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ABSTRACT 

COMMERCIALISM AND PAY IN THE NONPROFIT SECTOR 

BY 

SHICUN (TRACY) CUI 

December 2019 

 

Committee Chair: Dr. Greg Lewis 

Major Department: Public Management and Policy 

 

Studies on the nonprofit pay differential find that nonprofit workers in the child daycare 

industry earn more than comparable for-profit workers (Ben-Ner, Ren, & Paulson, 2011; Preston, 

1988), whereas nonprofit lawyers earn less than lawyers in for-profit firms (Frank, 1996; 

Weisbrod, 1983). Are nonprofit daycare center workers less altruistic than for-profit daycare 

workers or nonprofit lawyers? What is the meaning of a positive or negative nonprofit pay 

differential from various studies? This dissertation reframes the sectoral pay differential question 

and examines whether there is a donative labor effect for nonprofit workers relative to the for-

profit workers.  

Current empirical studies examining one or several industries produce a range of 

conflicting results, which makes comparison impossible and becomes a barrier to understanding 

the nature and magnitude of the nonprofit wage differential. Is there a relationship between 

industries and the sectoral pay differential? I develop measures to explain the relationship 

between the industry and the variability of the cross-sectoral pay differential based on the 

literature of commercialism on the industry level. 



 
 

Prevailing theories, including donative labor theory, attenuated property rights theory, 

compensating wage theory, and efficiency wage theory, predict different outcomes. It remains 

unanswered what is the relationship of these theories, and why the conflicting theories find 

support in various studies. I employ the multilevel modeling approach to integrate research 

questions on different levels in one model to examine hypotheses developed from theories on 

different levels.  

In the dissertation, I use nationally representative datasets and apply multilevel random 

effects modeling to answer two important questions: (1) Do nonprofits pay differently? And (2) 

what is the effect of commercialism? My analysis finds support for seemingly contradictory 

theories. The dissertation establishes an exhaustive inventory of nonprofit pay differentials for 

industries and occupations. The findings leave food for thought. Altruism motivation leads to 

lower pay for nonprofit workers, but the industry and occupation effects mask this difference.   
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Chapter I. Introduction  

The nonprofit sector plays an important role in the US economy. The number of 

organizations with tax-exempt status is around 1.56 million in 2015, and 1.09 million of them 

were public charity organizations (McKeever, 2018). The actual number of nonprofits in the US 

is unknown because religious congregations and organizations with less than $5,000 receipts are 

not required to register (McKeever, 2018). Although nonprofit employment is only a portion of 

the for-profit employment (Hirsch, Macpherson, & Preston, 2018), the growth of the nonprofit 

employment outpaced that of business and government (McKeever & Gaddy, 2017; Salamon & 

Newhouse, 2019). Nonprofits employed 10.2 percent of the private workforce, and a total of 639 

billion dollars was paid as annual wage in the nonprofit sector in 2016 (Salamon & Newhouse, 

2019). Healthcare is the largest nonprofit employer offering jobs to 55 percent of nonprofit 

workers, followed by 14 percent in education and 12 percent in social assistance areas (Salamon 

& Newhouse, 2019). Given the scale of nonprofit employment and its labor-intensive nature of 

services, compensation is an important avenue to understand the nonprofit sector.  

The nonprofit pay differential relative to the for-profit sector signals whether nonprofits 

differ from the for-profit sector in the aspect of human resources, that is, whether tax-exempt 

status is justified or nonprofits are just “for-profits in disguise” (Weisbrod, 1988). The 

meaningfulness of the topic intrigued extensive studies. However, the findings are inconclusive. 

Using administrative data with no control of individual information, Salamon and Newhouse 

(2019) find that nonprofits pay higher weekly wages than for-profits in nonprofit concentrate 

industries such as social assistance, education institutions, ambulance healthcare, hospitals, and 

nursing homes. Without control of human capital, it is hard to know whether the ostensible pay 

premium in the nonprofit sector reflects competitive and fair wage with the for-profit sector 
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because many studies also find that nonprofit workers have more years of education and work 

experience, for instance.  

Labor economists have proposed a series of theories in the 1980s predicting different 

outcomes in nonprofit wages. Donative labor theory predicts that nonprofit workers earn less 

than for-profit workers due to their altruistic motivation (Handy & Katz, 1998; Preston, 1989; 

Weisbrod, 1983). Attenuated property rights theorists that maintain nonprofit workers earn more 

than for-profit workers because nonprofit managers do not have the incentive to accumulate 

profits (Preston, 1988). Compensating wage theory proponents expect nonprofit workers to earn 

less than for-profit workers because the working conditions are better in nonprofits than the for-

profits (Smith, 1979). Lastly, efficiency wage theory supports that firms pay more to increase the 

production of services if the work quality is hard to measure (Akerlof, 1984). Studies find 

negative nonprofit pay differentials, which provide support to donative labor theory (Handy, 

Mook, Ginieniewicz, & Quarter, 2007; Weisbrod, 1983). Others find that nonprofits pay equally 

or even slightly higher than for-profit firms, and thus conclude that there does not exist labor 

donation. Rather, it is the competition mechanism that works (Ben-Ner et al., 2011; Ruhm & 

Borkoski, 2003). The competition conclusion essentially rejects all theories that predict either 

positive or negative outcomes. 

Findings from current studies are inconclusive, partly because they examine different 

industries (Preston, 1988) or occupations (King & Lewis, 2017; Weisbrod, 1983), or different 

mix of industries (Ben-Ner et al., 2011; Jones, 2015; Ruhm & Borkoski, 2003) and occupations 

(Frank, 1996; Handy et al., 2007), which makes it hard to compare the results. In an economy-

wide study, Leete (2000) acknowledges that the overall pay parity is a sum of the significantly 

positive nonprofit differential in some industries and significantly negative differential in others. 
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A logical question to ask is why nonprofit workers are not the same. Presumably, they should be 

similar because they are all “nonprofit” workers. The question boils down to what makes a day-

care center nonprofit worker differ from a hospital nonprofit worker, or what makes a lawyer 

nonprofit worker differ from a registered nurse nonprofit worker. 

Conflicting findings send a mixed message concerning practical and policy implications. 

The answer is crucial to assure stakeholders who trust or distrust voluntary values. Nonprofit 

organizations are exempt from property, sales, and corporate income taxes (Hansmann, 1987). 

When nonprofit workers earn more than for-profit, it arouses concerns. On the one hand, if the 

nonprofit is not different from the for-profit sector, then the tax-exempt status puts nonprofits in 

an unfair competitive advantage over the for-profits. One the other hand, why nonprofits, without 

striving to make profits, can pay more than the for-profit sector. Do they distribute the surplus to 

owners and workers that are not allowed by law? It challenges the legitimacy of the sector 

(Salamon, 1999).  

Conflicting findings make theories irrelevant. When findings on the nonprofit pay 

differential diverge and explanations depart from each other, we are left to wonder whether 

theories are wrong or whether there is poor correspondence between the theory and the concepts 

under study. “Nonprofit” might refer to altruistic motivation (donative labor theory), the lack of 

ownership of organizations (attenuated property rights theory), better working conditions 

(compensating wage theory), or less measurable production (efficiency wage theory). What is the 

referent for “nonprofit” in various studies?  

The study of the sectoral pay differential needs to be situated in the overall backdrop, 

where nonprofits are one type of service provider in many industries, together with governments 

and for-profit service providers. Nonprofits, as a decentralized system, can better meet diverse 
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and heterogeneous demands from the community (Weisbrod, 1988). Compared with the for-

profits, nonprofit organizations have more trust and less information asymmetry problems 

because of non-distribution constraints (Hansmann, 1980). However, the nonprofit sector has its 

Achilles’ heel, the voluntary failure (Salamon, 1987), encapsulated as “philanthropic 

insufficiency” – the inability to generate sufficient and reliable resources to scale up services; 

“philanthropic amateurism” – the inability to hire professionals to provide professionalized 

services; “philanthropic particularism” – only focus on particular subgroups of  the population; 

and "philanthropic paternalism” – community needs are defined by those who have resources. 

The first two failures are particularly relevant to compensation and human resource management. 

Nonprofits have the motivation to solve the insufficiency and amateurism through marketing 

services and replacing volunteers with professionals (Maier, Meyer, & Steinbereithner, 2016). 

Philanthropic insufficiency pushes nonprofits internally to devote more efforts to 

resource development. Externally, the call for doing more with less and increasing efficiency 

justifies commercialism: reliance on commercial revenue (James, 1998) and adopting business-

like approaches (Maier et al., 2016). Therefore, commercialism has made its way into the 

nonprofit sector (Eikenberry & Kluver, 2004).  

Commercialism embraces profits and efficiency, which might erode values, encourage 

over-consumption, and bias education, among numerous evils as elaborated by Jacobson and 

Mazur (1995). The nonprofit sector is co-opted by commercialism, which goes against the 

essential role of the nonprofit sector as value guardians, service providers, advocates, and 

builders of social capital (Salamon, 1999). Critical school scholars articulate that marketization 

approaches are detrimental to democracy and erosive to the value of civil society (Eikenberry & 

Kluver, 2004).  Numerous studies have depicted that commercialism takes hold in the nonprofit 
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sector, and commercial revenue grows dramatically (Child, 2010; Eikenberry & Kluver, 2004; 

Kerlin & Pollak, 2011; Salamon, 1999, 2015).  The argument that commercialism can change 

organizational behavior is established, but empirical evidence about the impact of 

commercialism on pay to workers is sparse. 

The dissertation examines two broad questions: 1. Does the nonprofit sector pay 

differently than the for-profit sector? 2. What is the effect of commercialism on the nonprofit 

pay? It examines the nature of nonprofit wage differential and the consequence of 

commercialism.  

Compensation and pay are complex, as they are jointly determined by factors on the 

individual, organization, occupation, industry, and state levels (Werner & Gemeinhardt, 1995). 

Individuals have heterogeneous preferences and motivations. Organizations have different 

behaviors and decisions about their allocation of resources and profits. Different occupations 

have different requirements for job skills and human capital. Industries are differentiated by how 

collective is the nature of the goods or services they provide. Finally, states might be different in 

policies and regulations.  

Mirroring the different levels of the compensation decisions, prevailing theories explain 

the phenomenon on different levels. To answer the question on the individual level, I draw on 

social psychology explanation of altruistic motivation, which precedes the donative labor theory 

in the nonprofit pay study. To answer the industry level question, I adopt compensating wage 

theory. I develop hypotheses according to the levels of theories.  
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Figure 1. Research questions and data needs 

 

The multilevel nature of research questions corresponding to the theoretical frameworks 

on discrete levels requires data on corresponding levels. Cross-Classified Random Effects 

Modeling (CCREM) can fulfill the needs because it can decompose variance components on 

different levels and properly represent the variability and effects from different sources (Kreft, 

Leeuw, & Aiken, 1995; Raudenbush & Bryk, 2002). In other words, CCREM can estimate 

unbiased and efficient estimates of fixed coefficients while modeling the variability of interest 

variables on the macro/contextual level (Kreft et al., 1995; Raudenbush & Bryk, 2002).  

I use nationally representative data pooled from Census 2000 and the American 

Community Survey (ACS) 2005-2016. The data is merged with Statistics of Income from the 

Internal Revenue Service (IRS). Merging the data with detailed individual-level information to 

the organizational finance information has closed the gap of compensation studies based solely 

on either individual data or administrative data.  
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Level-1 includes 3,017,110 observations with detailed human capital and demographic 

information as well as sectors.  Level-2 includes 38 industries, 303 occupations, and 50 states 

and DC. Modeling for fixed effects is essentially regression analysis. Random effects of 

nonprofit pay differential on industry and occupation levels are modeled as a probability 

distribution of nonprofit pay differential. Before drawing the conclusion, I check the robustness 

and sensitivity of the estimation. I use different structures on Level-2, including the interaction 

level of industry and occupation, and adding the state level.  Then I use different datasets, 

including dropping higher education and hospital industries, using Census 2000 only, having 

different industry categories, and including part-time workers on Level-2.  

The results show that nonprofit workers earn 5.7 percent less on average than comparable 

for-profit workers. This effect is conditional on the industry and occupation effects. In other 

words, a negative 5.7 percent on Level-1 is the donative labor effects. In industries where 

nonprofits have pay advantages, the sectoral pay differential will be less negative than -5.7 

percent. In industries with pay disadvantage for nonprofits, the sectoral pay differential will be 

more negative than -5.7 percent.  It is a similar situation with occupations. My second research 

question is to examine the effects of commercialism on pay in the nonprofit sector. 

Commercialism is measured both as a compositional effect of the for-profit share of workers and 

as a substantive measure of an inverse of fundraising efforts. Both measures show that 

commercialism increases pay. Commercialism, an indicator of profit focus and cost 

minimization, increases the salary as a result of compensating the changed working conditions. 

Commercialism also increases the gender pay gap, the occupation pay gap, and the sectoral pay 

gap. 
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My research provides an economy-wide estimate of nonprofit/for-profit sectoral wage 

differential that is composed of donative labor effect, industry effect, and occupation effect. I 

contribute to a consolidated explanation of theories by laying them on corresponding levels with 

corresponding data. The multilevel modeling of economy-wide data analysis gives equal 

importance to the random effects of various industries and occupations, which has improved the 

situation where some industries are studied repeatedly, and others are totally out of radar. 

Therefore, I also contribute to having established an exhaustive inventory of nonprofit pay 

differentials across industry and occupation levels. This inventory can serve as a reference and 

corroboration for future studies.  

In chapter 2, I review the literature on nonprofit wage differential under four prevailing 

theories. In Chapter 3, I deconstruct theories on their corresponding levels and build hypotheses 

accordingly. Chapter 4 describes detailed data sources, data cleaning processes, analytical tools, 

and model specifications. Chapter 5 presents the results, and Chapter 6 discusses the findings, 

contribution and limitations of my research.     
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Chapter II. Literature Review 

All paid jobs belong to a particular industry and a particular occupation. Employees are 

nested in a higher-level structure when they are members of units such as organizations, 

industries, and occupations. The pay for employees not only reflects their work efforts and 

abilities but also manifests features of the industry and occupation that they work for. Industries 

are classified in the North American Industry Code System (NAICS), and occupations are 

classified in the Standard Occupational Classification (SOC). The extensive lists suggest that 

industries and occupations have boundaries, and there are differences between these categories. 

Nonprofit and for-profit sectors share most industries and occupations, which imposes an 

additional complexity to sectoral pay differential studies, because the sectoral pay differential 

may catch the features of industries and occupations that are varying themselves.   

Despite the importance of linkage between pay and structures on the macro level, 

prevailing studies on the nonprofit wage differential apply a micro view and an individualist 

approach. They treat industries and occupations as background variables without further 

scrutiny, with a few exceptions such as Leete (2001) and Krueger and Summers (1988). To lay a 

foundation for multilevel conceptualization and analysis, I bring together two strands of 

literature: nonprofit pay studies and nonprofit industries and occupations. In this chapter, I 

review nonprofit pay differential literature guided by major compensation theories. Then I 

examine the literature on industry and occupation pertaining to nonprofits, based on which I 

argue that industries and occupations should be integrated into a holistic analysis of nonprofit 

pay differential. 
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2.1 Salary and Compensation in the Nonprofit Sector 

Major theories on nonprofit compensation include donative labor theory, compensating 

wage theory, attenuated property rights theory, and efficiency wage theory. Donative labor 

theory and compensating wage theory predict nonprofits to pay less than for-profit firms, 

whereas attenuated property rights theory and efficiency wage theory predict nonprofits to pay 

more than for-profits. In this part, I review what empirical studies on the cross-sectoral pay 

differential tell us about the major theories.  

Donative labor theory. 

Donation and volunteering are an essential part of American life. Around 63 million 

people volunteered 8.7 billion hours to their communities in 2014, which is equal to 5 million 

full-time jobs (America’s Nonprofit Sector - Revenues, 2016). In 2015, the total charitable giving 

amounted to $373.25 billion, and 70 percent came from individuals (America’s Nonprofit Sector 

- Impact, 2016).  

Accepting low pay to work for nonprofit organizations is another form of donation 

(Lewis, 2010; Preston, 1989; Weisbrod, 1983). Donative labor theory argues that altruistically 

motivated individuals are willing to accept a low pay in order to have the opportunity to serve 

the underrepresented (Weisbrod, 1983), or reify their religious or political commitment to social 

change (Lewis, 2010; Rose-Ackerman, 1996), among other possible values such as liberalism 

(Lewis, 2010).  

Weisbrod (1983) first proposed donative labor theory in a study that found public interest 

lawyers earned 20 percent less than comparable attorneys working in for-profit firms. 

Subsequent questions in his research revealed that 45 percent of the lawyers knew beforehand 

that they would not be better off financially from being public interest lawyers.  They did not 
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regret their choices. Furthermore, the public interest lawyers did not expect to use their nonprofit 

experience as an investment for better-paying jobs in the future, which means their sacrifice is 

the end instead of the means. Also, these lawyers seem to favor positions that can contribute to 

social good rather than monetary gain. Weisbrod (1983) finds that 43 percent of public interest 

lawyers choose to work for schools or governments that usually pay lower than private firms. In 

short, he argues that altruistic motivation leads to negative wage differential for lawyers in 

nonprofit organizations.   

With the main missions of serving the public good and producing positive social 

externalities (E. Brown & Slivinski, 2018; Preston, 1989; Rose-Ackerman, 1996), nonprofit 

organizations provide a better platform than government or for-profits to attract individuals with 

altruistic motivations to materialize their own values or ideology in a bigger social context (E. 

Brown & Slivinski, 2018; Cassar & Meier, 2018; Handy & Katz, 1998; Rose-Ackerman, 1996; 

Weisbrod, 1983). Lewis (2010) finds that the overrepresentation of lesbians and gay men in 

nonprofit organizations is attributable to their altruistic motivation.  

Handy et al. (2007) concur that nonprofit executives choose nonprofit jobs because they 

identify with the mission of the organizations that reflect their values and beliefs, despite the 

lower pay than their for-profit counterparts. Ideological nonprofit entrepreneurs prefer managers 

and workers who share their vision (Rose-Ackerman, 1996).  Smart nonprofit managers thus 

might use a lower salary to filter for employees with altruistic motivation (Handy & Katz, 1998) 

because altruistically motivated individuals can be more productive with less supervision. For 

example, nonprofit hospitals use performance-based bonus reward structures less than for-profit 

hospitals (Roomkin & Weisbrod, 1999) to screen managers who share the organizational goal.  
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Altruistic workers select jobs based on the meaningfulness of work rather than the 

monetary incentive (Cassar & Meier, 2018). The meaningfulness of work includes competence, 

autonomy, and relatedness (Ryan & Deci, 2000). Cassar and Meier (2018) explain that people 

develop joy and satisfaction from their competence to solve problems or intellectual challenges, 

which explains why scientists commit their weekends to research and innovation. Arguably, 

when nonprofit workers can solve some social issues or help disadvantaged groups, the process 

of being able to help is a source of satisfaction. 

Autonomy and relatedness also enrich the meaning of work (Cassar & Meier, 2018). 

When people have a sense of belongingness or connectedness, they are more likely to work 

harder and like the job better (Ryan & Deci, 2000). Benz and Frey (2008) find that people 

working with smaller firms are more satisfied because the structures of small firms are less 

hierarchical than large organizations. Nonprofit jobs are generally interdependent (Ben-Ner et 

al., 2011), less hierarchical with more equality, such as narrower pay gap and less discrimination 

(Ben-Ner et al., 2011; Cassar & Meier, 2018; Faulk, Edwards, Lewis, & McGinnis, 2012). 

Therefore, nonprofit jobs might be meaningful to altruistic workers. 

Considering the dimensions of competence, autonomy, and relatedness (Cassar & Meier, 

2018; Ryan & Deci, 2000), the meaning of jobs might have implications on different occupation 

ranks. Using the 1979 Current Population Survey data, Preston (1989) finds that clerical workers 

earned comparable wages in two sectors, but managers and professionals earned 5 to 20 percent 

less in nonprofits than in for-profits after accounting for human capital, industries, occupations, 

and selected job characteristics. Preston (1989) explains, although nonprofit workers choose to 

participate in “socially worthwhile organizations” that produce social benefits, nonprofit 

managers are more closely tied to social benefits provision than the blue-collar workers. 
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Nonprofit managers have the power and autonomy to decide social programs, which concurs the 

explanation that autonomy is related to the meaning of work (Cassar & Meier, 2018; Ryan & 

Deci, 2000). Thus, the willingness to donate labor probably varies by occupation. 

Donation is a gift-giving behavior. Donative labor theory indicates that nonprofit workers 

donate part of their salary or labor to nonprofit organizations (Lewis & Ng, 2013) as gifts. Adloff 

(2016) distinguishes altruistic giving behavior as different from the giving behavior with self-

interests and reciprocal purposes. Altruistic behavior is "motivated mainly out of consideration 

for another's needs rather than one's own" (Piliavin & Charng, 1990, p. 30), whereas reciprocity 

happens when “the giving of a gift initiates a cycle of receiving and reciprocating with a counter-

gift” (Barman, 2017, p. 274).  

If giving, or labor donation, is reciprocal, it can be compensated. Economists in this line 

argue that nonprofit workers enjoy more satisfaction than comparable workers in the for-profit 

sector because the lower pay is compensated by satisfaction (Benz, 2005; Handy et al., 2007; 

Jones, 2015; Leete, 2001; Lewis & Frank, 2002; Mirvis & Hackett, 1983; Preston, 1989). 

Andreoni (1990) indicates that satisfaction as a type of utility and impure altruism since donors 

experience “warm-glow.” Any utility has to be compensated, according to the assumption of the 

economic man who tries to maximize the utility. Evren and Minardi (2017) define warm-glow as 

“prosocial behavior that causes the actor to experience positive feelings, apart from its social 

implications” (p.1381).  It might be either intrinsically motivated as "pleasure of social acclaim" 

or extrinsically motivated, such as improving one’s social image or avoiding guilt (Evren & 

Minardi, 2017).  

Scholars from disciplines other than economics have questioned interpreting satisfaction 

and warm-glow as a compensable utility. Friedland and Alford (1991) argue that the utility is 
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volatile and "socially and historically structured" (p. 234), and thus the maximization is resistant 

to computation. No one can compensate things incomputable even if s/he intends to. Therefore, 

warm-glow is not pecuniary (Elster, 2011) nor reciprocal (Barman, 2017), no matter whether it is 

intrinsically or extrinsically motived. The non-reciprocity distinguishes donative labor theory 

without anticipation of return from the compensating wage theory with anticipation of return. 

Compensating wage theory.  

Compensating wage theory is about matching the worker’s preference with job 

characteristics (Ehrenberg & Smith, 2018). The essence of the compensating wage theory is that 

"jobs with disagreeable characteristics will command higher wages" (Smith, 1979, p. 339). 

Therefore, jobs with higher risks of injuries, lower occupational safety, or less desirable are paid 

better. However, an empirical test of compensating wage theory encounters obstacles due to 

heterogeneous tastes of workers and difficulty in specifying a priori disagreeable job 

characteristics. Nonetheless, a common-sense list of job characteristics might include strenuous 

physical work, repetitive or stressful jobs, fast pace, location, lack of freedom or security, 

commuting time, and work shifts (Borjas, 2007; Krueger & Summers, 1988; Smith, 1979).  

Nonprofit organizations generally offer working conditions with pleasant amenities 

(Hallock, 2000; Handy et al., 2007; Ruhm & Borkoski, 2003). The known nonprofit work 

amenities include family-supportive policies, a more egalitarian workplace, flexibility in work 

schedules, less rigid environment, greater job stability, autonomy, more control over the work 

performed, building a reputation for a public career, interesting and challenging jobs, not 

working toward a financial bottom line, and shorter work hours (Ben-Ner et al., 2011; Hallock, 

2000; Handy & Katz, 1998; Handy et al., 2007; Leete, 2000; Preston & Sacks, 2010; Ruhm & 

Borkoski, 2003). If workers care about those agreeable amenities, they should be willing to pay 



15 
 

for them by accepting lower pay (Mas & Pallais, 2016). Conversely, they would require a higher 

wage for jobs without such amenities, or if jobs have conflicts with the strong values and beliefs 

held by ideological workers (Ben-Ner et al., 2011; Frank, 1996).   

Both donative labor theory and compensating wage theory predict a negative outcome of 

the nonprofit wage differential. However, they are different in several aspects. Donative labor 

theory is built on altruistic and intrinsic motivation that working itself is a source of satisfaction, 

whereas compensating wage theory implies exchange and tradeoff between salary and working 

conditions, which is related to the extrinsic motivation. Therefore, donative labor theory based 

on altruism is more about individual characteristics, while compensating wage theory is 

contingent on the external monetary return and related to job characteristics. The distinction 

between intrinsic and extrinsic orientation leads to potential motivation sorting for jobs.   

Attenuated property rights.  

Economic analyses of property rights assume that top decision-makers have private 

property rights to the profits or surplus of the firm (Borjas, Frech, & Ginsburg, 1983), and “any 

reduction in the rights of the top decision-maker leads to attenuated property rights, … [and] the 

attenuation of property rights leads to higher costs” (p. 4).  Attenuated property rights theory is 

relevant to the nonprofit sector because of the non-distribution constraints. Nonprofit 

organizations are often exempt from property, sales, and corporate income taxes (Hansmann, 

1980, 1987). In return for the tax advantages, nonprofits are subject to the non-distribution 

constraints. Nonprofits are not allowed to distribute the profits or surplus among board members, 

managers, or staff, beyond a reasonable salary (Hansmann, 1980). Therefore, nonprofits do not 

have the incentive to reduce the cost by lowering salaries to workers. What is more, nonprofit 
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managers might derive utility in paying high wages to employees, such as enhanced loyalty and 

increased working efforts. 

Paying a higher salary is possible. Although the nonprofit corporation law prohibits 

distribution of profits, it is hard for the law to control unnecessarily high wages because the 

enforcement of non-distribution constraints is "placed exclusively in the hands of the state’s 

attorney general” (Hansmann, 1980, p. 873). Furthermore, the law might apply to top-earning 

management but not so much to the mid-or-low-rank staff since their salaries are not high 

enough to touch the ceiling. Therefore, nonprofit managers might choose to pay higher wages to 

employees (Preston, 1988) as a result of not being able to share the profits of the organization.    

Borjas et al. (1983) study the nursing home industry with four types of ownership: for-

profit, government, nonprofit-secular, church-related. For-profit organizations have private 

property rights and are allowed to make and distribute profits. The other three types are not 

allowed to distribute profits to managers. They find that the pay rate in government is 

significantly higher than for-profits, but the difference in pay between the nonprofits and for-

profits is not significant. The insignificance between for-profits and nonprofits remains true in 

three larger occupation groups in this industry: licensed practical nurses, registered nurses, aides 

and orderlies. Their finding of for-profit/government pay differential seems to support the 

attenuated property rights theory, but the result on for-profit/nonprofit pay differential does not 

support the theory. 

Preston (1988) studies the child-care industry with only nonprofit and for-profit service 

providers. Part of the industry is unregulated and owner-controlled, where small firms compete 

to provide services with low fixed costs and free entry. They are mostly for-profit organizations. 

The other part is regulated and manager-controlled with no ownership. They are mainly large 
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nonprofit organizations seeking federal funds, which impedes entry and competition in the 

industry. Preston (1988) finds that non-regulation and free competition leads to insignificant 

sectoral pay difference. By contrast, in the regulated branch, nonprofit workers earn 5 to 10 

percent higher than comparable for-profit workers. Preston (1988) argues that less competition 

and more barriers to entry of new firms lead nonprofit managers to pay higher wages.  However, 

Preston (1988) also mentions that the non-federally regulated is full of small private firms, and 

the regulated part has many large nonprofits. Studies show that large organizations pay more 

(Brown & Medoff, 1989; Krueger & Summers, 1988), and this potential relationship between 

size and pay is not excluded from the study.  

Mediating effects of service quality.  

No incentive to accumulate surplus does not necessarily mean that nonprofit managers 

will choose to pay higher salaries. They might use the surplus to increase service quality 

(Holtmann & Idson, 1993; King & Lewis, 2017). Nonprofits are often founded to provide 

collective goods or trust goods that clients have information disadvantage (Weisbrod, 1988).  

The non-distribution constraints reduce the incentive to cut corners of services (Hansmann, 

1987), which is a competitive advantage for nonprofits (Glaeser & Shleifer, 2001).  Glaeser and 

Shleifer (2001) argue that inferior quality services will bring “non-cash reputational cost” to 

nonprofits (p. 107). It is to the benefit of nonprofits to provide services of quality because 

services of better quality could not only retain the service prices and profits in the future but also 

protect the prestige of donors for the organization. 

Nonprofits’ pursuit of better quality services and value for serving the disadvantaged 

stand in sharp contrast with for-profit practices of cherry-picking and creaming the clients 

(Frumkin & Andre-Clark, 2000). In nursing home industries, Weisbrod (1988) find that 
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nonprofits have more service workers and fewer administrators than for-profit service providers. 

Even in ostensibly similar services, nonprofits might provide different clients services with 

subtle attributes such as "humanness" or "encouragement" (Weisbrod, 1988). Higher service 

quality could explain higher nonprofit pay (Holtmann & Idson, 1993; King & Lewis, 2017; 

Preston & Sacks, 2010) because higher-quality services may require staff with higher human 

capital. However, the difficulty in sufficiently controlling the service quality in an empirical 

analysis may inflate the estimate of the nonprofit pay differential. 

Efficiency wage hypothesis. 

Efficiency wage theory argues that firms pay above-market rate wages can save costs for 

firms (Akerlof, 1984; Fields & Wolff, 1995; Krueger & Summers, 1988; Thaler, 1989; Yellen, 

1984). The implication of efficiency wage theory on pay is related to the supervision of the 

production process and employees. When the production is easy to quantify and the product 

quality is easy to track, competitive wages based on piece-rate are the best way to measure the 

ability of workers (Borjas, 2007). Competitive wage happens when “firms pay a wage that is just 

sufficient to attract workers of the quality they desire and no higher” (Krueger & Summers, 

1988, p. 259). The more unmeasurable the product quality is, or the more difficult supervision is, 

the more likely firms will use efficiency wages to increase production and efficiency. If we 

conceive attenuated property rights as the feasibility of positive nonprofit pay differential, 

efficiency wage theory offers an explanation of motivation on the firm level.   

Four models explicate why it is to the firms’ benefit to pay non-competitive rents 

(Akerlof, 1984; Fields & Wolff, 1995). The first one is the shirking model. When service quality 

is hard to monitor, firms may choose to pay above-market rate wages to prevent workers from 

shirking. Sociological studies find that even the most elaborated division of labor, such as the 
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piecework machine shop, cannot guarantee productivity because supervision is always 

incomplete (Akerlof, 1984). The second model is the turnover model.  Excessive turnover might 

incur high costs of training, capacity building, recruiting and interrupted production. Efficiency 

wage on the industry level is associated with long tenure and low turnover rate (Krueger & 

Summers, 1988). The third model is the selection model. Firms can pay higher wages to attract 

more capable workers at the expense of profits. Preston (1988) regards recruiting over-qualified 

personnel as inefficiencies in the nonprofits. The fourth model, the fair wage model, is related to 

the equity theory from social psychology. Equity theory explains that people perceive a 

relationship to be fair and equitable if what they get is commensurate with what they contribute 

(Hatfield, Rapson, & Bensman, 2012). “Overpaid” workers might produce more because they 

might attempt to increase the quantity of production to match the overpaid part of the salary 

(Akerlof, 1984). Therefore, efficiency wage can raise worker’s effort level, induce loyalty, and 

minimize turnover, eventually increase productivity and reduce related costs (Akerlof, 1984; 

Krueger & Summers, 1988). 

The efficiency wage theory is also explained on the organization level. Efficiency wage 

was found to be positively related to the company size and negative related to the turnover rate 

(Krueger & Summers, 1988). Kruse (1992) concurs that adding human capital and occupations 

brings negligible change on the coefficient of establishment size in wage estimates, and he 

further excludes the explanation of the working condition. Numerous studies find that nonprofit 

executive pay is positively related to organization size measured as total revenue (Grasse, Davis, 

& Ihrke, 2014; Oster, 1998), total number of employees (Grasse et al., 2014), and total assets 

(Frumkin & Andre-Clark, 1999; Yan & Sloan, 2016). Larger organizations tend to pay more 

because larger organizations are more complex with more hierarchies, which makes it harder to 
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supervise the employee. The scale of the economy of large organizations might bring more 

operational efficiency so that they can afford to pay more (Grasse et al., 2014).  

Efficiency wage theory mirrors the shift from scientific management to human 

relationship management. To increase production, firms may choose to boost workers' morale by 

paying more rather than controlling them through close supervision. The use of an efficiency 

wage should not be uncommon because actual production in the real world is more likely to be a 

social process than a completely rational process. Since nonprofits generally provide services 

rather than products, and the quality of services is harder to measure than the quality of products, 

nonprofit workers are likely to benefit from the efficiency wage. Very few studies explore the 

efficiency wage theory in the nonprofit sector. The only study with peripheral relevance is Ito 

and Domian (1987) study of the symphony orchestras because they find that guaranteed pay is 

related to budget size, better team production, and reduced shirking. Other researchers also made 

similar conjectures that nonprofit managers might derive utility from paying employees higher 

salaries (Leete, 2001; Preston, 1988) when their finding of nonprofit wage differential is positive.  

Economy-wide.  

Most studies on nonprofit wage differential are based on discrete industries or 

occupations. Findings vary study by study, which suggests the industry effect or occupation 

effect on the nonprofit pay differential. In the frequently studied industries, including hospitals, 

social services, residential care, childcare, and nursing homes, studies find positive nonprofit 

wage differential (Ben-Ner et al., 2011; Leete, 2001; Preston, 1988; Ruhm & Borkoski, 2003). In 

other industries such as group homes, housing services, and vocational rehabilitation industries, 

nonprofits pay less than for-profits (Ben-Ner et al., 2011).   
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As a contrast to the inconclusive findings based on discrete industry or occupation 

studies, economy-wide (Hirsch et al., 2018; Leete, 2001; Ruhm & Borkoski, 2003) or multiple-

industry (Ben-Ner et al., 2011) studies conclude that the sectoral wage difference is not 

significant. Leete (2001) finds that nonprofit employees earn almost 1 percent less than 

comparable for-profit employees. The cross-sector pay differential is so small that the literature 

examining job switching between the for-profit and nonprofit sectors finds insignificant 

differential between the two sectors (Hirsch et al., 2018; Ruhm & Borkoski, 2003). The findings 

lead to the conclusion that it is a result of a competitive labor market (Ruhm & Borkoski, 2003).  

In the meantime, scholars are cautious about this general conclusion of pay parity. Ben-

Ner and associates (2011) note that nonprofits pay more in nursing homes and childcare centers 

than for-profits but pay less in group homes. Ruhm and Borkoski (2003) mark a nonprofit 

premium in five of the eight poorly-paid industries where nonprofit employment is concentrated. 

Leete (2001) acknowledges the findings from discrete industry and occupation studies and 

speculates that “the economy-wide finding here could represent an average of differentials that 

occur with different strengths and magnitudes across different occupations and industries” (p. 

156). Her following disaggregated industry analysis reveals that statistically significant 

differences occur in 34 of the 91 industries in her study. In the 34 industries, 9 of them have a 

positive nonprofit differential. 

Despite acknowledging the significance of industrial level differences (Ben-Ner et al., 

2011; Leete, 2000; Oster, 1998), few studies attempted to explicitly model the reason for such 

variation. Jones (2015) tries to reconcile these inconsistencies in findings based on discrete 

industry studies by proposing a supply and demand mechanism of the donative labor. He argues 

that 
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as long as there are enough motivated workers to meet their labor demands, nonprofits 

can minimize costs by offering a low wage (thereby, only attracting motivated 

applicants). However, if nonprofit labor demand is high relative to for-profit firms, the 

nonprofit cannot rely on motivated workers alone to fill their demand and must offer 

wages comparable to that of for-profits in order to attract standard workers. (p. 2) 

The supply and demand mechanisms determine that nonprofits will not pay higher than 

for-profits because nonprofits pay either lower when the supply of motivated worker is above the 

demand, or just equal as for-profits when the supply is lower than the demand. Then nonprofits 

compete with for-profits for standard workers. Therefore, it cannot explain why nonprofit-

dominant industries such as the childcare industry pay more than for-profits. Furthermore, 

Jones's (2015) operationalization of the market share based on the industry/locality-specific 

nonprofit shares of labor assumes that there is no mobility of workers across locality and 

industries, which goes against the assumption of free labor mobility in the market mechanism.    

Summary  

While studies focusing on discrete industries or occupations make important 

contributions to our understanding of the nonprofit wage differential, the isolation of industry 

and occupation makes it impossible to understand the integral context where nonprofit wage 

differential happens. As Lewis (2010) correctly states, “industry and occupation are the most 

important predictors of nonprofit employment, followed by location” (p. 20). The economy-wide 

studies include industries and occupations, but industries and occupations are treated as invariant 

to the nonprofit wage differential.   

Aggregating effects from different sources lead to a sweeping conclusion of cross-sector 

pay parity, which inappropriately simplifies the nonprofit sector as homogeneous and overlooks 
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that the nonprofit sector is hugely diverse and expansive in industries, that universities are 

different from daycare centers and homeless shelters, and that some nonprofits are self-help 

groups while others are public charities. After controlling human capital, unmeasured worker 

characteristics (through fixed effects models), and a variety of job characteristics such as weekly 

hours, hazard, work shift, commuting time (which aim to exclude compensating wage 

explanation),  Krueger and Summers (1988) find significant and substantial dispersion of wage 

across industries. Specifically, they find that industries that pay one occupation higher than other 

industries also tend to pay other occupations higher than other industries, which consolidates the 

industry-specific effect on wages. Citing an earlier source, Krueger and Summers (1988) concur 

that "industry and geographic variables are significant in individual earnings functions... This 

significance, itself, constitutes a deviation from the norms of a competitive market" (p. 262). 

2.2 Why industry matters 

An industry is “a group of firms producing products that are close substitutes for one 

another” (Forbes & Kirsch, 2011, p. 591). DiMaggio and Powell (1983) highlight that using 

industry as the unit of analysis shifts the focus of analysis from competing firms or interacting 

networks to “the totality of relevant actors” (p. 148). Within the industry, firms share suppliers, 

resources, consumers, and regulatory agencies, which form the environment constraining all 

organizations within the industry. Organizations within industry categories are similar with 

production techniques and technologies. "Similar organizations may provide resources to each 

other and develop mutual dependencies of long duration" (Child & Aldrich, 1988, p. 15). The 

feedback from the same pool of clients pushes organizations to imitate the leaders. 

Organizational actors within the industry adopt mainstream practices for reasons of legitimacy or 

performance improvement (Meyer & Rowan, 1977). Within-industry similarities suggest 
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between-industry differences. Industries are different in aspects of regulatory requirements, 

barriers to entry, capital intensity, production technologies, consumers, profitability level, the 

intensity of competition (Ben-Ner et al., 2011; Preston, 1988).  

Differences between industries dominated by nonprofits and for-profits. Economy-wide, 

most industries have both for-profit and nonprofit firms and employers, with varying 

composition proportion of the two sectors (Hirsch et al., 2018; Ruhm & Borkoski, 2003). 

Nonprofit organizations tend to provide goods with the collective attribute (Ben-Ner & 

Hoomissen, 1992) “because of the legal restrictions guiding them, [nonprofits] generally will 

provide a good whose benefits are more heavily weighted towards social benefits” (Preston, 

1989, p. 440). Thus, industries dominated by nonprofits also tend to provide collective goods 

with positive social externalities, such as public radio and public health (Chang & Tuckman, 

1996; Fischer, Wilsker, & Young, 2011). By contrast, industries dominated by the for-profit 

firms tend to provide goods that are of more private nature, more excludable, and easier to 

commercialize than products of nonprofit dominated industries.  

Evidence below suggests that using sector composition to characterize industries is valid. 

With no reported information of nonprofits, Preston (1989) had to use industry composition to 

infer nonprofit status for workers. Leete (2001) checked the reliability of inferred nonprofit 

status from industry information, and she confirmed that “Preston’s constructed variable for 

nonprofit status does not perform too differently from the status of nonprofit workers as reported 

on the PUMS” (p.150).  

Implications of the nature of the goods on revenue sources. Nonprofits generate revenue 

from multiple sources. Contrary to the general perception that nonprofits rely on donative 

revenue, revenue from philanthropy only accounts for 9 percent of total revenue in nonprofits, 
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whereas revenue from government comprises 35 percent, and the remaining 56 percent is from 

fees and charges (Salamon, 2015). The revenue streams are related to the nature of services 

nonprofits provide (Fischer et al., 2011; Wilsker & Young, 2010; Young, 2017). Organizations 

providing “private” services, where the benefits accrue to identifiable individuals, such as 

nursing homes, are more likely to earn income from fees and service charges (Fischer et al., 

2011). Nonprofits providing “public” services, such as public health, are more likely to rely on 

donations. Based on the composition of revenue sources, nonprofits have a different degree of 

publicness on the spectrum of the collectiveness index (Fischer et al., 2011; Weisbrod, 1988; 

Young, 2017).   

Implications of revenue sources on nonprofit salary. Nonprofit organizations are 

dependent on resource suppliers for survival. The degree of dependence is determined by the 

importance and concentration of the resource streams (Froelich, 1999; Pfeffer & Salancik, 1978). 

Organizations relying on donative funding are susceptible to donor and social expectations 

(Carman, 2011). Donors expect their donations to be used for augmented social benefits rather 

than high salaries for employees (Carman, 2011). Nonprofits relying on contributions and 

donations are more likely to report a lower ratio of management (including salary) expenses to 

the total expense (Cordes & Weisbrod, 1998). 

In contrast to donative nonprofits, nonprofits relying on commercial revenue earn income 

from individual clients or consumers based on provided services, which shifts the locus of 

control from several major donors to very diffused individuals (Froelich, 1999; Frumkin & 

Keating, 2010). Furthermore, these nonprofits may have more abilities and opportunities to 

generate revenue from different sources. Thus, commercialized nonprofits have greater 

autonomy and flexibility to decide the use and allocation of their revenues. Guo (2006) reports 
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that nonprofit managers with more commercial revenue have the ability to increase pay to attract 

and retain qualified staff. 

Industries and Commercialism in Nonprofits.  

Nonprofits commercialize if they decide to “produce goods or services with the explicit 

intent of earning a profit” (Tuckman, 1998, p. 26). Underlying reasons are multifold (Cortis, 

2017; Guo, 2006; James, 1998; Salamon, 2015). One reason is the “financial squeeze,” where 

governments cut funding for nonprofits as a response to the conservative ideology to boost the 

volunteerism of nonprofits (Salamon, 1993, 1999, 2015). The second reason is that the 

government transferred funding mechanisms from producer subsidies to consumer subsidies, 

such as tax expenditures and vouchers, so that clients can choose between for-profit or nonprofit 

service providers (Salamon, 2015). As a result, nonprofit service providers have to engage in 

market behaviors in order to compete for clients. The third reason is that with more involvement 

of the for-profit sector in government contracts, nonprofits need to compete with for-profits and 

learn how to market their services (Salamon, 2015). The above reasons indicate that nonprofits 

commercialize to respond to the changing environment and reduced donative revenue, to cross-

subsidize their services, and to enhance financial sustainability. Additionally, studies on 

universities suggest that organizations might also commercialize to exploit the funding 

opportunities rather than responding to the scarcity of resources (Powell & Owen-Smith, 1998), 

or a result of a long-time effect of external pressure and environmental influence (Foster & 

Bradach, 2005; Kerlin & Pollak, 2011).   

James (1998) defines commercialism as "the degree of reliance on sales revenue rather 

than donations or government grants" (p. 27). Based on the definition, industries dominated by 

for-profits are more commercialized than industries dominated by nonprofits from the 
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perspective of sources of revenue. Surprisingly, A Dictionary of Nonprofit Terms & Concepts 

published in 2006 does not include commercialism. Instead, it introduces commercialization as a 

process for generating commercial revenue and as a process of competition between for-profits 

and nonprofits (Smith, Stebbins, & Dover, 2006).  

As a comparison, other dictionary definitions of commercialism emphasize the attitude 

and intent toward profit-making. Commercialism is defined neutrally as "commercial spirit, 

institutions, or methods" by the Merriam-Webster dictionary, or it is “an attitude or philosophy 

devoted to supplying goods and services and make profits.”1 Collins dictionary defines it with a 

pejorative sense as "the practice of making a lot of money from things without caring about the 

quality." Cambridge dictionary defines it as "principles and activities of commerce, especially 

those connected with profit rather than quality or doing good."  

These definitions echo Grønbjerg (2001)’s lament that the overreliance on effectiveness 

and efficiency forces nonprofits “to downplay their traditional pride in quality of services (the 

argument for why they should be preferred service providers) and good faith efforts (the 

explanation for what they were paid) in favor of market-like behavior” (p. 293). The differences 

in the definitions between the intent and the revenue have implications on the operationalization 

of the concept of commercialism. An organization has to have an intention to commercialize 

before it starts the process of commercialization to generate commercial revenue. In this sense, 

the intent to commercialize should be the antecedent of the commercial revenue.  

The way for nonprofits to commercialize is to adopt a commercialism ideology and for-

profit business management strategies (Tuckman, 1998) through embracing efficiency and cost-

                                                           
1 https://www.vocabulary.com/dictionary/commercialism 
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benefits mentality (Froelich, 1999). The intent and strategy of commercialism bring fundamental 

changes to nonprofit organizations’ operations and practices. Powell and Owen-Smith (1998) 

explain that universities engaging in commercialized Research & Development made 

institutional arrangements to facilitate external linkages and internal administration. The 

increased hierarchy and bureaucracy of nonprofit organizations as a result of commercialism go 

against the “soul” of America’s nonprofit sector (Salamon, 2015, p. 1) by compromising the 

democracy and equity values traditional nonprofits embrace.  

The resultant changes from commercialism also manifest in human resource practices. 

Commercialized nonprofits are more instrumental and purposive and have stronger convictions 

for managerialism and professionalism (Hwang & Powell, 2009; Maier et al., 2016). Hwang and 

Powell (2009) note a decline in professionals in substantive fields (such as lawyers and doctors) 

and an increase in management professionals with administrative expertise as nonprofit 

organizations get more rationalized or commercialized. Other researchers concur that arts 

organizations favor professional managers over technical experts even though those managers 

know little about art forms, an example cited by Froelich (1999).  

Unlike professionals in substantive disciplinary areas such as lawyers, social workers, or 

medical doctors who align themselves with normative orthodoxy and who are less affected by 

environmental pressures, managerial professionals are more vigilant to environmental changes. 

DiMaggio and Powell (1983) have discussed the crucial role of managerial professionals in 

disseminating the norms and standards that eventually lead to isomorphic structures and practices 

of organizations. They use their widely applicable organizational intelligence to rationalize the 

organization through socialization and diffusion (Hwang & Powell, 2009). The more managerial 

professionals diffuse the management practice and industry standards through their mobility 
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among different organizations (Hwang & Powell, 2009), the more likely an isomorphic result 

occurs: organizations within the same industry are similar in practices and organization 

structures (DiMaggio & Powell, 1983). 

Accompanying the managerialism in commercialized nonprofits is professionalization 

through replacing volunteers with full-time staff (Maier et al., 2016). Over-professionalization is 

detrimental to the nonprofit sector because it implies “alienating people from the helping 

relationships they could establish with their neighbors and kin … by redefining basic human 

needs as ‘problems’ that only professionals can resolve” (Salamon, 1999, p. 13).  

2.3 Why occupation matters  

As a classifier for jobs, occupations reflect ability and skill attainment, earning levels, 

and socioeconomic status. The distinction of occupations makes it an interesting area in pay 

studies, such as lawyers (Weisbrod, 1983), registered nurses (King & Lewis, 2017), or 

occupation pay comparison studies (Lewis, 2018). Occupations have different structures and 

conditions, including hazards, union status, and environmental amenities (Macpherson & Hirsch, 

1995). Nonprofit jobs spread across most occupations but ten of them, including clergy, social 

service managers, health technicians, and educators, account for the majority of the nonprofit 

employment (Addison, Ozturk, & Wang, 2018; Hirsch et al., 2018; Ruhm & Borkoski, 2003).   

Scholars examined the cross-sector wage differential caused by occupations. Production, 

maintenance, and material moving workers tend to concentrate on for-profit organizations 

(Bishow & Monaco, 2016). In contrast, nonprofits employ more managers, professionals, service 

workers, and female workers (Bishow & Monaco, 2016). Controlling for these occupational 

characteristics in the nonprofit sector, studies reveal less dispersion in cross-sectoral pay 

differential (Leete, 2000; Preston, 1990b).  Particularly, nonprofit wage structure has more 
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gender pay parity, lower racial discrimination, lower gay-straight pay differences, and more 

wage equity between ranks than for-profit firms (Faulk et al., 2012; Hallock, 2002; Hirsch et al., 

2018; Leete, 2000, 2006; Lewis, 2010; Preston, 1989; Ruhm & Borkoski, 2003).  

Nonetheless, women earn less than men in both the nonprofit and for-profit sectors 

(Lanfranchi & Narcy, 2015; Leete, 2001; Macpherson & Hirsch, 1995; Preston, 1990). The 

gender pay gap gets wider with persistent “Glass Ceiling” that Gibelman (2000) defines as 

“transparent but real barriers, based on discriminatory attitudes or organizational bias, that 

impede or prevent qualified individuals, including (but not limited to) women, racial and ethnic 

minorities, and disabled persons, from advancing into management positions” (p. 251). 

Glass ceiling hides the discriminatory nature of pay because, for instance, the gender pay 

gap may appear to be caused by the difference in positions. Sampson and Moore (2008) 

document a persistent male pay advantage due to the "glass ceiling": senior management 

positions are predominantly owned by men, "women account for 47 percent of U.S. workforce 

and less than 8 percent of its top managers." Even in similar senior management positions, 

female managers earned 72 percent of male managers' salaries in 2005. Furthermore, the gender 

pay gap is larger for older workers than for younger employees (Sampson & Moore, 2008). 

The nonprofit sector experiences the same situation. In the study of fundraising 

professionals in Northeast, Sampson and Moore (2008) find that women dominate a large 

number of low-paying jobs, women earn less in the same position, fewer women get pension 

plans than men, women tend to work for smaller organizations who generally pay less than larger 

organizations, more women take their time off from the career than men mainly for reasons of 

childcare, and women are less likely to be promoted to senior managers.  
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Female Overrepresentation. 

One aspect of occupational effect on wage is the female dominance in the nonprofit 

sector (Boris & Steuerle, 2017; Faulk et al., 2012; Hirsch et al., 2018; Lanfranchi & Narcy, 2015; 

Leete, 2006; Mirvis & Hackett, 1983; Onyx & Maclean, 1996). Men and women differ in their 

preference for working conditions. Preston (1990b)  find that nonprofit wage structure largely 

explains the female dominance in the nonprofit sector. Mas and Pallais (2016) find that women, 

especially those with young children, are more likely to choose jobs with flexible schedules than 

men. The nonprofit occupation structure and job characteristics are featured with family-friendly 

practices, flexible work schedules, and sick leave, all of which are especially attractive to women 

who have more family duties (Handy et al., 2007; Mirvis & Hackett, 1983; Preston, 1990b). 

Therefore, employees might sort themselves in nonprofit jobs due to altruistic motivation 

or occupation structure in the nonprofits, as discussed previously. Alternatively, they might sort 

to nonprofits due to other reasons such as the ability. Several studies acknowledge that the 

inability to exclude ability sorting is one of their study limitations (Jones, 2015; Leete, 2001; 

Preston, 1989). Macpherson and Hirsch (1995) address this issue by explaining the composition 

effect where historical gender discrimination against women leads women to crowd into low-

paying occupations. Over time, the female proportion evolves into an ability indicator, as women 

with more ability to move out and men with less ability to move into lower-paying occupations. 

Macpherson and Hirsch (1995) argue that the female proportion on the occupation level stands 

for job preference and tastes for women, but it is an indicator of the ability of men. The study 

concludes that models without controlling female proportion might lead to biased estimates on 

wage differential (Macpherson & Hirsch, 1995). 
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Summary  

Discrete industry and occupation studies produce negative, non-significant, and positive 

nonprofit wage differentials. Scholars of economy-wide studies are cautious about drawing a 

definitive conclusion by acknowledging the significant inter-industry difference in the nonprofit 

pay differential. Leete (2001) speculates that there might be several different forces leading to 

sectoral wage differential in addition to donative labor theory. Two major problems cause 

conflicts among findings. The first problem is mixing the explanatory level of theories, and the 

second is confounding the industry and occupation effects in the estimates.  

Theories on different levels have their boundaries and explain different mechanisms: 

there is no grand theory explaining whether nonprofits pay higher or lower as an aggregate of 

individual, industry, and occupation effects. Donative labor theory built on altruism explains 

individual behavior and preference. Attenuated property rights theory expounds on the 

behavioral differences between organizations that have property rights and limited property 

rights. Lastly, efficiency wage theory, a much less studied one in the nonprofit sector, predicts 

that the above-market-rate wage is helpful to save costs for organizations.  

Based on their inter-industry study results, Krueger and Summers (1988) conclude that 

“the sources of wage differentials need to be isolated” (p. 281). More importantly, these theories 

predict different results. Without articulating the level of analysis, we cannot anticipate the sign 

of the estimate of the cross-sectoral wage differential. Without disentangling effects from 

different levels, we are not clear whether the estimates stand for individual nonprofit workers, 

nonprofit organizations, or industries dominated by nonprofits.   

The second problem concerns how to appropriately control and model the effects of 

industries and occupations. Krueger and Summers (1988) argue that the combination of 



33 
 

industries and occupations is more important than other structural characteristics, such as 

location and union status. Warren (2008) highlights the relationship between industries and 

occupations: “an establishment's industry is a major determinant of its occupational composition, 

comparing for-profit and not-for-profit establishments within the same industry provide the best 

means of examining the effects of profit status on occupational staffing patterns” (p. 16). Kim 

and Charbonneau (2018) argue that cross-sector wage differentials “should be made for similar 

workers and jobs between the sectors” (p. 5). When controlling for more than 40,000 interactions 

between industries and occupations, Leete (2001) finds occupations and industries explain 

significant variation in pay. She explains that instead of the difference between nonprofit and 

for-profit sectors per se, the wage differential reflects “the public good content of the product 

produced” (p. 163).  

If industry and occupation play such an important role in cross-sector wage differentials, 

they should not just be controlled. Instead, industry and occupation should take a more active 

role as the context for cross-sectoral wage differential analysis. Although individual behavior 

offers observable convenience, individual actions are not independent of the social context 

(Friedland & Alford, 1991).  

Beyond the need to actively model the wage dispersion on industry and occupation 

levels, it is necessary to explain the dispersion. To summarize, it is compelling to consider 

multiple levels so that we can reinstitute the explanatory power of theories on different levels, 

and the resultant clarity can depict the real nature of the nonprofit pay differential. 
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Chapter III. Integrated Theories and Hypotheses 

As reviewed in the previous chapter, empirical evidence on whether nonprofit workers 

donate their labor to the organizations shows that nonprofit wage differentials differ by industries 

and occupations. Theories explain nonprofit wage differentials from different levels. Donative 

labor theory illustrates that altruistically motivated individuals tend to select to work for 

nonprofit organizations for lower pay (Handy & Katz, 1998; Weisbrod, 1983). Compensating 

wage theory predicts the effect of pleasant working conditions on pay between organizations or 

industries(Borjas, 2007; Smith, 1979). Efficiency wage theory explains that firms producing 

goods with less measurable qualities or organizations with larger sizes tend to pay more than 

needed to boost work morale and increase productivity (Akerlof, 1984; Krueger & Summers, 

1988). Lastly, attenuated property rights theory on the sector level differentiates the ownership of 

the organizations and their consequences. Accordingly, I develop research hypotheses based on 

different levels and then incorporate moderating effects across the individual level and industry 

level. Due to the lack of organizational-level data, I will not develop any hypothesis related to 

attenuated property rights theory. Therefore, I have three units of analysis: individual, industry, 

and occupation.   

Altruism is part of human nature, with some people being more altruistic than others 

(Piliavin & Charng, 1990). Altruists feel that they have a moral obligation or commitment to 

contributing to charitable services (Rose-Ackerman, 1996). Thus, they are more likely to engage 

in philanthropic behaviors, such as donating their labor as volunteers or donating money to the 

causes they support. Producing positive social benefits and increasing social welfare make 

altruistic individuals feel happy and satisfied (Handy et al., 2007; Preston, 1989; Weisbrod, 

1983). Cassar and Meier (2018) find that altruistic workers prefer meaningful jobs to monetary 
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rewards. Nonprofit organizations provide a space for altruistically motivated workers to 

contribute their efforts (E. Brown & Slivinski, 2018), because nonprofit missions, such as 

promoting equality and democracy, building social capital, or engaging in associations and 

advocacy, are more meaningful than for-profit jobs with the sole goal to maximize profits.  

Furthermore, nonprofit jobs seldom involve manufacturing that is characterized as 

repetitive work, fixed schedule, and rigid environment. Nonprofit jobs tend to be more service-

oriented and require frequent interactions with clients and customers, which is often refreshing 

and challenging. When nonprofit workers are able to help clients to solve their problems, the 

positive reinforcement of accomplishment can enhance their sense of competence. 

Furthermore, nonprofits are often founded by ideological entrepreneurs who have strong 

beliefs about how and to whom services should be provided (Rose-Ackerman, 1986). Scholars 

theorize that nonprofit managers might utilize the lower pay as a screening device to filter for 

intrinsically motivated workers because intrinsic motivation can guarantee nonprofit product 

quality, which is especially important in social, medical, and educational services (Handy & 

Katz, 1998; Hansmann, 1980). Managers’ screening for workers with intrinsic motivation can 

bring multiple benefits to the organization. Nonprofits can pay low salaries to them, and they still 

have a high commitment to jobs.  Self-selection of employees and selection of managers thus 

formulate a bi-directional selection, which makes employment in nonprofit organizations a valid 

proxy for altruistic motivation. Based on donative labor hypothesis,  

Hypothesis 1. Although circumstances of industries and occupations might be different, 

on average, nonprofit workers earn less than comparable for-profit workers.  
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Job amenities and working conditions are important determinants of acceptable pay for 

workers, as argued by compensating wage theory. In the dissertation, I conceptualize differences 

in working conditions to be associated with commercialism on the industry level. 

Commercialism, either defined as reliance on commercial revenue or as an attitude toward 

profit-making, implies changes in behaviors of organizations toward rationalization, efficiency, 

and cost reduction (Hwang & Powell, 2009; Maier et al., 2016). More commercialized 

organizations, or organizations in more commercialized industries, are more rationalized. They 

tend to have forward-looking strategic plans, financial audit systems, and quantitative 

performance measures (Hwang & Powell, 2009), probably clear profit-making goals as well. 

These differences can cascade to human resource management practices. Efficiency focus and 

cost-benefit mindset of commercialism (Froelich, 1999) might make the working environments 

and conditions less desirable, such as reducing family-friendly practices and the flexibility of 

work schedules. If workers are willing to pay for good working amenities, the less pleasant 

working conditions associated with commercialism will lead to their requests for higher 

compensation.  Lastly, more commercialized organizations are more likely to design the reward 

system based on extrinsic motivations (Ben-Ner et al., 2011), which might attract extrinsically 

motivated workers. As a contrast, intrinsically motivated workers who appreciate associative 

and expressive functions (Frumkin, 2002) tend to sort themselves into traditional nonprofits 

(Handy & Katz, 1998; Leete, 2000; Mirvis & Hackett, 1983; Steinberg, 1990). Even if 

altruistically motivated workers choose to work for commercialized nonprofits, they might 

require higher pay for doing things they do not like (Ben-Ner et al., 2011; Frank, 1996). 

Therefore, changed working conditions results in the effect of commercialism on pay. 

Hypothesis 2. Commercialism will increase salary.  
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Commercialism is not a dichotomous metric. It is a continuum where organizations align 

with different levels of commercialism. Nonprofits are founded to either respond to government 

failure (Weisbrod, 1988) or to materialize ideological entrepreneurs’ vision for social and 

political changes (Rose-Ackerman, 1996). In the case of government failure, nonprofits provide 

collective or redistributive goods that bear “public-good-intensive” (Leete, 2001, p.159), and 

they have a large portion of donative revenue. Other nonprofits producing private services have 

greater potential to commercialize and generate more commercial income than nonprofits 

providing public goods. Accordingly, they have more opportunities to charge for services.  

In the case of achieving social and political changes, Rose-Ackerman (1986, 1996) 

argues that ideological entrepreneurs believe certain ways are better for the clients than others. 

Due to the particular way they insist on delivering the service or on maintaining the service 

quality, they might not be willing or able to meet the demand from all clients. They have to 

select more worthy clients and put others on the waiting list rather than using price rationing 

(Rose-Ackerman, 1986, 1996; Weisbrod, 1988).   

Consequentially, nonprofit persistence of specific quality or a specific type of services 

(maybe at a higher price) and the unserved clients creates a market niche for for-profits to fill. 

For-profit firms in the same industry might provide differentiated services (possibly at a lower 

price and quality) to cater to the needs of the rest of the market (Rose-Ackerman, 1986). Or, for-

profits might charge more for a similar service for those who can afford it. Either practice will 

give for-profit organizations or industries dominated by for-profits to accumulate more financial 

slack to pay high salaries at their own discretion. In a study of nonprofit executive pay, Frumkin 

and Keating (2010) find that commercial revenue or earned income from individuals are less 

subject to monitoring because individual donors are dispersed. It is a different scenario if the 



38 
 

funding is from large donors like the United Way. The administrative cost needs to be justified, 

and fund-using is subject to close monitoring and financial reporting (Frumkin & Keating, 2010).  

In short, nonprofits in less commercialized industries should differ from nonprofits in 

more commercialized industries in aspects of their potential to generate and autonomy to 

distribute the surplus. Therefore, commercialism should moderate the sector effect on pay. 

Hypothesis 3. Commercialism raises pay, but it increases pay slower in nonprofits than 

for-profits.  

Managers and non-managerial staff are different in their cross-sectoral pay differential 

due to their proximity in producing positive social externalities (Preston, 1989). This difference 

will be further moderated by the commercialism on the industry level due to the sectoral 

composition of both sectors. Ideological managers sort themselves into nonprofits founded to 

achieve social or political commitment. Hansmann (1980) and Handy and Katz (1998) argue that 

the cunning nonprofit board of trustees can design and offer a compensation package that 

facilitates self-selection (Kreps, 1997) of nonprofit managers to attract intrinsically motivated 

and truly committed managers. Therefore, they are more likely to concentrate on industries 

dominated by nonprofits with less commercialism.   

In contrast, managerial professionals who care about extrinsic rewards will be more 

likely to work for-profit firms or commercialized nonprofits (Rose-Ackerman, 1996; Weisbrod, 

1988). Commercialized nonprofits prefer professional managers who are trained with business-

oriented skills and are good at strategic planning, identifying market niches, and designing 

measurable targets (Rose-Ackerman, 1996; Salamon, 2015). Managerial sorting, in turn, shape 

and consolidate organization objectives and missions (Hwang & Powell, 2009) and make the 
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nonprofits they lead more entrepreneurial or more ideological. Managers have a narrower cross-

sector pay gap than clerical workers. For clerical workers, studies explain that their narrower 

sectoral pay gap is because they are far from the realization of organizational goals and missions  

(Preston, 1989; Roomkin & Weisbrod, 1999), and they share fewer responsibilities than the 

managers. If this is true, then the difference in commercialism industries should have less impact 

on clerical workers than managers. In sum, the motivation sorting of managers is likely to create 

a larger pay gap between managers and non-manager staff in more commercialized nonprofits 

than traditional nonprofits.  

Hypothesis 4. Commercialism will increase the pay of managers more than non-

managerial staff. 

The gender pay gap is narrower in nonprofits than in the for-profits, everything else equal 

(Addison et al., 2018; Faulk et al., 2012; Lewis, 2018; Preston, 1990b). Due to the different 

levels of commercialism in each industry, the sectoral effect on the gender pay gap will be 

moderated by the commercialism.   

Gender pay equity is positively related to the female proportion by occupation. In 

occupations with more females, the pay gap narrows down because men endure more wage 

penalty, not because females gain in earnings (Addison et al., 2018; de Ruijter & Huffman, 2003; 

Faulk et al., 2012; Macpherson & Hirsch, 1995). Macpherson and Hirsch (1995) argue that 

occupation selection is a matter of preference for women. Handy and associates (2007) concur 

that job characteristics are good predictors for women’s job selection with nonprofits. 

The gender pay gap is narrower in the nonprofit sector than the for-profit sector (Leete, 

2000; Preston, 1990b; Ruhm & Borkoski, 2003). One reason is the female overrepresentation in 
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the nonprofit sector because featured services and occupations in the nonprofit are more suitable 

for women (Handy et al., 2007; Preston, 1990b). Another reason is related to the nonprofit values 

of "humanitarianism, charity, human rights, human well-being," which make them more likely to 

adhere to affirmative actions for employment and wage-setting (Gibelman, 2000, p. 254).  

As commercialism increases the efficiency focus and profit maximization, working 

conditions will become less pleasant. Changed working conditions might change job decisions 

for women who care about the amenities. More females might choose less commercialized 

organizations and industries that offer desirable conditions than males because women need to 

fulfill more social and familial responsibilities. Gender sorting thus leads to a compositional 

effect. Faulk et al. (2012) find that in industries dominated by nonprofits, the gender pay gap is 

narrower.  

In more commercialized organizations and industries, changed working conditions will 

trigger workers to require higher pay, as argued in the compensating wage theory. The external 

incentives and reward system in commercialized nonprofits will attract more males, whereas 

women are less responsive to monetary motivation than men (Handy et al., 2007). Therefore, 

gender concentration based on the sectoral difference depends on the industry where the 

nonprofit is located. Then, the compositional effect on pay resulting from commercialism will 

also follow.  

Hypothesis 5. Commercialism increases the pay for men more than women. 

In this chapter, I have developed hypotheses based on donative labor theory and 

commercialism effect. Altruistic motivation and labor donation are fundamental in the nonprofit 

sector. I argue that controlling for industry and occupation effects, nonprofit workers earn less 
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than for-profit workers. Compensating wage theory hinges on the working conditions. Literature 

suggests that commercialism causes changes in the behavior of organizations. Therefore, 

commercialism will increase pay and will moderate the manger-staff pay gap and the gender pay 

gap.  
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Chapter IV. Methodology 

The dissertation examines how contextual factors affect the pay gap between nonprofit 

workers and for-profit workers. With three units of analysis: individual, industry, and occupation, 

I apply multilevel modeling to estimate the effect of individual nonprofit status on the pay as 

well as this effect’s variability on industry and occupation levels while controlling for the state 

level and other variables. In this chapter, I first articulate the choice of cross-classified random 

effects modeling (CCREM) based on the data structure and unique features of CCREM. Then I 

describe the variables and data cleaning process. Lastly, I specify models for hypothesis testing.  

4.1 Cross-classified random effects modeling (CCREM) 

Workers are affiliated to, or nest in, certain industries and occupations. Thus, 

observations under the same industry or the same occupation are not independent due to the 

same contexts they share. With a different context of industry or occupation, comparable workers 

experience different effects. For example, the industry effects are similar for hospital workers but 

different for hospital and daycare center workers, even if workers have the same work 

experience, race, and educational attainment. In a study of five human service industries where 

“all types of organizations produce the same service, recruit employees with similar job titles, 

compete in the same labor markets, and face similar regulations,” Ben-Ner and associates (2011, 

p. 609) find that nonprofit wage differential varies across industries. Similarly, considering how 

occupations differ in human capital, such as education and vocational skills, occupation 

categories impose within-group homogeneous effects and between-group heterogeneous effects 

on workers.  
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Given the presence of clustering effects from industry and occupation levels2, ignoring 

them is problematic because it violates the assumption of independence of observations in the 

ordinary least squares (OLS) regression models (Bliese & Hanges, 2004; Hox, 2010; Woltman, 

Feldstain, Mackay, & Rocchi, 2012). Clustering effects imply heteroscedasticity or non-constant 

errors that are composed of errors associated with the individual level, errors associated with the 

industry level, errors associated with the occupation level, and errors associated with the state 

level.  Models that do not deal with the non-independent error suffer from aggregation bias, 

misestimated standard errors, and heterogeneity of regression3 (Raudenbush & Bryk, 2002). 

Scholars paying attention to the effects of the industry and the occupation apply different 

statistical approaches to these categories. Some choose one category to study (King & Lewis, 

2017; Preston, 1988; Weisbrod, 1983). Others control industry and occupation effects or 

interaction terms between the two categories (Faulk et al., 2012; Leete, 2001). Still others model 

the dispersion of inter-industry wage and how the pay on industry level differs from each other. 

Scholars constantly find, and mostly agree, that dispersion of industry wage is stable over a long 

period (Allen, 1995; Fields & Wolff, 1995; Haisken-Denew & Schmidt, 1991; Krueger & 

Summers, 1988). The following table summarizes the major approaches used to deal with 

industry effects.   

 

 

 Research Question Methods Comments 

                                                           
2 In the multilevel analysis, a level is "a design factor with random effects" (Snijders, 2005).  
3 “Heterogeneity of regression occurs when the relationships between individual characteristics and outcomes vary 

across organizations… Hierarchical linear models enable the investigator to estimate a separate set of regression 

coefficients for each organizational unit, and then to model variation among the organizations in their sets of 

coefficients as multivariate outcomes to be explained by organizational factors” (Raudenbush & Bryk, 2002, p.100). 
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Krueger and 

Summers 

(1988) 

Wage dispersion on 

the industry level 

explained by 

efficiency wage 

theory 

Step 1: control all possible 

variables and analyze the effect 

of industry dummy variables on 

wage;  

Step 2: normalize the estimated 

industry wage differentials as 

deviations from the (weighted) 

mean differential.  

Not considering sample 

size and number of 

categories leads to 

overestimating of 

standard deviation 

(Haisken-Denew & 

Schmidt, 1991) 

    

Leete (2001) Nonprofit pay 

differential  

1. 10,432 occupation/ industry 

cells in which both sectors are 

represented – as a control 

variable in OLS; 

 

2. disaggregated analysis of 91 

three-digit industries.  

Clustered error presence 

increases Type I Error 

(de Ruijter & Huffman, 

2003; Raudenbush & 

Bryk, 2002). 

    

Faulk et al. 

(2012)  

The gender pay gap 

in the nonprofit 

sector 

HLM, 250 industries and 845 

occupations generating 16,538 

cells 

Clustered errors are 

decomposed; 

Level-2 cells are mixed 

with industries and 

occupations.  

 

 

The three methods have different purposes. Krueger and Summers (1988) seek to analyze 

the inter-industry wage dispersion. They include industry dummies in the regression model and 

then normalize the wage differentials as the deviation from the mean. Haisken-Denew and 

Schmidt (1991) comment that including sample size and the number of categories of industries 

can improve the models. Leete (2001) aims to model the nonprofit wage differential while 

controlling industry and occupation variables. Her first analysis controlled for interactions of 

industry and occupation variables, and the second analysis analyzed disaggregated industries. 

Disaggregate analysis is no different from discrete industry or occupation studies. Controlling 

interaction terms does not solve the problem of heterogeneous error terms that lead to 

inconsistent outcomes. As a result, the study shows that significant positive or negative wage 
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differentials in discrete industries sum up to an insignificant overall wage differential (Leete, 

2001). Neglecting industry effects can lead us to draw a wrong conclusion that nonprofit workers 

earn the same wages as for-profit workers even though there is a difference in pay between 

nonprofit and for-profit workers. 

Faulk and associates (2012) put the interaction of industry and occupation on Level-2 as a 

classification factor. The statistical treatment of industry and occupation decomposes the errors 

that associate with the industry-occupation cells and improves the consistency of fixed 

coefficients. However, cells combined of industries and occupations as a unit on Level-2 makes 

it impossible to separate industry effects from occupation effects.  

Hierarchical linear modeling is designed to decompose error terms associated to different 

structural-level units in clustered data, and to model random effects of Level-1variables across 

Level-2 units, with an ultimate goal to produce consistent estimates while taking non-

independent observations and random effects into consideration (Kreft & Leeuw, 1998; 

Raudenbush & Bryk, 2002; Woltman et al., 2012). The phenomenon that individual outcomes 

vary across groups is not just a methodological nuisance that we need to fix (Raudenbush & 

Bryk, 2002) because “the heterogeneity is not a technical problem but a symptom of something 

deeper” (Deaton, 2010, p. 451). Therefore, beyond a methodological fix, multilevel modeling 

also means a shift in the conceptual view on social problems in research.  

In my dissertation, groups on Level-2 include industry, occupation, and state. Individuals 

nest in industries and occupations, but industries and occupations do not nest in each other. Any 

industry includes many different occupations, and many occupations expand across different 

industries. The data structure is thus not hierarchical. Instead, industry and occupation cross-

classify each other (Figure 2).  
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Figure 2. Network graph 

 

 

The dissertation uses cross-classified random effects modeling (CCREM) (Beretvas, 

2008a; Hox, 2010; Raudenbush & Bryk, 2002) because CCREM can achieve the following 

analysis goals. First, it improves the estimation through properly decomposing variance 

components4 after taking into account observable characteristics of individuals, industries, 

occupations, and states. It can specify and model random effects to estimate the unobserved 

influences attributable to industries and occupations. Specifically, the random coefficient5 model 

can assess the extent to which the association between nonprofit status and annual wage varies 

                                                           
4 Variance components refer to the variances and covariances of the residual errors (Hox & Maas, 2005). They can 

be decomposed into variance within and between groups (Diez Roux, 2002).  
5 Random coefficients are allowed to vary randomly around the overall mean across higher level units, that is, are 

assumed to be realizations of values from a probability distribution (Diez Roux, 2002).  
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across industries and occupations. Thus, it can estimate the unique effects associated with 

particular industries or occupations after adjusting for explanatory variables.  

This dissertation examines how commercialism affects the cross-sector pay differential. 

In terms of nonprofit pay differential, CCREM outputs include the fixed part containing group-

invariant regression coefficients and the random part containing the group-variant residual error 

terms (Hox & Maas, 2005). The fixed effect of nonprofit wage differential is the partially6 pooled 

nonprofit pay differential in the sample, and random effects are differences of the nonprofit wage 

differential across industries and occupations (Bell & Jones, 2015; Snijders, 2005). CCREM 

estimates the consistent nonprofit wage differential by taking into account Level-2 random 

effects. Based on prevailing nonprofit pay empirical studies, random effects modeling is an 

important component in the dissertation because it can reflect the social reality that nonprofit pay 

differential varies across industries and occupations.   

The effect of commercialism on pay implicates the analysis of the contextual effects7 of 

industries. The contextual analysis allows the “simultaneous examination of how individual-level 

and group-level variables are related to individual-level outcomes” (Diez Roux, 2002, p. 588). To 

achieve this, there is a need to control for effects of occupations as another Level-2 classification 

factor and the standard list of variables on human capital and demographic information.  

In addition to levels of industry and occupation, compensation varies by state (Biggs & 

Richwine, 2014). King and Lewis (2017) find that public hospitals are more likely than nonprofit 

hospitals to concentrate in high-paying states. Furthermore, state-level legislation may affect 

                                                           
6 Standard “pooled” linear regression models assume that residuals are independently and identically distributed 

(Bell & Jones, 2015). 
7 Compositional or contextual effects occur when the aggregate of a person-level characteristic is related to the 

outcome even after controlling for the effect of individual characteristic (Raudenbush & Bryk, 2002, P. 139-141). 
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industrial-level factors, such as barriers to entry and competition (Preston, 1988), and states vary 

in their economic development, which has effects on employee wages. Although there are no 

state-level predictors in this dissertation, omitting states in the model might lead to bias in the 

estimation (Leroux, 2019; Moerbeek, 2004; Tranmer & Steel, 2001; Van Den Noortgate, 

Opdenakker, & Onghena, 2005) of the nonprofit wage differential. Therefore, I put the state as a 

third cross-classifying unit to avoid potentially estimating the model parameters with bias. 

4.2 Measures 

Dependent Variable. 

The annual salary for employees is the dependent variable. Some studies use hourly 

wages (Hirsch et al., 2018). Still others use weekly wages (Ruhm & Borkoski, 2003). Since I 

only keep full-time workers who work at least 35 hours per week and 50-52 weeks per year 

(reasons to be discussed later), using hourly income or annual income is just a difference in the 

unit. So, I use annual salary and control for work hours per week. Because I use pooled cross-

sectional data in 13 years, the annual salary is converted to constant dollars based on the 

Consumer Price Index in 2016.  According to human capital theory, earning is a function of 

investment in ability measured by education and experience. Mincer (1958) found that the ability 

effect on earning is multiplicative rather than additive. Thus, earning is transformed to the 

natural logarithm. 

Independent Variables. 

Commercialism is a measure on the industry level. With a focus on profit-making and 

cost-reduction, organizations in an industry with more commercialism behave differently from 

organizations in another industry with less commercialism. The degree of commercialism is thus 

a contextual effect. I propose four measures for commercialism.  
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For-profit share of workers. It is the percentage of for-profit workers by industry from 

ACS 2005-2016 and Census 2000 data8. Industries dominated by profit-making organizations 

will have more focus on efficiency. In contrast, industries dominated by nonprofit organizations 

have less efficiency focus and gravitate toward producing positive social externalities (Frumkin, 

2002; Leete, 2001; Preston, 1989; Salamon, 1999).  

 The other three measures are generated from the Internal Revenue Services' (IRS) 

Statistics of Income (SOI) database. SOI data is the organization-level data for nonprofit 

organizations with detailed revenue and expense information in discrete lines. But it does not 

have individual-level information.  

Commercialism can be defined as results of commercializing behavior – relying on 

commercial revenue (James, 1998), measured by the percentage of commercial revenue or the 

percentage of program service revenue. Commercial revenue of nonprofits stands for the 

conventional and classical measure of nonprofit commercialization (Child, 2010; Kerlin & 

Pollak, 2011; Tuckman, 1998; Weisbrod, 1998b).  The Benefits Theory explains that nonprofit 

organizations providing public benefits rely more on donative revenue, and those providing 

private benefits rely more on commercial revenue (Fischer et al., 2011; Young, 2017). As such, 

the percentage of revenue from different sources functions to measure the nature of the goods or 

services that nonprofits produce (Chang & Tuckman, 1996). 

Commercial revenue.  The percentage of commercial revenue is the aggregated 

commercial revenue divided by the total revenue on the industry level (Child, 2010). I aggregate 

industry-level data in SOI data from 2000 to 2012. SOI data have somewhat different variables 

                                                           
8 The data is pooled cross-sectional data. To check if there are trends in the for-profit share, I generated a variable 

trend: (𝑓𝑝𝑠ℎ𝑎𝑟𝑒2016 − 𝑓𝑝𝑠ℎ𝑎𝑟𝑒2000)/(
𝑓𝑝𝑠ℎ𝑎𝑟𝑒2000+𝑓𝑝𝑠ℎ𝑎𝑟𝑒2016

2
). Testing trend variable in the model shows it is not 

significant (Model 4 in Appendix C). I dropped the trend variable. 
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before and after 2008. Since 2008, there are more detailed categories of commercial revenue 

information such as royalties, tax-exempt bonds, income from gaming, and the total number of 

volunteers. These categories do not exist before 2008. Following Kerlin and Pollak (2011), 

commercial revenue only includes program service revenue (prior year), investment income 

(prior year), gross rents, gross sales of inventory, and dues and assessments from members9. 

Unrelated business income is not considered because it is only around one percent or less in the 

aggregated total revenue. 

Using revenue percentage to measure commercialism assumes the complementary 

relationship of donative revenue and earned income revenue. While some empirical studies find 

negative relationships between donative revenue and commercial revenue in human service 

organizations (Guo, 2006), substantial debates prevail on whether the two sources crowd in or 

crowd out each other (Tinkelman & Neely, 2018). Using a vector autoregression model, 

Weisbrod (1998a) finds that when the nonprofit goal is to cross-subsidize, commercial revenue 

will crowd out donative revenue. However, when the nonprofit goal is to maximize profits, 

commercial revenue will crowd in donative revenue, such as in universities and hospitals. If 

crowd-in happens, the revenue percentage may not be a good measure because the source of the 

increased percentage is mixed. 

Program Service Revenue (PSR). It is the aggregated PSR divided by the total revenue 

on the industry level. Classification of nonprofit revenue streams is notoriously confusing 

because the financial data collection tool is designed for tax purposes rather than economic 

analysis purposes. For instance, the purpose and mechanism of government grants are different 

from that of government contracts in their implications on the organization's behavior, but they 

                                                           
9 https://nccs-data.urban.org/dd2.php?close=1&form=SOI+2012+990+c3  

https://nccs-data.urban.org/dd2.php?close=1&form=SOI+2012+990+c3
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are not differentiated in the financial data. Government grants aim for the development of 

recipient organizations, whereas government contracts require service delivery and performance 

indicators (Salamon, 2002). So, government contracts involve market behavior more than 

government grants. As a comparison to commercial revenue, program service revenue (PSR) 

only includes fees and service charges and hence has a better-defined scope of revenue and 

becomes an alternative measure for commercializing results (Child, 2010; Foster & Bradach, 

2005). Furthermore, PSR provides a more direct indication of the exchange of services, such as 

the scenario where hospitals depend on Medicare or Medicaid and education nonprofits rely on 

Head Start programs (Rose-Ackerman, 1996). Activities involving market exchange may push 

nonprofits to adopt business-like approaches, which is related to the change of organization 

behaviors. 

Fundraising Efforts. An additional measure is the aggregated fundraising expense 

divided by the total expenses on the industry level. Commercialism can also be conceptualized as 

the intention, defined by dictionaries. An intention to commercialize is an antecedent of the 

commercialization outcome associated with commercial revenue. Thus, the level of efforts 

invested in revenue-generating strategies might be a better indicator of organization behaviors. If 

an organization prioritizes generating revenue from commercial sources, it is less likely to divert 

a lot of efforts to a conflicting strategy for generating donative revenue through fundraising. The 

expense of fundraising inversely indicates the nonprofit’s intention to commercialize.  

Fundraising cost is one of the three categories of expenses together with program expense 

and administrative expense (Hager, 2003; Krishnan, Yetman, & Yetman, 2006). The ratio of 

expenses has an important implication on nonprofits' efficiency and effectiveness to the eye of 

donors and stakeholders. High ratios of fundraising expense and administrative expenses are not 
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desirable, but a high ratio of program expense is desirable because of their relationship with 

efficiency. Therefore, nonprofits have the incentive to report lower fundraising costs. 

Researchers continuously find empirical evidence of lower reporting of fundraising costs 

because lower fundraising ratio implies higher fundraising efficiency (Krishnan et al., 2006; 

Lecy & Searing, 2015). Underreported fundraising cost ratio might lead to overestimating the 

commercialism contextual effects in nonprofits. Therefore, there are pros and cons to each of the 

four measures for commercialism.  

Nonprofit. In Census and ACS data, the variable “class of worker” have seven categories 

including self-employed, unpaid family workers, federal, state and local government workers, 

private worker, and nonprofit worker. I have kept categories of private workers and nonprofit 

categories for analysis.  

Occupation type.  I code occupation type in three categories with the white-collar 

workers as the reference category. “Managerial professional” refers to the OCC1990 category of 

executive, administrative, and managerial occupations under the three-digit occupation 

classification of 003-022. OCC1990 023-391 are coded as “white-collar workers,” including 

categories of management-related occupations, professional specialty occupations, technical, 

sales, and administrative support occupations. OCC1990 405-890 are coded as “blue-collar 

workers,” including service occupations, farming, forestry, and fishing occupations, precision 

production, craft, and repair occupations, and operators, fabricators, and laborers. 

Female. It is a dummy variable with female coded as 1 and male coded as 0.  

Control Variables. 

Age and work experience. Learning and experience are a function of time measured by 

age. Age also reflects the trajectory of biological development (Mincer, 1958). Work experience 



53 
 

is operationalized as age minus six then minus years of education.  Due to their perfect 

collinearity, work experience is used because it is a better predictor than age for compensation 

study. The models also include work experience squared because wage results from diminishing 

returns to work experience as the work experience increases.  

Education years. The education attainment variable in ACS data is a variable in 24 

categories with each category corresponding to certain years, and I recode it to be a continuous 

variable in years.  

Work hours per week. It is a variable reported as usual hours worked per week in Census 

2000 and ACS. 

Race. It is a categorical variable coded in five dummy variables: White, Black, Latino, 

Asian, and other races. White is the reference group.   

English ability level. The variable is recoded into an ordinal-level variable and treated as 

an interval-level variable:  1. Does not speak English; 2. Yes, but not well; 3. Yes, speak well; 4. 

Yes, speak only English.  

Fem_pct. It is the percentage of females by occupation. The female percentage is a proxy 

for unmeasured or unobserved personal ability and preference to adjust for estimation bias.  

Volunteer. It is the natural log of the total number of volunteers by industry. Information 

of volunteers comes from the only question on the IRS 990-form: “total number of volunteers 

(estimate if necessary).” Volunteers are important to the nonprofit sector. Many researchers 

discuss how commercialism might lead to the replacement of volunteers (Lundström, 2001; 

Maier et al., 2016; Salamon, 1999). However, the information on volunteers is not very reliable 

due to the fluid definition of volunteer work (Bania & Leete, 2018). The volunteer variable only 

exists in 2008 and later.  
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Table 1. Variables 

 Variables Operationalization 

Dependent 

variable  

Wage  Natural log of annual salary in constant dollars based on 

CPI in 2016 

Levels  Individual-level  

Industry-level  38 categories 

Occupation-level 308 categories 

State-level 51 categories 

 

 

Independent 

variables 

 

 

Commercialism 

(industry-level) 

(1) fpshare: For-profit share of workers by industry 

(2) commprop: Percentage of commercial revenue in 

total revenue 

(3) psrprop: Percentage of PSR in total revenue 

(4) fndrs_efft: Percentage of fundraising expense in 

total expense 

Level-1:  

Nonprofit Nonprofit=1, for-profit= 0 

Female Female=1, male = 0 

Managers Yes=1, no= 0 

 

 

Control 

variables  

Volunteers 

(industry-level) 

The natural log of the total number of volunteers by 

industry 

Female percentage 

(occupation-level) 

Percentage of females by occupation  

Level-1:  

Years of education  Numeric (0 – 20) 

Work experience Equal to age – education years – 6, and then squared  

Work hours per week Numeric (35-99) 

English ability level 1-4 from low to high  

Race 

 

Dummy variables: White, Black, Latino, Asian, and 

Other, White is the reference group 

White-collar worker Yes=1, no= 0 

Blue-collar worker Yes=1, no= 0 

 

 

4.3 Data 

Data used in the dissertation come from two sources. First, pooled cross-sectional data 

from the 5% Public Use Microdata Sample of the Census 2000, plus the American Community 

Survey (ACS) from 2005 to 2016, provides comprehensive information on individuals, 
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industries, and occupations. The ACS is a mandatory survey collecting data from one-twelfth of 

the sample each month. It covers 3,141 counties in the 50 states, DC, and Puerto Rico 

(“American Community Survey Design and Methodology,” 2009). Between the years 2001-

2004, ACS was tested only in 36 selected counties and did not include group quarters population, 

covering only 800,000 addresses rather than 3 million in the full implementation.   

Second, Statistics of Income (SOI) from the National Center for Charitable Statistics 

(NCCS) serves as the complementary dataset providing finance and revenue information for 

alternative measures of commercialism. SOI data are only collected from the annual filing of 

990-form of nonprofit organizations. SOI data has better accuracy, but it oversamples large 

organizations (Kerlin & Pollak, 2011). I use the information on the industry level. So, the 

problem might not be as serious as used on the organizational level analysis.  Since all SOI 

information is from nonprofit organizations, I only use measures generated from SOI for the 

subset of data for nonprofit workers.   

Data cleaning and summary for ACS. 

Government employees are dropped because the focus of the study is on the difference in 

pay between nonprofit and for-profit workers. Individuals with missing and imputed data on all 

relevant variables are dropped, as Census Bureau’s imputation process assumes all sectors pay 

equally, which might level off the wage differentials between the two sectors (Bollinger, Hirsch, 

Hokayem, & Ziliak, forthcoming).    

I restrict the analysis to full-time workers aged 16-65 who work 35 hours or above per 

week (Hirsch et al., 2018) and 50-52 weeks10 per year. The restriction to full-time workers is 

critical to my hypothesis of altruistic motivation. Part-time workers might have several different 

                                                           
10 Weeks of working per year is in 7 categories: n/a, 1-13 weeks, 14-26 weeks, 27-39 weeks, 40-47 weeks, 48-49 

weeks, and 50-52 weeks. 
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jobs. If these jobs are from both nonprofit organizations and for-profit organizations, their 

multiple job holding will make their altruistic motivation ambiguous. In addition, it is likely that 

part-time employees have a different pension, fringe benefits, insurance plans, etc., from full-

time employees. Different packages of non-wage benefits might increase or decrease the reported 

annual income. It is unknown whether part-time workers require higher pay because of the 

absence of fringe benefits or whether employers employ part-time workers just because they 

want to reduce the cost of fringe benefits. Cut-off at 35 hours per week and 50-52 weeks per year 

may reduce but cannot exclude the difference in benefit packages across sectors. Studies find that 

part of the negative nonprofit wage differential is due to fewer hours of nonprofit workers 

(Preston, 1990a; Ruhm & Borkoski, 2003). So, I control for hours of working per week. 

Industries, occupations, and states are the Level-2 classification factors. ACS “indnaics” 

variable has a list of 268 industries11 in major categories of agriculture, forestry, fishing and 

hunting (with first 2 digits of 11), mining (first 2 digits of 21), utilities (22), construction (23), 

manufacturing (31-33), wholesale trade (42), retail trade (44-45), transportation and warehousing 

(48), information and communications (51), finance, insurance, real estates (52-53), professional, 

scientific, management, administrative, and wage management services (54-56), educational, 

health and social services (61-62), art, entertainment, recreation, accommodations and food 

services (71-72),  other services (except public administration) (81), public administration (92), 

activity duty military (92), and unemployed (99). Except for 92, nonprofit represents in all 

industries.  “indnaics” starting with 813 are pure nonprofit industries with no presence of for-

profits, including religious organizations, labor unions, and civic, social, advocacy organizations 

                                                           
11 IPUMS code for the industry. https://usa.ipums.org/usa/volii/indcross03.shtml 

https://usa.ipums.org/usa/volii/indcross03.shtml
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and grantmaking and giving services. Excluding categories starting with 813, 92, and 99 still 

leaves more than 200 categories of industries.  

This industry list is much longer than the list from SOI data under the NAICS12 code.  It 

raises the question if all observations classified as nonprofit workers in ACS really work for 

nonprofit organizations. For example, the industry code starting with “3” is an extensive list 

indicating “manufacturing,” and there is no corresponding list of such categories in the SOI data. 

Leete (2006) reports potential misreporting of individual workers that they might not be clear 

about their employer’s incorporation status.  

Nonprofit is the tax-exempt status granted to organizations. SOI is extracted from the IRS 

990 forms filed by organizations based on their tax-exempt status. So, the industry list from SOI 

should be more reliable than the self-reporting list from ACS. I use the SOI list to match the ACS 

list.   

The NAICS code in SOI dataset is more standard following six-digit rule than the ACS 

list with various digits combining with alphabetic letters. The first two digits in the 93 categories 

in the SOI are 11, 22, 48, 51, 52, 54, 61, 62, 71, 81. This list from SOI is a lot more detailed but 

not completely corresponding to the ACS list. So, I compare the two lists and try to match as 

many digits as I can. During matching, I also read the industry title to make sure the 

correspondence between SOI and ACS lists. Some industries from ACS are combined to match 

                                                           
12 1. “NAICS is based on a production-oriented concept, meaning that it groups establishments into industries 

according to the similarity in the processes used to produce goods or services.” It was developed for statistical 

purposes to classify “business establishments for the collection, tabulation, presentation, and analysis of statistical 

data describing the U.S. economy” (U.S. Census Bureau, 2017). 2. The first two digits designate the economic 

sector, the third digit designates the subsector, the fourth digit designates the industry group, the fifth digit 

designates the NAICS industry, and the sixth digit designates the national industry. The 5-digit NAICS code is the 

level at which there is comparability in code and definitions for most of the NAICS sectors across the three countries 

participating in NAICS (the United States, Canada, and Mexico). The 6-digit level allows for the United States, 

Canada, and Mexico each to have country-specific detail. More details see https://www.naics.com/what-is-a-

naics-code-why-do-i-need-one/   

https://www.naics.com/what-is-a-naics-code-why-do-i-need-one/
https://www.naics.com/what-is-a-naics-code-why-do-i-need-one/
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the SOI list, and some SOI categories are combined to match ACS (Table 26 for details). 

Eventually, 58 ACS categories were combined into 38 analysis categories, and major 

combinations are for utilities, 6 categories into 1, and transportations, 9 categories into 1. The 

histogram of the log of income shows that the data were heavily left-skewed by a few 

observations. The skewness can distort the post-estimation residual diagnosis. I left truncated 

819 observations with the log of income under 8 (equal to $2,981 per year) (Figure 3).  

 

 

 

Figure 3. Distribution of annual income 
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The process leads to the final dataset with 3,017,110 observations nested in 38 industry 

categories and 308 occupations in 50 states and DC. Twenty-two percent of them are nonprofit 

workers, and 78 percent are for-profit workers (see Appendix A for dropped observations). 

Table 2 shows that the size of industries and occupations is very different. In the sample, 

the average industry size for the nonprofit is 17,491, much smaller than that for for-profits. 

Similarly, the average occupation size for nonprofits is also smaller.  Comparatively speaking, 

state difference is not as obvious as industries and occupations.  

 

Table 2. Descriptive statistics: observations in Level-2 categories 

  

Mean Std. Dev Min Max 

Industry categories (38) Nonprofit  17,491 39,226 274 226,694 

 

For-profit 61,907 75,669 871 293,501 

 

Total  79,398 97,646 3,868 479,007 

      

Occupations (308)  Nonprofit  2,158 6,287 1 78,309 

 

For-profit 10,082 15,981 2 115,120 

 

Total  9,796 20,715 4 193,429 

      

State (51) Nonprofit  13,032 13,538 1,129 57,935 

 

For-profit  46,127 50,634 3,026 248,182 

 

Total  59,159 63,514 4,575 306,100 

 

 

Nonprofits concentrate in several narrowly defined industries. Eleven industries that 

employ above 10,000 nonprofit workers employ 86% of total nonprofit workers (Figure 4).  
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Figure 4. Sector composition of industries 
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The hospital industry (6220) alone employs 34% of nonprofit workers. Elementary and 

secondary schools (6111) and colleges and universities (6112) employ another 23% of nonprofit 

workforce, followed by individual and family services (6241), outpatient care centers (6214), 

nursing facilities and hospices (6231), other health care services (6219), daycare centers (6244), 

insurance providers (5241), credit unions (5221), and research institutes (5417). More 

observations by industry do not mean a higher market share.  
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Figure 5. Market share of workers by industry  
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Figure 5 shows the market share of labor in each sector. Industries with high nonprofit 

share are generally small except for hospitals, elementary and secondary schools, and higher 

education. Seven industries with 50 percent of nonprofit share are community food and housing 

(6242), museums and art galleries (7121), individual and family services (6241), vocational 

counseling and job training (6243), elementary and secondary school (6111), two-year college 

and higher education (6112), and recreational and vacation camps (7212). More than half of the 

industries have an industry share of nonprofits under 20%. 

The list for occupation categories has 320 categories in ACS data, not including the 

unknown and unemployment categories. After dropping industries with only for-profit or 

nonprofit and occupations with only males or females, there left 308 occupation categories.  

Fourteen occupations with 10,000 nonprofit workers or above employ 52 percent of the 

total nonprofit workforce, including registered nurses, primary school teachers, subject 

instructors, managers, social workers, physicians, accountants. In terms of the proportion of 

nonprofit workers by occupation, 18 occupations have more than half of nonprofit share by 

occupation, including archivists and curators, clergy and religious workers, librarians, welfare 

service aides, secondary school teachers, social workers, managers, subject instructors, primary 

school teachers, psychologist, among others. Most nonprofit-dominated occupations have very 

high female representation. Thirty of them have 50 percent of female workers or more.   

Data cleaning and summary for SOI. 

In her economy-wide study, Leete (2001) has used the share of donative revenue 

(including donation and government grants) for a sample limited to corresponding industries, on 

the grounds that  
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public-good-intensive organizations might be expected to receive both more public 

support of their operations as well as more labor donations. Thus, one might expect the 

share of the revenue from public sources (donations and government grants) to be related 

to donations of labor, (Leete, 2001, p. 159)   

but she finds little support for the donative labor hypothesis.  

Measures generated from SOI data are more pertinent to nonprofit workers than for-profit 

workers because the revenue and expenditure information only comes from the nonprofit part of 

the industry. Without information from the for-profit part of the industry, the denominators of the 

revenue proportion or expenditure proportion will be distorted to measure the whole industry. 

Table 3 shows the correlation of variables for all observations, and Table 4 is for nonprofit 

workers. Based on nonprofit literature, fundraising is negatively related to commercial revenue. 

Therefore, the relationship of annual income with the percentage of commercial revenue and 

percentage of PSR should also have an opposite sign with the relationship between income and 

fundraising efforts. Only Table (4) shows this relationship. The evidence informs my decision to 

subset nonprofit workers for measures generated from SOI data.  

 

 

Table 3. Pairwise correlations for all data 

Variables (1) (2) (3) (4) (5) (6) 

(1) natural log of annual income 1.000 

(2) for-profit share of workers 0.101* 1.000 

(3) % commercial revenue -0.036* -0.098* 1.000 

(4) % program service revenue -0.008* -0.216* 0.801* 1.000 

(5) % fundraising expense -0.057* -0.355* -0.409* -0.400* 1.000 

(6) natural log of volunteer total  -0.072* -0.754* 0.200* 0.169* 0.292* 1.000 

* shows significance at the .01 level 
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Table 4. Pairwise correlations for nonprofit worker data 

Variables (1) (2) (3) (4) (5) (6) 

(1) natural log of annual income 1.000 

(2) for-profit share of workers 0.022* 1.000 

(3) % commercial revenue 0.079* 0.353* 1.000 

(4) % program service revenue 0.100* 0.261* 0.911* 1.000 

(5) % fundraising expense -0.101* -0.496* -0.707* -0.704* 1.000 

(6) natural log of volunteer total  0.098* -0.662* -0.008* 0.039* 0.104* 1.000 

* shows significance at the .01 level 

 

 

Descriptive statistics.  

Table (5) shows the descriptive statistics of the data with full-time workers in the 

dissertation. It includes more female workers than male workers. The nonprofit sector employs 

68% female workers. Consistent with previous studies (Hirsch et al., 2018), the nonprofit sector 

employs more managerial professionals and white-collar workers than the for-profit sector. 

Managerial professionals are more likely to work for nonprofits, whereas blue-collar workers are 

less likely to work for nonprofits than for-profits. Nonprofit workers have more education and 

work experience and work fewer hours per week than for-profit workers. Whites are more likely, 

whereas Blacks, Latinos, and Asians are less likely to work for nonprofits than for-profits.  

  

Table 5. Descriptive statistics: demographic information across sectors 

 

Nonprofit 

(n = 664,646) 

For-profit 

(n = 2,352,464) 

Total 

(n = 3,017,110) 

Male  32% 44% 41% 

Female  68% 56% 59% 

Managerial professional 16% 14% 15% 

White-collar worker 70% 62% 63% 
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Blue-collar worker 14% 24% 22% 

Years of education 15.47 14.40 14.63 

Age  44.21 42.24 42.68 

Work experience 22.74 21.84 22.04 

Work hours per week 43.20 43.99 43.81 

White  80% 75% 76% 

Black  8% 9% 9% 

Latino  6% 9% 9% 

Asian  5% 5% 5% 

Other race 2% 2% 2% 

 

Table (6) shows the correlation of key variables. All variables are significant at the 0.01 

level.  The strongest correlation 0.549 is between males on the individual level and female 

percentage on the occupation level, followed by nonprofit on the individual level and for-profit 

share on the industry level. In the order of importance, years of education, work hours, male, and 

the female percentage have the highest impacts on the annual income.
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Table 6. Pairwise correlations (Total observation: 3, 017,110)  

Variables Mean  Std. Dev (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 (1) annual income (log) 10.83 0.71 1.000 

 (2) nonprofit 0.22 0.41 0.001* 1.000 

 (3) male 0.41 0.49 0.265* -0.105* 1.000 

 (4) years of education 14.63 2.51 0.463* 0.178* 0.070* 1.000 

 (5) speak English 3.94 0.30 0.127* 0.048* -0.021* 0.208* 1.000 

 (6) work experience 22.04 11.83 0.085* 0.031* -0.000 -0.259* -0.072* 1.000 

 (7) experience squared 139.94 139.20 -0.197* -0.011* -0.033* -0.113* -0.034* -0.009* 1.000 

 (8) work hours 43.81 8.07 0.305* -0.040* 0.223* 0.154* 0.034* -0.014* -0.049* 1.000 

 (9) for-profit share 0.78 0.22 0.101* -0.532* 0.202* -0.180* -0.032* 0.001 -0.012* 0.088* 1.000 

(10) female percentage 0.59 0.27 -0.241* 0.153* -0.549* 0.001 0.032* -0.027* 0.034* -0.247* -0.311* 1.000 

  * shows significance at the .01 level  
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4.4 Model Building and Analysis Steps 

The analysis comprises four steps: linearity and normality checking; theory and 

hypotheses testing; residual diagnosis, and sensitivity analysis.  

Cross-classified random effects modeling (CCREM) assumes multivariate normality and 

linearity. After cleaning the data, several variables need transformation. Annual income is 

transformed into the natural logarithm format. One thing to notice is the bump on the right side 

(Figure 3). The reason lies with the top-coded income (Table 7). Otherwise, the bump should 

dilute in the long tail on the right, and the distribution should look more normal.   

 

Table 7. Distribution of top-coded income by year 

Year 

Top-code of 

income in constant dollar # of nonprofit # of for-profit 

2000 385,000 536,777 0 4 

2005 629,000 773,041 1 81 

2006 645,000 767,815 5 69 

2007 666,000 770,951 5 73 

2008 651,000 725,712 4 91 

2009 641,000 717,058 7 90 

2010 569,000 626,380 0 12 

2011 607,000 647,589 1 12 

2012 635,000 663,803 6 99 

2013 660,000 688,058 1 15 

2014 642,000 650,860 4 116 

2015 658,000 666,315 8 116 

2016 714,000 714,000 0 7 
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I use Locally Weighted Scatterplot smoothing (LOESS) to check the linearity of variables 

of for-profit share or workers, female percentage, and work experience. The LOESS smoothing 

(Jacoby, 2000) makes no assumption on the relationship of variables except for tracing the 

dependence of annual income on the market share. The for-profit share of workers is not strictly 

linear with the annual income (Appendix H).  In industries with lower market share and 

comparatively fewer workers, it is a little curvilinear. Industries with higher for-profit share are 

also large industries where it shows a more linear relationship. I checked in a model with a 

quadratic form of market share (Model 3 in Appendix C). It was not significant.  So, I treated the 

market share as linear. 

Graphing female percentage by occupation in relation to annual earnings shows a slightly 

curvilinear relationship in segments of percentage between 20 percent and 40 percent (Appendix 

I), but the two ends display a negative relationship with the income. To make sure that my visual 

judgment is correct, I tested the squared term of female percentage in a model (Model 2 in 

Appendix C). The model shows that the squared term is not significant.     

Appendix J shows an apparent and consistent quadratic relationship between work 

experience and the annual income, no matter whether it is in the for-profit or nonprofit sector and 

whether it is for males and females. Therefore, all models include work experience and its square 

term.  

Models. 

The model building follows the conventional multilevel modeling process. Unconditional 

models decomposing variance components can inform and justify the use of multilevel 

modeling. Based on the results of unconditional models, I run random intercept models with only 

fixed coefficients to understand the proportional reduction in between-group variance by the 
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variables on Level-1 and Level-2. Then I run random coefficient models, and cross-level 

interaction models to test hypotheses. The subscript notation follows Beretvas (2008b), using 

subscript i for individual, and subscripts j1, j2, and j3 for industry, occupation, and state, 

respectively. Having j1, j2, and j3 in the parentheses has the advantage to emphasize the parallel 

relationship of Level-2 factors, rather than the perception of hierarchical relationships such as 

subscripts j, k, and l.  

4.4.1 Unconditional models13. The equation for Level-1: 

 𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛽0(𝑗1,𝑗2,𝑗3) + 𝑒𝑖(𝑗1,𝑗2,𝑗3), (1) 

 

Where  

𝑌𝑖(𝑗1,𝑗2,𝑗3) is the natural log salary for person i in industry j1, occupation j2, and 

state j3;  

𝛽0(𝑗1,𝑗2,𝑗3) is the mean salary for workers in any combination of industry, 

occupation, and state;  

𝑒𝑖(𝑗1,𝑗2,𝑗3) is the unique effect associated with person i in a certain combination of 

industry, occupation, and state. We assume 𝑒𝑖(𝑗1,𝑗2,𝑗3)~𝑁(0, 𝜎2).  

The variability in earnings can be attributable to industry, occupation, and state. The 

equation for Level-2: 

                                                           
13 It is called one-way ANOVA model. It is a random effects model because the group effects are construed as 

random. It produces a point estimate and confidence interval for the grand mean. More importantly, it provides 

information about the outcome variability at different levels (Raudenbush & Bryk, 2002).  
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 𝛽0(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝑢0(𝑗1 ) + 𝑢0( 𝑗2) + 𝑢0(𝑗3) 

𝑢0(𝑗1)~𝑁(𝑜, 𝜏0(𝑗1)), 

𝑢0(𝑗2)~𝑁(𝑜, 𝜏0(𝑗2)), 

𝑢0( 𝑗3)~𝑁(𝑜, 𝜏0(𝑗3)), 

(2) 

Where  

𝛾0000 is the grand mean salary of groups combined of industry, occupation, and 

state;  

𝑢0(𝑗1), 𝑢0(𝑗2), and 𝑢0(𝑗3) is the random/unique main effect of industry j1, 

occupation j2, and state j3 on income, respectively.  

Combined model: 

 𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝑢0(𝑗1) + 𝑢0( 𝑗2) + 𝑢0(𝑗3) + 𝑒𝑖(𝑗1,𝑗2,𝑗3), (3) 

 

Accordingly, there are different kinds of intra-unit correlation coefficients (IUCC). The 

dissertation focuses on the IUCC for industries and occupations.  

1) Correlation between workers in the same industry but in a different occupation 

and state. 

 𝑐𝑜𝑟𝑟(𝑌𝑖(𝑗1,𝑗2,𝑗3), 𝑌𝑖′(𝑗1′,𝑗2,𝑗3)) =  𝜌𝑗1 =  
𝜏0(𝑗1)

𝜏0(𝑗1) + 𝜏0(𝑗2) + 𝜏0(𝑗3) +  𝜎2
 

(4) 

 

2) Correlation between workers in the same occupation but in a different industry 

and state. 

 𝑐𝑜𝑟𝑟(𝑌𝑖(𝑗1,𝑗2,𝑗3), 𝑌𝑖′(𝑗,𝑗2′,𝑗3) =  𝜌𝑗2 =  
𝜏0(𝑗2)

𝜏0(𝑗1) + 𝜏0(𝑗2) + 𝜏0(𝑗3) +  𝜎2
 

(5) 
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4.4.2 Models for measure 1, the for-profit share of workers. 

Researchers recommend centering to avoid potential multicollinearity due to cross-level 

interactions and to ensure numerical stability in estimating multilevel models (Enders & Tofighi, 

2007; Kreft et al., 1995; McCoach, 2010; Raudenbush & Bryk, 2002). Centering can also render 

the intercept more meaningful and facilitate result interpretation because it avoids the impossible 

values in the dataset, such as 0 percentage of for-profit labor. Except for the dependent variable, 

all Level-1 variables are grand-mean-centered. The grand-mean, in this case, is the mean of all 

observations within a combination of industry, occupation, and state. This way of centering 

measures how individual income deviates from the group combination of industry, occupation, 

and state. The for-profit share of workers by industry and the female percentage by occupation 

on Level-2 are also grand-mean-centered. Thus, Level-2 variables measure the contextual effect 

of for-profit share and femaleness. Commercialism measured as for-profit share models how the 

annual income changes if a person (of the same for-profit status) moves from one industry to 

another with a different for-profit share, holding constant individual sector status. Similarly, the 

female percentage measures how one’s income changes from one occupation to another due to 

the different female percentage in these occupations holding constant individual gender status. 

After centering, the mean for each independent variable is close to 0 but not 0 because it takes 

into consideration the group size by taking the mean of the group mean. 

 

Table 8. Descriptive statistics (centered), (Total observations: 3,017,110) 

Variable Mean Std. Dev. Min Max 

Natural log of annual income 10.83 0.71 8.00 13.56 

Nonprofit  -0.03 0.41 -0.25 0.75 

Female  0.06 0.49 -0.53 0.47 

Market share by industry 0.78 0.22 -0.63 0.23 
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Female percentage by occupation 0.19 0.27 -0.38 0.59 

White  -0.02 0.43 -0.78 0.22 

Black  0.00 0.28 -0.09 0.91 

Latino  0.01 0.28 -0.07 0.93 

Asian  0.02 0.22 -0.04 0.96 

Other race -0.01 0.14 -0.03 0.97 

Managers  0.06 0.35 -0.09 0.91 

White-collar workers  0.03 0.48 -0.61 0.39 

Blue-collar workers  -0.09 0.41 -0.31 0.69 

Work experience  -0.24 11.83 -28.29 36.71 

Experience squared 1.40 1.39 0.00 13.48 

Years of education 0.31 2.51 -14.32 5.68 

Work hours 0.49 7.72 -8.00 55.00 

English speaking level  -0.02 0.14 -2.00 0.00 
 

 

(1) To test Hypothesis 1 that nonprofit workers earn less than for-profit workers on average, I 

use a random slope model (equations 6 and 7) to partial out the random variation of nonprofit 

pay differential on industry and occupation levels. The nonprofit pay coefficient 𝛽1(𝑗1,𝑗2,𝑗3) is 

specified to have a probability distribution on industry and occupation levels (equation 7). 

The coefficient 𝛾1000 in equation (7) is thus the partially pooled nonprofit wage differential 

showing that on average, whether nonprofit workers earn more or less than the for-profit 

workers. To test Hypotheses 2 of commercialism effects on pay, I need to control all Level-1 

variables (equation 6), the female percentage by occupation, and state effects. The coefficient 

of 𝛾0100 in equation (7) will indicate whether commercialism increases or decreases the 

annual pay. 
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Level-1 equation: 

 𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛽0(𝑗1,𝑗2,𝑗3) + 𝛽1(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) +

𝛽2(𝑗1,𝑗2,𝑘3)𝑓𝑒𝑚𝑎𝑙𝑒𝑖(𝑗1,𝑗2,𝑗3) + ∑ 𝛽𝑛(𝑗1,𝑗2,𝑗3)𝑋𝑛𝑖(𝑗1,𝑗2,𝑗3)
11
𝑛=3 + 𝑒𝑖(𝑗1,𝑗2,𝑗3), 

 𝑒𝑖(𝑗1,𝑗2,𝑗3)~𝑁(0, 𝜎2) 

(6) 

Level-2 equation:   

 𝛽0(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝛾0100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝛾0200𝑓𝑒𝑚_𝑝𝑐𝑡𝑗2 + 𝑟0(𝑗1) + 𝑟0(𝑗2)

+ 𝑟0(𝑗3) 

𝛽1(𝑗1,𝑗2,𝑗3) = 𝛾1000 + 𝑟1(𝑗1) + 𝑟1(𝑗2) 

𝛽2(𝑗1𝑗2,𝑗3) = 𝛾2000 

𝛽3(𝑗1𝑗2,𝑗3) = 𝛾3000 

⋮ 

𝛽11(𝑗1,𝑗2,𝑗3) = 𝛾11000 

(7) 

Where  

𝑟0(𝑗1) and 𝑟1(𝑗1) are residuals of the random intercept and random slope on the industry 

level;  

𝑟0(𝑗2) and 𝑟1(𝑗2) are residuals of the random intercept and random slope on the occupation 

level; 

𝑟0(𝑗3) is the residual of random intercept on the state level; 

X is a vector for control variables, including gender, years of education, work experience, 

and its squared term, hours of working per week, race, and English-speaking level.   
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(2) To test Hypothesis 3, the Level-1 equation (6) remains the same, and the Level-2 

equation is specified in equation (8). It shows how the Level-2 variable commercialism 

moderates the nonprofit wage differential. The coefficient 𝛾1100 is for Hypothesis 3. 

Level-2 equation:  

 𝛽0(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝛾0100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝛾0200𝑓𝑒𝑚_𝑝𝑟𝑜𝑝𝑗2 + 𝑟0(𝑗1) + 𝑟0(𝑗2)

+ 𝑟0(𝑗3) 

𝛽1(𝑗1,𝑗2,𝑗3) = 𝛾1000 + 𝛾1100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝑟1(𝑗1) + 𝑟1(𝑗2) 

𝛽2(𝑗1𝑗2,𝑗3) = 𝛾2000 

𝛽3(𝑗1𝑗2,𝑗3) = 𝛾3000 

⋮ 

𝛽11(𝑗1,𝑗2,𝑗3) = 𝛾11000 

(8) 

 

(3) To test Hypothesis 4 that commercialism increases the manager-staff pay gap, the Level-1 

equation is equation (9) by adding interaction between nonprofit and occupation type to 

equation (6). The Level-2 equation is specified in equation (10). The coefficients of 𝛾12100 

and 𝛾
13100

 in equation (10) are for hypothesis 3, showing the three-way interaction between 

commercialism, nonprofit, and occupation type.   

Level-1 equation: 
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 𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛽0(𝑗1,𝑗2,𝑗3) + 𝛽1(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) +

𝛽2(𝑗1,𝑗2,𝑗3)𝑓𝑒𝑚𝑎𝑙𝑒𝑖(𝑗1,𝑗2,𝑗3) + ∑ 𝛽𝑛(𝑗1,𝑗2,𝑗3)𝑋𝑛𝑖(𝑗1,𝑗2,𝑗3)
11
𝑛=3 +

𝛽12(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) ∗ 𝑚𝑛𝑔𝑝𝑟𝑜𝑓𝑖(𝑗1,𝑗2,𝑗3) +

𝛽13(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) ∗ 𝑏𝑙𝑢𝑒𝑐𝑜𝑙𝑖(𝑗1,𝑗2,𝑗3)  + 𝑒𝑖(𝑗1,𝑗2,𝑗3), 

 𝑒𝑖(𝑗1,𝑗2,𝑗3)~𝑁(0, 𝜎2) 

(9) 

Level-2 equation:  

 𝛽0(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝛾0100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝑟0(𝑗1) + 𝑟0(𝑗2) + 𝑟0(𝑗3) 

𝛽1(𝑗1,𝑗2,𝑗3) = 𝛾1000 + 𝑟1(𝑗1) + 𝑟1(𝑗2) 

𝛽2(𝑗1𝑗2,𝑗3) = 𝛾2000 

𝛽3(𝑗1𝑗2,𝑗3) = 𝛾3000 

⋮ 

𝛽11(𝑗1,𝑗2,𝑗3) = 𝛾11000 

𝛽12(𝑗1,𝑗2,𝑗3) = 𝛾12000 + 𝛾12100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1  

𝛽13(𝑗1,𝑗2,𝑗3) = 𝛾13000 + 𝛾13100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 

(10) 

 

 (4) To test Hypotheses 5 that commercialism increases the gender pay gap, I add interaction 

between nonprofit and female (equation 11). The Level-2 equation is specified in equation 

(12). The coefficient of 𝛾14100 is for Hypothesis 5.   

Level-1 equation:  
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  𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛽0(𝑗1,𝑗2,𝑗3) + 𝛽1(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) +

𝛽2(𝑗1,𝑗2,𝑗3)𝑓𝑒𝑚𝑎𝑙𝑒𝑖(𝑗1,𝑗2,𝑗3) + ∑ 𝛽𝑛(𝑗1,𝑗2,𝑗3)𝑋𝑛𝑖(𝑗1,𝑗2,𝑗3)
11
𝑛=3 +

𝛽14(𝑗1,𝑗2,𝑗3)𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) ∗ 𝑓𝑒𝑚𝑎𝑙𝑒𝑖(𝑗1,𝑗2,𝑗3) + 𝑒𝑖(𝑗1,𝑗2,𝑗3), 

 𝑒𝑖(𝑗1,𝑗2,𝑗3)~𝑁(0, 𝜎2) 

(11) 

Level-2 equation:  

 𝛽0(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝛾0100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝛾0200𝑓𝑒𝑚_𝑝𝑐𝑡𝑗2 + 𝑟0(𝑗1) + 𝑟0(𝑗2)

+ 𝑟0(𝑗3) 

𝛽1(𝑗1,𝑗2,𝑗3) = 𝛾1000 + 𝑟1(𝑗1) + 𝑟1(𝑗2) 

𝛽2(𝑗1𝑗2,𝑗3) = 𝛾2000 

𝛽3(𝑗1𝑗2,𝑗3) = 𝛾3000 

⋮ 

𝛽11(𝑗1,𝑗2,𝑗3) = 𝛾11000 

𝛽14(𝑗1,𝑗2,𝑗3) = 𝛾14000 + 𝛾14100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1  

(12) 

4.4.3 Models for measures 2-4: percentage of commercial revenue, percentage of program 

service revenue, and fundraising efforts.  

The dataset used in this part of the analysis is restricted to nonprofit workers based on the 

correlation table information as well as previous study findings (Leete, 2001). With the subset of 

data, I slightly revise models by deleting the nonprofit variable. Therefore, models in this part do 

not tell the sectoral pay differential. Rather, they are random intercept models testing if 

commercialism increases the annual earnings of nonprofit employees and if commercialism 

increases the manager-staff pay gap and the gender pay gap in the nonprofit sector. 

4.4.4 Sensitivity analysis:  
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I have done two sets of sensitivity analyses to test if the estimate for nonprofit wage 

differential is consistent and robust. The first set is altering the structures on level-2, including 

modeling nonprofit random slope on the interaction level of industry and occupation, and the 

state level. The industry-occupation interaction level is used because there might be a correlation 

between industries and occupations. For instance, physicians are more likely to appear in the 

hospital industry than other industries like vocational training or public utilities; the subject 

instructor occupation is more likely to appear in universities or colleges than credit unions. 

Besides, previous research used industry-occupation interactions in other modeling approaches 

(Faulk et al., 2012; Leete, 2001). The state-level is meant for control, and no empirical evidence 

suggests that the sectoral pay differential varies across the state level. So, I do not plan to run 

random slope models on the state level for hypothesis testing, but I do it as part of the sensitivity 

test to make sure it does not bring dramatic changes to the fixed coefficient.     

The second set is altering datasets. The first comparison dataset is Census 2000 because it 

is for one year and with the sample size larger than other single-year data. The second 

comparison dataset is the overall dataset but dropping hospitals and higher education industries 

based on the advice from Kerlin and Pollak (2011) and Foster and Bradach (2005). They argue 

that these two industries have long, stable, and high-level commercial revenue with a long 

history, which makes them outliers. In the third comparison dataset, I use the original 58 industry 

categories from the ACS. 
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 Chapter V. Analysis and Results 

This chapter presents the analysis and modeling results based on model specifications in 

Chapter Four. I present my findings in the following order: variance components, hypothesis 

testing, assumption checking, sensitivity analysis, and random effects for nonprofit wage 

differential. I used the “lme4” package in R (Bates et al., 2018; Roberts & Bates, 2010). Cross-

classified models are conceptually straightforward, but its computation is demanding. Roberts 

and Bates (2010) introduce that “lme4” utilizes sparse matrix theory and Cholesky 

decomposition to solve the problem of memory and time needed for computing.  All models use 

Restricted Maximum Likelihood14 (REML) parameter estimation strategy (Beretvas, 2008a; 

McCoach, 2010) because REML estimates of variance components adjust for uncertainty in 

fixed effect estimates (Raudenbush & Bryk, 2002). So, it can better handle the unbalanced data: 

the size of the industry in the dataset ranges from 3,868 to 479,007 with a mean of 79,398, and 

the size of the occupation ranges from 4 to 193,429 with a mean of 9,796 (Table 2). Output 

tables are formatted through the stargazer package (Hlavac, 2018). 

5.1 Intra Unit Correlation Coefficients (IUCC) 

Multilevel modeling starts with the unconditional model with no predictors to analyze the 

variance between the groups. By decomposing variance components, the unconditional model 

produces “a point estimate and confidence interval for the grand means” (Raudenbush & Bryk, 

2002, p. 24) on different levels or groups (industry, occupation, and state). The IUCC is the ratio 

                                                           
14 In multilevel models, “the distribution of Y [the dependent variable] is assumed to be normal, with a mean 

depending on the regression coefficients and a dispersion depending on the variance components. These are the 

parameters that are estimated by the corresponding technique, which is simply called maximum likelihood, but 

sometimes also full maximum likelihood. Alternatively, we can apply the principle of maximum likelihood to the 

least-squares residuals. This is known as restricted or residual maximum likelihood, or REML. It means we first 

remove the effect of the fixed variables: remember that the residuals are uncorrelated with all the fixed variables in 

the model. The distribution of the residuals is also normal, because computing residuals from Y just involves taking 

weighted sums. But the distribution of the residuals no longer depends on the estimates of the fixed effects, it only 

depends on the variance components” (Kreft & Leeuw, 1998, pp 131-133). 
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of the between-group variability to the total variability based on the unconditional model 

(Raudenbush & Bryk, 2002). A large IUCC means that groups are very heterogeneous and group 

effects are salient and cannot be ignored. Thus, IUCC can inform whether multilevel modeling is 

justified.  

To understand the outcome variability on different levels, I ran unconditional models 

with different combinations of Level-2 factors (Table 9). The constant is the grand mean of log 

of annual income. Estimated as an optimally weighted average of the sample means from Level-

2 units, the grand mean is the weighted least squares estimate for the mean salary of Level-2 unit 

combinations. The IUCC in the square brackets is the proportion of variance in the outcome 

explained on different levels, holding other levels constant.  

 

Table 9. Unconditional Models 

 Variance and proportion on each unit 

 (1)  (2) (3) (4) (5) 

Industry  
0.0878415 

[16.83%] 
 

0.03537 

[7.69%] 

0.03353 

[7.33%] 

 

 

Industry × Year      
0.03563 

[7.77%] 

Occupation   
0.1626 

[34.51%] 

0.12937 

[28.11%] 

0.12664 

[27.67%] 

0.12620 

[27.54%] 

State     
0.01265 

[2.76%] 

0.01272 

[2.78%] 

Residual  0.4340116 0.3086 0.29543 0.28486 0.28377 

Constant 10.725*** 10.727*** 10.634*** 10.589*** 10.586*** 

 (223.039) (464.072) (288.649) (269.161) (388.870) 

                                                           
15 This is “parameter variance”: the variance of the true group salary around the grand mean. 
16 This is “error variance.” 
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Observations 3,017,110 3,017,110 3,017,110 3,017,110 3,017,110 

Akaike Inf. Crit. 6,044,203 5,017,487 4,885,728 4,776,157 4,767,070 

Bayesian Inf. Crit. 6,044,242 5,017,526 4,885,780 4,776,222 4,767,135 

Note: 

1.*p**p***p<0.01;  

2. IUCC in square brackets;  

3. T-statistics in parentheses. 

 

The observations in the dataset nest in 38 industries, 308 occupations, and 50 states and 

the District of Columbia. Accordingly, there are variance and residuals from each of the three 

sources. Model (1) uses the industry as the Level-2 factor. It shows that 17 percent of the 

variability in annual earnings is attributable to industries without including any predictors. The 

0.08784 is the variance on the industry level, quantifying the heterogeneity of industry mean 

wages. Thus, the standard deviation of the industry sample mean is 0.3017, which means the 

industry with the highest mean salary is expected to be 11.3118, equivalent to $81,634. The 

industry with the lowest estimated mean salary is 10.1419, equivalent to $25,336. Therefore, 

industries are very different in their average salaries. 

Similarly, Model (2) with the occupation as the Level-2 factor shows that occupation 

explains 35 percent of the variance in the annual income. The occupation with the highest mean 

salary is estimated to be 11.52, and the lowest-paying occupation is 9.94, with a difference of 

$79,768 annually. Model (3), with the industry and occupation as identifiers on the Level-2, 

shows that variability on the industry level is reduced by 9 percentage points, and variability on 

the occupation level is reduced by 6 percentage points. It indicates that some occupations are 

                                                           
17 √0.08784 
18 10.725 + 1.96 × √0.08784 
19 10.725 − 1.96 × √0.08784 
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more likely to appear in some industries than others. Comparing Models (1) to (3) suggests that 

neglecting either industry or occupation will result in spurious effects (Beretvas, 2008b). Model 

(4) adds states to the Level-2. The 3 percent variance associated with the state indicates that 

partialling out the variance on the industry and occupation levels, the annual income of 

employees varies across states but not very much. The pure state effect between the highest-

paying state and the lowest-paying state is $17,646. Also, the state as the additional factor has 

very little effect on the variability on industry and occupation levels. Despite the small variance, 

Model (4) provides a better fit based on the information criteria20. The dataset is pooled from 13 

years. There might be the possibility that the industry changes in these many years. Model (5) 

performs a safety check whether the time is related to the variability of the annual income, and 

the result shows that the time effect is negligible. Therefore, Model (4) with industry, 

occupation, and state on Level-2 is selected as the base model for the following models.   

Based on Model (4), the weighted least squares estimate for the grand-mean salary is 

10.589 ($39,396) conditional on the between-group (industry, occupation, state) effects. Given 

the variance of 0.3353 on the industry level, the range of the estimated industry mean salary is 

between 10.23 and 10.9521 after partialling out the variability on occupation and state levels. The 

variance of 0.12664 on the occupation level suggests that the range of the occupation mean 

salary is estimated to be between 9.89 and 11.2922 , holding industry and state effects constant. 

                                                           
20 Akaike Information Criteria (AIC) provides a means for model selection. AIC estimates the relative amount of 

information lost by a given model: the less information a model loses, the higher the quality of that model. In 

estimating the amount of information lost by a model, AIC deals with the trade-off between the goodness of fit of 

the model and the parsimony of the model. Both Bayesian Information Criteria (BIC) and AIC attempt to resolve 

this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in 

BIC than in AIC (Burnham & Anderson, 2004). 
21 10.589 ± 1.96 ∗  √0.03353  
22 10.589 ± 1.96 ∗  √0.12664 
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Similarly, excluding industry and occupation effect, the state mean salary is estimated to be 

between 10.37 and 10.8123.  

5.2 Hypotheses Testing: Measure 1 (for-profit share of workers) 

The first measure for commercialism is the for-profit share of workers computed based 

on Census 2000 and 2005-2016 ACS. To test hypotheses 1 and 2, I first assessed how much 

variance is reduced by Level-2 variables (Model 6), and how much is reduced by the full model 

with all Level-1 variables (Model 8). The reduced proportion of variance measures how well the 

predictors explain the outcome, just like R2 in OLS models. Then, the random slope (or random 

coefficient) of the nonprofit is added on industry and occupation levels to test the two 

hypotheses. The random slope is not considered on the state level because no empirical evidence 

indicates nonprofit wage differential variability on the state level, and the unconditional model 

shows that overall variability on the state level is limited.  

Testing Hypothesis 1. 

In fitting the models, I multiplied for-profit share of workers and the female percentage 

by 100 to facilitate interpretation. I also rescaled experience squared by dividing 100. All 

nominal-level variables are dummy coded.  

Level-2 variables in Model (6) reduce the variance by 20 percent24 on the industry level 

and 2 percent25 on the occupation level. It means that for-profit share accounts for some 

variability on the industry level, but the female percentage variable barely explains occupation 

variability despite its statistical significance. Level-1 variables reduce the variance by 28 percent 

on the industry level and 56 percent on the occupation level (Model 7). So, variability on the 

                                                           
23 10.589 ± 1.96 ∗ √0.01265 
24 (0.03353 – 0.02683) / 0.03353 
25 (0.12664 – 0.12395) / 0.12664 
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occupation is more related to individual-level variables. All variables on both levels explain 50 

percent26 of industry variability and 57 percent27 of occupation variability.  

Effects of nonprofit as altruistic motivation (Hypothesis 1). 

To test the hypothesis that nonprofit full-time workers earn less than for-profit full-time 

workers, one can ignore or include variability of the nonprofit wage differential on the industry 

and occupation levels. Models (6) to (8) are random intercept models assuming that no predictors 

randomly vary on industry and occupation levels.  

Alternatively, Model (9), the random slope model, specifies nonprofit to vary across 

industries and occupations based on existing empirical findings (Handy & Katz, 1998; King & 

Lewis, 2017; Leete, 2001; Preston, 1988; Ruhm & Borkoski, 2003; Weisbrod, 1983). It estimates 

the random effects of nonprofit wage differential, which means that the nonprofit wage 

differential is different across industries and occupations. Other variables might also vary across 

industries and occupations, but due to the parsimonious caution on the model convergence as 

well as the theoretical interest of nonprofit, other variables are constrained to the mean in the 

model.  

Model (8) and Model (9) are the same except for the random effects of nonprofit. The 

constant 10.682 in Model (8) is the estimated annual income for a person with an average 

condition on all variables after removing group differences of industry, occupation, and state. 

Model (8) assumes all variables have constant and common effects in all industries, occupations, 

and states (Raudenbush & Bryk, 2002). For instance, women earn 19 percent less than 

comparable men, and an additional year in education increases annual salary by 7 percent in all 

                                                           
26 (0.03353 - 0.01661) / 0.03353 
27 (0.12664 - 0.05426) / 0.12664 
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industries, occupations, and states. In other words, it assumes all industries and occupations are 

not different in the effects of the predictors.  

Under this assumption, nonprofit workers earn 0.2 percent more than comparable for-

profit workers. The result is consistent with previous economy-wide studies (Hirsch et al., 2018; 

Leete, 2001; Ruhm & Borkoski, 2003). However, it is not consistent with other studies. Studies 

on discrete industries (Ben-Ner et al., 2011; Holtmann & Idson, 1993; Mocan & Tekin, 2003; 

Preston, 1988) or occupations (King & Lewis, 2017; Preston, 1989; Weisbrod, 1983) find 

divergent results of nonprofit wage differentials. Leete (2001) also makes it clear that nonprofit 

wage differential varies across industries. 

 

Table 10. Testing Hypotheses 1 and 2. 

 Natural log of annual income 

Fixed effects part (6) (7) (8) (9) 

For-profit share of workers  0.003***  0.004*** 0.003*** 

 (3.199)  (4.213) (3.537) 

Female percentage -0.002***  -0.001 -0.001 

 (-2.678)  (-1.521) (-1.445) 

Nonprofit   0.002*** 0.002*** -0.057*** 

  (2.868) (2.891) (-3.893) 

Female   -0.187*** -0.187*** -0.185*** 

  (-276.110) (-276.068) (-272.933) 

Years of education  0.073*** 0.073*** 0.073*** 

  (469.254) (469.262) (468.674) 

Latino   -0.065*** -0.065*** -0.063*** 

  (-58.415) (-58.414) (-57.061) 
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Black   -0.095*** -0.095*** -0.093*** 

  (-92.223) (-92.220) (-90.402) 

Asian   -0.030*** -0.030*** -0.029*** 

  (-22.175) (-22.173) (-21.799) 

Other races  -0.067*** -0.067*** -0.066*** 

  (-32.827) (-32.827) (-32.353) 

Speak English  0.046*** 0.046*** 0.045*** 

  (44.992) (44.993) (44.654) 

Work experience   0.011*** 0.011*** 0.011*** 

  (448.688) (448.690) (449.153) 

Work experience squared  -0.053*** -0.053*** -0.053*** 

  (-267.027) (-267.026) (-266.867) 

Work hours per week  0.013*** 0.013*** 0.013*** 

  (345.043) (345.041) (342.442) 

Constant 10.590*** 10.682*** 10.682*** 10.673*** 

 (286.868) (331.190) (368.283) (374.288) 

Random effects part Variance  

Industry (Intercept)  0.02683 0.02413 0.01661 0.015718 

Nonprofit    0.006896 

Occupation (Intercept) 0.12395 0.05456 0.05426 0.052737 

Nonprofit    0.005739 

State (intercept) 0.01265 0.01140 0.01140 0.011391 

Residual  0.28486 0.22603 0.22603 0.225067 

Observations 3,017,110 3,017,110 3,017,110 3,017,110 

Akaike Inf. Crit. 4,776,169 4,078,156 4,078,169 4,066,108 

Bayesian Inf. Crit. 4,776,260 4,078,363 4,078,401 4,066,393 

Note: *p**p***p<0.01 
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Thus, the assumption that nonprofit wage differential is constant across industries and 

occupations is questionable. Model (9)28 specifies the nonprofit coefficient to randomly vary over  

Level-2 industries and occupations without the attempt to predict this variation (Raudenbush & 

Bryk, 2002, p. 26).  

In Model (9), both the intercept and slope of nonprofit vary randomly across industries 

and occupations. The random effects of nonprofit wage differential are illustrated as fixed 

effects29 in addition to its random variation on industry and occupation levels. The fixed effects 

and random effects for nonprofit are expressed in equation (7) from Chapter 4: 𝛽1(𝑗1,𝑗2,𝑗3) =

𝛾1000 + 𝑟1(𝑗1) + 𝑟1(𝑗2), which means that the nonprofit wage differential is composed of group-

invariant effect 𝛾1000, industry-variant effects 𝑟1(𝑗1), and occupation-variant effects 𝑟1(𝑗2). 

Untangling the fixed coefficient and random effects makes it possible to develop a theoretical 

understanding of nonprofit pay. 

Corresponding to my theoretical argument and hypothesis, the group-invariant effect 

refers to the donative labor effect because altruistic motivation is part of human nature. Altruistic 

workers tend to select to work for nonprofits. Group-variant effects are effects caused by 

industries and occupations. Model (9) shows that the donative labor effect leads nonprofit 

workers to earn 5.530 percent less than the comparable for-profit workers partialling out the 

industry effect and occupation effect. The negative 5.5 percent translates into a difference of 

                                                           
28 To check if random slope improves model fitting, I performed a Chi-squared test. The result suggests that having 

random slope of nonprofit in the model significantly reduces the residual sum of squares (Appendix F). 
29 “The label fixed effects is reserved for multilevel modeling estimates that are constant across L2 units, and the 

label random effects is used to denote the model estimates that vary across L2 units” (Aguinis, Gottfredson, & 

Culpepper, 2013, p. 1497). 
30 (𝑒−0.057 − 1) × 100 
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$2,392 annually. The result confirms Hypothesis 1, where nonprofit workers donate their labor to 

the employer by accepting lower pay due to their altruistic motivation.  

The random effects part in Table (10) displays the variance components. In Model (8), 

0.01661 is the variance of intercept, meaning that after controlling for all variables, occupation, 

and state effects, wage dispersion on the industry level follows a probability distribution with a 

mean of 0 and variance of 0.01661. Similarly, wage dispersion on the occupation level follows a 

probability distribution with a mean of 0 and a variance of 0.05426 after controlling all other 

variables in the model. In comparison, Model (9) has a random intercept with a mean of 0 and a 

variance of 0.015718, representing the dispersion of industry mean salaries excluding occupation 

and state effects.  Model (9) produces random slopes of nonprofit with mean of 0 and variance of 

0.006896 on the industry level, representing the variability of cross-sector wage differential on 

the industry level after controlling for the fixed part, occupation, and state effects. Similarly, on 

the occupation level, the variability of the intercept is 0.052373, and the variability of the 

nonprofit slope is 0.005739. The random effects for nonprofit range across industries and 

occupations, and they are best illustrated through plotting. I elaborate on the random effects after 

completing all hypothesis tests. 

Testing Hypothesis 2. 

Hypothesis 2 examines the effect of commercialism (the industry-level variable) on pay 

(the individual-level variable). The first measure of commercialism, the percentage of for-profit 

workers by industry, is derived mathematically as a compositional effect (Diez Roux, 2002)  in 

contrast to other measures of commercialism. Compositional effect means that the group-level 

variable adds “incremental prediction to an individual outcome,” above the beyond the 

individual-level predictors (Hofmann & Gavin, 1998).  
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Coefficients for Level-2 variables are quite similar in Model (8) and Model (9). The for-

profit share of workers measures commercialism and efficiency. The coefficients show that more 

commercialized industries pay higher than less commercialized ones. As the for-profit share of 

workers increases by 1 percentage point, the income increases by 0.3 percent31 (Model 9), which 

is around $129. In the dataset, the range of for-profit market share is 85.63 percentage points. 

The expected difference in average salary between industries with the highest and lowest of the 

for-profit share of workers is $10,47532 , holding other variables constant. The results confirm 

Hypothesis 2, where commercialism increases workers’ annual income. By being in an industry 

with a higher for-profit share of workers, one can earn more than a comparable peer in an 

industry with a lower for-profit share of workers. 

Testing Hypothesis 3. 

Hypothesis 3 examines the cross-level interaction effect of whether commercialism 

explains the variability of nonprofit pay differential on the industry level. A cross-level 

interaction occurs “when the random slope of a level-1 predictor is predicted by a level-2 

predictor” (Preacher, Curran, & Bauer, 2006, p. 441). The cross-level interaction can only apply 

when the random effects of nonprofit are present. If the variance of nonprofit slopes (0.006896 in 

Model 9) were not different from zero, cross-level interaction should not be conducted (Aguinis, 

Gottfredson, & Culpepper, 2013). Therefore, the model is also built based on Model (9) of 

random coefficients. Equation (13) combines equations (6) and (8), and the coefficient 𝛾1100 is 

                                                           
31 (𝑒0.003 − 1) × 100 

32 The range for market share after centering ranges from -62.79 to 22.84. Therefore, the difference is  

𝑒10.673+22.84×0.003 − 𝑒10.673−62.79×0.003 
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what needs to test hypothesis 3. The focal variable is nonprofit differential, and the moderator is 

commercialism.  

 𝑌𝑖(𝑗1,𝑗2,𝑗3) = 𝛾0000 + 𝛾0100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1 + 𝛾0200𝑓𝑒𝑚_𝑝𝑐𝑡𝑗2

+ 𝛾1000𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3)

+ 𝛾1100𝑓𝑝𝑠ℎ𝑎𝑟𝑒𝑗1𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3)

+ 𝛽2(𝑗1,𝑗2,𝑘3)𝑓𝑒𝑚𝑎𝑙𝑒𝑖(𝑗1,𝑗2,𝑗3) + ∑ 𝛽𝑛(𝑗1,𝑗2,𝑗3)𝑋𝑛𝑖(𝑗1,𝑗2,𝑗3)

11

𝑛=3

+ (𝑟1(𝑗1) + 𝑟1(𝑗2))𝑛𝑜𝑛𝑝𝑟𝑜𝑓𝑖𝑡𝑖(𝑗1,𝑗2,𝑗3) + 𝑟0(𝑗1) + 𝑟0(𝑗2) + 𝑟0(𝑗3)

+ 𝑒𝑖(𝑗1,𝑗2,𝑗3) 

(13) 

On Level-2, each industry has a specific random intercept and a random slope. Random 

slopes of nonprofit on the industry and occupation levels show that for each industry and 

occupation, the nonprofit wage differential is different after controlling all variables and Level-2 

factors. The random intercepts are the unexplained but explicit parts on the corresponding levels 

to demonstrate the inter-industry and inter-occupation wage differentials (Aguinis et al., 2013).  

The cross-level interaction indicates that the industry pay advantage for nonprofits 

depends on the for-profit share of workers. In Model (10), a 1 percentage point increase in 

commercialism increases the annual pay by 0.3 percent for for-profit workers, but the increase 

for nonprofit workers is only 0.2 percent. In other words, in nonprofit dominant industries, 

nonprofits have industry pay advantage, and in for-profit dominant industries, for-profits have 

industry pay advantage. 

Based on the hypothesis, organizations in nonprofit dominant industries are less likely to 

generate a surplus from commercial revenue than for-profits dominant industries. Due to the 

concern of social goal and service quality, nonprofit organizations charge less for services than 
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for-profits. In addition, nonprofits face more scrutiny and less autonomy than nonprofits in 

disposing of the surplus. All of these contribute to the differentiated effect of commercialism on 

pay between for-profit and nonprofit.     

 

Table 11. Testing Hypothesis 3 

Fixed effects part  
Natural log of annual income 

(10) 

For-profit share of workers  0.003*** 

 (3.890) 

Nonprofit  -0.057*** 

 (-4.099) 

Female percentage by occupation -0.001 

 (-1.447) 

Female  -0.185*** 

 (-272.933) 

Years of education  0.073*** 

 (468.672) 

Latino  -0.063*** 

 (-57.059) 

Black  -0.093*** 

 (-90.399) 

Asian  -0.029*** 

 (-21.798) 

Other races -0.066*** 

 (-32.352) 

Speak English 0.045*** 

 (44.653) 
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Work experience  0.011*** 

 (449.154) 

Work experience squared -0.053*** 

 (-266.867) 

Work hours per week 0.013*** 

 (342.442) 

For-profit share of workers × nonprofit -0.001** 

 (-2.350) 

Constant 10.673*** 

 (374.580) 

Random effects part Variance  

Industry (Intercept)  0.015671 

Nonprofit 0.006122 

Occupation (Intercept) 0.052733 

Nonprofit 0.005735 

State (intercept) 0.011388 

Residual  0.225067 

Observations 3,017,110 

Akaike Inf. Crit. 4,066,118 

Bayesian Inf. Crit. 4,066,415 

Note: t-statistics in parentheses *p**p***p<0.01 

 

Testing Hypothesis 4. 

Hypothesis 4 examines the moderating effect of commercialism on the manager-staff pay 

gap. It is expected that commercialism increases the pay of managers more than non-managerial 

staff. The models are built based on Model (9) with random intercepts on the state, industry, and 

occupation levels, and random slopes of nonprofit on industry and occupation levels.  
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In Model (11), managerial professionals earn 22 percent more than white-collar workers 

and 46 percent more than blue-collar workers, holding other variables and Level-2 variability 

constant. Model (12) shows that the pay gap between managers and non-managerial staff is 

narrower than the for-profit sector, although it is not statistically significant. This result does not 

contradict previous findings that managers donate more than other workers in the nonprofit 

sector (clerical workers in Preston, 1989). The reason is that industry and occupation differences 

have been removed from the fixed coefficient estimate in Model (12).   

Model (13) explores a variety of scenarios among occupation type (manager, white-collar 

worker, blue-collar worker), sector difference, and commercialism effect. The manager is the 

focal variable (Jaccard & Turrisi, 2003), nonprofit is the first-order moderator, and 

commercialism is the second-order moderator. Although minimal, the moderating effects of 

commercialism on the occupation pay gap and sectoral-occupation pay gap are significant. 

The first-order moderating effects show that the nonprofit pay is more equitable (though 

not significant) because the high-earning managers get less pay (-0.017), and the low-earning 

blue-collar workers get more pay (0.011) in the nonprofit sector than the for-profit sector. The 

second-order moderating effects, that is, the commercialism effects, show that in more 

commercialized industries, nonprofit managers get even lower pay (-0.0003), and nonprofit blue-

collar workers get even higher pay (0.001). It means that the sectoral wage gap for managers is 

larger than the sectoral wage gap for blue-collar workers in more commercialized industries.   

 

  

Table 12. Testing hypothesis 4 

 Natural log of annual income 
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Fixed effects part (11) (12) (13) 

For-profit share of workers  0.003*** 0.003*** 0.003*** 

 (3.538) (3.537) (3.951) 

Nonprofit  -0.058*** -0.059*** -0.058*** 

 (-3.999) (-4.055) (-4.254) 

Manager 0.220*** 0.224*** 0.223*** 

 (3.744) (3.684) (3.676) 

Blue-collar worker -0.243*** -0.248*** -0.244*** 

 (-9.586) (-9.632) (-9.480) 

Female  -0.185*** -0.185*** -0.185*** 

 (-272.947) (-272.942) (-272.826) 

Female percentage by occupation -0.003*** -0.003*** -0.003*** 

 (-6.377) (-6.379) (-6.368) 

Years of education  0.073*** 0.073*** 0.073*** 

 (468.590) (468.589) (468.362) 

Latino  -0.063*** -0.063*** -0.063*** 

 (-57.057) (-57.055) (-56.996) 

Black  -0.093*** -0.093*** -0.093*** 

 (-90.395) (-90.394) (-90.374) 

Asian  -0.029*** -0.029*** -0.029*** 

 (-21.794) (-21.796) (-21.808) 

Other races  -0.066*** -0.066*** -0.066*** 

 (-32.352) (-32.352) (-32.352) 

Speak English 0.045*** 0.045*** 0.045*** 

 (44.647) (44.641) (44.445) 

Work experience  0.011*** 0.011*** 0.011*** 

 (449.153) (449.152) (448.933) 

Work experience squared  -0.053*** -0.053*** -0.053*** 

 (-266.866) (-266.868) (-266.876) 
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Work hours per week 0.013*** 0.013*** 0.013*** 

 (342.437) (342.438) (342.449) 

For-profit share of workers × nonprofit   -0.001** 

   (-2.276) 

For-profit share of workers × manager   -0.0005*** 

   (-7.217) 

Nonprofit × manager  -0.005 -0.017 

  (-0.212) (-0.695) 

For-profit share of workers × blue-collar   -0.0003*** 

   (-5.685) 

Nonprofit × blue-collar  0.012 0.011 

  (1.111) (0.977) 

For-profit share of workers × nonprofit × manager   -0.0003** 

   (-2.317) 

For-profit share of workers × nonprofit × blue-collar   0.001*** 

   (5.223) 

Constant 10.725*** 10.726*** 10.726*** 

 (382.494) (382.250) (382.584) 

Random effects part Variance   

Industry (Intercept)  0.015712 0.015712 0.015653 

Nonprofit 0.006909 0.006907 0.005972 

Occupation (Intercept) 0.037703 0.037714 0.037756 

Nonprofit 0.005742 0.005762 0.005800 

State (intercept) 0.011392 0.011389 0.011391 

Residual  0.225067 0.225067 0.225058 

Observations 3,017,110 3,017,110 3,017,110 

Akaike Inf. Crit. 4,066,020 4,066,035 4,066,990 

Bayesian Inf. Crit. 4,066,330 4,066,371 4,066,390 

Note: *p**p***p<0.01 
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To facilitate the understanding of the coefficients, I graph three scenarios: low market 

share, medium market share, and high market share of for-profit workers (Figure 6). 

Commercialism increases the wage for all three groups, but the increasing rates for managers and 

white-collar workers are lower than that for blue-collar workers. The differing effect leads to a 

larger sector pay gap for managers and white-collar workers in for-profit dominant industries. 

Therefore, Hypothesis 4, commercialism increases the pay of managers more than for non-

managerial workers is not supported. 

Two potential explanations might account for the disagreement between the hypothesis 

and findings. The tax-exempt status of nonprofits does not allow exorbitant salaries (Hallock, 

2000; Hansmann, 1980). Managers are a high-earning group, and the increase in their salary is 

more sensitive than blue-collar and white-collar workers in nonprofit organizations. The other 

reason might relate to the donate labor theory. Even in for-profit dominant industries where 

managerial professionals are more valued, altruistically motivated managers might choose to 

work for nonprofits at a pay lower than comparable for-profit managers.    
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Figure 6. Commercialism effect on occupation types 

 

Testing Hypothesis 5. 

Hypothesis 5 examines the moderating effect of commercialism on the gender pay gap in 

both sectors. It is expected to increase the pay of men more than women. The correlation 

coefficients in Table (6) suggest a composition effect of gender pay in the nonprofit sector. 

Nonprofit is negatively related to male (-0.105) and positively related to the female percentage 

(0.153), which means men are less likely to be nonprofit workers and nonprofits have larger 

female worker populations. Furthermore, commercialism is negatively related to the female 

percentage (-0.311). 

The models are also built based on Model (9) with the same random intercepts and 

random slopes. Overall, females earn 19 percent less than comparable males (Model 9). A 

supplementary analysis33 of gender random effects on both industry and occupation levels shows 

that some industries and occupations are more women-friendly than others. However, due to the 

large size of the fixed coefficient of females, even in women-friendly industries and occupations, 

                                                           
33 The separate supplementary analysis is not included in the dissertation.  
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women still earn less than men. Model (14) shows that the gender pay gap is smaller in the 

nonprofit sector by 7 percentage points than the for-profit sector. In Model (15) of the three-way 

interaction, the focal variable is female, the first order moderator is nonprofit, and the second-

order moderator is commercialism. The first-order moderating effect shows more gender-pay 

equity in the nonprofit sector (0.039). The second-order moderating effect shows that in more 

commercialized industries, gender equity in nonprofit is strengthened (0.001). Furthermore, 

women in more commercialized industries are paid less than less commercialized industries.  

 

Table 13. Testing hypothesis 5 

 Natural log of annual income  

Fixed effects part (9) (14) (15) 

For-profit share of workers 0.003*** 0.003*** 0.003*** 

 (3.537) (3.597) (4.028) 

Female percentage -0.001 -0.001** -0.001** 

 (-1.445) (-2.217) (-2.129) 

Nonprofit  -0.057*** -0.054*** -0.051*** 

 (-3.893) (-3.760) (-3.687) 

Female  -0.185*** -0.183*** -0.173*** 

 (-272.933) (-269.322) (-214.237) 

Years of education  0.073*** 0.073*** 0.073*** 

 (468.674) (467.849) (466.470) 

Latino  -0.063*** -0.063*** -0.063*** 

 (-57.061) (-57.133) (-57.234) 

Black  -0.093*** -0.093*** -0.092*** 

 (-90.402) (-90.203) (-89.762) 

Asian  -0.029*** -0.029*** -0.028*** 
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 (-21.799) (-21.681) (-21.142) 

Other races  -0.066*** -0.065*** -0.065*** 

 (-32.353) (-32.248) (-32.095) 

Speak English  0.045*** 0.045*** 0.046*** 

 (44.654) (44.703) (44.952) 

Work experience  0.011*** 0.011*** 0.011*** 

 (449.153) (449.437) (449.442) 

Work experience squared -0.053*** -0.053*** -0.053*** 

 (-266.867) (-267.199) (-267.573) 

Work hours per week 0.013*** 0.013*** 0.013*** 

 (342.442) (341.999) (341.448) 

For-profit share of workers × nonprofit   -0.001** 

   (-2.391) 

For-profit share of workers × female   -0.002*** 

   (-51.135) 

Nonprofit × female  0.074*** 0.039*** 

  (46.178) (18.376) 

For-profit share of workers × nonprofit × female   0.001*** 

   (16.166) 

Constant 10.673*** 10.672*** 10.670*** 

 (374.288) (374.360) (374.942) 

Random effects part Variance  

Industry (Intercept)  0.015718 0.015704 0.015594 

Nonprofit 0.006896 0.006578 0.005992 

Occupation (Intercept) 0.052737 0.052813 0.052851 

Nonprofit 0.005739 0.006171 0.006003 

State (intercept) 0.011391 0.011376 0.011368 

Residual  0.225067 0.224907 0.224695 

Observations 3,017,110 3,017,110 3,017,110 
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Akaike Inf. Crit. 4,066,108 4,063,990 4,061,180 

Bayesian Inf. Crit. 4,066,393 4,064,287 4,061,516 

Note: *p**p***p<0.01 

 

Similarly, I graph three scenarios to facilitate the interpretation of the results: low, 

medium, and high for-profit share of workers (Figure 7). Commercialism increases the gender 

pay gap for both sectors. The commercialism effect is smaller in the nonprofit sector than in the 

for-profit sector, leading to a larger sector pay gap, which supports Hypothesis 5. 

 

 

Figure 7. Commercialism effect on gender pay gap 

 

5.3 Assumption checking. 

Multilevel models are an integrated analysis of variance and regression analysis based on 

several assumptions, including correct functional form, normality, independent observations and 

errors, and constant variance of residuals. Violating these assumptions may result in 

misrepresentation of the relationship among variables or invalid hypothesis tests.  
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In terms of functional forms, I have checked linearity using LOESS smoothing for 

several variables and decided to use the quadratic form for work experience in the models. Here 

are several diagnostic plots for assumptions related to residuals based on Model (9). First, Level-

1 residuals are assumed to be normally distributed and have a zero mean (Figure 8).  

 

Figure 8. Histogram of Level-1 residuals: normal distribution 

 

Figure 9 is the normal quantile-quantile plot based on the actual residuals divided by their 

theoretical quantiles. The plot is approximately linear, showing that the residual is almost 

normally distributed.   
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Figure 9. Level-1 residual normality 

 

Secondly, Level-2 residuals are assumed to be multivariate normal and also have means 

of zero. Level-2 diagnosis is more problematic. The residual of random intercept on the industry 

level is normally distributed (Figures 10), but the residual of random slope shows that industries 

are heavily right-skewed because all the plots are above the diagonal line (Figure 11). The reason 

is that nonprofits only concentrate in several narrowly defined industries. To understand how the 

estimate changes, I have done more analyses by segmenting the dataset into dataset (1) with for-

profit under 60% (9 industries), dataset (2) with for-profit share under 86% (18 industries), and 

dataset (3) with for-profit share over 86% (20 industries). The results show that there is a 

donative labor effect for nonprofit workers except for the dataset for the top 9 industries 

dominated by nonprofits where the donative labor effect is not significant (Appendix G). Table 

31 highlights the importance of industrial heterogeneity in affecting workers’ annual income.  
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Figure 10. Residual normality of random intercept on the industry level 

 

Figure 11. Residual normality of random slope on the industry level 

 

Figures (12) shows the constant variance of residuals on the industry level. 
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Figure 12. Standardized residuals versus fitted value by industry 

Comparing to the industry level, the distribution of residuals on the occupation level is 

quite normal, except for a few outliers (Figure 13). 

 

Figure 13. Level-2 residual normality on the occupation level  
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5.4 Random effects of the nonprofit wage differential.  

Previous empirical studies of discrete industries and occupations indicate that nonprofit 

pay differential varies across industries and occupations. Random effects of nonprofit wage 

differential are the random slopes for the nonprofit variable specified on the industry and 

occupation levels. On the industry level, 𝑟0(𝑗1) and 𝑟1(𝑗1) in equation (7) represent intercepts and 

slopes, respectively. Their dispersions are quantified as the variance, which corresponds to 

0.015718 and 0.006898 in Model (9). On the occupation level, 𝑟0(𝑗2) and 𝑟1(𝑗2) represent 

intercepts and slopes. Their variances are 0.052737 and 0.005739, respectively. The state-level 

only has random intercepts. So, I will not discuss it.  

Random effects of nonprofit on the industry level.  

Model (9), the full model with all predictors and nonprofit random effects on Level-2, 

produces the unbiased and efficient estimates for all specified variables excluding effects from 

industry, occupation, and state levels. Fixed coefficients are used to test the hypotheses. The 

random effects of nonprofit are the residuals of nonprofit on industry and occupation levels 

controlling for all the variables in the model, Level-1 errors, and the state-level effects.  

R allows extracting the exact values for all intercepts and slopes, presented in Appendices 

D and E together with the for-profit share of workers and the female percentage by occupation. 

Caterpillar plot (Figures 13 and 14) is usually used to compare random-effect parameters and 

demonstrate the variability of the fixed coefficient. The more observations in each category, the 

shorter the error bar is around the point estimate. 
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Figure 14. Random effects of nonprofit pay differential on the industry level 
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On the industry level, the random intercepts (left panel in Figure 14) is the residual 

variability of the industry wage. They show how much each industry deviates from the constant 

(10.673) in the model. The random slopes (right panel on Figure 14) are the differences in 

sectoral pay differential on the industry level, holding constant the occupation effect. It indicates 

how much each industry deviates from the fixed coefficient for nonprofit (-0.057).  

The public utility industry (2210) has the highest industry-level pay. The predicted 

annual earning for an average white male for-profit worker in the public utility industry is 10.973 

(10.673+0.3) (Appendix D), net of occupation and state effects.  Nonprofits have an industry 

disadvantage of negative 5.4 percent in this industry. Together with the donative labor effects, a 

nonprofit worker earns 11 percent less than a comparable for-profit worker in this industry, 

conditional on occupation pay differences.  

Child daycare services (6244) is the lowest-paying industry. An average white male for-

profit worker in this industry is expected to earn 10.413 (10.673-0.26), net of occupation and 

state effects.  Nonprofit has 8 percent industry advantage in child daycare services. A nonprofit 

worker is expected to earn 2.3 percent (-0.057+0.08) more than a for-profit worker in this 

industry, conditional on occupation pay differences.  

The following industries have the largest industry disadvantage for nonprofits: religious 

film and video (5121) with 20 percent less than the for-profit, crime prevention (5411) with 

negative 19 percent, libraries and archives (5141) with negative 15 percent, performing arts and 

spectator sports (7110) and radio and television broadcasting (5131) with negative 13 percent. 

These are industry disadvantages in addition to the negative 5.7 percent donative labor effect, 

excluding the occupation effect.  
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On the other end, the following industries have the largest industry advantage in pay for 

nonprofits: college and universities (6112) and hospitals (6220) over 10 percent industry 

advantage for nonprofits; insurance providers (5241), rehabilitative care (6213), elementary and 

secondary schools (6111), daycare centers (6244), and museums and art galleries (7121) have 

over 8 percent. These are industry advantages in addition to a negative 5.7 percent donative labor 

effect, excluding the occupation effect. 

Random effects of nonprofit on the occupation level. 

The variance of the random intercept on the occupation level is 0.052737, and the 

variance of the nonprofit random slope is 0.005739 (Model 9). The left panel on Figure (15) 

shows how much the occupation wage deviates from the constant, holding constant all variables, 

industry and state effects. The right panel shows the sectoral pay differential on the occupation 

level, controlling for the industry effect. 

In detail, around 70 occupations have almost no sectoral pay difference (-0.01 to 0.01), 

and 206 occupations have the nonprofit wage differential between -0.05 and 0.05 in addition to 

the fixed coefficient of -0.057, net of the industry effect. There are several outliers. The 

occupation with the largest occupation advantage for nonprofit workers is musicians or 

composers (occupation code:186). Musicians have a 27 percent occupation pay advantage for 

nonprofits over for-profits. Adding altruistic motivation effect and occupation advantage 

together, nonprofit musicians earn 21.3 (27-5.7) more than comparable for-profit musicians, 

conditional on the industry effects.   
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Figure 15. Random effects of nonprofit pay differential on the occupation level 
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Following musicians are bank tellers (383) and dentists (85) with 23 percent, taxi cab 

drivers and chauffeurs (809) with 16 percent, supervisors of cleaning and building (448) and 

ushers (502) with 12 percent occupation advantage for nonprofits. The five occupations with 

largest occupation pay disadvantages for nonprofits are lawyers (178) and financial services sales 

occupations (255) with 22 percent, actors, directors and producers (187) with 19 percent, 

business and promotion agents (34) with 17 percent, airplane pilots and navigators (226) with 14 

percent less than for-profits. Taking lawyers as an example, adding their altruism motivation 

effect to the occupational disadvantage, nonprofit lawyers earn 28 percent less than for-profit 

lawyers, conditional on industry effects. 

Occupation disadvantage for nonprofits does not necessarily mean it is a low-paying 

occupation. Due to the extensive list of occupations, I selected occupations at both ends (Table 

14) to illustrate. Although lawyers (occupation code 178) have the extreme occupation 

disadvantage for nonprofits, the lawyer occupation is one of the highest-paying occupations. The 

lawyer occupation enjoys a pay of 55 percentage points above the grand mean, which is 

equivalent to 11.22 (=10.673+0.55) per year for a white male average for-profit lawyer, net of 

industry and state effects, and a comparable nonprofit lawyer is expected to earn 28 percent (-

0.2231-0.057) less.  

Table 14. Nonprofit random effects on selected occupations 

OCC1990 Occupation title Intercept Nonprofit difference 

4 Chief executives and public administrator 0.7899 -0.0495 

34 Business and promotion agents 0.2353 -0.1637 

84 Physicians 0.7344 -0.0480 

85 Dentists 0.3956 0.2283 

96 Pharmacists 0.6509 -0.0089 

87 Optometrists 0.6498 -0.0628 

66 Actuaries 0.6284 -0.0789 
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88 Podiatrists 0.5718 -0.0973 

178 Lawyers 0.5477 -0.2213 

187 Actors, directors, producers 0.1759 -0.1846 

226 Airplane pilots and navigators 0.4076 -0.1422 

255 Financial services sales occupations 0.3987 -0.2188 

186 Musician or composer -0.0044 0.2678 

383 Bank tellers -0.3397 0.2294 

448 Supervisors of cleaning and building service -0.0574 0.1224 

809 Taxicab drivers and chauffeurs -0.5859 0.1579 

 

On the contrary, taxi cab drivers (809) enjoy a considerable occupation advantage for 

nonprofits, but it is the lowest-paying occupation. As an occupation, taxi drivers earn 59 

percentage points below the average (constant) per year, net of industry and state effects. A 

nonprofit taxi driver earns 10.2 percent (0.1579-0.057) more than a comparable for-profit taxi 

cab driver. The highest-paying occupations include chief executives and public administrators 

(4), physicians (84), dentists (85), and pharmacists (96). It is common to see nonprofits to have 

occupation advantages in low-paying occupations and occupation disadvantages in high-paying 

occupations, although there are exceptions such as dentists.  

Nonprofit random effects inventory. 

The nonprofit wage differential varies across industries and occupations. Among all the 

nonprofit workers, although they all work for nonprofits, how much more they earn than 

comparable for-profit workers depends on the industry and the occupation they work for. The 

total nonprofit pay differential is the sum of donative labor effects and industry and occupation 

differences. Mathematically, it is reflected in the equation 𝛽1(𝑗1,𝑗2,𝑗3) = 𝛾1000 + 𝑟1(𝑗1) + 𝑟1(𝑗2). 

Random effects of the nonprofit pay differential are the residuals on industry and occupation 

levels of the nonprofit fixed coefficient, net of other effects such as gender, race, education, and 

state. Cross-classified multilevel modeling estimates the effect of industry and occupation 
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separately without the confounding effect of the other, which means the modeling process 

produces an exhaustive inventory of nonprofit wage differentials. We can thus compute the 

nonprofit wage differential for each industry and occupation or each combination of industry and 

occupation. Appendices D and E provide detailed information.  

I illustrate how it works using a coordinate system (Figure 16) with selected industries 

and occupations. Studies find that registered nurses are paid equally or slightly better in the 

nonprofit sector than in the for-profit. King and Lewis (2017) find a 3.9 percent premium for 

nonprofit registered nurses with all industries combined. Holtmann and Idson (1993) study the 

registered nurse in the nursing facility industry to find a 3 percent nonprofit advantage. The top 

three industries for registered nurses in the dissertation data are hospitals (6220), nursing 

facilities (6231), and insurance providers (5241). They make up 83% of the total registered nurse 

occupation. Locating in Figure 16, the industry advantages for these three industries are 0.102, 

0.052, and 0.087, respectively, which means the final differences in pay for nonprofit registered 

nurses are 4 percent in hospitals, negative 1 percent for nursing care facilities, and 2.4 percent for 

insurance providers industries. These results include the -5.7 percent donative labor effects.   

Managers in nonprofits get a pay lower than for-profit by 5 to 20 percent (Preston, 1989; 

Roomkin & Weisbrod, 1999). Figure (16) shows a 5 percent for a specific type of managers, 

CEOs and public administrators. The occupation disadvantage for nonprofits in addition to -5.7 

percent donative labor effect, adding to a pay 10.7 percent lower than the for-profit managers. 

Lawyers earn 20% less (Weisbrod, 1983) or more than 40% less (Frank, 1996) in nonprofits than 

in for-profits. Figure (16) shows a negative 22 percent occupation wage difference for nonprofit 

lawyers in addition to -5.7 percent donative labor effect, which is close to 30 percent lower than 

comparable for-profit lawyers.  
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Figure 16. Coordinates of nonprofit wage differential across industries and occupations 
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In terms of industry, Preston (1988) finds a 0-10 percent nonprofit pay advantage in the 

daycare industry. In my dataset, under the child daycare industry, there are 151 occupation 

groups. Top three occupations: kindergarten and earlier school teachers, childcare workers, and 

managers in education and related field, make up 80 percent of the total employment under the 

childcare industry. The occupation differentials for the three occupations are 1.23, 3.35, and 2.29 

percent, respectively. In the Figure, nonprofits have an 8.4 percent industry advantage. Adding to 

the donative labor effect, the nonprofit wage differentials for these three occupations in child 

daycare centers are 4 percent, 6 percent, and 5 percent, respectively.  

The model analyzes the economy-wide data that include all industries and occupations 

and produces results consistent with previous research findings based on discrete industries or 

occupations. Therefore, the model reveals the complex structure of nonprofit wage differential, 

as well as provides a nuanced explanation of the seemingly contradictory and mixed findings in 

prevailing researches.    



115 
 

5.5 Hypotheses Testing: Measures 2-4 from SOI data 

Commercialism has effects on pay and nonprofit pay differential because its focus on 

efficiency and cost minimization leads to changes in the work environment and behaviors of 

organizations. Measure 1, derived from frequencies of for-profit workers from the dataset, shows 

as a compositional effect. As a contrast, measures 2-4, the percentage of commercial revenue and 

percentage of program service revenue (Child, 2010; Foster & Bradach, 2005; Kerlin & Pollak, 

2011), and inversed fundraising efforts are integral variables substantively describing the 

industry features. 

These measures are computed solely based on IRS filing by nonprofit organizations. I 

only keep nonprofit workers in the dataset, yielding a sample with 664,646 observations in the 

same number of 308 occupations, 38 industries, and 51 states. Accordingly, I deleted the 

nonprofit variable. Therefore, there is no need to examine the random effects of the sectoral pay 

differential on the industry and occupation levels.  

The unconditional model shows a slightly higher variability on the Level-2 than the full 

dataset. The industry level explains 7.4 percent of the total variance and occupation level 

explains 31 percent, compared with 7.3 percent by industry and 28 percent by occupation in the 

full dataset, respectively. The state-level variance remains less than 3 percent.  

Table (15) is the descriptive statistics for centered variables (except for the dependent 

variable) in the nonprofit dataset. Commercial revenue and program service revenue make up 

more than 90 percent of the total revenue in these industries. Compared with them, the range of 

fundraising expense percentage is a lot smaller.  
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Table 15. Summary for the nonprofit dataset (Total observations: 664,646) 

VARIABLES Mean  min max Std. Dev. 

Natural log of annual income 10.83 8.00 13.56 0.63 

Female percentage by occupation 0.68 0.00 1.00 0.22 

Female  0.68 0.00 1.00 0.46 

Years of education 15.47 0.00 20.00 2.45 

Latino  0.06 0.00 1.00 0.24 

White  0.80 0.00 1.00 0.40 

Black  0.08 0.00 1.00 0.27 

Asian  0.05 0.00 1.00 0.21 

Other races 0.02 0.00 1.00 0.14 

Manager 0.16 0.00 1.00 0.36 

White-collar worker 0.70 0.00 1.00 0.46 

Blue-collar worker 0.14 0.00 1.00 0.35 

Work hours 43.20 35.00 99.00 7.74 

Work experience  22.74 -5.00 59.00 11.70 

English speaking level (1-4) 3.97 1.00 4.00 0.21 

Percentage of fundraising expense 0.01 0.00 0.09 0.01 

Percentage of commercial revenue 0.81 0.27 1.21 0.17 

Percentage of program service revenue  0.76 0.01 0.94 0.20 

Volunteer total by industry (log) 13.47 1.95 15.88 2.53 

Trend of fundraising expense percentage 0.17 -1.66 2.00 0.51 

 

 

The correlation for all four measures (Table 4) shows that correlations of the dependent 

variable with the percentages of commercial revenue and program service revenue are very 

weak. Fundraising expense percentage measures the commitment of not engaging in a 

commercial approach. Despite its small range, it has a larger and negative relationship with 

annual income than the other two measures. Surprisingly, the natural log of volunteer total is 
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positively related to the annual income of full-time nonprofit workers. All three measures are 

industry aggregate percentages from 2000 to 2012, and volunteer data are industry aggregate 

from 2008 to 2012 due to data availability.   

I tested these measures with the full set of variables (Table 16). The results show that the 

percentages of commercial revenue and program service revenue are positive but not significant. 

The fundraising efforts measure is the total fundraising expense in 13 years, divided by total 

expense. To consider the potential trend of fundraising efforts, I generated a trend variable34 in 

the models. The fundraising effort is negatively related to the outcome variable. As the 

percentage of fundraising expense increases by 1 percentage points, salary is estimated to reduce 

by 3 percent (Model S3). Considering the range of the measure is around 9 percentage points 

(Table 15), the difference in the highest and lowest industry pay is less than 30%. It shows that 

traditional nonprofits that rely on donative funding pay less than commercialized nonprofits that 

engage less in fundraising activities. The result aligns with my earlier argument that revenue 

percentages measure the results of commercialization, whereas fundraising efforts measure the 

intention to commercialize that determines organizations’ subsequent behaviors. In the following 

models, I only used fundraising efforts as the key independent variable. 

I also attach Model (9) in the full dataset in column 4 as a comparison. Female 

percentage by occupation reduces salary by 0.1 percent, but it is not significant in the full 

dataset. The effect of work hours is lower in the nonprofit sector than the full dataset. The return 

on education is 0.8 percentage points higher than the data for both sectors. The gender and racial 

equity are obvious in nonprofit workers. The gender pay gap is narrower by 6 percentage points 

                                                           
34 (𝑓𝑛𝑑𝑟𝑠_𝑒𝑓𝑓2012 −  𝑓𝑛𝑑𝑟𝑠_𝑒𝑓𝑓2000)/(

𝑓𝑛𝑑𝑟𝑠_𝑒𝑓𝑓2000+𝑓𝑛𝑑𝑟𝑠_𝑒𝑓𝑓2012

2
) 
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than the full dataset. All racial groups have a smaller pay difference in pay than Whites, 

compared with the full data. The natural log of the volunteer total by industry is not significant in 

all models.  

 

Table 16. Test of measures and testing Hypothesis 2  

 Natural log of annual income 

 (S1) (S2) (S3) (9) 

Percentage of commercial revenue 0.001    

 (1.318)    

Percentage of PSR  0.001   

  (1.432)   

Percentage of fundraising expense   -0.030***  

   (-2.897)  

For-profit share of workers    0.003*** 

    (3.522) 

Female percentage by occupation -0.001** -0.001** -0.001** -0.001 

 (-2.508) (-2.508) (-2.507) (-1.451) 

Volunteer total by industry (log) -0.009 -0.009 -0.006  

 (-1.425) (-1.441) (-0.920)  

Nonprofit     -0.057*** 

    (-3.893) 

Female  -0.133*** -0.133*** -0.133*** -0.185*** 

 (-105.864) (-105.865) (-105.866) (-272.933) 

Black  -0.044*** -0.044*** -0.044*** -0.093*** 

 (-22.340) (-22.340) (-22.344) (-90.402) 

Asian  -0.015*** -0.015*** -0.015*** -0.029*** 

 (-5.714) (-5.714) (-5.715) (-21.799) 
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Latino  -0.014*** -0.014*** -0.014*** -0.063*** 

 (-6.015) (-6.015) (-6.019) (-57.061) 

Other races  -0.036*** -0.036*** -0.036*** -0.066*** 

 (-9.500) (-9.500) (-9.501) (-32.353) 

Years of education 0.081*** 0.081*** 0.081*** 0.073*** 

 (266.078) (266.077) (266.084) (468.674) 

Work experience  0.010*** 0.010*** 0.010*** 0.011*** 

 (218.369) (218.370) (218.366) (449.153) 

Work experience squared -0.048*** -0.048*** -0.048*** -0.053*** 

 (-125.040) (-125.040) (-125.039) (-266.867) 

Work hours per week 0.008*** 0.008*** 0.008*** 0.013*** 

 (107.678) (107.678) (107.681) (342.442) 

Speak English  0.052*** 0.052*** 0.052*** 0.045*** 

 (20.379) (20.378) (20.383) (44.654) 

Trend of fundraising percentage   0.011  

   (0.439)  

Constant 10.671*** 10.671*** 10.671*** 10.673*** 

 (363.516) (364.423) (379.819) (374.288) 

Random coefficients  No  No  No  Yes  

Observations 664,646 664,646 664,646 3,017,110 

Akaike Inf. Crit. 718,560 718,560 718,556 4,066,108 

Bayesian Inf. Crit. 718,765 718,765 718,7723 4,066,393 

Note: *p**p***p<0.01 

 

 

With no random coefficient, the models are simpler. I only used fundraising effort 

measure to test of Hypothesis 4 on manager-staff pay equity and Hypothesis 5 on gender pay 

equity (Table 17). Findings are consistent with the previous models. Managers earn 46 percent 
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more than blue-collar workers (Model S4). Nonprofits engaging in more fundraising have a 

narrower occupation pay gap, which is not big but significant (Model S5). It shows that the 

choice of reliance on donative revenue or commercial revenue does have an impact on pay to 

nonprofit workers.  

 

Table 17. Modeling commercialism effects on the gender pay gap and manager-staff pay gap  

 Natural log of annual income 

 (S4) (S5) (S6) 

Percentage of fundraising expense -0.031*** -0.028*** -0.030*** 

 (-2.906) (-2.628) (-2.877) 

Manager  0.233*** 0.227***  

 (3.800) (3.694)  

Blue-collar worker -0.223*** -0.218***  

 (-8.128) (-7.925)  

Female percentage by occupation -0.003*** -0.003*** -0.001** 

 (-6.826) (-6.777) (-2.504) 

Volunteer total by industry (log) -0.006 -0.006 -0.006 

 (-0.916) (-0.941) (-0.917) 

Female -0.133*** -0.133*** -0.132*** 

 (-105.878) (-106.138) (-100.535) 

Black  -0.044*** -0.044*** -0.044*** 

 (-22.333) (-22.272) (-22.321) 

Asian  -0.015*** -0.015*** -0.015*** 

 (-5.714) (-5.711) (-5.735) 

Latino  -0.014*** -0.014*** -0.014*** 

 (-6.017) (-5.979) (-6.038) 
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Other races  -0.036*** -0.036*** -0.036*** 

 (-9.503) (-9.474) (-9.503) 

Years of education 0.081*** 0.081*** 0.081*** 

 (265.943) (266.137) (265.946) 

Work experience  0.010*** 0.010*** 0.010*** 

 (218.365) (218.349) (218.366) 

Work experience squared -0.048*** -0.048*** -0.048*** 

 (-125.038) (-125.065) (-125.048) 

Work hours per week 0.008*** 0.008*** 0.008*** 

 (107.666) (107.734) (107.717) 

Trend of fundraising percentage  0.011 0.011 0.011 

 (0.439) (0.434) (0.444) 

Speak English 0.052*** 0.052*** 0.052*** 

 (20.364) (20.279) (20.391) 

Percentage of fundraising expense × manager   -0.014***  

  (-10.280)  

Percentage of fundraising expense × blue-collar  0.009***  

  (6.098)  

Percentage of fundraising expense × female   0.003*** 

   (3.058) 

Constant 10.738*** 10.739*** 10.671*** 

 (382.194) (381.256) (379.968) 

Observations 664,646 664,646 664,646 

Akaike Inf. Crit. 718,489 718,319 718,561 

Bayesian Inf. Crit. 718,729 718,581 718,789 

Note: *p**p***p<0.01 
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Model (S6) shows that in nonprofits that engage in less commercial approaches, the 

gender pay gap is narrower, although the size is not large. Therefore, both datasets show that 

either measured as the compositional effect or the contextual effect, commercialism increases 

pay and also increase pay gaps between genders and occupation types. 

5.6 Sensitivity Analysis 

To check the robustness and consistency of the estimates, I add different structures on 

Level-2 to compare the fixed effects of the nonprofit coefficient. Then, I use different subsets of 

the full data to run four selected models to check the consistency of the nonprofit coefficient.   

Different level-2 structures.  

In Table 18, Model (9) is the model I used for results in the dissertation. Model (T1) 

considers nonprofit wage differential also randomly varies on the state level in addition to 

industry and occupation levels. It reports a 4.7 percent negative nonprofit wage differential, 

reducing the size of nonprofit fixed effects by 1 percentage points.   

Leete (2001) argues that nonprofit status, industry, occupation cannot be independently 

determined. Therefore, I created Model (T2) by adding an interaction term between industries 

and occupations as a control. It generates 38 industries, 308 occupations, 7,872 industry-

occupation cells, and 51 states on Level-2.  In Model (T3), nonprofit is specified to vary across 

the interaction cells. The effects of the interaction cells are rather small, similar to Leete's (2001) 

conclusion. The coefficient for nonprofit remains to be robust to these changes. Even the strictest 

control still reports a 4.7 percent negative wage differential on average for nonprofit workers, net 

of industry and occupation variability.    
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Table 18. Random slope coefficients on different levels 

 Natural log of annual income 

Fixed effects part (9) (T1) (T2) (T3) 

For-profit share of workers 0.003*** 0.003*** 0.003*** 0.003*** 

 (3.537) (3.554) (3.887) (3.979) 

Female percentage by occupation -0.001 -0.001 -0.0004 -0.0003 

 (-1.445) (-1.450) (-0.906) (-0.763) 

Nonprofit  -0.057*** -0.047*** -0.050*** -0.047*** 

 (-3.893) (-3.120) (-3.950) (-4.115) 

Female  -0.185*** -0.185*** -0.182*** -0.182*** 

 (-272.933) (-272.696) (-268.881) (-268.653) 

Years of education 0.073*** 0.073*** 0.070*** 0.070*** 

 (468.674) (468.388) (451.999) (451.929) 

Latino  -0.063*** -0.064*** -0.060*** -0.060*** 

 (-57.061) (-57.446) (-54.413) (-54.396) 

Black  -0.093*** -0.093*** -0.087*** -0.087*** 

 (-90.402) (-90.831) (-85.321) (-85.175) 

Asian  -0.029*** -0.030*** -0.029*** -0.029*** 

 (-21.799) (-22.194) (-21.597) (-21.582) 

Other races  -0.066*** -0.066*** -0.063*** -0.063*** 

 (-32.353) (-32.550) (-31.227) (-31.190) 

Speak English 0.045*** 0.046*** 0.042*** 0.042*** 

 (44.654) (45.161) (41.934) (41.815) 

Work experience  0.011*** 0.011*** 0.011*** 0.011*** 

 (449.153) (449.266) (448.990) (449.056) 

Work experience squared -0.053*** -0.053*** -0.052*** -0.052*** 

 (-266.867) (-266.927) (-263.397) (-263.339) 

Work hours per week 0.013*** 0.013*** 0.013*** 0.013*** 
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 (342.442) (341.644) (342.644) (342.410) 

Constant 10.673*** 10.673*** 10.679*** 10.680*** 

 (374.288) (374.238) (393.187) (394.085) 

Random effects part Variance  

Industry (Intercept)  0.015718 0.015693 0.012761 0.012666 

Nonprofit 0.006896 0.006829 0.005300 0.004288 

Occupation (Intercept) 0.052737 0.052765 0.053803 0.053664 

Nonprofit 0.005739 0.005789 0.003195 0.002041 

Industry×occupation (Intercept)   0.011163 0.010701 

Nonprofit    0.003886 

State (intercept) 0.011391 0.011431 0.011063 0.011054 

Nonprofit  0.000741   

Residual  0.225067 0.224876 0.219502 0.219306 

Observations 3,017,110 3,017,110 3,017,110 3,017,110 

Akaike Inf. Crit. 4,066,108 4,063,689 3,998,534 3,996,937 

Bayesian Inf. Crit. 4,066,393 4,063,999 3,998,831 3,997,260 

Note: *p**p***p<0.01 

 

 

Beyond the small numeric difference, it is useful to think about the selection of 

coefficients for interpretation based on the purpose of the research. If the purpose is to predict, 

maybe Model (T3) should be selected because it controls more variability and yields more 

precision. However, Models (T2) and (T3) lack the theoretical foundation so far. With industry-

occupation cells, the model aims to gauge the between-cell differences. In other words, Model 

(T3) cares about the difference in pay between any combinations of industry and occupation such 

as a social worker in the university industry and a subject instructor in the hospital industry, or 

the pay difference between a manager in a credit union and an artist in arts organizations. There 
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is not enough theoretical or practical underpinning of why the examples mentioned above are 

important to study. Model (T1) can be a choice to examine how nonprofit pay differential varies 

across different states in addition to the random effects on industry and occupation levels if one’s 

interest also includes the state level. In summary, Model (9) provides the estimates that are in 

line with current nonprofit theories given my purpose is to understand and explain the nonprofit 

pay differentials on industry and occupation levels.  

Different datasets.  

The first dataset is the full data without industries of hospital (6220) and higher education 

(6112).  Table (19) shows that hospital industry (6220) makes up 16 percent of the sample, and 

higher education makes up another 4.12 percent. In total, they make up 20 percent of the total 

sample with different proportions of nonprofit and for-profit workers. These industries not only 

are large in size, but also occupy the higher end of industry wage differential: the nonprofit wage 

advantage over for-profit is 10.20 percent for hospitals, and 10.70 percent for higher education 

and universities (Appendix D).  

 

Table 19. Dropped industries for sensitivity analysis 

Industry 

category 

 

Total 

For-profit employees Nonprofit employees 

Frequency industry % overall % Frequency  industry % overall % 

6112 124,307 48,165 38.75 1.60 76,142 61.25 2.52 

6220 479,007 252,313 52.56 8.36 226,694 47.33 7.51 

Total 603,314 300,478 
 

9.96 302,836 
 

10.03 
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The second dataset is the one-year data Census 2000 with a sample size of 649,227, 

which is 21.52 percent of the dataset used in the dissertation. The third dataset is the same 

dataset, but with the original 58 industry categories from ACS without combining into 38 

categories. The major difference between the 38 industries and 58 industries lies in “public 

utilities” where six categories are combined into one, and “transportation” where nine categories 

ranging from air transportation, truck transportation to pipeline transportation and services 

incidental to transportation are combined into one category (Appendix B).   

Table (20) shows how variance components change across different datasets. Whether 

having the “outlier” industries does not seem to affect the variance components, but having more 

industry categories increases the variance on the industry level.   

 

Table 20. Comparing variance components (IUCC) 

 The proportion of variance on each level 

 
38 industries No hospital and 

higher education 

Census 2000 58 industries 

Industry [7.3%] [7.16%] [6.81%] [10.5%] 

Occupation [28%] [27.64%] [25.00%] [26.1%] 

State [2.8%] [2.82%] [3.25%] [2.6%] 

Residual 0.28486 0.29838 0.26634 0.28052 

Constant 10.589*** 10.592*** 10.584*** 10.642*** 

 (269.161) (260.576) (287.944) (277.167) 

Observations 3,017,110 2,423,796 649,227 3,017,110 

Akaike Inf. Crit. 4,776,157 3,933,485 985,622 4,729,958 

Bayesian Inf. Crit. 4,776,222 3,933,548 985,679 4,730,022 
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Next, I compared random intercept models (Table 21). Assuming that the nonprofit wage 

differential does not vary across industries and occupations, the commercialism effect remains 

similar, and the nonprofit pay differential is under 1 percent except for the dataset without 

hospitals and higher education.   Without hospitals and universities, even though we assume 

nonprofit pay differential is the same across the rest 36 industries, nonprofit workers earn 3 

percent less than the for-profit workers. It reflects the overwhelming impact of these two 

industries on the economy-wide nonprofit wage differential estimate due to their large industry 

sizes and industry pay advantages for nonprofits.   
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Table 21. Comparing models with no random slopes 

 Natural log of annual income 

 
38 

industries 

No hospital and 

higher education 

Census 

2000 

58 industries (full-

time worker) 

58 industries (including 

part-time worker) 

289 industries (full-

time worker) 

For-profit share of 

workers 

0.004*** 0.004*** 0.003*** 0.004*** 0.005*** 0.003*** 

(4.213) (4.035) (4.493) (4.505) (4.944) (4.970) 

Female percentage by 

occupation 

-0.001 -0.001 -0.001*** -0.001 -0.001 -0.00001 

(-1.521) (-1.300) (-2.812) (-1.161) (-1.298) (-0.026) 

Nonprofit  0.002*** -0.030*** -0.008*** 0.007*** 0.010*** -0.001 

 (2.891) (-28.381) (-4.649) (9.188) (13.139) (-0.958) 

Female  -0.187*** -0.197*** -0.199*** -0.184*** -0.158*** -0.193*** 

 (-276.068) (-254.826) (-138.037) (-271.682) (-236.715) (-463.042) 

Years of education 0.073*** 0.072*** 0.072*** 0.072*** 0.068*** 0.062*** 

 (469.262) (411.452) (216.209) (464.580) (461.408) (714.735) 

Latino  -0.065*** -0.073*** -0.049*** -0.072*** -0.035*** -0.053*** 

 (-58.414) (-58.487) (-18.974) (-67.001) (-28.958) (-72.420) 

Black  -0.095*** -0.104*** -0.059*** -0.093*** -0.062*** -0.103*** 

 (-92.220) (-88.045) (-27.331) (-91.134) (-61.282) (-151.374) 

Asian  -0.030*** -0.035*** -0.034*** -0.039*** -0.005*** -0.016*** 

 (-22.173) (-21.640) (-10.345) (-29.690) (-3.318) (-17.770) 
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Other races  -0.067*** -0.071*** -0.071*** -0.067*** -0.059*** -0.072*** 

 (-32.827) (-30.747) (-16.862) (-33.299) (-30.718) (-57.598) 

Speak English 0.046*** 0.045*** 0.045*** 0.037*** 0.020*** 0.051*** 

 (44.993) (40.148) (19.443) (18.206) (24.324) (109.259) 

Work experience 0.011*** 0.011*** 0.012*** 0.011*** 0.013*** 0.010*** 

 (448.690) (380.215) (212.464) (439.095) (548.223) (690.076) 

Work experience 

squared 

-0.053*** -0.052*** -0.052*** -0.053*** -0.061*** -0.052*** 

(-267.026) (-229.762) (-115.216) (-268.668) (-331.493) (-444.157) 

Work hours per week 0.013*** 0.015*** 0.012*** 0.013*** 0.877***35 0.015*** 

 (345.041) (342.001) (156.982) (333.049) (1,132.333) (643.305) 

Work weeks per year     0.241***  

     (1,006.384)  

Constant 10.682*** 10.679*** 10.660*** 10.728*** 10.415*** 10.736*** 

 (368.283) (362.015) (400.583) (373.906) (354.715) (519.903) 

Random coefficients No   No No  No  No No 

Observations 3,017,110 2,413,796 649,227 3,017,110 4,306,670 8,131,265 

Akaike Inf. Crit. 4,078,169 3,366,409 839,050 4,049,456 7,122,774 10,649,186 

Bayesian Inf. Crit. 4,078,401 3,366,638 839,254 4,049,689 7,123,026 10,649,436 

Note: *p**p***p<0.01 

 

                                                           
35 “Work hours per week” variable in this model is log form in this model because this dataset includes part-time workers.  
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Models in Table (22) are different from Table (21) by specifying random coefficients for 

nonprofit on industry and occupation levels. With the random effects of nonprofits, coefficients 

for commercialism and nonprofit are highly consistent across different datasets. The large-size 

industry outliers do not seem to matter much because the variability on Level-2 (including 

industry level) is removed. Despite the consistency, there is a noticeable difference in the 

nonprofit coefficient between dataset with 58 categories and 38 categories.  
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Table 22. Comparing random slope models on different datasets 

 Natural log of annual income 

 
38 

industries 

No hospital and 

higher education 

Census 

2000 

58 industries (full-

time workers 

58 industries (including 

part-time workers) 

289 industries (full-

time workers) 

For-profit share of 

workers 

0.003*** 0.003*** 0.003*** 0.003*** 0.004*** 0.002*** 

(3.537) (3.704) (4.032) (3.966) (4.516) (3.650) 

Female percentage by 

occupation 

-0.001 -0.001 -0.001** -0.001 -0.001 -0.0001 

(-1.445) (-1.193) (-2.502) (-1.237) (-1.391) (-0.333) 

Nonprofit  -0.057*** -0.052*** -0.052*** -0.043*** -0.061*** -0.069*** 

 (-3.893) (-3.740) (-3.232) (-3.734) (-5.075) (-10.712) 

Female  -0.185*** -0.195*** -0.197*** -0.182*** -0.157*** -0.191*** 

 (-272.933) (-252.379) (-136.445) (-268.797) (-234.088) (-460.075) 

Years of education 0.073*** 0.072*** 0.072*** 0.072*** 0.068*** 0.062*** 

 (468.674) (411.713) (215.958) (464.257) (460.124) (713.869) 

Latino  -0.063*** -0.072*** -0.048*** -0.071*** -0.034*** -0.052*** 

 (-57.061) (-57.638) (-18.383) (-65.443) (-28.086) (-71.475) 

Black  -0.093*** -0.103*** -0.057*** -0.091*** -0.060*** -0.101*** 
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 (-90.402) (-87.243) (-26.225) (-89.215) (-59.519) (-149.700) 

Asian  -0.029*** -0.035*** -0.033*** -0.039*** -0.004*** -0.015*** 

 (-21.799) (-21.575) (-10.135) (-29.216) (-3.007) (-17.215) 

Other races -0.066*** -0.070*** -0.070*** -0.066*** -0.058*** -0.072*** 

 (-32.353) (-30.469) (-16.557) (-32.785) (-30.263) (-57.189) 

Speak English 0.045*** 0.044*** 0.045*** 0.037*** 0.020*** 0.051*** 

 (44.654) (39.168) (19.234) (18.168) (24.131) (109.008) 

Work experience  0.011*** 0.011*** 0.012*** 0.011*** 0.013*** 0.010*** 

 (449.153) (380.659) (213.024) (439.536) (547.803) (689.900) 

Work experience 

squared 

-0.053*** -0.052*** -0.052*** -0.053*** -0.060*** -0.052*** 

(-266.867) (-229.639) (-115.305) (-268.437) (-330.790) (-443.701) 

Work hours per week 0.013*** 0.015*** 0.012*** 0.013*** 0.874*** 0.015*** 

 (342.442) (342.092) (155.657) (330.879) (1,127.351) (642.373) 

Work weeks per year     0.241***  

     (1,007.241)  

Constant 10.673*** 10.674*** 10.654*** 10.722*** 10.408*** 10.734*** 

 (374.288) (365.038) (409.194) (376.069) (356.224) (518.523) 
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Random coefficients Yes  Yes  Yes  Yes  Yes  Yes  

Observations 3,017,110 2,413,796 649,227 3,017,110 4,306,670 8,131,265 

Akaike Inf. Crit. 4,066,108 3,358,306 836,488 4,038,292 7,110,175 10,632,677 

Bayesian Inf. Crit. 4,066,393 3,358,586 836,739 4,038,576 7,110,481 10,632,983 

Note: *p**p***p<0.01 
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The following table shows that the average salary for “transportation” in original 

categories varies with a wide range of 10.25 ($28,283) and 11.26 ($77,653). “Truck 

transportation” makes up 45 percent of the large category. The more categories, the more 

between-group variance is captured on Level-2. Thus, there should be comparatively less 

difference (more accuracy) on Level-1 estimates. 

 

Industry in 58 categories 

Mean of 

income Frequencies  

In 38 

categories 

Mean of 

income Frequencies  

481 Air transportation 10.96651 44,360 
   

482 Rail transportation 11.10162 25,362 
   

483 Water transportation 11.03975 4,777 
   

484 Truck transportation 10.73268 120,687 
   

4853 Taxi and limousine service 10.25499 6,428 4800 10.80458 267,260 

485M Bus service and urban transit 10.56718 16,309 
   

486 Pipeline transportation 11.25552 5,248 
   

487 Scenic and sightseeing 

transportation 10.59979 1,515 
   

488 Services incidental to 

transportation 10.76195 42,574 
   

 

 

On the one hand, this is the condition when I need to merge ACS data to SOI data 

because SOI has only one category of “transportation.” On the other hand, the theoretical 

argument on the measurability of service quality, efficiency, and commercialism prefers 

combined 38 industry categories to the 58 categories. No matter it is air transportation, rail 

transportation, or taxi services, they are not different in terms of the potential to commercialize. 

In other words, the 38-category model presents the results that are better explained by theories. 

I have restricted the analysis to full-time workers based on the consideration of 

motivation sorting. Other studies, such as Ruhm and Borkoski (2003), suggest that the nonprofit 
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sector has more part-time workers. Hirsch (2005) find that part-time workers often have 

compensation penalty because of interruption of tenure and work experience. Hence, including 

part-time workers in the study might strengthen the negative nonprofit wage differential, which, 

however, may not necessarily relate to the donative labor effect. My analysis of the dataset that 

includes part-time workers shows that, controlling for work hours per week and work weeks per 

year, nonprofit workers earn 6.1 percent less than comparable for-profit workers (Table 22).  

The dissertation data only kept 58 industries. I also did a supplementary analysis using 

the full list of 289 industries in the ACS (with the same model) estimates a negative 7 percent 

nonprofit wage differential (Table 22).    

Table (23) compares commercialism effect on the manager-staff pay gap in the two 

sectors. Coefficients for constituent variables of commercialism, nonprofit, managers, and blue-

collar worker are similar across different datasets. However, interaction effects are different. In 

the dataset with 58 industries, commercialism is not significant. The sectoral difference in 

occupation types is only significant in Census 2000 at a 10 percent level.  The three-way 

interaction effects are significant in three large datasets at a 1 percent level and only significant 

at a 10% level in Census 2000. Therefore, cautions are needed in interpreting the three-way 

interaction effects on occupation types. 

 

Table 23. Testing manager-staff pay gap across different datasets 

 Natural log of annual income 

 
38 

industries 

No hospital and higher 

education 

Census 

2000 

58 

industries 

For-profit share of workers 0.003*** 0.003*** 0.003*** 0.004*** 

 (3.951) (4.026) (4.506) (4.146) 
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Nonprofit  -0.058*** -0.046*** -0.056*** -0.046*** 

 (-4.254) (-4.142) (-3.661) (-4.059) 

Manager 0.223*** 0.211*** 0.201*** 0.229*** 

 (3.676) (3.377) (3.805) (3.903) 

Blue-collar worker -0.244*** -0.251*** -0.185*** -0.254*** 

 (-9.480) (-9.469) (-8.050) (-10.203) 

For-profit share of workers × 

nonprofit 
-0.001** -0.001* -0.001** -0.001 

 (-2.276) (-1.933) (-2.120) (1.431) 

For-profit share of workers × manager -0.0005*** -0.0003*** -0.0004*** 0.0001 

 (-7.217) (-3.697) (-3.124) (1.091) 

Nonprofit × manager -0.017 -0.030 -0.041* -0.015 

 (-0.695) (-1.155) (-1.779) (-0.646) 

For-profit share of workers × blue-

collar 
-0.0003*** 0.0001 -0.0003*** -0.0001** 

 (-5.685) (0.784) (-3.403) (-2.432) 

Nonprofit × blue-collar 0.011 0.017 0.022* 0.019* 

 (0.977) (1.434) (1.735) (1.722) 

For-profit share of workers × 

nonprofit × manager 
-0.0003** 0.001*** -0.0005* -0.001*** 

 (-2.317) (5.373) (-1.901) (-4.517) 

For-profit share of workers × 

nonprofit × blue-collar 
0.001*** -0.001*** 0.0004* 0.001*** 

 (5.223) (-3.676) (1.907) (4.562) 

Female  -0.185*** -0.195*** -0.197*** -0.182*** 

 (-272.826) (-252.407) (-136.405) (-268.708) 

Female percentage by occupation -0.003*** -0.003*** -0.002*** -0.003*** 

 (-6.368) (-6.046) (-6.542) (-6.476) 

Years of education  0.073*** 0.072*** 0.072*** 0.072*** 

 (468.362) (411.464) (215.609) (464.138) 
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Latino  -0.063*** -0.072*** -0.048*** -0.071*** 

 (-56.996) (-57.616) (-18.346) (-65.383) 

Black  -0.093*** -0.103*** -0.057*** -0.091*** 

 (-90.374) (-87.228) (-26.207) (-89.190) 

Asian  -0.029*** -0.035*** -0.033*** -0.039*** 

 (-21.808) (-21.563) (-10.131) (-29.214) 

Other races -0.066*** -0.070*** -0.070*** -0.066*** 

 (-32.352) (-30.463) (-16.555) (-32.790) 

Speak English 0.045*** 0.044*** 0.045*** 0.037*** 

 (44.445) (39.163) (19.120) (18.005) 

Work experience  0.011*** 0.011*** 0.012*** 0.011*** 

 (448.933) (380.598) (212.958) (439.413) 

Work experience squared  -0.053*** -0.052*** -0.052*** -0.053*** 

 (-266.876) (-229.640) (-115.321) (-268.448) 

Work hours per week 0.013*** 0.015*** 0.012*** 0.013*** 

 (342.449) (342.098) (155.644) (330.865) 

Constant 10.726*** 10.727*** 10.701*** 10.776*** 

 (382.584) (372.267) (414.492) (385.577) 

Random coefficients Yes  Yes  Yes  Yes  

Observations 3,017,110 2,413,796 649,227 3,017,110 

Akaike Inf. Crit. 4,065,990 3,358,287 836,482 4,038,238 

Bayesian Inf. Crit. 4,066,390 3,358,680 836,835 4,038,638 

Note: *p**p***p<0.01 

 

The last comparison is the commercialism effect on the gender pay gap between the two 

sectors (Table 24). Both commercialism and nonprofit have significant moderating effects on the 

gender pay gap. Three-way interaction terms are highly consistent across different datasets, 
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showing greater gender pay equity in the nonprofit sector and enlarging sector gap of gender pay 

due to commercialism.  

Table 24. Testing the gender pay gap across different datasets 

 Natural log of annual income 

 
38 

industries 

No hospital and higher 

education 

Census 

2000 

58 

industries 

For-profit share of workers 0.003*** 0.004*** 0.003*** 0.004*** 

 (4.028) (4.127) (4.569) (4.302) 

Nonprofit  -0.051*** -0.047*** -0.048*** -0.038*** 

 (-3.687) (-3.545) (-3.162) (-3.368) 

Female  -0.173*** -0.175*** -0.183*** -0.181*** 

 (-214.237) (-176.423) (-102.772) (-227.388) 

For-profit share of workers × 

nonprofit 
-0.001** -0.001* -0.001** -0.001 

 (-2.391) (-1.798) (-2.155) (-1.552) 

For-profit share of workers × female -0.002*** -0.002*** -0.001*** -0.002*** 

 (-51.135) (-35.196) (-18.041) (-46.462) 

Nonprofit × female 0.039*** 0.048*** 0.047*** 0.040*** 

 (18.376) (18.996) (10.138) (16.638) 

For-profit share of workers × 

nonprofit × female 
0.001*** 0.001*** 0.001*** 0.001*** 

 (16.166) (10.177) (6.110) (12.500) 

Female percentage by occupation  -0.001** -0.001** -0.001*** -0.001* 

 (-2.129) (-2.165) (-3.391) (-1.702) 

Years of education  0.073*** 0.072*** 0.072*** 0.072*** 

 (466.470) (410.258) (215.241) (462.354) 
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Latino  -0.063*** -0.072*** -0.048*** -0.071*** 

 (-57.234) (-57.869) (-18.468) (-65.640) 

Black  -0.092*** -0.102*** -0.056*** -0.091*** 

 (-89.762) (-86.628) (-25.994) (-88.629) 

Asian  -0.028*** -0.034*** -0.033*** -0.038*** 

 (-21.142) (-21.297) (-9.941) (-28.678) 

Other races  -0.065*** -0.070*** -0.070*** -0.066*** 

 (-32.095) (-30.332) (-16.462) (-32.546) 

Speak English 0.046*** 0.044*** 0.045*** 0.038*** 

 (44.952) (39.365) (19.331) (18.376) 

Work experience  0.011*** 0.011*** 0.012*** 0.011*** 

 (449.442) (380.881) (212.861) (439.710) 

Work experience squared  -0.053*** -0.052*** -0.052*** -0.053*** 

 (-267.573) (-230.087) (-115.670) (-269.027) 

Work hours per week 0.013*** 0.015*** 0.012*** 0.013*** 

 (341.448) (341.474) (155.232) (330.112) 

Constant 10.670*** 10.671*** 10.651*** 10.718*** 

 (374.942) (364.642) (409.888) (377.678) 

Random coefficients Yes  Yes  Yes  Yes  

Observations 3,017,110 2,413,796 649,227 3,017,110 

Akaike Inf. Crit. 4,061,180 3,355,506 835,707 4,034,256 

Bayesian Inf. Crit. 4,061,516 3,355,836 836,003 4,034,592 

Note: *p**p***p<0.01 
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To summarize the sensitivity tests, as long as the models include random coefficients of 

nonprofit on industry and occupation levels, the estimates are robust. Even if including the 

random effects on the incomprehensible level, there is a significant 4.7 percentage negative 

nonprofit wage differential on average. Across different datasets, minor disparities occur 

between the 38 industries and 58 industries. 
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Chapter VI. Discussions and Conclusion 

To answer the theoretical questions about whether altruistically motivated workers donate 

their labor to nonprofits and what is the effect of commercialism, I have analyzed cross-sectional 

data pooled from 12 years of American Community Survey and Census 2000. Donative labor 

effect has been assessed through multi-level random effects modeling. The effect of 

commercialism has been assessed through different measures. Then, I have run a series of 

sensitivity analyses to check the consistency of the results. In this chapter, I recapitulate the main 

finding, building on which I discuss the implications, contributions, and limitations of the 

research. 

Summary of findings  

Whether nonprofit workers earn more than for-profit workers has been an unsettled 

question for long. Findings of negative nonprofit pay differentials (Handy et al., 2007; Preston, 

1990a; Weisbrod, 1983) have been continuously compromised by counter-findings (Holtmann & 

Idson, 1993; King & Lewis, 2017; Preston, 1988) or findings of equal pay (Ben-Ner et al., 2011; 

Hirsch et al., 2018; Leete, 2001). In the meantime, multiple industry and economy-wide studies 

acknowledge significantly positive or negative differentials in some industries.  

These studies have laid a great foundation and also made a strong appeal for further 

inquiry on the disagreement of findings. Results of discrete industries or occupations cannot be 

inferred to other industries or occupations because the research findings are contradictory. The 

assumption in economy-wide studies that nonprofit pay differential is the same across industries 

and occupations leads to a confounded estimate that there is no donative labor effect. My 

dissertation addresses these conflicts by asking what is the fixed coefficient of nonprofit wage 

differential that is global to all nonprofit workers and what is the random effect that is local to 
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different groups: industries and occupations. Put it another way, I examine the nonprofit wage 

differential as a composite of nonprofit effect, industry effect, and occupation effect.    

The reframing of nonprofit wage differential as a composite is grounded in theories that 

explain phenomena on different levels, namely, donative labor theory on the individual level, 

attenuated property rights theory on the organizational level, and efficiency wage theory on the 

firm or industry level. I deconstructed the theory on their background, empirical evidence, and 

levels of explanation. Based on the explanatory level of theories, I developed my hypotheses and 

tested them using CCREM.  

The meaning of random effects. 

Comparing Model (7) with only Level-1 variables and Model 8 with all variables 

suggests that commercialism reduces the industry wage dispersion by 5 percentage points. The 

inter-industry wage differentials, or the rank of industry pay (left panel of Figure 14), is 

important when we consider pay equity. Holding constant all variables, Level-1 errors, 

occupation and state effects in the model, the dispersion of industry-level pay is between -0.26 

and 0.30 around the mean (10.73). The random slope model (Model 9) shows that random 

intercepts are negatively correlated with the nonprofit random slopes on the industry level, 

meaning that industries where nonprofits pay more than the for-profits are usually low-pay 

industries. For instance, several frequently studied industries with positive nonprofit wage 

differentials, such as day-care centers, residential care facilities, nursing facilities, are among the 

lowest-paying industries below the average (Figure 14). In many other higher-pay industries such 

as rehabilitation centers and libraries, nonprofits have large negative pay differentials.  
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Effects of commercialism. 

Industries are the contexts that have different attributes such as competition level, entry 

and funding requirement, commercialism, types of services, and revenue sources. All of these 

can affect the organization actors in the industry. The dissertation examines the effects of 

commercialism. Either measured as the for-profit share of workers or inverse of fundraising 

efforts, commercialism increases pay because of its potential focus on efficiency and cost 

minimization, which triggers the compensating wage mechanism.  Commercialism intervenes the 

nonprofit wage differential through changing behaviors of organizations that strive to 

commercialize.  As explained by compensating wage theory, less pleasant working conditions 

invoke higher pay. The effects of fundraising efforts on decreasing pay (for only nonprofit 

worker dataset) appear to be stronger than the effects of the for-profit share of workers (for all 

full-time workers).  

The compensating wage mechanism is further confirmed in models with the moderating 

effect of commercialism. The nonprofit sector is reputed to have more pay equity in the gender 

pay difference and the manager-staff pay difference. Commercialism moderates the pay equity as 

well as the sector pay differential. The pay gap between nonprofits and for-profits is larger in 

more commercialized industries than less commercialized ones. In more commercialized 

industries, the gender pay gap and manager-staff pay gap are wider. 

Effects of donative labor. 

Nonprofit organizations generally serve the public interest and social missions. Thus, 

nonprofits often attract altruistically motivated workers who are willing to sacrifice personal 

benefits to produce positive social externalities. On average, the effect of donative labor is that 

nonprofit workers earn 5.7 percent less than comparable for-profit workers controlling for 
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industry, occupation, and state effects. Sensitivity tests show that it is between negative 4.7 

percent and negative 5.7 percent.  

Implications  

Donative labor under the mask. The inability to test theories has practical and policy 

implications. Contradictory or divergent results generate uncertainty, doubt, questioning on 

nonprofits as a sector. Confounding industry and occupation contexts make nonprofits “for-

profits in disguise” (Holtmann & Idson, 1993; Roomkin & Weisbrod, 1999; Weisbrod, 1988), 

leading to the illusion that altruism does not exist and nonprofit workers do not donate their labor 

to nonprofits (Ruhm & Borkoski, 2003), which compromises the legitimacy of the nonprofit 

sector.   

My findings reveal that altruism and motivation sorting lead to lower pay for nonprofit 

workers than comparable for-profit workers. It is part of the total nonprofit wage differential in 

addition to the effects on industry and occupation levels. Decomposing sources of effects suggest 

that, instead of asking why there is an inconsistency of the sectoral pay differential, we should 

ask why there is an industry or occupation difference. Asking the right question could restore the 

legitimacy of nonprofit to their constituents, including clients, policymakers, and other 

stakeholders, as well as developing more insightful research directions.  

Commercialism hurts under the mask. Salamon (1993, 1999, 2015) argue that, facing 

“fiscal squeeze” of government budget and “economic crisis” of competing with the for-profit 

firms to serve similar clients, nonprofits not only develop resilience to sustains the growth of the 

sector through commercialization, but also suffers from erosion of values that nonprofits hold 

dear such as democracy and citizenship (Eikenberry & Kluver, 2004). In the case of pay 

differential, commercialism increases the pay to both for-profit and nonprofit workers because 
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the deprivation of pleasant working conditions as a result of efficiency pursuit gets compensated 

as a monetary reward. However, commercialism does not increase the pay equally. It increases 

pay more for men and managers in the for-profit sector, leading to a widening horizontal sectoral 

pay gap for employees with the same job and a widening vertical wage dispersion and inequality 

for employees on different occupation types (Gupta, Conroy, & Delery, 2012). Wage dispersion 

and inequality might affect employee satisfaction (Pfeffer & Langton, 1993), service quality, and 

work efforts (Hamann & Ren, 2013).   

Rethinking efficiency. Organizations with high efficiency can achieve more with the 

same resources. Therefore, efficiency is desired in many areas, such as operational efficiency, 

financial efficiency, and programmatic efficiency (Callen, Klein, & Tinkelman, 2003; 

Eikenberry & Kluver, 2004; Frumkin & Andre-Clark, 2000). On the contrary, inefficiency is a 

word with negative connotation under the prevalent commercialized discourse, and “inefficient” 

nonprofits might be perceived as inferior to “efficient” organizations. To commercialize and 

adopt a business mindset might improve the image of the organization of being more efficient as 

well as bring some immediate benefits. However, commercialism might work as a double-edged 

sword for nonprofits to lose their visions and values. Frumkin and Andre-Clark (2000) argue that 

the value-driven approach is the competitive edge for nonprofits to sustain better outcomes, 

rather than a superficial imitation of efficiency strategies. In the overwhelming commercialism 

context, it is useful to be aware of the unanticipated consequence of the behaviors of the 

organization. After all, nonprofit survive “not despite but because of their notorious lack of 

efficiency” (Seibel, 2013, p. 107) due to their special social functions between the market and the 

government.   
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Contributions   

In the dissertation, I have analyzed economy-wide data to examine the nature and 

magnitude of nonprofit wage differential relative to the for-profit sector. Building on existing 

studies, I have contributed to re-conceptualizing the issue under the multilevel theoretical and 

analytical framework, providing nationally representative and exhaustive estimates of the 

nonprofit pay differential, and establishing empirical linkage of commercialism to pay in the 

nonprofit sector.   

Multilevel conceptualization of the nonprofit pay is rooted in different explanatory levels 

of theories relevant to the nonprofit pay. Donative wage theory is about one specific nature, 

tendency, or trait owned by individuals: altruism motivation. On the organizational level, theory 

differentiates nonprofit organizations by the tax-exempt status and non-distribution constraints, 

which is related to attenuated property rights. On the industry level, industries dominated by for-

profits gravitate more on profit and efficiency, whereas industries dominated by nonprofits lean 

more towards social capital building and inefficiency. Therefore, nonprofit wage differential can 

be examined from the individual level, organizational level, and industry level. In the 

dissertation, constrained by the data availability, I examined pay differential on the individual 

level and industry level, and find empirical support to donative labor hypothesis and 

compensating wage theory.   

Although the actualization of altruism does not have to depend on the industry or 

occupation, industries and occupations present as an important context for employment and wage 

setting. Applying CCREM, I have been able to estimate an average donative labor effect as well 

as the full array of industry and occupation effects. Acknowledging the variability on industry 

and occupation levels is important to dispel the misperception that nonprofit workers in some 
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industries are “less altruistic” than others because effects from different sources (industry, 

occupation, and individual) are decomposed. The resultant inventory of nonprofit wage 

differentials across industries and occupations can be used for reference and corroboration for 

future nonprofit wage study.  

The effects of commercialism have been examined in other areas, such as financial health 

or nonprofit mission drift. I have extended the definition and measure of commercialism in the 

context of the sectoral pay differentials. Taking advantage of detailed human capital and 

demographic information from ACS and Census data, I have tested different commercialism 

measures generated from SOI data. Finding of this part helps elucidate the meaning of 

commercialism. Treating commercialism as intent rather than a result seems more relevant to the 

sectoral pay differential study. As an inverse proxy for commercialism, fundraising efforts 

predict lower pay for workers. Measured as a compositional effect, commercialism – the for-

profit share of workers – increases employee salary. Commercialism affects pay due to its 

associated focus on efficiency and cost minimization mindset and potential subsequent change 

work environment and management practices. The consistent effects of commercialism in its 

compositional and substantive forms have advanced our knowledge about the relationship 

between commercialism and pay. 

Limitations and gaps for future study 

My dissertation has tested and lent support to donative labor theory, compensating wage 

theory, and possibly efficiency wage theory. Corroborating the random effects of nonprofit wage 

differential across industries and occupations with previous studies shows that the estimates are 

reliable. There are several limitations or gaps that future researches might address.  
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I have modeled the random effects of nonprofit pay differential on the industry level but 

have not offered an explanation. Past researches have tried to explain the positive nonprofit pay 

differential through attenuated property rights theory (Preston, 1988). However, it cannot explain 

why nonprofits with the same non-distribution constraints pay less than for-profits in other 

industries. Similarly, Jones's (2015) application of supply and demand of altruistic workers on 

the industry level cannot explain why, in industries where the supply is not enough, the sectoral 

pay differential is not zero when nonprofit and for-profits compete for same-type of workers. 

The majority of nonprofit pay studies mentioned the efficiency wage theory, but few 

tested it. A major reason might be limited data since the application of efficiency wage is on the 

firm and industry levels. The data generation process in the multilevel modeling makes it 

possible to make the try because it can explicitly model the industry level variability. My 

tentative explanation for the random effects of nonprofit pay differential is that the sector 

dominates the industry pays higher than the other sector. Future studies could consider the 

relationship between organization size and pay on the industry level because large organizations 

-- no matter whether it is nonprofit or for-profit -- usually pay higher, which is related to the 

difficulty in supervision. That large organizations dominate an industry seems common. In 2015, 

210,670 nonprofits (66.9 percent) had expenses lower than $500,000, but they only composed 2 

percent of the total public charity expenditures. In contrast, only 5.3 percent of organizations 

have expenses over $10 million, but they account for 87.7 percent of expenditures of public 

charity (McKeever, 2018). Similarly, more commercialized industries, which are dominated by 

for-profits, are more likely to see larger for-profit firms than nonprofits. 

The dissertation does not cover the organizational level analysis due to the lack of 

organization data. It means I did not examine hypotheses that might be originated from 
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attenuated property rights theory, such as what Preston (1988) and Byrne (2014) do.  

Organizational level data only exist in limited scenarios such as hospitals (Roomkin & Weisbrod, 

1999), nursing home, childcare centers (Ben-Ner et al., 2011). It might remain challenging to 

have nationally representative data that also contains information of individuals for control. 

Another limitation relates to the pattern of the variation on the occupation level. In 

addition to the inter-industry dispersion, I have modeled the size and range of inter-occupation 

wage dispersion as residuals after controlling human capital, demographic background, industry, 

and state effects. Ability bias explains part of the variability on the occupation level, but 

remarkable wage dispersion (random intercept) and nonprofit wage differentials (random slope) 

are present. The dispersion on the occupation level can be tested with information on job skill 

requirements and work conditions. Hirsch (2005) has insightful discussions on the application of 

occupation variables. Future studies can examine the occupation wage dispersion with more 

occupation level variables.  

Commercialism effect on pay is built on compensating wage theory with the rationale 

that commercialized industries have less desirable working conditions than less commercialized 

industries. Commercialism is measured as the percentage of for-profit workers as well as the 

inverse percentage of fundraising expenses in the total expenses. Both measures confirm the 

effect of commercialism to increase pay. However, the argument is mostly based on the review 

of the literature and entails some assumptions. Future studies could explore what changes are to 

the work conditions and management practices as a result of commercialism. In addition, both 

measures might be subject to measurement errors. By limiting the 289 industries in ACS data to 

58 industries, the measurement error of the for-profit share of workers is reduced. The measure 
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of fundraising efforts might have more measurement errors. More than half of the industries have 

very minimal fundraising expenses, which may not differentiate the industries well.  

Conclusion  

Nonprofit pay study is an important topic in two senses. The nonprofit sector employs a 

large number of workers. Most services provided nonprofits are labor-intensive and require close 

human engagement. Nonprofit pay study is thus an informative avenue to understand the 

nonprofit sector. Secondly, the nonprofit pay study is not a new area. However, findings in 

current studies contradict one another on whether nonprofits pay better than for-profit 

organizations. The discordance in findings suggests a disconnection between theoretical 

predictions and empirical evidence. From the perspective of knowledge building, more research 

efforts and empirical evidence are needed to either offer support to theories or to falsify theories.   

With this in mind, I employ a multilevel approach to deconstruct theories and analyze 

nationally representative economy-wide data to reveal a panorama view of nonprofit pay 

differentials relative to the for-profit sector. By controlling the occupation and state effects, I 

have analyzed and presented how nonprofit pay differentials are situated in the inter-industry pay 

dispersion. The finding offers a comprehensive view of the nonprofit pay differential. For 

instance, industries where nonprofits have positive differential are often low-paying industries 

such as childcare centers. By removing differences in higher-level structures (industries, 

occupations, and state), the CCREM models produce a negative 5.7 percent differential for 

nonprofits, which I argue as donative labor effect. By examining the industries through the lens 

of commercialism, I have found support in compensating wage theory and confirmed the 

moderating effect of commercialism on the gender pay gap and the manager-staff pay gap.  
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My endeavor not only contributes to a coordinated explanation of theories on differential 

levels, but also establishes an exhaustive inventory of nonprofit pay differential as a composite 

of industry effect, occupation effect, and individual effect. In the meantime, I have listed 

potential research directions for future studies that include testing the efficiency wage theory.  
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Appendices 

 

Appendix A. Data cleaning process 

 

Steps Nonprofit For-profit Total 

1. Combined datasets in 13 years 1,758,404  (4.32%) 14,307,394 (35.11%) 40,745,671  

(9 categories)* 

    

2. Keep full-time adult workers in 

51 states (16=<age=<65) (weeks 

working = 50-52 weeks) 

898,515 (7.81%) 7,556,504 (65.67%) 11,506,431  

(9 categories) 

    

3. Keep only for-profit and 

nonprofit 

898,515 (10.63%) 7,556,504 (89.37%) 8,455,019 

    

4. Drop observations with imputed 

variables (incwage, age, sex, 

race, ind, occ, workhours, 

classwork) 

883,716 (10.65%) 7,411,542 (89.35%) 8,295,258 

    

5. Keep 58 industries  664,820 (22.03%) 2,353,305  (77.97%) 3,018,125 

    

6. Drop occupation with no 

nonprofit presence  

664,820 (%) 2,353,109 (77.97%) 3,017,929 

    

7. Drop if log(income)<8 664,662 (22.03%) 2,352,570 (77.97%) 3,017,232 

    

8. Drop several occupations with 

merge problem 

664,646 (22.03%) 2,352,464 (99.97%) 3,017,110 

* 9 categories: N/A, self-employed (not incorporated), self-employed (incorporated), for-profit, nonprofit, the 

federal government, state government, local government, unpaid family workers.  
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Appendix B. Industry categories between ACS and SOI 

Industry (58 categories) 
NAICS 

in ACS 
NAICS in SOI Combined title 

Combined 

industry code 

Support activities for agriculture and forestry 115 
115000, 115110, 

115210 
Food and agricultural programs 

 

1150 

Electric power generation, transmission and distribution 2211P 

221000 Public utilities 

 

 

 

 

2210 

Natural gas distribution 2212P 

Sewage treatment facilities 22132 

Water, steam, air conditioning, and irrigation systems 2213M 

Electric and gas, and other combinations 221MP 

Not specified utilities 22S 

Air transportation 481 

480000 Transportation  

 

 

 

 

 

 

 

4800 

Rail transportation 482 

Water transportation 483 

Truck transportation 484 

Taxi and limousine service 4853 

Bus service and urban transit 485M 

Pipeline transportation 486 

Scenic and sightseeing transportation 487 

Services incidental to transportation 488 

Newspaper publishers 51111 
511100 

Newspaper, periodical, book, and 

database Publishers 

 

5111 
Periodical, book, and directory publishers  5111Z 

Motion pictures and video industries 5121 
512110 Religious film & video 

 

5121 
Sound recording industries 5122 

Radio and television broadcasting, telecommunication 513M 
513110, 513120, 

513300 

Radio and television 

broadcasting, telecommunication 

 

5131 

Other information services 51412 514120 Libraries and Archives  
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Industry (58 categories) 
NAICS 

in ACS 
NAICS in SOI Combined title 

Combined 

industry code 

Undefined  5141Z 5141 

Savings institutions, including credit unions 5221M 
522130 Credit unions  

 

5221 
Non-depository credit and related activities 522M 

Insurance carriers and related activities 524 
524110, 524113, 

524114 
Insurance providers  

5241 

Banking and related activities 52M1 

522000 Financial institutions  

 

5220 
Securities, commodities, funds, trusts, and other financial 

investments 
52M2 

Real estate 531 531390 Real estate associations  5313 

Legal services 5411 541199 
Crime prevention, rehabilitation, 

law enforcement, inmate support  

5411 

Management, scientific and technical consulting services 5416 541618 
Management & technical 

assistance  

5416 

Scientific research and development services 5417 541710, 541720  Research institute 5417 

Veterinary services 54194 541940 Veterinary Services 5419 

Employment services 5613 561310 Employment services 5613 

Elementary and secondary schools 6111 611110 
Elementary and secondary 

schools 

6111 

Colleges, universities, and professional schools, including junior 

colleges 
611M1 611210, 611310 

Two-year college and higher 

education  

6112 

Business, technical, and trade schools and training 611M2 611510 

Vocational & Technical Schools 

+ Business, technical, and trade 

schools and training 

 

6115 

Other schools, instruction and educational services 611M3 

611000, 

611610, 611620, 

611699, 611710  

Other schools, instruction and 

educational services 

6116 

Office of chiropractors 62131 

621340 Rehabilitative care 

 

6213 
Offices of optometrists 62132 

Offices of other health practitioners 6213ZM 

Outpatient care centers 6214 
621410, 621420, 

621491, 621498 
Outpatient care centers 

6214 
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Industry (58 categories) 
NAICS 

in ACS 
NAICS in SOI Combined title 

Combined 

industry code 

Home health care services 6216 621610 Home health care 6216 

Other health care services 621M 
621910, 621911, 

621999 
Other health care services  

6219 

Hospitals  622 
622110, 622210, 

622310 
Hospitals 

6220 

Nursing care facilities 6231 623110 Nursing facilities, hospices 6231 

Residential care facilities, except skilled nursing facilities 623M 
632220, 623311, 

623312, 623990 
Residential care facilities 

6322 

Individual and family services 6241 
624100, 624110, 

624120, 624190 
Individual and family services 

6241 

Community food and housing, and emergency services 6242 

624210, 624220, 

624221, 624229, 

624230 

Community food and housing 

6242 

Vocational rehabilitation services 6243 624310 
Vocational Counseling, 

Employment, Job Training 

6243 

Child day care services 6244 624410 Day care centers  6244 

Performing arts, spectator sports, and related industries 711 
711100, 711110, 

711120, 711130 

Performing arts, spectator sports, 

and related industries 

7111 

Museums, art galleries, historical sites, and similar institutions 712 
712110, 712120, 

712130, 712190 

Museums, art galleries, historical 

sites 

7121 

Other amusement, gambling, and recreation industries 713Z 713940, 713990 
Other amusement, gambling, and 

recreation industries 

7139 

Traveler accommodation 7211 721199 All other traveler accommodation 7211 

Recreational vehicle parks and camps, and rooming and boarding 

houses 
721M 721214 Recreational and vacation camps 

7212 

Funeral homes, cemeteries and crematories 8122 812220 Cemeteries 8122 

Other personal services 8129 812910 Animal training  8129 
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Appendix C. Variable selection models  

 Natural log of annual income 
 (1) (2) (3) (4) 

For-profit share 0.003*** 0.003*** 0.003*** 0.003*** 
 (3.609) (3.498) (2.700) (3.155) 

Female percentage -0.001 -0.001 -0.001 -0.001 
 (-1.448) (-1.226) (-1.448) (-1.437) 

Nonprofit  -0.057*** -0.049*** -0.057*** -0.049*** 
 (-3.932) (-3.547) (-3.932) (-3.543) 

Female  -0.185*** -0.186*** -0.185*** -0.186*** 
 (-272.934) (-272.825) (-272.933) (-272.825) 

Years of education 0.073*** 0.073*** 0.073*** 0.073*** 
 (468.676) (467.171) (468.677) (467.180) 

Latino  -0.063*** -0.063*** -0.063*** -0.063*** 
 (-57.061) (-57.015) (-57.061) (-57.015) 

Black  -0.093*** -0.093*** -0.093*** -0.093*** 
 (-90.402) (-90.341) (-90.402) (-90.342) 

Asian  -0.029*** -0.030*** -0.029*** -0.030*** 
 (-21.799) (-21.898) (-21.799) (-21.897) 

Other races -0.066*** -0.066*** -0.066*** -0.066*** 
 (-32.353) (-32.316) (-32.353) (-32.316) 

Speak English 0.045*** 0.045*** 0.045*** 0.045*** 
 (44.654) (44.384) (44.654) (44.383) 

Work experience  0.011*** 0.011*** 0.011*** 0.011*** 
 (449.154) (447.659) (449.154) (447.658) 

Work experience squared -0.053*** -0.053*** -0.053*** -0.053*** 
 (-266.868) (-265.419) (-266.868) (-265.419) 

Work hours per week 0.013*** 0.013*** 0.013*** 0.013*** 
 (342.443) (341.053) (342.443) (341.053) 

Female percentage squared   -0.062   

  (-0.344)   

For-profit share squared    0.180  

   (0.492)  

Trend of for-profit share     0.119 
    (0.593) 

Random slope of nonprofit Yes Yes Yes Yes 

Constant 10.673*** 10.674*** 10.662*** 10.664*** 
 (378.535) (330.193) (300.269) (355.658) 

Observations 3,017,110 2,997,875 3,017,110 2,997,875 

Akaike Inf. Crit. 4,065,931 4,035,721 4,065,933 4,035,720 

Bayesian Inf. Crit. 4,066,215 4,036,018 4,066,230 4,036,017 

Note: *p**p***p<0.01 
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Appendix D. Industry information and estimates 

Industry name  

Industry 

code 

Number of 

for-profit 

workers 

Number of 

nonprofit 

workers 

Total 

For-profit 

share of 

workers 

Random 

intercept 

Random 

slope for 

nonprofit 

Food and agricultural programs 1150 6,791 274 7,065 0.96 -0.0636 -0.0400 

Public utilities  2210 94,027 8,782 102,809 0.91 0.3029 -0.0528 

Transportation 4800 262,258 5,002 267,260 0.98 0.0616 0.0401 

Newspaper, periodical, book, and database 

Publishers 
5111 56,619 2,550 59,169 0.96 -0.0114 0.0226 

Religious film & video 5121 17,939 975 18,914 0.95 0.0069 -0.2033 

Radio and television broadcasting, 

telecommunication 
5131 12,348 605 12,953 0.95 0.0429 -0.1259 

Libraries and Archives 5141 5,500 782 6,282 0.88 0.0978 -0.1529 

Financial institutions  5220 293,501 5,048 298,549 0.98 0.1735 0.0526 

Credit unions 5221 89,632 14,837 104,469 0.86 0.1088 -0.0572 

Insurance providers 5241 219,292 15,488 234,780 0.93 0.1690 0.0863 

Real estate associations  5313 111,532 6,295 117,827 0.95 -0.0185 -0.0459 

Crime prevention, rehabilitation, law 

enforcement, inmate support  
5411 106,522 3,490 110,012 0.97 0.0639 -0.1906 

Management & technical assistance  5416 80,616 2,483 83,099 0.97 0.1467 -0.0792 

Research institute 5417 35,676 11,946 47,622 0.75 0.2492 -0.0222 

Veterinary Services 5419 17,225 466 17,691 0.97 -0.1857 0.0076 

Employment services 5613 37,954 1,990 39,944 0.95 -0.0962 -0.0782 

Elementary and secondary schools 6111 50,435 79,531 129,966 0.39 -0.0239 0.0843 

Two-year college and higher education  6112 48,165 76,142 124,307 0.39 0.0633 0.1070 

Vocational & Technical Schools + Business, 

technical, and trade schools and training 
6115 5,413 1,215 6,628 0.82 -0.0056 -0.0331 

Other schools, instruction and educational 

services 
6116 10,908 6,436 17,344 0.63 0.0157 0.0386 

Rehabilitative care 6213 18,122 1,377 19,499 0.93 -0.1023 0.0845 

Outpatient care centers 6214 51,963 26,499 78,462 0.66 0.0167 0.00251 
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Industry name  

Industry 

code 

Number of 

for-profit 

workers 

Number of 

nonprofit 

workers 

Total 

For-profit 

share of 

workers 

Random 

intercept 

Random 

slope for 

nonprofit 

Home health care 6216 35,611 8,421 44,032 0.81 -0.1091 0.07954 

Other health care services  6219 63,838 21,087 84,925 0.75 0.0942 0.06394 

Hospitals 6220 252,313 226,694 479,007 0.53 0.1310 0.10195 

Nursing facilities, hospices 6231 93,572 25,215 118,787 0.79 -0.0665 0.05238 

Residential care facilities 6232 27,745 19,189 46,934 0.59 -0.1039 0.03939 

Individual and family services 6241 17,032 38,714 55,746 0.31 -0.0254 0.07480 

Community food and housing 6242 871 5,843 6,714 0.13 0.0314 -0.01528 

Vocational Counseling, Employment, Job 

Training 
6243 3,291 6,565 9,856 0.33 -0.0459 -0.02934 

Day care centers  6244 33,363 16,130 49,493 0.67 -0.2622 0.08409 

Performing arts, spectator sports, and related 

industries 
7110 15,055 4,048 19,103 0.79 -0.0064 -0.12637 

Museums, art galleries, historical sites 7121 1,922 7,935 9,857 0.19 0.0320 0.08194 

Other amusement, gambling, and recreation 

industries 
7139 73,021 7,224 80,245 0.91 -0.1015 0.05072 

All other traveler accommodation 7211 82,663 1,169 83,832 0.99 -0.1093 0.02065 

Recreational and vacation camps 7212 1,853 2,015 3,868 0.48 -0.2227 -0.00513 

Cemeteries 8122 7,520 787 8,307 0.91 -0.0632 0.07182 

Other personal service, animal training  8129 10,356 1,397 11,753 0.88 -0.1844 0.01001 
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Appendix E. Random effects of nonprofit over occupations 

Occupation 

code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

4 Chief executives and public administrators 33,213 30.74 0.7899 -0.0495 

7 Financial managers 79,015 55.13 0.3175 0.0608 

8 
Human resources and labor relations 

managers 
14,600 67.02 0.3610 -0.0066 

13 
Managers and specialists in marketing, 

advertising, and public relation 
35,835 56.2 0.3594 -0.0957 

14 Managers in education and related fields 36,354 66.27 0.2246 0.0236 

15 Managers of medicine and health occupations  43,430 70.5 0.3821 0.0167 

17 
Managers of food-serving and lodging 

establishments 
12,888 51.39 0.0933 0.0440 

18 Managers of properties and real estate 29,481 57.82 0.1298 0.0131 

19 Funeral directors 3,029 21.23 0.0938 -0.0571 

21 Managers of service organizations 17,796 68.31 0.2448 -0.0366 

22 Managers and administrators 134,089 40.59 0.3396 -0.0510 

23 Accountants and audit 60,733 60.85 0.2173 0.0106 

24 Insurance underwriter 10,847 66.95 0.1779 -0.0492 

25 Other financial specialists 70,709 44.8 0.2561 -0.1348 

26 Management analysts 28,550 42.1 0.3737 -0.1268 

27 Personnel, HR, training 33,459 73.7 0.2250 -0.0679 

28 
Purchasing agents and buyers, of farm 

products 
5 80 0.2395 -0.0229 

29 Buyers, wholesale and retail trade 73 54.79 -0.2697 0.0532 

33 Purchasing managers, agents and buyers 9,033 55.03 0.1275 -0.0574 

34 Business and promotion agents 1,674 44.38 0.2353 -0.1637 

35 Construction inspectors 444 15.99 -0.0382 0.0724 

36 Inspectors and compliance officers 6,457 62.03 0.2546 0.0415 

37 Management support occupations 6,635 67.66 0.1462 -0.0061 

43 Architects 862 23.55 0.3956 -0.0388 

44 Aerospace engineer 537 11.73 0.3166 0.0451 

45 Metallurgical and material engineers 94 21.28 0.1941 -0.0099 

47 Petroleum, mining engineers 119 10.08 0.4441 -0.0684 

48 Chemical engineers 213 14.08 0.2352 -0.0555 

53 Civil engineers 1,171 9.91 0.2474 -0.0544 

55 Electrical engineer 4,427 10.19 0.2489 0.0570 

56 Industrial engineers 1,359 23.84 0.2443 0.0756 

57 Mechanical engineers 1,280 5.55 0.2178 -0.0107 

59 Not-elsewhere-classified engineers 8,932 12.36 0.2680 0.0561 

64 Computer systems analysts 59,613 33.81 0.2431 -0.0018 

65 
Operations and system researchers and 

analysts 
5,404 45.36 0.2152 0.0774 

66 Actuaries 2,580 32.29 0.6284 -0.0789 

68 Mathematicians and mathematical scientists 1,607 46.73 0.2935 -0.0678 

69 Physicists and astronomers 584 16.61 0.2013 -0.0372 

73 Chemists 2,011 37.54 0.0479 -0.0924 

74 Atmospheric and space scientists 172 18.02 0.1759 -0.0262 

75 Geologists 1,580 29.24 0.0343 -0.0920 

76 Physical scientists, n. e. .c 8,449 39.82 0.0593 -0.1319 

77 Agricultural and food scientists 646 25.85 0.0066 -0.0704 

78 Biological scientists 2,803 50.95 0.0205 -0.1289 

79 Foresters and conservations scientists 415 7.71 0.0280 0.0000 
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Occupation 

code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

83 Medical scientists 6,740 50.88 0.0807 -0.0767 

84 Physicians 35,000 36.17 0.7344 -0.0480 

85 Dentists 289 42.21 0.3956 0.2283 

86 Veterinarians 4,048 60.97 0.4891 -0.1371 

87 Optometrists 991 41.57 0.6498 -0.0628 

88 Podiatrists 259 28.96 0.5718 -0.0973 

89 Other health and therapy 1,137 31.93 0.1206 0.0341 

95 Registered nurses 193,429 89.7 0.4253 -0.0006 

96 Pharmacists 6,540 52.91 0.6509 -0.0089 

97 Dietitians and nutritionists 4,252 91.06 0.0849 0.0180 

98 Respiratory therapist 8,728 60.84 0.2529 -0.0252 

99 Occupational therapists 5,958 85.99 0.4444 -0.0959 

103 Physical therapists 17,653 66.34 0.3399 -0.0305 

104 Speech therapists 4,282 91.55 0.4150 -0.0919 

105 Therapists, n.e.c 8,186 76.03 0.1298 -0.0589 

106 Physicians' assistant 4,322 61.2 0.4496 -0.0120 

154 Subject instructors (HS/college) 41,473 45.86 0.0501 0.0767 

155 Kindergarten and earlier school teachers 21,822 97.98 -0.1208 0.0126 

156 Primary school teachers 52,857 77.14 0.0679 -0.0323 

157 Secondary school teachers 12,247 54.01 0.0858 -0.0402 

158 Special education teachers 2,790 84.98 0.0877 0.0182 

159 Teachers, n.e.c 25,472 72.86 -0.1365 -0.0539 

163 Vocational and educational counselors  24,480 69.2 -0.0126 -0.0232 

164 Librarians 3,730 76.51 -0.0070 0.0334 

165 Archivists and curators 2,003 60.91 0.0086 0.1115 

166 Economists, market researchers 6,729 57.13 0.3142 -0.0301 

167 Psychologists 4,390 63.64 0.0846 0.0067 

169 Social scientists, n.e.c 1,249 54.04 -0.0380 0.0630 

173 Urban and regional planners 149 41.61 0.2726 0.0278 

174 Social workers 34,900 81.27 0.0597 -0.0129 

175 Recreation workers 10,494 64.74 -0.1063 -0.0238 

176 Clergy and religious workers 1,660 36.99 -0.2378 0.0250 

178 Lawyers 46,026 34.89 0.5477 -0.2213 

183 Writers and authors 3,894 55.08 0.0992 0.0542 

184 Technical writers 1,546 59.57 0.1638 -0.0050 

185 Designers 8,283 50.79 0.0637 0.0395 

186 Musician or composer 952 26.37 -0.0044 0.2678 

187 Actors, directors, producers 5,356 38.85 0.1759 -0.1846 

188 
Art makers: painters, sculptors, craft-artists, 

and print-makers 
2,722 34.42 0.1454 -0.1244 

189 Photographers 1,201 23.98 -0.0933 0.0583 

193 Dancers 253 80.63 0.0300 -0.1094 

194 Art/entertainment performers 1,464 54.51 -0.0467 -0.1098 

195 Editors and reporters 16,347 46.23 0.0656 0.0384 

198 Announcers 761 18.53 -0.1184 -0.0156 

199 Athletes, sports instructors 6,117 21.4 -0.0251 -0.0948 

203 Clinical laboratory technicians 22,721 74.44 0.0703 0.0549 

204 Dental hygienists 97 90.72 0.2884 0.0407 

205 Health record tech specialists 7,009 91.51 -0.1189 0.0191 

206 Radiologic tech specialists 21,480 68.96 0.2935 0.0213 

207 Licensed practical nurses 38,739 91.36 0.0867 -0.0213 

208 Health technologists 18,455 45.98 -0.0817 0.0541 

214 Engineering technicians 9,921 34.02 -0.0228 -0.0525 
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Occupation 

code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

217 Drafters 989 23.05 0.0008 0.0193 

218 Surveyors, cartographers 692 23.99 -0.0534 0.0285 

223 Biological technician 878 47.49 -0.0403 -0.0880 

224 Chemical technicians 597 29.82 -0.0742 -0.0587 

225 Other science technic 213 22.54 0.1451 -0.0109 

226 Airplane pilots and navigators 8,012 4.44 0.4076 -0.1442 

227 Air traffic controllers 830 24.7 0.1662 -0.0912 

228 Broadcast equipment operators  2,324 10.11 0.0047 0.0047 

229 Computer software developers 33,888 27.32 0.3733 -0.0321 

233 
Programmers of numerically controlled 

machines tools 
71 12.68 -0.0682 0.0140 

234 Legal assistants, paralegals 34,663 86.41 0.0394 0.0544 

243 Supervisors and proprietors of sales jobs 34,448 51.15 0.3012 -0.0832 

253 Insurance sales occupations 37,249 52.66 0.0825 0.0087 

254 Real estate sales occupations  25,486 51.03 0.1612 0.0480 

255 Financial services sales occupations  26,680 33.11 0.3987 -0.2188 

256 Advertising and related sales jobs 7,476 59.46 0.2385 -0.0162 

258 Sales engineers 129 8.53 0.3199 -0.0487 

274 Salespersons, n.e.c 21,935 48.29 0.2488 0.0723 

275 Retail sales clerks 1,981 55.33 0.1477 -0.1130 

276 Cashiers 9,622 70.41 -0.1920 0.0284 

277 
Door-to-door sales, street sales, and news 

vendors 
1,070 38.32 -0.4421 0.0071 

283 Sales demonstrators /promoters / models 130 50.77 0.1347 -0.0733 

303 Office supervisors 50,260 73.82 0.0954 0.0564 

308 Computer and peripheral equipment operators 4,819 53.02 -0.0519 0.0766 

313 Secretaries 118,840 96.78 -0.0436 0.0178 

315 Typists 8,830 90.4 -0.1206 0.0532 

316 Interviewers, enumerators and surveyors  10,363 83.05 -0.1138 -0.0267 

317 Hotel clerks 5,977 65.42 -0.3530 0.0425 

318 Transportation ticket and reservation agents 8,325 60.72 -0.0493 0.0269 

319 Receptionists 26,563 92.85 -0.2162 0.0555 

326 Correspondence and order clerks 1,540 70.06 -0.1374 0.0085 

328 Human resources clerk 1,272 91.67 -0.0166 0.0548 

329 Library assistants 1,265 77.79 -0.2398 -0.0388 

335 File clerks 8,610 79.9 -0.1664 0.0846 

336 Records clerks 4,993 86.42 -0.0136 0.0302 

337 Bookkeepers and accounting clerks 37,599 86.54 -0.0485 0.1008 

338 Payroll and timekeeping clerks 5,042 90.08 0.0377 0.0534 

344 
Billing clerks and related financial records 

processing 
16,916 90.58 -0.0919 -0.0100 

347 Office machine operators 1,225 66.12 -0.3151 0.0884 

348 Telephone operators 2,294 87.45 -0.2248 0.0325 

349 Other telecom operators 209 60.29 -0.0006 0.0474 

356 Mail clerks, outside of post office 2,885 47.9 -0.3583 0.0479 

357 Messengers 2,338 24.68 -0.3945 -0.0310 

359 Dispatchers 8,343 42.62 -0.1487 -0.0351 

364 Shipping and receiving clerks 4,670 29.76 -0.2395 -0.0445 

365 Stock and inventory clerks 6,223 42.46 -0.2020 -0.0173 

366 Meter readers 2,095 16.95 -0.2460 0.0247 

368 Weighers, measurers, and checkers 838 45.11 -0.0597 0.0148 

373 
Material recording, scheduling, production, 

planning, and expediting clerks 
12,050 48.36 0.0289 -0.0628 
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Occupation 

code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

375 
Insurance adjusters, examiners, and 

investigators 
51,278 72.13 -0.0469 -0.0403 

376 Customer service reps 62,792 76.14 -0.1063 0.0539 

377 Eligibility clerks for government programs 544 86.58 -0.0464 0.0287 

378 Bill and account collectors 7,011 74.18 -0.1107 0.0373 

379 General office clerks 26,772 86.33 -0.1415 0.0564 

383 Bank tellers 29,299 89 -0.3397 0.2294 

384 Proofreaders 381 71.92 -0.2120 0.0607 

385 Data entry keyers 12,128 83.6 -0.1955 0.0813 

386 Statistical clerks 741 67.88 0.0419 0.0194 

389 Administrative support jobs 20,435 79.81 -0.0045 0.0451 

405 
Housekeepers, maids, butlers, stewards, and 

lodging quarters cleaners 
30,791 83.67 -0.2981 -0.0446 

415 Supervisors of guards 1,822 13.78 -0.0028 0.0111 

417 Firefighting, prevention 260 8.85 -0.0167 -0.0042 

418 Police, detectives, and private investigators 2,424 47.65 0.0244 0.1013 

423 Other law enforcement 48 43.75 -0.1588 0.0130 

425 Crossing guards and bridge tenders 58 32.76 -0.1774 0.0119 

426 Guards, watchmen, doorkeepers 13,214 18.67 -0.2517 0.0412 

427 Protective services 693 47.04 -0.4349 0.0632 

434 Bartenders 2,672 38.59 -0.2114 -0.1239 

435 Waiter/waitress 5,103 61.41 -0.1439 -0.0630 

436 Cooks, variously defined 26,291 53.44 -0.1866 -0.0117 

439 Kitchen workers 194 72.16 -0.3343 0.0556 

443 Waiter's assistant 7,054 63.48 -0.2949 -0.0600 

444 Miscellaneous food prep worker 4,537 55.74 -0.3288 -0.0700 

445 Dental assistants 301 94.35 -0.0736 -0.0080 

446 Health aides, except nursing  28,132 87.11 -0.1518 0.0367 

447 Nursing aides, orderlies and attendants  110,958 86.28 -0.2403 0.0419 

448 Supervisors of cleaning and building services 6,863 49.69 -0.0574 0.1224 

453 Janitors 37,710 18.29 -0.2532 0.0553 

454 Elevator operators 677 8.57 -0.0456 -0.0440 

455 Pest control occupations 71 9.86 -0.1605 0.0217 

456 Supervisors of person 3,710 46.93 0.1001 -0.0395 

457 Barbers 17 41.18 -0.1328 0.0167 

458 Hairdressers and cosmetologists  974 94.56 -0.0210 -0.0576 

459 Recreation facility attendants  9,100 46.23 -0.0305 -0.1235 

461 Guides 545 40.92 -0.3764 0.0884 

462 Ushers 502 30.88 -0.3139 0.1199 

463 Public transportation 6,829 54.34 -0.0475 0.0214 

464 Baggage porters 3,777 18.32 -0.2709 0.0827 

465 Welfare service aides 6,545 78.87 -0.0397 -0.0066 

468 Childcare workers 18,735 90.73 -0.2033 0.0324 

469 Personal service occupations  3,624 57.45 -0.1930 -0.0126 

473 Farmers (owners and tenants) 219 19.63 0.0445 -0.1160 

475 Farm managers, except 247 21.86 0.0364 -0.0466 

479 Farm workers 2,418 25.64 -0.2424 0.1166 

485 Supervisors of agricultural occupations  2,162 4.39 0.0504 0.0201 

486 Gardeners and grounds 9,103 6.13 -0.2774 0.0469 

487 Animal caretakers except farms 3,881 73.43 -0.1682 0.0445 

488 Graders and sorters of agricultural products  186 68.82 -0.2259 0.0355 

489 Inspectors of agricultural products  22 36.36 -0.0676 0.0218 

496 Timber, logging, and forestry workers 776 17.91 -0.0871 -0.0414 
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code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

498 Fishers, hunters, and kindred 70 2.86 -0.2280 0.0567 

503 Supervisors of mechanics and repairers  8,855 5 0.1003 0.0033 

505 Automobile mechanics 1,691 1.83 -0.0766 0.0897 

507 Bus, truck, and stationary engine mechanics 8,200 0.87 -0.0645 0.0666 

508 Aircraft mechanics 8,734 2.78 0.1348 -0.0520 

509 Small engine repairer 295 1.36 -0.0121 0.0044 

514 Auto body repairers 199 3.02 -0.0791 0.0726 

516 
Heavy equipment and farm equipment 

mechanics  
2,814 1.35 0.0655 -0.0281 

518 Industrial machinery repairers 2,683 2.98 0.0386 -0.0297 

519 Machinery maintenance 369 2.98 -0.1551 0.0392 

523 Repairers of industrial electrical equipment 1,001 2.9 0.1081 0.0029 

525 Repairers of data processing equipment 3,317 20.17 0.0546 0.0243 

526 Repairers of household appliance  201 3.48 -0.0852 -0.0144 

527 Telecom and line installers 2,536 7.97 0.0183 0.0782 

533 Repairers of electric equipment 532 4.32 0.1248 -0.0339 

534 Heating, air conditioning mechanics  2,243 1.52 0.0407 0.0232 

535 Precision makers, repairers 1,509 17.03 0.0787 -0.0340 

536 Locksmiths and safe repairers  240 5 0.0227 0.0293 

539 Repairers of mechanic 944 7.31 -0.0573 -0.0484 

543 Elevator installers and repairers  54 1.85 0.2666 -0.0090 

544 Millwrights 215 1.86 0.0951 0.0033 

549 Mechanics and repairers 15,574 3.09 -0.1141 0.0352 

558 Supervisors of construction work 2,467 3.73 0.1641 -0.0194 

563 Masons, tilers, and carpet installers 135 4.44 -0.1136 0.0167 

567 Carpenters 2,635 2.28 -0.0737 0.0556 

573 Drywall installers 40 10 -0.0774 0.0054 

575 Electricians 6,252 2.38 0.0745 0.0262 

577 Electric power installers  9,727 1.12 0.1850 0.0457 

579 Painters, construction and maintenance  1,925 5.51 -0.1776 0.0951 

583 Paperhangers 10 10 0.0458 -0.0049 

585 Plumbers, pipe fitter 3,589 2.06 -0.0085 0.0337 

593 Insulation workers 405 40.25 -0.1998 -0.0728 

594 
Paving, surfacing, and tamping equipment 

operators  
11 18.18 -0.0921 0.0032 

595 Roofers and slaters 32 6.25 0.0520 0.0012 

596 Sheet metal duct installers 317 1.89 0.0618 -0.0115 

597 Structural metal work 80 3.75 -0.0533 0.0084 

599 Construction trades 121 4.96 -0.2362 -0.0067 

615 Explosives workers 29 3.45 -0.0557 -0.0028 

628 Production supervisor 9,782 21.43 0.1484 -0.0136 

637 Machinists 1,054 3.61 0.1185 0.0431 

643 Boilermakers 171 1.75 0.0572 -0.0297 

649 Engravers 25 16 0.0750 -0.0081 

658 Furniture and wood finishers 15 6.67 -0.0739 -0.0437 

666 Dressmakers and seams 98 82.65 -0.2571 0.0359 

668 Upholsterers 57 22.81 -0.0014 0.0064 

669 Shoe repairers 8 12.5 -0.3016 0.0388 

675 Hand molders and shapers  62 8.06 -0.0832 0.0481 

677 Optical goods workers 1,172 79.18 0.0152 0.0532 

678 
Dental laboratory and medical appliance 

technicians  
17,335 78.76 -0.0354 -0.0011 

679 Bookbinders 248 41.94 -0.1676 -0.0136 
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686 Butchers and meat cutters 57 17.54 -0.1933 0.0610 

687 Bakers 435 58.39 -0.1815 -0.0659 

688 Batch food makers 30 50 -0.2947 0.0332 

694 Water and sewage treatment plant operators  1,938 4.13 -0.2794 0.0807 

695 Power plant operators 4,863 6.29 0.2244 0.0144 

696 Plant and system operators  4,135 2.25 0.1005 0.0309 

699 Other plant and system operators  764 7.46 0.0323 -0.0922 

706 Punching and stamping press operatives 72 12.5 -0.2158 0.0183 

708 Drilling and boring machine operators  9 22.22 -0.1339 0.0333 

709 Grinding, abrading, buffing workers 33 18.18 -0.0528 -0.0045 

723 Metal platers 10 10 -0.0364 0.0142 

726 
Wood lathe, routing, and planning machine 

operators  
607 5.93 0.1268 -0.0035 

727 Sawing machine operators  14 50 -0.1953 0.0241 

733 Other woodworking machine operators  37 2.7 -0.4042 0.0015 

734 Printing machine operators  414 22.71 -0.1117 0.0019 

736 Typesetters and compositors  2,983 27.02 -0.0941 -0.0765 

743 Textile cutting machine operators  9 22.22 -0.0740 0.0043 

744 Textile sewing machine operators  167 86.83 -0.1286 -0.0584 

745 Shoemaking machine operators 4 25 -0.0556 0.0157 

747 Pressing machine operators (clothing)  103 47.57 -0.2472 -0.0234 

748 Laundry workers 3,797 81.12 -0.3499 -0.0025 

749 Miscellaneous textile machine 45 26.67 -0.1298 0.0378 

754 Packers, fillers, and wrappers  188 56.38 -0.3470 0.0070 

755 Extruding and forming machine operators  61 19.67 -0.2264 0.0001 

756 Mixing and blending machine operatives  135 22.96 -0.2230 -0.0298 

757 Separating, filtering 161 26.71 0.0138 0.0272 

759 Painting machine operators 345 9.28 -0.0853 0.0201 

764 
Washing, cleaning, and pickling machine 

operators  
27 37.04 -0.0789 0.0001 

765 Paper folding machine operators  69 33.33 -0.3476 0.0328 

766 Furnace, kiln, and oven operators  171 57.31 -0.1518 -0.0237 

769 Slicing and cutting machine operators  124 24.19 -0.3102 0.0004 

773 Motion picture projectionists  231 14.72 -0.3908 0.1155 

774 Photographic process 1,015 48.37 -0.0461 0.0198 

779 Machine operators 5,257 29.1 -0.1621 -0.0213 

783 Welders and metal cut 2,413 2.32 0.0827 0.0730 

785 Assemblers of electric equipment 1,680 40.48 -0.3256 -0.0416 

799 Graders and sorters in manufacturing  5,411 33.54 0.0133 0.0672 

803 Supervisors of motor vehicle transportation  8,523 18.2 0.0471 -0.0554 

804 Truck, delivery, and tractor drivers  89,990 3.83 -0.1798 -0.0731 

808 Bus drivers 10,636 34.23 -0.3329 0.0228 

809 Taxi cab drivers and chauffeurs  8,379 15.5 -0.5859 0.1579 

813 Parking lot attendant 2,076 12.14 -0.4132 -0.0164 

823 Railroad conductors and yardmasters  4,238 3.92 0.2275 -0.0266 

824 Locomotive operators 5,307 2.68 0.2735 -0.0487 

825 Railroad brake, couplers  489 1.84 0.2348 -0.0319 

829 Ship crews and marine engineers   2,320 3.32 0.0359 0.0256 

844 
Operating engineers of construction 

equipment 
1,278 2.58 0.1045 0.0087 
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Occupation 

code 
Occupation title 

Total 

observation 

Female 

percentage 

Random 

Intercept  

Random 

slope 

848 Crane, derrick, winch and hoist operators  496 2.42 0.2040 0.0005 

853 Excavating and loading machine operators  236 2.12 -0.0656 0.0330 

859 Miscellaneous material moving occupations  477 3.56 0.0976 0.0005 

865 Helpers, construction 103 12.62 -0.2142 0.0531 

866 Helpers, surveyors 108 4.63 -0.2949 0.0503 

869 Construction laborers 1,957 3.37 -0.1519 -0.0055 

874 Production helpers 194 25.77 -0.2012 0.0253 

875 Garbage and recyclable material collectors  213 13.62 -0.4718 -0.0254 

878 Machine feeders and offbearers  128 45.31 -0.1624 0.0172 

883 Freight, stock, and material handlers  940 10.32 -0.1791 0.0802 

885 
Garage and service station related 

occupations  
219 9.13 -0.2974 0.0221 

887 Vehicle washers and equipment cleaners  1,256 27.79 -0.3463 -0.0137 

888 Packers and packagers 1,592 54.46 -0.4743 -0.0964 

889 Laborers outside construction 14,880 10.36 -0.1978 -0.0016 
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Appendix F. Compare nonprofit random intercept model and random slope model 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Df 2 20.000 2.828 18 19 21 22 

AIC 2 4,071,958.000 8,523.939 4,065,931.000 4,068,945.000 4,074,972.000 4,077,986.000 

BIC 2 4,072,217.000 8,487.397 4,066,215.000 4,069,216.000 4,075,217.000 4,078,218.000 

logLik 2 -2,035,959.000 4,264.798 -2,038,975.000 -2,037,467.000 -2,034,451.000 -2,032,943.000 

deviance 2 4,071,918.000 8,529.596 4,065,887.000 4,068,903.000 4,074,934.000 4,077,950.000 

Chisq 1 12,062.670  12,062.670 12,062.670 12,062.670 12,062.670 

Chi Df 1 4.000  4.000 4.000 4.000 4.000 

Pr(> Chisq) 1 0.000  0.000 0.000 0.000 0.000 

Notes: 

Model 1:  

lmer(lnincwage ~ 1 + fpsctxt100 + FEMctxt100 + nonprofitC + female + edyrsC + latinoC + blackC + asianC + othraceC + speakengC + expC + 

expsq100th + hourwkC +  (1 |Industry) + (1 |Occupation) + (1|State), acs38, REML = FALSE 

Model 2:  

lmer(lnincwage ~ 1 + fpsctxt100 + FEMctxt100 + nonprofitC + female + edyrsC + latinoC + blackC + asianC + othraceC + speakengC + expC + 

expsq100th + hourwkC +  (1 + nonprofitC | Industry) + (1 + nonprofitC | Occupation) + (1 | State), acs38, REML = FALSE) 
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Appendix G. Compare estimates with fewer industries 

 Natural log of annual income  

 Fixed 

Coef. 

Random 

Coef. 
FC RC FC RC  FC RC 

# of industries 9 industries (fps<60%) 
18 industries 

(fps<86%) 

20 industries 

(fps>86%) 
38 industries (all) 

NP workers 462,628 (53.4%) 598,462 (41.6%) 66,184 (4.2%) 664,646 (22%) 

fpsctxt100 0.002 -0.0001 0.004*** 0.003** 0.005 0.005 0.004*** 0.003*** 
 (0.724) (-0.073) (2.708) (2.279) (0.552) (0.520) (4.213) (3.537) 

FEMctxt100 -0.001*** -0.001*** -0.002*** -0.002*** -0.001 -0.001 -0.001 -0.001 
 (-2.810) (-2.687) (-3.487) (-3.283) (-1.216) (-1.604) (-1.521) (-1.445) 

nonprofitC 0.044*** -0.010 0.015*** -0.033** -0.060*** -0.072*** 0.002*** -0.057*** 
 (45.489) (-0.534) (18.892) (-2.003) (-29.393) (-3.490) (2.891) (-3.893) 

femaleC -0.130*** -0.129*** -0.146*** -0.143*** -0.215*** -0.214*** -0.187*** -0.185*** 
 (-114.615) (-114.212) (-157.099) (-154.280) (-220.014) (-219.354) (-276.068) (-272.933) 

edyrsC 0.076*** 0.076*** 0.075*** 0.075*** 0.071*** 0.071*** 0.073*** 0.073*** 
 (279.299) (277.932) (353.433) (352.352) (313.692) (314.045) (469.262) (468.674) 

latinoC -0.014*** -0.013*** -0.041*** -0.040*** -0.081*** -0.080*** -0.065*** -0.063*** 
 (-7.113) (-6.993) (-27.438) (-26.398) (-50.839) (-50.502) (-58.414) (-57.061) 

blackC -0.040*** -0.039*** -0.057*** -0.055*** -0.125*** -0.125*** -0.095*** -0.093*** 
 (-24.621) (-24.224) (-44.663) (-43.418) (-77.460) (-77.372) (-92.220) (-90.402) 

asianC -0.014*** -0.014*** -0.018*** -0.018*** -0.037*** -0.037*** -0.030*** -0.029*** 
 (-6.519) (-6.684) (-10.335) (-10.614) (-18.154) (-18.129) (-22.173) (-21.799) 

othraceC -0.040*** -0.040*** -0.051*** -0.050*** -0.075*** -0.074*** -0.067*** -0.066*** 
 (-11.519) (-11.522) (-18.799) (-18.549) (-25.328) (-25.135) (-32.827) (-32.353) 

speakengC 0.040*** 0.041*** 0.049*** 0.048*** 0.046*** 0.045*** 0.046*** 0.045*** 
 (20.779) (21.034) (33.577) (32.903) (31.971) (31.859) (44.993) (44.654) 

expC 0.010*** 0.010*** 0.010*** 0.010*** 0.012*** 0.012*** 0.011*** 0.011*** 
 (244.435) (244.407) (313.477) (313.746) (328.158) (328.734) (448.690) (449.153) 

expsq100th -0.046*** -0.046*** -0.047*** -0.047*** -0.059*** -0.059*** -0.053*** -0.053*** 
 (-139.894) (-139.922) (-176.207) (-175.689) (-201.457) (-201.632) (-267.026) (-266.867) 

hourwkC 0.007*** 0.007*** 0.009*** 0.009*** 0.016*** 0.016*** 0.013*** 0.013*** 
 (103.794) (102.999) (174.085) (172.046) (296.607) (295.467) (345.041) (342.442) 

Constant 10.545*** 10.547*** 10.624*** 10.617*** 10.740*** 10.740*** 10.682*** 10.673*** 
 (249.057) (250.547) (301.279) (311.415) (281.886) (281.843) (368.277) (374.288) 

Observations 866,255 866,255 1,437,120 1,437,120 1,579,990 1,579,990 3,017,110 3,017,110 

Akaike Inf. Crit. 954,819 952,669 1,701,295 1,693,066 2,313,073 2,310,106 4,078,169 4,066,108 

Bayesian Inf. 

Crit. 
955,029 952,925. 1,701,514 1,693,334 2,313,294 2,310,376 4,078,401 4,066,393 

Note: *p**p***p<0.01 
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Appendix H. Linearity check of for-profit share of workers and annual income 

 

Appendix I. Linearity check of female percentage and annual income 
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Appendix J. The quadratic relationship between work experience and annual income 
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