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PHASE CLUSTERS AND CHIMERAS IN NETWORKS OF KURAMOTO

OSCILLATORS WITH INERTIA

by

BARRETT NUGENT BRISTER

Under the Direction of Dr. Igor Belykh

ABSTRACT

Modeling cooperative dynamics using networks of phase oscillators is a common practice

for a wide spectrum of biological networks. Patterns of synchronized clusters are some of

the most prevalent instances of such cooperative behavior, manifesting themselves in ways

similar to groups of neurons �ring together during epileptic seizures or Parkinson's tremors.

Despite signi�cant interest, the emergence and hysteretic transitions between stable clusters

in oscillator networks have still not been fully understood. In particular, the celebrated



Kuramoto model of phase oscillators is known to exhibit multiple spatio-temporal patterns,

including co-existing clusters of synchrony and chimera states in which some oscillators

form a synchronous cluster, while the others oscillate asynchronously. Rigorous analysis of

the stability of clusters and chimeras in the �nite-size Kuramoto model has proven to be

challenging, and most existing results are numerical. In this thesis, we contribute toward the

rigorous understanding of the emergence of stable clusters in networks of identical Kuramoto

oscillators with inertia. We �rst study the co-existence of stable patterns of synchrony in

two coupled populations of identical Kuramoto oscillators with inertia. The two populations

have di�erent sizes and can split into two clusters where the oscillators synchronize within

a cluster while there is a phase shift between the dynamics of the two clusters. Due to the

presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase

shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions

for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts.

We then study the emergence of stable clusters of synchrony with complex inter-cluster

dynamics in a three-population network of identical Kuramoto oscillators with inertia. We

extend the results of the bistability of synchronized clusters in the two-population network

and demonstrate that the addition of a third population can induce chaotic inter-cluster

dynamics. This e�ect can be captured by the old adage �two is company, three is a crowd�

which suggests that the delicate dynamics of a romantic relationship may be destabilized

by the addition of a third party, leading to chaos. Through rigorous analysis and numerics,

we demonstrate that the inter-cluster phase shifts can stably co-exist and exhibit di�erent

forms of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations. We

also discuss the implications of our results for predicting the emergence of chimeras and



solitary states in real-world biological networks.

INDEXWORDS: Networks, Coupled oscillators, Kuramoto model, Inertia, Clusters,
Chimeras, Multistability
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CHAPTER 1

INTRODUCTION

Patterns of synchronized activities are observed in many natural and technological net-

works [98, 82, 29]. In biological systems, examples include synchronized cortical rhythms in

the central systems of mammals which are crucial for sensory perception, memory, and lo-

comotion [35, 67, 107], pathological neuronal synchronization which causes epileptic seizures

and Parkinson's tremors [89, 50], birds �ying in formation and maneuvering as one cohe-

sive unit [33], and synchronized gaits of walkers on a wobbly footbridge [99, 41, 15, 13]. In

technological systems, synchronization is required for an array of lasers to reach high power

levels [87, 86, 39] and for power generators for the operation of electrical power grids [68].

The strongest form of synchronized activities is complete synchronization of identical or

nearly identical oscillators whose emergence and stability are controlled by the underlying

network structure [79, 28, 17, 10]. Cluster synchronization emerges when the network splits

into clusters of coherent oscillators but the dynamics between the clusters remains asyn-

chronous [16, 18, 83, 84, 8, 46, 45, 106, 80, 12, 57, 95]. The existence of clusters in networks

of identical oscillators are governed by network symmetries, and possible cluster partitions

can be identi�ed by combinatorial methods [12, 57, 95]. The stability of cluster synchroniza-

tion [16, 83, 84, 80, 95] and its persistence against individual oscillators' parameter mismatch

[8] have been studied for several general classes of oscillator networks. However, the emer-

gence and hysteretic transitions between clusters in multistable oscillator networks have yet

to be fully understood.

The classical Kuramoto model of �rst-order phase oscillators with mean-�eld coupling

[59, 97, 82] is such an example of a network capable of exhibiting various synchronization

patterns [3, 7, 76, 65, 53, 81, 63, 85]. The oscillators are assumed to be non-identical with

di�erent natural frequencies, whose distribution is de�ned by a given probability density



2

function. The model has a coupling threshold such that the oscillators, evolving incoherently

for a weak coupling, synchronize when the coupling exceeds the threshold. Transitions from

the incoherent state to various forms of partial frequency synchronization, measured by an

order parameter, have been studied in the Kuramoto model with di�erent regular and random

coupling con�gurations (see a review paper [4] for more details). Historically, the emergence

of patterns of synchrony was studied in the Kuramoto model, under the assumption of an

in�nitely large network size, allowing for the mean �eld approximation. A breakthrough in

the rigorous study of the in�nite-dimensional Kuramoto model was made with the discovery

of the Ott-Antonsen ansatz [76] which reduces the analysis of a restricted class of phase

states to low dimensional dynamics [7, 76, 65]. Motivated by real-world �nite-size networks,

the interest has now shifted towards the analysis of �nite-dimensional Kuramoto models

[53, 81, 63, 85, 20].

When oscillators in the classical Kuramoto model have identical frequencies, the network

has no coupling threshold and complete synchronization is locally stable for any, arbitrarily

weak coupling strength [4]. This had been the main obstacle in realizing that the identical

oscillators can also exhibit complex patterns of synchrony whose emergence may be hidden

by the stable synchronous state. This general perception of somewhat uninspiring dynamics

of identical Kuramoto models has changed with the discovery of chimera states [77, 2, 1, 77]

in which structurally and dynamically identical oscillators spontaneously break into groups

where some oscillators synchronize whereas the others remain incoherent. There is now a

vast literature on the study of chimera states in the Kuramoto model as well as in other

models of biological and mechanical systems (see an extensive review [77] for more details

and references). Most studies of the stability of chimera states are numerical, with the

exception of a few theoretical investigations, including the ones performed for large[75, 109]

and small networks [6, 78] of 1-D phase oscillators.

The original Kuramoto model of one-dimensional (1D) oscillators was extended to a

model of two-dimensional (2D) phase oscillators with inertia [42]. This modi�cation made

the 2D oscillators capable of adjusting their natural frequencies and allowed the Kuramoto
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second-order oscillator network to become a more adequate model of real-world networks, in-

cluding neural, mechanical and power grid systems [105]. As a result, networks of Kuramoto

oscillators with inertia can exhibit a rich array of dynamics including complex synchroniza-

tion transitions [100, 101, 56, 69], hysteresis [74] and bistability of synchronous clusters [14],

intermittent chaotic chimeras [73], reentrant synchronous regimes [58], and solitary states

[54, 64]. In particular, it was numerically demonstrated that weak chimera states can appear

in small networks composed of only three Kuramoto oscillators with inertia [64]. These so-

called weak chimera states are characterized by the formation of a synchronized two-oscillator

cluster and one incoherent oscillator which rotates at a di�erent frequency and can exhibit

periodic or chaotic dynamics [64]. Such smallest chimera states in the three-node network

can also be viewed as a proxy of a two-cluster pattern in a three-group network of identical

Kuramoto oscillators with inertia. In this setting, the oscillators can synchronize within each

group and two groups in turn can synchronize between each other, while leaving the dynam-

ics of the third group incoherent. The emergence of these and more complex clusters of

synchrony in multi-population Kuramoto networks with inertia calls for an analytical study

to isolate the principal bifurcations and stability mechanisms underpinning the co-existence

of stable clusters with complex, possibly, chaotic dynamics. This thesis seeks to establish

such an analytical insight.

The layout of this thesis is as follows. In Chapter 2, we study the co-existence of stable

patterns of synchrony in two coupled populations of identical Kuramoto oscillators with

inertia. The two populations have di�erent sizes and can split into two clusters where the

oscillators synchronize within a cluster while there is a phase shift between the dynamics of

the two clusters. Due to the presence of inertia, which increases the dimensionality of the

oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We

derive analytical conditions for the co-existence of stable two-cluster patterns with constant

and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability

of the phase shifts, is described by a driven pendulum equation. We also demonstrate how

inertia a�ects the hysteretic transitions between the patterns. Our stability results also shed
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light on the emergence of transient and stable chimeras.

In Chapter 3, we study the emergence of stable clusters of synchrony with complex inter-

cluster dynamics in a three-population network of identical Kuramoto oscillators with inertia.

We extend our results on the bistability of synchronized clusters in the two-population net-

work and demonstrate that the addition of a third population can induce chaotic intercluster

dynamics. This e�ect can be captured by the old adage �two is company, three is a crowd,�

which suggests that the delicate dynamics of a romantic relationship may be destabilized by

the addition of a third party, leading to chaos. Through rigorous analysis and numerics, we

demonstrate that the intercluster phase shifts can stably coexist and exhibit di�erent forms

of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations. We also

discuss the implications of our stability results for predicting the emergence of chimeras and

solitary states. Finally, the Appendix contains two of the Python scripts used to analyze

and simulate the three-population network of 2D oscillators. In particular, it contains a

Python code for calculating winding numbers associated with a phase shift cluster solution

in the three-population network. These numbers characterize regular and chaotic phase shift

dynamics in the three-population Kuramoto model, so that the interested reader might �nd

this Python code useful for further exploring new types of dynamical e�ects and cooperative

structures in multipopulation networks of phase oscillators.
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CHAPTER 2

BISTABILITY OF PATTERNS OF SYNCHRONY IN TWO-POPULATION

NETWORKS OF KURAMOTO OSCILLATORS WITH INERTIA

2.1 Introduction

Pattern synchronization has been shown to be central for the functioning of a wide spec-

trum of biological and technological networks [32, 36, 48, 102, 70, 43, 68]. Two important

cooperative rhythms of pattern dynamics are complete and cluster synchronization. Com-

plete synchronization, in which all oscillators evolve in unison, and its dependence on network

structure have received a great deal of attention in the literature [79, 28, 17, 10, 72]. Cluster

synchronization is observed when the network splits into groups of coherent oscillators but

the dynamics between the groups is asynchronous [16, 18, 83, 84, 8, 46, 45, 106, 80, 12, 57].

The existence of clusters of perfect synchrony in networks of identical oscillators is strictly

de�ned by intrinsic symmetries of the network [46, 45]. These symmetries are de�ned as per-

mutations of the nodes that preserve all internal dynamics and all couplings [106]. Permis-

sible cluster partitions in a given complex network can be found via available combinatorial

algorithms [12, 57].

Central questions in the study of cluster synchronization are (i) under what conditions

are the clusters stable? and (ii) do the clusters de�ned by perfect symmetries persist under

parameter mismatch? These stability [16, 83, 84, 80] and persistence [8] questions have been

addressed for di�erent classes of dynamical networks; yet, the full picture is far from being

complete.

Inspired by the adaptive frequency model of �re�y synchronization [42] where the os-

cillators are capable of adjusting their natural frequencies, the classical Kuramoto model

of 1-D phase oscillators was extended to a model of 2-D oscillators with inertia [100, 101].

This Kuramoto model with inertia was shown to exhibit various synchronization transitions
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[100, 101, 56] and hysteristic phenomena [74], including intermittent chaotic chimeras [73]

and reentrant synchronous regimes [58]. Existing analytical studies of the collective dynamics

of the Kuramoto model with inertia mainly aim at (i) the stability of complete synchroniza-

tion [40, 34, 49], (ii) bifurcations leading to its loss[21], and (iii) non-trivial phase transitions

to synchrony in the presence of noise [58].

Despite signi�cant interest among physicists and applied mathematicians, the emer-

gence and hysteretic transitions between stable clusters in Kuramoto networks of identical

oscillators have still not been fully understood. Rigorous analysis of the stability of clusters

and chimeras in the �nite-size Kuramoto model has proved to be challenging, and most

existing results are numerical.

In this chapter, we contribute toward the rigorous understanding of the co-existence of

stable patterns of synchrony in two symmetrically coupled populations of identical Kuramoto

oscillators with inertia. We derive exact results on the stability of a two-cluster synchronous

state in which the population splits into two clusters of synchronized oscillators, but there

is no synchrony between the clusters. We reduce the system, governing the dynamics of the

phase shift between the clusters, to the pendulum equation [5]. As a result, the phase shift

between the clusters can remain constant or can periodically rotate its phase, depending on

the choice of initial conditions. This yields the bistability of patterns of synchrony where a

pattern with a constant inter-cluster phase shift stably co-exists with a breathing pattern

when the inter-cluster phase shift evolves in time. Our stability analysis also addresses

the emergence of transient and stable chimeras. The results presented in this chapter were

published in [14].

The layout of this Chapter is as follows. First, in Sec. 2.2, we present and discuss the

network model. In Sec. 2.3, we study the existence of synchronous clusters and perform

the analysis that allows for describing the dynamics of the synchronous clusters in terms

of the limit sets of the pendulum equation. We derive the conditions on the bistability of

synchronous dynamics which are explicit in parameters of the network model. In Sec. 2.4,

we analyze the variational equations for the stability of the synchronous cluster and obtain
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the main stability results of this paper. In Sec. 2.5, we present a numerical example which

supports our analytical results. Finally, Section 2.6 contains concluding remarks.

2.2 Two-group network: identical rotators, di�erent group sizes

Following previous studies in networks of Kuramoto models without [1, 78] and with

inertia [73], we consider a two-group network of 2-D rotators

mθ̈i + θ̇i = ω + µ
N+M

N∑
j=1

sin(θj − θi − α)

+ ν
N+M

M∑
j=1

sin(ϕj − θi − α), i = 1, ..., N

mϕ̈k + ϕ̇k = ω + µ
N+M

M∑
j=1

sin(ϕj − ϕk − α)

+ ν
N+M

N∑
j=1

sin(θj − ϕk − α), k = 1, ...,M.

(2.1)

Here, the network is divided into two groups of oscillators of sizes N and M, with all-

to-all symmetrical coupling within and between the two groups, such that the intragroup

coupling strength, µ, is stronger than the intergroup coupling strength, ν. Variables θi and

ϕk represent the phases of oscillators in the �rst and second groups, respectively. The

oscillators are assumed to be identical, with identical frequency ω, phase lag α ∈ [0, π/2)

and inertia m. The model (2.1) is an extension of the Abrams et al. chimera model[1, 78],

consisting of two groups of 1-D phase oscillators with Kuramoto-Sakaguchi coupling [59, 88].

In the model (2.1), we use the 2-D Kuramoto oscillator with inertia as the individual cell

model and consider non-equal group sizes. These two properties will allow for deriving

analytical conditions on the stability of clusters of synchrony, exhibiting two types of co-

existing behavior where (i) the phase between the synchronized clusters remains �xed and

(ii) the phase between the clusters oscillates.

By rescaling time τ = µt/(N + M) and parameter β = µm/(N + M), and using a

rotating frame of reference Θi = θi−ωt+ c, Φk = ϕk −ωt+ c, where c is a constant, we can
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cast the model (2.1) into a more compact form

βΘ̈i + Θ̇i =
N∑
j=1

sin(Θj −Θi − α)

+ γ
M∑
j=1

sin(Φj −Θi − α), i = 1, ..., N

βΦ̈k + Φ̇k =
M∑
j=1

sin(Φj − Φk − α)

+ γ
N∑
j=1

sin(Θj − Φk − α), k = 1, ...,M,

(2.2)

where γ = ν/µ represents the ratio between the intra- and intergroup couplings such that

γ ∈ (0, 1).

2.3 Existence of synchronous clusters

2.3.1 Cluster partition

The connectivity matrix G of network (2.2) has a block structure

G =

 JN,N γJN,M

γJM,N JM,M

 (2.3)

where JN,N , JM,M , JN,M , and JM,N are N×N, M×M, N×M, andM×N all-ones matrices,

respectively.

In general, clusters of perfect synchrony are determined by a network decomposition

into the disjoint subsets of oscillators V = V1 ∪ ...∪ Vd, Vp ∩ Vq = ∅ de�ned by the equalities

of the oscillator states. If this cluster decomposition is �ow-invariant with respect to the

vector �eld of the network system, then the corresponding manifold D(d) is invariant and

de�nes d synchronous clusters. Synchronous clusters exist if the graph vertices have a cor-

responding balanced coloring [46, 45, 106]. Every cluster corresponds to a coloring in which

two oscillators have the same color if and only if their states are completely synchronized.

Oscillators colored in this way create a coloring map. A coloring of the vertices is balanced,

if each oscillator of color i has the same number of inputs from the oscillators of color j, for
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all i and j. A minimal balanced coloring is a balanced coloring with the minimal number of

colors.

In the context of the network (2.2), a necessary condition for oscillators to form a cluster

is the equal row sum constraint. In fact, the �rst N rows of matrix G, corresponding to the

�rst group of oscillators, have row sums equal to N+γM. The remainingM rows are de�ned

by the connectivity of the second group and equal to M + γN . As a result, the minimal

cluster partition has two colors. The corresponding cluster synchronization manifold

D(2) = {Θ1 = ... = ΘN = Θ, Θ̇1 = ...Θ̇N = Θ̇, Φ1 = ... = ΦM = Φ, Φ̇1 = ...Φ̇M = Φ̇} (2.4)

de�nes two clusters of synchrony. As the two groups of oscillators are formed by all symmet-

rical all-to-all networks, all other combinations of cluster partitions within the two clusters

are also possible. This includes so-called chimeras [78], where the �rst group of N oscillators

is completely synchronized, and all M oscillators from the second group are desynchronized;

this state is de�ned by the cluster synchronization manifold D(M + 1) = {Θ1 = ... =

ΘN , Θ̇1 = ...Θ̇N , Φ1, ...,ΦM , Φ̇1, ..., Φ̇M}. Note that complete synchronization is impossible

in the network (2.2) as N 6= M and the equal row sum constraint is not respected.

In the following, we will focus on the dynamics on the two-cluster synchronization

manifold D(2) and the conditions of its transversal stability.

2.3.2 Dynamics on the cluster manifold

2.3.2.1 Transformation to the pendulum equation The dynamics on the manifold

D(2) is de�ned by the following system

βΘ̈ + Θ̇ = −N sinα + γM sin(Φ−Θ− α)

βΦ̈ + Φ̇ = −M sinα + γN sin(Θ− Φ− α)
(2.5)

obtained from the system (2.2) by omitting the subscripts i, j and k.
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For convenience, we rotate the coordinate frame and introduce new variables

x = Φ−Θ

y = Θ + κΦ, where κ = M/N < 1.
(2.6)

The addition of the factor κ to the standard change of basis for the di�erence and

sum variables is not necessary; however, it will make the sum variable y strictly decreasing,

therefore making the analysis simpler.

In terms of x and y, the system (2.5) can be rewritten as follows:

βẍ+ ẋ = (N −M) sinα− γ(N sin(x+ α) +M sin(x− α)) (2.7a)

βÿ + ẏ = −(N + κM) sinα + γM(sin(x− α)− sin(x+ α)). (2.7b)

We use the following trigonometric formula to simplify the equation (2.7a):

N sin(x+ α) +M sin(x− α) = ((M +N) cosα) sinx+ ((N −M) sinα) cosx = R sin(x+ δ),

where R = γ
√
N2 +M2 + 2MN cos 2α and the angle δ is introduced to make the ex-

pression more manageable, with cos δ = N+M
R

cosα and sin δ = N−M
R

sinα, yielding

tan δ = N−M
N+M

tanα = 1−κ
1+κ

tanα. Similarly simplifying the right-hand side of (2.7b), we turn

the system (2.7a)-(2.7b) into the following form:

βẍ+ ẋ = Ω−R sin(x+ δ) (2.8a)

βÿ + ẏ = −(Ω̃ + 2γM cosx) sinα, (2.8b)

where Ω = (N −M) sinα, Ω̃ = N2+M2

N
, and δ = arctan

(
1−κ
1+κ

tanα
)
, with κ = M/N.



11

The shift x+ δ → x transforms the system (2.8a)-(2.8b) into the form:

βẍ+ ẋ+R sin(x) = Ω (2.9a)

βÿ + ẏ = −(Ω̃ + 2γM cos(x− δ)) sinα. (2.9b)

Note that equation (2.9a), governing the di�erence dynamics between the clusters, does not

depend of the sum variable y, such that equation (2.9a) drives equation (2.9b). Remarkably,

equation (2.9a) is the equation of a pendulum, with a constant torque Ω, [5] as well as

the model of a shunted Josephson junction [22]. Its dynamics on the cylinder (xmod2π,

ẋ = v) are known to exhibit various interesting dynamical regimes, including bistability

where a stable equilibrium co-exists with a stable limit cycle. Figure 2.1 illustrates the well-

known stability diagram [96, 22] that indicates possible dynamics as a function of bifurcation

parameters Ω, R, and β. Two bifurcation curves separate the stability diagram into three

regions of parameters. The curve Ω/R = 1 corresponds to a saddle-node bifurcation of

equilibria. The curve Ω/R = T (h) with h = 1/
√
βR is the Tricomi curve [103] that indicates

a homoclinic bifurcation of the saddle where the homoclinic orbit encircles the cylinder and

forms a saddle connection. The two curves meet at h∗ ≈ 1.22 [5, 47]. While the closed-form

derivation of the Tricomi curve is not available, we suggest the following nonlinear function

T (h) as an approximation of the Tricomi curve:

T (h) =
4

π
h− 0.305h3 =

4

π
√
βR
− 0.305(βR)−3/2. (2.10)

This approximation matches the numerically calculated Tricomi curve remarkably well (see

Fig. 2.1) and will be used for the derivation of the bistability conditions of cluster synchrony

in Statement 1.

The three stability regions of parameters in the pendulum equation (2.8a) are as follows.
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Region I: A stable equilibrium.

Ω

R
<

 T (h), 0 < h < h∗

1, h > h∗.
(2.11)

In this region, system (2.8a) has two �xed points on the cylinder: a saddle at x = π −

arcsin Ω
R

+ δ and a stable equilibrium (node or focus) at

xe = arcsin
Ω

R
− δ. (2.12)

Region II: Co-existence.

T (h) <
Ω

R
< 1, 0 < h < h∗. (2.13)

Here, the stable equilibrium at xe co-exists with a stable limit cycle which emerged from the

homoclinic orbit of the saddle at Ω/R = T (h). xc(t) denotes the x-coordinate of the stable

limit cycle. The attraction basins of the stable equilibrium and the limit are separated by a

stable manifold of the saddle (Fig. 2.1).

Region III: A globally stable limit cycle. For Ω
R
> 1, system (2.8a) only has a globally

stable limit cycle as the saddle and the stable node had disappeared via the saddle-node

bifurcation at Ω/R = 1. The stable limit cycle corresponds to rotation around the cylinder.
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Figure 2.1: Bifurcation diagram (h, Ω
R

). The saddle-node (green dashed) horizontal line and

the Tricomi (blue solid) curve T (h) divide the diagram into regions I, II, and III. The Tricomi

curve, corresponding to a homoclinic bifurcation of the saddle, is calculated numerically. Its

nearly perfect analytical approximation Ω
R

= T (h) = 4
π
h − 0.305h3, used in the bistability

condition (2.18), is depicted by the red dashed line. (I-III). Schematic phase portraits. In

(II), the stable limit cycle xc(t) co-exists with the stable �xed point xe. The shaded area is

the basin of attraction of the �xed point xe.
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Equation (2.8b) for the sums of the cluster coordinates is driven by (2.8b) via x(t).

Therefore, as long as Ω̃+2γM cosx > 0, any solution of (2.8b) eventually satis�es ẏ < 0 and

y(t) monotonically decreases in time. In particular, the time-dependent solution (ye, ẏe) of

(2.8b), corresponding to the stable �xed point xe in (2.8a), is obtained by integrating (2.8b)

such that

ye = −([(Ω̃ + 2Mγ cosxe) sinα]t+ y0), (2.14)

where y0 is a constant of integration. The solution (yc, ẏc), corresponding to the limit cycle

xc in (2.8b), is not given explicitly.

Thus, we can conclude that three distinct dynamics of system (2.8a) in regions I, II,

and III yield three dynamical regimes on the cluster manifold D(2) in the network system

(2.2).

2.3.2.2 Cluster phase shifts I. Constant phase shift (region I). Governed by the

phases Φ and Θ, two clusters of synchrony have a constant phase shift Φe −Θe = xe, where

xe is the coordinate of the stable equilibrium of the pendulum system (2.8a) and de�ned in

(2.12). It follows from (2.5) and (2.6) that the cluster phases at xe are de�ned by

Θe = ye−κxe
1+κ

, Φe = ye+xe
1+κ

= Θe + xe, (2.15)

where ye is de�ned in (2.14).

As the phase shift is constant, the rotation frequencies of the two clusters become equal

and are de�ned, according to the system (2.5), by

Θ̇ = −N sinα + γM sin(xe − α) = Φ̇ = −M sinα− γN sin(xe + α). (2.16)

II. Co-existence of constant and oscillating phase shifts (region II). The co-existence

of the stable equilibrium and the limit cycle in system (2.8a) yields the bistability of the

cluster regimes. Here, the phase shift can remain constant at xe or periodically oscillate such

that Φ − Θ = xc(t), which is governed by the stable limit cycle. The realization of one of
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the cluster regimes depends on initial conditions.

III. Oscillating phase shift (region III). De�ned by the globally stable limit cycle in

(2.8a), the phase di�erence between the clusters, establishing from any conditions on the

cluster manifold M , periodically oscillates such that

Θc = yc−κxc
1+κ

, Φc = yc+xc
1+κ

= Θc + xc(t) . (2.17)

The bistability condition (2.13) can be expressed in terms of the original parameters of

the network system (2.2). This leads to the following assertion.

Statement 1. The constant and oscillating phase shifts x = Φ−Θ between two clusters on

the cluster manifold D(N) in the network system (2.2) co-exist if

αTR = arctan
1 + κ

1− κ
γT (h)√

1− (γT (h))2
< α < arctan

1 + κ

1− κ
γ√

1− γ2
= α∗, (2.18)

where κ = M/N, T (h) = 4
π
√
βR
− 0.305(βR)−3/2, and R = γ

√
N2 +M2 + 2MN cos 2α. The

left hand side of the inequality (2.18) is de�ned by αTR which corresponds to the Tricomi

curve (2.11). The right hand side is determined by the critical value α∗, for which system

(2.8a) undergoes the saddle-node bifurcation at Ω
R

= 1, where Ω = (N −M) sinα. Condition

(2.18) can also be cast in the alternative, more compact form

4

π
√
βR
− 0.305(βR)−3/2 <

Ω

R
< 1. (2.19)

In the following section, we will derive conditions on the stability of the clusters. In

particular, we will combine the stability conditions with the co-existence condition of State-

ment 1 to determine the parameter regions of two co-existing stable cluster regimes with

constant and oscillating shifts. We will also discuss conditions for the emergence of chimeras

when one cluster of oscillators remains stable while the other cluster disintegrates.
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2.4 Stability of clusters

Linearizing the network system (2.2) about the synchronous cluster solution (2.4)

(Θ, Θ̇,Φ, Φ̇), we obtain the variational equations for the local stability of the cluster manifold

D(2)

βξ̈i + ξ̇i = − (N cosα + γM cos(xs − α)) ξi + cosα
N∑
j=1

ξj + γ cos(xs − α)
M∑
j=1

ηj, i = 1, ..., N

βη̈k + η̇k = − (M cosα + γN cos(xs + α)) ηk + cosα
M∑
j=1

ηj + γ cos(xs + α)
N∑
j=1

ξj, k = 1, ...,M.

(2.20)

Here, ξi is an in�nitesimal perturbation of the i-th oscillator's synchronous solution in the

larger N -cluster, and ηk corresponds to the smaller M -cluster. x is the cluster phase shift

as de�ned above. System (2.20) can be rewritten in the matrix form

βV̈ + V̇ = AV, (2.21)

where vector V = column(ξ1, ..., ξN , η1, ..., ηM). Matrix A is the Jacobian

A =

 cJN,N − (Nc+Mc−)IN c−JN,M

c+JM,N cJM,M − (Mc+Nc+)IM

 , (2.22)

where c = cosα, c− = γ cos(xs − α), c+ = γ cos(xs + α), IN and IM are identity matrices,

and JN,N , JN,M , and JM,N are all-ones matrices.

2.4.1 Stability along the cluster manifold

The (N + M) × (N + M) Jacobian A has equal zero-row sums. Therefore, it contains

one zero eigenvalue that corresponds to equation (2.8b), which governs the rotating frame

coordinate y on the cluster manifold D(2). An eigenvector Vsyn = column(ξ, ..., ξ︸ ︷︷ ︸
N

, η, ..., η︸ ︷︷ ︸
M

)
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determines the direction along the cluster manifold D(2). The corresponding eigenvalue

λs = −Nc+ −Mc− = −γ(N cos(xs + α) +M cos(xs − α)), s = e, c (2.23)

de�nes the stability of the �xed point x = xe or the limit cycle x = xc(t) in the pendulum

equation (2.8a) which governs the dynamics of the cluster shift on the cluster manifold D(2).

Case I: Fixed point xe.

If the dynamics on the cluster manifold is governed by the �xed point xe = arcsin Ω
R
− δ (cf.

(2.12)), the stability of the constant phase shift between the two clusters is de�ned via the

eigenvalue (2.23) such that

− λe = γ(N cos(xe + α) +M cos(xe − α)) > 0. (2.24)

This condition holds true as long as Ω
R
< 1 and the stable �xed point exists in region I (cf.

Fig. 2.1).

Case II: Limit cycle xc(t).

In this case, the eigenvalue λc is de�ned by the time-varying phase shift xc(t). The stability

of the limit cycle is de�ned by the variational equation

βζ̈ + ζ̇ − λc(t)ζ = 0, (2.25)

written for the perturbations ζ to the limit cycle of system (2.7a). The stability of the cycle

in equation (2.25) is de�ned by the Lyapunov characteristic exponents. One of the exponents

is zero and corresponds to the direction along the limit cycle, whereas the other is negative as

the divergence of the vector �eld of (2.7a) is negative, divF (x = v, v̇) = −1/β < 0. Therefore,

the limit cycle xc is stable and determines the stability of the synchronous solution on the

cluster manifold D(2).
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2.4.2 Transversal stability

To demonstrate that the synchronous clusters can stably appear in the network (2.2), we

shall prove the transversal stability of the cluster manifold D(2). We introduce the di�erence

variables

ui = ξi − ξi+1, i = 1, ..., N − 1

wk = ηk − ηk+1, k = 1, ..,M − 1
(2.26)

whose convergence to zero will imply the transversal stability of D(2). Subtracting the (i+1)-

th [(k + 1)-th] equation from the i-th [k-th] equation in system (2.21)-(2.22), we obtain the

variational equations for the transversal stability:

βüi + u̇i + q1ui = 0, i = 1, ..., N − 1 (2.27a)

βẅi + ẇi + q2wi = 0, i = 1, ...,M − 1, (2.27b)

where

q1 = Nc+Mc− = N cosα + γM cos(xs − α) (2.28a)

q2 = Nc+ +Mc = Nγ cos(xs + α) +M cosα. (2.28b)

Here, q1 and q2 are eigenvalues of the Jacobian A in (2.22) which have multiplicities N − 1

and M − 1, respectively. Note that the equations (2.28a) and (2.28b) are uncoupled. The

analysis of the stability equations (2.28a)-(2.28b) leads to the following assertions.

Theorem 1. [Stability of the cluster solution with a constant phase shift].

Let the parameters satisfy the condition Ω/R < 1, then the cluster solution (2.4) (Θ, Θ̇,Φ, Φ̇)

with the constant phase shift xe is locally stable to transversal perturbations i�

α < αcr, (2.29)
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where the critical value αcr is the solution of the equation

q2 = γ cos(xe + α) + κ cosα = 0. (2.30)

Here, γ ∈ (0, 1) is the coupling ratio, xe is de�ned via (2.12), κ = M/N, and α ∈ [0, α∗),

where α∗ = arctan 1+κ
1−κ

γ√
1−γ2

(see (2.18)). Positive values of q2 correspond to α < αcr and

de�ne the stability of the cluster solution.

Proof. The condition Ω/R < 1 implies that the pendulum equation (2.8a), governing

the dynamics of the phase shift x on the cluster manifold D(2), has a stable equilibrium

point xe = arcsin Ω
R
− δ (see Fig. 1). Therefore, functions (2.28a)-(2.28b), q1 and q2, must be

evaluated at xe. The stability of the variational system (2.27a)-(2.27b) is guaranteed i�

q1 = cosα + γκ cos(xe − α) > 0 (2.31a)

q2 = γ cos(xe + α) + κ cosα > 0. (2.31b)

This is due to the fact that q1,2 > 0 is required for the real parts of the roots of the

characteristic equations βs2 + s + q1,2 = 0 for (2.27a)-(2.27b) to be negative. Note that

cosα > 0 and cos(xe − α) > 0 for α ∈ [0, π/2) in (2.31a), and therefore q1 > 0.

The phase shift xe is a monotonically increasing function of α. Therefore, the function

q2 monotonically decreases and can become negative when increasing α. As a result, there is

a critical value αcr for which q2 becomes 0. Finding αcr amounts to solving q2 = γ cos(xe +

α) + κ cosα = 0. While this equation cannot be solved for α in closed form, αcr can be

directly calculated for given values of N, M, and γ. This concludes the proof. �

Corollary 1. [Su�cient condition]. If the relative size of the two clusters κ = M/N satis�es

the following su�cient condition

κ < 1− 2γ2, (2.32)

then the cluster solution (Θ, Θ̇,Φ, Φ̇) is locally stable to transversal perturbations for any
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Figure 2.2: Illustration of the stability condition q2 = γ cos(xe+α)+κ cosα > 0 in Theorem
1. Yellow (light) regions are de�ned by q2 > 0 and correspond to the stable cluster with a
constant shift. Instability regions with q2 < 0 are depicted in dark blue. The cluster with
a constant shift does not exist in white regions. (a). 3-D diagram with 2-D cuts at various
discrete κ = M/N. (b). 2-D cut at κ = 0.8. The curve α∗ separates the regions of existence
(yellow/blue) and non-existence (white). Point A corresponds to the parameters used in
Fig. 2.4.

α ∈ [0, α∗).

Proof. The maximum value of αcr is bounded by α∗ that corresponds to the saddle-node

bifurcation of the �xed point xe at Ω/R = 1. Therefore, this bound gives the constraints on

γ and κ that can be calculated from

q2 = γ cos(xe + α∗) + κ cosα∗ > 0. (2.33)

As xe(α
∗) = π/2−arcsin γ = π/2−arctan γ√

1−γ2
, we get cos(xe +α∗) = sin(arcsin γ−α∗) =

γ cosα∗ −
√

1− γ2 sinα∗. Therefore, the condition (2.33) can be rewritten as follows

q2 = (γ2 + κ) cosα∗ − γ
√

1− γ2 sinα∗ > 0. (2.34)



21

It further transforms into

tanα∗ < γ2+κ

γ
√

1−γ2
. (2.35)

At the same time tanα∗ = 1+κ
1−κ

γ√
1−γ2

(see Statement 1), therefore condition (2.35) becomes

1+κ
1−κ

γ√
1−γ2

< γ2+κ

γ
√

1−γ2
(2.36)

and yields the su�cient condition κ < 1− 2γ2. This concludes the proof of Corollary 1. �

Figure 2.2 illustrates the conditions of Theorem 1 for q2 > 0 and demonstrates that the

stable cluster with a constant shift exists in a wide region of parameters α, γ, κ. Notice that

αcr, which separates the stability and instability regions, coincides with α∗ for a signi�cant

(lower) part of the curve α∗ (see Fig. 2.2b). Hence, in this region of α ∈ [0, 1.26056) and

γ ∈ [0, 0.3275), the cluster with a constant shift, de�ned by the stable �xed point xe of equa-

tion (2.7a), remains stable as long as it exists. For values γ ≥ 0.3275, the cluster becomes

unstable at αcr < α∗ and remains unstable until it ceases to exist at α∗ (see the dark blue

instability region in Fig. 2.2b).

Remark 1. If the size of the cluster groups is equal so N = M, then cluster synchronization

turns into complete synchronization with phase shift xe = 0. As a result, the stability condi-

tion (2.29) in Theorem 1 holds true for any α ∈ [0, α∗), so complete synchronization is always

(locally) stable. In regard to Fig. 2.2a, the corresponding horizontal cut at κ = M/N = 1

contains no unstable region, and q2 > 0 for any α ∈ [0, α∗) (this top cut is not shown for a

better visibility of lower cuts κ ∈ [0.1, 0.9]).

Remark 2. If γ = κ, then αcr from the stability condition (2.29) can be explicitly calculated

and equals αcr = π/2−xe/2. This follows from the equation (2.30) where γ can be replaced by

κ = M
N
. Therefore, equation (2.30) simpli�es to cos(xe + α) + cosα = 2 cos xe+α

2
cos xe−α

2
= 0

which holds true if α = αcr = π/2− xe/2.

Remark 3. [Relation to the stability of chimeras]. When condition (2.29) is violated

such that the function q2 < 0, the two-cluster pattern loses its stability (see Fig. 2.2). As

it follows from the variational equations (2.27a)-(2.27b), the stability of the N -cluster of
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synchronous oscillators (Θ, Θ̇) is determined by the condition q1 > 0 which holds true for

any α ∈ [0, π/2), independent from the sign of q2. Therefore, when q2 changes sign from

positive to negative, the trivial �xed point of the variation equations (2.27a)-(2.27b), which

corresponds to the cluster manifold, becomes a saddle. This saddle point has a stable man-

ifold of dimension 2N +M and an unstable manifold of dimension M, where the 2N stable

directions correspond to the variables of the �rst N oscillators and are de�ned by the con-

dition q1 > 0. At the same time, the M unstable directions are determined by the condition

q2 < 0, which implies transversal instability of the M variables of the oscillators from the

second cluster. A trajectory, starting close to the stable manifold of the saddle point may

remain close to it, giving rise to a transient chimera, where the �rst cluster persists for a

some fairly long amount of time, especially in a large network. This argument comes from

the rigorous conditions on the stability/instability of the cluster solution (2.4) (Θ, Θ̇,Φ, Φ̇)

whose stability along the cluster manifold D(2) is proven. At the same time, a rigorous proof

of the stability of a non-transient chimera state D(M + 1) = {Θ1 = ... = ΘN , Θ̇1 = ...Θ̇N ,

Φ1, ...,ΦM , Φ̇1, ..., Φ̇M} via the stability of the �rst cluster oscillators' variables remains elu-

sive. This is due to the fact that the stability of the chimera state solution along the chimera

manifold D(M + 1) cannot be rigorously assessed via the 2-D equation for the dynamics of

the phase shift (2.8a) but must be proven through the full 2 × (M + 1) system, similar to

(2.5), where Φ is replaced with Φ1, ...,ΦM . Although, our numerical simulations indicate the

emergence of non-transient chimeras (see Fig. 2.5), where the N -cluster never disintegrates

and remains stable.

Theorem 2. [Stability of the breathing cluster solution] (su�cient conditions). Let the

parameters satisfy the condition: Ω/R > T (h) (see Fig. 1) such that the system (2.8a) has

a stable limit cycle which determines the oscillating phase shift xc(t) between two clusters.

Then, the cluster solution (2.4) (Θ, Θ̇,Φ, Φ̇) with the phase shift xc in the network system
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(2.2) is locally stable to transversal perturbations if

κ cosα > γ (2.37a)

1− 4βN(k cosα− γ) > 0. (2.37b)

Proof. As in the proof of Theorem 1, we should �nd parameter regions for the stability of the

variational equations (2.27a)-(2.27b). In contrast to the previous case of the constant phase

shift xe, the oscillating phase shift xc(t) makes q1 and q2 time-varying periodic functions, and

therefore the variational equations (2.27a)-(2.27b) contain time-varying coe�cients. While

the precise bounds on the stability of (2.27a)-(2.27b) can be numerically assessed via the

calculation of the Lyapunov exponents, we derive analytical estimates as follows. As in

the case of the constant phase shift xe, the necessary condition for the stability of (2.27a)-

(2.27b) is q1(xc(t)) > 0 and q2(xc(t)) > 0. In this case, these two inequalities must be

ful�lled for any time instant during the period of the cycle xc(t). The condition q1 =

N cosα+γM cos(xc(t)−α) > 0 can be estimated via the worst-case stability scenario where

cos(xc(t)− α) = −1. That is, q1(xc(t)) > 0 ∀t if cosα > κγ. Similarly, we get the bound on

q2(xc(t)) > 0 ∀t if cosα > γ/κ. As κ < 1, the condition for q2 also guarantees the condition

for q1. This gives bound (2.37a).

While bound (2.37a) alone would be su�cient if q1 and q2 were constant, increasing

β can destabilize the variational equations (2.27a)-(2.27b) with periodically varying coe�-

cients. The destabilizing contribution of β can be assessed via a simple criterion that the

discriminants Dq1,q2 of the corresponding characteristic equations βs2 + s + q1,2(xc(t)) = 0

are positive [38]. In simple words, this su�cient condition implies that as long as the ori-

gin remains a stable node �xed point of variational equations (2.27a)-(2.27b) for any �xed

time instant of time and never turns into a degenerate node or a focus, the variational

equations (2.27a)-(2.27b) with time-varying parameters are stable. For the worst case of

cos(xc(t) +α) = −1, the condition on Dq2 = 1− 4βq2 > 0 yields bound (2.37b). This bound

also includes the bound for Dq1 > 0. �
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Remark 4. The use of the worst-case stability approximation cos(xc(t) + α) = −1 yields

a very conservative range of values κ, γ, and α. It implies that the trivial �xed point of the

variational equations (2.27a)-(2.27b) with time-varying coe�cients is stable for any value of

xc(t). In reality, this does not have to be the case as long as its overall stability over the

period of the limit cycle xc(t) is preserved such that its Lyapunov exponents remain nega-

tive. As a result, the su�cient conditions (2.37a)-(2.37b) should be considered as a proof

of concept, giving an analytical proof for the stability and feasibility of a breathing cluster

in the network system (2.2) (see Fig. 2.3 for the comparison with the numerically assessed

region of stability).

Statement 2 [Bistability conditions]. Combining the co-existence condition (2.18) of

Statement 1 with the stability criteria of Theorems 1 and 2, yields su�cient conditions on

the co-existence of two stable patterns of synchrony with constant and oscillating phase shifts

between two clusters.

In the following, we provide a numerical example of these bistable regimes and hysteretic

transitions between them in a small network (2.2).

2.5 Numerical example

As the emergence of stable clusters and chimeras is easier to demonstrate in large

Kuramoto networks without [1, 78] and with inertia [73], where the dynamics is close to

its mean-�eld approximation, we knowingly choose the harder case of a small network (2.2)

with N = 5 and M = 4 as our numerical example. Along with κ = M/N = 0.8, we �x

parameter γ = 0.45 and study the dynamics of clusters as a function of α and β.
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Figure 2.3: Hysteretic transitions as a function of α and β. The cluster with a constant

shift is indicated by the zero derivative of phase shift < ẋs > . Non-zero averaged derivative

< ẋs > indicates the breathing cluster with an oscillating shift. The red dashed (blue solid)

line corresponds to the direction of increasing (decreasing) α. β = 0.1: The clusters do not

co-exist. β = 2 : Clusters co-exist in the region (αc, α
∗). Point αχ corresponds to the co-

existence of the cluster with a constant shift and a stable chimera depicted in Fig. 2.5. β = 20:

Increased inertia β enlarges the bistability region. The range [αc = 0.5537, α∗ = 1.3273]

matches the analytical condition of Statement 1. The thin vertical light stripe corresponds

to the su�cient condition of Theorem 2.
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Figure 2.4: (a). Snapshot of the synchronized two-cluster pattern in the network (2.2)

for α = π/3 and β = 20. Initial conditions are chosen close to the cluster manifold and

correspond to the breathing cluster pattern. (b). Corresponding time series of the co-

existing phase shifts xe and xc(t), robustly appearing from non-identical random initiation

conditions, close to the cluster manifold. (c). Co-existence of the constant (xe) and oscillating

phase shifts (xc(t)), determined by the �xed point (depicted in white) and the stable limit

cycle (depicted in red), respectively. Initial conditions are chosen on the cluster manifold.

Trajectories starting from initial conditions A and B converge to di�erent attractors (the

�xed point and limit cycle). Basins of attraction of the �xed point and the limit cycle are

shown in black and white, respectively.
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Figure 2.3 demonstrates how inertia β a�ects hysteretic transitions between the co-

existing clusters. When inertia is small (β = 0.1), the network is mono-stable such that

the breathing cluster emerges after the cluster with a constant shift disintegrates. Our

simulations for β = 2 and β = 20 indicate that inertia promotes bistability and extends the

range of α where the two clusters stably co-exist. Notice that the cluster with a constant

shift loses its stability at α∗ which corresponds to a saddle-node bifurcation of the �xed point

in the pendulum equation (2.8a) (see Fig. 2.2). Therefore, this cluster is stable as long as it

exists. When α decreases, the breathing cluster loses its stability at αc which coincides with

αTR, where the limit cycle xc(t) merges into a homoclinic loop of the saddle and disappears

with further decrease of α (cf. condition (2.18) in Statement 1). Therefore, similarly to the

cluster with a constant shift, the breathing cluster remains stable as long as it is present.

The values αc = 1.3312 for β = 2 and αc = 0.5537 for β = 20 match the values of the

analytical bound (2.18) of Theorem 1 remarkably well. As a result, the co-existence range of

α, predicted in Statement 1, coincides with the actual bistability range, observed in Fig. 2.3.

We have also veri�ed the su�cient conditions of Theorem 2 in the worst case of large

inertia (β = 20). The su�cient conditions (2.37a)-(2.37b) for the stability of the breathing

cluster yield a narrow region 0.9700 < α < 0.9733 which is depicted by the light thin stripe

in Fig. 2.3. While being very conservative, this region lies inside the bistability region. In

accordance with (2.37b), this region becomes less conservative and enlarges when β decreases.

Figure 2.4 gives a more detailed description of the co-existing stable clusters with a

constant and periodically oscillating phase shifts for α = π/3 and β = 20 (cf. point A in

Fig. 2.2b). In Fig. 2.4(a), we present a snapshot of the established cluster pattern. The

oscillators in the �rst �ve- and second four-oscillator groups synchronize within the two

clusters, and there is always a phase shift between the two synchronized groups. Depending

on the initial conditions, the network exhibits either the two-cluster pattern with a constant

inter-cluster phase shift or a breathing two-cluster pattern where the phase shift oscillates.

While the static snapshot of Fig. 2.4(a) does not allow for identifying the dynamics of the

phase shift, it actually corresponds to the breathing cluster with the oscillating phase shift
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xc, (red waveform depicted in Fig. 2.4(b)). Figure 2.4(b) indicates the bistability of the

two patterns of synchrony starting from random non-equal initial conditions close to the

cluster solution. Figure 2.4(c) shows the co-existence of the two dynamics for the phase

shifts, similar to the qualitative phase portrait of Fig. 2.1. To explicitly de�ne the phase

shift x between the clusters, in Fig. 2.4(c), we set all initial conditions for the oscillators

in the �rst �ve-oscillator cluster to zero, and for the oscillators in the second four-oscillator

cluster to the same set of values x, ẋ. Thus, the initial di�erence between the cluster variable

determines the initial phase shift x. Note that di�erent initial conditions (points A and B)

induce di�erent phase shifts.

Figure 2.5 shows that the breathing cluster can turn into a stable breathing chimera

where the �rst cluster of N oscillators remains locally stable, while the second cluster of M

oscillators loses its stability. This stable chimera co-exists with the cluster with a constant

phase shift (see the corresponding point αχ in Fig. 2.3). While we have consistently explored

the range of bistability between the two clusters of synchrony both analytically and numer-

ically, we have not performed an exhaustive search for stable chimeras in the bistability

region [αc, α
∗] (cf. Fig. 2.3). Finding conditions on the co-existence of both stable clusters

and stable chimeras is a subject of future study.
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Figure 2.5: (a). Snapshot of a chimera state in the network (2.2) for α = αχ = π/3, β = 2.

(b). Time-series of the phase di�erences between the oscillators in the second cluster. The

oscillating phase di�erences indicate the absence of pairwise synchrony in the second cluster,

therefore showing a stable chimera.

2.6 Conclusions

Rigorous analysis of the stability of cluster synchronization in complex networks of iden-

tical oscillators with symmetries has been shown to be challenging. It is typically limited to

a restricted types of coupling and network topologies. This is due to the fact that the system,

which determines the stability of a given multi-cluster decomposition, is high-dimensional,

non-reducible, and often asymmetric. The Laplacian (di�usive) coupling with zero-row sum

connectivity matrices seems to be the most di�cult case for identifying cluster decomposi-

tions and proving their stability [16, 18, 83, 84, 8]. This is, in particular, due to complete

synchronization, which is always present in unweighted, but possibly heterogeneous Lapla-

cian networks, such that its stability often prevents the observation of co-existing stable

clusters. In light of this, non-di�usive networks such as, for example, pulse-coupled neuronal

networks[10, 12] where heterogeneous node degrees, de�ned by di�erent numbers of inputs

received by each cell, makes complete synchronization impossible [80]. This creates distinct

groups of cells with equal node degree. The equal node degree constraint is a necessary
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condition for cells to be in the same synchronous cluster. Together with the requirement of

balanced coloring [46, 45, 106], this constraint determines the existence of clusters of perfect

symmetry and allows for e�ectively identifying cluster decompositions, even in large complex

networks, via the combinatorial algorithms [12, 57].

In this chapter, we have studied the stability of clusters in two coupled populations of

identical Kuramoto oscillators with inertia. This network is essentially the two-population

Kuramoto model[2, 1], proposed as a simple model of chimeras[2]. The new important mod-

i�cations, which are vital for bistability of cluster patterns in our network, are (i) non-equal

population sizes and (ii) the addition of inertia to the oscillator equation. Property (i) makes

the existence of complete synchronization impossible such that a two-cluster pattern is the

minimal cluster partition in this two-population network, although other multi-cluster par-

titions are also possible. Property (ii) increases the dimensionality of the intrinsic oscillator

dynamics and creates a possibility for bistability of cluster patterns.

We have rigorously analyzed the dynamical properties and stability of the two-cluster

pattern where the population splits into two synchronized groups, but there is always a phase

shift between the groups. We have explicitly demonstrated that the dynamics of the phase

shift can be bistable such that a constant phase shift co-exists with a time-varying shift which

periodically changes from 0 to 2π. As a result, a two-cluster pattern with a constant shift co-

exists with a breathing two-cluster pattern with an oscillating phase shift. We have derived

the stability conditions for the stability of the cluster patterns. Due to the simple structure

of the two-population network, the stability conditions for the variables, corresponding to

the �rst and second populations, are independent. Therefore, the instability of synchrony

within one group does not immediately imply the instability within the other group. In

more rigorous terms, the cluster solution becomes a saddle such that stable transversal

directions correspond to the �rst (larger) group of oscillators whereas unstable transversal

directions correspond to the oscillators from the second (smaller) group. The stability result

can be interpreted in terms of multidimensional clusters and chimeras. In large networks,

high-dimensional stable manifolds of this saddle state may retain a close trajectory for a
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considerable amount of time, giving rise to transient chimeras [77]. It can also lead to the

emergence of stable multi-cluster states, where the oscillators in the smaller population split

into subgroups. Our numerical simulations, not reported in this chapter, indicate these

stable clusters, de�ned by high-dimensional cluster manifolds which are embedded into each

other and contain the two-cluster manifold as a minimum cluster solution. Rigorous study of

the transition from lower dimensional to high-dimensional cluster regimes, governed by the

symmetry-induced embedding hierarchy [16] and accompanied by multistability of patterns

of synchrony is a subject of future study.

In a more speculative way, the ful�lment of the transversal stability condition of the �rst

cluster variables, while the transversal stability condition for the second cluster is violated,

can be interpreted as a proof of a stable chimera. While the emergence of stable chimeras

in the two-population network is con�rmed by our numerical simulations, for this proof to

be completely rigorous, one has to demonstrate the stability of the chimera solution in the

longitudinal direction. This proof would require the analysis of the high-dimensional system

that governs the dynamics of the chimera solution. In the case of the two-cluster solution,

studied in this chapter, this system is two-dimensional and allows for a rigorous analysis of

its solutions. Our results, concerning small networks of phase oscillators, also support the

recent observation that a network does not have to be large to exhibit stable chimeras [78].
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CHAPTER 3

WHEN THREE IS A CROWD: CHAOS FROM CLUSTERS OF

KURAMOTO OSCILLATORS WITH INERTIA

3.1 Introduction

In Chapter 2, we derived analytical conditions for the emergence and co-existence of

stable synchronized clusters in a two-population network of identical Kuramoto oscillators

with inertia. These populations have di�erent sizes such that complete synchronization of

all oscillators is impossible. Instead, the oscillators can synchronize within each population

cluster while there is a phase shift between the dynamics of the two clusters. Due to the

presence of the inertia which makes the oscillator dynamics two dimensional, this phase

shift can oscillate, inducing a breathing cluster pattern which can stably co-exist with a

cluster pattern with a constant phase shift. In this Chapter, we aim at cluster dynamics of

a three-population Kuramoto network with inertia obtained by adding a third population

to the above two-population network setting from [14]. The resultant network is a three-

population network of oscillators capable of synchronizing within each population, thereby

potentially forming three synchronized clusters.

We primarily focus on the inter-cluster phase dynamics which can exhibit various types

of complex behavior and multistability. Through rigorous analysis and numerics, we demon-

strate that the addition of the third population can induce multistable chaotic dynamics,

including those in which the phase shift between the �rst and second populations oscillates

chaotically with small amplitudes whereas the phase shift between the second and third

populations makes large-amplitude chaotic excursions. This e�ect may remind the reader

of the familiar expression about romantic relationships �two is company, three is a crowd.�

This conventional wisdom suggests how events may unfold when such a relationship be-

comes destabilized by the addition of a third party. Our three-population network can be
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considered a phenomenological model for describing cluster formation in real-world oscilla-

tory networks. Suitable real-world network dynamics that can be captured by our model

include (i) a multi-community neural structure of the nematode C. elegans worm in which

neurons within each community form clusters of synchronized electrical activity that control

locomotory rhythmogenesis [110, 52] and (ii) animal grouping when schooling �sh align their

swimming directions to split into cooperative clusters of synchronized movements to improve

foraging success [37].

The layout of this Chapter is as follows. First, in Sec. 3.2, we present the oscillator net-

work model and state the problem under consideration. In Sec. 3.3, we study limit sets and

bifurcations in a four-dimensional (4D) system of two coupled pendulum equations which de-

termines the existence of possible intercluster dynamics in the three-population network. We

develop an auxiliary system method to derive bounds on partitions of parameters with per-

missible dynamics which include combinations of co-existing constant, periodic, and chaoti-

cally oscillating and rotating pairwise phase shifts. In particular, we prove the existence of a

homoclinic orbit of a saddle-focus �xed point in the 4D system which satis�es the Shilnikov

criterion [91] and yields spiral chaos. In Sec. 3.4, we analyze the variational equations for

the stability of the three-cluster pattern as well as of its embedded two-cluster regime where

the �rst and third populations become synchronized between each other, making their phase

shift zero. As in the two-population case [14], we derive necessary and su�cient conditions

for the constant phase shifts and give bounds on the stability of the cluster patterns with

chaotically oscillating and rotating phase shifts. We also discuss the implications of our

stability results to the stability of chimeras. Our analytical study is supported by numerical

examples which indicate that the three-cluster pattern with chaotic phase shifts may have a

fairly large attraction basin and co-exist with chimeras and hybrid solitary/chimera states.

Section 3.5 contains concluding remarks and discussion.

The results presented in this Chapter were published in [30, 31].
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3.2 Network model

We consider a three-population network of 2D rotators depicted in Fig. 3.1 and modeled

by the following system

mθ̈i + θ̇i = ω0 + 1
M+2N

[
µ

N∑
j=1

sin(θj − θi − α)+

+ν
M∑
j=1

sin(φj − θi − α)

]
,

mφ̈k + φ̇k = ω0 + 1
M+2N

[
ν

N∑
j=1

sin(θj − φk − α)+

+ µ
M∑
j=1

sin(φj − φk − α) + ν
N∑
j=1

sin(ψj − φk − α)

]
,

mψ̈l + ψ̇l = ω0 + 1
M+2N

[
ν

M∑
j=1

sin(φj − ψl − α)+

+µ
N∑
j=1

sin(ψj − ψl − α)

]
,

(3.1)

where i = 1, . . . , N , k = 1, . . . ,M , and l = 1, . . . , N . The network is composed of three

oscillator populations of sizes N, M, and N. Variables θi, φk, and ψl correspond to the phases

of 2D oscillators from the �rst, second, and third populations, respectively. The undirected

connections within each population are all-to-all with a uniform intragroup coupling µ. The

oscillators from the second (middle) group of sizeM are all-to-all connected to the oscillators

from the �rst and third groups via a uniform intergroup coupling ν. To isolate the e�ect of

adding an extra population to a two-population network, we do not directly couple the

�rst and third groups thereby introducing a non-global structure to the network (3.1). The

oscillators are chosen to be identical, with frequency ω0, phase lag α ∈ [0, π/2) and inertia

m. The model (3.1) is obtained from the Abrams et al. chimera model [2, 1], consisting

of two groups of 1D phase oscillators with Kuramoto-Sakaguchi coupling [3], by increasing

the dimension of the phase oscillators, adding the third group and making the group sizes

uneven. The latter property does not allow the network to exhibit complete synchronization,

which otherwise could have been the most dominant stable pattern. As a result, the uneven
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group sizes can promote the emergence of stable clusters.

Figure 3.1: Three-population network of M + 2N oscillators (3.1). Oscillators within each

group are all-to-all connected to each other through uniform coupling µ. All oscillators in

the second group of size M are connected to all oscillators in the �rst and third groups of

sizes N through uniform coupling ν. There are no direct connections between the �rst and

third groups.

Introducing new variables τ = µt/(M + 2N) and β = µm/(M + 2N) along with a

rotating frame of reference Θi = θi−ω0t+ c, Φk = φk−ω0t+ c, and Ψl = ψl−ω0t+ c, where

c is a constant, we can rewrite the system (3.1) in a more convenient form

βΘ̈i + Θ̇i =
N∑
j=1

sin(Θj −Θi − α)+

+ γ
M∑
j=1

sin(Φj −Θi − α),

βΦ̈k + Φ̇k = γ
N∑
j=1

sin(Θj − Φk − α)+

+
M∑
j=1

sin(Φj − Φk − α) + γ
N∑
j=1

sin(Ψj − Φk − α),

βΨ̈l + Ψ̇l = γ
M∑
j=1

sin(Φj −Ψl − α)+

+
N∑
j=1

sin(Ψj −Ψl − α),

(3.2)

where γ = ν/µ represents the ratio between the intra- and intergroup couplings. Without

loss of generality, we assume that the intragroup coupling µ is stronger than the intergroup
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coupling ν so that γ ∈ (0, 1).

While the network (3.2) may exhibit various clusters of perfect synchrony induced by

additional symmetries of the network connectivity, we will mainly focus on the dynamics

and stability of three-group cluster CΘΦΨ where the oscillators are synchronized within the

three groups. The existence of this cluster is de�ned by the invariant manifold (hyperplane)

CΘΦΨ = {Θ1 = · · · = ΘN = Θ, Θ̇1 = · · · = Θ̇N = Θ̇,

Φ1 = · · · = ΦM = Φ, Φ̇1 = · · · = Φ̇M = Φ̇,

Ψ1 = · · · = ΨN = Ψ, Ψ̇1 = · · · = Ψ̇N = Ψ̇}. (3.3)

Hereafter, we will be referring to CΘΦΨ as a �manifold� or a �solution� interchangeably,

depending on what term is more suitable in a particular context.

Notice that the equal node degree is a necessary condition for oscillators to form a

synchronous cluster. Therefore, the oscillators from the second group of size M may not be

synchronized with the oscillators from the �rst and third groups of size N, whereas the latter

can form a cluster. As a result, the three-group cluster manifold CΘΦΨ has an embedded

invariant two-cluster manifold

CΘΦΘ = {Θ1 = · · · = ΘN = Θ, Θ̇1 = · · · = Θ̇N = Θ̇,

Φ1 = · · · = ΦM = Φ, Φ̇1 = · · · = Φ̇M = Φ̇,

Ψ1 = · · · = ΨN = Θ, Ψ̇1 = · · · = Ψ̇N = Θ̇} (3.4)

which represents the largest possible cluster partition of the network (3.2) with one syn-

chronous cluster composed of all oscillators from the �rst and third groups and the other

formed by all oscillators from the second group.

In the following, we will analyze the dynamics and stability of synchronous clusters

CΘΦΨ and CΘΦΘ and reveal the role of the intrinsic oscillator parameters, coupling strength

and network sizes in controlling the onset of each of the two cluster regimes.
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3.3 Possible intercluster dynamics

We �rst study the existence of possible temporal dynamics on the three-cluster manifold

CΘΦΨ. These dynamics are described by the following system obtained from system (3.2) by

removing the indexes i, j, k

βΘ̈ + Θ̇ = γM sin(Φ−Θ− α)−N sinα,

βΦ̈ + Φ̇ = γN [sin(Θ− Φ− α) + sin(Ψ− Φ− α)]−

−M sinα,

βΨ̈ + Ψ̇ = γM sin(Φ−Ψ− α)−N sinα.

(3.5)

Introducing the di�erences between the phases x = Θ − Φ and z = Ψ − Φ, we obtain

the equations that govern the dynamics of the phase di�erences between the clusters

βẍ+ ẋ = (M −N) sinα− γ[N sin(x− α)+

M sin(x+ α) +N sin(z − α)],

βz̈ + ż = (M −N) sinα− γ[N sin(x− α)+

M sin(z + α) +N sin(z − α)].

(3.6)

3.3.1 Transformation to coupled pendulum equations

Similarly to [14], we set Ω = (M − N) sinα, R = γ
√
N2 +M2 + 2MN cos 2α, and

δ0 = arctan
(
M−N
M+N

tanα
)
and use trigonometric formulas to turn the system (3.6) into

βẍ+ ẋ = Ω−R sin(x+ δ0)− γN sin(z − α),

βz̈ + ż = Ω−R sin(z + δ0)− γN sin(x− α).
(3.7)

Shifting the variables (x, z) → (x + δ0, z + δ0), setting δ = α + δ0, and rescaling time

τ = t
√

β
R
, we obtain

ẍ+ hẋ+ sinx = ω − a sin(z − δ),

z̈ + hż + sin z = ω − a sin(x− δ),
(3.8)



38

where h = 1√
βR
, ω = Ω

R
, a = γN

R
, ẋ = dx

dτ
, and ż = dz

dτ
. Observe that (3.8) is a four-dimensional

(4D) system of two coupled pendulums and therefore can exhibit complex dynamics. In some

sense, each pendulum equation of (3.8) may also be viewed as a periodically driven nonlinear

pendulum which is notorious for its chaotic behavior [22].

3.3.2 Fixed points

Depending on the parameters, the 4D system (3.8) may have up to four �xed points such

that each point (x∗, z∗) corresponds to a constant phase shift x∗ (z∗) between the �rst (third)

and second clusters. In the following, we will show that two out of the four �xed points may

be saddle-foci with a positive saddle value which can undergo a homoclinic bifurcation and

induce Shilnikov-type chaotic intercluster dynamics.

System (3.8) is symmetric in x and z and has an invariant manifold x = z which

corresponds to the cluster manifold CΘΦΘ. The dynamics on the manifold CΘΦΘ : {x = z} is

described by the system

ẍ+ hẋ+ sinx+ a sin(x− δ) = ω

which can be further reduced to a pendulum equation by combining the sine terms and using

a trigonometric identity so that

ẍ+ hẋ+ a1 sin(x− δ1) = ω, (3.9)

where a1 =
√

1 + a2 + 2a cos δ and δ1 = arctan a sin δ
1+a cos δ

.

Therefore, for ω < a1, the system (3.8) has two �xed points

O1(xs = zs = arcsin ω
a1

+ δ1),

O2(xu = zu = π − arcsin ω
a1

+ δ1)
(3.10)

which belong to CΘΦΘ. The type and stability of these �xed points along the cluster

manifold CΘΦΘ is de�ned through (3.9) whose dynamics are similar to the classical pendulum

equation with a constant torque ω [5]. Therefore, O1 (O2) is a stable (saddle) �xed point
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with respect to the dynamics restricted to CΘΦΘ. While the directions transversal to CΘΦΘ

may be unstable, depending on the parameters of system (3.8), the �xed point O1 (O2) may

become a saddle node (a saddle). As in the classical pendulum equation [5], these �xed

points disappear via a saddle-node bifurcation in system (3.9) at ω = a1.

System (3.8) also has two other �xed points that belong to the three-cluster manifold

CΘΦΨ but lie outside the manifold CΘΦΘ so that x 6= z. These �xed points O3(x3, z3) and

O4(x4, z4) have the coordinates

x3,4 = arctan
(

1−a cos δ
a sin δ

)
± arccos

(
ω
√

1+a2−2a cos δ
1−a2

)
,

z3,4 = arctan
(

1−a cos δ
a sin δ

)
∓ arccos

(
ω
√

1+a2−2a cos δ
1−a2

)
.

(3.11)

The detailed calculations of coordinates x3,4 and z3,4 is as follows. To �nd the coordinates

of O3 and O4 in 4D system (3.8), we need to analyze the following system

sinx+ a sin(z − δ) = ω,

a sin(x− δ) + sin z = ω.
(3.12)

However, this analysis is not straightforward as one has to deal with a system of two nonlinear

equations. A way to solve the system (3.12) is to use its symmetry under the involution

(x, z)→ (z, x). This symmetry implies that O3 and O4 are symmetric relative to z = x and

lie on the line

z = κ− x, (3.13)

where κ is a constant to be determined. Thus, the coordinates of O3 and O4 can be written

in the form

x3 = z4 = κ/2 + x0, x4 = z3 = κ/2− x0 (3.14)

for some x0. Substitution of (3.13) into (3.12) gives

sinx+ a sin(−x+ κ− δ) = ω. (3.15)
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Our goal is to �nd κ and x0 in order to identify coordinates x3 = z4 and x4 = z3. the

coordinates in (3.11). Using a trigonometric identity, we turn equation (3.15) into

C1 cosx+ (1− a cos(κ− δ)) sinx = ω, (3.16)

where C1 = a sin(κ− δ). Using another trigonometric identity, we solve equation (3.16) for

x to obtain

x3,4 = g ± arccos
ω

C2

, with (3.17)

C2 =
√

1 + a2 − 2a cos(κ− δ), (3.18)

g = arctan

(
1− a cos(κ− δ)

C1

)
. (3.19)

From (3.14) and (3.17), we obtain g = κ/2 from which we calculate

κ/2 = arctan

(
1− a cos δ

a sin δ

)
(3.20)

and then

cos(κ− δ) =
2a− (a2 + 1) cos δ

a2 + 1− 2a cos δ
. (3.21)

Thus (3.18) yields

C2 =
1− a2

√
1 + a2 − 2a cos δ

(3.22)

so x0 in (3.14) becomes

x0 = arccos

(
ω
√

1 + a2 − 2a cos δ

1− a2

)
. (3.23)

Substituting (3.20) and (3.23) into (3.14), we �nally obtain the explicit expressions

(3.11) for x3, z3, x4, z4.

The stability of �xed points O1, O2, O3, O4 of system (3.8) can be evaluated through
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the characteristic equation

(s2 + hs+ cosx∗)(s2 + hs+ cos z∗)−

a2 cos(x∗ − δ) cos(z∗ − δ) = 0, (3.24)

where x∗ and z∗ are the coordinates of the �xed point in question (see (3.10) and (3.11)).

The derivation of general close-form solutions for the fourth-order polynomial equation (3.24)

might require the use of symbolic computations or even be out of reach. Here, we take a

di�erent route towards placing explicit bounds on the parameters of system (3.8) which

guarantee that points O3 and O4 are saddle-foci with a positive saddle value. To do so, we

set

λ = s2 + hs (3.25)

to turn (3.24) into the biquadratic equation

λ2 + (cosx∗ + cos z∗)λ+ cosx∗ cos z∗

−a2 cos(x∗ − δ) cos(z∗ − δ) = 0. (3.26)

Its roots are

λ1,2 = 1
2

[− cosx∗ − cos z∗ ±√
(cosx∗ + cos z∗)2 + 4a2 cos(x∗ − δ) cos(z∗ − δ)

]
.

(3.27)

Towards our goal of obtaining su�cient conditions that guarantee that points O3 and O4 are

saddle-foci, we assume that the discriminant of (3.27) is positive. Note that this assumption

can be realized by choosing appropriate values of γ and ω which can change x∗ and z∗

accordingly, while keeping δ intact. It follows from this assumption that λ1 > 0 and λ2 <

0. Thus, substituting constants (3.27) into (3.25), we obtain a quadratic equation whose

solutions are
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s11,12 = −h
2
±
√
h2

4
+ λ1, s21,22 = −h

2
± i

√∣∣∣∣h2

4
+ λ2

∣∣∣∣, (3.28)

where s21,22 are complex when |λ2| > h2/4. Therefore, under these conditions, the �xed

point O3 (O4) is a saddle focus with the 1D unstable manifold corresponding to the positive

eigenvalue s11 = −h
2
+
√

h2

4
+ λ1, and the 3D stable manifold composed of the 2D stable focus

manifold which is determined by the complex eigenvalues s21,22 and the 1D stable manifold

de�ned by the negative eigenvalue s12. These saddle-foci O3 and O4 have a positive saddle

value [91] σ = Re(s21,22) + s11 > 0 if λ1 >
3
4
h2. Therefore, the saddle-foci O3 and O4 satisfy

the Shinikov criterion for spiral chaos [91] which emerges as a result of a Shilnikov homoclinic

bifurcation. In the following, we will derive su�cient conditions on the parameters of system

(3.8) under which �xed points O3 and O4 can undergo homoclinic bifurcations leading to

chaotic intercluster dynamics.
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Figure 3.2: Existence diagram for possible phase shift dynamics in system (3.8) (an illustra-

tion of Statement 1). Region I (ω < T (h) − a)): Only constant or oscillating phase shifts

x(t) and z(t). Region II (light gray): Possible co-existence of constant, oscillating, rotating,

and mixed-mode phase shifts. Homoclinic bifurcations of �xed points O3 and O4 take place

only in this region. Region III (blue): the co-existence of the phase shifts of all three types

is guaranteed. Region IV (1− a < ω < 1 + a): Possible co-existence of oscillating, rotating,

and phase shifts. Region V (ω > 1 + a): Only rotating phase shifts are possible. T (h) is the

Tricomi homoclinic curve (3.30) of pendulum equation (3.29) (pink dashed line). Damping

h = 1√
βR
, where R = γ

√
N2 +M2 + 2MN cos 2α. Fixed parameters are M = 12, N = 5,

γ = 0.4, and α = π/6.
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Figure 3.3: Existence diagram of Fig. 3.2 recast into the original parameters α and β of

system (3.2) for M = 25, N = 24, and γ = 0.4. Only Regions I, II, and IV are present. The

red line corresponds to the curve ω = 1− a in Fig. 3.2. The inset shows the region of small

values of β where Region I exists.

3.3.3 Oscillatory, rotatory and mixed-mode phase shifts

In addition to the �xed points which, when stable, induce constant intercluster phase

shifts x and z, system (3.8) may have three main types of non-trivial, possibly chaotic,

dynamics such as

1. oscillatory trajectories which do not rotate around the cylinder projection (x, ẋ) or

(z, ż) and are centered around the �xed point O1.

2. rotatory trajectories that encircle the cylinder projection (x, ẋ) or (z, ż), similarly to

the limit cycle of a rotatory type in the classical pendulum equation (3.29).

3. mixed-mode trajectories that make several oscillatory turns while traveling around the

cylinder.
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Note that this classi�cation distinguishes between the motions along the (x, ẋ) and (z, ż)

projections so each phase shift x or z may individually exhibit oscillatory, rotatory, or mixed-

mode dynamics. As a result, the relative evolution of x and z may be a combination of

the three dynamics, yielding oscillating/oscillating, oscillating/rotating, rotating/rotating,

mixed-mode/oscillating, or mixed-mode/rotating phase shifts. In this classi�cation, the

term oscillating/rotating refers to the case where the phase shift x oscillates around the

�xed point with a small amplitude, whereas the phase shift z rotates from 0 to 2π around

the cylinder. This classi�cation can also be extended to incorporate the co-existence of

constant and time-varying shifts. While a complete analytical study of possible dynamics

of 4D system (3.8) is complicated and maybe out of reach, we adapt the auxiliary system

method [19] to derive bounds that single out regions of parameters with possible homoclinic

bifurcations of the �xed points and oscillatory, rotatory and mixed-mode phase shifts.

Statement 1 [su�cient conditions]. Consider the partition of the (h, ω) parameter space of

system (3.8) shown in Fig. 3.2. Let T (h) denote the Tricomi homoclinic curve [104] of the

pendulum equation

ẍ+ hẋ+ sinx = ω (3.29)

which can be approximated as in [14] by:

ω = T (h) ≈


4
π
h− 0.305h3 for 0 < h < h∗ ≈ 1.22

1 for h > h∗.
(3.30)

Then �ve regions of the parameter partition correspond to the following dynamics of system

(3.8).

1. Region I: ω < T (h)− a. Only oscillatory trajectories that do not encircle the cylinder

projections (x, ẋ) and (z, ż) are permissible.

2. Region II: {ω < 1−a}
⋂
{ω < T (h)+a}

⋂
{ω > T (h)−a}. Fixed points O3 and O4 of

system (3.8) undergo homoclinic bifurcations only in this region. Oscillatory, rotatory
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and mixed-mode trajectories are possible.

3. Region III: T (h) + a < ω < 1− a. The co-existence of oscillatory and rotatory trajec-

tories is guaranteed. Mixed-mode oscillations are impossible.

4. Region IV: 1 − a < ω < 1 + a. Trajectories of all three types are possible, with the

prevalence of rotatory and mixed-mode phase shift trajectories.

5. Region V: ω > 1 + a. Only rotatory trajectories that encircle the cylinder projections

(x, ẋ) and (z, ż) are possible.

Proof. Adapting the auxiliary system method [19], we introduce two 2D auxiliary sys-

tems A±x obtained from the x equation of system (3.8) by replacing sin(z − δ) with ∓1 :

A+
x : ẍ+ hẋ+ sinx = ω + a

A−x : ẍ+ hẋ+ sinx = ω − a. (3.31)

Similarly, we introduce the systems A±z :

A+
z : z̈ + hż + sin z = ω + a

A−z : z̈ + hż + sin z = ω − a. (3.32)

Our goal is to demonstrate that the trajectories of auxiliary systems (3.31) and (3.32) bound

trajectories of system (3.8) and govern their �ow thereby determining possible types of phase

shift dynamics of x(t) and z(t) and predicting qualitative changes of the vector �ow that

are accompanied by homoclinic bifurcations. Our approach is based on the property that

the vector �ows of auxiliary systems (3.31) and (3.32) are transversal to any non-trivial

trajectory of system (3.8) at each point on the cylinders (x, ẋ), x 6= 0 and (z, ż), z 6= 0.

More speci�cally, the vertical component of vector �elds (x, ẋ) and (z, ż) of systems A+
x

and A+
z is larger than that of system (3.8), except for the points where sin(z − δ) = −1 and

sin(x−δ) = −1 and systems (3.31) and (3.32) coincide with (3.8). As a result, the trajectories
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of system (3.8) cross the trajectories of systems A+
x and A+

z in the downward direction. And

vice versa, the trajectories of system (3.8) cross the trajectories of systems A−x and A−z in

the upward direction (see Fig. 3.4). Therefore, these properties allow for controlling the �ow

of system (3.8) with the help of separatrices and limit cycles of systems A±x and A±z . Recall

that the 4D system (3.8) turns into two uncoupled 2D pendulum equations for x and z with

a = 0. The dynamics of pendulum equation (3.29) in the parameter space (h, ω) is controlled

by the so-called Tricomi curve, T (h), (3.30) (see Fig. 3.2) which corresponds to a homoclinic

bifurcation of a saddle �xed point for h < h∗ and a saddle-node bifurcation for h > h∗ [5]

(see Fig. 3.2).

In terms of the bifurcation diagram (h, ω) of Fig. 3.2, the Tricomi homoclinic curve

T (h) (pink dashed line) and the saddle-node curve ω = 1 (green dash-dotted line) separate

the bifurcation diagram into three regions with distinct dynamics of 2D pendulum equation

(3.8) with a = 0 for x or z. These dynamics are (i) a stable �xed point which co-exists with

a saddle �xed point (region under the Tricomi curve T (h)); (ii) the co-existence of the stable

�xed point and a limit cycle (region bounded by the Tricomi and saddle-node curves); and

(iii) a globally stable limit cycle.

We adapt these baseline boundaries for auxiliary systems (3.31) and (3.32) with a 6= 0

to derive su�cient conditions on permissible dynamics of the 4D system (3.8) which in turn

determines the existence of phase shift dynamics in the three-group network (3.2). The

dynamics of auxilary systems A+
x and A+

z (A−x and A−z ) are symmetric. Therefore, it is

su�cient to characterize possible trajectories of systems A+
x and A−x in the (x, ẋ) projection

which also yields the symmetrical trajectories in the (z, ż) projection. A combination of

two (identical or di�erent) dynamics in the (x, ẋ) and (z, ż) projections will represent the

behavior of 4D system (3.8).

Notice that the presence of +a (−a) term in auxiliary system A+
x (A−x ) shifts the bifur-

cation diagrams and yields the new Tricomi homoclinic curve ω = T (h)− a (ω = T (h) + a)

and the saddle-node curve ω = 1 − a (ω = 1 + a) in system (3.31). These curves formally

partition the bifurcation diagram of Fig. 3.2 into �ve regions which correspond to the fol-
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lowing dynamics.

Region I: ω < T (h) − a. In this region both auxiliary systems A+
x and A−x may only have

trivial dynamics in the form of the stable �xed point co-existing with the saddle �xed point.

Figure 3.4 shows the arrangement of typical trajectories of auxiliary systems A+
x ( A+

z )

(red lines) and A−x (A−z ) (blue lines). The auxiliary system A+
x has the stable �xed point

E+
x (x = arcsin(ω + a)) and the saddle S+

x (x = π − arcsin(ω + a)) [not shown in Fig. 3.4].

Similarly, the auxiliary system A−x has the stable �xed point E−x (x = arcsin(ω− a)) and the

saddle S−x (x = π − arcsin(ω − a)). As a result, the trajectories of the two auxiliary systems

which approach the corresponding stable �xed points E−x and E+
x form a �river� which traps

trajectories of system (3.8) in the (x, ẋ) projection of the 4D phase space. Therefore, these

trajectories of system (3.8) eventually reach the stable trapping region gsx bounded in x by

E−x and E+
x (the green disk in Fig. 3.4a (left)) and stay inside it. The dynamics of system

(3.8) in the (z, ż) projection is identical so that there also exists the stable trapping region

gsx (the green disk in Fig. 3.4a (right)). These two disks form a topological ball gsx×gsz in the

4D phase space of system (3.8) which contains the �xed point O1 [not shown]. The dynamics

inside the ball may be periodic or even chaotic; however, the trajectories con�ned inside the

ball may not rotate around the cylinders (x, ẋ) and (z, ż) so that only oscillatory motions

with small amplitudes in x and z are allowed. Similarly, the stable manifolds of saddles

S+
x and S−x form a �river� which contains the saddle O2 of (3.8) [not shown] and the (x, ẋ)

projection of its stable manifold. However, due to the �ow arrangement, other trajectories of

(3.8) leave this �river� and the saddle �cell� gsdx formed by the stable and unstable manifolds

of saddles S+
x and S−x (the pink diamond-shaped region in Fig. 3.4a (left)) and approach

the stable trapping zone. In the full 4D phase space of (3.8), the �xed point O2 lies in a

region represented by a topological product of saddle �cells� gsdx and gsdz . At the same time,

the �xed point O3 (O4) of (3.8) lies in the region gsdx × gsz (gsx × gsdz ).

Region II: H1 : {ω < 1− a}
⋂
H2 : {ω < T (h) + a}

⋂
H3 : {ω > T (h)− a}) (the gray region

in Fig. 3.2). The lower border of Region II is determined by the part of the Tricomi curve

ω = T (h)− a which corresponds to a homoclinic bifurcation of saddle E−x (E−z ) in auxiliary
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Figure 3.4: Schematic diagrams for (x, ẋ) and (z, ż) projections of vector �ow (3.8), bounded
by the trajectories of 2D auxiliary systems A+

x and A+
z (A−x and A−z ) depicted in red (blue).

(a). Typical arrangement of vector �ow (3.8) corresponding to Region I (see Fig. 3.2). The
unstable manifolds of the auxiliary systems' saddles form trapping regions (�rivers�) that
attract the trajectories of system (3.8) and guide them into trapping disks gsx and g

s
z (green).

(b). Arrangement of vector �ow (3.8) from Region II which allows the formation of the
homoclinic orbit hx (hz) of saddle-focus O3 (O4). Note that the saddle-focus O3 lies inside
saddle cell gsdx (pink diamond-shaped region) in the (x, ẋ) projection and inside stable region
gsz (green disk) in the (z, ż) projection representing its focus part. Saddle-focus point O4 is
symmetric to O3, with its x (z) coordinate inside gsx (gsdz ). (c). Region III. The auxiliary
systems are bistable, each having a stable �xed point and a stable limit cycle. These limit
cycles x+

c and x−c (z+
c and z−c ) form a trapping �river� (the upper horizontal strip) which

contains rotatory trajectories of (3.8). Trapping disks gsx and gsz (green) contain oscillatory
trajectories of (3.8).
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system A−x (A−z ). In terms of Fig. 3.4a (left), this bifurcation occurs when the red curve

emanating from the left saddle cell gsdx (the pink diamond-shaped region) would no longer

go towards the green disk but rather merge with the red curve going into the right saddle

cell to form a homoclinic orbit which connects the left and right saddle cells gsdx [not shown].

This homoclinic connection reroutes the vector �ows so that the trajectories of system (3.8)

can travel from the left to the right saddle cell. Entering the Region II, via, for example,

increasing ω leads to the rearrangement of the �rivers� as shown in Fig. 3.4b where the

unstable manifold of saddle-focus (or saddle) O3 returns to O3 and forms the homoclinic

orbit hx. Notice that due to the cyclic structure of the equations, the left and right saddle

cells represent the same cell and contain the same �xed point O3, so that the black curve

connecting the �xed points in the two saddle cells is a homoclinic (not heteroclinic) orbit.

The mutual arrangement of the �rivers� in the region ẋ > 0 allows the trajectories to either

rotate around the cylinder as in the case of the homoclinic loop or reach the green disk

to exhibit oscillatory dynamics. As the dynamics of systems A+
z and A−z are symmetric to

those of systems A+
x and A−x , the overall dynamics of 4D system (3.8) is a combination of the

trajectories depicted in the left and right diagrams of Fig. 3.4b. Therefore, all combinations

of rotating, oscillating, and mixed-mode phases shifts are possible.

While this qualitative analysis does not allow for determining the exact values of param-

eters at which the homoclinic loop hx is formed, it proves that system (3.8) has to undergo

this homoclinic bifurcation in Region II where the �rivers� form a passage from one saddle

cell to the other. This passage does not exist for the parameters from Region I (see Fig.

3.4a) and ceases to exist when the system reaches the border of Region III at which auxiliary

systems A+
x and A+

z undergo a homoclinic bifurcation at ω = T (h) + a (see Fig. 3.2). In

terms of Fig. 3.4b, this happens when the unstable and stable manifolds of saddle S+
x in

system A+
x (the blue curves) merge together at the x = 0 coordinate axis for ẋ > 0 [not

shown]. Therefore, the �rivers� formed by the stable and unstable manifolds of the saddle

in auxiliary systems A+
x and A−x (A+

z and A−z ) exchange their mutual arrangement when

changing the parameters brings the system from Region I to Region III (cf. Fig. 3.4a and
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Fig. 3.4c). Hence, there always exist bifurcation points in Region II at which the stable and

unstable manifolds of O3 (O4), con�ned inside the �rivers,� form the homoclinic loop hx (hz).

Each of these bifurcation points lies on any path from Region I to Region III in parameter

space (h, ω) which lies entirely inside Region II. Since the passage from one saddle cell to the

other only exists in Region II, other multi-loop homoclinic bifurcations of O3 and O4 may

also be only possible in Region II.

Region III: T (h) +a < ω < 1−a (the blue region in Fig. 3.2). Entering this region from Re-

gion II disconnects the �rivers� centered around the stable and unstable manifolds as shown

in Fig. 3.4c. In Region III, each system A−x and A+
x is bistable and has a stable �xed point

(inside the green disk) and a limit cycle of rotatory type, born as a result of the homoclinic

bifurcations at ω = T (h)−a and ω = T (h)+a, respectively. Therefore, the trajectories of 4D

system (3.8) eventually reach and remain trapped either inside the green disk or inside the

�river� formed by two stable limit cycles x−c and x+
c (the horizontal river in the upper part of

Fig. 3.4c (left)). As a result, this arrangement guarantees (i) the bistability of oscillatory and

rotatory trajectories which may be periodic or chaotic and (ii) the absence of mixed-mode

oscillations since the trajectories cannot switch between the two trapping regions. Again,

combining the dynamics of the left and right diagrams of Fig. 3.4c guarantees the existence

of rotating/rotating, rotating/oscillating, oscillating/oscillating phase shift regimes in the

network.

Region IV: 1 − a < ω < 1 + a. System A+
x only has a stable limit as the stable and saddle

�xed points E+
x and S+

x had disappeared via a saddle-node bifurcation at ω = 1− a. At the

same time, system A−x has the same structure as in Region III. In terms of Fig. 3.4c, this

amounts to the disappearance of all red curves [not shown], except for the upper border of

the horizontal �river� representing the stable limit cycle x+
c . As the trapping disk has partly

disintegrated, the trajectories of the 4D system (3.8) may escape it and reach the trapping

�river� with rotatory trajectories. Hence, all possible dynamics of phase shifts are possible,

with the prevalence of rotatory trajectories.

Region V: ω > 1 + a. Similarly to system A+
x at the border between Region III and Region
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IV, system A−x undergoes a saddle-node bifurcation at ω = 1 + a. Thus, in Region V both

systems A−x and A+
x only have globally stable limit cycles x−c and x+

c which form a unique

trapping region (�river�) for all the system's trajectories, yielding the existence of only rota-

tory trajectories in the system (3.8). �

Figure 3.3 relates these regions of parameters h and ω to the original parameters of

network (3.2). Hereafter, we choose the phase lag α and inertia β as control parameters, and

�x the group sizes N = 24 and M = 25 and the ratio between the intra- and inter group

coupling γ = 0.4. We aim to show that even a minimal di�erence between the sizes of the

�rst (third) group of N oscillators and the second group of M oscillators can yield phase

shift chaos. In this case, the (h, ω) diagram of Fig. 3.2 typically does not contain Region III

as the curve ω = T (h) + a is located above the line ω = 1 − a. Recast in the parameters α

and β, this diagram typically maximizes the size of Regions II and IV and minimizes Region

I over a large range of inertia β (see Fig. 3.3).

The parameter partition of Fig. 3.2 characterizes the regions of parameters where di�er-

ent types of phase shifts are possible and where homoclinic bifurcations of O3 and O4 leading

to the emergence of chaotic dynamics take place. More speci�cally, in Region I, the phase

shifts x(t) and z(t) may only be constant or may periodically or chaotically oscillate with a

small amplitude. Region II corresponds to the richest dynamics where all three types of time-

varying phase shifts are possible thereby allowing for oscillatory, rotatory, and mixed-mode

chaos. In this region, O3 and O4 undergo homoclinic bifurcations, yielding Shilnikov spiral

chaos. While chaotic shift dynamics may be observed in the other regions of the parameter

partition, this spiral chaos originates from Region II due to the homoclinic bifurcations and

persists beyond this region. The dynamics in Region III are similar to those in Region II,

except that the co-existence of oscillating, rotating, and mixed-mode phase shifts is guaran-

teed by Statement 1. Region IV represents a transition zone, where, similar to Regions II

and III all three types of time-varying phase shifts may appear. However, the rotatory phase

shifts become more frequent as ω increases toward ω = 1 + a, �nally entering into Region V
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where only rotatory phase shifts are possible.

Figure 3.5: Regular and chaotic phase shift dynamics of system (3.8) evaluated numeri-

cally as a function of parameters α and β. The color-coding corresponds to the period of

a limit cycle. White regions correspond to �xed points with a zero winding number; light

blue regions correspond to a winding number of 1 (period-one limit cycles); dark blue re-

gions correspond to chaotic orbits with in�nitely large winding numbers. Sample points A

with (β, α) = (10, 397π/800), B with (β, α) = (78.125, 437π/1600), and C with (β, α) =

(61.5625, 27π/800) correspond to chaotic mixed-mode/mixed-mode, rotating/rotating, and

oscillating/rotating phase shift regimes, respectively (see Figs. 3.6-3.8). The red horizontal

line corresponds to the line ω = 1 − a in Fig. 3.3. The region under the red line is Region

II, where homoclinic bifurcations give birth to chaos. Other parameters are as in Fig. 3.3.

To support our analytical analysis and prediction, we have numerically studied the

dynamics of phase shifts in system (3.8) (see Fig. 3.5) and found regions of parameters

which yield chaotic mixed-mode/mixed mode (sample point A, Fig. 3.6), rotating/rotating
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Figure 3.6: Mixed-mode/mixed-mode phase shift regime corresponding to point A in Fig. 3.5.
Both x and z phase shifts are of mixed-mode type with the prevalence of chaotic rotatory
motions. The values of x and z are projected onto a �attened cylinder where x → (x − π)
mod (2π)− π and z → (z − π) mod (2π)− π.

(sample point B, Fig. 3.7), and rotating/oscillating (sample point C, Fig. 3.8) phase shift

regimes. As expected, a majority of the chaotic regions lie in Region II (cf. Fig. 3.5 and

Fig. 3.3) where homoclinic bifurcations of �xed points O3 and O4 give birth to spiral chaos. A

detailed analysis of these homoclinic bifurcations and transitions to chaos is beyond the scope

of this Chapter and will be reported elsewhere. However, we have veri�ed the eigenvalues of

�xed points O3 and O4 at sample points A,B, and C. These eigenvalues are identical for both

O3 and O4 due to the symmetries of (3.11) and (3.24). For the parameters corresponding

to sample points B and C, the eigenvalues satisfy the assumption that λ1 > 0 and λ2 < 0

(cf. (3.27)), and therefore can be calculated analytically through (3.28). This yields the

eigenvalues s11 = 0.7499, s12 = −0.7815, and s21,22 = −0.0158 ± 0.8609i (for sample point

B) and s11 = 0.9184, s21 = −0.9472, and s21,22 = −0.0144 ± 0.9330i (for sample point C).

Thus, �xed points O3 and O4 are saddle-foci with a positive saddle value σ and have 1D

unstable and 3D stable manifolds. As a result, O3 and O4 satisfy the Shilnikov criterion [90]

and o�er a possible mechanism for the emergence of di�erent forms of spiral chaos in system

(3.8) and, ultimately, in the three-group network (3.2). In particular, Fig. 3.8 corresponding

to sample point C demonstrates the existence of a representative spiral chaotic regime where
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Figure 3.7: Rotating/rotating phase shift regime corresponding to point B in Fig. 3.5. Both
x and z phase shifts chaotically rotate around the cylinder.

the phase shift x(t) between the �rst and second groups of synchronized oscillators in network

(3.2) rotates chaotically between −π and π, whereas the phase shift z(t) oscillates chaotically

within a smaller range of z(t) ∈ (−1.0, 1.0).

3.4 Stability analysis

Having studied the existence of possible phase shift regimes between the synchronized

groups de�ned by the cluster manifold CΘΦΨ, we proceed with a stability analysis which

indicates what phase shifts can stably emerge in the network.

3.4.1 Stability of three-cluster manifold CΘΦΨ

To determine the conditions under which the synchronous three-group cluster with

constant, periodic, or chaotic shifts x(t) and z(t) can stably emerge in the network, we

linearize system (3.2) about the synchronous cluster solution CΘΦΨ : {Θ, Θ̇, Φ, Φ̇,Ψ, Ψ̇}.
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(a)

(b)

Figure 3.8: (a). Rotating/oscillating phase shift regime corresponding to point C in Fig. 3.5.
The x and z phase shifts exhibit rotatory and oscillatory chaos, respectively. (b). Snapshot of
the corresponding three-cluster pattern in network (3.2) of M + 2N oscillators with M = 25
and N = 24. The initial states are chosen on the manifold CΘΦΨ to form the corresponding
three clusters where the colored dot indicates the instantaneous phase of oscillator with index
i. The initial conditions for x(t) and z(t) are chosen randomly from (0, 1). The rotating phase
shift between the �rst (red dots) and second (green dots) clusters is governed by x(t) and
makes large chaotic excursions between −π and π. The oscillating phase shift between the
second (green dots) and third (blue dots) clusters is driven by z(t) and therefore oscillates
between −1 and 1.
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This yields

βξ̈i + ξ̇i = −q1 + cosα
N∑
j=1

ξj + γ cos(x+ α)
M∑
j=1

ηj,

βη̈k + η̇k = −q2ηk + cosα
M∑
j=1

ηj + γ cos(x− α)
N∑
j=1

ξj

+ γ cos(z − α)
N∑
j=1

ξj,

βζ̈l + ζ̇l = −q3ζ` + cosα
N∑
j=1

ζj + γ cos(z + α)
M∑
j=1

ηj,

(3.33)

where ξi, i = 1, ..., N, ηk, k = 1, ...,M, ζl, l = 1, ..., N are in�nitesimal perturbations of the

i-th oscillator's synchronous solution Θ, Φ, Ψ, respectively, and

q1 = N cosα + γM cos(x+ α), (3.34a)

q2 = M cosα + γN [cos(x− α) + cos(z − α)], (3.34b)

q3 = N cosα + γM cos(z + α). (3.34c)

Hereafter, we go back to the original notations x = Θ−Φ and z = Ψ−Φ which di�er from

the shifted variables x and z, used in system (3.8) and in the remainder of Sec. 3.3, by the

constant δ0. This abuse of notation simpli�es the exposition as x and z always denote the

phase shifts between the cluster groups. At the same time, the use of the original notations

makes the stability analysis more manageable and leads to stability conditions which are

easier to express in terms of the original parameters of network model (3.2).

In a similar manner to [14], we study the transversal stability of CΘΦΨ by introducing

the di�erence variables

si = ξi − ξi+1, i = 1, . . . , N − 1,

uk = ηk − ηk+1, k = 1, . . . ,M − 1,

w` = ζ` − ζ`+1, ` = 1, . . . , N − 1

(3.35)
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and subtracting the corresponding equations in (3.33) to obtain

βs̈i + ṡi + q1si = 0, i = 1, ..., N, (3.36a)

βük + u̇k + q2uk = 0, k = 1, ...,M, (3.36b)

βẅl + ẇl + q3wl = 0, l = 1, ..., N. (3.36c)

Here, the sum terms from (3.33) have collapsed into q1, q2, and q3 due to the symmetry of

the global intra and inter-cluster coupling, thereby decoupling the equations (3.36a)-(3.36c)

and signi�cantly simplifying their stability analysis.

The linearized equations (3.36a)-(3.36c) are governed by the phase shifts x and z through

(3.7). Therefore, in the simple case where xe = xs − δ0 and ze = zs − δ0 are constant and

determined by �xed point O1(xs, zs) when it exists and is stable, the analysis of (3.36a)-

(3.36c) amounts to evaluating the signs of q1, q2, and q3 at xe, ze. Hence, the stability of

(3.36a)-(3.36c) is guaranteed i�

q1,2,3|xe,ze > 0. (3.37)

This claim can be easily checked by looking at the characteristic equations βp2 +p+q1,2,3 = 0

for the linear di�erential equations (3.36a)-(3.36c) with constant coe�cients. Here, q1,2,3 must

be positive for the real parts of the characteristic equations to be negative.

The criterion (3.37) represents the necessary and su�cient condition for the stability

of the synchronous cluster solution CΘΦΨ with constant phase shifts xe and ze and can be

easily applied as long as the �xed point O1 exists for ω < a1.

In the more complex case where the phase shifts xs and zs are time-varying, the linear

equations (3.36a)-(3.36c) contain time-dependent coe�cients q1, q2, q3. Therefore, the exact

stability conditions of (3.36a)-(3.36c) can only be obtained numerically by calculating the

Lyapunov exponents. However, we manage to analytically derive su�cient conditions which

guarantee that the cluster solution CΘΦΨ with even chaotic phase shifts x(t) and z(t) is

locally stable. This leads to the following assertion.



59

Statement 2 [su�cient conditions]. The cluster solution CΘΦΨ with oscillating or rotat-

ing phase shifts x(t) and z(t) is locally stable in the transversal direction if

√
2γ < cosα < min

{
1− 4βγM

4βN
,
1− 8βγN

4βM

}
. (3.38)

Proof. Since the coe�cients q1(t), q2(t), and q3(t) become time-dependent when the phase

shifts x(t) and z(t) vary in time, the stability condition (3.37) for the variational equations

(3.36a)-(3.36c) is no longer su�cient. To derive such a su�cient condition, we use the

stability criterion [38] which guarantees that a linear second-order equation with a time-

varying coe�cient q(t)

βv̈ + v̇ + q(t)v = 0 (3.39)

is stable if

q(t) > 0, (3.40a)

D(t) = 1− 4βq(t) > 0 for ∀t, (3.40b)

where D(t) is the discriminant of the characteristic equation βp2 + p + q(t) = 0 with the

frozen time t. In other words, this conservative criterion guarantees that the linear equation

(3.39) with time-varying coe�cient q(t) is stable as long as the �xed point v = 0 is a stable

node for any t > 0 and never becomes a stable focus or a degenerate node.

Applying the criterion (3.40a)-(3.40b) to the variational equations (3.34a)-(3.34c), we

�rst verify the condition (3.40a) for q1(t), q2(t), and q3(t). To impose conservative conditions

on q1,2,3 to be positive, we consider the worst-case bounds which minimize q1,2,3 in (3.34a)-

(3.34c):

cos(x(t) + α) = −1, cos(x(t)− α) = −1,

cos(z(t)− α) = −1, cos(z(t) + α) = −1.
(3.41)
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This implies that

q1,3(t) > 0 for ∀t if cosα > γM/N, (3.42a)

q2(t) > 0 for ∀t if cosα > 2γN/M. (3.42b)

Solving the inequality in (3.42a) forN/M and then substitutingN/M = γ/ cosα into (3.42b),

we obtain the condition that guarantees that q1,2,3 > 0 for any t if

cosα >
√

2γ. (3.43)

This bound yields the left-hand side part of inequality (3.38).

Finally, to verify the condition (3.40b) for discriminants D1,2,3(t) to be positive for

(3.34a)-(3.34c), we consider the worst-case scenario bounds which maximize q1,2,3. These are

the conditions (3.41) with −1 replaced with +1. Thus, the condition (3.40b) is satis�ed for

(3.34a)-(3.34c) for any time t > 0 if

4β(N cosα + γM) < 1, 4β(M cosα + 2γN) < 1. (3.44)

Solving (3.44) for cosα and choosing the lowest on the two bounds yields the right-hand side

part of the inequality (3.38). �

Remark 1. If the sizes of the cluster groups are such that 2N > M (as in the numerical

examples of Figs 3.3-3.8), then the condition (3.38) becomes

√
2γ < cosα <

1− 8βγN

4βM
(3.45)

as this right-hand side bound is always the minimum of the two in (3.38).

Remark 2. The bound (3.38) is very conservative due to the use of the worst-case stability

conditions. Therefore, it should be considered as a proof of concept that analytically demon-

strates that the cluster solution CΘΦΨ with time-varying, possibly chaotic phase shifts x(t)
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and z(t) can be stable. Moreover, this stability condition clearly reveals a destabilizing role

of the inertia β in the stability of CΘΦΨ. Indeed, increasing β reduces the right-hand side of

inequality (3.38) and therefore diminishes the range of α in which the cluster solution is sta-

ble, thereby eventually making the cluster solution unstable for higher β (see Fig. 3.9 for the

actual stability regions revealed via numerical simulations and Fig. 3.10 for the comparison

with the conservative bound (3.38)).

Figure 3.9 demonstrates stability diagrams for synchronization of the oscillators within

each of the three groups, evaluated via the Kuramoto order parameter r = 1
n

n∑
j=1

〈eiϕj〉,

calculated separately for the phases within the �rst (ϕj = Θj, j = 1, .., N), second (ϕj = Φj,

j = 1, ..,M), and third (ϕj = Ψj, j = 1, .., N) groups, where 〈...〉 denotes a time average.

Notice that the three-cluster solution CΘΦΨ with the mixed-mode/mixed-mode chaotic shifts

depicted in Fig. 3.6 and corresponding to point A in the existence (Fig. 3.5) and stability

(Fig. 3.9 ) diagrams is unstable. This is in qualitative agreement with the su�cient condition

of Statement 2 which predicts a general tendency of increased phase lag parameter α ∈

[0, π/2) to hinder the stability of the cluster solution via decreasing cosα in (3.38). In

fact, the point A is located in a region of α close to π/2, where cosα is close to 0, thereby

making the stability conditions (3.40a)-(3.40b) impossible to satisfy. At the same time, lower

values of α yield the stability of the three-cluster solution with the rotating/rotating and

rotating/oscillating chaotic phase shifts, corresponding to points B and C, respectively.
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(a) (b)

(c)

Figure 3.9: Numerical stability diagrams for synchronization within the �rst (a), second (b),

and third (c) groups of oscillators. The color bar indicates the Kuramoto order parameter r

calculated for the oscillators' phases within each group. The blue regions with r = 1 indicate

synchronization within the corresponding group. Points A,B,C correspond to sample points

A,B,C from the existence diagram of Fig. 3.5. Point A lies in the instability (red) zones of all

three diagrams, rendering the cluster manifold CΘΦΨ unstable. Points B and C correspond

to a stable CΘΦΨ. Notice point D with α = 49π/100 and β = 475/4 which lies in the

stability (blue) regions of diagrams (a) and (c) and in the instability (red) region of diagram

(b), thereby corresponding to a one-headed chimera (see Fig. 3.11). Initial conditions are

chosen close to the cluster manifold CΘΦΨ (see the text for the details). Parameters are as

in Fig. 3.5.
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Figure 3.10: Complete diagram for the stability of the three-cluster manifold CΘΦΨ combined

from the three stability diagrams of Fig. 3.9. Blue indicates regions where all three clusters

are stable, and red indicates regions where at least one cluster is unstable. The insert

demonstrates the conservative analytical condition (3.38), with its left-hand side bound

α = arccos
√

2γ and right-hand side bound α = arccos 1−8βγN
4βM

plotted by the black dashed

and red solid lines, respectively.

Recall that the analytical stability conditions (3.40a)-(3.40b) are applied to each of q1(t),

q2(t), and q3(t) to guarantee the stability of the uncoupled variational equations (3.36a),

(3.36b), and (3.36c), respectively. Therefore, when the conditions (3.40a)-(3.40b) are vio-

lated for q2, while remaining valid for q1 and q3, the trivial �xed point of the variational

equations (3.36a)-(3.36c) can become a saddle. In this case, this saddle �xed point can yield

a chimera state, in which the oscillators within the �rst and third groups of size N may

remain synchronized (as the conditions (3.40a)-(3.40b) for q1 and q3 are satis�ed), while the

oscillators from the second group of sizeM form an incoherent state. The numerical stability

diagrams of Fig. 3.9 indicate that the instability region is the largest for the second cluster

(see Fig. 3.9b), and therefore con�rm our analytical prediction that the stability conditions
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(3.38) are typically violated �rst through q2(t) when β increases and 2N > M , rendering

the second cluster unstable. A representative example is the point D which lies in the sta-

bility regions of Fig. 3.9a and Fig. 3.9c and in the instability region of Fig. 3.9b. This point

corresponds to a one-headed chimera with the �head� being an incoherent state represented

by the unstable second cluster, and the �shoulders� determined by the �rst and third stable

clusters (see Fig. 3.11).

Figure 3.11: Snapshot of a one-headed chimera corresponding to the point D in Fig. 3.9.

The oscillators from the second cluster form an incoherent state representing the �head� of

the chimera. The phases of oscillators from the �rst and third clusters are synchronized and

rotate around the cylinder in unity, with y = Θ−Ψ = 0.

3.4.2 Co-existing clusters and solitary/chimera states

The initial conditions for calculating the stability diagrams of Fig. 3.9 were chosen close

to the three-cluster solution CΘΦΨ by perturbing the initial cluster state

Θ(0) = 0, Φ(0) = 0, Ψ(0) = 2,

Θ̇(0) = −1, Φ̇(0) = 0, Ψ̇(0) = −2
(3.46)
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with an o�set εl, l = 1, 2N + M of phases Θi, i = 1, ..., N, Φj, i = 1, ...,M, and Ψk,

k = 1, ..., N. This o�set is spread across the network, linearly increasing from the �rst

oscillator in the �rst group with ε1 = 0.000014 to the last oscillator in the third group with

ε2N+M = ∆ = 0.001.

To study the non-local stability of synchronization within each of the three cluster

groups, we numerically investigate the corresponding basins of attraction. This is performed

via calculating the order parameter r for each cluster group, Θ,Φ, and Ψ, as a function of

initial phase di�erence ∆ (see Fig. 3.12). The basins of attraction can be highly irregular and

depend on the choice of the initial cluster state. More speci�cally, our simulations indicate

that the rotating/rotating chaotic phase shift regime from point B in Fig. 3.9 is fragile and

disintegrates as the initial phase di�erence ∆ is initially increased, giving rise to solitary

states and chimeras (Fig. 3.12a), when the initial cluster state (3.46) is chosen. Remarkably,

this cluster pattern regains its stability with a further increase in ∆ and stays stable in a

fairly large interval starting from about ∆ = π/8. The rotating/oscillating chaotic phase shift

regime from point C in Fig. 3.9 is robust and remains stable up to initial phase di�erence

∆ = 3π/8. Further increase of ∆ yields three di�erent solitary states where only very few

oscillators within one or two oscillator groups become incoherent (Fig. 3.12b). Figure 3.12c

demonstrates the co-existence of the one-headed chimera corresponding to pointD in Fig. 3.9

with a hybrid solitary/chimera state (right subplot) where (i) the �rst group (red) with

three out of 24 oscillators being out of synchrony represents a solitary state, (ii) the second

group (green) corresponds to an incoherent state, and (iii) the third group represents a fully

coherent state. It is important to emphasize that a di�erent choice of the initial cluster

state Θ(0) = 0, Φ(0) = 0, Ψ(0) = π, Θ̇(0) = 0, Ψ̇(0) = 0, Φ̇(0) = 0 signi�cantly enlarges

the atrraction basin of CΘΦΨ at points B and C. That is, the cluster pattern CΘΦΨ remains

stable across the full range of initial phase di�erence ∆, varying from 0 to π/2. In terms of

Fig. 3.12, this would imply that the order parameter r for each of the three cluster groups

would remain equal to 1 for ∆ ∈ [0, π/2], yielding a trivial diagram with three (red, green,

and blue) horizontal lines r = 1 and therefore, not shown.
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(a) (b)

(c)

Figure 3.12: Stability of synchronization within each of three cluster groups, Θ,Φ,Ψ, as a
function of maximum initial phase di�erence ∆. Order parameter r is calculated separately
for phases Θ1 . . .ΘN (red dotted line), Φ1 . . .ΦM (green solid line), and Ψ1 . . .ΨN (blue
dashed line). (a): Attraction basin of three-cluster solution CΘΦΨ from point B in Fig. 3.9
is highly irregular. The left subplot presents a snapshot of a chimera with only oscillators
within the third group (blue) remaining fully synchronized with r = 1. The right subplot
represents a chimera with the �rst group (red) being the coherent state with r = 1. (b):
Wide attraction basin of three-cluster solution CΘΦΨ from point B. Signi�cant increase of
∆ up to 3π/8 yields three di�erent chimera states (three subplots). (c): Co-existence of
two chimeras corresponding to point D from Fig. 3.9 at which the cluster solution CΘΦΨ is
unstable. The one-headed chimera of Fig. 3.11 (left subplot) remains stable up to π/190.
Note the emergence of solitary states in a region of ∆ between π/80 and 3π/160, where the
red dotted curve approaches r = 1. The initial cluster state is chosen and perturbed as in
(3.46). The plots are displayed after a transient time T = 104.
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3.4.3 Stability of the embedded two-cluster manifold

The diagrams of Figs. 3.9-3.10 provide plenty of insight on the stability of synchroniza-

tion within the three cluster groups, and therefore, indicate when the three-cluster manifold

CΘΦΨ is locally stable. However, the stability of CΘΦΨ does not necessarily imply the emer-

gence of the corresponding three-cluster pattern with distinct phase shifts x and z. This is due

to the fact that the cluster manifold CΘΦΨ contains the submanifold CΘΦΘ (cf. (3.4)) which

represents the largest possible cluster partition of network (3.2) into two clusters where the

�rst and third groups of synchronized oscillators form one cluster, making the phase shifts

x and z equal.

In the following, we will analyze the conditions under which the two-cluster solution

CΘΦΘ is stable, and therefore determine which of the two cluster patterns de�ned by CΘΦΨ

and CΘΦΘ can stably appear in the network.

Similarly to phase shifts x and z, we introduce the phase di�erence y = Θ−Ψ between

the phases of the synchronized oscillators in the �rst and third cluster groups. Note that

y = z − x. As Θ = Ψ on the cluster manifold CΘΦΘ, the stability of solution y = 0 : {x = z}

implies the stability of CΘΦΘ within the larger cluster manifold CΘΦΨ.

The dynamics on the cluster manifold CΘΦΘ is governed by the equation

βẍ+ ẋ = Ω− γ[2N sin(x− α) +M sin(x+ α)], (3.47)

obtained from (3.6) by replacing z with x. Combining the sine terms, we obtain

βẍ+ ẋ+R1 sin(x+ δ2) = Ω, (3.48)

where R1 = γ
√

4N2 +M2 + 4MN cos 2α and δ2 = arctan
(
M−2N
M+2N

tanα
)
; the derivation of

this equation is similar to that in [14]. Equation (3.48) is a 2D pendulum equation which

cannot exhibit complex dynamics, so that the phase shift x = z can only be constant or

can periodically rotate from −π to π as in the classical pendulum equation with a constant
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torque [5].

The stable constant phase shift

xe = arcsin
Ω

R1

− δ2 (3.49)

is de�ned by a stable �xed point E1(xe) of 2D pendulum equation (3.48) which corresponds

to the �xed point O1(xs = xe+ δ0) of 4D system (3.8). The equation (3.48) also has a saddle

point E2(xsd) corresponding to the phase shift

xsd = π − arcsin
Ω

R1

+ δ2. (3.50)

The rotating phase shift xc(t) is determined by a stable limit cycle which is born as a result

of a homoclinic bifurcation of saddle E2 (see [14] for more details on the analysis of the phase

shift dynamics in this 2D case).

To analyze the stability of cluster manifold CΘΦΘ within CΘΦΨ, we derive the following

equation for the di�erence y = z − x :

ÿ + ẏ = γM(sin(x+ α)− sin(z + α)), (3.51)

obtained by subtracting the x equation from the z equation in (3.6). Using a simple trigono-

metric identity, we obtain

ÿ + ẏ = −2γM sin(y/2) cos(y/2 + x+ α). (3.52)

In the limit of in�nitesimal y when sin(y/2) ≈ y/2 and cos(y/2 + x + α) ≈ cos(x + α), we

turn (3.52) into the equation

ÿ + ẏ + γM cos(x+ α)y = 0 (3.53)

which determines the local stability of the origin corresponding to phase shift y = 0. Note
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that (3.53) is a linear equation with a coe�cient which is governed by phase shift x that

may be constant or vary in time.

Case I: Constant phase shift xe. In this simple case, the equation (3.53) becomes a

linear equation with a constant coe�cient. As a result, it is stable at �xed point E1(xe) i�

cos(xe + α) > 0, (3.54)

yielding the condition α < π/2− xe. Thus, we obtain the following necessary and su�cient

condition for the local stability of cluster solution CΘΦΘ with a constant phase shift xe :

α < αcr = π/2− arcsin
Ω

R1

+ δ2, (3.55)

provided that Ω = (M −N) sinα ≤ R1, ensuring the existence of �xed point E1(xe).

Checking the stability condition (3.54) for the saddle point E2(xsd) with xsd de�ned

in (3.50), we obtain the inequality α < π/2 − xsd which guarantees that saddle E2(xsd) is

locally stable in the transversal direction to CΘΦΘ. Substituting (3.50) into this inequality

yields α < xe − π/2 which becomes the following transversal stability condition for saddle

E2(xsd) :

α < α∗ = −π/2 + arcsin
Ω

R1

− δ2 = −αcr. (3.56)

Comparing (3.55) and (3.56), we conclude that two �xed points E1(xe) and E2(xsd) cannot

be stable simultaneously so that the transversal stability of point E1(xe) guarantees the

transversal instability of saddle E2(xsd) on cluster manifold CΘΦΘ. This property provides

an escape mechanism by which trajectories close to saddle E2(xsd) can leave CΘΦΘ, while

staying on the larger-dimensional manifold CΘΦΨ when the latter is stable. This leads to the

bistability of two cluster patterns which is indeed observed in the network (see Fig. 3.13a).

Notice that the initial conditions used for generating the stability diagrams of Figs. 3.9-3.10

yield the instability of two-cluster solution CΘΦΘ with a time-varying phase shift at points

B and C (Fig. 3.13a). However, the analytical condition (3.55) (red horizontal dashed line)
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guarantees that the two-cluster solution CΘΦΘ with a constant phase shift xe = ze is locally

stable at points B and C. This is in perfect agreement with the above stability argument

and indicates the bistability of the co-existing three-cluster solution CΘΦΨ with the chaotic

shifts (see Figs. 3.7-3.8) and the two-cluster pattern CΘΦΘ with the constant phase shift

xe = ze.We have numerically veri�ed that the attraction basin of this two-cluster solution is

signi�cantly smaller than that of the three-cluster solution with the chaotic phase shifts [not

shown]. This bistability is present in a large region of parameters (the yellow region under

the red dashed line) and ceases to exist for smaller values of parameter α (the green region).

Sample point E corresponds to the two-cluster solution CΘΦΘ with a constant phase shift

(Fig. 3.13b) which remains stable as guaranteed by the stability condition (3.55) whereas

the three-cluster solution becomes unstable.

Comparing the stability diagram of Fig. 3.13a with the existence diagram of Fig. 3.3

suggests that the three-cluster pattern de�ned by CΘΦΨ with constant phase shifts x(t) 6= z(t)

does not stably appear in the network, at least for the chosen initial conditions. To verify

this claim, one should notice that the existence region of CΘΦΨ with constant phase shifts

x(t) 6= z(t) (the highly irregular white region in Fig. 3.3) coincides with the stability region

for two-cluster pattern CΘΦΘ with a constant shift xe = ze (the green region in Fig. 3.13a).

As a result, this three-cluster pattern becomes transient and eventually transforms into the

two-cluster pattern with a constant shift.
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(a) (b)

Figure 3.13: (a): Stability diagram of two-cluster solution CΘΦΘ with y = z − x = 0. Green

indicates stability regions where CΘΦΘ with a constant phase shift xc = zc is stable (y = 0

is stable). Yellow depicts regions where CΘΦΘ is unstable for the chosen initial conditions

but the three-cluster solution CΘΦΨ with time-varying shifts x(t) and z(t) is stable. Brown

indicates regions where both CΘΦΘ and CΘΦΨ are unstable. White depicts the regions where

one-headed chimeras with stable y = Θ − Ψ = 0 emerge (the chimera of Fig. 3.11 is an

example). Sample points A, B, C, and D are as in Figs. 3.9-3.10. Points B and C lie

in the instability (yellow) regions of y = 0. The region under the horizontal dashed line

α = αcr = 1.0335 corresponds to the stability condition (3.55). Sample point E lies in the

stability region. The blue solid line indicates the Tricomi homoclinic curve Ω/R1 = T (h1) in

system (3.48). Initial conditions and other parameters are as in Figs. 3.9-3.10. (b): Snapshot

of the two-cluster pattern with constant phase shift xe, corresponding to point E.

Case II: Rotating phase shift xc(t). A stable limit cycle xc(t) exists in the pendulum

system (3.48) when Ω/R1 > T (h1), where T (h1) is the Tricomi homoclinic curve (3.30)

with h1 = 1/
√
βR1. Since xc(t) periodically varies from −π to π, the factor cos(x + α) in

(3.53) oscillates between positive and negative numbers. Therefore, the stability condition

cos(xc(t) + α) > 0 may only be satis�ed on average, thereby preventing a general analytical

analysis and requiring the use of numerical simulations. However, we manage to approxi-

mately estimate the stability of cos(xc(t) +α) > 0 in a particular case where the parameters
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β and α are chosen slightly above the Tricomi homoclinic curve Ω/R1 = T (h1) (the blue

solid line in Fig. 3.13a). Here, the stable limit cycle xc(t) inherits the shape of the homoclinic

orbit of E2(xsd) from which it was born. Therefore, the limit cycle spends most of the time

in a vicinity of saddle E2(xsd) with an exception of a comparably short time of switching

from xsd to xsd+2π, so that xc(t) ≈ xsd. Therefore, the condition for its transversal stability

can be approximated as follows

cos(xc(t) + α) ≈ cos(xsd + α) > 0 (3.57)

which coincides with condition (3.56) for the transversal stability of saddle E2(xsd). This

implies that the stability condition (3.57) cannot be satis�ed as long as the two-cluster

solution CΘΦΘ with a constant phase shift xe is stable (cf. (3.55) and (3.56)). Hence, we can

conclude that two-cluster pattern CΘΦΘ with a rotating phase shift xc(t) = zc(t) is unstable

in a parameter region slightly above the Tricomi homoclinic curve Ω/R1 = T (h1) and below

the stability line α = αcr (red dashed line). Sample point B is located in this parameter

region; our numerical simulations con�rm that the two-cluster pattern CΘΦΘ with a time-

varying shift xc(t) is unstable at point B, thereby preserving the bistability of three-cluster

pattern CΘΦΨ with chaotic rotating/rotating phase shift and two-cluster pattern CΘΦΨ with

a constant phase shift.

3.5 Conclusions and discussion

The classical Kuramoto model of coupled �rst-order phase oscillators is known to exhibit

various forms of spatio-temporal chaotic behavior, including phase chaos [85], mean-�eld

chaotic dynamics in in�nite [76] and �nite-size networks [26, 25], chaotic weak chimeras

[24, 64], and chaotic transients [108]. The emergence of chaos in the macroscopic dynamics

of the Kuramoto model is traditionally attributed to oscillators' heterogeneity (see [76, 92]

and references therein). However, it was also shown that even symmetric systems of identical

oscillators can induce chaotic dynamics in small-size Kuramoto networks of two populations
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[26, 25].

In this chapter, we have revealed and carefully analyzed a di�erent form of chaotic

behavior such as chaotic inter-cluster phase dynamics in a three-group network of identical

second-order Kuramoto oscillators with inertia. The groups have di�erent sizes and can

split into clusters where the oscillators synchronize within a cluster while there is a pairwise

phase shift between the dynamics of the clusters. Due to the presence of inertia, which

increases the dimensionality of the oscillator dynamics, these phase shifts can exhibit di�erent

forms of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations. We

demonstrated that the phase shift dynamics is governed by a 4D system of two nonlinearly

coupled driven pendulums. We have applied an auxiliary system approach to analyzing

possible solutions of the 4D system and derived bounds on parameter partitions that support

the co-existence of di�erent chaotic inter-cluster dynamics. A representative example of

these dynamics is a regime in which the phase shift between the �rst and second groups of

oscillators chaotically oscillates within a small phase range, while the phase shift between

the second and third groups chaotically rotates from −π to π. The bounds that separate

the parameter regions of oscillatory and rotatory dynamics are explicit in the parameters of

the network model. Therefore, they clearly highlight possible routes of transitions between

the chaotic dynamics which can be induced by varying only one control parameter such as

phase lag α or inertia β. To identify a primary cause of chaotic dynamics in the 4D system,

we have proved the existence of a Shilnikov homoclinic orbit to a saddle-focus which leads

to the emergence of spiral chaos [91].

Remarkably, the addition of only one oscillator to the three-group network with equal

group sizes M = N, which yields asymmetry and the existence of the three-cluster pattern,

is su�cient to induce large-amplitude chaotic oscillations of the phase shifts. Our extensive

numerical analysis not reported in this chapter also suggests that, in contrast to one's ex-

pectations, smaller di�erences in the group sizes are more e�ective in promoting phase shift

chaos. Ultimately, the smallest network which can exhibit chaotic phase-shifts consists of

four second-order oscillators, with two oscillators forming the second group (M = 2) and
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one oscillator in each of the �rst and third groups (N = 1). The chosen network setup with

no direct connections between the �rst and third groups could be viewed as an optimal

con�guration which minimizes the complexity of the governing 4D system. Connecting the

two groups could make the phase shift dynamics even richer but it would introduce addi-

tional terms and make the 4D system less tractable analytically. Extending our analysis of

inter-cluster phase dynamics to �ner cluster partitions within each group, including solitary

cluster states, is possible. However, the governing system will have a high dimension and

might not necessary be represented by a system of well separated coupled pendulums. Again,

rigorous analysis of its possible chaotic states and transitions between them becomes more

challenging. These problems are a subject of future study.

We have also analyzed the stability of the three-cluster pattern and its embedding, a

two-cluster pattern, in which the �rst and third groups of oscillators become synchronized.

Our analysis has explicitly demonstrated that the phase shift dynamics can be multistable,

including the case where the three-cluster pattern with chaotically oscillating phase shift sta-

bly co-exists with the two-cluster pattern with a constant shift. Our stability conditions also

have implications to the emergence of chimera states. Due to the simple network structure,

these conditions are uncoupled and applied to each group of oscillators separately. Thus, the

simultaneous ful�llment of the stability condition for synchronization within one group and

its failure for synchronization within the others can o�er a key to predicting the emergence

of a chimera state. These observations are in good agreement with our numerical results

that con�rmed the emergence of a plethora of co-existing chimera states in the network.

Our analysis can also be extended to networks with evolving [11], stochastically switch-

ing [51] or adaptive connections [23]. These networks exhibit highly-nontrivial dynamics,

including the emergence of macroscopic chaos [94, 93], ghost attractors [9] and windows of

opportunity [55, 44] due to time-varying coupling. The role of time-varying connections in

the emergence of stable or meta-stable clusters and ghost patterns in Kuramoto networks

with inertia is to be explored.

Although our analysis provides an unprecedented understanding of the emergence and
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co-existence of stable clusters with chaotic inter-cluster phase dynamics, we have only

scratched the surface of a complex interplay between the existence of possible clusters, intrin-

sic oscillator dynamics, and nonlinear interactions of phases. The richness of the dynamics in

our fairly simple and analytically tractable network model opens the door to further discov-

ering new types of dynamical e�ects and cooperative structures in multi-population networks

of phase oscillators with inertia.
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CHAPTER 4

APPENDIX FOR CHAPTER 3

In this appendix, we provide the two of the Python scripts used to analyze and simulate

the three-population network of 2D oscillators. The �rst is Equations.py, which provides

the complete pallate of parameters and several of the key equations given in Chapter 3. The

second code, manifoldRuns_alpha_betaFromArgv.py, calculates winding numbers associ-

ated with a phase shift cluster solution in the three-population network. These numbers,

plotted in Fig. 3.5 as functions of the phase lag α and inertia β, characterize existing regular

and chaotic phase shift dynamics in the three-population Kuramoto model. This Python

code can be easily adapted for further exploring new types of dynamical e�ects and cooper-

ative structures in multipopulation networks of phase oscillators.

More precisely, manifoldRuns_alpha_betaFromArgv.py simulates the dynamics of the

4D pendulum system (3.7) on the manifold CΘΦΨ. After skipping a transient time, this script

calculates the period of x(t) around the cylinder [−π, π) according to the following cases.

Without loss of generality, the procedure is described for x; it is also valid for z.

Case I: 〈|ẋ|〉 < ε for some 0 < ε � 1. Then x(t) is assumed to be a �xed point with

winding number 0.

Case II: |〈ẋ〉| < ε. In practice, this requires averaging over many more time points

and having a larger ε than in Case I. Then x(t) is assumed to be an oscillatory (small)

limit cycle. Consider the ordered pair A(t) = (x(t), ẋ(t)). As t → ∞, ∃τ > 0 independent

of t such that A(t) = A(t + τ) if the system is not chaotic. In this case, there will exist

countably many points Ak(tk) = (x, 0) such that ẍ > 0. However, a numerical simulation

produces discrete points that may not overlap in a limit cycle. To overcome this, we project

nearby points along a secant line of the trajectory to the line ẋ = 0 as follows: Find a set

of numerical timesteps
{
t+k
}
whose previous numerical timesteps are

{
t−k
}
such that points
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Bk(t
+
k ) = (x(t+k ), ẋ(t+k )) have ẋ(t+k ) ≥ 0, ẍ(t+k ) > 0 and the points Ck(t

−
k ) = (x(t−k ), ẋ(t−k ))

have ẋ(t−k ) < 0, ẍ(t−k ) > 0. Since ẍ remains positive and continuous over this interval, we use

the intermediate value theorem to conclude the existence of Ak(tk) for all k, t−k < tk < t+k .

We take A∗k(tk) = (x∗, 0)
∆
= (ak, 0) as the intersection between BkCk and the line ẋ = 0

as an approximation for Ak. If the timestep is su�ciently small, we are guaranteed that

|x(t+)− x(t−)| � ẋ(t+)− ẋ(t−), so A∗k is a highly accurate approximation for Ak.

Finally, we take the standard deviation s of {a1, a2, a3, . . . }. If s is very small, the

winding number is taken as 1. Otherwise, we follow the following procedure: Set ∆ = 1.

Find the standard deviation s∆ of D = {(a∆+1 − a1, a∆+2 − a2, a∆+3 − a3, . . . }. If s∆ is

very small, assume that it takes ∆ cycles for the system to return to the neighborhood of

(ak, 0) after starting there. Otherwise, increase s∆ by one. Repeat this procedure unless ∆

is at least as high as an arbitrary threshold, here set at 30, in which case assume that ∆ is

in�nitely large (chaos).

Case III: Project x(t) onto (x(t) − π) mod (2π) − π. Then x is assumed to be a

rotatory (large) limit cycle around the cylinder [−π, π). Thus there will exist count-

ably many points Ak(tk) = (−π, ẋk). Following similar reasoning to Case II, �nd all

points Bk(t
+
k ) = (x(t+k ), ẋ(t+k )) such that for the previous numerical timestep t−k forming

Ck(t
−
k ) = (x(t−k ), ẋ(t−k )), x(t+k ) < x(t−k ) when ẋ(t+k ) > 0 or x(t+k ) > x(t−k ) when ẋ(t+k ) < 0;

this represents x crossing the ±π threshold on the cylinder. Note that this requires ẋ to

remain positive or remain negative for all time over this limit cycle, but with the parameters

used this was always the case for rotatory limit cycles. Over a su�ciently small timestep, we

may take ẍ as roughly constant. Then similarly to Case II, we �nd the intersection between

the secant line BkCk and x = −π. The procedure for �nding the winding number is also

similar to the one in Case II, except it is done over ȧk and the di�erences between those

rates.

If a �loop� emerges on a rotatory limit cycle, where x switches signs a positive even

number of times on its transversal around the cylinder, then a hybrid calculation may have

to be used for period. However, with our parameters we never observed this phenomenon
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for stable manifolds.

Equations.py

"""

Equations from the 3D Kuramoto system with i n e r t i a and f i x e d po in t s o f

i n t e r e s t .

Equation numbers matching Br i s t e r , e t a l . (2020) are g iven where a p p l i c a b l e .

"""

import numpy as np

import warnings

alphaArray799 = np . l i n s p a c e (0 , np . p i /2 , 801) [1 : −1 ]

betaArray800 = np . l i n s p a c e (0 , 250 , 801) [ 1 : ]

' ' ' F i r s t row i s a lpha ; second i s be ta . Columns are po in t s A, B, C, D, E, the

spo t s in the ENE area o f the graph , and the o ld Fig . 13 . A' s a lpha needs to be

alphaArray [ 787 ] when p l o t t e d f o r v i s u a l i z a t i o n . ' ' '

examplePointIDs = np . array ( [ [ 7 9 3 , 436 , 53 , 783 , 53 , 619 , 339 ] ,

[ 3 1 , 249 , 196 , 379 , 20 , 786 , 7 9 9 ] ] )

examplePoints = np . c_ [ alphaArray799 [ examplePointIDs [ 0 ] ] ,

betaArray800 [ examplePointIDs [ 1 ] ] ] . T

' ' ' Quart ic c h a r a c t e r i s t i c equat ion (12) . I s zero at the four f i x e d po in t s . ' ' '

charac = lambda a , h , de l ta , s , x , z : ( s **2 + h* s + np . cos ( x ) ) *\

( s **2 + h* s + np . cos ( z ) ) − a**2 * np . cos (x−de l t a ) * np . cos ( z−de l t a )
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' ' ' System of equa t i ons (8) f o r the f i x e d po in t s . Returns [ 0 , 0 ] t h e r e . ' ' '

f i x edPo in t = lambda x , z , a , de l ta , omega : \

np . array ( [ np . s i n ( x ) + a*np . s i n ( z−de l t a ) − omega ,

np . s i n ( z ) + a*np . s i n (x−de l t a ) − omega ] )

' ' ' Equation (9) f o r the x=z f i x e d po in t . Returns 0 the r e . ' ' '

f i x edPo in t Inne r = lambda x , a1 , de l ta1 , omega : a1*np . s i n (x−de l ta1 ) − omega

' ' ' The Kuramoto order parameter . X i s assumed to be an ang le . ' ' '

def KuramotoOrder (X) :

i f not hasattr (X, '__len__ ' ) : #A s i n g l e po in t

return 1 .

i f not isinstance (X, np . ndarray ) :

X = np . array (X)

i f len (X. shape ) == 1 :

return np . abs (np . average (np . exp (1 j *X) ) )

return np . average (np . abs (np . average (np . exp (1 j *X) , ax i s=1) ) )

' ' ' Complement o f the Heav i s ide func t i on : l i g h t s i d e ( x ) = 1−H( x ) .

Deprecated wi th np . atan2 . ' ' '

def l i g h t s i d e (X) :

warnings . warn ( ' Use numpy . a r c t an2 i n s t e a d o f the l i g h t s i d e f u n c t i o n ' ,

DeprecationWarning )

i f np .any(X==0) :

warnings . warn ( ' H e a v i s i d e (0 ) i s ambiguous ' , RuntimeWarning )

return X<=0.
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' ' 'Maps the ang le to the co termina l ang l e on [−pi , p i ) . ' ' '

modNegToPosPi = lambda x : np .mod(x − np . pi , 2*np . p i ) − np . p i

' ' ' Repeats a 1D array wi th the same s i z e as the alphaArray over the b e t a s . ' ' '

repeatOverBetas = lambda x , m_beta : \

np . repeat (x , m_beta) . reshape ( [ x . s i z e , m_beta ] )

' ' ' Approximation (18) f o r the Tricomi func t i on ( Belykh , e t a l . ) ' ' '

Tricomi = lambda h : 4*h/np . p i − 0 .305*h**3

' ' ' C lass f o r the 3− c l u s t e r Kuramoto system with i n e r t i a . Various parameters

are der i v ed from the base v a r i a b l e s alpha , beta , gamma, N, and M. Alpha and

be ta can be v e c t o r s . Only h ' s and the Trichomi curve depend on be ta . R_1 and

del ta_2 used to be R_0/R_hat and delta_R0/del ta_hat , r e s p e c t i v e l y .

alpha , beta , gamma, N, M: Required system parameters .

reshapeArrays : Whether to reshape a lpha or be ta such t ha t t h e s e two arrays

form a gr i d . L i k e l y to be depreca ted in the f u t u r e .

f u l l S y s : Whether to use the f u l l system de s c r i b ed in system (2) ( i f Fa lse :

uses the mani fo ld system (7)

ca l cF i xedPo in t s : Whether to c a l c u l a t e the f i x e d po in t s o f the system and

t h e i r s t a b i l i t y .
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oppositeGammas : Whether gamma_Theta_Phi = −gamma_Psi_Phi . Un i v e r s a l l y s e t to

Fa lse f o r Br i s t e r , e t a l . (2020) ' ' '

class Kuramoto3DSys :

def __init__( s e l f , alpha , beta , gamma, N, M, reshapeArrays=True ,

f u l l S y s=False , ca l cF ixedPo int s=False , oppositeGammas=False ) :

s e l f . a lpha = alpha ; s e l f . beta = beta

s e l f .N = N; s e l f .M = M; s e l f . gamma = gamma

s e l f . f u l l S y s = f u l l S y s

s e l f .P = 2*N+M

s e l f .Omega = (M−N) *np . s i n ( alpha )

s e l f .R = gamma*np . sq r t (N**2 + M**2 + 2*M*N*np . cos (2* alpha ) )

s e l f .R_1 = gamma*np . sq r t (4*N**2 + M**2 + 4*M*N*np . cos (2* alpha ) )

s e l f . delta_0 = np . arctan ( (M−N) /(M+N) * np . tan ( alpha ) ) #For R, not R_1

s e l f . delta_2 = np . arctan ( (M−2*N) /(M+2*N) * np . tan ( alpha ) )

s e l f . d e l t a = alpha + s e l f . delta_0

s e l f . a = gamma*N/ s e l f .R

s e l f . a1 = np . sq r t (1 + s e l f . a**2 + 2* s e l f . a*np . cos ( s e l f . d e l t a ) )

s e l f . delta_1 = np . arctan2 ( s e l f . a*np . s i n ( s e l f . d e l t a ) ,

1+ s e l f . a*np . cos ( s e l f . d e l t a ) )

s e l f . omega = s e l f .Omega/ s e l f .R

r a t i o = s e l f .Omega/ s e l f .R_1

i f hasattr ( alpha , '__len__ ' ) : #i . e . , a lpha i s not a s c a l a r

s e l f . x_e = np . z e r o s_ l i k e ( alpha )

s e l f . x_e [ np . abs ( r a t i o ) <= 1 ] = np . a r c s i n ( r a t i o ) − s e l f . delta_2

s e l f . x_e [ np . abs ( r a t i o ) > 1 ] = np . nan



94

else :

with warnings . catch_warnings ( ) : #p o s s i b i l i t y o f undef ined arc s in

warnings . s i m p l e f i l t e r ( " i g n o r e " )

s e l f . x_e = np . a r c s i n ( r a t i o ) − s e l f . delta_2

s e l f . x_s = s e l f . x_e + s e l f . delta_0

s e l f . x_sd = np . p i − s e l f . x_e − 2* s e l f . delta_2

s e l f . x_u = np . p i − 2* s e l f . x_s + 2* s e l f . delta_1

R = s e l f .R #we only want l o c a l R reshaped f o r h ' s c a l c u l a t i o n

R_1 = s e l f .R_1

i f reshapeArrays :

try :

R = R. reshape ( [ alpha . s i z e , 1 ] )

R_1 = R_1. reshape ( [ alpha . s i z e , 1 ] )

except Attr ibuteError :

pass #noth ing to do i f R i s j u s t a s i n g l e number

try :

beta = beta . reshape ( [ 1 , beta . s i z e ] )

except Attr ibuteError :

pass

s e l f . h = 1/np . sq r t (np . dot (R, beta ) ) #R or be ta cou ld be a s c a l a r

s e l f . h_1 = 1/np . s q r t (np . dot (R_1, beta ) )

s e l f . Tricomi = Tricomi ( s e l f . h )

s e l f . Tricomi_1 = Tricomi ( s e l f . h_1)

i f f u l l S y s : #assumes 1 s t and 3rd c l u s t e r s are o f s i z e N and

unconnected
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onesN = np . ones (N) ; onesM = np . ones (M)

s e l f . e_N = np . concatenate ( [ onesN , s e l f . gamma*onesM , np . z e r o s (N) ] )

s e l f .e_M = np . concatenate ( [ s e l f . gamma*onesN , onesM ,

(1−2*oppositeGammas ) * s e l f . gamma*onesN ] )

s e l f . e_L = np . concatenate ( [ np . z e r o s (N) , (1−2*oppositeGammas ) *\

s e l f . gamma*onesM , onesN ] )

e l i f ca l cF ixedPo int s : # The four f i x e d po in t s

g = np . arctan2 (1 − s e l f . a*np . cos ( s e l f . d e l t a ) ,

s e l f . a*np . s i n ( s e l f . d e l t a ) ) #kappa/2

s e l f . kappa = 2*g

x_0 = np . a r cco s ( s e l f . omega*np . sq r t (1 + s e l f . a**2\

−2* s e l f . a*np . cos ( s e l f . d e l t a ) ) /(1− s e l f . a **2) )

s e l f . x_1 = np . a r c s i n ( s e l f . omega/ s e l f . a1 ) + s e l f . delta_1

s e l f . x_2 = np . p i − np . a r c s i n ( s e l f . omega/ s e l f . a1 ) + s e l f . delta_1

s e l f . x_3 = g+x_0 ; s e l f . x_4 = g−x_0

b_lambda = (np . cos ( s e l f . x_3) + np . cos ( s e l f . x_4) )/−2

disc_lambda = np . sq r t (

0 j + (np . cos ( s e l f . x_3) − np . cos ( s e l f . x_4) ) **2 + 4* s e l f . a**2

* np . cos ( s e l f . x_3 − s e l f . d e l t a )

* np . cos ( s e l f . x_4 − s e l f . d e l t a ) ) /2

lambda_1 = b_lambda + disc_lambda

lambda_2 = b_lambda − disc_lambda

s e l f . lambda_1 = lambda_1 ; s e l f . lambda_2 = lambda_2 #for debugg ing
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i f reshapeArrays :

try :

lambda_1 = lambda_1 . reshape ( [ alpha . s i z e , 1 ] )

lambda_2 = lambda_2 . reshape ( [ alpha . s i z e , 1 ] )

except Attr ibuteError :

pass #noth ing to do i f be ta i s j u s t a s i n g l e number

disc_s1 = np . sq r t ( s e l f . h**2/4 + lambda_1)

disc_s2 = 1 j *np . sq r t (np . abs ( s e l f . h**2/4 + lambda_2) )

s e l f . s = − s e l f . h/2 + np . array ( [ disc_s1 , −disc_s1 , disc_s2 , −

disc_s2 ] )

' ' ' Fu l l system d i f f e r e n t i a l equat ion (2) .

F i r s t P c e l l s = th e t a ; the r e s t = thetaDot . ' ' '

def f_ f u l l ( s e l f , Y, t ) :

a s s e r t s e l f . f u l l S y s , ' f _ f u l l r e q u i r e s the f u l l system '

theta = Y[ : s e l f .P ] ; thetaDot = Y[ s e l f .P : ]

s inTheta = np . s i n ( theta . reshape ( [ −1 ,1 ] ) − theta − s e l f . a lpha )

ThetaN = np . mult ip ly ( s e l f . e_N, s inTheta [ : s e l f .N] )

ThetaM = np . mult ip ly ( s e l f .e_M, sinTheta [ s e l f .N : s e l f .N+s e l f .M] )

ThetaL = np . mult ip ly ( s e l f . e_L , s inTheta [ s e l f .N+s e l f .M : s e l f .P ] )

return np . r_ [

thetaDot , (−thetaDot + np .sum(np . r_ [ ThetaN , ThetaM , ThetaL ] ,

ax i s=0) ) / s e l f . beta ]

' ' ' D i f f e r e n t i a l equa t ion (7) on the mani fo ld . ' ' '

def f_manifold ( s e l f , Y, t ) :

a s s e r t not s e l f . f u l l S y s , ' f_man i fo ld r e q u i r e s the man i f o l d system '
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x = Y[ 0 ] ; z = Y[ 1 ] ; xDot = Y[ 2 ] ; zDot = Y[ 3 ]

return np . array (

[ xDot , zDot ,

( s e l f .Omega − xDot − s e l f .R*np . s i n ( x+s e l f . delta_0 )

− s e l f . gamma* s e l f .N*np . s i n ( z−s e l f . a lpha ) ) / s e l f . beta ,

( s e l f .Omega − zDot − s e l f .R*np . s i n ( z+s e l f . delta_0 )

− s e l f . gamma* s e l f .N*np . s i n (x−s e l f . a lpha ) ) / s e l f . beta ] )

' ' ' D i f f e r e n t i a l equa t ion (9) on the inner Theta_Phi_Theta mani fo ld . ' ' '

def f_inner_manifold ( s e l f , X, t ) :

MESSAGE =\

' f_ inne r_man i fo ld r e q u i r e s the Theta_Phi_Theta man i f o l d system '

a s s e r t not s e l f . f u l l S y s , MESSAGE

a s s e r t len (X)==2, MESSAGE + ' , not j u s t Theta_Phi_Psi . \ n ' \

+ ' I npu t v e c t o r shou l d be ( x , xDot ) on l y . '

x = X[ 0 ] ; xDot = X[ 1 ]

return np . array ( [ xDot , s e l f . omega − s e l f . h*xDot − s e l f . a1

*np . s i n (x−s e l f . delta_1 ) ] )

manifoldRuns_alpha_betaFromArgv.py

"""

Simulat ion o f the system on the C_Theta_Phi_Psi mani fo ld . a lpha and be ta can

be arrays . A s i n g l e va lue o f be ta w i l l be s e l e c t e d , which can be from a

command−l i n e argument .

"""

' ' ' S imulat ion parameters ' ' '
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runFromArgv = True#; runFromArgv = False

runFromLastSoln = True ; runFromLastSoln = False #w i l l a l s o load params

DEBUG = True ; DEBUG = False

oppositeGammas = False

import numpy as np

from s c ipy . i n t e g r a t e import ode int

import math

import sys

sys . path . append ( [ ' d : / Research_Kuramoto_system/3D_Simulat ions / L ib ' ,

' /home/ u s e r s / b b r i s t e r 1 /Kuramoto/ L ib ' ]

[ int ( runFromArgv*(not DEBUG) ) ] )

import Equations

import TimeTracker

from s c ipy import s t a t s

' ' ' Mathematical cons tan t s ' ' '

mu = 1 .

N, M, nu = 24 , 25 , 0 . 4

n_alpha , m_beta = 801 , 801

eps = 0.001

t imer = TimeTracker . TimeTracker ( )

#Step 0 : Get the data .

alphaArray = np . l i n s p a c e (0 , np . p i /2 , n_alpha ) [1 : −1 ]

betaArray = np . l i n s p a c e ( 0 . , 250 . , m_beta) [ 1 : ]

n_alpha = alphaArray . s i z e ; m_beta = betaArray . s i z e ;
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gamma = nu/mu

i f DEBUG:

alphaIndex = [ 5 3 ] ; betaID = 196 #Key West

# alphaIndex = [ 7 0 ] ; betaID = 150

e l i f runFromArgv :

try :

betaID = int ( sys . argv [ 1 ] )

except ValueError :

raise ValueError ( 'No i ndex v a l u e p r o v i d ed f o r beta . ' +\

' Cu r r en t i n pu t : \ n ' + str ( sys . argv ) )

except IndexError :

raise IndexError ( ' I n t e g e r between 0 and ' + str (m_beta−1) +\

' r e q u i r e d . Cu r r en t i n pu t : \ n ' + str ( sys . argv [ 1 ] ) )

else :

betaID = 1 #se t to the de s i r ed index

i f not DEBUG:

alphaIndex = range ( n_alpha )

beta = betaArray [ betaID ]

n_alpha = alphaArray . s i z e

n_windingArray = np . z e ro s ( [ n_alpha , 2 ] ) . astype (np . in t32 )

in i tConds1 = np . array ( [ 0 , 2 , −1, −2])

l a s t S o l n = np . z e r o s ( [ n_alpha , 4 ] )

' ' ' S imulat ion cons tan t s . Times :

t0 : S t a r t i n g time o f the en t i r e s imu la t i on

t_step : ode in t t imes t ep

t_max : Length o f time per rep (m_reps)
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t_s ta r t : Time at the beg inn ing o f the ana l y s i s / graphing por t i on per rep

t_ f i na l : Time at the end o f a l l runs

' ' '

t_step = 0.005

t_max = 5000

m_reps = 40

i f DEBUG:

t_max = 5000 ; m_reps = 3

n_max = int (t_max/ t_step ) + 1

t_start = 500 .

n_start = min( int ( t_start / t_step ) + 1 , n_max)

t0 = 0 .

i f runFromLastSoln :

t0 = np . load ( ' params . npy ' ) [ 6 ]

t_ f i na l = t0 + t_max*m_reps

' ' ' S imulator s t a r t s here . ' ' '

#pctComplete = 0.

for i in alphaIndex :

i f runFromLastSoln :

in i tConds = np . load ( ' l a s t S o l n ' + str ( betaID ) + ' . npy ' ) [ i , : ]

[mu, nu , M, N, n_start , t_step ] = np . load ( ' params . npy ' ) [ : −1 ]

[M, N] = np . array ( [M, N] ) . astype ( int )

P = 2*N+M

else :

t0 = 0

in i tConds = np . copy ( in i tConds1 )
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alpha = alphaArray [ i ]

system = Equations . Kuramoto3DSys ( alpha , beta , gamma, N, M, f u l l S y s=False , \

ca l cF ixedPo int s=False , oppositeGammas=oppositeGammas )

#Step 1 : Run fo r a b i t .

for j in range (m_reps ) :

t1 = np . l i n s p a c e ( t0+t_max* j , t0+t_max*( j +1) , n_max)

so ln = ode int ( system . f_manifold , initConds , t1 ) [−n_start : , : ]

in i tConds = so ln [ −1 , : ]

# pctComplete = 100*( i+( j +1.)/m_reps)/n_alpha

l a s t S o l n [ i , : ] = so ln [ −1 , : ]

for k in [ 0 , 1 ] : #whether we are l o o k in g at x or z

i f np . average (np . abs ( s o ln [ : , k+2]) ) < 1e−6: #l i k e l y f i x e d po in t

n_windingArray [ i , k ] = 0 ; m=0

inde c e sL i s t ed = False

e l i f np . abs (np . average ( so ln [ : , k+2]) ) < 0 . 0 5 :

#l i k e l y sma l l l im i t c y c l e

i nd e c e sL i s t ed = True

#Step 2 : Get the indeces where xDot c ro s s e s from − to +.

i ndec e s = np . a l l ( [ s o ln [ :−1 , k+2]<0, so ln [ 1 : , k+2]>0] , ax i s=0)

indec e s = np . nonzero ( indece s ) [ 0 ] [ 1 : ]

#Check t ha t the l a s t index != l a s t item in array .

i f np .any( i ndec e s >= so ln . shape [0 ]−1) :

i ndec e s = np . d e l e t e ( indeces , −1)

#Step 3 : Get the RECIPROCAL of the e x t r a p o l a t i o n l i n e s l o p e s .

f l a t n e s s =\
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np . array (np . d i v id e ( so ln [ i ndec e s +1, k]− so ln [ indeces , k ] ,

s o ln [ i ndece s +1, k+2]− so ln [ indeces , k+2]) )

#Step 4 : Linear i n t e r p o l a t i o n from ( x0 , xDot0 ) to ( x1 , 0) .

#Increase s accuracy .

X = f l a t n e s s * so ln [ indeces , k+2] + so ln [ indeces , k ]

#Step 5 : Compute the s tandard d e v i a t i on s .

i f np . std (X, ddof=1) < eps : #va lue o f eps i s a judgment c a l l

m = 1

n_windingArray [ i , k ] = 1

else :

m = int (min(30 , X. s i z e /2−1) )

for e l l in range (1 ,m) :

i f np . std (X[ e l l : ]−X[:− e l l ] , ddof=1) < eps :

n_windingArray [ i , k ] = e l l

break

else :

n_windingArray [ i , k ] = m #l i k e l y chaos

else : #l i k e l y l a r g e l im i t c y c l e

i nd e c e sL i s t ed = True

#Step 2 : Get the indeces o f x where mod( x−pi , 2* p i ) i s a min .

X = Equations . modNegToPosPi ( so ln [ : , k ] )

i ndec e s =\

np . r_ [ True , X [ 1 : ] < X[ : − 1 ] ] & np . r_ [X[ : −1 ] < X[ 1 : ] , True ]

i ndec e s = np . nonzero ( indece s ) [ 0 ] [ 1 : ]

#Check t ha t the l a s t index != l a s t item in array .

i f np .any( i ndec e s >= X. s i z e −1) :

i ndec e s = np . d e l e t e ( indeces , −1)
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#Step 3 : Get the e x t r a p o l a t i o n l i n e s l o p e s .

s l ope =\

np . array (np . d i v id e ( so ln [ i ndec e s +1, k+2]− so ln [ indeces , k

+2] ,

X[ indece s+1]−X[ indece s ] ) )

#Step 4 : Linear e x t r a p o l a t i o n from ( x1 , xDot1 ) to (−pi , xDot0 )

.

#Increase s accuracy .

v e l o c i t i e s = so ln [ indeces , k+2] − s l ope *(np . p i + X[ indec e s ] )

#Step 5 : Compute the s tandard d e v i a t i on s .

i f np . std ( v e l o c i t i e s , ddof=1) < eps : #judgment c a l l

m = 1

n_windingArray [ i , k ] = 1

else :

m = min(30 , v e l o c i t i e s . s i z e /2−1)

for e l l in range (1 , int (m) ) :

i f np . std ( v e l o c i t i e s [ e l l : ]− v e l o c i t i e s [ :− e l l ] ,

ddof=1) < eps :

n_windingArray [ i , k ] = e l l

break

else :

n_windingArray [ i , k ] = m #l i k e l y chaos

' ' ' I f the winding number i s 1 , we have a l im i t cyc l e , and i f i t i s 0 ,

we have a f i x e d po in t . The cond i t i on s needed to ge t t h e s e r e s u l t s are

s t r i c t , and chaos i s h i g h l y u n l i k e l y to emerge i f t h i s happens . Thus

the r e i s no need to cont inue t h i s run . ' ' '

i f max( n_windingArray [ i ] ) <= 1 : #l i k e l y l im i t c y c l e or F.P.
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i f DEBUG:

print ( ' Breakout when j=' + str ( j ) )

break

#Step 6 : Get the per iod ( in array , not time , un i t s ) .

i f m < 1 :

n_winding = 0

else :

n_winding = min(m, np . prod ( n_windingArray [ i , : ] ) /\

math . gcd ( n_windingArray [ i , 0 ] , n_windingArray [ i , 1 ] ) )

i f DEBUG:

print ( 'GCD: ' , math . gcd ( n_windingArray [ i , 0 ] , n_windingArray [ i , 1 ] ) )

i f i nd e c e sL i s t ed :

T = s t a t s .mode( indece s [ n_winding :]− i ndec e s [:−n_winding ] ) [ 0 ] [ 0 ]

# pctComplete = 100*( i +1.)/n_alpha

i f not DEBUG:

np . save ( ' n_winding ' + str ( betaID ) , np . array ( [ n_windingArray ] ) )

np . save ( ' l a s t S o l n ' + str ( betaID ) , l a s t S o l n )

i f betaID == 1 : #The f o l l ow i n g only need sav ing once .

np . save ( ' a l phaAr r ay ' , alphaArray )

np . save ( ' b e taAr ray ' , betaArray )

np . save ( ' params ' , np . array ( [mu, nu , M, N, n_start , t_step , t_f ina l ,

oppositeGammas ] ) )

i f DEBUG:

import matp lo t l i b . pyplot as p l t
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for i in range (2 ) :

p l t . f i g u r e ( )

s t r T i t l e = [ ' x ' , ' z ' ] [ i ]

s t r T i t l e += ' . $N = ' + str (N) + ' $ ; $M = ' + str (M) + ' $ ; ' +\

r ' $\ a lpha /\ p i = ' + str ( alpha /np . p i ) + r ' $ ; $\ beta = ' + str ( beta )

\

+ ' $ ; $t=' + str ( t_ f i na l ) + ' $\n$\mu = ' + str (mu) + r ' $ ; $\nu = '

\

+ str (nu) + r ' $ '

p l t . t i t l e ( s t r T i t l e )

p l t . p l o t ( Equations . modNegToPosPi ( so ln [−n_start : , i ] ) ,

s o ln [−n_start : , i +2] , c=[ ' r ' , ' b ' ] [ i ] )

p l t . show ( )

print ( ' La s t s o l n : ' , s o ln [ −1 , : ] )

print ( ' Winding numbers : ' , n_windingArray [ alphaIndex [ 0 ] , : ] )

print ( t imer . getElapsedTime ( ) )
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