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ABSTRACT 

APPLICATION OF EPIDEMIOLOGIC METHODS TO INVESTIGATE THE 

HETEROGENOUS IMPACT OF COVID-19 

By 

SUSHMA DAHAL 

 

Epidemiologic methods have been critical in shedding light on the dynamics and impact of the 

COVID-19 pandemic, including monitoring and quantifying morbidity and mortality over time 

to guide prevention and mitigation strategies. Here we apply different epidemiologic methods 

across different geospatial levels, population groups, and time scales to investigate the impact of 

COVID-19 using epidemiological data from Mexico. 

In the first study, we assess the mortality impact of the COVID-19 pandemic by estimating 

absolute and relative excess mortality above an expected level of deaths and employ a 

generalized logistic growth model to generate short-term forecasts of excess mortality. We also 

evaluate the association between the excess mortality rate and the use of hashtag terms indicating 

death in tweets from Mexico. In the second study, we expand the estimation of the excess 

mortality rate per 10,000 population from the national level to the ‘federal entity’ level in 

Mexico and use multiple linear regression analysis and spatial lag models to assess the factors 

associated with excess mortality rate. In addition, we use functional data analysis to compare, 

cluster, and summarize the excess mortality growth rate curves. In the third study, we compare 

the COVID-19 mortality rates and investigate the transmission dynamics among indigenous and 

non-indigenous populations in Mexico by using different methods such as estimation of person-

time mortality rates, Cox Proportional Hazards regression, and instantaneous reproduction 

number (Rt) over a weekly sliding window as well as for the early ascending phase of four 

different waves of COVID-19 among the two subpopulations.  

The results from these studies indicate that Mexico was heavily affected by the COVID-19 

pandemic, with central states exhibiting the highest excess mortality rates. The aging index, 

marginalization index, and average household size explained the variability in excess mortality 

rates across federal entities. The indigenous status was found to be a significant risk factor for 

COVID-19 mortality, with a 68% higher mortality among indigenous groups compared to non-
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indigenous. Overall, the three studies presented here demonstrate the power of different 

epidemiologic methods to gain insights on the heterogenous impact of the COVID-19 pandemic. 
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Chapter 1 

1.1. Literature Review and Statement of Purpose  

The novel coronavirus disease 2019 (COVID-19) outbreak caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) started in December 2019 in the seafood and 

poultry market in Wuhan, China. The first reported death due to this novel disease was on 

January 11, 2020 which was within a month of the report of the outbreak, and soon after on 

January 30, 2020, it was declared a ‘public health emergency of international concern’ by the 

World Health Organization (WHO) (1). Since then, the disease has spread to nearly every 

country in the world and as of March 29, 2023, there have been 761,402,282 total confirmed 

COVID-19 cases and 6,887,000 COVID-19 deaths globally (2). The highest number of COVID-

19 confirmed cases have been reported from the European region (>274 millions), followed by 

the Western Pacific region (>201 millions), and the region of the Americas (>190 millions) (2). 

Likewise, the highest number of COVID-19 deaths have been reported from the region of 

Americas (>2.9 millions), followed by the European region (>2.2 millions), and Southeast Asia 

region (>800,000) (2). As of March 29, 2023, the top five countries with the highest number of 

reported COVID-19 deaths are United States of America (>1.1 million), Brazil (>699,000), India 

(>530,000), the Russian Federation (>397000), and Mexico (>333,000) (2). According to the 

data from Johns Hopkins University and Medicine (3), as of March 2023, Peru, Mexico, Ukraine, 

Iran, and Brazil were among the top countries most affected in terms of observed case fatality 

ratio (CFR) with the CFR of 4.9%, 4.5%, 2.1%, 1.9%, and 1.9% respectively. Likewise, Peru 

was the country with highest deaths per 100,000 population with the death rate of 665.85 

followed by the US (341.11), Chile (336.22), Brazil (328.98), and Poland (314.45).  

At the country level, several non-pharmaceutical interventions (NPIs) such as sealing 

country borders, school closure, wearing masks, social distancing, stay-at-home orders, etc. were 

implemented mainly during the initial waves of the pandemic to control the transmission of 

SARS-CoV-2. There were substantial between and within countries variations in both the levels 

of implementation as well as in the effectiveness of the implemented NPIs (4). In December 

2020, a breakthrough in COVID-19 control occurred when two mRNA vaccines Pfizer-

BioNTech and Moderna were granted Emergency Use Authorization (EUA) (5). However, there 
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is a wide country-level disparity and inequity in the COVID-19 vaccine rollout, suggesting large 

gaps mainly in low-income countries (6) that in turn affects the impact of the pandemic across 

different geographic locations and populations.  

Since the start of the COVID-19 pandemic in 2019, researchers around the world have 

applied different epidemiologic methods to study its epidemiology, to monitor and quantify the 

mortality and morbidity burden of the pandemic, and to guide the actions to slow the spread and 

minimize the impact of the pandemic. Some of the common epidemiologic approaches used to 

assess the impact of past infectious disease pandemics such as the 1918 influenza pandemic and 

the 2009 H1N1 pandemic include assessment of the spatiotemporal distribution of cases and 

severe outcomes such as hospitalizations and deaths, assessment of age and gender patterns in 

cases and disease severity, estimation of transmission potential using the reproduction number, 

assessment of factors associated with the outcome, estimation of all-cause excess mortality rate 

above an expected level of death, and assessment of the effectiveness of public health 

intervention using mathematical models (7-12). Real-time forecasting the trajectory of an 

ongoing outbreak or pandemic using mathematical models is another important approach 

employed during an infectious disease outbreak that can provide a more complete picture of its 

transmission dynamics, help guide the resource allocation decision, and inform public health 

interventions during the outbreak (13-17). Here we apply different epidemiologic methods across 

different geospatial levels, population groups, and time scales to investigate the impact of 

COVID-19. In the three studies included in this dissertation, we utilize big epidemiologic data 

from Mexico which is one of the countries that was highly affected by the COVID-19 pandemic 

both in terms of the reported number of COVID-19 cases and deaths (2).  

When an outbreak or a pandemic such as the COVID-19 is ongoing, different factors such as 

low testing rates, imperfect sensitivity of the tests, reporting delays, misclassification of the 

cause of death, increase in deaths from other causes not related to the outbreak, etc. pose 

challenges in estimating the true mortality burden of the pandemic (18). In such condition, 

compared to the observed number of deaths due to pandemic, estimating excess mortality above 

an expected level of death (detailed methods explained in paper 1) is considered as a more 

comprehensive measure of the total mortality impact of the pandemic because it includes both 

the direct (confirmed as well as not reported or incorrectly classified) and indirect deaths that are 
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attributable to the pandemic (18, 19). These indirect deaths include deaths due to denied or 

delayed care (20, 21), the disruption of the health care system due to pandemic (22), mental 

health conditions such as suicide (23), etc. In the first paper, we aim to estimate the excess 

mortality rate per 10,000 population at the national level and by sex, and for major geographic 

locations in Mexico. In the second paper, we aim to estimate the excess mortality rate at the 

subnational level for federal entities in Mexico and assess the factors associated with the excess 

mortality along with some additional analysis such as functional data analysis.  

There has also been a substantial disparity in the effect of the COVID-19 pandemic on 

certain segments of the population such as racial and ethnic minority groups. When considering 

the past pandemics such as the 1918 influenza pandemic and the 2009 H1N1 pandemic, 

indigenous populations have been disproportionately affected in terms of infection, and disease 

severity including death. For example, during the 1918 influenza pandemic, the 

Māori population in New Zealand had a death rate 7.3 times that of the European populations 

(24). Likewise, American Indians and Alaska natives were four times more likely to die than the 

non-indigenous populations during the 2009 H1N1 pandemic (25). However, during the COVID-

19 pandemic, initial studies have shown mixed results. For example, initial data from the USA, 

and Brazil suggest that indigenous populations are at a higher risk of COVID-19 infection and 

death compared to non-indigenous whereas the data from Canada, Ecuador, and Australia 

suggest the opposite (26). Since these studies included only the initial period of the COVID-19 

pandemic, a better understanding of the situation can be obtained by assessing the differences in 

the mortality and morbidity outcome for the subpopulations for different time periods by using 

epidemiologic data of a longer period. Besides, there have also been limitations in the number of 

countries collecting and making public the COVID-19 data among indigenous populations (27, 

28).  Therefore, in the third study, I aim to assess the heterogenous impact of COVID-19 among 

indigenous and non-indigenous populations in Mexico. This is even more relevant because 

Mexico is also a country in the Americas with the largest number of indigenous people (28).  

Over the three studies, major epidemiologic methods that we used are the estimation of 

excess mortality rate and excess mortality rate ratio using Serfling regression analysis, short-term 

forecasting of excess deaths using a generalized logistic growth model, correlation analysis of 

social media data and death data during the pandemic, multiple linear regression analysis to 
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assess the factors explaining subnational variability in excess death rate, cluster analysis to 

identify the clusters of states with similar shapes of the excess mortality growth rate curves, tests 

for spatial autocorrelation and a spatial lag regression model to assess spatial dependence of 

excess mortality rates at federal entities in Mexico, estimation of person-time mortality rate and 

rate ratio among indigenous and non-indigenous populations, survival analysis using Cox 

proportional hazards regression models, and the estimation of instantaneous reproduction 

number (Rt). 

Study 1.  

The first paper used weekly total mortality data from 2015 to 2020 for Mexico to 

characterize the all-cause excess mortality patterns during the COVID-19 pandemic in 2020 by 

estimating all-cause excess mortality rates per 10,000 population at the national level and by 

gender and for geographic areas categorized as Mexico City vs other federal entities. Short term 

forecasts of total excess deaths for the first four weeks of 2021 in Mexico were also estimated 

using a generalized logistic growth model. Excess mortality rates and rate ratio over baseline 

were estimated by fitting Serfling regression models. The study also assessed the trend of 

people’s engagement with death chatter using hashtag terms such as death, dead, deceased etc. in 

social media Twitter from 2018 to 2020 in Mexico and then assessed the correlation of 

proportion tweets involving death chatter out of total tweets with excess mortality rate and covid-

19 mortality rate.  

Study 2. 

The second paper estimated the excess mortality rate at the federal entity level in Mexico by 

using all-cause mortality data. Data on socio-demographic, climate, and population 

characteristics such as population density, aging index, average household size, marginalization 

index, climate type, rate of depression, and public spending on health was also utilized to assess 

whether these factors can explain the variability in excess death rate across the subnational level 

using multiple linear regression analysis. In addition, spatial autocorrelation and spatial lag 

model were also employed to assess the spatial dependence of the excess mortality rates. 

Functional data analysis was used to characterize the shape of the growth rate curve of the excess 

death rates of 32 federal entities including Mexico City and a total of four clusters of federal 

entities were classified based on the shapes of the growth rate curve. To our knowledge, this type 
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of clustering analysis has not been previously reported for excess mortality data during an 

ongoing epidemic.  

Study 3. 

The third paper used de-identified publicly available data on lab-confirmed RT-PCR-

positive COVID-19 cases and deaths from February 2020 to March 2022, from the Ministry of 

Health of Mexico to estimate the mortality rate per 1000 person-weeks and mortality rate ratio 

among indigenous and non-indigenous populations separately at the national level as well as at 

federal entity level including Mexico City. These estimates were also calculated by year and for 

each of the four waves of the COVID-19 pandemic in Mexico separately for the indigenous and 

non-indigenous populations. We also estimated correlation coefficients for the proportion of 

indigenous populations and the estimated rate ratio for the federal entities. In the study, for the 

death cases, person time was calculated as the difference between the date of symptom onset and 

the date of death whereas for the censored cases the person time was defined as the difference 

between the date of symptom onset and the predefined cut-off date. In addition, multivariate Cox 

proportional hazards regression models were employed to assess the hazard ratio of COVID-19 

deaths among indigenous compared to the non-indigenous for the total study duration as well as 

for each of the four waves of the pandemic. The study also estimated the instantaneous 

reproduction number (Rt) over a weekly sliding window from the start until the end of the study 

period as well as the average reproduction number during the early ascending phase of each of 

the four waves of the COVID-19 pandemic for indigenous and non-indigenous populations. 

These three papers as a group contribute to literature in numerous ways. They primarily 

aim to explore the mortality impact of COVID-19 pandemic at the national level, federal entity 

level and for multiple subgroups of population including the indigenous groups and at different 

time periods as the pandemic progresses in the country. The results from the study can be 

valuable in not only quantifying the mortality impact of the pandemic but also in improving the 

current understanding about the mechanism that can explain the heterogeneity in COVID-19 

mortality rate across spatial level and population subgroups. The findings from these studies can 

be important in guiding the preventive and control measures in an ongoing pandemic as well as 

for similar health emergencies in the future. Likewise, the three studies employ several 

epidemiological methods to address the study research questions ranging from estimation of 
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excess deaths to the estimation of hazard ratio of deaths. Therefore, these studies can also 

collectively be used as a reference to perform range of epidemiological analysis using different 

sets of data to explore the mortality impacts and to assess the transmission dynamics of 

infectious disease such as the COVID-19 pandemic. 

1.2. Study context: Mexico, officially called the United Mexican States, is situated in the 

southern part of North America and is one of the most populous countries in the world (10th rank 

as of 2020) (29) with 43.9 % and 8.5% population in 2020 living in poverty and extreme poverty 

respectively (30). The country is divided into 31 federal entities and the capital, Mexico City. In 

2020, at the national level among the population aged 15 years and above 4.7% were illiterate 

and 29.6% had incomplete basic education (31). The informal sector accounts for around 55% of 

the employment in the country (32). In the Americas, Mexico has the largest number of 

indigenous populations with 68 different languages and 364 counted dialect variations. 

According to 2015 intercensal survey, 21.50% of the total population self-identified as 

indigenous, 65% of whom were concentrated in 8 of the 32 entities (33).  

 The first confirmed case of COVID-19 in Mexico was reported on February 27, 2020 

(34). By the end of April 2020, the number of confirmed cases increased exponentially to 19224 

of which around 10% were deaths (34). In March 2020, WHO declared Europe as a new 

epicenter of the COVID-19 pandemic, with Italy having the highest number of cases after China 

(35). Soon after in May 2020, Latin America was the new epicenter in which countries such as 

Brazil, and Mexico were seeing the record number of COVID-19 cases and death tolls (36).  

To monitor the evolution of the COVID-19 pandemic, Mexico used a sample-based 

sentinel surveillance model which largely underestimated the true burden of COVID-19 cases 

and deaths in the country. The country followed a reactive rather than proactive approach to 

respond to the COVID-19 pandemic, leading to an unmanageable level of community spread of 

COVID-19 (37). For example, the government’s COVID-19 control strategies were focused on 

increasing hospital bed capacity rather than on active case finding through proactive testing, case 

identification and contact tracing (37). The government of Mexico determined three phases of 

the contingency plan to fight COVID-19: viral import phase, community transmission phase, and 

the epidemic phase (38). The first phase, which started on February 28, 2020, and ended on 

March 23, 2020, placed no restrictions on greeting between people, and public events were 
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permitted in all settings. As the number of COVID-19 cases increased rapidly and local clusters 

of infection started to appear, the second phase was implemented on March 24 and lasted until 

April 20, 2020. During this phase, events requiring large public gatherings were banned or 

restricted, the general population, especially the elderly (60 years and above), those with 

immunosuppressed conditions, those with certain diagnosis such as diabetes, arterial 

hypertension, etc. including pregnant and postpartum women, were advised to remain at home, 

and nonessential activities in all financial sectors of the country were suspended (34). With the 

evidence of active outbreaks and propagation of COVID-19 in the country, the start of third 

phase was declared on April 21, 2020, during which all non-essential activities in the public, 

private and social sectors were suspended (34). Soon after, in early June, Mexico started to 

reopen economic activities under a four-tiered biweekly traffic light monitoring system with the 

aim of alerting the residents to the epidemiological risks of COVID-19 and provide guidance on 

restrictions on certain activities at a state level in the country (39).  

Mexico with an under-resourced public health system, low testing rates, higher poverty 

levels, higher proportion of populations working in informal sector, higher number of indigenous 

populations, and lower COVID-19 vaccination rates is one of the highly affected countries 

throughout the pandemic which ranked second in terms of case fatality rate (CFR) (4.5%) 

preceded only by Peru (4.9%) as of March 2023 (3).  

During the end of 2020, Mexico was one of the countries with lowest number of COVID-

19 tests per capita with COVID-19 test rate of 27.31 per 1000 population compared to 769 per 

1000 population in the US (40). There was a wide heterogeneity in timing and rigor of 

implementation of public health and social measures across federal entities and municipalities. 

For example, at the state level, by early March 2021, the reverse transcription-polymerase chain 

reaction (RT-PCR)  and antigen test per 1000 population was as high as 189 in Mexico City, and 

as low as 4 in Chiapas. Of the 32 states, 13 had a testing rate less than 25, and 29 states had 

testing rates less than 50 per 1000 population (37). According to a study that analyzed the 

performance of states in public policies to respond to the COVID-19 pandemic, there was an 

absence of a uniform, coordinated, timely and rigorous national response and a wide variability 

in state level response (41). While states such as Jalisco, Nuevo Leon, Nayarit, and Colima 

performed better in implementing public policy index, states such as Campeche, Tabasco, and 
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San Luis Potos underperformed (41). By the end of 2021, 57% of the population were fully 

vaccinated against COVID-19 which increased to only 64% as of March 2023 (42). On this 

context, the three studies on this dissertation utilized data from Mexico to assess the impact of 

COVID-19 at national and subnational levels including population groups such as indigenous 

people and during different time periods. 
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Chapter 2  

Characterizing all-cause excess mortality patterns during COVID-19 pandemic in 

Mexico 

Citation: Dahal S, Banda JM, Bento AI, Chowell G. Characterizing all-cause excess mortality 

patterns during COVID-19 pandemic in Mexico. BMC Infectious Disease. 2021;21:432.   

2.1. Introduction 

SARS-CoV-2 continues to spread unabated in many parts of the world. In particular, 

Latin American countries are being heavily affected by the COVID-19 pandemic with a total of 

22,467,574 cases including 709,062 deaths as of March 12, 2021 [1].  Mexico, one of the highly 

populated countries in the world with approximately 42% of the people living in poverty [2], 

documented the first imported COVID-19 case on 27th February, 2020 and currently ranks 3rd in 

the world in terms of numbers of COVID-19 reported deaths, with a total of 192,488 recorded 

deaths (7.33% of total deaths globally) as of March 12, 2021 [1]. Delays in the implementation 

of social distancing interventions, mixed reactions towards the stay-at-home order 

recommendations, and phased reopening of the country have facilitated sustained transmission of 

COVID-19 in Mexico [3].  

Mexico has one of the lowest per-capita COVID-19 testing rates in the world with about 

17 tests per 1000 people in total [4]. The low testing rates, compounded by reporting delays, 

hinders the estimation of the mortality burden associated with the COVID-19 pandemic based on 

surveillance data alone. Instead, a more reliable picture of the effect of COVID-19 pandemic on 

mortality can be derived by estimating excess deaths above a baseline or expected level of death 

[5, 6]. These estimates can provide information about the deaths that are directly or indirectly 

attributed to the pandemic [6]. Indeed, some deaths could be misclassified as COVID-19 deaths, 

or some could be occurring in the context of overburdened health care systems. Thus, tracking 

all-cause mortality in near real time can help assess whether excess deaths are occurring during a 

specific period of time and spatial area [6].  
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Here we report our estimates of the absolute and relative mortality impact of the COVID-

19 pandemic in Mexico using cyclical Serfling regression models together with publicly 

available weekly all-cause mortality data from 2015 to 2020 by gender and for Mexico City and 

other areas of Mexico. Further, we collected and analyzed weekly twitter data from Mexico 

about ‘deaths’ during the COVID-19 pandemic in correlation with the excess all-cause death rate 

and COVID-19 death rate. We supplemented our analyses with social media data from Twitter, 

which has been found useful to interpret epidemiological trends [7]. In prior work, Google 

Trends, Wikipedia searches, and Twitter data have been used for predicting COVID-19 deaths 

[8]. Taking this data fusion approach even further, other researchers have used Twitter data, 

alongside smart thermometer data, up-to-date clinician search logs as well as Apple and Cuebiq 

mobility indices to build near-real time early warning systems for COVID-19 [9]. We also 

generated predictions of excess mortality for the first 4 weeks of January 2021 using generalized 

logistic growth model [10]. 

2.2. Methods 

2.2.1 Data: We obtained weekly all-cause death counts based on epidemiological weeks for 

Mexico which were also stratified by gender and geographic region from January to December 

2020 as well as for the preceding 5 years (2015-2019) in order to establish a baseline mortality 

level [11]. We accessed publicly available weekly mortality data available from National 

Institute of Statistics and Geography (INEGI) for the years from 2015 to 2018, and data available 

from National Population Registry (RENAPO) for the years 2019 and 2020 [11]. The last week 

of December 2020, also includes first 2 days of January 2021. To gauge the timing and relative 

intensity of the pandemic in Mexico, we examined surveillance data characterizing the weekly 

number of laboratory-confirmed COVID-19 cases and deaths, which were obtained from the 

official website of the Mexican Ministry of Health through the Directorate General of 

Epidemiology [12]. Population size estimates used to calculate mortality rates were obtained 

from National Population Council (CONAPO) of Mexico [13].  

2.2.2 Statistical analysis: To investigate and quantify the mortality pattern associated with the 

COVID-19 pandemic in Mexico, we estimated excess all-cause mortality rates per 10,000 

population at the national level and for Mexico City, and other areas of Mexico and by gender. 

The excess death rate corresponds to the overall mortality rate above a seasonal baseline of the 
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expected mortality rates in the absence of the COVID-19 pandemic using standard statistical 

methods [5, 14-17]. 

Definition of pandemic periods and excess mortality estimation: We estimated the baseline 

mortality level by fitting cyclical Serfling regression models to all-cause deaths in non-COVID-

19 period, after excluding data from March to December 2020. We included a combination of 

linear terms with sine and cosine terms describing time trend and seasonal change respectively, 

which is described by the following equation [5, 15]:  

Weekly death rates(t) = a + α × t + β*sin(2 × π/52.17 × t) + γ*cos(2 × π/52.17 × t),     (1)    

Where, a is the intercept and t represents the epidemic week.  

Once a weekly baseline and 95% CI were established, periods of COVID-19 pandemic 

were defined as the weeks in 2020 where the observed all-cause mortality rate exceeded the 

upper 95% confidence limit of the baseline mortality level. The same pandemic period was used 

for estimating the total excess mortality rate for entire Mexico, Mexico City, Mexico excluding 

Mexico City, and gender specific excess mortality rates using established methodology [5, 14-

17]. Excess all-cause mortality rate was defined as the difference between the observed and 

model adjusted baseline mortality rates for each week constituting the pandemic period. 

Negative excess mortality estimates were replaced by zeros in our analyses. Overall pandemic 

excess mortality attributed to all cause for total population, each gender group, Mexico City, and 

Mexico excluding Mexico City was calculated by summing the excess death rates across the 

pandemic weeks in 2020 [14, 16]. We also calculated the rate ratio (RR), the ratio of observed 

all-cause mortality rate during pandemic period to the model predicted baseline mortality level in 

the absence of COVID-19 for the given group.  

 

Twitter data analysis: We used a clean version of the publicly available dataset of tweets version 

42 [18], the clean version of this dataset removes all re-tweets, keeping only directly initiated 

posts by users. We filtered all tweets, by removing all other languages via their ISO 639-1 

language code, to only keep the tweets in Spanish (es) and those that originated from Mexico via 

its country code MX. Additionally, we removed tweets from news agencies and bot accounts. 

We used the following terms to subset the tweets per day: "muerto, muerta, fallecio, murio, 

deceso, fallecimiento, defunción, óbito, expiración, defuncion, obito, expiracion, perdio la vida, 
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sin vida". In English, these terms reflect the meanings “dead, deceased, died, death, expiration, 

lost life, lifeless”. We collected a total of 1,223,096 and 32,423,282 unique tweets reflecting 

death and total tweets respectively from March to December 2020. Next, we overlayed the curve 

of proportion of tweets on death out of total tweets in a given week over the mortality rate curve 

to inspect the relationship between the mortality rate and the proportion of tweets. We also 

calculated correlation coefficients between proportion of weekly tweets and the weekly excess 

death rate and the weekly COVID-19 death rate. 

 

Short term forecast of excess deaths: We used generalized logistic growth model (GLM) to 

predict excess deaths during the first four weeks of 2021. GLM characterizes epidemic growth 

by estimating (i) the intrinsic growth rate, 𝑟 (ii) a dimensionless “deceleration of growth” 

parameter, 𝑝 and (iii) the final epidemic size, 𝑘0. The deceleration parameter modulates the 

epidemic growth patterns including the sub-exponential growth (0< 𝑝 <1), constant incidence (𝑝 

=0) and exponential growth dynamics (𝑝 =1). The GLM model is given by the following 

differential equation:  

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶𝑝(𝑡)(1 −

𝐶(𝑡)

𝑘0
)                          (2) 

 

Where, 
𝑑𝐶(𝑡)

𝑑𝑡
 describes the incidence (of excess deaths) over time 𝑡 and the cumulative number of 

excess deaths at time 𝑡 is given by 𝐶(𝑡). To forecast the number of excess deaths during the first 4 

weeks of 2021, we calibrated the model using weekly excess deaths during the last six weeks of 

2020 (week starting from November 22 to the week starting from December 27, 2020). We utilized 

parametric bootstrapping approach with a Poisson error structure [10].  

 

2.3. Results 

Between March 1, 2020 and January 2, 2021, as of surveillance data updated on February 

26, 2021, a total of 1,364,557 laboratory-confirmed COVID-19 cases, and 128,886 COVID-19-

related deaths were captured by the epidemiological surveillance system in Mexico. The national 

daily series of new cases and deaths due to COVID-19 are shown in Fig. 1. The number of cases 

rapidly rises from April to July followed by a downward trend which again takes off from mid-



16 
 

September. A similar temporal pattern can also be gleaned from the time series of COVID-19 

related deaths. 

 

Fig. 1. Daily series of new laboratory-confirmed COVID-19 cases and deaths in Mexico, from 

March 1, 2020- January 2, 2021 

 

Out of total 44 weeks from March 1, 2020 to January 2, 2021, 38 weeks starting from 

week 16 (April 12–18, 2020) had the excess death rate greater than 0. The excess death rate 

peaked on week 29 (July 12–18, 2020) with the excess death rate of 1.01 per 10,000 population, 

and on week 53 (December 27, 2020-January 2, 2021) with the excess death rate of 1.06 per 

10,000 population. The weekly timeseries of all-cause mortality rate per 10,000 population in 

Mexico is shown in (Fig. 2). We found that peaks in all-cause death rates aligned with the peaks 

in COVID-19 laboratory-confirmed death rates captured by the surveillance system. The curve 

of weekly proportion of tweets from Mexico about death is overlaid with the mortality rate curve 

in Fig. 2. 
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Fig. 2. Mortality rate per 10,000 population, Mexico, 2015–2020. The red line is the weekly all-

cause death rate. COVID-19 death rate curve is shown in yellow. Dotted lines highlight 2020 

COVID-19 pandemic period. The Serfling seasonal regression model baseline (black curve) and 

corresponding upper limit of the 95% confidence interval of the baseline (green curve) are also 

shown. The weekly frequency of tweets about death is shown by blue curve. Excess all-cause 

mortality rate is the difference between the observed and model adjusted baseline mortality rates 

for each week where observed total all-cause mortality rate exceeded the upper 95% confidence 

limit of the baseline. 

Twitter trends show engagement of people in Mexico with the hashtag terms (Fig. 2). The 

trend of tweets with the hashtag term related to deaths (explained in the methods section) for the 

baseline years of 2018 and 2019 shows a sharp increase in the twitter chatter about deaths during 

the pandemic compared to the baseline years. There was a relatively weak but statistically 

significant correlation of the weekly proportion of tweets with the weekly excess mortality 

rate ρ = 0.508 [95% CI: 0.245, 0.701], p-value = 0.0004, and the weekly COVID-19 mortality 
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rate ρ = 0.526 [95% CI: 0.268, 0.714], p-value = 0.0002, in the study period. The weekly 

timeseries of all-cause mortality rate per 10,000 population in the country of Mexico by gender 

are displayed in Fig. 3. 

 

Fig. 3. Mortality rate per 10,000 by gender, Mexico. Excess all-cause mortality rate is the 

difference between the observed and model adjusted baseline mortality rates for each week 

where observed total all-cause mortality rate exceeded the upper 95% confidence limit of the 

baseline in the country. 
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Similarly, the weekly timeseries of all-cause mortality rate per 10,000 population for Mexico 

City and for the rest of Mexico are shown in Fig. 4.  

 

Fig. 4. Mortality rate for Mexico City and Mexico excluding Mexico City. Excess all-cause 

mortality rate is the difference between the observed and model adjusted baseline mortality rates 

for each week where observed total all-cause mortality rate exceeded the upper 95% confidence 

limit of the baseline in the country. 

In Table 1, we present the estimates of all-cause excess mortality rate per 10,000 

population and the rate ratio estimates for each studied group, including the estimates at the 

national level. We estimated an excess death rate at 26.10 per 10,000 population in Mexico from 

March 1 to January 2, 2021. This corresponds to 333,538 excess deaths during the pandemic 

period. In the same period, a total of 128,886 lab-confirmed COVID-19 deaths corresponds to 

38.64% of the total estimated excess deaths. 
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Table 1. Estimates and their uncertainty for all-cause excess mortality rates per 10,000 

population and RR during COVID-19 pandemic, Mexico, March 1, 2020- January 2, 2021.  

 All-cause excess 

death rate per 

10,000 

population [95% 

CI] 

Rate ratio* 

[95% CI] 

Total number of 

all-cause excess 

deaths 

[95% CI] 

Deaths due 

to COVID-19 

(% of total 

number of 

all-cause 

excess 

deaths) 

Mexico 26.10  

[23.33-28.87] 

1.67 

[1.56-1.80] 

333,538 

[298,139-368,936] 

128,886 

(38.64%)  

Mexico City 63.54 

[58.15-68.92] 

2.09 

[1.91-2.30] 

57,304 

[52,443-62,157] 

16,127 

(28.14%) 

Mexico excluding 

Mexico City 

23.25 

[20.58-25.93] 

1.62 

[1.51-1.75] 

276,149 

[244,436-307,980] 

112,759 

(40.83%) 

Male, Mexico 33.99 

[30.91-37.08] 

1.76 

[1.64-1.89] 

212,667 

[193,397-232,001] 

81,489 

(38.32%) 

Female, Mexico 18.53 

[15.97-21.08] 

1.56 

[1.45-1.69] 

120,861 

[104,164-137,494] 

47,397 

(39.22%) 

* calculated as the ratio of total observed death rate to total baseline death rate during the 

pandemic period 

The excess mortality rate in Mexico City (63.54) was about 2.7-fold higher than the rest 

of the Mexico (23.25) (proportion test, p-value <0.0001). Interestingly, COVID-19 deaths in 

Mexico City accounted for only 28.14% % of the total estimated excess deaths in Mexico City, 

compared to 40.83% in the rest of Mexico. Excess mortality rate among males nearly doubled 

the rate among females (proportion test, p-value <0.0001, and the proportion of COVID-19 
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deaths out of total excess deaths was similar, 38.32% among males and 39.22% among females 

(proportion test, p-value <0.0001).   

Our estimates of both the absolute and relative excess mortality rate as measured by the 

rate ratio of observed vs baseline mortality rate was highest for Mexico City (2.09) compared to 

other areas of Mexico (1.62) and for males (1.76). The rate ratio (RR) at the national level was 

estimated at 1.67. Finding from the average weekly forecast of excess deaths generated from the 

GLM model calibrated to weeks starting from November 22 to December 27, 2020 shows that 

Mexico had a total of ~61610 excess deaths in first four weeks of 2021 (Fig. 5). 

 

Fig. 5. Model-based forecast of excess number of deaths for first 4 weeks of 2021, Mexico. Blue 

circles are the estimates of excess mortality rate and model fit based on generalized logistic 

growth model are shown by the black line. The red dashed lines represent the upper and lower 

bound of 95% prediction interval. The vertical dashed black line denotes the end of calibration 

period and start of forecasting period.  
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2.4. Discussion 

Monitoring the excess mortality rate during the course of a pandemic is one of the key 

approaches for evaluating pandemic mortality impact [19]. In this study we characterized the 

excess mortality impact during COVID-19 pandemic in Mexico from March 1, 2020 to January 

2, 2021. The pandemic was associated with an excess mortality rate of 26.10 per 10,000 

population (a total of 333,538 excess deaths). Further, COVID-19 laboratory-confirmed deaths 

comprised only 38.64% of total excess deaths during the studied period. Our findings indicate 

that the COVID-19 pandemic has exerted a particularly devastating mortality burden on the 

Mexican population. We found that the all-cause excess-death rate among males was twice as 

high as the excess death rate among women in Mexico. This finding is in line with the previous 

studies, indicating that more men die from COVID-19 than women [20-22]. Several factors such 

as differences in the prevalence of comorbidities [23] as well as risk behaviors such as smoking 

and drinking [24], frequency of hand washing [25-27] and delays in health care seeking [22] 

could be contributing to a higher risk of COVID-19 death among males. 

We found that both the all-cause excess death rate and the rate ratio were the highest in 

Mexico City, compared to rest of the country. A previous study reported that Mexico City was 

the most affected area during 2009-10 A/H1N1 influenza pandemic in Mexico [28].  Mexico 

City is one of the most crowded cities in the world [29] and has been significantly affected by air 

pollution for decades [30]. Prior work has identified high population density [31, 32] and long-

term exposure to ambient air pollution [33, 34] as significant predictors of COVID-19 death. 

Besides, the long term exposure to ambient air pollution, and living in overcrowded setting is not 

random and might interact with other social determinants of health [34] such as poverty, 

unemployment, and lack of healthcare access that increase the risk of death during natural 

disasters. 

The fraction of COVID-19 attributed excess deaths was lower in Mexico (38.64%) 

compared to more than 65% in the USA [19, 35], and Germany [36]. From March to May 2020, 

the number of all cause excess deaths in the US was only 28% higher than the official record of 

COVID-19 deaths for that period [19]. Subsequently, from March 15, 2020 to January 30, 2021 

an estimated 527,500 excess deaths occurred in the USA of which 83.3% were attributed to 
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COVID-19 [37]. In developed countries like Germany where the COVID-19 pandemic 

management has been considered a success story, the estimated excess number of deaths during 

the first wave of pandemic was lower than the reported number of COVID-19 deaths (+8071 

estimated excess deaths vs. 8674 reported COVID-19 deaths) [36]. The low proportion of 

COVID-19 deaths out of total excess deaths could be driven by low COVID-19 testing rates in 

the country [4], delays in reporting COVID-19 deaths [38], diagnostic delays for fatal conditions 

such as cancer [39], issues related to the sensitivity of reverse transcriptase-PCR (RTPCR) test 

[40], disruption of routine health care owing to the collapse of the health system, or intentional 

choices of not visiting health facilities due to fear of contracting the virus, exacerbating the 

effects on the health of vulnerable groups [41]. Moreover, the pandemic triggered a mental 

health crisis that has given rise to an increase in self-harm and suicide [42, 43]. Our forecast of 

excess deaths during the first four weeks of 2021 showed an increasing trend which was in line 

with the high morbidity trend of COVID-19 cases surrounding that time period [44]. 

Our Twitter signal indicate an increasing trend in the Twitter chatter about deaths from 

mid-January 2020 that peaked in mid-February 2020. This increase coincided with a series of 

events including the declaration of the novel coronavirus outbreak in Wuhan as a public health 

emergency of international concern (PHEC) (January 30, 2020), and the WHO-China joint 

mission of experts from different countries to inform planning on next steps in the response to 

COVID-19 outbreak (16-24 February, 2020) [45]. Following a short period of decline, the 

Twitter chatter showed a substantial increase, just as the trend in lab-confirmed COVID-19 

deaths started to rise in Mexico. However, it substantially declined during the next few months 

probably due to pandemic fatigue. This normalization of the pandemic also reflects people’s 

beliefs of the government signaling that the pandemic was subsiding during the second half of 

2020 [46, 47]. 

Several factors could explain the large number of all-cause excess deaths in Mexico 

(333,538). First, Mexico has a high burden of non-communicable diseases. In 2019, the top 5 

leading causes of deaths were ischemic heart disease, diabetes, chronic kidney disease, cirrhosis, 

and stroke [48]. These comorbidities have been found to be associated with severe outcomes 

including death due to COVID-19 [49, 50]. Therefore, COVID-19 pandemic in a country like 

Mexico with high prevalence of chronic diseases, as well as with a health system struggling with 
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absenteeism and health worker infections might have led to this alarming number of excess 

deaths [51, 52]. It is worth noting that, Mexico has the highest number of health worker deaths 

due to the COVID-19 pandemic (~1400 deaths) in the world [53-55].  

The COVID-19 pandemic has a higher all cause excess mortality compared to 2009 

A/H1N1 pandemic in Mexico [56] as shown in Table 2. Past work has reported estimates of 

respiratory excess mortality in Mexico City during the 1918-19 influenza pandemic [57]. Our all-

cause excess mortality rate of 63.54 for Mexico City was less than the estimated respiratory 

excess mortality of 72.90 per 10,000 population for the three waves of 1918 influenza pandemic 

in Mexico City [57] (Table 2). 

Table 2. Comparison of excess death rate and rate ratio across different pandemics in Mexico 

and Mexico City 

Pandemic  Place Mortality 

outcome 

Time period Excess death 

rate per 10000 

population 

[95% CI]  

Rate ratio 

COVID-19 

pandemic  

Mexico All cause  March 1, 2020 

to January 2, 

2021 

26.10  

[23.33, 28.87] 

2.09 

A/H1N1 

pandemic [56] 

Mexico All cause April 2009-

April 2010 

2.46  

[1.95-2.96] 

NA 

COVID-19 

pandemic  

Mexico 

City 

All cause March 1, 2020 

to January 2, 

2021 

63.54 

[58.15, 68.92] 

2.09 

[1.91, 

2.30] 

1918 influenza 

pandemic in [57] 

Mexico 

City 

Respiratory April 1918 to 

March 1920 

72.90 NA 

April -May, 

1918 

6.60 1.2 
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October to 

December, 

1918 

47.00 7.0 

February to 

March, 1920 

19.30 2.6 

Our study has several limitations. As excess death rates will be strongly different among 

subgroups (it is quite high among the elderly, and those with underlying diseases), overall 

estimate is affected by structure of the population. A detailed data on death certificate with age 

and underlying diseases information will provide more accurate estimates. Likewise, we cannot 

rule out the possibility of negative excess deaths following this elevated period of excess 

mortality due to new innovations on vaccination and treatment which might prevent serious 

complications and deaths, or due to the reduction of the vulnerable populations such as the 

elderly during the initial pandemic years. Similarly, the COVID-19 deaths data that we have used 

might be underestimated because of different factors such as very low testing rates in Mexico, 

and misclassification of COVID-19 deaths. Further studies are needed to shed light on the extent 

of deaths directly attributable to COVID-19 and those that are related to other causes. 

2.5 Conclusion  

Our estimate of all-cause excess mortality rate at 26.10 per 10,000 population during 

COVID-19 pandemic in Mexico provides a reliable estimate of the mortality impact of COVID-

19 in a hard-hit Latin American country with a low testing rate. As more refined mortality data 

becomes available on different sub-groups of the population, further studies on excess mortality 

could elucidate the mortality impact of the COVID-19 pandemic in Mexico. Our findings 

indicate that Mexico has been disproportionately affected by the COVID-19 pandemic. 
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Chapter 3 

Geospatial Variability in Excess Death Rates during the COVID-19 Pandemic in 

Mexico: Examining Socio Demographic, Climate and Population Health 

Characteristics 

Citation: Dahal S, Luo R, Swahn MH, Chowell G. Geospatial variability in excess death rates 

during the COVID-19 pandemic in Mexico: examining socio demographic, climate and 

population health characteristics. International Journal of Infectious Diseases. 2021;113:347-54. 

3.1. Introduction 

Monitoring all-cause excess mortality, above an expected level of total deaths, as 

a pandemic unfolds is one of the key ways to evaluate its mortality impact (Weinberger et al., 

2020). All-cause excess mortality estimates include deaths that are directly or indirectly 

attributed to the pandemic (CDC, Serfling, 1963). Besides direct deaths due to COVID-19, 

deaths indirectly attributed to the COVID-19 pandemic include those related to denied or 

delayed care for acute emergencies (Maringe et al., 2020, Schirmer et al., 2020) or other chronic 

conditions (Douglas et al., 2020), the disruption of routine health care services in an 

overburdened health care system (Roberton et al., 2020), unaddressed mental health concerns 

including suicide and self-harm (Kawohl and Nordt, 2020, Sahoo et a;., 2020), and drug 

overdoses (Curie et al., 2021). Detailed analyses of excess mortality can inform prevention and 

mitigation strategies by determining where the mortality impact of the pandemic has been most 

significant. 

Mexico is one of the countries in Latin America that is bearing the brunt of the COVID-19 

pandemic with the fourth-highest number of COVID-19 deaths in the world, after the USA, 

Brazil, and India, as of late June 2021 (Statistica, 2021). In fact, Mexico has reported a total of 2 

487 747 (1.38% of global cases) confirmed cases of COVID-19, including 231 847 deaths 

(5.96% of global deaths), as of June 25, 2021 (WHO, 2021). A previous study reported a high 
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all-cause excess death rate of 26.10 per 10 000 population in Mexico in 2020, with COVID-19 

deaths accounting for only 38.64% of the estimated excess deaths (Dahal et al., 2021). 

Additionally, Mexico was identified as one of the countries with highest excess deaths in terms 

of absolute numbers, excess deaths per 100 000 population, and excess deaths as percent of 

annual deaths in recent research (Karlinsky and Kobak, 2021). While the relatively low 

proportion of COVID-19 deaths, out of all excess deaths, could be the result of low testing rates, 

misclassification of COVID-19 deaths, and delays in reporting COVID-19 deaths (Gutierrez et 

al., 2020), a substantial number of deaths during the pandemic could be due to the indirect causes 

(CDC, 2021) and need to be examined in more depth. 

The distribution of indirect causes of deaths depends on several factors such as 

sociodemographic characteristics, population health and the selection, timing and intensity of 

any public health interventions, in addition to the efficiency and reach of the health and social 

care system (Kontis et al., 2020). In Mexico, pandemic control measures have varied widely 

(Knaul et al., 2021). Therefore, a more detailed understanding of the mortality burden of the 

pandemic can be obtained by quantifying spatial heterogeneity in excess deaths at a state level 

and by examining the influence of underlying sociodemographic, economic, and health system 

related factors, and also climate factors. In this study, we pose the question whether in a country 

such as Mexico, with very high COVID-19 mortality, potential spatial variability in the excess 

deaths can be explained by underlying sociodemographic, climate and population health 

indicators. To answer that research question, we first estimated the all-cause excess deaths 

during the COVID-19 pandemic in Mexico comprising 31 states and Mexico City. Next, we 

evaluated the potential associations between different sociodemographic factors, climate, and 

excess mortality patterns at the state level in Mexico. Furthermore, we also conducted a cluster 

analysis to characterize the shapes of the excess mortality curves into different groups that 

describe the potential geospatial variability in excess mortality. Analyses such as these are 

critically important for understanding excess mortality and for guiding intervention strategies. 

3.2. Methods 

3.2.1 Data 
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We obtained weekly all-cause death counts updated on May 25, 2021 for Mexico at the state 

level and for Mexico City, based on epidemiological weeks from January 2020 until April 10, 

2021 and for the preceding 5 years (2015–2019) to establish a baseline mortality level 

(Government of Mexico). We accessed publicly available weekly mortality data from the 

National Institute of Statistics and Geography (INEGI) for the years from 2015 to 2018, and data 

from National Population Registry (RENAPO) for the years 2020 and 2021 (Government of 

Mexico). For the year 2019, we chose either INEGI or RENAPO as the data source, based on the 

value of weekly mortality of the last week of 2018 and the first week of 2019 for each state. We 

obtained the national and state-level population size estimates from the National Population 

Council (CONAPO) of Mexico (CONAPO, 2015-2030). Mortality data was not available for the 

state of Tlaxcala for the last six weeks of the study period. For this reason, this state was 

excluded from our regression and functional cluster analyses. 

For each state, including Mexico City, we obtained data on seven variables: population density 

(2020), aging index (2020), average household size (2020), marginalization index (2020), rate of 

new cases of depression per 100 000 population (2019), public spending on health as percent of 

GDP (2019), and climate zone. Data on population density, aging index, average household size, 

and rate of new case of depression were obtained from INEGI (INEGI), data on public spending 

on health was obtained from the subsystem of health accounts at the federal and state level 

(SICUENTAS) (General Directorate of Health Information, 2021), and the data on the 

marginalization index was available from CONAPO (CONAPO, 2020). To model climate 

variation, we used the Köppen-Geiger classification system (Méndez-Arriaga, 2020) which 

divides Mexican states into three climatic groups: A, B, and C as follows: 

Group A: Tropical/megathermal climates: warm humid climate; warm sub-humid climate; warm, 

semi-warm humid climate; and semi-warm sub-humid climate. 

Group B: Dry (desert and semi-arid) climate: dry, warm and semi-dry climate; dry, temperate 

and semi-dry semi-cold climate; dry, warm dry climate; dry, temperate dry climate; dry, 

temperate dry winter rains; dry, warm very dry climate; dry, temperate and very dry semi-cold 

climate. 
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Group C: Temperate/mesothermal climates: temperate, semi-warm humid climate; temperate, 

semi-warm sub-humid climate; temperate, humid climate; temperate, sub-humid climate; 

temperate, semi-cold humid climate; temperate, semi-cold sub-humid climate. According to this 

grouping group A, B, and C include 11, 14, and 7 states respectively. States in Mexico based on 

this climate categorization are presented in Supplemental Figure 2. 

Summary statistics of these variables from 31 states and Mexico City are provided in Table 1. 

Table 1. Descriptive statistics for six continuous variables included in the multiple regression 

analysis of excess mortality in Mexico (n=32). 

Variable Minimum Mean (SD) Median 

(IQR) 

Maximum 

Population density (2020) (habitants per 

km2) 

10.80 309.68 

(1078.69) 

67.15 

(127.20) 

6163.30 

Aging index (2020) 28.70 46.41 (10.44) 45.45 (7.40) 90.20 

Average household size (2020) 3.6 3.91 (0.18) 3.90 (0.20) 4.4 

Marginalization index (2020) 11.32 18.89 (2.73) 19.43 (3.23) 23.01 

Rate of new case of depression per 100,000 

population (2019) 

22.06 114.88 

(76.05) 

92.14 

(67.37) 

348.17 

Public spending on health as a percent of 

GDP (2019) 
0.94 3.12 (1.02) 2.96 (1.32) 5.81 

3.2.2 Pandemic period and excess deaths 

For both the national data and the data for each state, we separately estimated the baseline 

mortality level by fitting cyclical Serfling regression models to all-cause deaths in the non-

COVID-19 period, after excluding data from March 2020 to April 2021 by employing 

established methodology (Chowell et al., 2014, Chowell et al., 2012, Dahal et al., 

2018a, Serfling, 1963, Viboud et al., 2013). Details on the model equation that was used can be 
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found in (Dahal et al., 2021). After establishing a weekly baseline and the corresponding 95% CI 

at the national level, we defined the periods of COVID-19 pandemic as the weeks in 2020 and 

2021 where the observed all-cause mortality rate at the national level in Mexico exceeded the 

upper 95% confidence limit of the national baseline mortality rate. The excess mortality rate was 

estimated at the state level and for Mexico City for the same defined period of the COVID-19 

pandemic. Excess all-cause mortality rate was estimated as the difference between the observed 

and model adjusted baseline mortality rates for each week constituting the pandemic period. The 

overall pandemic excess mortality in 2020 and 2021 was calculated by summing the excess death 

rates across the pandemic weeks in the given year (Chowell et al., 2014, Dahal et al., 

2021, Dahal et al., 2018a). Negative excess mortality estimates were replaced by zeros in our 

analyses to account for underreporting due to reporting delays (Aron and Muellbauer, 

2020, CDC, 2021). 

3.2.3. Multiple regression analysis 

After estimating the total excess mortality rate for each state, we explored the association 

between the total excess mortality rate and the predictor variables. Because the population 

density and rate of new case of depression distributions were skewed, we transformed these 

variables to log base 10. Since we identified Mexico City as a potential influential point, we 

performed sensitivity analysis by comparing the results of different models, including and 

excluding Mexico City. Since there was no significant change in the statistical inference of the 

parameters, we included Mexico City in the model, and parameters were estimated using 

ordinary least squares (OLS) method. 

3.2.4. Cluster analysis 

We followed the analytic methods described in (Srivastava and Chowell, 2020) to pre-process 

the weekly cumulative all-cause excess deaths for 30 states and Mexico City (excluding 

Tlaxcala, refer to study setting for details). Then, we analyzed the shapes of the excess all-cause 

death rate curves to compare, cluster, and summarize growth rates. 

We employed the following steps to smooth and normalize the weekly all-cause excess death 

data: 
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a. Smoothing: Cumulative excess deaths curves were smoothed using smooth function in Matlab 

which uses a moving average filter over a 10-week span. 

b. Time differencing: If 𝑓𝑖(𝑡) denotes the given cumulative number of excess deaths for state i on 

week t, then per week growth at time t is given by 𝑔𝑖(𝑡) = 𝑓𝑖(𝑡) − 𝑓𝑖(𝑡 − 1). 

c. Re-scaling: We rescaled each curve by dividing each 𝑔𝑖(𝑡) by the total excess number of 

deaths for a given state i, which is equivalent to computing ℎ𝑖(𝑡) = 𝑔𝑖(𝑡)/𝑟𝑖, where 𝑟𝑖 =

∑ 𝑔𝑖(𝑡𝑘)𝐾
𝑘=1  and K is the number of weeks in the period. 

d. Smoothing: We then smoothed the normalized curves over a 5-weeks span,  using the smooth 

function in Matlab. 

To identify the clusters by comparing the curves, we used a simple metric. For any two rate 

curves, hi and hj, we compute the norm ||hi −hj||, where the double bars denote the L2 norm of the 

difference function, i.e., ||hi −hj|| =√∫ (ℎ𝑖(𝑡) − ℎ𝑗(𝑡))
2

𝑑𝑡    

which is approximated by  √∑ (ℎ𝑖(𝑡𝑘) − ℎ𝑗(𝑡𝑘))
2

/𝐾𝑘 , where K is the number of weeks in the 

period. 

To perform clustering of thirty-one curves into smaller groups, we applied the dendrogram 

function in Matlab using the “Ward’s” linkage as explained in ref.  (Srivastava and Chowell, 

2020). The Ward’s linkage minimizes the total within-cluster variance and tends to produce more 

compact clusters. It is also less sensitive to outliers than other linkages. The number of clusters 

was decided empirically by inspecting the overall clustering results. After clustering the states 

into different groups, we derived the average curve for each cluster using a time wrapping 

algorithm (Srivastava and Chowell, 2020, Srivastava and Klassen, 2016). 

3.3. Results 

From March 1, 2020 to April 10, 2021 (total of 58 weeks), the observed death rate was greater 

than the upper 95% confidence interval of the baseline starting from week of April 12-18, 2020 

until the week of April 4-10, 2021 (total of 52 weeks) (Figure 1). For this period starting from 
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April 12, 2020, the first peak of weekly excess mortality rate occurred in the week of July 12-18, 

2020, with the excess death rate of 1.04 per 10 000 population, then declined slightly for a few 

weeks and then increased again from the week of December 20-26, 2020, and reached a peak 

with an all-cause excess death rate of 1.99 per 10 000 population in the week of January 17-23, 

2021. The excess death rate remained below 0.5 from the week of February 28, 2021 until the 

end of the study period. 

 

Figure 1. Mortality rate per 10 000 population, Mexico, January 2015–March 2021. The black 

curve is the observed weekly death rate. The grey curve is the predicted baseline death rate. 

Square dotted curves indicate the upper and lower 95% confidence intervals of the baseline death 

rate. The long-dashed line indicates the COVID-19 pandemic period. 

All-cause excess death rates for the national level, Mexico City, and 31 states of Mexico are 

presented in Table 1. The map displaying state-level estimates is depicted in Figure 2.  
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Figure 2. Map depicting excess death rate per 10 000 population by state in Mexico. 

While the total excess death rate in Mexico was at 39.66 per 10 000 population, equivalent to a 

total of ∼508 289 excess deaths, the excess mortality rate in Mexico City was the highest and 

estimated at 106.17 per 10 000 population (∼95 690 total number of excess deaths). Among 31 

states, Tlaxcala (51.99), Morelos (45.90), Puebla (45.12), and Mexico (44.43) were among the 

states with the highest excess mortality rates. The states with the lowest death rates included 

Chiapas (12.72), Oaxaca (13.42), Quintana Roo (19.41), and Yucatan (21.11) (Table 2). Only 

one state, Chiapas, had no excess deaths in 2021. COVID-19 accounted for only 42.16% of total 

excess deaths at the national level ranging from 20.97% in Chiapas to 76.05% in Quintana Roo. 

Table 2. Estimates for all cause excess mortality rate by state per 10 000 population during 

COVID-19 pandemic in Mexico, March 1, 2020-April 10, 2021. 
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State/Region 

All cause 

excess 

death rate 

per 10 000 

population 

(March 1, 

2020-

April 10, 

2021) 

All cause 

excess death 

rate per 10 

000 

population in 

2020  

(Includes 

weeks starting 

from March 1, 

2020, to 

December 27, 

2020) 

All cause 

excess death 

rate per 10 

000 

population in 

2021 

(Includes 

week starting 

on January 3, 

2021, to April 

4, 2021) 

Total number 

of all cause 

excess deaths 

COVID-19 

deaths 

(Percentage of 

all cause 

excess deaths) 

National 39.66  27.25 12.41 508 288.78 

214 298 

(42.16) 

Aguascaliente

s 29.37 21.61 7.76 4228.25 

2300 (54.39) 

Baja 

California Sur 26.13 16.36 9.77 2118.75 

1326 (62.58) 

Baja 

California 38.55 31.78 6.77 14 051.54 

8048 (57.27) 

Campeche 22.25 21.02 1.22 2228.05 1183 (53.09) 

Chihuahua 27.76 25.37 2.39 10 561.33 6467 (61.23) 

Chiapas 12.72 12.72 0 7287.73 1528 (20.97) 

Mexico City  106.17 62.93 43.24 95 689.73 32 166 (33.61) 

Coahuila 38.33 30.88 7.45 12 369.31 6189 (50.03) 

Colima 28.32 19.23 9.09 2234.78 1158 (51.82) 

Durango 27.48 22.94 4.53 5142.23 2372 (46.13) 

Guerrero 29.96 21.51 8.45 10 966.69 4231 (38.58) 

Guanajuato 36.54 20.44 16.09 22 842.82 10 568 (46.26) 

Hidalgo 36.39 22.86 13.52 11 277.96 5995 (53.16) 
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Jalisco 32.92 18.66 14.26 27 799.37 11 759 (42.30) 

Mexico 44.43 28.67 15.76 77 705.35 33 571 (43.20) 

Michoacan 31.12 16.69 14.43 15 063.24 5492 (36.46) 

Morelos 45.90 24.16 21.75 9428.76 3052 (32.37) 

Nayarit 23.64 15.08 8.55 3060.99 1766 (57.69) 

Nuevo Leon 36.80 24.98 11.82 20 735.12 9305 (44.87) 

Oaxaca 13.42 10.55 2.87 5565.51 3494 (62.78) 

Puebla 45.12 36.50 8.62 29 849.45 11 142 (37.33) 

Queretaro 35.86 18.79 17.06 8241.92 4063 (49.29) 

Quintana Roo 19.41 16.95 2.46 3354.42 2551 (76.05) 

San Luis 

Potosi 32.26 22.29 9.97 9266.51 

5190 (56.01) 

Sinaloa 31.53 24.97 6.56 9969.06 5927 (59.45) 

Sonora 32.22 27.11 5.11 9924.27 6485 (65.34) 

Tabasco 22.49 20.34 2.15 5791.32 3994 (68.96) 

Tamaulipas 30.33 25.38 4.95 11 086.40 4800 (43.29) 

Tlaxcala 51.99 34.93 17.06 7200.90 2367 (32.87) 

Veracruz 22.35 17.46 4.89 19 111.79 9524 (49.83) 

Yucatan 21.11 16.49 4.62 4781.42 3563 (74.52) 

Zacatecas 43.22 29.81 13.41 7217.52 2721 (37.69) 

Table 3 shows the results of fitting a taxonomy of multiple regression models of excess mortality 

rate at the state level in Mexico. To select a final model from among models 4, 6, 7, and 8, we 

performed a multiple partial F-test. In the multiple partial F-test, we failed to find a significant 

contribution of adding population density, depression rate, and public expenditure on health on 

predicting excess mortality rate after accounting for the contribution of aging index, 

marginalization index, and average household size (F-value3,24=0.39, P-value=0.7631). 

Table 3. Results of fitting a taxonomy of multiple regression models of excess mortality rate at 

the state level in Mexico (n=31) 
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Parameter estimate 

(se) 

 
Model 

1 

Model 

2 

Model 

3 
Model 4 

Model 5 
Model 6 

Model 7 Model 

8 

 

 

intercept 

- 19.21* 

(9.03) 

-18.18 

(18.09

) 

  -

47.03** 

(13.61) 

 

-250.80 

*** 

(50.67) 

-200.36* 

(74.15) 

-215.08** 

(63.11) 

-230.65** 

(69.68) 

-

229.07

** 

(72.97) 

Aging index 
1.12*** 

(0.19) 

 

1.01*** 

(0.18) 

1.12*** 

(0.15) 

1.07*** 

(0.16) 

0.99*** 

(0.20) 

0.94*** 

(0.22) 

0.94**

* 

(0.22) 

Marginalization 

index 
 

2.72*

* 

(0.95) 

1.76* 

(0.68) 

3.30*** 

(0.66) 

2.79** 

(0.87) 

2.98*** 

(0.74) 

2.94*** 

(0.76) 

2.87** 

(1.02) 

Average 

household size 

   

43.47*** 

(10.56) 

 

34.57* 

(14.31) 

35.64* 

(13.39) 

37.95* 

(14.18) 

37.95* 

(14.47) 

Tropical/megath

ermal    

 -5.60 

(5.84) 

   

Dry 

   

 -3.56 

(5.00) 

   

log10popdensity 

   

  3.79 

(3.98) 

4.38 

(4.17) 

4.49 

(4.41) 
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log10depression

_rate    

   4.20 

(7.47) 

4.24 

(7.63) 

Public 

expenditure on 

health 

as a percent of 

GDP 

   

    -0.22 

(2.29) 

Root MSE 10.97 14.41 10.04 8.01 8.18 8.02 8.13 8.30 

R2 0.55 0.22 0.63 0.77 0.78 0.78 0.78 0.79 

Model F-test 35.18*** 
8.18*

* 

24.31**

* 

31.09*** 18.09*** 23.46*** 18.34*** 14.68*

** 

(df1, df2) (1, 29) (1,29) (2, 28) (3, 27) (5, 25) (4, 26) (5, 25) (6, 24) 

*P<0.05, **P <0.01, ***P<0.001 

We also tested for spatial autocorrelation using Moran I statistics. The result indicated the 

presence of spatial autocorrelation for the dependent variable (p-value =0.001). However, we 

failed to find statistically significant Moran I for the residuals for the Model with aging index, 

marginalization index, and average household size (p-value=0.4133). Hence, we fitted a spatial 

lag model with three predictors. The lag parameter (Rho) from the spatial lag model was not 

statistically significant (Rho=0.209, p-value=0.240). In addition, the value of AIC for the lag 

model (223.22) was slightly higher than that of the OLS model for Model 4 (222.71). Therefore, 

we chose Model 4 (Table 3) as our final model. Our final model was able to explain 77% of the 

observed variance in the excess mortality rate (Coefficient of determination (R2)=0.77). 

As shown in Table 4, we found a positive association of excess mortality rate with aging index, 

marginalization index, and average household size in the adjusted model at 0.05 level of 

significance. 

Table 4. Results for the Final Regression Model 4 of excess mortality rate at the state level in 

Mexico (n=31). 
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Parameter 

estimate 

Standard 

error 

P-

value 

95% Confidence 

Limits 

Standardized 

estimate 

intercept -250.80 50.67 <.0001 -354.77, -146.83 0 

Ageing index 1.12 0.15 <.0001 0.82, 1.42 0.74 

Marginalization 

index 

3.30 0.66 <.0001 1.95, 4.66 0.57 

Average household 

size 

43.47 10.56 0.0003 21.80, 65.13 0.48 

The result of our clustering analyses is displayed in a dendrogram plot (Supplemental Figure 1). 

Specifically, we identified the following four prominent clusters based on the shapes of excess 

growth rate curves at state level: 

Cluster 1: Baja California, Coahuila, Guanajuato, Hidalgo, Jalisco, Mexico, Mexico City, 

Michoacan, Morelos, Nayarit, Nuevo Leon, San Luis Potosi 

Cluster 2: Aguascalientes, Chihuahua, Durango, Queretaro, Zacatecas 

Cluster 3: Baja California Sur, Colima, Guerrero, Oaxaca, Puebla, Quintana Roo, Sinaloa, 

Sonora, Tabasco, Tamaulipas, Veracruz, Yucatan 

Cluster 4: Campeche and Chiapas 

Figure 3 shows the average growth rate curves and one standard deviation band around it. The 

growth patterns in each cluster are very distinct. For cluster 1, we see two different peaks in 

growth rate, first small peak in July 2020 and the second big peak in January 2021. For cluster 2, 

there is a rapid increase in growth rate since July 2021 that peaks on around December 2020. 

Unlike cluster 2, in cluster 3, the first big peak in July is followed by a small peak in January. 

Finally, in cluster 4, the growth rate rapidly increases from April to July followed by a rapid fall 

and a small rise in January 2021. Overall, the first peak in most of the states occurred in around 

July, 2020 and the second peak occurred in around January, 2021. 
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Figure 3. Average growth rate in each cluster, the dotted blue lines are the one standard deviation 

band around the average growth rate. 

3.3. Discussion 

In this study we investigated the excess mortality patterns during the COVID-19 pandemic at the 

national and subnational level in Mexico from March 1, 2020, to April 10, 2021. We estimated 

an excess all-cause mortality rate of 39.66 per 10 000 population at the national level (a total of 

∼508 289 excess deaths), indicating a devastating mortality impact of the COVID-19 pandemic 

in Mexico. Mexico City alone accounted for about 19% of total excess deaths in Mexico, with an 

excess mortality rate of 106.17 per 10 000 population. We found that the excess mortality rate 

has continuously declined after the second COVID-19 peak during the week of January 17-23, 

2021. 

Interestingly, we found that the states with the highest excess death rate (i.e., Mexico City, 

Tlaxcala, Morelos, Puebla, Mexico) were in the central states in Mexico, while the lowest excess 

death rates were observed in the southern states (i.e., Chiapas, Oaxaca, Quintana Roo, Yucatan, 

Campeche). In Mexico, the majority of the indigenous population are located in the southern 

states. According to intercensal Survey of 2015, 75% of the country's indigenous population 

lived in 8 states (highest in Oaxaca (14.42%), followed by Chiapas (14.19%), Veracruz (9.16%), 

Mexico (9.13), Puebla (9.10%), Yucatan (8.75%), Guerrero (5.67%), and Hidalgo (5.04%) 

(National Institute of Indigenous Peoples, July 9, 2017). Similarly, states with the highest 

proportion of native population as a proportion of state population in 2015 were Yucatan 

(50.2%), Oaxaca (43.7%), Chiapas (32.7%), Quintana Roo (32.5%), and Campeche (22.2%) 

(National Institute of Indigenous Peoples, July 9, 2017.) Compared to non-native groups, the 

indigenous populations across continents have suffered significant health disparities and a 
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greater burden of diseases, including higher infant mortality, and lower life expectancy 

(Curtice and Choo, 2020). During the pandemic, the indigenous populations have remained at 

higher risk of infection and death (CIDRAP, Power et al., 2020). A previous study demonstrated 

higher excess deaths in U.S. states with higher concentration of Native Americans during 

the 1918 influenza pandemic (Dahal et al., 2018b). Similarly, studies from New Zealand, 

Norway, and Alaska have also found that the indigenous populations in those regions were 

disproportionately affected by the 1918 influenza pandemic compared to the non-indigenous 

population (Mamelund, 2003, Mamelund et al., 2013, Rice, 2018). In contrast and very 

intriguingly, in this study we found a lower excess mortality rate during the pandemic in 

Mexican states with a higher proportion of the native indigenous population. This is an 

unexpected finding that warrants further inquiry and examination as it may provide great insight 

to factors that may potentially buffer against the impact of the pandemic and other adverse health 

events, including natural disasters, if the findings can be replicated in other studies. 

In our analyses of data from Mexico, we found that COVID-19 specific deaths accounted for 

only 42.16% of total excess death at the national level, lowest in Chiapas (20.97%) and highest 

in Quintana Roo (76.05%). At the state level in Mexico, the timing and the rigor of 

implementation of public policies to contain the virus varied widely (Knaul et al., 2021). For 

example, some of the states, such as Veracruz, Yucatan, Nuevo Leon, and Tamaulipas, 

established policies to promote social distancing before the federal government enacted those 

policies (Knaul et al., 2021). While states such as Chiapas, Tabasco, San Luis Potosi, and 

Zacatecas underperformed in implementation of public policy measures (Knaul et al., 2021), 

some other states, with a relatively low excess mortality rate, such as Baja California Sur and 

Nayarit, implemented public information campaigns and international travel restrictions for 

longer periods, despite the potential adverse impact on tourism, which is a major economic 

activity (Knaul et al., 2021). 

We found a positive association between the aging index and excess mortality in the adjusted 

model confirming previous studies linking older age and COVID-19. The aging index is defined 

as the number of older adults (60 years of age and older) for every 100 children and youth (0 to 

14 years of age) (Instituto Nacional de Estadística y Geografía (INEGI)), and it increases as the 

population ages. Older age is a significant predictor of COVID-19 mortality as well as mortality 
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from other causes (Bello-Chavolla et al., 2020, Ho et al., 2020, CDC, 2021). Previous studies 

that analyzed excess mortality patterns during the first wave of COVID-19 in 21 industrialized 

countries have shown that those aged 65 years and above comprised 94% of all excess deaths, 

indicating a very high risk of death among older aged population specifically due to COVID-19 

(Kontis et al., 2020). 

Similarly, our finding of a positive association between the marginalization index and excess 

mortality supports previous research and reviews underscoring the close link between social 

disadvantage and COVID mortality (Saini et al., 2021) and the overall increased burden of the 

pandemic in marginalized populations. The marginalization index that we used is an indicator of 

the inequities in quality of housing, access to basic public services like electricity and drinking 

water, schooling, proportion of poorly paid population and other sociodemographic and 

population health characteristics (CONAPO 2020, World Bank. World Development Report 

2009). There may be several explanations for our findings. For example, public health measures 

such as social distancing and sheltering in place to combat the COVID-19 pandemic resulted in a 

disproportionate burden to vulnerable and marginalized populations (Anderson et al., 

2020, Benfer and Wiley, March 19 2020, Kantamneni, 2020). Marginalized groups are also more 

likely to be infected by the coronavirus due to the context of their living arrangements, which 

may limit the ability to self-isolate and socially distance. Similarly, it is well demonstrated that 

marginalized populations tend to have a higher prevalence of chronic conditions such as obesity, 

hypertension and diabetes, which are all strong risk factors associated with poor prognostic 

outcomes among those infected with COVID-19 (Anderson et al., 2020). To complicate matters 

further, marginalized populations are also often at greater risk of dying due to other indirect 

causes such as limited access to already-stressed health care systems, poor mental health 

outcomes, food insecurity, lower health literacy and lower consumption of health services, abuse, 

and violence, among other social ills (Anderson et al., 2020, Benfer and Wiley, March 19 

2020, Evans et al., 2021). 

Interestingly, Chiapas, a southern Mexico state with a high marginalization index 

(CONAPO, 2020), a higher concentration of indigenous population (32.7% indigenous 

population as of 2015) (National Institute of Indigenous Peoples, July 9, 2017), and lower 

average performance in implementation of public policies to combat COVID-19 (Knaul et al., 
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2021), had the lowest excess mortality rate among the states examined in these analyses. While 

there is no clear explanation for these findings, the varying climate across the states examined 

may be a contributing factor. For example, the southern states in Mexico have a weak seasonality 

and a tropical climate throughout the year (Burton, 2013). According to previous studies 

conducted in Mexico (Méndez-Arriaga, 2020), tropical climate delayed the local transmission of 

SARS-CoV-2 at regional level. As such, the temperate climate regions like Tlaxcala and Jalisco 

may have been more vulnerable for local transmission than the tropical climate regions such as 

Chiapas and Veracruz (Méndez-Arriaga, 2020). However, it is interesting that in our analysis we 

did not find a significant difference in excess mortality rates across states that fall in three 

distinct climate groups in Mexico. These findings should be replicated in other settings that 

comprise multiple climate regions to determine the impact of seasonality in the transmission 

spread and impact of excess mortality patterns. Additionally, more research is needed to 

elucidate the factors associated with lower all-cause excess death rate in the relatively 

marginalized southern states as observed in this study. Such insight may provide mitigation 

strategies for other regions with higher impact. 

We also found a positive association between average household size and excess death rate in the 

adjusted model. Although the links between average family size and excess death rate at the state 

level have not been reported elsewhere, the average family size could interact with other social 

determinants of health such as poverty, food insecurity, and lack of access to health care. 

However, since in our model we have controlled for marginalization index and aging index, 

household size could just be picking up a higher degree of exposure to COVID-19. Further 

studies are needed to understand the potential mechanism underlying this association and to 

more specifically consider family size as a potential population-level indicator of communities at 

risk for increased impact. 

Our classification of excess deaths growth rate curves at the state level reflects four distinct 

categories of Mexican states. In all of the clusters the first peak of the excess deaths growth rate 

curve occurred in around July, 2020 which happened after the phased reopening of non-essential 

services in June, 2020 in Mexico. The reopening of the country coincided with an increase in 

both driving and walking trends, and the highest levels of COVID-19 deaths that remained at a 

high level during June and July 2020 (Tariq et al., 2021). The visual analysis of the growth rate 
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curve indicates that the coastal tropical southeastern states were most affected during the first 

few months of the pandemic compared to other states. However, these states exhibited the lower 

overall excess death rate, which could indicate the effect of temperature and other environmental 

factors. Moreover, information on the growth rate curves can be utilized at the state level to 

guide the implementation of medical and public health measures. Besides, learning from the 

public health measures implemented in states of one cluster (for example, cluster 4) can be 

helpful to the other states (for example, states in cluster 1). 

We observed that most of the states in clusters 1 and 3 were adjacent to each other compared 

with the states in clusters 2 and 4. Clusters 1 and 3 are the clusters with double peaks and are 

similar compared to clusters 2 and 4. These similarities could be due to shorter distances or 

greater population connectivity. We note that a previous study on the 1918 influenza pandemic 

found that nearby areas have similar excess mortality patterns. For example, Northern counties in 

Arizona, USA, had higher excess deaths compared to the Southern counties (Dahal et al., 

2018b). It is worth noting that the overall wave pattern of mortality in Mexico (Figure 1) is 

comparable with the wave pattern displayed by neighboring US states including Texas, Arizona, 

and California (CDC, 2021). This wave pattern is also consistent with cluster 1, which comprises 

12 states, including Baja California, and which borders with California and Coahuila bordering 

Texas. Cluster 1 also includes the central states such as Morelos, Mexico, and Mexico City, 

which share high air traffic connectivity with the US. Therefore, the overall wave pattern in 

Mexico could have been dominated by those states that are highly connected to the United 

States. Likewise, the variations in the multiple wave patterns across other states could also reflect 

how Mexico is integrated into a more global epidemiologic system. 

To our knowledge, this is the first study that assesses the growth rate curves of excess deaths at 

the state level in Mexico. In our study, the estimates of excess death rate, as well as the 

proportion of COVID-19 attributed deaths, could be underestimated due to factors such as low 

testing rates in Mexico, misclassification of COVID-19 deaths, and delay in reporting COVID-

19 deaths. In our analyses, we replaced negative excess mortality by zeros to account for 

underreporting of deaths which may not adjust all potential periods of negative excess mortality. 

Since our analyses are based on state-level data, ecological fallacy should be considered when 

interpreting the results at the individual level in a particular state. Additionally, other potential 
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confounders that were not measured may explain the patterns of excess mortality across states. 

These limitations should be taken into account when interpreting our findings. 

3.5. Conclusion 

Our estimate of all-cause excess death rate in Mexico was 39.66 per 10 000, with central states 

exhibiting higher rates and southern states exhibiting lower rates. Our study highlights that 

several population measures including the aging index, marginalization index, and average 

household size were significantly associated with the all-cause excess mortality rates across 

Mexican states during the COVID-19 pandemic. Our excess mortality estimates can help tailor 

state specific medical and public health interventions to prevent excess mortality in vulnerable 

areas but targeting specific regions and socio-economic indicators. We also recommend further 

studies that investigate the lower excess death rate in southern states, and studies that explore the 

role of environmental factors, particularly the social determinants of health, in spatial variation in 

excess death rate in Mexico and other regions heavily impacted by COVID-19. 
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Chapter 4 

Investigating COVID-19 transmission and mortality differences between 

indigenous and non-indigenous populations in Mexico 

Citation: Dahal S, Mamelund SE, Luo R, Sattenspiel L, Self-Brown S, Chowell G. Investigating 

COVID-19 transmission and mortality differences between indigenous and non-indigenous 

populations in Mexico. International Journal of Infectious Diseases. 2022;122:910-920. 

4.1. Introduction 

Globally, indigenous populations and ethnic minorities tend to suffer worse health outcomes than 

non-indigenous populations. For example, from 2010-2012 the life expectancy of indigenous 

Australians (Aboriginal and Torres Strait Islander) (69.1 years for males and 73.7 years for 

females) was around 10 years lower than that of non-indigenous Australians (79.7 years for 

males and 83.1 years for females) (Australian Institute of Health Welfare, 2014). A variety of 

factors such as transgenerational adverse effects of colonization, racism, lower socio-economic 

status, and lower levels of education, have contributed to existing health disparities among the 

indigenous population (Durey et al., 2016; Hajizadeh et al., 2018; Nazroo, 2003). Moreover, 

barriers within the healthcare setting, including lack of access to culturally appropriate healthcare 

services, poor health literacy, distance to medical centers, communication problems, and low 

health insurance coverage also increase negative health trajectories (Daws et al., 

2014; Walsh and Kangaharan, 2017). 

Studies from many countries have reported disproportionately higher infection rates, 

hospitalizations, and deaths among indigenous and ethnic-minority groups from the beginning of 

the COVID-19 pandemic (Mallard et al., 2021; Power et al., 2020; Sharma and 

Bhaskar, 2021; Wiemers et al., 2020; Yashadhana et al., 2020). However, a few countries have 

reported the opposite early in the COVID-19 pandemic. For example, a review article from 

November 2020, covering COVID-19 studies reported that in six out of nine countries (including 

Mexico) that publicly reported mortality data among indigenous peoples, the rate of infection per 

100,000 population was lower among indigenous groups (except Brazil, Peru, and USA), and 
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the case fatality ratio was lower in three countries (Mallard et al., 2021). However, it was 

probably too early in the pandemic to assess this comparison since some indigenous 

communities tend to be more isolated (Tripp, 2022). Moreover, there are major gaps in reporting 

data on COVID-19 infection and outcomes for indigenous populations and many countries do 

not have publicly available data with socio-demographic profiles, leading to a dearth of studies 

that have empirically examined COVID-19 in indigenous populations vs. non-indigenous 

populations (Alves et al., 2022). Therefore, there is a dire need to conduct studies that evaluate 

COVID-19 outcomes among indigenous and non-indigenous populations. 

The COVID-19 pandemic widened existing health disparities among these groups as a result of 

the higher prevalence of underlying comorbid conditions and multimorbidity compounded by 

poor access to health care services, and unequal impact of lockdown measures (e.g., higher 

unemployment, higher rates of mental health problems, more loss of schooling) 

(Katikireddi et al., 2021; Kirby, 2020; Yashadhana et al., 2020). Prior work indicates that 

indigenous status may influence pandemic outcomes through three key mechanisms: a) increased 

exposure (at work, at home, possibly through multigenerational living), b) increased medical 

susceptibility due to higher prevalence of non-communicable diseases, and c) limited access to 

care and or health literacy resulting in social disparities (Quinn and Kumar, 2014). 

Mexico is a country in the Americas with the largest indigenous population (IWGIA, 2021). 

Mexico's indigenous population is highly vulnerable to the effects of the COVID-19 pandemic 

due to factors such as marginalization, discrimination, violence, land dispossession, and poor 

access to health services, social security, education and adequate housing (Díaz de León-

Martínez et al., 2020; IWGIA, 2021; Consejo Nacional de Evaluación de la Politica de Desrrollo 

Social, 2019). However, the COVID-19 prevention and mitigation strategies implemented in the 

country for indigenous populations are the same as those for the general population (Díaz de 

León-Martínez et al., 2020). Preliminary analyses from Mexico have started to shed light on the 

severe health impacts of COVID-19 among indigenous populations compared to non-indigenous 

counterparts (Argoty-Pantoja et al., 2021; Ibarra-Nava et al., 2021; Mallard et al., 2021). In this 

study, we aimed to assess the mortality impact of COVID-19 among indigenous populations by 

quantifying the mortality rate at sub-national level and by comparing the rates between 

indigenous and non-indigenous populations across the waves of the COVID-19 pandemic. In 
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addition, we compared the hazard ratios for death between indigenous and non-indigenous 

populations controlling for socio-demographic, comorbidity-related, and health service 

utilization-related factors. Furthermore, we estimate the reproduction number (Rt) among the two 

groups. These detailed analyses can help guide intervention strategies that effectively address the 

impact of infectious disease emergencies such as the COVID-19 pandemic among vulnerable 

populations. 

4.2. Methods 

4.2.1 Study setting 

Mexico is inhabited by 128.97 million people (projected as of 2021) and is divided into 31 states 

and the federal district (Mexico City) collectively referred to as federal entities 

(CONAPO, 2019). According to the intercensal survey of 2015 in Mexico, 21.50% of the total 

population self-identified as indigenous, 65% of whom were concentrated in 8 of the 32 entities 

(National Institute of Indigenous Peoples, 2017) as shown in table 2. 

4.2.2. Data source 

The dataset for this study was retrieved from the website (Secretaría de Salud, 2022) of the 

General Directorate of Epidemiology of the Ministry of Health of Mexico which maintains an 

open-source repository of patients classified as ‘suspected cases of viral respiratory disease’ 

identified at medical facilities in Mexico through the Viral Respiratory Diseases Epidemiological 

Surveillance System (Secretaría de Salud, 2020). From this dataset, we obtained data on the 

selected variables: age (EDAD), sex (SEXO), state of patient's residence (ENTIDAD_RES), type 

of care the patient received (TIPO_PACIENTE), date of symptom onset (FECHA_SINTOMAS), 

date of admission to care (FECHA_INGRESO), date of death (FECHA_DEF), lab result 

(RESULTADO_LAB), patient's self-identification as indigenous (INDIGENA), and variables on 

the diagnosis of different conditions such as diabetes, hypertension, and obesity which have been 

specified in Table 1. We used the variable ‘lab result’ to select the confirmed cases of COVID-

19 for our study. We categorized five groups based on age and created a composite variable 

‘comorbidity category’ based on the presence or absence of nine different comorbid conditions 

(Table 1). 
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Table 1. Descriptive analysis of socio-demographic, comorbidity, and case management-related 

characteristics of COVID-19 positive cases among Indigenous and non-Indigenous populations. 

 SARS-Cov 2 positive 

(n=2173036) 

Mortality among SARS-

Cov2 positive 

(n=238803) 

Proportion of deaths among cases 

 

 Indigenous 

population 

(n=21896) 

Non-

Indigenous 

population 

(n=2151140) 

Indigenous 

population 

(n=3831) 

Non-

Indigenous 

population 

(n=234972) 

in 

Indigenous 

in non-

Indigenous 

P-valuea 

 

Sex        

Female 10358 

(47.31) 

1079312 

(50.17) 

1473 

(38.45)  

89604 

(38.13) 

14.22 8.30 <0.0001 

Male 11538 

(52.69) 

1071828 

(49.83) 

2358 

(61.55) 

145368 

(61.87) 

20.43 13.56 <0.0001 

Age group        

Less than 18 

years 

861  

(3.93) 

90048  

(4.19) 

26  

(0.68) 

896  

(0.38) 

3.02 0.99 <0.0001 

18-44 years  9113 

(41.62) 

1073787 

(49.92) 

335 

(8.74) 

24214 

(10.31) 

3.68 2.25 <0.0001 

45-54 years 3914 

(17.88) 

407633  

(18.95) 

555 

(14.49) 

36798 

(15.66) 

14.18 9.03 <0.0001 

55-64 years 3453 

(15.77) 

290059  

(13.48) 

945 

(24.67) 

58293 

(24.81) 

27.37 20.09 <0.0001 

65 and above 

years 

4555 

(20.80) 

289613 

 (13.46) 

1970 

(51.42) 

114771 

(48.84) 

43.25 39.63 <0.0001 

Type of care        

Outpatient 14179 

(64.76) 

1650958 

(76.75) 

254  

(6.63) 

15733 

(6.70) 

1.79 0.95 <0.0001 

Hospitalized 7717 

(35.24) 

500182  

(23.25) 

3577 

(93.37) 

219239 

(93.30) 

46.35 43.83 <0.0001 

Patient 

required 

admission to 

intensive care 

unit n (%) 

732  

(3.34) 

41105 

 (1.91) 

431 

(11.25) 

23809 

(10.13) 

58.88 57.92 0.603 

Comorbidity        

Pneumonia, n 

(%) 

6011 

(27.45) 

364845 

(16.96) 

3023 

(78.91) 

171513 

(72.99) 

50.29 47.01 <0.0001 
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Diabetes, n (%) 4156 

(18.98) 

300200 

(13.96) 

1425 

(37.20) 

86625 

(36.87) 

34.27 28.86 <0.0001 

COPD, n (%) 625  

(2.85) 

26266 

 (1.22) 

266  

(6.94) 

10240 

(4.36) 

42.56 38.99 0.070 

Asthma, n (%) 521 (2.38) 48438 (2.25) 96 (2.51) 4231 (1.79) 18.43 8.73 <0.0001 

Hypertension, 

n (%) 

4521 

(20.65) 

387275  

(18.00) 

1520 

(39.68) 

104644 

(44.53) 

33.62 27.02 <0.0001 

Other disease, 

n (%) 

465  

(2.12) 

44684 

 (2.08) 

146 

 (3.81) 

11577 

(4.93) 

31.40 25.91 0.007 

Cardiovascular 

disease, n (%) 

438  

(2.00) 

36111  

(1.68) 

167  

(4.36) 

11859 

(5.05) 

38.13 32.84 0.019 

Obesity, n (%) 3910 

(17.86) 

311392  

(14.48) 

907 

(23.68) 

51063 

(21.73) 

23.20 16.40 <0.0001 

Chronic kidney 

failure, n (%) 

417 

 (1.90) 

37271 

 (1.73) 

197  

(5.14) 

16097 

(6.85) 

47.24 43.19 0.097 

Comorbidity 

category 

       

No 

comorbidity 

9877 

(45.11) 

1239373 

(57.61) 

245  

(6.40) 

20485 

(8.72) 

2.48 1.65 <0.0001 

1-2 

comorbidities 

9658 

(44.11) 

743630 

(34.57) 

2369 

(61.84) 

138669 

(59.02) 

24.53 18.65 <0.0001 

Three or more 

comorbidities 

2361 

(10.78) 

168137 

(7.82) 

1217 

(31.77) 

75818 

(32.27) 

51.55 45.09 <0.0001 

Time related 

variablesc 

    p-value b 

Time from 

symptom onset 

to seeking 

cared 

 

(n=2169701) 

 

4.41 (3.20) 4.07 (3.17) - - <0.0001   <0.0001  

Time from 

symptom onset 

to death e 

(n=237401) 

- - 13.25 

(8.22) 

13.89 

(8.53) 

<0.0001   <0.0001  

Time from 

seeking care to 

death f 

- - 7.63 (7.08) 8.45 (7.34) <0.0001   <0.0001 
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(n=236134) 

 

a Two-sample test for equality of proportions of mortality out of total cases among Indigenous and non-Indigenous 

groups for the given characteristic 

b Non-parametric Wilcoxon two sample test for difference in mean time among Indigenous and non-Indigenous 

c Mean (SD) 

d Includes cases with time from 0-18 days 

e Includes cases with time from 0-52 days 

f Includes cases with time from 0-39 days 

 

4.2.3. Definition of confirmed case of COVID-19 

Laboratory-confirmed cases were defined as a positive RT-PCR test (Ibarra-Nava et al., 2021). 

4.2.4. Definition of indigenous populations 

The use of self-identification as a proxy for ethnic classification has been used by the Mexican 

census since 2000 and this method is in line with the spirit of international legislation that 

considers the ability of the indigenous population to identify their ethnicity as a fundamental 

right (ILO, 1989). In this study, we used the variable ‘INDIGENA’ from the dataset to measure 

indigenous status based on patient self-identification. Records, where the indigenous status was 

missing, were omitted from further analysis. 

Figure 1 displays the strategy used to determine inclusion of cases in our study. After excluding 

cases without information about indigenous status, a total of 2,173,036 COVID-19 positive 

cases, and 238,803 COVID-19 deaths remained. 
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Figure 1. Flowchart showing the inclusion of cases and deaths in the study. 

4.2.5 Data analysis 

The earliest date of symptom onset for a COVID-19 positive case in our dataset was 19 February 

2020. Therefore, we performed the statistical analysis using the surveillance data from 19 

February 2020, to 25 March 2022. 

a. Descriptive analysis of COVID-19 positive cases and deaths: To test the null hypothesis of no 

difference in the proportion of COVID-19 deaths among indigenous and non-indigenous positive 

cases for socio-demographic, comorbidity, and case management-related characteristics, we 
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performed two-sample tests for equality of binomial proportions at 0.05 level of significance. 

Similarly, to test the null hypothesis of no difference in the average days from ‘symptom onset to 

seeking care’, ‘seeking care to death’ and ‘symptom onset to death’ between indigenous and 

non-indigenous populations, we used the Wilcoxon two-sample test for difference in medians. 

For the analysis of these time-related variables, we excluded cases with negative days, and 

extreme outliers falling above three times the interquartile range. 

b. Estimation of instantaneous reproduction number: Rt is the expected number of secondary 

infections occurring at time t, divided by the number of infected individuals, each scaled by their 

relative infectiousness at time t. We used EpiEstim R Package (Cori et al., 2021) to 

estimate Rt from the curves of daily incidence of COVID-19 cases by date of symptom onset for 

indigenous and non-indigenous populations separately. We obtained the average Rt estimates 

over a weekly time interval for the entire study period by using the 7-day sliding window 

method. We also used the non-overlapping time window method to estimate the average Rt for 

the early ascending phase for each of the COVID-19 waves. For the Rt estimation, the 

distribution of serial interval was parametrically defined using a mean of 4.6 days and SD of 5.55 

days (Ofori et al., 2022; You et al., 2020). We report the mean and 95% credible interval (CrL). 

c. Estimation of person-time mortality rate: The person-time mortality rate was defined as the 

ratio of the number of deaths among COVID-19 cases and the person-time at risk of death during 

the study period. The mortality rate was estimated separately for indigenous and non-indigenous 

populations. The person-time at risk was expressed per 1000 person-weeks based on the date 

from symptom onset to date of death (Argoty-Pantoja et al., 2021). For non-deaths, person-time 

at risk was the time between date of symptom onset until the last date of the study period. We 

also estimated the person-time mortality rate for each of the 32 federal entities. The 95% 

confidence intervals (CIs) and P-values were estimated using open-source statistics for public 

health (Sullivan et al., 2013). The P-values were based on z-score tests and the 95% CIs were 

based on the Taylor series method. We also estimated the mortality rate for four different waves 

of COVID-19 as well as for the years 2020 and 2021 in Mexico. For the wave-wise comparison, 

person-time for non-deaths was estimated using the time elapsed between symptom onset date 

and the end date of the given wave. We also reported the ratio of COVID-19 mortality rate per 
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1000 person-week among indigenous populations vs. non-indigenous populations (rate 

ratio = RR). 

We defined the epidemiological waves based on the descriptive analysis of time series of 

COVID-19 cases for Mexico according to the standard definition of epidemiological weeks used 

by the CDC (CMMCP, 2022) as follows: 

First wave- 19 February 2020 to 3 October 2020; second wave- 4 October 2020 to 29 May 2021; 

third wave- 30 May 2021 to 18 December 2021; fourth wave- 19 December 2021 to 25 March 

2022. 

d. Estimation of hazard ratio (HR) for COVID-19 death and indigenous status: Multivariate 

Cox proportional hazards regression models were used for these analyses. The general equation 

of the model is 

ℎ(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝑋β + 𝒁𝑇𝛄) 

where ℎ(𝑡) is the hazard function, ℎ0(𝑡) is the baseline hazard, X is a variable indicating 

Indigenous status, and 𝒁 is a vector of model covariates including age, sex, number of 

comorbidities, type of care received (outpatient vs. hospitalization), and days from symptom 

onset to seeking care. We used log-log survival curves to assess the constant proportionality 

assumption of the Cox hazard model. Because the curves showed parallel lines for Indigenous 

and non-Indigenous populations, the constant proportionality assumption was reasonable. 

4.3. Results 

Figure 2 shows the daily time-series of COVID-19 cases from 19 February 2021 to 25 March 

2022 (panels A and D), and Rt among indigenous and non-indigenous populations in Mexico 

(panels B, C, E and F). The mean Rt was highest among both the groups during the early 

ascending phase of the fourth wave (indigenous: 1.426 (95% CrL: 1.405, 1.447), non-

indigenous: 1.535 (95% CrL: 1.521, 1.549)) (Supplementary Figure 2). 
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Figure 2. (A.) Daily incidence of COVID-19 cases among non-indigenous from 19 February 

2020 - 25 March 2022 (B.) Time-varying Rt of COVID-19 cases among non-indigenous 

populations for the study period (C.) Mean Rt for the early ascending phase of four waves among 

non-indigenous (30 days from 5 April 2020 - 4 May 2020 for first wave, 30 days from 29 

September 2020 – 28 October 2020 for second wave, 30 days from 27 June 2021 - 26 July 2021 

for the third wave and 15 days from 23 December 2021 - 6 January 2022 for the fourth wave) 

(D.) Daily incidence of COVID-19 cases among Indigenous from 19 February 2020 -25 March 

2022 (E.) Time-varying Rt of COVID-19 cases among indigenous populations for the study 

period (F.) Mean Rt for the early ascending phase of four waves among indigenous (30 days from 

15 April 2020 - 14 May 2020 for first wave, 30 days from 15 November 2020 - 14 December 

2020 for second wave, 30 days from 11 July 2021 - 9 August 2021 for the third wave and 15 

days from 27 December 2021 - 10 January 2022 for the fourth wave). Dates indicate date of 

symptom onset. The shaded gray areas in B, C, E and F indicate 95% CrL. 

CrL, credible interval; Rt, reproduction number 
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Table 1 summarizes socio-demographic, comorbidity, and case management-related 

characteristics among COVID-19 cases and deaths for the indigenous and non-indigenous 

populations. The proportion of deaths among the indigenous group was higher than that for non-

indigenous for both males and females, across age groups, both hospitalized and outpatient cases, 

as well as the great majority of comorbidities (P <0.05). Compared to non-indigenous 

populations, the average time from symptom onset to seeking care was significantly higher for 

the indigenous populations (4.41 vs. 4.07 days; P<0.01) whereas both the average time from 

symptom onset to death (13.25 vs. 13.89 days; P<0.01) and the average time from seeking care 

to death (7.63 vs. 8.45 days; P<0.01) were significantly lower for the indigenous populations 

(Table 1). These findings indicate longer delays in care seeking for the indigenous population 

leading to lower average survival time compared to the non-indigenous populations. 

Table 2 shows the federal entity-level COVID-19 mortality rate per 1000 person-weeks among 

indigenous and non-indigenous populations. At the national level, the mortality rates among 

indigenous and non-indigenous populations were significantly different (3.25 vs. 1.94 per 1000 

person-weeks; P-value<0.05). Of the 32 federal entities, 23 exhibited higher COVID-19 

mortality rate among indigenous compared to non-indigenous groups, with this difference being 

statistically significant in 13 entities. Figure 3, Figure 4 show the mortality rates by indigenous 

status and the RR across federal entities, respectively. We also assessed the association between 

the proportion of indigenous populations and the RR at the entities level (Pearson correlation 

coefficient = 0.37; P-value = 0.036; 95% CI: 0.02, 0.64). 

Table 2. COVID-19 mortality rate per 1000 person-weeks among indigenous and non-indigenous 

population, Mexico, February 19, 2020 to March 25, 2022. 

Region/entiti

es 

Proportion 

of self-

identified 

Indigenous 

population 

Total deaths Mortality rate (95% CI) 

Indigeno

us 

non-

Indigenous Indigenous non-Indigenous P-value 

National 21.49 3818 233,750 3.25 (3.15, 3.35) 1.94 (1.93, 1.94) <0.0001 
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Aguacaliente

s 0.60 7 2544 3.19 (1.28, 6.56) 1.69 (1.63, 1.76) 

0.089 

Baja 

California 1.10 83 8862 3.96 (3.15, 4.90) 3.24 (3.17, 3.31) 

0.069 

Baja 

California 

Sur 0.40 10 1881 2.62 (1.25, 4.82) 0.97 (0.93, 1.02) 

0.001 

Campeche 1.56 79 1936 4.78 (3.78, 5.95) 2.51 (2.40, 2.63) <0.0001 

Coahuila 0.80 12 7143 1.68 (0.87, 2.93) 1.69 (1.66, 1.73) 0.976 

Colima 0.57 6 1725 2.66 (0.97, 5.79) 2.53 (2.41, 2.65) 0.902 

Chiapas 7.34 34 2008 2.00 (1.38, 2.79) 2.48 (2.37, 2.59) 0.206 

Chihuahua 1.56 71 6595 3.12 (2.44, 3.93) 2.37 (2.31, 2.42) 0.020 

Mexico City 3.05 127 26,972 1.44 (1.20, 1.72) 1.28 (1.27, 1.30) 0.183 

Durango 0.54 12 2927 1.26 (0.65, 2.19) 1.29 (1.25, 1.34) 0.915 

Guanajuato 2.08 11 12,344 1.01 (0.50, 1.81) 1.50 (1.47, 1.53) 0.188 

Guerrero 4.66 144 4400 2.21 (1.86, 2.60) 1.95 (1.90, 2.01) 0.144 

Hidalgo 4.03 315 6810 3.80 (3.40, 4.25) 3.27 (3.19, 3.35) 0.008 

Jalisco 3.40 65 14,691 3.61 (2.78, 4.60) 2.94 (2.90, 2.99) 0.102 

Mexico 10.71 224 31,415 3.36 (2.93, 3.82) 2.93 (2.90, 2.96) 0.042 

Michoacan 4.94 190 6249 3.58 (3.08, 4.12) 2.17 (2.11, 2.22) <0.0001 

Morelos 2.08 30 3456 4.86 (3.27, 6.93) 3.83 (3.70, 3.96) 0.193 

Nayarit 1.02 31 1899 2.91 (1.98, 4.13) 2.89 (2.76, 3.02) 0.966 

Nuevo Leon 1.37 15 13,063 1.46 (0.82, 2.41) 1.71 (1.68, 1.74) 0.549 

Oaxaca 10.15 436 3476 4.02 (3.65, 4.41) 1.27 (1.23, 1.31) <0.0001 

Puebla 8.47 313 11,266 7.51 (6.70, 8.39) 2.41 (2.37, 2.46) <0.0001 

Queretaro 1.52 13 4151 1.20 (0.64, 2.05) 1.19 (1.15, 1.23) 0.981 

Quintana Roo 2.60 205 3452 5.44 (4.72, 6.24) 2.63 (2.54, 2.72) <0.0001 

San Luis 

Potosi 2.45 139 5188 1.34 (1.13, 1.58) 1.38 (1.34, 1.41) 

0.768 

Sinaloa 1.48 27 7078 3.47 (2.29, 5.06) 3.05 (2.97, 3.12) 0.494 

Sonora 1.98 90 6795 4.81 (3.87, 5.91) 1.87 (1.83, 1.92) <0.0001 

Tabasco 2.40 76 5379 0.99 (0.78, 1.24) 0.92 (0.89, 0.94) 0.528 

Tamaulipas 0.84 10 6125 1.35 (0.64, 2.48) 1.43 (1.39, 1.46) 0.854 
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Tlaxcala 1.25 18 2721 3.12 (1.85, 4.92) 2.33 (2.24, 2.42) 0.217 

Veracruz 9.24 190 12,879 5.78 (4.99, 6.66) 3.19 (3.13, 3.24) <0.0001 

Yucatan 5.34 822 4935 4.04 (3.77, 4.33) 2.17 (2.11, 2.23) <0.0001 

Zacatecas 0.47 13 3385 2.06 (1.10, 3.52) 1.67 (1.62, 1.73) 0.451 

 

Figure 3. COVID-19 mortality rate per 1000 person-weeks in indigenous and non-indigenous 

populations in Mexico, February 2020 to March 2022. 
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Figure 4. Rate ratio (RR) of COVID-19 mortality per 1000 person-weeks among indigenous and 

non-indigenous populations by federal entities in Mexico. 

A stratified analysis of the mortality rate and the RR across four pandemic waves is given 

in Table 3. The RR was lowest in the first wave (1.55) and highest in the fourth wave (2.40). 

Similarly, the RR was higher in 2021 compared to 2020. 

 

Table 3. Estimation of COVID-19 mortality rate per 1000 person-week among Indigenous and 

non-Indigenous groups across four pandemic waves and by year in Mexico. 

 

Wave 

Deaths 

indigen

ous 

Deaths 

non-

indigen

ous  

Person-

weeks 

indigen

ous  

Person-

weeks 

non-

indigenou

s  

Mortality rater 

per 1000 

person-weeks 

indigenous 

(R1) 

Mortality 

rater pwe 

1000 

person-

weeks non-

indigenous 

(R2) 

Rate 

Rati

o 

(R1/

R2) 

First wave 

19 Feb 2020 – 3 

Oct 2020 

1679 83,002 99,912.

42 

7,693,327 16.71 10.79 1.55 
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Second wave 

4 Oct 2020 – 29 

May 2021 

985 95,517 107,946

.1 

17,323,00

3 

9.12 5.51 1.65 

Third wave 

30 May 2021 – 

18 Dec 2021 

(First case of Delta 

variant reported in 

15 July 2021) 

926 38,627 68,398.

43 

5,309,029 13.54 7.27 1.86 

Fourth wave 

19 Dec 2021 – 25 

March 2022 

(First case of 

Omicron variant 

reported on Dec, 3, 

2021) 

141 9666 10,932.

43 

1,800,412 12.90 5.37 2.40 

2020 

(19 Feb, 2020 –

31 Dec, 2021)  

2055 127,131 902,822

.9 

93,530,29

2.14 

2.28 1.36 1.67 

2021 

(1 Jan, 2021 – 31 

Dec, 2021) 

1533 85,195 262,511

.9 

25,549,99

8.29 

5.84 3.33 1.75 

Overall (19 Feb, 

2020 – March 25, 

2022) 

3818 233,750 1,175,5

98 

120,703,6

75.1 

3.25 1.94 1.68 

Note: The overall person-time was calculated as the difference between the date of symptom 

onset and death for events (death). For non-death cases (censored) the person-time was 

calculated as the difference between date of symptom onset and cutoff date of March-25, 2021. 

For wave-wise estimation, person-time was calculated for the interval period only. Person-week 

was calculated by dividing total person-days by 7. 
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Table 4 shows the results from fitting different survival regression models. Based on the 

goodness of fit of the models as deemed by their Akaike information criterion (AIC) values, we 

selected model 6 as our final model. In the unadjusted model, the hazard of death among 

indigenous populations was 67.1% (HR = 1.67; 95% CI: 1.62, 1.72) higher than that for non-

indigenous populations. There was a statistically significant interaction between the type of care 

and the time from symptom onset to seeking care (care-seeking delay). After adjusting for sex, 

age, the number of comorbidities, and the interaction between type of care and care-seeking 

delay, the HR for indigenous groups compared to non-indigenous decreased to 1.08 and 

remained statistically significant. We used the variables in model 6 to fit survival regression 

models for each of the waves separately. Table 5 shows the results of these models. Tables with 

the estimated beta values for model 6 for the overall period, waves, and years are given in the 

supplementary file. 

Table 4. Results of fitting a taxonomy of multiple survival regression models, February 2020 to 

March 2022. 

 

 

Hazard Ratio (HR) 

(95% CI) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Indigenous 

(Comparison =Non-indigenous) 

1.67 *** 

(1.62, 1.72) 

1.24*** 

(1.20, 1.28) 

1.61*** 

(1.56, 1.67) 

1.12*** 

(1.09, 

1.16) 

1.08*** 

(1.05, 

1.11) 

1.08*** 

(1.04, 

1.11) 

Sex 

(comparison =Female) 
 

1.55*** 

(1.54, 1.56) 

  1.27*** 

(1.26, 

1.28) 

1.27*** 

(1.26, 

1.28) 

Age 

 

1.07*** 

(1.07, 1.07) 

  1.03*** 

(1.03, 

1.03) 

1.03*** 

(1.03, 

1.03) 
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Time in days from symptom 

onset to seeking care 
  

1.10*** 

(1.10, 1.10) 

0.99*** 

(0.99, 

0.99) 

0.98*** 

(0.98, 

0.98) 

- 

Type of care 

(comparison=Outpatient) 
  

 59.67*** 

(58.71, 

60.65) 

24.55*** 

(24.13, 

24.99) 

- 

1-2 comorbidity 

(comparison=No comorbidity) 
  

  2.30*** 

(2.26, 

2.34) 

2.28*** 

(2.25, 

2.32) 

3 or more comorbidity 

(comparison=No comorbidity) 
  

  2.96*** 

(2.91, 

3.01) 

2.94*** 

(2.90, 

2.99) 

(Type of care) *(time in days from symptom onset to seeking care) 

Time in days from symptom 

onset to seeking care (for 

outpatients) 
  

   1.07*** 

(1.06, 

1.07) 

Time in days from symptom 

onset to seeking care (for 

hospitalized) 
  

   0.98*** 

(0.97, 

0.98) 

Type of care, when time from 

symptom onset to care=0 

(comparison=Outpatient) 

  

   36.29*** 

(35.28, 

37.33) 

Akaike information criterion 
6,879,429.7 6,552,629.9 6,849,913.9 6,260,272

.2 

6,169,794.

7 

6,168,502

.6 

*P<0.05, **P<0.01, ***P<0.001, CI, Confidence Interval 
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Table 5. Results of multiple survival regression models across COVID-19 waves. 

 Hazard Ratio (95% CI) 

 
First wave Second wave Third 

wave 

Fourth wave 

Indigenous 

(Comparison =Non-

indigenous) 

1.09*** 

(1.03, 1.14) 

1.04 

(0.98, 1.11) 

1.13** 

(1.06, 1.21) 

1.03 

(0.87, 1.22) 

Sex 

(comparison =Female) 

1.32*** 

(1.30, 1.34) 

1.26*** 

(1.24, 1.28) 

1.19*** 

(1.17, 1.22) 

1.25*** 

(1.20, 1.30) 

Age 1.03*** 

(1.03, 1.03) 

1.03*** 

(1.03, 1.03) 

1.02*** 

(1.02, 1.02) 

1.03*** 

(1.03, 1.03) 

1-2 comorbidity 

(comparison=No comorbidity) 

2.69*** 

(2.62, 2.77) 

2.06*** 

(2.01, 2.11) 

1.93*** 

(1.87, 2.00) 

1.88*** 

(1.76, 2.00) 

3 or more comorbidity 

(comparison=No comorbidity) 

3.69*** 

(3.58, 3.80) 

2.58*** 

(2.51, 2.65) 

2.41*** 

(2.32, 2.50) 

2.25*** 

(2.09, 2.41) 

Type of care*time in days from symptom onset to seeking care 

Time in days from symptom 

onset to seeking care (for 

outpatients) 

1.04*** 

(1.03, 1.04) 

1.07*** 

(1.07, 1.08) 

1.03** 

(1.01, 1.05) 

1.11*** 

(1.08, 1.15) 

Time in days from symptom 

onset to seeking care (for 

hospitalized) 

0.96*** 

(0.96, 0.96) 

0.97*** 

(0.97, 0.97) 

0.98*** 

(0.98, 0.98) 

1.00 

(0.99, 1.01) 

Type of care, when time from 

symptom onset to care=0 

21.57*** 

(20.70, 22.48) 

43.62*** 

(41.64, 45.70) 

67.95*** 
73.20*** 

(62.93, 85.15) 
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(comparison=Outpatient) (61.32, 

75.30) 

Akaike information criterion 2,038,299.00 2,312,173.70 881,563.05 198,461.41 

For each of the waves, the adjusted HR for the indigenous population compared to the non-

indigenous population was greater than 1 and was statistically significant for the first and third 

waves, indicating a higher hazard of COVID-19 mortality among indigenous populations 

compared to the non-indigenous counterparts (Table 5). We found that the unadjusted HR in 

2020 was 1.69 (95% CI: 1.62, 1.77) compared to 1.62 (95% CI: 1.54, 1.70) in 2021. Similarly, in 

the adjusted model (model 6), the HR for 2020 decreased to 1.10 (95% CI: 1.05, 1.15) and the 

HR for 2021 decreased to 1.10 (95% CI: 1.04, 1.15). 

The survival curves for indigenous and non-indigenous populations, stratified by hospitalized 

and outpatient status in Mexico are shown in Figure 5. The curves reflect a lower survival 

probability among hospitalized indigenous populations compared to the hospitalized non-

indigenous population. 

 

Figure 5. Survival curves for hospitalized and outpatient COVID-19 cases among indigenous and 

non-indigenous groups. 
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4.4 Discussion 

The COVID-19 pandemic has exacerbated the existing health and socio-

economic disparities among vulnerable indigenous populations globally because of the systemic 

structural disadvantages and higher burden of lockdown measures that put these groups at higher 

risk of infection and death (Carethers, 2021; Katikireddi et al., 2021). This study assessed the 

mortality rate per 1000 person-weeks for indigenous and non-indigenous populations in Mexico 

from February 2020 to March 2022. At the national level, we estimated the COVID-19 mortality 

rate among indigenous groups to be substantially higher compared to non-indigenous 

populations (3.25 vs. 1.94 per 1000 person-weeks). Indigenous individuals experienced 

significant delays in care seeking for COVID-19 infection and a lower survival probability 

compared to non-indigenous counterparts. 

We found that the COVID-19 mortality rate among indigenous populations was 68% higher than 

the non-indigenous populations (RR = 1.68). This estimate is similar to that reported in an earlier 

study from Mexico (RR = 1.65) covering the first 5 months of the pandemic (Argoty-

Pantoja et al., 2021). Another study from Mexico based on data as of November 2020 also 

reported a higher case fatality ratio of the indigenous group compared to the non-indigenous 

group (RR = 1.11) (Mallard et al., 2021). Increased vulnerability and mortality among 

indigenous populations as compared to the general population during past pandemics is well 

established (CDC, 2009; Dahal et al., 2018; Kelm, 1999; Wilson et al., 2012). For example, 

during the 1918 influenza pandemic, the death rate among the Māori population was at least 7.3 

times higher than that of the population of European descent in New Zealand (Wilson et al., 

2012). Also, during the 2009 H1N1 influenza pandemic, indigenous populations from Australia, 

Canada, and New Zealand had 3-8 times higher rates of hospitalization and death compared to 

non-indigenous populations (CDC, 2009). 

We observed the highest COVID-19 mortality rate during the first wave followed by the third 

wave both for indigenous and non-indigenous groups. Indigenous populations were more heavily 

affected than the non-indigenous consistently across the waves. Social distancing guidelines 

were not strictly in place and vaccination was not yet available during the first wave whereas the 

third wave included the period during which the more contagious, severe, and deadly Delta 
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variant of the Coronavirus was circulating (CDC, 2021). RR increased from 1.55 in first wave to 

1.65 in second wave to 1.86 in third wave and 2.40 in fourth wave, indicating that over 

subsequent pandemic waves, the indigenous groups were more likely to succumb to COVID-19. 

Similarly, the increase in RR from 1.67 in 2020 to 1.75 in 2021 could reflect the effect of social 

disparities in adopting non-pharmaceutical interventions (NPIs) such as handwashing, using 

facemasks, less frequent use of public transportation, and social distancing as well as vaccine 

uptake (Mamelund et al., 2021). Among the indigenous Mexican populations, precarious socio-

economic conditions and factors such as return of the indigenous population to their 

communities due to the pandemic, poor access to water, language barriers, and limited access to 

the Internet are important social factors that affect the adoption of preventive measures against 

COVID-19 (Díaz de León-Martínez et al., 2020). However, no such data that compares the 

uptake of NPIs and vaccination among indigenous and non-indigenous groups is available for 

Mexico. The COVID-19 pandemic started as a rich man's disease within affluent communities 

and then spread to the poorer section, producing more severe outcomes (Bengali et al., 

2020; Khlat and Le Coeur, 2021; Plümper and Neumayer, 2020). This is consistent with 

indigenous groups exhibiting worsening mortality outcomes over subsequent pandemic waves. 

We also found that the Rt for both indigenous and non-indigenous groups was highest during the 

fourth wave (1.4 among indigenous vs. 1.5 among non-indigenous). Overall, the Rt for 

indigenous and non-indigenous groups was comparable, possibly reflecting the fact that 

indigenous groups in Mexico are well connected to the rest of the population through internal 

migration. For example, indigenous population in Mexico migrates to urban destinations where 

they occupy jobs that increase their vulnerability to COVID-19 infection and they in turn spread 

the disease to their home communities upon return (Díaz de León-Martínez et al., 2020). 

However, the increased RR value could also indicate that the improvements in care and 

treatment of severe cases became more available to affluent patients than to the indigenous 

groups as the pandemic progressed. 

COVID-19 vaccine uptake among indigenous populations may be influenced by several factors 

including the availability of accurate, accessible, and culturally relevant information, poor access 

to the vaccination sites, mistrust in government services, concerns over vaccine safety, past 

experiences of racism and abuse in healthcare settings, and the lack of involvement of 
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indigenous communities in the planning and implementation of vaccination programs 

(Castillo et al., 2021). Many indigenous people live in geographically rural or remote areas, 

inhabit multigenerational housing, are poor, face food insecurity, have increased rates of chronic 

diseases, and have limited access to running water. Consequently, the one-size-fits-all response 

that was frequently implemented to address COVID-19 was often ineffective for these vulnerable 

groups (Power et al., 2020; United Nations Department of Economic and Social Affairs, 2020). 

In Mexico specifically, indigenous populations have a higher prevalence of metabolic 

syndrome and its components such as low HDL-cholesterol levels, central obesity and elevated 

blood pressure (Mendoza-Caamal et al., 2020) that increase the risk of severe COVID-19 

(Steenblock et al., 2021). In addition, indigenous communities in Mexico suffer from higher 

levels of social deprivation including lagging in education, access to health services and social 

security, housing quality and space, and basic housing services (Díaz de León-Martínez et al., 

2020; Consejo Nacional de Evaluación de la Politica de Desrrollo Social, 2019). As in many 

countries, the Mexican health administration recommended COVID-19 vaccination following 

sequential prioritization to health workers, people aged 60 years and above, and people aged 50-

59 with comorbidities followed by the general population (de Vacunación Covid, 2021). 

However, social and ethnic vulnerability including indigenous status was not taken into account 

when designing these recommendations. Indeed, a 2017 review of pandemic preparedness plans 

across nations revealed that the risk groups for vaccination were based on medical conditions 

without regard to social risks (Mamelund, 2017; Mamelund and Dimka, 2021). 

In Mexico, 23 federal entities out of 32 had a higher mortality rate among indigenous compared 

to non-indigenous, and this difference was statistically significant in 13 entities. For 9 states 

including Chiapas, Durango, and Nuevo Leon, the mortality rate was higher among non-

indigenous groups, though not statistically significant. Further studies are needed to better 

understand the drivers leading to higher mortality among non-indigenous populations in these 

areas. 

In summary, we found indigenous status to be an important risk factor for COVID-19 mortality 

in Mexico. While the crude hazard of death among the indigenous population was 67.1% higher 

than that of the non-indigenous, the hazard of death was only 8.0% greater among indigenous 

when controlling for sex, age, comorbidity category, and the interaction between type of care and 
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care-seeking delay. This indicates that ‘indigenous status’ alone is not a significant factor 

contributing to a higher risk of deaths due to COVID-19 among the indigenous population, but 

the associated socio-demographic, cultural and care-seeking practices in this group explain such 

differences. Moreover, epigenetic mechanisms could also mediate the effect of racialized 

experiences of colonization, oppression, and violence on COVID-19 outcomes among 

indigenous populations (Curtice and Choo, 2020; Encinosa, 2021). Similar to our Mexican study, 

in Brazil, which has high ethnic diversity, Pardo ethnicity was found to be the second most 

important risk factor for death due to COVID-19 after age. Compared to White 

Brazilians, Pardo and Black Brazilians who were admitted to the hospital suffered a significantly 

higher risk of mortality (HR for Pardo: 1.45; 95% CI: 1.33, 1.58) (Baqui et al., 2020). Consistent 

with this study, we found declining survival curves for Mexican indigenous groups compared to 

non-indigenous for both the outpatient and hospitalized COVID-19 positive cases. 

We found a significantly higher proportion of deaths among total cases in the indigenous 

population based on hospitalization and outpatient status. This was consistent with previous 

studies from Mexico (Argoty-Pantoja et al., 2021; Ibarra-Nava et al., 2021). We also found a 

statistically significant higher average care-seeking delay for the indigenous population 

compared to non-indigenous (4.41 days vs. 4.07 days) which could be due in part to longer travel 

distances between place of residence and health facility for the indigenous population compared 

to the non-indigenous populations besides other socio-economic disparities affecting health 

service utilization. 

Our study has some notable limitations. First, the nature of available variables in the dataset did 

not allow us to fully understand the drivers behind the higher mortality rates in indigenous 

populations compared to the general population. For instance, variables related to COVID-19 

vaccination status, self-reported adherence to NPIs such as mask wearing and shelter-in-place 

orders, and access to health care services could help us better understand COVID-19 mortality 

disparities. Results for waves other than the first wave may be confounded by the disparity in 

vaccine uptake and disparity in NPI use. It is also worth noting the possibility of underreporting 

of COVID-19 deaths among indigenous populations as reported for Brazil (Fellows et al., 2021) 

where it was estimated a 103% underreporting of COVID-19 deaths among indigenous 

populations. Similarly, according to a previous study from Mexico (Dahal et al., 2021), 
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confirmed COVID-19 deaths accounted for only ∼38% of total excess deaths estimated for 

Mexico partly due to underreporting. Our results are therefore underestimating the toll of the 

disease burden on the indigenous peoples. Differences in underreporting between indigenous and 

non-indigenous populations need further investigation. 

5.5 Conclusion 

Our study found that the COVID-19 mortality rate among indigenous populations was 68% 

higher than that for the non-indigenous population (RR = 1.68) from February 2020 to March 

2022, and both the Rt and RR were highest during the fourth wave of the COVID-19 pandemic, 

reflecting the possible impact of vaccine uptake and NPI use disparities between indigenous and 

non-indigenous population. Our findings indicate that indigenous status is an important risk 

factor for mortality in Mexico such that the hazard of death among indigenous populations was 

67% higher among indigenous people compared to non-indigenous groups in the unadjusted 

model and 8% greater when controlling for sex, age, number of comorbidities and the interaction 

between type of care and care-seeking delay. Indigenous people showed higher delays in care 

seeking for COVID-19 infection and a lower survival probability compared to non-indigenous 

populations, pointing to a link between care seeking practices and indigenous status. Further 

studies are warranted to disentangle the mechanisms through which indigenous populations are 

disproportionately affected by COVID-19 compared to non-indigenous populations. 
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Chapter 5 

5.1 Dissertation Summary  

Use of epidemiologic methods is crucial in exploring the epidemiology of a novel disease 

such as the COVID-19 and in guiding the prevention and mitigation strategies. In the three 

studies included in this dissertation, we apply different epidemiologic methods across different 

geospatial levels such as national and federal entities, population groups such as indigenous and 

non-indigenous groups, and across time span such as by waves of the pandemic to investigate the 

impact of COVID-19 pandemic using epidemiologic data from the country of Mexico.  

In the first study, we utilize Serfling regression analysis to estimate weekly excess 

mortality rates per 10,000 population in Mexico during the first year of COVID-19 pandemic. 

The study showed that Mexico was heavily affected by the pandemic with an estimated all-cause 

excess mortality rate of 26.10 per 10,000 population. While males had around two times higher 

excess mortality rate compared to females, the excess mortality rate in Mexico City was about 

three times higher than the rate in the rest of Mexico. The lab-confirmed COVID-19 deaths 

accounted for only about 39% of the total estimated excess deaths indicating either the effect of 

low testing or reporting delay or a substantial increase in deaths due to other causes during the 

first year of the pandemic in Mexico. This also reflects the importance of using excess mortality 

rate to assess the mortality burden of an ongoing pandemic.  

We also demonstrate the application of a phenomenological dynamic growth model 

based on ordinary differential equations, such as the generalized logistic growth model with three 

parameters, in generating short term forecasts during an ongoing pandemic. We specifically 

apply it in generating the four weeks ahead forecasts of excess deaths. Our model forecasted that 

a total of ~61610 excess deaths would be accumulated during the first four weeks of 2021. To 

compare our forecast estimates with the actual estimated excess deaths, we performed excess 

mortality calculation for the first four weeks of 2021 and estimated total excess deaths of 

~95664. In January 2021, Mexico marked new daily records for COVID-19 deaths. For example, 

1803 COVID-19 deaths were recorded on January 21, exceeding the previous record of 1500 in 

the same week (1). Not only in Mexico but the record number coronavirus death rates were 
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reported across the globe in the month of January (2). For example, January 2021 was recorded 

as the deadliest month in the US since the start of pandemic to that date (3). This surge in 

mortality was considered to be led by interstate travel and holiday celebrations (3). In the second 

paper, we also use big data from the mainstream social media platform, Twitter, to both analyze 

the trend of deaths chatter from 2018 to 2020 and to assess the correlation of people’s 

engagement with the death chatter in Twitter with COVID-19 mortality rate and excess mortality 

rate. This type of social media data can be utilized in other analyses such as in assessing the 

socio-economic disparity in COVID-19 cases and deaths or the impact of interventions such as 

vaccination. 

In the second study, we expand the analysis of excess mortality rate from the national 

level to the federal entity level to estimate all-cause excess mortality rate for 32 federal entities in 

Mexico including Mexico City for 2020, 2021 and the total, along with the proportion of 

COVID-19 attributed deaths out of total excess deaths for each location. In addition, we also 

apply other epidemiologic methods such as multiple linear regression analysis, analysis using 

Moran’s I statistics and spatial lag model, in assessing the factors associated with excess 

mortality rate at the subnational level in Mexico. We apply clustering analysis and identify four 

clusters of states with similar excess mortality growth rate curves in Mexico. We present the 

average growth rate curves and one standard deviation band around the curve. To our 

knowledge, the assessment of excess mortality growth rate curves in generating clusters of states 

with similar curve has been done for the first time though similar studies utilizing cases or deaths 

data have been reported. We show that this type of clustering analysis is important in multiple 

ways: first, the information on growth rate curve can be utilized by the corresponding states in 

implementing public health and medical interventions. For example, the states such as Baja 

California that fall into the first cluster with an inclining second peak in the excess deaths growth 

rate can formulate timely prevention and control measures to slow down the growth rate. Second, 

knowledge of public health measures that were in place in the states that fall into one cluster can 

be useful for the states that fall into another cluster. In our study for example, the states in cluster 

3 and 4 saw a major peak during July 2020 followed by smaller peak in January 2021. In this 

context, learning about public health measures that were implemented in states of in cluster 3 and 

4 leading to a smaller growth of excess deaths can be useful for applying preventive measures in 
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other states such as those in cluster 1 in which a sharp increase in growth rate curve of excess 

death was observed during the same period. Moreover, it can also provide information regarding 

which groups of states are dominant in determining the overall pattern of pandemic wave in the 

country.  

Our method of excess mortality estimation presented in chapter 2 and 3 is not exempt 

from limitations. First, in estimation of excess mortality we have replaced any negative excess 

deaths by zero to account for the effect of reporting delays when a pandemic is ongoing. This 

approach of replacing negative values by zero has also been applied by the CDC in estimating 

excess deaths associated with COVID-19 (4). In our analysis, however by replacing negative 

excess deaths by zero, we might have missed some actual negative excess deaths if any. During 

the COVID-19 pandemic there have been reports of mortality improvements from countries such 

as New Zealand (5). Some of the factors that can lead to a decline in mortality are less severe 

influenza season in 2020 and 2021 compared to previous years, health system geared up to 

respond, compliance with public health and social measures such as mask use, social distancing 

etc. leading to reduced transmission of other infectious diseases as well, populations being more 

sensitive to health issues and seeking health care, etc. (6). Likewise, in our second paper we did 

not take into account the hierarchical nature of the data. Similarly, given the availability of 

COVID-19 death data, estimating excess death rate separately by both including and excluding 

COVID-19 deaths for the pandemic period would provide a clearer picture of indirect deaths 

attributed to the pandemic. In our study, we only used the total deaths and not the deaths 

excluding COVID-19 counts. We provide a detailed description of our methods, results and a 

thorough discussion that can serve as a guide to applying these epidemiologic methods in 

assessing mortality impact of diseases such as COVID-19 at the national and the subnational 

level.  

In the third study, we utilize epidemiologic methods to compare the mortality impact of 

COVID-19 pandemic among indigenous and non-indigenous populations in Mexico using data 

of more than 2 million COVID-19 cases and more than 238,000 COVID-19 deaths. This study is 

important because the available preliminary research indicates mixed results on the impact of 

COVID-19 pandemic on indigenous populations even though the data from past pandemics such 

as the 1918 influenza pandemic, and the 2009 H1N1 pandemic show a higher burden of cases 
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and severe impacts including deaths among indigenous compared to the general populations. 

Moreover, given a dearth of countries that record and make available the COVID-19 data among 

indigenous populations, it is important to utilize the available big epidemiologic dataset from the 

country with the largest number of indigenous populations in the Americas to generate 

comparative evidence on the mortality impact of the COVID-19 pandemic among the two 

population groups. In line with the spirit of the international legislation that considers the ability 

to self-identify one’s ethnicity as indigenous as a fundamental human right, we defined the 

ethnic populations as those who self-identify themselves as indigenous. Specifically, we estimate 

COVID-19 mortality rate per 1000 person-weeks from February 2020 to March 2022 at the 

national level and for 32 federal entities including Mexico City separately for indigenous and 

non-indigenous populations. We report the mortality rate and mortality rate ratio by year and for 

each of the four waves of the pandemic in the country for both groups of populations. The results 

indicate a higher value for the wave-wise analysis compared to the overall. This is because the 

follow-up period for wave wise rate is just the ‘wave duration’ leading to shorter person-time 

values while overall rates are based on the longer follow-up period especially for those cases 

from the initial waves.  In the study, we also use survival regression models to estimate the 

unadjusted and adjusted hazard of death among indigenous compared to the non-indigenous 

groups. We also estimate the instantaneous reproduction number over the weekly sliding window 

for the entire pandemic period for indigenous and non-indigenous populations separately as well 

as report the average reproduction number during the early ascending phase of each of the four 

pandemic waves for both groups.  

We report a substantially higher mortality rate among indigenous groups compared to 

non-indigenous with a mortality rate ratio of 1.68. Similarly, the hazard of death among 

indigenous populations was 67% and 8% higher in the unadjusted and adjusted models 

respectively. We found an increasing mortality rate ratio from the first to second to third to the 

fourth wave which could reflect the disparities between the two groups in the uptake of non-

pharmaceutical and vaccination interventions. Therefore, we highlight that indigenous status is 

an important risk factor for COVID-19 mortality in Mexico. In contrast to these findings, in our 

second study we observed lowest excess death rate in southern states such as Chiapas, Oaxaca, 

Quintana Roo, Yucatan, and Campeche. In Mexico higher proportion of indigenous population 
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live in the southern region. It should be noted however that the second study was based on the 

aggregate death data at state level and no information on the deaths for subpopulations such as 

indigenous and non-indigenous was used whereas in the third study we used individual case data. 

Therefore, based on second study we cannot infer that indigenous populations had lower excess 

death rate because of possibility of bias due to ecological fallacy. We recommend further studies 

to explore the mechanism through which indigenous populations remain at an increased risk of 

adverse outcomes during an infectious disease pandemic. 

In summary, the three studies presented in chapters 2-4 in this dissertation report, 

demonstrate the power of different epidemiologic methods to gain insights on the heterogenous 

impact of the COVID-19 pandemic. Overall, we employ different epidemiologic methods such 

as estimation of excess mortality rate estimation, short-term forecasting of excess deaths, 

correlation analysis of social media and deaths data, estimation of instantaneous reproduction 

number, multiple linear regression analysis, test for spatial autocorrelation and spatial lag 

regression model, cluster analysis, estimation of person-time mortality rate, and survival 

analysis. These epidemiological approaches have their own implications in answering different 

epidemiological questions. For example, estimates of excess mortality quantify the deaths that 

were in excess during a pandemic period whereas instantaneous reproduction number is a 

measure of diseases transmission. Moreover, the metrics such as hazard ratio from survival 

analysis compare rates of events such as deaths between study groups over time. Regression 

analyses are useful to assess potential risk and protective factors and clustering using shape 

analysis of growth rate curves are helpful in identifying broad categories of spatial areas with 

distinct trajectories. We applied these methods across places, people, and time to measure the 

heterogenous impact of COVID-19 in Mexico. We provide a detailed description of the 

methodology and present the results, interpretation, and policy implication of our findings in the 

respective chapters. Overall, the methods used in the three studies can be useful in guiding need-

based and equitable planning in a limited resource setting especially during the public health 

emergencies such as COVID-19.  
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Appendices 

Appendix 1. Supplemental figures for Chapter 3. Geospatial variability in excess death rates 

during the COVID-19 pandemic in Mexico: Examining sociodemographic, climate, and 

population health characteristics 

 

Supplemental Figure 1. A: Dendrogram plot, B: map of Mexico showing the states in four different 

clusters 
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Supplemental Figure 2. States in Mexico by climate groups based on Köppen-Geiger 

classification 

Appendix 2. Supplementary tables for Chapter 4. Investigating COVID-19 transmission and 

mortality differences between indigenous and non-indigenous populations in Mexico 

Table 1. Results of survival regression model fitting for the overall period of February 2020-

March 2022 

Variables 

Parameter 

Estimate 

Standard 

Error Chi-Square 

Pr > 

ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.07595 0.01633 21.6287 <.0001 

Sex 

(comparison =Female) 0.23675 0.00425 3097.0809 <.0001 

Age 0.02969 0.0001366 47231.2656 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.82586 0.00792 10869.6863 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 1.07978 0.00849 16163.1624 <.0001 

Type of care 

(comparison=Outpatient) 3.59156 0.01446 61700.6881 <.0001 

Time in days from symptom onset to 

seeking care 0.06715 0.00236 806.3952 <.0001 

Time in days from symptom onset to 

seeking care * Type of care 

(for hospitalized) -0.09134 0.00243 1410.1076 <.0001 

 

Table 2. Results of survival regression model fitting for wave 1 

Variables  

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.08312 0.02469 11.335 0.0008 

Sex 

(comparison =Female) 0.27533 0.00721 1457.5052 <.0001 

Age 0.03328 0.0002398 19251.5747 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.99098 0.01417 4890.912 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 1.3061 0.01507 7511.4447 <.0001 

Type of care 3.07156 0.02107 21247.1226 <.0001 
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(comparison=Outpatient) 

Time in days from symptom 

onset to seeking care 0.03637 0.00334 118.3415 <.0001 

Time in days from symptom 

onset to seeking care * Type of 

care 

(for hospitalized) -0.07797 0.0035 496.9234 <.0001 

 

Table 3. Results of survival regression model fitting for wave 2 

Variables  

Parameter 

Estimate 

Standard 

Error Chi-Square 

Pr > 

ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.04366 0.03206 1.854 0.1733 

Sex 

(comparison =Female) 0.2309 0.00666 1202.412 <.0001 

Age 0.03064 0.0002251 18523.6798 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.72317 0.01245 3374.9327 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 0.94848 0.01335 5048.2123 <.0001 

Type of care 

(comparison=Outpatient) 3.77555 0.02372 25338.2613 <.0001 

Time in days from symptom onset to 

seeking care 0.07258 0.00385 355.8948 <.0001 

Time in days from symptom onset to 

seeking care * Type of care 

(for hospitalized) -0.09927 0.00395 632.8939 <.0001 

 

Table 4. Results of survival regression model fitting for wave 3 

Variables  

Parameter 

Estimate 

Standar

d 

Error 

Chi-

Square 

Pr > 

ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.12505 0.03327 14.1267 0.0002 

Sex 

(comparison =Female) 0.1771 0.0103 

295.550

1 <.0001 

Age 0.02421 

0.00029

95 

6532.27

49 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.65908 0.01765 

1394.29

23 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 0.87962 0.01932 

2073.66

05 <.0001 
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Type of care 

(comparison=Outpatient) 4.2188 0.05242 

6476.59

47 <.0001 

Time in days from symptom onset to seeking care 

0.0327

3 0.01048 9.7626 0.0018 

Time in days from symptom onset to seeking care * 

Type of care 

(for hospitalized) 

-

0.0487

9 0.01056 21.3404 <.0001 

 

Table 5. Results of survival regression model fitting for wave 4 

Variables  

Parameter 

Estimate 

Standar

d 

Error 

Chi-

Square 

Pr > 

ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.02886 0.08487 0.1157 0.7338 

Sex 

(comparison =Female) 0.22551 0.02083 

117.192

8 <.0001 

Age 0.02902 

0.00060

09 

2333.19

74 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.63029 0.03341 

355.948

3 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 0.81006 0.03586 

510.314

2 <.0001 

Type of care 

(comparison=Outpatient) 4.29321 0.07714 

3097.56

92 <.0001 

Time in days from symptom onset to seeking 

care 0.10829 0.01649 43.1133 <.0001 

Time in days from symptom onset to seeking 

care * Type of care 

(for hospitalized) -0.10789 0.01674 41.5223 <.0001 

 

Table 6. Results of fitting multiple survival regression model, for the year 2020 

Variables  

Parameter 

Estimate 

Standard 

Error Chi-Square 

Pr > 

ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.09467 0.02224 18.1178 <.0001 

Sex 

(comparison =Female) 0.26999 0.00581 2162.1285 <.0001 

Age 0.03332 0.0001947 

29291.432

6 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.90697 0.01117 6590.5248 <.0001 

3 or more comorbidity 1.21744 0.0119 10474.848 <.0001 
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(comparison=No comorbidity) 

Type of care 

(comparison=Outpatient) 3.31377 0.01647 

40502.692

9 <.0001 

Time in days from symptom onset to 

seeking care 0.0406 0.0025 263.0257 <.0001 

Time in days from symptom onset to 

seeking care * Type of care 

(for hospitalized) -0.08204 0.00263 974.7448 <.0001 

 

Table 7. Results of fitting multiple survival regression model, for the year 2021 

Variables  

Parameter 

Estimate 

Standard 

Error 

Chi-

Square Pr > ChiSq 

Indigenous 

(Comparison =Non-Indigenous) 0.09164 0.02577 12.6413 0.0004 

Sex 

(comparison =Female) 0.19839 0.00696 812.3824 <.0001 

Age 0.02639 0.0002153 

15034.79

84 <.0001 

1-2 comorbidity 

(comparison=No comorbidity) 0.7195 0.01266 

3228.477

5 <.0001 

3 or more comorbidity 

(comparison=No comorbidity) 0.92014 0.01372 

4500.421

2 <.0001 

Type of care 

(comparison=Outpatient) 3.78607 0.01995 

36017.73

63 <.0001 

Time in days from symptom onset to 

seeking care 0.0225 0.00138 266.5836 <.0001 

Time in days from symptom onset to 

seeking care * Type of care 

(for hospitalized) -0.04063 0.00163 622.5196 <.0001 

 

Table 8. Instantaneous reproduction number (Rt) for early ascending phases of four different 

waves 

Non-Indigenous Indigenous 

Early ascending 

phase  

Mean Rt  

(95% Credible 

Interval) 

 

Early ascending phase Mean Rt  

(95% Credible 

Interval) 

 

For 1st wave: 

April 5 – May 4, 

2020 

1.216 (1.203, 1.228) For 1st wave: 

April 15 – May 14, 

2020 

1.144 ( 1.073, 1.217), 
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For 2nd wave: 

Sep 29– Oct 28, 2020 

1.037 (1.032, 1.042) For 2nd wave: 

Nov 15 – Dec 14, 

2020 

1.009 (1.004, 1.013) 

For 3rd wave: 

June 27 – July 26, 

2021 

1.151 (1.143, 1.159) For 3rd wave: 

July 11 – Aug 9, 2021 

1.129 (1.121, 1.137) 

For 4th wave: 

Dec 23, 2021 – Jan 6, 

2022 

1.535 (1.521, 1.549) For 4th wave: 

Dec 27, 2021 – Jan 

10, 2022 

1.426 (1.405, 1.447) 
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