health indicator such as blood pressure (Brath et al. 

2013) 

       In-home monitoring and monitoring through devices or smartphones support analysis of the 

patient’s behaviors with more information. In-home monitoring utilizes large scale sensors to 

monitor detailed activities and analyze the patient’s behaviors. It enables condition-based 

medical treatment to increase MA and decrease possible side-effects (Sugumaran et al. 2014). 

Nevertheless, it is expensive and requires strong infrastructure support, so more work needs to be 

done for broader feasibility and adoption (Morak et al. 2012). Monitoring through wearable 

devices or smartphones, as we discussed, is developing rapidly. It supports the mobile App in 

improving MA among patients (Yu et al. 2015). The monitoring of electronic medication 

containers also assists patients’ self-management. Even though currently the monitoring only 

covers a set of simple vital signs with doubts about their constant accuracy, the scope of patient 

data would expend as health systems strive to meet new care models, leverage innovative digital 

technologies, and improve patient outcomes.  

3.2.1.4. Limitations  

      Despite the promising results from the above interventions in changing the patient’s MA, 

there are still some weaknesses. Our review of m-health interventions shows that the median 

intervention duration was three months, while the shortest duration is only two weeks. Also, 
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post-trial follow-ups are insufficiently conducted. Comparing with the nature of chronic illness 

as a life-long condition, the consistency of examined interventions is doubtful. 

       One reason for the widespread of IT-based self-management tools or platforms, especially 

m-health, is that they are thought to make it easier to facilitate communication and information 

exchange between patients and healthcare providers, as well as enable continuous patient 

monitoring and more timely feedback from professionals (Ahmed et al. 2011). Nevertheless, 

previous studies rarely discussed the participation of healthcare provider’s in the delivered 

intervention and their potential benefits from the enrollment.  

       Moreover, compare to the four categories of behavior change intervention types, we observe 

that even though reinforcement has been identified as an effective intervention method, it has 

rarely been studied in m-health. In clinical trials, different positive reinforcements, also known as 

rewards, have been tested for their effectiveness in changing patient’s medication intake 

behavior. The examined reward types include money, voucher, and lottery. A significant increase 

in MA was presented in several trials, along with a lower possibility of re-hospitalization 

(Barnett et al. 2009; Messina et al. 2003; Moore et al. 2015; Sen et al. 2014). Similar to the 

positive reinforcement, negative reinforcement, also known as punishment, could help change an 

individual’s behavior too. However, due to its “negative” nature that could lead to resistance 

from patients, there was no intervention that integrates it based on our best knowledge. As we 

mentioned in the preceding discussion, the user’s dependency or addiction to specific mobile 

apps can be utilized to design an intervention that incorporates negative reinforcement to 

encourage users to take their medications. If we build a causal relationship between patient’s 

poor medication adherence behavior and disconnection to the patient’s favorite mobile apps, the 



37 

patient’s intention to re-connect to the app can lead to changes in the patient’s behavior and 

achieve better self-management result. 

      Another weakness of previous research is that the design of intervention lacks discussion of 

theoretical support. Even though the evidence of effective chronic disease management and 

patients’ self-management largely grow from practice, the design of elements in a specific 

intervention could still leverage the intelligence of established theories to increase the feasibility 

and validate the impacts.  

3.2.2  Our Design Targets 

    We discover several effective interventions delivered through m-health from previous 

research in this chapter. However, the lack of evaluation about the impacts of both positive and 

negative reinforcements, the short intervention period, and the absence of discussion about 

healthcare professionals’ participation as well as the short of underlying theories that support the 

interventions leave us a great opportunity to develop our novel intervention. In which, we would 

like to incorporate the reinforcements with other effective elements which are supported by 

theories. In addition, not only the impact of the intervention on patients but also the involvement 

of the practice team will be a part of our evaluation of the designed intervention. 
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Chapter 4. Theoretical Background 

        In this chapter, we discuss the theories that can support our intervention design. Also, these 

theories provide us with guidelines in creating multiple scenarios of intervention application.  

Section 4.1 Social Cognitive Theory and Health Promotion 

         Based on Social Learning Theory, Social Cognitive Theory (SCT) posits that learning 

occurs in a social context with a dynamic interaction of the person, environment, and behavior 

(Bandura 1986). One unique feature of SCT is its emphasis on social influence on external and 

internal social reinforcement. SCT is widely applied in public health because it considers the 

maintenance of behavior and not just the initiation of behavior. SCT explains how people 

regulate their behavior through control and reinforcement to achieve goal-directed behavior that 

can be maintained over time (Bandura 1986). The five core determinants that SCT specifies in 

health promotion behaviors (Bandura 2004) are  

1. Knowledge of health risks and benefits of different health practices. This is the 

precondition for any changes in behaviors because it is unlikely that people will change 

their habits if they lack knowledge about how these behaviors would affect their health. 

2. Outcome expectations about different health habits. The outcomes include not only the 

positive or negative effects of the behavior on an individual but also consider social 

reactions of the behavior. Besides, self-evaluative reactions are also a form of outcome. 

3. The health goals people set for themselves and the concrete plans and strategies for 

realizing them. Cognitive goals provide further self-incentives and guides to health 

behavior. In self-motivation through goal setting, people monitor their behavior and react 

to their attainments. 
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4. Perceived facilitators and social/structural impediments to the changes. The smoothness 

of change would be partly determined by the perceived facilitators and obstacles.  

5. Perceived self-efficacy that one can exercise over one’s health habits. Self-efficacy is a 

focal determinant because it affects health behavior both directly and by influencing other 

determinants. Self-efficacy beliefs can help shape people’s outcome expectations and 

determine how obstacles are viewed.  

         The intervention categories we examined in the literature review can be traced back to 

these five determinants in SCT. The developed approaches which encourage people to adopt 

health-promoting behaviors based on these five determinants in SCT are parallel to our 

previously discussed interventions. The first approach is to inform people about the health risks 

of detrimental habits and the benefits of healthy behaviors. This approach shares the same core 

with informational intervention.  

         The second approach tried to reward people into regular health-promotion behaviors by 

linking those behaviors to extrinsic reinforcements. Behavioral interventions are the exact 

applications of this approach. The use of extrinsic reinforcements as an intervention has its 

theory support by the operant conditioning model, which was first proposed by Skinner in 1948 

(Skinner 1948). The model considers how positive and negative reinforcement should be used to 

modify an individual’s behavior. A review article in 2012 examines 19 papers using positive 

reinforcement, including cash, voucher, lottery, and candy for kids. It shows that this incentive 

type can effectively promote MA (a mean of 20% percentage but with significant variance) 

under a variety of disease types. These include children with TB, HIV patients, and opioid 

dependency patients. The reviewed articles also find a positive relationship between the value of 

incentive and the impact of the intervention. However, post-intervention evaluations are rare, 
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while the adherence effects are found to have an immediate diminish after the interventions are 

discontinued (DeFulio and Silverman 2012). One possible reason is that the effects of rewards 

are solely examined in almost all studies, but the combined effects of both positive and negative 

reinforcements are rarely tested. Besides, there is research showing punishment has a more 

significant effect on people’s behavior than the reward (Gray and Tallman 1987). Another 

possible explanation is that the benefits patients get from following the good practice are only 

reflected in gaining rewards. Nevertheless, only when the benefits are internalized to be 

perceived health condition improvement, the patients will continue their activities despite the 

incentives are discontinued.   

         The third approach treats personal change as occurring within a network of social 

influences. Family and social interventions are representatives of this approach. Social 

relationships can help bring satisfaction to one’s life and relieve the adverse effects of stress. 

Also, perceived social support and self-efficacy can strengthen each other in both directions. One 

weakness of this approach is that social support is not a self-forming entity. People have to go 

out and find or create supportive relationships for themselves (Granfield and Cloud 1996).  

         We can conclude that each of these three approaches has its advantages and limitations. 

Also, our identified research gap, negative reinforcement (punishment), has theoretical support 

for it to be a promising intervention type.  

Section 4.2 Goal Setting Theory 

         As we discussed in social cognitive theory, goals people set, and the plans they make are 

important determinants of the behavior change process. Furthermore, in goal setting theory, one 

central tenet is that for many tasks, setting specific goals to achieve a task, in combination with 

performance feedback, leads to higher performance than does no goal or a vague goal (Latham 
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and Locke 1991; Mento et al. 1987). Three motivational mechanisms have been found beneficial 

for performance: effort, persistence, and concentration (Latham and Locke 1991). Goal setting 

encourages a person to try harder and for more extended periods of time, with less distraction 

from the task at hand. Based on this, another central tenet of goal setting theory is the linear goal 

difficulty-performance relationship. The higher the goal set, the better people perform, even 

when the goal is very high (Latham and Locke 1991; Mento et al. 1987). Of course, there are 

conditions for which the goal difficulty-performance relationship is not strong: (1) tasks that are 

too complex for an individual are set as goals, (2) the individual is not capable of performing 

tasks related to the goals, and (3) the individual is not committed to the goals (Cervone et al. 

1991).  

         Therefore, to ensure a strong goal difficulty-performance relationship in the designed 

intervention process for health-promotion behaviors, one question needs to be answered: which 

one is better, self-set goal or system-assigned goal? In previous research, contradictory findings 

have been shown. Alexy (1985) found that letting patients select their own health behavior 

change goals did not lead to a different result from behavior change with provider-assigned 

goals. In another weight loss experiment, the assigned goal group was found to be statistically 

superior to the self-set goal group (Boyce and Wayda 1994).  

         One can think of situations in which self-set goals would result in poorer outcomes than 

counselor-assigned goals. A self-set goal might be either too easy or too difficult, while a 

counselor-assigned goal based on a counselor’s experience can be more appropriate. On the other 

hand, the counselor may not always possess knowledge of the real difficulties a user is likely to 

experience and consequently may set goals that are inappropriate for the user. Also, individuals 

may sometimes have a greater commitment to self-set goals (Tesser et al. 1984).  
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Section 4.3 Social Exchange Theory 

         Homans defined social exchange as the exchange of activity, tangible or intangible, and 

more or less rewarding or costly, between at least two parties (Homans 1958). He studied social 

exchange on an individual level and argued that “there was nothing that emerges in social groups 

that cannot be explained by propositions about individuals as individuals, together with the given 

condition that they happen to be interacting” (Fiske et al. 2010). Reinforcement principles 

derived from the behavioral research were used to explain the persistence of exchange relations. 

Behavior is viewed as a function of payoffs, whether the payoffs are provided by the 

environment or by other humans.  

         Homans had five key propositions that examined social behavior regarding both positive 

and negative reinforcement. His first proposition, or the success proposition, states that a 

behavior which generates rewards is likely to be repeated. The second proposition, or the 

stimulus proposition, states that behavior which has been rewarded under certain circumstance in 

the past will be performed in similar situations in the future. The third proposition, or the value 

proposition, states that an individual is more likely to perform an action if the action has a more 

valuable result to him/her. The fourth proposition, or the deprivation- satiation proposition, 

introduces an idea of diminishing marginal utility: the more often an individual has recently 

received a particular reward for an action, the less valuable is an additional unit of that reward. 

Finally, the fifth proposition considers that individuals will react to different reward situations 

emotionally. People will become angry when they do not receive what they anticipate (Homans 

1974). 

        Following these propositions, we can reasonably assume that using the financial reward as 

positive reinforcement in our intervention design could encourage the patient to repeat his/her 
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praised medication-taking behavior if we reward the patient with each on-time-taken dose. We 

also need to consider the diminishing marginal utility of our designed reward. Repetition of most 

affectively relevant stimuli eventually leads to an attenuation of response. That is, at some point, 

people respond less and less to every additional exposure to a stimulus. Thus, in our design, the 

most appropriate solution to avoid this diminishing effect is to provide increasing reward value 

to the patient over time. However, individual variance exists, so it is not necessary for us to 

provide an increasing reward to every patient. More details related to reward design and its 

suitable patient types will be discussed in the Scenarios chapter. 

        From these three theories we discussed and the comprehensive literature review we 

conducted, we could conclude that no single intervention approach can meet the requirements of 

all different patients. To generate an intervention that targets broadly, we need to combine 

several approaches. From previous literature, reminder and social support are evidence-proved 

effective intervention types. Thus, in our design, we should include them. Reinforcement is 

another intervention type we should incorporate since it has already been tested to be impactful 

in clinical trials, and it is one of the approaches supported by Social Cognitive Theory. Goal-

setting is a function that should be involved in our design to arouse the patient’s intention to 

achieve goals. Additionally, as we internalize several simple interventions in our design as 

functions, we should offer enough choice options for patients and/or healthcare professionals to 

choose whether they want all or only part of them. Because all patients have individual 

differences that lead to various acceptances of each function or element within functions. In this 

way, the combination of a set of different function choices can work as a scenario that effectively 

targets a specific type of patient.  
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        In our following System Design chapter, we will introduce how we include all functions 

that are supported by theories to generate our novel intervention. We will also illustrate how our 

intervention operates in details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

Chapter 5. System Design 

Section 5.1 Method 

        Our design of the system utilizes the Design Science Approach (Vaishnavi and Kuechler 

2015). We start with the awareness and definition of the problem. Then we suggest our solution 

to the problem based on the established knowledge and theories. A design guideline is generated 

in this step, followed by developing an artifact and evaluate its effectiveness in solving the 

problem. The suggestion, development, and evaluation steps are iterative until our designed 

system meets its performance goal. We implement modifications to our artifact to resolve any 

limitations in effectiveness evaluation. This iterative design science approach enables us to meet 

the system’s requirements. Figure 9 illustrates the process and outputs of the Design Science 

Approach. 

         The requirements we derived from theories and empirical observations using the above 

design science approach are:  

a. Allow personalized setting of goals, reinforcements, and social connection. 

b. Generate reminders to patients. 

c. Monitor patients’ adherence. 

d. Record patients’ medication intake behavior data and generate the corresponding report for 

patients and healthcare professionals. 

e. Interact with healthcare professionals. 

f. Implement positive and negative reinforcement interventions for patients. 

g. Allow patient’s access to their EHRs. 

h. Assist in integrating patient-generated data into their EHRs. 
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Figure 9: Design Science Research Process and Output 

 

Section 5.2 Intervention Process for Patients 

         Our designed system interacts with patients’ medication intake patterns in five steps to 

fulfill the above requirements. We name our designed intervention Carrot & Stick system (C&S) 

because we take advantage of both positive and negative reinforcements. The five steps are:   

         First, we need to set several initial parameters of the system. Namely, we need to set the 

desired MA, reinforcement type (reward and/or punishment), whether the reward should be fixed 

or increasing, and a threshold number, which is the number of doses a patient can miss without 

receiving extreme negative reinforcement. MA goal should be allowed to be set by the patient or 

the physician since individual variances exist in reactions to a self-set goal or assigned goal. The 

reinforcement type can be selected by multiple factors: the type of medication, the patient’s past 

medication-taking behavior, the patient’s current status, MA goal, and level of dependence on 

apps and smartphones. Whether rewards should be fixed or increasing should also be a choice 
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made based on the patient’s characteristics. If the patient has multiple medications to record in 

the system, we can also optimize the frequency of doses by communicating with healthcare 

professionals. In addition, the social connection capability should also be set at this stage. Users 

can choose whether to add authorized user(s) to help monitor their behavior and access their 

records. For example, a user can authorize a third person to receive notification of his/her 

missing dose to assist in the behavior monitoring. More details of an authorized user(s) will be 

discussed later.  

         Second, we need to specify two different reminder windows, which should be set through 

discussion with a healthcare professional. Reminder windows are available time intervals for a 

patient to take his/her medication dose(s).  We design these two reminder windows in such a way 

that the first reminder window covers the period during which the taken dose will fulfill its full 

function, and the second reminder window specifies the last possible period for a taken dose to not 

interfere with the effect of next on-time-taken dose. At the beginning of the first reminder window, 

the system will send a reminder to the patient, if the patient takes the dose during first reminder 

window, no further reminder will be sent; if the patient doesn’t take it, then a second reminder will 

be sent to the patient at the beginning of the second reminder window. We can prohibit the potential 

of dose overconsumption due to the patient’s catch-up behavior to take doses at an inappropriate 

time to make up for their skipped or delayed doses by utilizing an electronic medication container. 

Occasionally, this catch-up behavior comes as one of the side effects of reducing dose frequency 

(Claxton et al. 2001). 

         The implemented association between the patient’s behavior and reward is as follows. If the 

patient takes his/her dose within the first reminder window, he/she will get full reward; if the 

patient takes the dose within the second reminder window, he/she will get reduced reward; if the 
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patient doesn’t even follow the second reminder window, then he/she will get no reward. More 

parameters about reminder windows design and intervals between reminder windows will be 

discussed in the next chapter. 

        Third, we will only implement negative reinforcement if the patient initializes the system as 

he/she would like to receive it, or the responsible healthcare professional thinks it is appropriate 

for a specific patient. Two conditions are designed to implement negative reinforcement: the first 

condition is when the patient’s MA drops below the expected MA for medication to be effective 

in treatment, the second condition is when the patient has missed a specific number of doses 

consecutively even though his/her MA stays equal or higher to the expected MA. Healthcare 

professionals decide the maximum number of possible consecutive-missing-doses. We will start 

by blocking the most used social media or entertainment app in his/her mobile and move on to the 

second most used app, and so on. However, every blocking action could be reversed automatically 

if the patient takes his/her subsequent doses to bring back the adherence rate to the desired MA. 

An example will be given later.  

         Fourth, if a patient’s missing doses reach the threshold number, we will execute the extreme 

action, which is blocking multiple applications (besides our app) but allow the phone calls or text 

from family, friends, police as well as healthcare professionals.  

         Fifth, our application will provide daily, weekly, and monthly adherence data to the users 

and allow them to send the report to the healthcare professional for analysis and any further 

adjustments. This personalized patient-generated data could facilitate more informed decision 

makings of physicians in prescribing the treatment.  

        The entire process of intervention is shown as a flowchart in Figure 10, where rewards for 

taking doses during the two reminder windows with system generated reminders, as well as 
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blocking and unblocking of the most commonly used apps are included. The positive and 

negative reinforcement cycle can also be utilized for numerous other self-management tasks, 

including keeping the appointment time, consuming healthy food, doing exercise, managing 

weight-loss goals instead of meeting MA goal, but we focus on MA. 

Section 5.3 The Authorized User(s) 

       To provide the social connection to patients, we allow them to add authorized user(s) to help 

monitor their behaviors, access their records, as well as receive system-generated reports. The 

authorized user can help in ways: 

1. If being allowed by the patient in settings, a notification would be sent to the authorized 

person at the beginning of the second reminder window instead of sending another 

reminder to the patient. The notification will indicate that the patient has missed the 

medication dose and allow the authorized person to text or call the user to take the dose. 

The alternative process is shown in Figure 11. 

2. The authorized user(s) have access to view the patient’s tracking records and take actions 

to help the patient.  

3. The authorized user can receive the system-generated history reports automatically. To 

avoid damage of information leakage to the patient’s privacy, all detailed information of 

the medication is excluded from these reports, only information about rewards and/or 

punishments can be shared. The patient can set whether both reward and punishment 

information or only either one of them can be shared. 
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         Figure 10. The Process of Carrot & Stick Intervention 

 

 

 

Figure 11: Process of Contacting Authorized Person 
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Section 5.4 Intervention Operation 

         Figure 12 shows the mobile interface for positive reinforcement. It demonstrates how 

reminders, daily medication list, and reward record would be displayed. From left to right, the 

first interface represents how a reminder will be shown on the smartphone. When the user taps 

the notification, he/she will be directed to the current day’s list of medications (the second 

interface). The detailed information on what time the user should take which medication(s) and 

how, as well as the unit measurement of doses, ensures the user’s safety and completeness in 

following regimen. The medication names and figures (shown as Medication 1 and Medication 2 

in Figure 12) would represent the real medications to help the user distinguishes among all meds. 

The third interface shows the user’s reward record. It includes the number of rewarded doses and 

the total amount of reward the user has earned so far. It also shows break-down information of 

reward according to different medication doses of the current week. Whether a dose’s reward is 

in full or reduced amount is illustrated by the shade of colors. Lighter color represents a reduced 

amount.   

      The setting of reminder windows is shown in Figure 13.  

      If user A is an authorized person of user B to help user B monitor the medication-taking 

behavior, and user B does not follow the first reminder of a dose. One pushed notification of the 

situation of user B will be sent to user A to allow user A chooses to call or text user B as the 

second reminder. Figure 14 shows the interface of this condition, in which user A names Amber 

and user B names Robert. Figure 15 represents how notice of implementing negative 

reinforcement would be shown. This message will display on screen if the patient tries to access 

App Q when it is blocked. The number of the subsequent doses the patient should take to bring 

the MA to the desired level or higher and unblock the App is also displaying. This message can 
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also set to be shown constantly in the smartphone’s notification center or set to pop-up 

temporarily with every reminder of doses.          

      Further, the system generates a consumption history report weekly and monthly. The user has 

easy access to review his/her overall MA and dose-taking behavior of each medication through 

the report. Also, the report can be transmitted to a healthcare professional who can determine if 

the intervention is working or not and can take suitable action if needed. Figure 16 represents the 

interface of the history report. If complying with the standards and specifications that are 

discussed previously, our system allows the users to access their EHR and integrate the 

generated data into the records. One interface example of Epic EHR access is demonstrated in 

Figure 17. 

 

 

                                      

Figure 12. The Reminder, Daily Medication List, and Positive Reinforcement Interfaces 
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Figure 13. Reminder Windows Setting Interface 

 

 

Figure 14. Notification Sent to Authorized Person 
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Figure 15. Notification of Negative Reinforcement              Figure 16. Consumption History 

 

 

Figure 17. EHR Access Example 
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         An example of dose consumption and the intervention is shown in Figure 18, which 

includes rewards based on when the dose was taken (FW: first reminder window or SW: second 

reminder window). If we set the desired MA goal as 80%, the first time when the patient misses 

a dose, it is not critical as the MA remains at/above 80%. However, when the patient misses the 

next dose, MA drops below 80% (67% if the patient misses the sixth dose), triggering the 

blocking of app Q (the most common app in use). The rewards are continued for future doses, 

and once the MA reaches 80% (8 out of 10 doses taken as instructed) again, the blocked app Q is 

unblocked again.  

Figure 18. An Example of the Intervention 

 

Section 5.5 Multiple Medications Condition  

         After describing the single medication scenario, we next describe a multi-medication 

condition, which is quite common for patients with chronic diseases or elderly patients.  

         For the multi-medication scenario, the positive and negative reinforcements are more 

complex. We have two different situations to consider depending on the patient’s condition and 

the types of medications. One situation is that only overall MA of all medications matters to 

patients’ health promotion, so the reward operations could be based on achieving overall 

adherence larger or equal to the desired value for all medications, and punishment operation 

could be implemented when the achieved adherence goes lower than the desired value. Under 

this situation, the implementation of positive and negative reinforcement could be similar to the 
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single medication condition since we don’t need to set different rewards to ensure various 

medication-taking patterns among several medications. The only difference is that we calculate 

the average MA of multiple medications as the new MA. An example of two medications, MD1 

and MD2, along with 80% average desired MA, is shown in Figure 19.  

         Another possibility is that different medications need different levels of adherence and 

have different levels of importance in health outcomes. Therefore, the rewards amount/type can 

be different for different medications to ensure the patient achieves a higher adherence rate for 

more important medications. Also, according to our design, patients are more prone to 

punishment when they miss their medication, which requires higher MA. An example of two 

medications, MD3 requires 90% MA, and MD4 requires 80% MA, is shown in Figure 20. We 

choose two different rewards, reward 3 for MD3 and reward 4 for MD4, to increase the 

possibility of reaching different MA. From Figure 20, if there is a medication requiring a rather 

high MA (90% in the example), a patient could easily have a blocked app because of a single 

missing dose, and it will take a long time to make up the effect of the missing dose to reverse the 

app.  

         The patient’s history and medication-taking behavior are essential to decide whether the 

patient should follow the overall MA or various MA principles when he/she needs to take 

multiple medications. They are also the premise to design how to implement positive and 

negative reinforcement for the patient. If the patient needs to follow various MA principles, the 

Figure 16 interface could be adjusted to show MA of each medication instead of only displaying 

an overall MA of all medications.  
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Figure 19. An Example of Average MA Required Multi-Medication Intervention 

 

 

 

Figure 20. An Example of Various MA Required Multi-Medication Intervention 

      

       The proposed intervention is the first of its kind, which takes advantage of patients’ 

dependence on smartphones using the “Carrot and Stick” approach. To avoid confusion between 

scenarios involving “intentional blocking” and “app malfunction,” our intervention displays a 

message on the mobile phone that the App has been blocked and will be unblocked if the patient 

takes the next N doses (when due) as shown in Figure 15. The value of N is based on the target 

MA.  

Section 5.6 Resources of Positive Reinforcements 

  In our design, no matter we use vouchers, gift cards, lottery, or any other kinds of financial 

incentives as our positive reinforcement, they all have monetary values. To initialize our 

intervention, the resources of positive reinforcements should be identified. 
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5.6.1 Insurance Companies 

       Several insurance companies have already involved in encouraging the uptake of health-

related technology through incentive programs (see Table 7). These companies all offer health 

behavior tracking through mobile Apps or combined with wearables devices. They also 

encourage the use of remote patient data to improve patient self-management. The developed 

reward programs include health goals into point systems or insurance plans and offer incentives 

for customers if they achieve pre-established goals. The incentives include gift cards, electronic 

devices, and reductions in the cost of insurance coverage. The key health indicator which is 

tracked and rewarded is walking steps. Other indicators include healthy dietary, the participation 

of community events, and so on.  

        These rewards programs support the uptake of health technologies and expand the use of 

patient-generated data to improve patient health. There are limited reported information about 

how these programs are working because of their early stage of implementation. However, since 

medication nonadherence is also a burden to insurance companies, it is highly possible that they 

will sponsor the incentives to improve patients’ MA as they are doing in rewarding users’ 

walking steps. 

5.6.2 Healthcare Providers 

       Besides the possible source from insurance companies, the physicians could also choose to 

provide incentives to patients. Based on what we discussed in the previous chapter, the payment 

reform correlates the physician’s payment adjustments with their quality of care. The physicians 

could invest in improving their patients’ MA to achieve a higher MIPS performance score, which 

represents higher payment adjustments. We will also evaluate the potential benefits that 

physicians could get from providing incentives to their patients in the Evaluation chapter. 
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Insurance 

Company 

Program Reward Type Description 

Oscar Health5 Step-tracking 

rewards 

program 

Amazon Gift Card An app that tracks steps and synchronizes 

with Apple Health or Google Health. 

Insurance members who enable step 

tracking function can earn $1 toward an 

Amazon Gift Card for every day that 

walking steps hit the step goal. 

United 

Healthcare6  

Step-tracking 

rewards 

program 

Deposit in out-of-

pocket medical 

expenses 

UnitedHealthcare Motion program which 

provide members financial rewards for 

out-of-pocket medical expenses if the 

member achieves walking goal measured 

by frequency, intensity, and tenacity. The 

app can sync with wearables using track 

steps. The reward earned is deposited 

quarterly. 

Humana7 Healthy actions 

rewards 

program 

Gift Card The Go365 program rewards members 

with points when they complete healthy 

actions such as prevention and workout 

activities, or when they engage in 

community events. The points can be 

redeemed as gift cards of varies vendors 

like Walmart, Amazon, and Shell. 

John Hancock8 Healthy actions 

rewards 

program 

Gift card, discounts 

on health gear, 

savings of healthy 

food and fruits, 

savings on the cost 

of insurance 

coverage 

Offers two different programs, Vitality 

GO and Vitality PLUS. Both programs 

provide points for members’ everyday 

healthy activities, such as take a walk. 

The points can be used to redeem varies 

benefits. Vitality PLUS  policyholders can 

save up to 15% on their annual cost of 

insurance coverage. 

Table 7: Insurance Companies’ Reward Programs 

 

 

 

 

 

 

 
5 https://www.hioscar.com/app 
6 https://www.uhc.com/employer/programs-tools/unitedhealthcare-motion 
7 https://www.go365.com/ 
8 https://www.johnhancockinsurance.com/vitality-program.html 

https://www.hioscar.com/app
https://www.uhc.com/employer/programs-tools/unitedhealthcare-motion
https://www.go365.com/
https://www.johnhancockinsurance.com/vitality-program.html
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Chapter 6. Scenarios 

        Based on the theories we discussed, we have three segments of scenarios. The first one 

includes positive and negative reinforcements; the second segment considers goal-setting; the 

third one focuses on social connection. All scenario components details are listed in Table 8. 

Section 6.1 Positive and Negative Reinforcement 

         Positive reinforcement (reward) has been used as an incentive to create desirable behavior 

in individuals. Some forms of rewards, such as money, lottery, and voucher, have been tested in 

clinical trials to examine their effect on patients’ medication adherence behavior. Most of the 

studies have found that rewards are significantly effective in increasing the patient’s adherence 

rate (Sen et al. 2014). While few of them found treatment group which receives rewards do have 

higher adherence rate, but the effect is insignificant (Barnett et al. 2009). Following the 

discussion in social exchange theory, the same reward would have a diminished effect in keeping 

people involved in an activity. Thus, the reward should have an increasing value over time. 

However, patients have distinctions in their sensitivity to the same repeated reward at the 

individual level. The reward amount is accumulated and calculated on a period’s base. Thus, if 

the benefits of conducting specific health promotion behavior are reflected in perceived wellness 

improvement, the patient would lay less emphasis on the reward he/she could get. Or, if 

involving in the intervention provides the patient feelings of happiness, joy, or pleasure, the 

weight of diminished effect would be reduced. Under these circumstances, the diminishing utility 

of repeated reward would have little impact on the patient’s subsequent behavior. Otherwise, the 

reward needs to have increased value over time to keep its effectiveness as an intervention. Thus, 

in the application of reward, it should be a fixed amount for some patients and an increasing 

amount for others to capture variations in patients. 
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         Besides pursuing rewards, individuals can also adopt or give up specific behavior to avoid 

negative reinforcement. Sometimes, people tend to avoid losses to acquiring equivalent gains 

(Kahneman and Tversky 2013), and this is called loss aversion. In other words, people may think 

it is better not to lose $5 than to gain $5. Some studies have suggested that losses can be twice as 

powerful as gains psychologically (Tversky and Kahneman 1992). Thus, we can reasonably 

expect that negative reinforcement can also promote the patient’s MA. However, unlike positive 

reinforcement, negative reinforcement can cause annoyances to individuals. In other words, fixed 

negative reinforcement may lead patients to stop receiving the intervention, let alone increasing 

negative reinforcement levels over time. On the other side, similar to reward, patients would 

have different sensitivity toward negative reinforcement so that we would have no or fixed 

negative reinforcement in our application scenario components. Thus, we have the following 

four different scenario components of reinforcements.  

1. Fixed positive reinforcement and no negative reinforcement 

2. Increasing positive reinforcement and no negative reinforcement 

3. Fixed positive reinforcement and fixed negative reinforcement 

4. Increasing positive reinforcement and fixed negative reinforcement 

Section 6.2 Goal Setting 

         As we have discussed in the goal-setting theory, the comparison of effectiveness between 

the self-set goal and the counselor-assigned goal (in intervention design, it is the healthcare 

professional-assigned goal) on adopting health-promotion behaviors doesn’t have a clear answer. 

Achieving a targeted goal can increase patients’ confidence in managing their diseases and 

improve their self-efficacy critically. Some patients would have a deeper understanding of their 

capabilities and real-life difficulties than their physicians, so self-set goals would be more 
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appropriate for these patients. While some other patients would only set their goal to the 

minimum possible level, which might provide little help in improving their health, or they 

overestimate their capabilities to achieving their goal, causing frustration and discontinued 

involvement. The physician-assigned goal should be more suitable for these patients. Thus, we 

have two scenario components considering goal-setting: 

5. Self-set goal 

6. Physician-assigned goal 

Section 6.3 Social Connection  

        The social support and reaction to an individual’s behavior is an essential determinant in the 

behavior change process. However, in cultural research, individual-level variances have been 

found in valuing other people’s opinion or judgment. For example, individualists would place 

more emphasis on autonomy and self-reliance (Grimm et al. 1999; Triandis 2001), while 

collectivists would be more comfortable with changing their opinions or behaviors by the impact 

of others (Cialdini et al. 1999; Triandis et al. 1985). To capture the differences in patients’ social 

connection preference, we provide choices about sharing users’ behavior information with other 

authorized user(s) in our designed application, referring to our discussion about the authorized 

user(s) in System Design chapter.  

        For those so-called “individualists” who emphasize autonomy and control of their life 

without other people’s impact, personal information sharing about their medication-taking 

behavior and induced judgment could hinder their behavior change. While for those who like to 

be a member of a group and receive feedback from other people, information sharing could 

impact their behavior change positively.  



63 

       Moreover, shared rewards or punishments information will induce different feedback 

sentiment; for example, rewards information could have positive feedback while punishments 

information could have negative feedback. In other words, patients in need of encouragement 

should share different information from patients who lack regulation. Thus, we have the 

following four scenario components of social connection.    

7. Disable social connection 

8. Enable social connection, but only sharing reward information 

9. Enable social connection, but only sharing punishment information 

10. Enable social connection, sharing both reward and punishment information 

         Indeed, these three segments of scenarios are not exclusive from each other. They cover 

different aspects to increase the intervention’s effectiveness. One complete scenario of 

intervention application could include one or more segment’s components. For example, a 

patient could set his own MA goal, receive a fixed reward for any dose he takes but no 

punishment if he does not reach his period’s goal, and share only his reward information with 

others.   
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Scenario Detail Description 

1 Fixed PR and no NR In each intervention period, the patient will receive the 

same amount of reward. Also, the patient will not be 

punished if he/she doesn’t achieve MA goal. 

2 Increasing PR and no NR The patient will receive an increasing reward in 

subsequent intervention periods. Also, the patient will 

not be punished if he/she doesn’t achieve MA goal. 

3 Fixed PR and fixed NR In each intervention period, the patient will receive the 

same amount of reward. Also, the patient will be 

punished if he/she doesn’t achieve MA goal. 

4 Increasing PR and fixed NR The patient will receive an increasing reward in 

subsequent intervention periods. Also, the patient will 

be punished if he/she doesn’t achieve MA goal. 

5 Self-set goal The patient will set his/her period’s goal. 

6 Physician-assigned goal The physician will set the patient’s period’s goal.  

7 Disable social connection No authorized user is added. The patient will not be 

able to share his/her medication-taking information 

with others. 

8 Enable social connection, only 

sharing reward information 

The patient will share his/her reward information with 

the authorized user(s). 

9 Enable social connection, only 

sharing punishment 

information 

The patient will share his/her punishment information 

with the authorized user(s). 

10 Enable social connection, 

sharing both reward and 

punishment information 

The patient will share his/her reward and punishment 

information with the authorized user(s). 

Table 8. Scenario Components 

 

Section 6.4 Comparison of Scenarios  

         Even though these ten different scenario components consider various intervention aspects, 

we can still have qualitative comparison within the three segments. We choose three angles to 

compare them. The first one is the possibility of quitting, which examines the level of obstacle 

that each component could cause to affect patients’ continued engagement in the intervention. 

The second one is the suitable patient type, which compares the patients’ characteristics that each 

component would be most effective for. Based on the assumption that each patient follows the 

most suitable scenario components, we consider the third angle, cost-effectiveness. Cost-
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effectiveness compares the cost of the intervention to reach the same health outcome. The 

comparison details are listed in Table 9.   

6.4.1 Possibility of Quitting 

         Segment 1 (scenario components 1 to 4): The existence of punishment could cause a higher 

probability of annoyance, frustration, and other negative emotions compare to no punishment 

when patients fail to reach their goal. These negative emotions would strongly associate with 

patients’ dropping out behavior. However, if the rewards are calculated in an increasing pattern 

based on each period, the idea that “I will receive more if I continue engagement in the 

intervention process for the next period” will be a stronger incentive for patients compared to the 

incentive provided by a fixed reward. Thus, patients receiving fixed reward and fixed 

punishment will have a high possibility of quitting, while patients receiving increasing reward 

and fixed punishment will have the medium possibility of quitting because the increased reward 

would decrease the possibility of quitting. Also, patients receiving fixed reward and no 

punishment will have the medium possibility of dropping out because the exclusion of negative 

emotions caused by punishment would decrease the possibility. Patients receiving increasing 

reward and no punishment will experience both the incentive of increasing reward and 

elimination of negative sentiment caused by punishment, so these patients will have a low 

possibility of quitting. 

         Segment 2 (scenario components 5 and 6): goals do affect participants’ persistence of 

activities in a way that hard goals prolong effort when participants are allowed to control the 

time they spend on a task  (LaPorte and Nath 1976). However, we do not have enough evidence 

to compare the difficulty of self-set and physician-assigned goals, so we cannot examine the 

possibility of quitting in these two situations. 
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         Segment 3 (scenario components 7 to 10): Sharing only the punishment information with 

others would lead to negative feedback to patients’ behaviors as well as could damage their self-

efficacy because the information represents that those patients cannot reach their preset goals. 

These adverse effects would cause a high possibility of patients to drop out. Compared with this 

situation, sharing both reward and punishment information will lead to positive feedback from 

others in addition to negative ones, balanced personal image, and stable self-efficacy level. Thus, 

the possibility of quitting would decrease from high to medium. In another situation, patients will 

not receive any outside judgments if they do not share information with others. Since people 

have a self-enhancement motive that involves a preference for positive over negative self-views 

(Sedikides and Gregg 2008), not sharing information with others will decrease the possibility of 

quitting from high to medium compared to the scenario of only sharing punishment information. 

When patients only share reward information with others, the positive feedback they get will 

further decrease the possibility of quitting to a low level. 

6.4.2 Appropriate Patient Type 

        Savoli et al. (2020) conducted mixed-method research on patient types and self-

management performance based on their reactions to and effective use of a web-based patient 

portal, which supports self-management of asthma patients. They categorized the patients as 

three types, autonomous patients, engaged patients, and reliant patients based on their causal 

attributions of self-management performances. Autonomous patients attributed the good 

performance to themselves and bad performance mainly to the portal and external impacts. 

Engaged patients believed the portal helped them reach good performance, and they had 

responsibilities when the performance is not good. Reliant patients attributed their good 
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performance entirely to the support of the portal and other external impacts, and they also 

attributed the bad performance to external effects.  

       When examining the patients’ reactions to the portal, they found that autonomous patients 

view it as an “imposer” which forced them to engage in activities they did not want to and let 

them feel angry and frustrated. The engaged patients viewed the portal as a “facilitator,” which 

made their self-management of the disease easier. The reliant patients saw the portal as a 

“protector,” which provided them with help and took care of them (Savoli et al. 2020). We 

deploy the above three patient categories here to discuss our scenarios’ suitable types.   

     Segment 1: Autonomous patients think they have enough disease-related knowledge and can 

manage their conditions well without external supports. Thus, NR could hurt their self-efficacy 

and cause bad emotions, while both fixed and increasing PR can add to their perceived 

usefulness of the intervention. Engaged patients can use self-management tools effectively with 

happiness, joy, and pleasure. So, no matter they receive either or both reinforcements, they can 

modify their behaviors accordingly. Reliant patients rely on others to take care of them. 

Increasing PR and NR forms a stronger connection between these patients’ reactions and the 

incentive outcomes. In this way, they are more likely to participate effectively.  

         Segment 2:The suitability of these two goal-setting types is based on the accuracy of 

evaluation of patients’ ability and real-life difficulties. Reliant patients do not have sufficient 

knowledge and motivation, so the physician-assigned goal should be suitable for them. While 

engaged patients understand their disease and life conditions well, they are eligible to set their 

own goals. The autonomous patients are challenging to accept the goal set by others, so they 

should set the goals.   
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         Segment 3: Personality preference for social connection is the crucial factor in deciding 

information sharing styles. Patients who prefer a high level of autonomy and total control of their 

lifestyle, e.g., autonomous patients, are not suitable for enabling social connection. Because they 

believe they know what they should do and don’t need external triggers for them to change 

behaviors, so no social connection should work well for them. If a patient is non-adherent to 

medication because he/she lacks self-regulation and rely on others to help them like reliant 

patients, sharing punishment information will be the right choice. Because there will be more 

people to help monitor and regulate his/her behavior in this way. For engaged patients, the 

sharing of reward information could be an encouragement for them to keep improving and keep 

or attain good performance. At the same time, the feedback from sharing NR information can 

also help them pursue better outcomes.   

6.4.3 Cost-effectiveness 

         We conduct cost-effectiveness analysis under the assumption that all patients follow their 

most suitable scenario components, and they need the same time length of intervention to adopt a 

health-promoting behavior. Since the outcome is the same across all patients, so we only need to 

consider the cost of these scenario components to decide cost-effectiveness. 

         Segment 1: Implementing punishment will cost more than not implementing it in the 

application. Providing increasing rewards based on periods will also require more than providing 

fixed rewards over time. Therefore, scenario 1 will cost the least, scenario 2 will have an 

increased reward cost additionally, scenario 3 will have punishment implementation cost 

additionally, and scenario 4 will have both increased reward and punishment implementation 

cost additionally. The cost-effective level is a reversed cost sequence: scenario 1 has high cost-

effectiveness, scenario 2 and 3 have a medium level, and scenario 4 has a low level. 
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         Segment 2: The physician-assigned goal involves more interaction and efforts from both 

patient and physician side so that physician-assigned goal will cost more than a self-set goal. 

Therefore, the self-set goal has high cost-effectiveness, and the physician-assigned goal has low 

cost-effectiveness. 

         Segment 3: The cost of social connection will increase with increasing shared information 

amount due to storage and maintenance costs. In this way, scenario 7 will have high cost-

effectiveness, scenario 8 and 9 will have medium cost-effectiveness, and scenario 10 will have 

low cost-effectiveness.   

 

Scenario Possibility of Quitting Appropriate Patient Type Cost-effectiveness 

1 Medium Autonomous patients, engaged patients High 

2 Low Autonomous patients, engaged patients Medium 

3 High Engaged patients Medium 

4 Medium Engaged patients, reliant patients Low 

5 N/A Autonomous patients, engaged patients High 

6 N/A Reliant patients Low 

7 Medium Autonomous patients High 

8 Low Engaged patients Medium 

9 High Reliant patients Medium 

10 Medium Engaged patients, reliant patients Low 

Note: comparison levels are within scenario segments   

Table 9. Scenario Comparison 

 

Section 6.5 Multiple Medications Scenarios Comparison 

         Following our discussion in the System Design chapter, we compare multiple-medications 

scenarios under two situations, namely the overall required MA situation, and each medication 

requires a specific MA situation.  

         When a patient has multiple medications to take, but only an overall MA of them is 

required, all the scenarios process in similar ways as single medication scenarios besides the 
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increased complexity of medication schedule may cause a higher possibility of quitting. 

However, the patient could also get multiple rewards by following all medication prescriptions. 

Thus, the effect of rewards could counteract the impact of complexity, leading to little change in 

Table 9. 

         When a patient has multiple medications to take, and each of them has its own desired MA, 

both possibilities of quitting and cost-effectiveness of different scenarios are subject to change, 

especially when there is a medication requiring a high MA. Comparing Figure 19 and Figure 20, 

the probability of blocking more than one apps increases, and the time cost to unblock certain 

app lasts longer when a high required MA medication exists. The patient would be more likely to 

quit because of these impacts, even though various rewards are available. If we consider it from 

another aspect, we need to set and implement various rewards to fulfill the requirements of 

different medications and avoid patients’ quitting. System operation costs will increase so that 

cost-effectiveness will drop because of the reward design.  

         We discuss and analyze scenario segments and compare each of them descriptively in this 

chapter. Next, we will evaluate our designed system using analytical models to illustrate the 

effectiveness of our system.  
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Chapter 7. Analytical Models 

       We evaluate the performance of interventions in the C&S system by using analytical 

models. Analytical models have been used as formal proofs for a long time in Computer Science, 

Design Science, and Engineering (Saaty and Vargas 2012) because they can express complex 

relationships among many variables of interest. They also provide intermediate and immediate 

results, which can help to improve the design of artifacts.  

       As our core dependent variable, we consider the percentage of prescribed medication taken 

by patients in this research as our calculated MA. We are aware that additional measurements of 

MA, such as the longest uninterrupted period of MA (the time period that a patient takes the 

prescribed medication according to schedule without even missing a single dose) and time 

expired before all prescribed doses are taken (the time period passed until a patient actually take 

all prescribed doses), can be useful supplementary outcome measures of our intervention 

(Noordraven et al. 2014). Nevertheless, in this research, we try to focus on the most critical 

outcome measurement, our defined MA. 

Section 7.1 Patient’s Model Assumptions  

        Several assumptions were made to keep the analytical model reasonably accurate. Some of 

these assumptions can be relaxed in future work to improve accuracy at additional complexity.  

• Assumption 1: the model assumes the patients are able to self-medicate as prescribed.  

• Assumption 2: the model assumes the patients are not fully non-compliant; in other words, 

patients take at least one medication dose within the observed period. 

• Assumption 3: the model assumes the two conditions that the patient receives negative 

reinforcement are independent of each other. The two conditions are: (1) when the 

patient’s MA drops below the expected MA for medication to be effective in treatment. 
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(2) when the patient has missed a certain number of doses consecutively even though 

his/her MA stays equal or higher to the expected MA.  

Section 7.2 Validation of the Model 

7.2.1 General Medication Adherence 

        The MA over the observed period is given by 

                                                MA = (NT / NP) × 100% 

                                                = (NT / (NT + NL)) × 100% 

= (NT / (NT + (Nun-missing + Nin-missing))) × 100%                             (1) 

        where NP is the number of prescribed doses for the observed period, NT is the number of 

doses taken by the patient, and NL is the number of doses left untaken by the patient.  

         Within doses left untaken by the patient, two types exist, the first one is the doses missed 

unintentionally by the patient due to forgetfulness or carefulness, the number of these 

unintentionally missed doses is represented by Nun-missing. The second type is the doses missed 

intentionally by the patient due to reasons such as patient characteristics, treatment factors, or 

patient-provider issues; the number of these doses is represented by Nin-missing.  

         To reduce unintentionally-missing-doses, we use two reminders with the time difference to 

inform the patient to take medication. Also, as mentioned in the System Design chapter, these 

two reminders can lower the possibility of overdose due to the patient’s catch-up behavior to 

take doses at an inappropriate time to make up for their skipped or delayed doses.  

        The time interval between the beginning time of a dose’s first reminder window and the end 

time of the next dose’s second reminder window should not exceed the max-interdose-time for 

the dose to be effective. Thus, 

𝑇𝑖+1,𝑒𝑠 − 𝑇𝑖,𝑏𝑓 ≤  𝑇𝑚𝑎𝑥                                                         (2) 
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        where 𝑇𝑚𝑎𝑥 is the maximum interval time between two doses for them to remain medically 

effective and compliant, 𝑇𝑖,𝑏𝑓 is the beginning time of the first reminder window of dose i, and 

𝑇𝑖+1,𝑒𝑠 is the ending time of the second reminder window of dose i+1. Beside max-interdose-

time, we also consider the min-interdose-time which prevents the patients from overdosing, that 

is to say 

𝑇𝑖+1,𝑏𝑓 −  𝑇𝑖,𝑒𝑠 ≥  𝑇𝑚𝑖𝑛                                                        (3) 

       where 𝑇𝑚𝑖𝑛 is the minimum interval time between two doses for them to be compliant and 

safely consumed by the patient without causing any negative effects of overdosing,  𝑇𝑖,𝑒𝑠 is the 

ending time of the second reminder window of dose i, and 𝑇𝑖+1,𝑏𝑓 is the beginning of the first 

reminder window of dose i+1. The illustration of reminder windows, max-iterdose-time and min-

interdose-time is shown in Figure 21.  

 

 

Figure 21. Illustration of Reminder Windows Design 

 

7.2.2 Probability of reaching desired MA without interventions 

        Without intervention, the probability that the patient takes m doses among all prescribed 

doses for the observed period, NP, is  

POri = 
∏ 𝑃𝐵𝑎𝑠𝑒

𝑚 (1−𝑃𝐵𝑎𝑠𝑒)𝑁𝑃−𝑚𝑁𝑃
𝑚=1

∏ 𝑚𝑚
1  × ∏ 𝑚

𝑁𝑃−𝑚
1

                                                   (4) 
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        where PBase is the inherent average probability of the patient takes a dose of medication. 

Thus, without intervention, the probability that a patient has MA equal or more than expected 

MA, represented using  𝑅𝑒𝑥, is the sum of probability that a patient takes ⌈𝑅𝑒𝑥𝑁𝑃⌉ doses or more. 

This probability can be presented as  

𝑃𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 1 − (𝑁𝑃 − ⌊𝑅𝑒𝑥𝑁𝑃⌋) ( 𝑁𝑃
⌊𝑅𝑒𝑥𝑁𝑃⌋

) ∫ 𝑡𝑁𝑃−⌊𝑅𝑒𝑥𝑁𝑃⌋−1(1 − 𝑡)⌊𝑅𝑒𝑥𝑁𝑃⌋ 𝑑𝑡
1−𝑃𝐵𝑎𝑠𝑒

0
          (5) 

 

7.2.3 Probability of Reaching Desired MA with Reminders and Rewards 

         Interviews and surveys which examine the reasons for nonadherence indicate that 

forgetting is the reason offered by most patients for failing to take their medication (Khatib et al. 

2014). Based on this fact, reminders have been tested to improve MA significantly in several 

studies. Since in our design, taking medication following reminders will induce the 

implementation of another type of intervention, rewards, we formulate the effects of these two 

intervention types together.  

         When we include rewards, the overall probability that a patient takes one dose through two 

reminder windows is 

𝑃𝑅 = 𝑃𝑠𝑡 + (1 − 𝑃𝑠𝑡) × 𝑃𝑛𝑑                                                       (6) 

        where Pst is the probability that the patient takes the dose during the first reminder window, 

and Pnd is the probability that the patient takes the dose during the second reminder window.  

        Thus, the probability that the patient takes Nst out of NP doses within the first reminder 

window is  

           𝑃𝐹 =
∏ 𝑖 × 𝑃𝑠𝑡

𝑁𝑠𝑡(1−𝑃𝑠𝑡)𝑁𝑃−𝑁𝑠𝑡
𝑁𝑃
𝑖=1 

∏ 𝑖 
𝑁𝑠𝑡
𝑖=1

× ∏ 𝑖
𝑁𝑃−𝑁𝑠𝑡
𝑖=1

                                                   (7) 

        Based on the above, we express the probability that a patient takes total k dose(s) among NP 

doses within either reminder windows as  
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 𝑃𝑛𝑒𝑤 =
∏ 𝑖 × 𝑃𝑠𝑡

𝑁𝑠𝑡(1−𝑃𝑠𝑡)𝑁𝑃−𝑁𝑠𝑡
𝑁𝑃
𝑖=1 

∏ 𝑖 
𝑁𝑠𝑡
𝑖=1

× ∏ 𝑖
𝑁𝑃−𝑁𝑠𝑡
𝑖=1

× 
∏  𝑖 × 𝑃𝑛𝑑

𝑘−𝑁𝑠𝑡(1−𝑃𝑛𝑑)𝑁𝑃−𝑘𝑁𝑃−𝑁𝑠𝑡
𝑖=1

∏ 𝑖
𝑘−𝑁𝑠𝑡
𝑖=1

 × ∏ 𝑖
𝑁𝑃−𝑘

𝑖=1

                          (8) 

        So, with reminders and rewards, the probability that a patient has MA equal or higher than 

expected MA is the sum of probability that a patient takes ⌈𝑅𝑒𝑥𝑁𝑃⌉ doses or more. Thus, the 

actual probability can be presented as 

𝑃𝑤𝑖𝑡ℎ𝑅 = [1 − (𝑁𝑃 − 𝑁𝑠𝑡) (
𝑁𝑃

𝑁𝑠𝑡
) ∫ 𝑡𝑁𝑃−𝑁𝑠𝑡−1(1 − 𝑡)𝑁𝑠𝑡 𝑑𝑡]

1−𝑃𝑠𝑡

0
×  

    [1 − (𝑁𝑃 − 𝑁𝑠𝑡 − 𝑁𝑛𝑑) (
𝑁𝑃−𝑁𝑠𝑡

𝑁𝑛𝑑
) ∫ 𝑡𝑁𝑃−𝑁𝑠𝑡−𝑁𝑛𝑑−1(1 − 𝑡)

𝑁𝑛𝑑  𝑑𝑡]
1−𝑃𝑛𝑑

0
                        (9) 

        where 𝑁𝑛𝑑 is the number of doses the patient takes during the second reminder window 

over the observed period, and it should be the number of 𝑚𝑎𝑥(⌈𝑅𝑒𝑥𝑁𝑃⌉ − 𝑁𝑠𝑡 , 1).  

7.2.4 Probability of Implementing Negative Reinforcement 

        We discussed in the System Design chapter that NR would be implemented under two 

conditions. These are (1) when the patient’s MA drops below expected MA and (2) when the 

patient has missed a certain number of consecutive doses.  

        To model the first condition, we realize it is the opposite situation of the patient always 

taking at least ⌈𝑅𝑒𝑥𝑁𝑃⌉ doses within 𝑁𝑃 doses. So, based on equation 9, we have the probability 

of first NR condition as 

𝑃𝑁𝑅1 = 1 − 𝑃𝑤𝑖𝑡ℎ𝑅                                                                  (10) 

        Following Feller (2008) study on consecutive missing trials, the probability of the patient 

receiving second condition NR can be expressed as: 

𝑃𝑁𝑅2~ 1 −
1−𝑃𝑅𝑥

(𝑁𝑚+1−𝑁𝑚𝑥)𝑞
×  

1

𝑥𝑁𝑃+1                                                      (11) 

        where 𝑁𝑚 is the number of consecutive missing doses, 𝑃𝑅 comes from equation 6, 

𝑞 = 1 − 𝑃𝑅, and x is the root near 1 of  

1 − x + q𝑃𝑅
𝑁𝑚𝑥𝑁𝑚+1 = 0                                                           (12) 
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7.2.5 Fixed and Increasing Positive Reinforcement 

        RW is the amount of PR gained over the observed period. From the scenarios we discussed, 

RW for the fixed PR can be given as,   

                                              𝑅𝑊𝐹 = 𝑅𝑠𝑡 × 𝑁𝑠𝑡 + 𝑅𝑛𝑑 × 𝑁𝑛𝑑                                                    (13) 

        where Rst is the constant PR amount the patient could receive when he/she takes the dose 

during the first reminder window, and Rnd is the constant PR amount the patient could receive 

when he/she takes the dose during the second reminder window. Rst  should be larger than Rnd.  

        The other type of PR is increasing PR. Since we encourage the patient to take medication 

during the first reminder window, only the first reminder window reward increases over time. 

The RW for increasing PR can be given as, 

                                 𝑅𝑊𝐼 = 𝑅𝑠𝑡 × (1 + 𝛿)𝑡−1 𝑁𝑠𝑡 + 𝑅𝑛𝑑 × 𝑁𝑛𝑑       (t ≥ 1)                              (14) 

            where δ is the increase rate, and t is the number of observed periods.  

7.2.6 Social Connection with Others 

      Social connection with other people, especially with family members, has shown to help the 

patient holding a more positive attitude towards medication. When the patient chooses to connect 

with other people, the feedback he/she receives could be an additive factor to improve MA, but 

not to exceed 100%. Therefore, the following expression can be developed: 

𝑃𝑆𝐶 = 𝑀𝑖𝑛((𝑃𝐵𝑎𝑠𝑒 + 𝑆 ∙ 𝑀𝑠𝑐), 1)                                                   (15) 

        where S is the probability that the patient chooses to share personal MA information with 

other people, and 𝑀𝑠𝑐 represents the motivational factor the patient receives from social 

connections such as family support or better communication with healthcare professionals.   
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7.2.7 Impact of Goal-setting 

       Setting specific goals to achieve a task, in combination with performance feedback, has been 

found to result in better performance than does no goal setting or a vague goal setting (Latham 

and Locke 1991; Mento et al. 1987). The desire to fulfill a goal and the feedback provided to the 

patients after the goal gets reached are both additive factors to improve MA, but not to exceed 

100%. Therefore, the following expression can be developed: 

𝑃𝐺 = min ((𝑃𝐵𝑎𝑠𝑒 + 𝑀𝐺 ∙ 𝑀𝐹𝐺), 1)                                                (16) 

        where 𝑀𝐺  represents the motivation that the patient has in reaching the goal, and  𝑀𝐹𝐺  

represents the effect of feedback during the process to reach the goal. 

7.2.8 Savings due to improved MA 

        The savings due to improved MA can be expressed as  

                            𝑆𝑠𝑎𝑣 = 𝐶𝑂𝑃 + 𝐶𝐼𝑃 + 𝐶𝑂𝐵 + 𝐶𝐸𝑅 +  𝐶𝑃𝑀                                            (17) 

        The reduced healthcare expenditures attributed to increased MA, including outpatient 

expenditures (𝐶𝑂𝑃), inpatient expenditures (𝐶𝐼𝑃), office-based visits expenditures (𝐶𝑂𝐵), 

emergency room visits expenditures (𝐶𝐸𝑅), and medication prescription expenditures (𝐶𝑃𝑀).  

7.2.8.1 Method and Data 

        In the analysis of how different MA would affect the total annual expenditures, we focus on 

patients who are diagnosed with diabetes. We conduct tests using data from the Medical 

Expenditure Panel Survey (MEPS) of 2016 and 2017. And then, we use the simulation method to 

capture the savings due to our intervention based on the results of our analysis of the MEPS data. 

Each panel gathers MEPS data last two years with five rounds of data collection. The data files 

contain personal information and related medical expenditures on the individual level for a 

nationally representative sample of the civilian noninstitutionalized population of the United 
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States. Figure 22 shows the data collection process. MEPS data have separate data files by their 

medical service types. The prescribed medicines file has information about how many days each 

prescription of medication supplies, as well as which year and which month the person started 

taking the medication. So, we can calculate MA as the proportion of days covered (PDC) using 

the available information and exclude individuals who are diagnosed with diabetes but has no 

prescribed oral medication records. The matched expenditure records of other medical services 

such as inpatient stays and outpatient visits allow us to capture the total expenditure of the year 

and analyze the impact of MA on it after controlling other effects. The data file details are listed 

in Table 10.  

 

    

Figure 22: MEPS Collection Process 
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Information Type Data Source 

Personal Information 

Demographic Information 

2017 Full Year Consolidated Data File 

2017 total income 

Whether diagnosed with diabetes 

Which year the person has been diagnosed 

with diabetes 

Medication Adherence Information 

How many days each prescription of 

medication supplies 

2017 Prescribed Medicines File 
which year the person started taking the 

medication 

which month the person started taking the 

medication 

Expenditure Components 

2017 inpatient expenditures 2017 Hospital Inpatient Stays File 

2017 outpatient expenditures 2017 Outpatient Visits File 

2017 office-based visits expenditures 2017 Office-Based Medical Provider Visits File 

Emergency Room Visits Expenditures 2017 Emergency Room Visits File 

Prescribed Medication Expenditures 2017 Prescribed Medicines File 

Table 10: Data Source Details 

       

       Since each MEPS panel lasts two years, we can estimate the natural change of annual MA 

from 2016 to 2017 at the individual level. Our test of the designed intervention’s impact on 

healthcare expenditure savings based on the increased probability for a patient to have a higher 

level of MA after receiving the intervention. Therefore, we assign utility weight of our 

intervention to the probabilities of all the transactions that are shown in Figure 23 and evaluate 

the savings using Simulation method to compare with natural changes without the intervention.   
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Figure 23: Simulation Model Base 

 

Section 7.3 Healthcare Provider’s Participation 

       We have discussed in the previous chapter that the payment reform could encourage 

healthcare providers to invest in improving patients’ MA by providing positive reinforcement in 

our designed intervention. We develop models of the physician’s potential benefits following the 

setting of the current MIPS program.  

      Assign 𝑆𝐼 as the physician’s MIPS score without intervening patients’ behavior. 𝑆𝐹 is the 

score the physician could get if he/she provide incentives in our intervention to promote patients’ 

MA so to increase his/her treatment quality. We assume 𝑆𝐹 ≥ 𝑆𝐼. All other abbreviations are 

shown in Table 11. The relationship between MIPS performance score and payment adjustment 

rate is demonstrated in Figure 24. 
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Meaning Notation 

Physician’s initial score 𝑆𝐼 

Physician’s final score 𝑆𝐹 

Positive adjustment threshold score 𝑆𝐵 

Exceptional performance threshold Score 𝑆𝐸 

Maximum penalty threshold score 𝑆𝐿 

Maximum penalty rate (a negative number) 𝑅𝑚 

Maximum exceptional performance adjustment rate 𝑅𝑒𝑥 

Physician’s initial payment adjusted rate  𝑅𝐼,𝑖 

(i = 1,2,3,4,5) 

Physician’s final payment adjusted rate 𝑅𝐹,𝑖 

(i = 1,2,3,4,5) 

Physician’s Medicare Part B payment of year X 𝑃𝑋 

Physician’s adjusted payment issued on year X+2 𝐴𝑑𝑋𝑖 

(i = 1,2,3,4,5) 

Amount change in adjusted payment if providing patients rewards 𝐴𝑑𝐶 

Scaling factor for positive adjustment 𝛼 

Scaling factor for exceptional adjustment 𝛽 

Annual discounting Factor γ 

Percentage of the clinician’s anticipated adjusted payment used for 

incentives 
𝑝 

Average additional work hours to support each patient 𝑡 

Average hourly wage of a registered nurse w 

Table 11. Model Notations 

 

 

Figure 24: Payment Adjusted Rate 
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       If 𝑆𝐼 falls between 0 and  𝑆𝐿 (0 ≤ 𝑆𝐼 ≤ 𝑆𝐿), the physician will receive the maximum penalty 

rate.  

𝑅𝐼1 = 𝑅𝑚                                                               (18) 

       For the physician who has score larger than 𝑆𝐿 but lower than 𝑆𝐵 (𝑆𝐿 < 𝑆𝐼 < 𝑆𝐵), he/she will 

receive a negative payment adjustment greater than the maximum negative rate and less than 0 

percent on a linear sliding scale.  

𝑅𝐼2 = (𝑆𝐼 − 𝑆𝐿) × 𝑅𝑚/(𝑆𝐵 − 𝑆𝐿)                                            (19) 

       For the physician who has score equals to 𝑆𝐵 (𝑆𝐼 = 𝑆𝐵), he/she will not receive any payment 

adjustment.  

  𝑅𝐼3 = 0                                                                (20) 

       For the physician who has score larger than 𝑆𝐵 and lower than 𝑆𝐸 (𝑆𝐵 < 𝑆𝐼 < 𝑆𝐸), he/she 

will receive positive payment adjustment from greater than 0 percent to the absolute value of 𝑅𝑚 

(|𝑅𝑚|) multiple a scaling factor α to preserve budget neutrality on a linear sliding scale. 

𝑅𝐼4 = (𝑆𝐼 − 𝑆𝐵) × 𝛼 |𝑅𝑚|/(100 − 𝑆𝐵)                                       (21) 

       For the physician who has score greater or equal to 𝑆𝐸 (𝑆𝐼 ≥ 𝑆𝐸), he/she will receive 

additional payment adjustment for exceptional performance. The adjustment starting at 0.5% and 

increasing on a linear sliding scale to 10% multiplied by a scaling factor β. 

𝑅𝐼5 = 𝛼 |𝑅𝑚| + (𝑆𝐼 − 𝑆𝐸) × 𝛽(10 − 0.5)/(100 − 𝑆𝐸)                          (22) 

       The adjusted payment amount of year X is  

𝐴𝑑𝑋𝑖 = 𝑃𝑋 𝑅𝐼𝑖  (i = 1,2,3,4,5)                                              (23) 

       When the physician provides the incentives to patients, the performance score will change to 

𝑆𝐹. The adjusted rates of different conditions (𝑅𝐹1 ~ 𝑅𝐹5) according to 𝑆𝐹 are similar to we have 
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in equation 18 to 22, so the change in the physician’s performance score has the following 

fourteen conditions: 

1. 0 ≤ 𝑆𝐼 ≤ 𝑆𝐿 and 0 ≤ 𝑆𝐹 ≤ 𝑆𝐿 

2. 0 ≤ 𝑆𝐼 ≤ 𝑆𝐿 and 𝑆𝐿 < 𝑆𝐹 < 𝑆𝐵 

3. 0 ≤ 𝑆𝐼 ≤ 𝑆𝐿 and 𝑆𝐹 = 𝑆𝐵 

4. 0 ≤ 𝑆𝐼 ≤ 𝑆𝐿 and 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 

5. 0 ≤ 𝑆𝐼 ≤ 𝑆𝐿 and 𝑆𝐹 ≥ 𝑆𝐸  

6. 𝑆𝐿 < 𝑆𝐼 < 𝑆𝐵 and 𝑆𝐿 < 𝑆𝐹 < 𝑆𝐵 

7. 𝑆𝐿 < 𝑆𝐼 < 𝑆𝐵 and 𝑆𝐹 = 𝑆𝐵 

8. 𝑆𝐿 < 𝑆𝐼 < 𝑆𝐵 and 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 

9. 𝑆𝐿 < 𝑆𝐼 < 𝑆𝐵 and 𝑆𝐹 ≥ 𝑆𝐸 

10. 𝑆𝐼 = 𝑆𝐵 and 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 

11. 𝑆𝐼 = 𝑆𝐵 and 𝑆𝐹 ≥ 𝑆𝐸 

12. 𝑆𝐵 < 𝑆𝐼 < 𝑆𝐸 and 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 

13. 𝑆𝐵 < 𝑆𝐼 < 𝑆𝐸 and 𝑆𝐹 ≥ 𝑆𝐸 

14. 𝑆𝐼 ≥ 𝑆𝐸 and 𝑆𝐹 ≥ 𝑆𝐸 

       The changes in adjusted payment caused by the modified performance score according to 

these fourteen conditions are shown in Table 12 as equations 24 to 37.  

       Since the adjusted payment of year X will be issued in year X+2, the value of this payment 

at year X will be perceived discounted with factor 𝛾2. A physician chooses to provide the 

incentives to the patients when the proportion of discounted adjusted payment the physician 

would like to invest exceeds the cost of enrollment:  

𝛾2 × 𝑝 × 𝐴𝑑𝐶 ≥ 𝐶                                                           (38) 

       The costs include the amount of rewards provided to patients and the extra time in 

monitoring the health status of patients and assisting them when needed. In a well-designed 
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chronic disease management team, the tasks of monitoring and follow-up with patients can be 

delegated to nurses, thus,   

    𝐶 = 𝑅𝑊 + 𝑛𝑡𝑤                                                              (39) 

 

Initial Score   

(𝑺𝑰) 

Final Score (𝑺𝑭) Changes in Adjusted Payment 
(𝑨𝒅𝑪) 

Equation 

# 

𝟎 ≤ 𝑺𝑰 ≤ 𝑺𝑳 0 ≤ 𝑆𝐹 ≤ 𝑆𝐿 

 

0 (24) 

𝟎 ≤ 𝑺𝑰 ≤ 𝑺𝑳 𝑆𝐿 < 𝑆𝐹 < 𝑆𝐵 
(
𝑆𝐹 − 𝑆𝐿

𝑆𝐵 − 𝑆𝐿
− 1) × 𝑅𝑚𝑃𝑋 

(25) 

𝟎 ≤ 𝑺𝑰 ≤ 𝑺𝑳 𝑆𝐹 = 𝑆𝐵 

 

− 𝑅𝑚𝑃𝑋 (26) 

𝟎 ≤ 𝑺𝑰 ≤ 𝑺𝑳 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 
[
(𝑆𝐵 − 𝑆𝐹) × 𝛼 

100 − 𝑆𝐵
− 1]𝑅𝑚𝑃𝑋 

(27) 

𝟎 ≤ 𝑺𝑰 ≤ 𝑺𝑳 𝑆𝐹 ≥ 𝑆𝐸 
[−(1 + 𝛼) 𝑅𝑚 + (𝑆𝐹 − 𝑆𝐸) ×

9.5 𝛽

100 − 𝑆𝐸
] × 𝑃𝑋 

(28) 

𝑺𝑳 < 𝑺𝑰 < 𝑺𝑩 𝑆𝐿 < 𝑆𝐹 < 𝑆𝐵 𝑆𝐹 − 𝑆𝐼

𝑆𝐵 − 𝑆𝐿
× 𝑅𝑚𝑃𝑋 

(29) 

𝑺𝑳 < 𝑺𝑰 < 𝑺𝑩 𝑆𝐹 = 𝑆𝐵 𝑆𝐿 − 𝑆𝐼

𝑆𝐵 − 𝑆𝐿
× 𝑅𝑚𝑃𝑋 

(30) 

𝑺𝑳 < 𝑺𝑰 < 𝑺𝑩 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 
(𝛼 ×

𝑆𝐵 − 𝑆𝐹

𝑆𝐸 − 𝑆𝐵
−

𝑆𝐼 − 𝑆𝐿

𝑆𝐵 − 𝑆𝐿
)𝑅𝑚𝑃𝑋 

(31) 

𝑺𝑳 < 𝑺𝑰 < 𝑺𝑩 𝑆𝐹 ≥ 𝑆𝐸 
[−(𝛼 +

𝑆𝐼 − 𝑆𝐿

𝑆𝐵 − 𝑆𝐿
) 𝑅𝑚 + (𝑆𝐹 − 𝑆𝐸) ×

9.5 𝛽

100 − 𝑆𝐸
] × 𝑃𝑋 

(32) 

𝑺𝑰 = 𝑺𝑩 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 
𝛼 ×

𝑆𝐵 − 𝑆𝐹

𝑆𝐸 − 𝑆𝐵
× 𝑅𝑚𝑃𝑋 

(33) 

𝑺𝑰 = 𝑺𝑩 𝑆𝐹 ≥ 𝑆𝐸 
[− 𝛼𝑅𝑚 + (𝑆𝐹 − 𝑆𝐸) ×

9.5 𝛽

100 − 𝑆𝐸
] × 𝑃𝑋 

(34) 

𝑺𝑩 < 𝑺𝑰 < 𝑺𝑬 𝑆𝐵 < 𝑆𝐹 < 𝑆𝐸 
𝛼 ×

𝑆𝐼 − 𝑆𝐹

𝑆𝐸 − 𝑆𝐵
× 𝑅𝑚𝑃𝑋 

(35) 

𝑺𝑩 < 𝑺𝑰 < 𝑺𝑬 𝑆𝐹 ≥ 𝑆𝐸 
[𝛼𝑅𝑚 ×

𝑆𝐼 − 𝑆𝐵

𝑆𝐸 − 𝑆𝐵
+ (𝑆𝐹 − 𝑆𝐸) ×

9.5 𝛽

100 − 𝑆𝐸
] × 𝑃𝑋 

(36) 

𝑺𝑰 ≥ 𝑺𝑬 𝑆𝐹 ≥ 𝑆𝐸 
(𝑆𝐹 − 𝑆𝐼) ×

9.5 𝛽

100 − 𝑆𝐸
× 𝑃𝑋 

(37) 

Table 12: Changes in Adjusted Payment 
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Chapter 8. Results and Discussion 

         Using the analytical models, we derived several results for the impact of the designed 

intervention on both patient’s and healthcare provider’s sides, including the impact of reminders 

and PR, the impact of NR, the savings by interventions, and the enrollment of healthcare 

providers.  

Section 8.1 The Impact of Reminders and Positive Reinforcement 

         To evaluate the impact of reminders and PR, we utilize a real-life setting, which uses a 

prescription for 30 days with three doses/day. Thus the total doses are 90, and the expected MA 

is set as 80%. The probability of the patient reaching expected MA for different 𝑃𝐵𝑎𝑠𝑒 , the 

inherent average probability of the patient takes a dose of medication, Pst, and Pnd is shown in 

Figure 25. The line with Pnd = 0 represents the effect of different level of  𝑃𝐵𝑎𝑠𝑒. Without 

reminders and PR, the higher the inherent average probability a patient takes each dose, the more 

likely he/she satisfies the expected MA. However, even when 𝑃𝐵𝑎𝑠𝑒 is relatively high (e.g., 𝑃𝐵𝑎𝑠𝑒 

= 0.8), the probability that the patient reaches expected MA is relatively low (e.g., less than 

60%). Also, with low 𝑃𝐵𝑎𝑠𝑒 (e.g. 0.2 ~0.4), it is almost impossible for the patient to meet the 

expected MA.  

         The situation is primarily changed by including reminders and PR as interventions. Even if 

the first reminder doesn’t change the patient’s behavior pattern, in other words, Pst  is the same as 

𝑃𝐵𝑎𝑠𝑒, a low Pnd (e.g., Pnd = 0.2) could still improve the probability of the patient reaching 

expected MA significantly, from less than 60% to higher than 85%. If the first reminder and 

associating PR could lead to a small increase (e.g., 0.1, from 0.8 to 0.9), the change in the 

probability of the patient reaching expected MA will have a significant jump, from less than 60% 

to almost 100%. 
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Figure 25. Probability of Reaching Expected MA 

 

Section 8.2 Effectiveness of Reminders and Positive Reinforcement 

        We use $1 reward (cash, voucher, lottery, or other types) as the financial value of Rst, and 

$0. 5 reward as the value of Rnd to analyze the effectiveness of reminders and reinforcement. The 

cost of delivering reminders is ignored as it can be done inexpensively on mobile phones. In 

Figure 26, we assume the increasing rate of reward is 5% (δ = 0.05), and Pst  and Pnd  are both 

0.5. The figure shows the difference in rewards the patient would get from taking each dose 

across twelve time periods. In Figure 27, we show the difference in rewards the patient would get 

from taking each dose with the same increasing rate (δ = 0.05) but different Pst and Pnd. 

Increasing reward 1 captures the rewards based on Pst = 0.5, Pnd = 0.5, increasing reward 2 

captures rewards based on Pst = 0.7, Pnd = 0.5, and increasing reward 3 captures rewards based 

on Pst = 0.5, Pnd = 0.7. This figure illustrates that Pst  plays a bigger role than Pnd if the patient 

wants to get a higher reward in increasing PR scenarios. 
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Figure 26: Difference in PR Amount                      Figure 27: Difference in Increasing PR  

   with Fixed PR and Increasing PR                            Amount with Different Pst and Pnd 

 

 

  The effectiveness of a fixed PR is shown in Table 13. The intervention reaches the highest 

effectiveness (0.99) when the probability that the patient takes his/her medication through the 

first reminder window is high (0.8 or 0.9) while the probability of taking his/her medication 

through second reminder window is low (0.1 or 0.2). Effectiveness decreases with decreasing 

first reminder-window probability and increasing second reminder window probability. If we set 

the adequate effectiveness level of the intervention to 0.9 or higher, then it is clear from Table 4 

that we need to adjust the type of PR over time for different patients to ensure that their 

probability of taking medication during the first reminder-window is at least 0.3. 

The effectiveness of increasing PR over time periods with different Pst and Pnd is shown in 

Figure 28. All parameters are the same as in Figure 27. Figure 28 demonstrates that the 

effectiveness of PR decreases over time since the amount of PR has to increase to keep the same 

Pst and Pnd. Comparing line 1 and line 3, it shows that with the same Pst, the effectiveness of PR 

which induces higher Pnd would have a slower decrease. Similarly, comparing line 1 and line 2, 

it shows that with the same Pnd, the effectiveness of PR which induces higher Pst would have a 

slower decrease. 
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Pst 

Pnd  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.76 0.68 0.64 0.61 0.59 0.58 0.57 0.56 0.55 

0.2 0.86 0.78 0.73 0.69 0.67 0.65 0.63 0.62 0.61 

0.3 0.91 0.84 0.79 0.76 0.73 0.71 0.69 0.67 0.66 

0.4 0.93 0.88 0.84 0.81 0.79 0.76 0.74 0.73 0.71 

0.5 0.95 0.92 0.88 0.86 0.83 0.81 0.79 0.78 0.76 

0.6 0.97 0.94 0.92 0.89 0.88 0.86 0.84 0.83 0.81 

0.7 0.98 0.96 0.94 0.93 0.91 0.9 0.88 0.87 0.86 

0.8 0.99 0.98 0.97 0.95 0.94 0.93 0.93 0.92 0.91 

0.9 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 

Table 13. The Effectiveness of reminders and fixed PR 

 

 

Figure 28: Effectiveness of Reminders and Increasing PR 

 

Section 8.3 The Effectiveness of Negative Reinforcement 

        Now, we evaluate the two conditions of NR implementation using the same 90 doses in 

real-life settings. When NR is implemented as the patient’s MA drops below expected MA, the 

NR receiving probability is shown in Figure 29. With the different levels of expected MA 

varying from 0.8 to 0.95, the patient needs to maintain a high PR, the overall probability of taking 

a dose through two reminder windows with PR, to avoid receiving NR. For example, if the 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

E
ff

ec
ti

v
en

es
s

Time Period

Increasing Reward 1

Increasing Reward 2

Increasing Reward 3



89 

expected MA is 0.8, the patient should have at least PR = 0.8 to reduce his/her probability of 

favorite mobile app disconnection to less than 45%.   

         When the patient misses several consecutive doses, the probability of receiving NR is 

shown in Figure 30. With different limits of consecutive missing doses, the probability of the 

patient receiving NR varies. For example, comparing an allowance of two consecutive-missing-

dose with an allowance of four consecutive-missing-dose, the patient would have a much lower 

PR, 0.37, in four consecutive missing cases to avoid being disconnected from the favorite app, 

than the needed PR, 0.7, for the two consecutive missing cases.  

 

   

Figure 29. The Probability of Receiving NR             Figure 30. The Probability of  Receiving 

NR  due to MA lower than Expected                    due to Consecutive Dose Missing 

     

Section 8.4 Savings from Reducing Healthcare Expenditures 

      From MEPS 2017 data, we retrieve records of 2843 individuals who are diagnosed with 

diabetes. Within them, 185 persons are of age < 18, so we exclude them in our analysis. An 

additional 164 persons do not have prescribed medication records for treating diabetes, and we 

exclude them as well. Therefore, we have 2494 individuals included in our analysis. The 

medication list we use in filtering diabetes prescription is represented in Appendix C. 
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     To set up our simulation model in R9, we follow five steps. First, we retrieve basic 

information from MEPS 2017 data, namely demographic information, MA information, and 

expenditures information. The MA is calculated using the proportion of days covered in a year. 

We set MA level 1 as 0% < MA < 20%, MA level 2 as 20% ≤ MA < 40%, MA level 3 as 40% ≤ 

MA < 60%, MA level 4 as 60% ≤ MA < 80%, and MA level 5 as MA ≥ 80%. The desired MA 

level for diabetes treatment is level 5. The number of patients according to their MA levels to 

treatment for diabetes is shown in Figure 31, demographic information of the patients is shown 

in Table 14, and expenditures information is shown in Table 15. More than 1/3 of the patients 

reached the desired MA level, while the other 62% of patients’ performance did not meet the 

expectation. The maximum office-based physician visits expenditures almost reached $100,000, 

and the maximum inpatient stays expenditures exceeded $100,000. The annual total healthcare 

expenditures were more than $130,000. 

     In the second step, we analyze the impact of various MA levels on the healthcare 

expenditures after controlling the demographic variables. The result summary of logistic 

regression is shown in Table 16. We can interpret that low MA levels, namely level 1 and level 

2, will significantly (p = 0.039, p = 0.035) increase healthcare expenditures comparing with the 

desired MA level. The average expenditures among patients in level 5 are $6592. Keeping other 

indicators constant, the excess annual amount of patients in lower levels spend ranges from 

$193.70 to $1787.74. Also, the increase in the number of years diagnosed with diabetes will lead 

to higher healthcare expenditures significantly (p = 0.005). Holding all other variables constant, 

each additional year with diagnosed diabetes will cost $180.31 more healthcare expenditures. 

The increase rate is 7.8% when compared to the mean of total healthcare expenditures. 

 
9 The model is set up based on a GitHub project: https://github.com/DARTH-git/Microsimulation-tutorial 

https://github.com/DARTH-git/Microsimulation-tutorial
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     As described above, we matched records in MEPS 2017 data with MEPS 2016 data to capture 

the natural change of MA at the individual level and have 638 matched patients. The details of 

MA change rates are listed in Table 17. We transform the change rates into the probabilities of 

an individual’s transition among MA levels as 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑒−𝑟𝑎𝑡𝑒. The results of the 

transition probabilities are also listed in Table 17.  

     In the last step, we estimate the utility of our intervention as the times it increases the 

probabilities that a patient change from lower levels of MA to higher levels or decreases the 

probabilities of changing from higher levels to lower levels. We assign the utility that ranges 

from 1.2 to 1.5 for patients in level 4 to level 1, respectively. We also include an intervention 

effect modifier, a uniform distribution Uniform (0.9, 1.1), to capture the differences in the real 

impact of intervention utility at the individual level. In addition, we assume the decremental 

utility rate is 3% each year.  

      In the simulation, we discount all future years’ estimated healthcare expenditures to the 

current year with a discount factor. The discount factor is represented using the average inflation 

rate from 2010 to 2019 Bureau of Labor Statistics’ records10, and the number is 1.8%. The 

detailed parameters of our simulation model are listed in Appendix D. 

 

 

 

 
10 https://www.bls.gov/cpi/ 

https://www.bls.gov/cpi/
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Figure 31. Patients of Different MA Levels 

 

 

 

 n % 

Age group (years) 18 - 34 43 2% 

 35 - 44 201 8% 

 45 - 54 405 16% 

 55 - 61 737 30% 

 ≥ 65 1106 44% 

Gender Male 1200 48% 

 Female 1294 52% 

Race White 1076 42% 

 Black 517 21% 

 Hispanic 688 28% 

 Asian 141 6% 

 Other races or multiple races 72 3% 

Income Less than $20,000 1226 49% 

 $20,000 - $44,999 761 31% 

 $45,000 - $139,999 461 18% 

 $140,000 - $199,999 30 1% 

 ≥ $200,000 16 0.7% 

 Average Min - Max 

Number of years diagnosed with 

diabetes 

12 0 - 58 

Table 14. Characteristics of Individuals Included in Analysis (n = 2494) 
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 Min Max Mean 

Prescribed Medication Expenditures $0.00 $15,658.00 $849.29 

Outpatient Visits Expenditures $0.00 $28,544.90 $652.00 

Inpatient Stays Expenditures $0.00 $101,935.00 $2,985.00 

Emergency Room Visits Expenditures $0.00 $11,320.80 $321.20 

Office-based Physician Visits Expenditures $0.00 $97,256.00 $2,683.00 

Total Healthcare Expenditures $5.43 $131,164.31 $2,304.59 

Table 15. Healthcare Expenditures Details 

 

 

 

 

 

 

 Estimate Std. Error P-value 

Age 79.54 45.30 0.079 

Gender 1517.18 1059.39 0.152 

Hispanic -1983.34 1303.20 0.128 

Black -2599.29 1401.01 0.064 

Asian -3575.38 2307.92 0.122 

Other races -4380.64 3144.98 0.164 

lg(Income) -1.80 1.64 0.260 

Number of years diagnosed with diabetes 180.31 64.26 0.005 ** 

MA1 1787.74 1092.86 0.039 * 

MA2 1529.09 733.15 0.035 * 

MA3 595.81 372.24 0.166 

MA4 193.70 464.52 0.189 

 

R2 0.0874 

Note: * p < 0.05, ** p<0.01 

Table 16. Regression Result 
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MA level in 

2016 

MA level in 

2017 
n % 

Probability of 

transition between 

levels 

Level 1 Level 1 20 32%  

 Level 2 11 17% 0.16 

 Level 3 8 13% 0.12 

 Level 4 13 20% 0.18 

 Level 5 11 18% 0.16 

Level 2 Level 1 10 11% 0.10 

 Level 2 32 37%  

 Level 3 13 15% 0.14 

 Level 4 18 21% 0.19 

 Level 5 14 16% 0.15 

Level 3 Level 1 8 6% 0.06 

 Level 2 4 3% 0.03 

 Level 3 66 49%  

 Level 4 19 14% 0.13 

 Level 5 38 28% 0.24 

Level 4 Level 1 7 5% 0.05 

 Level 2 23 17% 0.16 

 Level 3 29 22% 0.20 

 Level 4 40 30%  

 Level 5 35 26% 0.23 

Level 5 Level 1 2 1% 0.01 

 Level 2 17 8% 0.08 

 Level 3 30 14% 0.13 

 Level 4 63 29% 0.25 

 Level 5 104 48%  

Table 17: MA Change Between 2016 and 2017 

 

 

       Table 18 shows our simulation results for the patients’ annual savings for five years. The 

simulated population is 10,000 or 100,000. On average, a patient with diabetes can save more 

than $600 per year in his/her healthcare expenditures when he/she engages in receiving our 

intervention.  
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Strategy Expenditures ($) Total savings ($) Savings per person ($) 

n = 10,000 and seed =123 

No intervention 78,862,305 (750,174) --  

With intervention 72,674,988 (645,231) 6,187,317 618 

n = 100,000 and seed =123 

No intervention 793,751,136 (7,418,335) --  

With intervention 731,366,975 (6,785,612) 62,384,161 623 

Table 18. Simulation Result 

 

From the above model and results, the following observations can be made: 

• The combined intervention of two reminders and PR can increase the probability of the 

patient achieving the expected MA. 

• Reminders and fixed PR intervention can be highly effective even when the patient’s 

probability of taking the dose in the first reminder window is moderately low.  

• The type or amount of PR should be adjusted over time to compensate for the diminishing 

effects of the same stimulus.  

• If the patient wants to absolutely avoid NR (probability of receiving NR to 0), he/she must 

maintain a very high level of the overall probability of taking doses. This overall 

probability is higher than the outcome increased by only delivering reminders and PR, 

especially when the expected MA is high, or the limit for consecutive-missing-dose is 

small.  

• The composite intervention provides better performance in assisting the patient in attaining 

his/her health goal than only reminders and PR or only NR. 

• The savings in healthcare expenditures are estimated to be more than $600 per year per 

patient in the five years simulated period.  
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Section 8.5 Healthcare Provider’s Enrollment 

     To estimate the enrollment of healthcare providers, we deploy information from multiple 

sources (Table 19) to test our model. 

Parameter        Value Data Source 

𝑺𝑩 45 2020 QPP Final Rule11 

𝑺𝑬 85 2020 QPP Final Rule 

𝑺𝑳 10 2020 QPP Final Rule 

𝑹𝒎 -9% 2020 QPP Final Rule 

𝑹𝒆𝒙 10% 2020 QPP Final Rule 

𝜶 0.14 2020 QPP Final Rule 

𝜷 0.499 2020 QPP Final Rule 

𝑷𝑿 ≥ 90,000 MIPS Eligibility 

W $37.24 Bureau of Labor Statistics12 

γ 1.8% Bureau of Labor Statistics 

Table 19. Parameters, Values, and Sources 

 

 

Figure 32: Net Payment Adjusted Rate for Different Increased Score 

       

 
11 2020 QPP Final Rule: https://www.federalregister.gov/documents/2019/11/15/2019-24086/medicare-

program-cy-2020-revisions-to-payment-policies-under-the-physician-fee-schedule-and-other 
12 https://www.bls.gov/oes/current/oes291141.htm 
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        Calculating based on equations 18 to 22, Figure 32 illustrates the payment adjusted net rate 

according to different increased score points with the initial point at each performance threshold 

score. From the figure, the highest net adjusted rate is 15.25%, which is from -9% to 6.25%, 

representing the score increases from the maximum penalty range (0 to 10) to100. The rate 

increases slowest when the score changes between 45 and 85, and it increases fastest when the 

score changes between 85 and 100. If the physician falls into the penalty range (10 to 45) 

initially, an investment in the intervention to increase performance score is also a good choice to 

avoid or reduce the penalty. Because the increment in adjustment rate of every additional point in 

penalty score range (0.26%) is only slightly lower than the change in exceptional performance 

range due to each single point (0.32%).  

       Besides increasing within the maximum penalty range, the adjusted rate according to 5 

points increase ranges from 0.12% to 1.61%, the adjusted rate according to 10 points ranges from 

0.23% to 3.22%, and ranges from 0.28% to 4.83% for 15 points increment. We consider the 

potential influence of the adjusted payments on the physician’s participation in providing 

reinforcements to the patients under these 5 points, 10 points, and 15 points increase conditions.  

      Referring to the eligibility of a physician to participate in the MIPS 2020, the minimum 

Medicare Part B payment is $90,000. And we use the same discount factor as we used in the 

patients’ healthcare expenditures’ savings estimation, 1.8%, to calculate the present value of the 

adjusted payment. Figure 33 shows the adjusted payment value in the present year with a 

$90,000 payment, and according to the three conditions which are mentioned above.  

      Combining the present value of the adjusted payment and possible proportions that the 

physician could likely to invest in incentives, Figure 34 shows the minimum and maximum total 

incentives of the three conditions. 
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Figure 33. Present Value of Adjusted Payment ($) 

 

      

 

Figure 34. Incentives Range ($) 
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      When assessing the cost of the physician’s enrollment, we estimate the rewards patients can 

get from achieving level 5 MA because it is our desired outcome with intervention. We vary the 

number of doses a patient should take within a day from 1 to 3. Following the estimation of the 

effectiveness of PR, we assign full reward as $0.1 per dose and reduced reward as $0.05 per dose 

in our evaluation. We use the mean hourly wage of a registered nurse to calculate the cost of 

extra work hours, and assume each patient adds ½ hour extra work per month to the nurse. The 

cost of rewards and extra work per patient according to different intervention period is listed in 

Table 20. 

      Comparing the cost and discounted adjusted payment, we can estimate the number of patients 

that the physician could support (Table 21). If the physician’s initial performance score lies in 

the positive adjustment range (45 to 84.99), the earned adjusted payment will be low, and it will 

not be enough to use as incentives for patients if the intervention period lasts from 3 months to 1 

year. Therefore, the physician is unlikely to adopt the intervention to assist the treatments for 

patients. However, if the physician’s initial performance score lies in the exceptional adjustment 

range (≥ 85), the amount earned in adjusted payment could at least support one patient even if 

the increased score is 5 points, and only 20% of the payment is used.  

      Align with our analysis of patients with diabetes, the most recent physician payment data of 

2017 from CMS’s Medicare Provider Utilization and Payment Data13 shows among the average 

number of Medicare Part B beneficiaries identified with diabetes is 211 for each endocrinologist. 

The adjusted payment of 15 points increase can cover the cost for up to ½ of those patients in 

one-month intervention period if 50% of it is used, and it may support all the patients if we only 

provide incentives to patients with low MA, such as level 1 and level 2.  

 
13 Data access: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier2017 

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier2017
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier2017
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      From these models and results, we can conclude that: 

• Physicians who have an initial score lies in positive adjustment range are unlikely to 

support the intervention. 

• Physicians who have an initial score lies in exceptional adjustment range are likely to 

support the intervention.  

• Physicians who want to avoid or reduce penalties are likely to support the intervention. 

• More resources should be utilized in addition to the physician’s input to ensure the 

intervention can work for a full year.  

 

Intervention 

period 

Extra work 

cost 

# of doses per 

day 

Min reward amount 

for level 5 MA 

Max reward amount 

for level 5 MA 

1 year $223.44 1 $14.60 $36.50 

  2 $29.20 $73.00 

  3 $43.80 $109.50 

½ year $111.72 1 $7.20 $18.00 

  2 $14.40 $36.00 

  3 $21.60 $54.00 

3 months $55.86 1 $3.60 $9.00 

  2 $7.20 $18.00 

  3 $10.80 $27.00 

1 month $18.62 1 $1.20 $3.00 

  2 $2.40 $6.00 

  3 $3.60 $9.00 

Table 20. Cost of Intervention from Healthcare Provider’s Side 
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Increased 

score 

Proportion of 

adjusted 

payment 

Intervention period 

1 year ½ year 3 months 1 month 

Min # of 

patients 

can be 

sponsored 

Max # of 

patients 

can be 

sponsored 

Min # of 

patients 

can be 

sponsored 

Max # of 

patients 

can be 

sponsored 

Min # of 

patients 

can be 

sponsored 

Max # of 

patients 

can be 

sponsored 

Min # of 

patients 

can be 

sponsored 

Max # of 

patients 

can be 

sponsored 

5 10% 0 0 0 1 0 2 0 7 

20% 0 1 0 2 0 4 0 14 

30% 0 1 0 3 0 7 1 21 

40% 0 2 0 4 0 9 1 28 

50% 0 3 0 5 0 11 1 35 

10 10% 0 1 0 2 0 4 0 14 

20% 0 2 0 4 0 9 1 28 

30% 0 3 0 7 0 14 2 42 

40% 0 4 0 9 0 18 2 56 

50% 0 5 0 11 1 23 3 70 

15 10% 0 1 0 3 0 7 0 21 

20% 0 3 0 7 0 14 1 42 

30% 0 5 0 10 0 21 2 63 

40% 0 7 0 14 1 28 3 84 

50% 0 8 0 17 1 35 4 105 

Table 21. Number of Sponsored Patients 
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Chapter 9. Conclusion 

       The prevalence of chronic diseases leads to a great financial burden on the US healthcare 

system. Despite significant efforts and investments, the quality of chronic disease management 

has been less than satisfactory. The management of chronic diseases requires effective and 

efficient interactions from multiple components. The Chronic Care Model illustrates how the six 

components, communities of resources and policies, healthcare organization, self-management 

support, decision support, delivery system design, and clinical information system, should be 

implemented to facilitate high-quality chronic disease management (Wagner 1998). Providing 

sufficient self-management support lies in the center of the model. Self-management emphasizes 

the active role of patients themselves and their family members in making disease-related 

decisions. It has been identified to be critical to achieving better outcomes.  

        One component which influences the engagement of healthcare providers in supporting 

patients’ self-management is currently under major transformation. The payment structure of 

clinicians is changing from rewarding the number of services they provide into rewarding the 

quality of service outcomes. Physicians can receive positively adjusted reimbursement if their 

performance is beyond the threshold and will receive the negative adjustment if their 

performance is below the threshold. Also, with the rapid development of related technologies 

and devices, and the improvements in data transmission standards and specifications, m-health 

has facilitated patients’ self-management as well as collecting patient-generated data and 

integrate them into EHRs.  

         As a critical task in patients’ self-management, there is a need to keep MA beyond 80% 

with higher rates for certain diseases or conditions (Osterberg and Blaschke 2005). How to attain 

the level has received researchers and healthcare professionals’ attention for years. Various 



103 

formats of intervention have been developed and examined for their effectiveness and cost-

effectiveness. M-health is one of the practical and inexpensive solutions to help track and 

promote patients’ medication intake behaviors. However, reinforcements delivered through m-

health were less studied in previous research, let alone the characteristic of users’ dependency on 

mobile phones that provides a natural way to implement negative reinforcement by cutting the 

accessibility to the social media or entertainment Apps. Also, the lack of theoretical support in 

design, and short-term tests both decrease the evaluation results’ reliability. In addition, the 

choices from healthcare providers in supporting the interventions were seldomly discussed.   

       Thus, in this paper, we present, evaluate, and validate a novel mobile health intervention, 

Carrot & Stick (C&S), to support patients’ decisions to take medication doses and to reinforce 

behavior changes. Our design of C&S is innovative in several ways:  

1) It integrates PR and NR with previously validated reminders and social connection 

elements into a composite intervention. The NR provides the opportunity to influence the 

behaviors of the patients who understand they should follow the prescription instructions 

but choose not to.  

2) Every functionality in our design is based on theories. It increases the reliability of results 

on the effectiveness of our design using the analytical model. 

3) The ten scenario components illustrate different applications of the intervention, and the 

identified suitable patient type and the cost-effectiveness of those components provide 

decision support for both patients and healthcare professionals.  

4) The use of two reminder windows, as well as association to the wireless electronic 

medication container, leads to the maximum avoidance of forgetting, overdosing, and 

taking doses at the wrong time.  
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Section 9.1 Research Contributions  

       We contribute with the above innovations as well as through the results of our analysis. 

From the results of the analytical model, the patient’s probability of achieving expected MA is 

significantly increased after utilizing the composite intervention. Even reminders and PR alone 

can be effective in promoting MA, but NR can still assist. Patients adopt better medication intake 

habits when they engage to avoid NR compare to the situation that they only pursue to 

accumulate PR. Also, according to our simulation model, whose input was based on analyzing 

healthcare expenditures data, healthcare savings due to higher MA are significant. Our 

intervention can assist patients in saving more than $600 per year per person. 

       For healthcare providers’ involvement in the intervention, we examined their choices based 

on the current large scale pay-for-performance program. We find that if the physicians are doing 

exceptional in the performance measures, they are more likely to invest in promoting patients’ 

outcomes to receive even higher payment adjustment. Moreover, if the physicians are currently 

below the performance threshold, they are likely to invest in order to reduce or fully avoid the 

negative adjustment. However, if the physicians are doing moderate well, they are less likely to 

enroll actively because the increase in adjusted payment is shown to be lower than the cost. 

Section 9.2 Limitations 

        We note several limitations of the present study. First, we choose the average MA as our 

primary and single outcome measurement. This measurement has its weakness in reflecting the 

patterns of patients’ medication intake behavior, which is also an important factor affecting 

medications’ efficacy. Future work can use alternative measurements, including the longest 

uninterrupted period of medication adherence, to examine the effectiveness of C&S. Second, in 

our estimation of savings due to our intervention, we only include the savings in the direct 
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healthcare expenditures but not the indirect expenditures such as the reduction of work 

productivities and the absent workdays. This is because of the low response rate of related 

questions in our dataset. Also, the absence of controlling insurance coverage status of the 

patients is due to the same reason. More supplement data can be included in the future to form a 

more robust estimation. The third limitation pertains to the application and comparison of 

scenarios. We follow pre-established patient types and compare those scenarios within segments, 

while more work can be done to explore patient categories according to their reactions to our 

intervention and develop the comparisons across different segments. The final limitation is that 

even though the design of our model leverages the intelligence from well-established theories, 

we have not contributed to extending them. Further support from empirical data could be added 

to develop or extend concrete theories in future work. 

      In summary, as an intervention with functionalities designed based on theories and the 

first one which integrates both positive and negative reinforcements with reminders and social 

support, our work can lead to the implementation of different intervention types and their 

combinations to improve MA among both willing and unwilling patients with chronic diseases.  
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Appendix A. Promoting Interoperability Category of MIPS 

Measurement Measurement Description 

Clinical Data Registry Reporting The MIPS eligible clinician is in active engagement to submit data to a clinical data registry. 

 

e-Prescribing At least one permissible prescription written by the MIPS eligible clinician is queried for a drug 

formulary and transmitted electronically using certified electronic health record technology 

(CEHRT). 

 

Electronic Case Reporting The MIPS eligible clinician is in active engagement with a public health agency to electronically 

submit case reporting of reportable conditions. 

 

Immunization Registry Reporting The MIPS eligible clinician is in active engagement with a public health agency to submit 

immunization data and receive immunization forecasts and histories from the public health 

immunization registry/immunization information system (IIS). 

 

Provide Patients Electronic Access to 

Their Health Information 

For at least one unique patient seen by the MIPS eligible clinician: (1) The patient (or the patient-

authorized representative) is provided timely access to view online, download, and transmit his or her 

health information; and (2) The MIPS eligible clinician ensures the patient's health information is 

available for the patient (or patient-authorized representative) to access using any application of their 

choice that is configured to meet the technical specifications of the API in the MIPS eligible 

clinician's CEHRT. 

 

Public Health Registry Reporting The MIPS eligible clinician is in active engagement with a public health agency to submit data to 

public health registries. 

 

Query of the Prescription Drug 

Monitoring Program (PDMP) 

For at least one Schedule II opioid electronically prescribed using CEHRT during the performance 

period, the MIPS eligible clinician uses data from CEHRT to conduct a query of a Prescription Drug 

Monitoring Program (PDMP) for prescription drug history, except where prohibited and in 

accordance with applicable law. 

 

Support Electronic Referral Loops by 

Receiving and Incorporating Health 

Information 

For at least one electronic summary of care record received for patient encounters during the 

performance period for which a MIPS eligible clinician was the receiving party of a transition of care 

or referral, or for patient encounters during the performance period in which the MIPS eligible 

clinician has never before encountered the patient, the MIPS eligible clinician conducts clinical 

information reconciliation for medication, medication allergy, and current problem list. 
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Syndromic Surveillance Reporting 

 

The MIPS eligible clinician is in active engagement with a public health agency to submit syndromic 

surveillance data from an urgent care setting. 

 

Verify Opioid Treatment Agreement For at least one unique patient for whom a Schedule II opioid was electronically prescribed by the 

MIPS eligible clinician using CEHRT during the performance period, if the total duration of the 

patient's Schedule II opioid prescriptions is at least 30 cumulative days within a 6-month look-back 

period, the MIPS eligible clinician seeks to identify the existence of a signed opioid treatment 

agreement and incorporates it into the patient's electronic health record using CEHRT. 

 

Note: Table is organized based on the Promoting Interoperability category of MIPS 2020 measures 
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Appendix B. Included Articles in Literature Review 

    Article Disease Type Type of Study Key Findings Intervention Type 
(Strandbygaard 

et al. 2010) 

 

Asthma 

 
Randomized controlled trail for 12 weeks. 

Intervention group (n = 13)  received SMS 

reminder daily to follow the regimen of  anti-

asthmatic. Control group (n = 13) does not 

receive messages. 

Adherence rate in treatment group was 

significantly higher than control group. But no 

significant differences were observed between the 

two groups for the clinical outcomes, such as lung 

function and airway responsiveness . 

SMS  
 

(Shetty et al. 

2011) 

 

Diabetes 

 
Randomized controlled trail for 12 months. 

Intervention group (n = 78)  received SMS 

once every 3 days as a reminder to strictly 

follow the regimen of dietary modification, 

physical activity, and medication schedules. 

Control group (n = 66) does not receive 

messages. 

Adherence rate to diet prescription did not change 

significantly in either group during trail period, 

and post 12 months. Adherence to physical 

activity improved, but the change was statistically 

nonsignificant. 

SMS 
 

(Vervloet et al. 

2012) 

 

Diabetes 

 
Random controlled trail for 6 months. 

Intervention group (n = 56). 

receives medications in the real time 

medication monitoring (RTMM) dispenser 

and receives SMS reminder if medication 

intake was not registered within the agreed 

time period. Control group (n = 48) receives 

RTMM but no SMS. 

Groups did not differ significantly in the average 

number of days without dosing. Intervention 

group patients missed 5% fewer doses than 

patients in control group, but the difference is not 

significant. Patients in intervention group took 

significantly more doses within the agreed time 

period compared to control group. 

SMS and electronic 

medication 

monitoring device 

(Zolfaghari et 

al. 2012) 

 

Diabetes 

 

Random controlled trail for 3 months. 

Intervention group (n = 38) receives around 6 

SMS messages per week with information on 

diet, exercise, medication intake, BG 

monitoring, and stress management. Control 

group (n = 39) receives telephone follow up. 

There was no significant difference in diet, 

physical exercise, and medication intake 

adherence in either group. 

SMS  

(Khonsari et al. 

2015) 

 

Coronary 

heart disease 

 

Random controlled trail for 8 weeks. 

Intervention group (n = 31) receives 

automated SMS reminders 

before every intake of cardiac medications. 

Control group (n = 31) receives usual care. 

Intervention group has significantly higher 

medication adherence level than the control 

group. Risk of being low adherent among the 

control group was significantly greater than the 

intervention group. 

SMS 

(Park et al. 

2015) 

 

Coronary 

heart disease 

 

Random controlled trail for 30 days. Two 

intervention groups, one receives (n = 30) 

SMS of educational messages only, the other 

one (n = 30) receives SMS of medication 

reminders and educational messages. Control 

group (n = 30) receives no SMS. 

Medication self-efficacy improved over 30 trial in 

the intervention groups, but there was no 

significant difference between the two 

intervention groups in this improvement. 

Less depression and higher social support 

significantly predict higher medication adherence 

SMS and electronic 

medication 

monitoring device. 
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after controlling for other variables (e.g. age, 

education). 

(Park et al. 

2014) 

 

Coronary 

heart disease 

 

Random controlled trail for 30 days. Two 

intervention groups, one receives (n = 30) 

SMS of educational messages only, the other 

one (n = 30) receives SMS of medication 

reminders and educational messages. Control 

group (n = 30) receives no SMS. 

Self-reported adherence revealed no significant 

differences among groups but patients in 

intervention group had significant higher rate of 

correct doses taken and significant higher 

proportion of doses taken on time.  

SMS and electronic 

medication 

monitoring device. 

(Quilici et al. 

2013) 

 

Coronary 

heart disease 

 

 

Random controlled trail for 1 month. 

Intervention group (n = 250) receives 

standard care and daily personalized SMS. 

Control group (n = 249) receives standard 

care and educational sessions highlighting the 

importance of adherence to 

recommendations. 

Intervention group had significant higher 

medication adherence than control group. 

SMS 

(Brath et al. 

2013)  

Diabetes, 

hypertension 

 

Randomized crossover study for 40 weeks. 

Two test groups: one group (n = 25) starts 

with intervention phase and then non-

intervention phase, another group (n = 28) 

enrolls in reverse sequence. 

M-health-based adherence management is feasible 

and well accepted by patients. It helps to increase 

adherence and lead to improved control of 

indicators including blood pressure and 

cholesterol concentrations.  

Mobile App 

associates with  

electronic 

medication 

monitoring device 

(Cook et al. 

2015)  

HIV 

 

Randomized crossover study for 4 weeks. 

The group (n = 37) receives tailored text 

messages during intervention period, and 

receives untailored text messages during 

control period.  

No difference on adherence rate whether 

messages are personalized or not. 

SMS and electronic 

medication 

monitoring device 

(Arora et al. 

2014) 

 

Diabetes 

 

Random controlled trail for 6 months. 

Intervention group (n=64)  receives 2 daily 

text messages. Control group (n=64) receives 

usual care. 

Self-reported medication adherence improved 

significantly in the intervention group compared 

with a net decrease in the control group.  

SMS  

(Yu et al. 2015)  

 

Chronic 

diseases 

 

Pretest and posttest about the intervention of 

social prompting system, which  combines 

ubiquitous sensors in the smart home and 

mobile social networks.  

Elderly people show more stable medication 

intake behavior after social prompting 

intervention. They are willing to share their 

profile but not their medication loggers with 

others in the same community.  

Mobile App enabled 

ubiquitous sensors 

and social network 

interactions  

(McGillicuddy 

et al. 2015)  

Hypertension 

 

Follow up study on 3, 6, and 12 months  after 

the complete of 3-months intervention. 

Intervention group (n = 9) involves in using a 

mobile app for self-management. Control 

group (n = 9) receives usual care. 

Short term intervention shows significant 

improvement on medication adherence while it is 

lasting. Also, it shows significant difference 

between two groups at the 12-month post-

intervention clinic visits. 

Mobile App 
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(Singh and 

Varshney 2014)  

Chronic 

diseases 

 

Evaluation and comparison of different kinds 

of wireless interventions 

Two main findings: (1) reminders can improve the 

pattern and average value 

of medication adherence but may lead to 

undesirable drug events; (2) context-aware 

reminders can improve both the pattern and 

average value of adherence without increasing the 

undesirable drug events. 

SMS 

(Bobrow et al. 

2016) 

 

 

Hypertension 

 

Randomized controlled trail for 5 months. 

Two intervention groups, one group (n=457) 

receives information-only SMS, the other one 

(n=458) receives interactive SMS. Control 

group (n=457) receives usual care. 

Two intervention groups both showed average 

lower blood pressure after 12 months of the 

beginning of trail than control group. Group 

received information only messages showed lower 

average blood pressure than group received 

interactive messages.  

SMS  

(Mertens et al. 

2016a) 

 

Coronary 

heart disease 

 

Crossover study for 56 days. 24 patients use 

tablet app during interventional phase for 28 

days and use paper diary during control phase 

for 28 days. 

Using app to track medication adherence can 

induce higher medication adherence rate among 

elderly patients undergoing rehabilitation than 

using diary. 

Mobile App 

(Yeung et al. 

2017) 

 

Diabetes, 

coronary 

heart disease, 

and 

hypertension  

Quasi-experiment with 34 patients receiving 

intervention and examined medication 

adherence after 180 days of intervention. The 

intervention is educational message. 

Patients in intervention group have significant 

higher medication adherence compared with their 

matched controls. 

Disease specific 

flashcards and QR-

coded prescription 

bottles for disease 

and medication 

education 

(Myoungsuk 

2019) 

 

Hypertension  

 

 

Randomized controlled trail for 3 months. 

The study has three intervention groups and 

one control group. The control group (n = 31) 

receives usual care. One intervention group 

(n = 30) receives coach phone call, one 

intervention group (n = 32) receives 

educational text messages, the other one 

intervention group (n = 31) receives coaching 

phone call and text messages.  

Phone-based health-coaching with text messages 

was effective in improving medication adherence 

and self-management behavior as compared to 

text messages only. There were also 

improvements in medication adherence and self-

management behavior in the text messages group 

as compared to the control group. 

SMS and health 

coaching call 

(Chandler et al. 

2019) 

 

Hypertension 

 

Randomized controlled trail for 9 months. 

The study focuses on Hispanic adults. 

Intervention group (n = 26) uses mobile app 

for self-monitoring. Control group (n = 28) 

receives educational text messages. 

At 1, 3, 6, and 9-month points, the group uses 

self-monitoring mobile app has significant higher 

MA as well as significant lower controlled 

systolic blood pressure than the group which 

receives educational text messages.  

SMS, mobile App 

that associated with 

electronic 

medication 

monitoring device 

(Márquez 

Contreras et al. 

2019) 

Hypertension 

 

Randomized controlled trail for 12 months. 

Treatment group (n = 77) uses a mobile app 

to promote health education and reminder of 

At 6 and 12 month-month points, the treatment 

group has significant higher daily MA and 

Mobile App 
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 appointments. Control group (n = 77) 

receives usual care. 

significant higher percentage of controlled blood 

pressure patients. 

(Kamal et al. 

2018) 

 

Coronary 

heart disease 

 

Randomized controlled trail for 3 months. 

The intervention group (n = 99) receives 

daily interactive voice call, daily tailored 

medication reminders, and weekly lifestyle 

modification messages. Control group (n = 

98) receives usual care. 

There is no significant improvement in MA has 

been found between intervention group and 

control group after 3 months intervention.  

Interactive voice 

call, SMS  

(Mohan et al. 

2018) 

 

Asthma 

 

Randomized controlled trail. The study 

assesses and compares the effectiveness of 

reminder cards and a reminder mobile 

application to improve the MA of asthma 

patients. Both groups have 50 patients.  

Both reminder card system and reminder mobile 

app increase patients’ MA significantly. But the 

mobile app makes more significant difference. 

Mobile App  

(Schnall et al. 

2018) 

 

HIV 

 

Randomized controlled trail for 12 weeks. 

Test sample is low income persons with HIV. 

The intervention group (n = 40) uses mobile 

app on improving MA and symptom 

management. Control group (n = 40) receives 

usual care.  

Participants in the intervention group showed 

greater improvement in adherence to their 

antiretroviral medications as compared to those in 

the control group in the 12-week trial. 

Mobile App, 

monetary incentive. 

(Mayberry et 

al. 2019) 

Diabetes 

 

Pretest and posttest study. The study assesses 

the effects of out-of-home social support on 

type 2 diabetes patients’ (n = 313) medication 

adherence, diabetes distress, and HbA1c.  

Greater emotional closeness with out-of-home 

social connections was associated with a higher 

medication adherence and lower diabetes distress. 

More frequent contacts with out-of-home social 

supporter was associated with better HbA1c 

among patients with a family supporter but with 

worse HbA1c among patients without family 

supporter. 

Mobile App. 

(Serlachius et 

al. 2019) 

Gout 

 

Randomized controlled trial for 2 weeks. 

Treatment group (n = 36) uses a mobile app 

which targets on gout patients to facilitate 

self-management. Control group (n = 36) 

uses a dietary app.  

Participants engaged more in using gout app for 

self-management, while no significant difference 

was found between two groups’ self-care 

behaviors such as medication adherence within 

the two-weeks trial and two-weeks follow up.  

Mobile App. 
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Appendix C. Prescribed Medication List 

Medication Class Multum Medication Name Whether Have Records 

(Y/N) 

Sulfonylureas Glipizide Y 

 Glyburide Y 

 Gliclazide N 

 Glimepiride Y 

 Tolbutamide N 

Meglitinides Repaglinide N 

 Nateglinide N 

Biguanides  Metformin Y 

Thiazolidinediones Rosiglitazone N 

 Pioglitazone Y 

α-Glucosidase inhibitors Acarbose N 

 Miglitol N 

 Voglibose N 

GLP-1 analogs Exenatide Y 

 Liraglutide Y 

 Albiglutide N 

 Dulaglutide Y 

DPP-4 inhibitors sitagliptin Y 

 Saxagliptin Y 

 vildagliptin N 

 Linagliptin Y 

 Alogliptin N 

SGLT2 inhibitors Dapagliflozin Y 

 Canagliflozin Y 

 Empagliflozin N 
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Appendix D. Simulation Input Parameters 

Parameter R name Value 
Time horizon n.t 5 y 

Cycle length cl 1 y 

Number of simulated individuals n.i 10,000 or 100,000 

Names of health states v.N L1, L2, L3, L4, L5 

Annual cost discount rate i.c 0.018 

Annual transition probabilities   

       Level 1 to level 2 MA p.L1L2 0.16 

       Level 1 to level 3 MA p.L1L3 0.12 

       Level 1 to level 4 MA p.L1L4 0.18 

       Level 1 to level 5 MA p.L1L5 0.16 

       Level 2 to level 1 MA p.L2L1 0.10 

       Level 2 to level 3 MA p.L2L3 0.14 

       Level 2 to level 4 MA p.L2L4 0.19 

       Level 2 to level 5 MA p.L2L5 0.15 

       Level 3 to level 1 MA p.L3L1 0.06 

       Level 3 to level 2 MA p.L3L2 0.03 

       Level 3 to level 4 MA p.L3L4 0.13 

       Level 3 to level 5 MA p.L3L5 0.24 

       Level 4 to level 1 MA p.L4L1 0.05 

       Level 4 to level 2 MA p.L4L2 0.16 

       Level 4 to level 3 MA p.L4L3 0.20 

       Level 4 to level 5 MA p.L4L5 0.23 

       Level 5 to level 1 MA p.L5L1 0.01 

       Level 5 to level 2 MA p.L5L2 0.08 

       Level 5 to level 3 MA p.L5L3 0.13 

       Level 5 to level 4 MA p.L5L4 0.25 

Annual healthcare expenditures   

       Individuals in L1 MA c.L1 8380 

       Individuals in L2 MA c.L2 8121 

       Individuals in L3 MA c.L3 7188 

       Individuals in L4 MA c.L4 6786 

       Individuals in L5 MA c.L5 6592 

       Annual increase with each additional cycle year c.ad 180 

Utility of intervention   

       Utility for individuals in L1 u.In1 1.5 

       Utility for individuals in L2 u.In2 1.4 

       Utility for individuals in L3 u.In3 1.3 

       Utility for individuals in L4 u.In4 1.2 

Time varying extension   

       Intervention effect modifier at baseline v.x Uniform (0.9,1.1) 

       Utility decrement of individuals with every additional year ru 0.03 
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