
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

5-9-2015

FPGA Based Binary Heap Implementation: With an Application to FPGA Based Binary Heap Implementation: With an Application to

Web Based Anomaly Prioritization Web Based Anomaly Prioritization

Md Monjur Alam

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Recommended Citation Recommended Citation
Alam, Md Monjur, "FPGA Based Binary Heap Implementation: With an Application to Web Based Anomaly
Prioritization." Thesis, Georgia State University, 2015.
doi: https://doi.org/10.57709/7047142

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/7047142
mailto:scholarworks@gsu.edu

FPGA BASED BINARY HEAP IMPLEMENTATION: WITH AN APPLICATION TO

WEB BASED ANOMALY PRIORITIZATION

by

MD MONJUR ALAM

Under the Direction of Sushil K. Prasad, PhD

ABSTRACT

This thesis is devoted to the investigation of prioritization mechanism for web based

anomaly detection. We propose a hardware realization of parallel binary heap as an appli-

cation of web based anomaly prioritization. The heap is implemented in pipelined fashion in

FPGA platform. The propose design takes O(1) time for all operations by ensuring minimum

waiting time between two consecutive operations. We present the various design issues and

hardware complexity. We explicitly analyze the design trade-offs of the proposed priority

queue implementations.

INDEX WORDS: Web Anomaly, FPGA, Priority Queue, Verilog

FPGA BASED BINARY HEAP IMPLEMENTATION: WITH AN APPLICATION TO

WEB BASED ANOMALY PRIORITIZATION

by

MD MONJUR ALAM

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2015

Copyright by
Md Monjur Alam

2015

FPGA BASED BINARY HEAP IMPLEMENTATION: WITH AN APPLICATION TO

WEB BASED ANOMALY PRIORITIZATION

by

MD MONJUR ALAM

Committee Chair: Sushil K. Prasad

Committee: Xioajun Cao

Yanqing Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2015

iv

DEDICATION

This dissertation is dedicated to my mother, my wife and my son.

v

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many people.

I want to express my gratitude to my advisor Dr Sushil K. Prasad, for providing me an

opportunity to work on this thesis. He has been guiding me through all the obstacles

encountered in my research work and has been a constant source of motivation.

I must extend my thanks to all the committee members of this thesis, Dr. Xiaojun Cao

and Dr. Yanqing Zhang, for there valuable suggestions to help in shaping this thesis.

There is a substantial contribution made by my wife Tazneem Alam to help me to finish

this work. Apart from helping figure drawing, she has been the constant source of motivation

in my ups and downs carrier. I must extend my thanks to her for providing healthy and

tasty food through out my MS tenure.

I should not ignore the help of one innocence, my three year angel, Afnan Alam. While

I am fatigue with work pressure, frustrated with the outcomes of research works; playing

and giving accompany to this little baby boy alleviate my mental pain and these come to

me as a tonic for energy and peace.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS x

PART 1 INTRODUCTION 1

1.1 Motivation of the Work . 1

1.2 Objective and Design Issues . 2

1.3 Main Contribution . 2

1.4 Organization of the Thesis . 3

PART 2 PRELIMINARY AND RELATED WORK 4

2.1 Web Based Anomaly . 4

2.1.1 Score Calculation . 4

2.1.2 Prioritization . 5

2.2 Priority Queue . 6

2.2.1 Priority Queue Implementation 6

2.3 Related Work . 8

2.3.1 Anomaly Detection by Using Hardware 9

2.3.2 Parallel Priority Queue . 9

PART 3 FPGA BASED PARALLEL HEAP 12

3.1 Insert Operation . 12

3.2 Delete Operation . 14

3.3 Insert-Deletion Logic Implementation 16

vii

3.4 Pipeline Design . 19

3.4.1 Optimization Technique . 20

3.5 Implementation Result . 23

3.5.1 Hardware Cost . 25

PART 4 CONCLUSIONS AND FUTURE WORK 26

4.1 Future Scope of Work . 26

REFERENCES . 28

APPENDICES . 33

Appendix A SOURCE CODE 33

Appendix B SIMULATION 46

viii

LIST OF TABLES

Table 3.1 Variation of frequency, execution time and throughput with number

of level . 23

Table 3.2 Performance comparison and hardware complexity. 25

ix

LIST OF FIGURES

Figure 2.1 Illustrating anomalies in a two-dimensional data set [26]. 4

Figure 2.2 Markov Model Example [40]. 5

Figure 2.3 Binary Min Heap. 6

Figure 2.4 Array Representation of Binary Min Heap. 6

Figure 2.5 New heap structure after insertion 18. 7

Figure 2.6 New heap structure after single deletion operation from the original

heap shown at figure 2.3. 8

Figure 3.1 Storage in FPGA of deferent nodes in binary heap 12

Figure 3.2 Insertion path . 13

Figure 3.3 Contain of latch (L) after insertion completed 13

Figure 3.4 Hole is the resultant for parallel operation of insert-delete 15

Figure 3.5 Contain of latch (L) after parallel operation of insert-delete 15

Figure 3.6 Top Level Architecture of insert-delete 16

Figure 3.7 Pipeline Design Overview . 19

Figure 3.8 Parallel insert operation: illustrates operations at each level at each

clock . 20

Figure 3.9 Parallel delete operation: illustrates operations at each level at each

clock. 21

Figure 3.10 Sharing Insert-Delete hardware resulting reducing combinational logic

by half . 22

Figure 3.11 Different performance matrices 24

Figure B.1 Print screen of simulation out put 50

Figure B.2 Print screen of top level design 50

x

LIST OF ABBREVIATIONS

• GSU - Georgia State University

• CS - Computer Science

• FPGA - Field Programmable Gate Array

• MS - Master of Science

1

PART 1

INTRODUCTION

Anomaly detection refers to the problem of finding patterns in data that do not conform

to a well defined notion of normal behavior. We often refer these nonconforming patterns as

anomalies or outliers [26]. Network based anomaly detection deals with score calculation and

prepares a ranking for all packets based on that score. Due to high network congestion, it is

incumbent to provide an efficient interface that can handle prioritization of packets based on

the score assigned. As software based application inherently provides slower interface, the

hardware based prioritization interface is necessary. Based on the priority, the interface will

take some decisions (either pass or drop). For a high speed traffic, it is required to process

these tasks in parallel.

Implementation of parallel priority queue will solve this requirement. A priority queue

(PQ) is a data structure in which each element has a priority and a dequeue operation

removes and returns the highest priority element in the queue. PQs are the most basic

component for scheduling, mostly used in routers, event driven simulators [17], etc. There

are several hardware based PQs implementations that are usually implemented by either

ASIC chips [8,9,15] or FPGA [17-19]. But, all of them suffer some limitations and not

applied to all applications.

1.1 Motivation of the Work

In the literature, several hardware-based priority queue architectures have been pro-

posed [14,15]. All of these schemes have one or more shortcomings. The Systolic Arrays

and Shift Registers based approaches [14,15], for example, are not scalable and require much

hardware, more specifically, it require O(n) comparators for n nodes. FPGA based pipelined

heap is presented by Ioannou et. al [17]. This architecture is very much scalable and can

2

run for 64K nodes without compromising performance. The major drawback of this design

is that it takes at least 3 clock cycles to complete a single stage. More over, it never address

the hole generated by parallel delete operation followed by an insertion. The calendar queues

implemented by [8] can only accommodate a small fixed set of priority values since a large

priority set would require extensive hard-ware support.

1.2 Objective and Design Issues

The objective of this work is to find a suitable design of parallel priority queue on

FPGA platform to provide an efficient interface for the anomaly detector engine to handle

packets prioritization very fast. We will store data based on its priority and this will be

possible by incorporating parallel addition operation in binary heap. To access the highest

priority data, we need to implement delete operation from the binary heap. Let us implement

minimum (min) binary heap where root contains the maximum (max) priority element. As

our intention is to provide efficient interface, the following design issues we should address

while implementing it.

• To minimize waiting time for two consecutive operations.

• To minimize hole created by deletion.

• The design should be highly scalable and optimized.

1.3 Main Contribution

We have implemented a software based anomaly detection mechanism where a score

is assigned to each packet. We apply Markov based model for score calculation. A FPGA

based parallel binary heap is implemented for score prioritization. We present the various

design issues and hardware complexity. The pipeline architecture ensures no waiting time

for any operation except the deletion one which has to wait for a single cycle. Each of insert

and delete operation takes O(1) time. We also evaluate the design trade-offs of the proposed

3

priority queue implementations. Our design takes care the hole created by delete operation.

We minimize the hole at the time of insertion.

1.4 Organization of the Thesis

A Summary of the contents of the chapters to follow is given below:

Part 2: Contains an overview and the art of literature related to the work.

Part 3: Our proposed design including implementation result is presented here. We also

describe different design trade-off in this part.

Part 4 : This part contains some concluding remarks and identifies some directions for

future research.

4

PART 2

PRELIMINARY AND RELATED WORK

2.1 Web Based Anomaly

Figure (2.1) Illustrating anomalies in a two-dimensional data set [26].

Anomaly detection refers to the problem of finding patterns in data that do not conform

to a well defined notion of normal behavior. We often refer these nonconforming patterns as

anomalies or outliers. Fig. 2.1 depicts anomalies in a simple two-dimensional data set [26].

There are two normal regions N1 and N2 for the data since most observations reside in these

regions. The points o1 and o2 and all the points in region O3 are considered as anomalies

as theses points are sufficiently far away from the two normal regions. We can consider net

work packet in each region as data set. Each packet belongs to a particular set based on its

score calculation.

2.1.1 Score Calculation

Among several methods, Markov model is one to calculate score for each packets [40].

The Markov model (MM) can be viewed as a probabilistic finite state automaton (PFSA)

which generates sequences of symbols. The output of the Markov model consists of all

paths from its start state to its terminal state. A probability value can be assigned to each

5

Figure (2.2) Markov Model Example [40].

output transition and the resultant score is calculated as the summation of all transition

probability. For example, consider the non-deterministic finite automata (NFA) in Figure

2.2. To calculate the probability of the word ‘ab’, one has to sum the probabilities of the

two possible paths (one that follows the left arrow and one that follows the right one). The

start state emits no symbol and has a probability of 1. The result is

p(w) = (1.0 ∗ 0.3 ∗ 0.5 ∗ 0.2 ∗ 0.5 ∗ 0.4) + (1.0 ∗ 0.7 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0)

= 0.706 (2.1)

2.1.2 Prioritization

Software based score prioritization of network packets are presented by Kruegel et. al

[24]; where the packets with maximum score gets high priority to be processed next. Each

time, score is calculated on the fly and it is compared with other set of precalculated scores.

Effectively, there is a processing delay to come up with a decision. Moreover, processing

parallel packet is not possible here, as the on the fly calculation here is highly serialized

process.

6

2.2 Priority Queue

A priority queue is an abstract data structure that maintains a collection of elements

with the following set of operations by a minimum priority queue Q:

• Insert: A number ni is inserted into the set of candidate number N in Q, provided

that the new list maintain the priority queue.

• Delete: Find out the minimum number in Q and delete that number from Q. Again,

after deletion the property of priority queue should be kept unchanged.

Figure (2.3) Binary Min Heap.

Figure (2.4) Array Representation of Binary Min Heap.

2.2.1 Priority Queue Implementation

Priority queue can be implemented by using binary heap data structure.

Definition 2.2.1 A min-heap is a binary tree H such that (i) the data contained in each

node is less than (or equal to) the data in that nodes children and (ii) the binary tree is

complete.

7

Figure 2.3 shows the binary min heap (H). The root of H is H[1], and given the index

i of any node in H, the indices of its parent and children can be determined in the following

way:

parent[i] = bi/2c

leftChild[i] = 2i

rightChild[i] = 2i+ 1

Figure 2.4 illustrates the array representation of binary heap. The insertion algorithm

on the binary min heap H is as follow:

• Place the new element in the next available position (say i) in the H.

• Compare the new element H[i] with its parent Hbi/2c. If H[i] < Hbi/2c, then swap

it with its parent.

• Continue this process until either (i) the new elements parent is smaller than or equal

to the new element, or (ii) the new element reaches the root (H[1]).

Figure (2.5) New heap structure after insertion 18.

Figure 2.5 shows the new heap structure after insertion of 18 at the heap presented in

Figure 2.3.

The deletion algorithm is as follow:

• Return the root H[1] element.

8

Figure (2.6) New heap structure after single deletion operation from the original heap shown
at figure 2.3.

• Replace the root H[1] by the last element at the last level (say H[i]).

• Compare root with its children and replace the root by its min child.

• Continue this replacement for each level by comparing H[i] with H[2i] and H[2i+ 1],

un till the parent become less than its children or it reaches to the leaf node.

Figure 2.6 depicts the heap structure of single deletion operation from the original heap

shown at Figure 2.3. We can see that 5 was the root element at Figure 2.3. The updated

Figure 2.6 depicts that the 5 is no anymore after the deletion. Moreover, heap is re-structured

according to the deletion algorithm presented above.

2.3 Related Work

Many web anomaly detection techniques have been proposed which applied a set of

training data to define a model of normal behaviour. It labelled any data as abnormal that

is not included in this model [25,27,29,31,35-37]. Several variants of the basic technique

have been proposed for network intrusion detection, and for anomaly detection in text data

[23,34,39]. These approaches assume independence between the different attributes. Some

approaches have been introduced that assume the conditional dependencies between the dif-

ferent attributes applying more complex Bayesian networks [28,33,38]. Rule-based anomaly

detection techniques distinguish normal behavior of data instances from anomalies by learn-

ing rules. A test instance is termed as anomaly if it is not covered by any such rule. There

9

are two steps for rule-based anomaly detection approach. First, rules are learned from the

training data using a rule learning algorithm. A confidence value is associated with every

rule. The second step is to search the rule that best captures the test data instance. The

anomaly score of the test instance is calculated as the inverse of the confidence associated

with the best rule. For example, a typical rule-based system is an expert system where the

rules are generated by humans [26,30,32].

All of the approaches mentioned suffer from two basic problems:

1. There is no efficient implementation to deal with huge network congestion.

2. prioritization of network traffic is not maintained.

2.3.1 Anomaly Detection by Using Hardware

To resolve the first class of difficulty several authors [20,22] come up with hardware based

solution. The intention is to provide very fast interface to process network data. To achieve

this goal, Das et. al. [20,21] comes up with hardware based solution for anomaly detection.

The work comprises of a new Feature Extraction Module (FEM) which summarizes the

network behavior. It also incorporates an anomaly detection mechanism using Principal

Component Analysis (PCA) as the outlier detection method. The authors of [22] propose a

mechanism of feature extraction. The method is implemented on FPGA and it is suitable

for large network with high data flow.

2.3.2 Parallel Priority Queue

Several authors have theoretically proved that parallel heap is an efficient data structure

to implement priority queue. Prasad et. al. [1,4] theoretically illustrate this data structure

to show O(p) operations are required with O(log n) time for p ≤ n, where n is the number

of nodes and p is the number of processor used. The idea is designed for EREW PRAM

shared memory model of computation. The many core architecture by [3] in GPGPU plat-

form provides multi-fold speed up. Another theoretical approach [5] ensures O(log n) time

10

processing time for n number of nodes. The implementation of this algorithm is expensive

for multi-core architectures [6].

Hardware Based Priority Queue There have been several hardware based parallel

priority queue implementations described in the art of literature [8-15]. Pipelined based

ASIC implementations can reach O(1) execution time [11,12]. Due to several limitations

like cost and size, most of the ASIC implementations does not support a large number of

nodes to be processed. These implementation are also limited to high scalability. In [13],

the author claims the pipelined heap presented be the most efficient one. However, this

implementation incurs high hardware cost. The design is not flexible, more specifically, it is

designed with a fixed heap size. The Systolic Arrays and the Shift Registers [14,15] based

hardware implementations are well known in the literature. The common drawback of these

two implementation is using a large number of comparator (O(n)). The responsibility of

comparators used here to compare nodes in different level with O(1) step complexity. For

the shift register [15] based implementations, when new data comes for processing, it is

broadcasted to all levels. It requires a global communicator hardware which can connect

with all level. The implementation based on Systolic Arrays [14] needs a bigger storage

buffer to hold pre-processed data. These approaches are not scalable and require much

hardware, more specifically, it require O(n) comparators for n nodes. To overcome the

hardware complexity, a recursive processor is implemented by [16]; where a drastic hardware

is reduced by compromising execution timing cost. Bhagwan and Lin [9] designed a physical

heap such a way that commands can be pipeline between different levels of heap. The authors

in the paper [8] give some pragmatic solution of so called fanout problem mentioned in [10].

The design presented in [41] is very efficient in terms of hardware complexity. But, as the

design is implemented by using hardware-software co-design, it is very slow in execution

(O(log n)).

For the FPGA based priority queue implementation, Kuacharoen et. al [19] imple-

mented the logic presented in [10] by incorporating some extra features to ensure the design

11

to be acted as a task scheduler in real time. The major limitation of this paper is that it

deals with very small number of nodes. A hybrid priority queue is implemented by [18] and

it ensures high scalability and high throughput. FPGA based pipelined heap is presented

by Ioannou et. al [17]. This architecture is very much scalable and can run for 64K nodes

without compromising performance. The major drawback of this design is that it takes at

least 3 clock cycles to complete a single stage. More over, it never address the hole generated

by parallel delete operation followed by an insertion.

12

PART 3

FPGA BASED PARALLEL HEAP

Like an array representation, heap can be represented by hardware register or FPGA

latch. Each level of the heap can be virtually represented by each latch. The size of the

latch at each level can be represented as 2β−1, where β is the level assuming that root is the

level 1. Figure 3.1 shows the different latches do represent the different levels. Here, root

node can be stored by L1, the next level with two elements can be stored in L2 and the last

level with 3 elements can be stored in L4, although the last level can have max 8 elements.

Figure (3.1) Storage in FPGA of deferent nodes in binary heap

3.1 Insert Operation

We have already discuss the insert operation which is intimated from the last available

node of the heap. This bottom up approach restrict the other operations like delete, replace,

etc. to perform in parallel. As deletion means the least element to be deleted and the least

element always resides at root in case of min heap; deletion operation should wait till the

root is updated by the insert operation. If we insert element 3 in the heap mentioned at

13

Figure (3.2) Insertion path

Figure (3.3) Contain of latch (L) after insertion completed

Figure 3.1, followed by delete one element from heap then what will happen? Let us assume

nodes at each level get updated by a single clock cycles. That means, in worst case, total

4 clock cycles are required to complete the insert operation in this situation. So, delete

operation either has to wait for 4 clock cycles or it will wrongly delete the root, which is 5.

So, it is incumbent to insert from root and go down. But, we need to know the path for the

new inserted element, otherwise the tree will not be complete binary tree. We have adopted

a nice algorithm presented by Vipin et. al [7] in our design. The algorithm is as follow:

• Let k is the last available node at where new element to be inserted. Let j be the first

node of the last level. Then binary representation of k − j will give you the path.

14

• Let k − j = B, which binary representation is bβ−1bβ−2 · · · b2b1. Starting from root,

scan each bit of B starting from bβ−1;

– if bi == 0 (i ∈ {β − 1, β − 2, · · · , 2, 1), then go to left

– else go right

The Figure 3.2 shows the insertion path for new element to be inserted. For the new

element insertion, node at 11 should be filled up. The first node of the last level is at index

8. So, 11-8 = 3, which can be represented as 011. So, starting from root, the path should

be root→ left→ right→ right and this can be demonstrated by the Figure 3.2. After the

insertion completion, the contain of the nodes along with the value of latch is presented by

the Figure 3.3.

3.2 Delete Operation

There is one conventional approach to delete element from heap. As root resides the

min element, deletion always happen from root and the last element is replaced to root.

There are two difficulties here:

1. For sequential operation, it works perfectly file. For, parallel execution of insert/del,

hole can be created here. The situation happen after any insert followed by delete

operation.

From the Figure 3.4 we can illustrate this scenario clearly. Let at t1, the operation

insert with element 100 is encountered and it is denoted by insert(100). Obviously, the

element will be inserted at the last node of last level which is 12. Let, after one clock

cycle of insert, delete is encountered (say at t2). At, that time, insert was modifying

at L2. So, due to delete, hole will be created at node 10th as shown in Figure 3.4.

Eventually, when insert(100) will finish, the element 100 will occupy at the position

of H[12], but, H[11] will become empty. This situation is illustrated by Figure 3.5.

Let us assume that insert instruction comes at time ti and delete instruction comes

at tj, where i, j = 1, 2, 3, · · · and j > i. Let, operation of either insert or delete takes

15

Figure (3.4) Hole is the resultant for parallel operation of insert-delete

Figure (3.5) Contain of latch (L) after parallel operation of insert-delete

one clock cycle at any level to complete tasks at that level. It is obvious that, only

single node gets modified (if any) for all levels. In general, for any insert − delete

combination, hole will be created if (tj − ti) < β, where β is the depth of heap.

2. While you replace root by last element of heap, it requires extra clock cycle. Moreover,

we need to compare three elements, root and its two children or any node and its

children. For hardware perspective, it is cost efficient to compare two elements rather

than to compare three elements. More over, it incurs the path delay longer.

So, we should intentionally avoid the root replacement by last element. Let us delete

root first and keep it as it is. Fill the root with its least child and follow the algorithm. In

16

this case, we can save one cycle and hardware cost, more specifically, can minimize the path

delay. Now, our aim is to minimize hole by adding logic.

3.3 Insert-Deletion Logic Implementation

Figure (3.6) Top Level Architecture of insert-delete

Figure 3.6 illustrates the top level architecture of insertion-delete operation. The counter

is used to maintain the total number of element present in the heap. It is incremented by

one for insert operation and decremented by one for deletion operation. The indexCal block

is used to find the insertion path. We have modified the existing path finding algorithm by

[7]. We first consider the holeReg to obtain insertion path. The holeReg contains the holes

created at deletion operation. We maintain a holeCounter to identify a valid hole. Based on

the index, the heap node is accessed and the node is compared with the present data. Based

on the comparison, either the node is updated by present data and the node is passed to the

next level as present data, or the node become unchanged and the present data is passed to

17

the next level.

Deletion : We maintain del index to find the last deleted node. For example, initially,

del index becomes 1 which means root is deleted. The comparator finds the min element

between H[del index∗2] and H[del index∗2+1] and that min gets replace to H[del index].

Now, del index gets modified with the index of min element. Again the comparator finds the

min of the ancestors of the new index and replace the node of new index with that of min

one. Each time holeCal finds if there is a valid child for del index. If there is no valid child,

then holeCounter is incremented by 1 and holeReg is updated with del index. By this way,

we maintain hole.

Algorithm 1 Algorithm for Insert−Delete(data, opcode)
1: if (opcode == 1) then
2: counter = counter +1;
3: if (holeCounter > 0) then
4: insert path = findPath(counter, holeCounter)
5: end if
6: for (0 to number of level) do
7: index = indexCal(insert path)
8: if (data < H[index] then
9: H[index] = data

data = H[index]
10: else
11: data = data
12: end if
13: end for
14: else
15: Remove H[1]
16: while (leftChild[del index] 6= NULL&rightChild[del index] 6= NULL) do
17: if (leftChild[del index] < rightChild[del index]) then
18: H[del index] = leftChild[del index]

del index = del index ∗ 2
19: else
20: H[del index] = rightChild[del index]

del index = del index ∗ 2 + 1
21: end if
22: end while
23: hole counter = hole counter + 1

hole reg[hole counter] = del index
24: end if

18

The insert-delete parallel algorithm is presented at Algorithm 1. We use 2:1 multiplexer

to select the path based on the value of holeCount. The logic for findPath is illustrated at

Algorithm 2. The indexCal block is implemented based on the value of findPath and the

logic is illustrated at Algorithm 5. To calculate the first node of last level is noting but the

mathematical expression of 2β−1 where β is the level of heap. There is some difficulty to

realize this expression in hardware. We express this logic by Algorithm 3.

Algorithm 2 Algorithm for findPath(counter, holeCounter)

1: if (holeCounter > 0) then
2:

3: return findHole(holeCounter)
4: else
5: leaf node = find 1st node last level(counter)
6: return (counter − leaf node
7: end if

Algorithm 3 Algorithm for find 1st node last level(counter)

1: for (i = 0; 2i < counter; i = i+1) do
2: leaf node = i+1
3: end for
4: return leaf node

Algorithm 4 Algorithm for findHole(hole counter)

1: return holeReg[holeCounter]

We have used global clock(clk) and global reset(rst) signal for the each logic block except

the combinational logic parts. The clk and rst signals are not mentioned at each figure due

to place limitation. The function of findHole is basically an implementation of stack register

and its return value is presented at Algorithm 4.

19

Algorithm 5 Algorithm for indexCal(insert path)

1: for (i = 0 to insert path bits) do
2: if (bit == 0) then
3: indexi = 2*index(i− 1)
4: else
5: indexi = 2*index(i− 1) + 1
6: end if
7: end for

Figure (3.7) Pipeline Design Overview

3.4 Pipeline Design

To achieve high throughput we need to start one operation before completing the previ-

ous operation. So, many operation can be in progress in the tree. To achieve so, we consider

our design to take a single clock cycle to perform each stage. For any stage, only one opera-

tion (insert, delete) can be execute at ant time t. That is why we need all operation should

be started from the top (root) of the tree and proceed towards the bottom (leaf).

Figure 3.7 illustrates the basic pipeline architecture of our binary heap. Each level

20

perform insertion or deletion based on the signal opcode. Each level takes three clock cycles

to perform all operations. Each level sends data and opcode to the next level to perform.

There is a global clock and global reset attached to each stage. All the level contains the

same logic hardware except the first level.

3.4.1 Optimization Technique

Figure (3.8) Parallel insert operation: illustrates operations at each level at each clock

We need to know the operations at each level at each clock cycle to provide more

optimization. We make each individual operations like Read, Write and compare (comp) to

complete in separate single clock cycle. Each level has to perform these three basic operations

resulting three clock cycles in total. We pre-compute data for a level such a way that there

are maximum overlap between consecutive two levels in case of insertion. For any level β,

if Read operation executes at t time, then it executes comp operation at t + 1. The comp

generates the next index to be read by the next level. So, β+ 1st level perform Read at t+ 1

time. Now, β level performs write operation at t + 2, while β + 1st level finish comp and

generates the index to be read by the β+2nd level. At time t+3, the β+1st level will perform

Write operation while the β+2nd level will complete the comp operation and will make index

21

available for the β+3rd level. By this ways, we find there are two operations overlaps between

two consecutive levels in 3 cycles. Effectively, it results of writing at each clock cycle after

initial latency of two clock cycle at the first level. The Figure 3.8 illustrates this situation.

We can see that, while level L2 perform comp at clock 2, then level L3 performs the Read.

The level L2 completes Write at clock 3, while level L3 completes the comp followed by Write

at clock 4. We make comp operation by β and Read operation by β + 1 at same clock cycle

t by using the concept of different edge of clock. Level L2, for example, performs comp at

positive edge of clock 2 and level L3 performs Read at negative edge of clock 2.

Figure (3.9) Parallel delete operation: illustrates operations at each level at each clock.

Hardware Sharing Unlike, the insert, the delete operation of any level waits for data

from its next level. As the min element of a certain levels go up to the upper level, the data

will be available to write after performing the comp operation of that level. In general, if

Read operation executes at t time by level β, then it executes comp operation at t+1 (except

root level). As the comp generates the next index to be read by the next level. So, β + 1st

level perform Read at t+ 1 time. But, the level β can not perform Write operation at t+ 2,

because the data from β + 1st level will be written at the level β; and the resultant of comp

22

Figure (3.10) Sharing Insert-Delete hardware resulting reducing combinational logic by half

by β + 1st level will be available after t+ 2; that means the level β can perform Write only

at time t+ 3. At t+ 2 the level β becomes idle. For each level, we can see that there is such

idle state. For example, while level L2 perform comp at clock 2, then level L3 performs the

Read (Figure 3.9). Level L2 becomes idle at clock 3 while L3 performs comp at that time.

Eventually, the level L2 performs Write at clock 4 after the data available by the level L3

performs. From the Figure 3.9, we can see that at clock 3 the data from L2 is written at level

L1. That means, the level L2 suffers at a temporary hole at clock 3. This hole at level L2

is compensated while the level L3 write at L2 at clock 4. But, the the level L3 suffers from

temporary hole. While a level has temporary hole, the level is in inactive state; that means

there could not be any operation to be performed at that level at that time. In general, for

any time t, the β level can not be completed if β + 1 level can not finish the task of comp at

t+ 1. That means we can share hardware between the levels β and β + 1.

Figure 3.10 illustrates the hardware sharing where a common Insert-Delete block is used

for two consecutive levels.

23

Table (3.1) Variation of frequency, execution time and throughput with number of level

Number of Level Frequency (f) Execution Time Throughput (τ)
(β) (MHz) (ns) (GB/Sec)

4 318.8 9.41 1.27
8 232.8 12.88 1.85
10 212 14.15 2.12
12 210 14.25 2.52
16 207.2 14.5 3.31
20 173.4 17.3 3.46
24 171.6 17.48 4.10
28 157.45 19.05 4.39
32 143.69 20.87 4.57

3.5 Implementation Result

The proposed design has been simulated by ISim for implementation on Xilinx Sparttan6

XC6SLX4 hardware platform.

(τ) is calculated as:

τ =
ω × f
χ

(3.1)

where ω is the bit length, f is the clock frequency and χ is the number of clock cycle required

to compute insert-delete. We obtain maximum clock frequency of 207.21 MHz with minimum

clock period of 4.82 nano second (ns).

Table 3.1 demonstrates the performance result obtained from simulation. The execution

time per level is calculated as:

t =
3

f
(3.2)

where β is the number of level and f is the frequency. We use the number of level (β)

and bit length (ω) interchangeably. Number of elements in the heap will be 2ω− 1 = 2β − 1.

24

Form the table, we found that the obtained clock frequency is not constant, it is inversely

proportion to the bit length (β). We obtain maximum frequency = 318.8 MHz for β = 4,

and minimum frequency 143.69 MHz β = 32. The parameter, execution time is directly

proportion to frequency and inversely proportion to β. For example, it takes 3
143.69

= 20.87

ns when β = 32. Because, it takes 3 cycles (worst case) each stage to complete the task.

The relation of throughput is a little bit complex. We can see that, it is directly proportion

to frequency which is inversely proportion to β. But, it is directly proportion to β it self. As

we have design a fully pipelined architecture, the output can be obtained in each clock cycles

as shown at Figure 3.9. We obtain throughput, for example, 143.69 × 32 = 4.59 GB/Sec

when β = 32.

Figure (3.11) Different performance matrices

Figure 3.11 illustrates the graphical presentation of different efficiency parameter with

variation of β. From the figure, it is clear that throughput increases even though frequency

decreases with the increase of β.

25

Table (3.2) Performance comparison and hardware complexity.

Design κ Flip-flop SRAM LUT f τ Time Complete
(F) (f) (MHz) (GB/Sec) (t) Tree ?

[14] 2β 2β+1 0 8560 - - O(1) Yes
[41] 2× β 2β+1 0 1411 - - O(log n) Yes
[17] 2× β 2× β 2× β - 180 6.4 O(1) No
[9] 2× β 2× β 2× β - 35.56 10 O(1) No

Our β
2

β β 1970 143.69 4.57 O(1) Yes

3.5.1 Hardware Cost

We can visualize hardware cost with some parameters like [17] :

C = β × (κ+ F) + 2β ×M

where C is the cost for β levels. κ is the numbers of comparators used, F is the number

of flip-flop for each level and M represents the memory bits. For accessing memory bit, we

use static RAM (SRAM). Xilinx provides 2x512 SRAM . So, effectively, we can simulate 234

nodes. As we have addressed two levels of optimization like :hole minimization and hardware

sharing; our design results very much cost effective comparing to the traditional designs

[9,14,17]. We used, for example, 1970 number of Look-up tables (LUTs), 2870 number of

slices with 800 flip-flop register to simulate 232 number of nodes.

Table 3.2 demonstrates comparative analysis of our proposed design with existing ones.

As different designs address different issues and implemented in different platform, it will be

not fair to have direct comparison. We could see that, our design performs worst comparing

to [41] in terms of total number of LUT used. But, as the design of [41] is implemented

by using hardware-software co-design, it is very slow in execution (O(log n). Our design is

very much comparable to [9,17]. The design of [9] ensures high throughput with low clock

frequency by using cell sizes of 424 bits. Unlike [9,17], our design stands at moderate value

of throughput and frequency by ensuring balanced complete binary tree.

49

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h14 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h7 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h24 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h13 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h0 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

INP DATA = ‘WIDTH’ h24 ;

OPCODE = 1 ’ b1 ;

@(posedge CLK)

OPCODE = 1 ’ b0 ;

end

a lways

#20 CLK = ~CLK ;

endmodule

Figure B.1 demonstrates the out put for different level. We have tested it for five levels.

Figure B.2 shows the synthesizing top level design.

50

Figure (B.1) Print screen of simulation out put

Figure (B.2) Print screen of top level design

