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NOVEL ESTIMATION METHODS FOR SENSITIVITY AND AUC IN MEDICAL

DIAGNOSTIC STUDY

by

YAN HAI

Under the Direction of Gengsheng Qin, PhD

ABSTRACT

In the medical diagnostic study, the accuracy of a diagnostic test is commonly evaluated

based on its sensitivity and specificity. Both sensitivity and specificity are not fixed but

depend on the cutoff chosen for that test. The receiver operating characteristic (ROC) curve

of the test is constructed to show how sensitivity and specificity change as the cutoff varies.

The area under the ROC curve (AUC) can also be used to evaluate the discriminatory ability

of diagnostic tests with continuous test results. In practice, however, the cutoff of a test is



usually chosen so that the specificity is meaningfully high. Therefore, the sensitivity under

a certain specificity serves as a diagnostic measure to evaluate the diagnostic tests.

In both two and three (the normal healthy stage, the early stage of the disease, and

the stage of the full development of the disease) diagnostic classes studies, we propose a

new influence function-based empirical likelihood method and Bayesian empirical likelihood

methods. The proposed methods are shown to perform better than the existing methods in

terms of both coverage probability and interval length in simulation studies. A real data set

from Alzheimer’s Disease Neuroimaging Initiative (ANDI) is analyzed by using the newly

proposed methods.

In two-phase diagnostic studies with both screening test and gold standard test, veri-

fication of the true disease status might be partially missing based on the results of diag-

nostic tests and other subjects’ characteristics. Because the estimators of AUC based on

partially validated subjects are usually biased, it is usually necessary to estimate AUC by

bias-corrected methods. We proposed direct estimators of the AUC based on hybrid impu-

tation (FI and MSI), inverse probability weighting (IPW), and the semi-parametric efficient

(SPE) approach with verification biased data when the test result is continuous under the

assumption that the true disease status, if missing, is missing at random (MAR). Simulation

results show that the proposed estimators are accurate for the biased sampling. We illustrate

the proposed methods with a real data set of Neonatal Hearing Screening study.

KEYWORDS: Sensitivity, Specificity, ROC Curve, AUC, Verification Bias, Empirical
Likelihood, Influence Function, Bayesian Inference.
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PART 1

INTRODUCTION

Over the past 100 years, diagnostic testing has become a critical part of standard medical

practice[1]. Every time people go to a physician with pain symptoms or an injury, they will

undergo diagnostic tests. More than 6 billion diagnostic tests are performed every year in

the United States[2]. Before a new diagnostic test can be introduced into medical practice,

it should be evaluated for diagnostic accuracy in discriminating patients among different

disease stages [3][4][5]. Generally, the diagnostic tests are utilized to classify the individuals

into two groups, i.e., the healthy group (negative) and the diseased group (positive), or three

ordinal groups, i.e., the healthy group (negative), the early diseased group (intermediate),

and the fully diseased (positive) group. This dissertation develops estimation methods for

evaluating the diagnostic accuracy of tests for two groups and three ordinal groups.

1.1 Statistical Evaluation of Diagnostic Tests

Diagnostic tests commonly measure different bio-markers of an individual in question,

and the disease status of the individual is determined based on whether such measurements

meet pre-specified criteria. For diagnostic tests classifying the individuals into two groups,

the clinicians would identify the individual as diseased if the test result is above a specific

cutoff and non-diseased if it is below the cutoff (or vice-versa). For example, the individuals

will be considered hyperthyroid state if their serum thyroid-stimulating hormone (TSH) level

is below 0.35 mIU per L[6]. Accuracy of a diagnostic test is a term that is frequently used

to describe the evaluation of a diagnostic test versus a gold standard[7]. The evaluation of

a diagnostic test is frequently based on a study in a selected population sampled according

to the true disease status determined by the gold standard. For example, the evaluation

is performed using a prostate-specific antigen (PSA) to detect or diagnose prostate cancer
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versus a biopsy as a gold standard.

In a two diagnostic class problem, the probability that a non-diseased individual is

correctly classified is defined as the specificity, and the probability that a diseased individual

is correctly identified is called sensitivity. The accuracy of a diagnostic test is commonly

evaluated based on its sensitivity and specificity. Both sensitivity and specificity are functions

of the cutoff value when the outcome of a diagnostic test is continuous. Both sensitivity and

specificity are not fixed but depend on the cutoff(s) chosen for that test. The receiver

operating characteristic (ROC) curve, a plot of sensitivity vs. (1-specificity) as the cutoff

value runs through the whole range of all possible outcome values, is an effective graphic

tool in measuring the accuracy of a diagnostic test. Different statistics based on the ROC

curve, such as the area under the ROC curve (AUC) [8] and Youden index [9], serve as the

summary index measures to evaluate the discriminatory ability of the diagnostic tests.

In medical practice, the cutoff value of a test is usually chosen so that a fixed meaning-

fully high value of specificity is achieved [10]. For example, breast MRI screening study

results usually have at least 80% specificity [11]. Therefore, the sensitivity of the test

at a given specificity can also be used as an important diagnostic measure. Several pa-

pers[10][12][13][14][15][16] discussed the issues of estimation of sensitivity given the fixed level

of specificity for evaluating diagnostic tests. These papers proposed normal approximation-

based approaches and empirical likelihood (EL) based approaches. However, these methods

generally have poor performance when the specificity is high. In Part 2, we propose a new

influence function-based empirical likelihood interval for the sensitivity at a given specificity

to overcome such problems. Moreover, followed Lazar [17]’s study on Bayesian empirical

likelihoods, we develop several Bayesian EL (BEL) intervals for the sensitivity.

1.2 Sensitivity to the Early Diseased Stage

The disease process is usually divided into two stages, as we mentioned previously. How-

ever, in practice, a disease process might be more complicated and involve three diagnostic

stages: the healthy stage, the early diseased stage, and the fully diseased stage. For example,



3

mild cognitive impairment (MCI) is a transitional stage between the cognitive changes of

normal aging and the more severe Alzheimer’s Disease (AD)[18]. In this three-ordinal-group

classification problem, given a pair of threshold values c1 and c2 (c1 < c2), the individual

is identified as non-diseased if the test result is smaller than c1, as fully diseased if the test

result is greater than c2, and as early diseased if the test result is between c1 and c2. The

specificity P1 is the probability that the test correctly identifies the non-diseased individuals.

The sensitivity P2 to the early diseased stage and sensitivity P3 to the fully diseased stage is

the probability that the test correctly identifies the early diseased individuals and the fully

diseased individuals, respectively.

The early detection of the disease, such as AD, is crucial because this usually means

that patients can receive earlier treatment. Therefore, the probability associated with the

early detection of the disease is a crucial accuracy measure for the diagnostic test with

three ordinal stages. Studies [19][20] provided parametric and non-parametric EL confidence

intervals for the sensitivity to the early diseased stage. However, we note that the empirical

likelihood ratio in Dong and Tian [20] follows a scaled chi-square distribution asymptotically.

Thus an extra step is required to estimate this scale. Similarly to Part 2 for the two-group

classification problem, in Part 3, we proposed an influence function empirical likelihood-based

confidence interval for sensitivity at a given value of the pair (P1, P3), i.e., the sensitivity of

the test to the early diseased stage given the specificity and the sensitivity to the fully diseased

stage. The corresponding empirical log-likelihood ratio statistic converges to a standard

chi-square distribution, making inference for sensitivity more convenient. In addition, we

proposed the Bayesian empirical likelihood (BEL and BpEL) intervals for sensitivity to the

early stage.

1.3 Verification Bias

Medical diagnostic procedure usually involves two-phrase tests, diagnostic/screening

test and gold standard test that verifies the true disease status. As mentioned above, a

diagnostic test needs to be evaluated by a study with the selected true non-diseased and
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true diseased samples determined according to a gold standard test. However, in many

situations, not all individuals with given diagnostic/screening test results ultimately have

their true disease status verified through a very accurate gold standard test. That is to

say, the labels referred to as true disease status of the individuals are partially missing.

One reason for the missing is that the gold standard test is usually costly and invasive. So

the common practice is to apply the gold standard test only on high-risk individuals based

on other diagnostic/screening test results. For example, only a part of individuals with a

higher risk of prostate cancer, based on their prostate-specific antigen (PSA) levels, will

be referred to undergo a biopsy. Because individuals at low-risk are more likely to have

their true disease status missing, simply ignoring this missingness and using only individuals

with verified disease status to do statistical inference may lead to bias. Such bias is called

verification bias[21]. The missing at random (MAR) assumption[22] will be adopted to

deal with these missing disease status. Under the MAR assumption, the probability of an

individual being verified does not depend on the true disease status.

To correct the verification bias, Alonzo and Pepe[23] proposed several methods for

estimating the sensitivity and the specificity; He et al.[24] developed a closed-form expression

of the AUC estimator based on one imputation method; Adimari and Chiogna[25] proposed

a fully non-parametric estimation of the AUC based on K nearest-neighbor imputation.

Motivated by their studies, in Part 4, we derive new closed-form estimators of AUC with

verification biased data when the test result is continuous under the assumption that the

true disease status, if missing, is missing at random. The proposed AUC estimators can be

easily computed and directly applied in practice.
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PART 2

BAYESIAN AND INFLUENCE FUNCTION BASED EMPIRICAL

LIKELIHOODS FOR INFERENCE OF SENSITIVITY IN DIAGNOSTIC

TESTS

2.1 Introduction

In the medical diagnostic study, the accuracy of a diagnostic test is commonly evaluated

based on its sensitivity and specificity. Both sensitivity and specificity are not fixed but

depend on the cutoff(s) chosen for that test. The receiver operating characteristic (ROC)

curve, a plot of sensitivity vs. (1-specificity) as the cutoff varies, is an effective graphic

tool in measuring the diagnostic accuracy of diagnostic tests classifying individuals into two

groups ( non-diseased and diseased groups). Different statistics, including the area under

the ROC curve (AUC) [8] and Youden index [9] are based on the ROC curve. They are used

to evaluate the discriminatory ability of diagnostic tests. In practice, however, the cutoff of

a test is usually chosen so that the specificity is meaningfully high (typically 80%, 90%, or

95%) [10][20]. Hence, the sensitivity given the specificity serves as an essential measure of

the accuracy of diagnostic tests.

Existing methods for interval estimation of sensitivity include normal approximation-

based approaches and empirical likelihood-based approaches. Linnet [13] proposed a normal

approximation (NA) based confidence interval. Platt et al. [10] noted that Linnet’s method

may be significantly affected by poor empirical density estimation and proposed to use

Efron’s bias-corrected acceleration (BCa) bootstrap interval [26]. Zhou and Qin [14] devel-

oped two bootstrap intervals for sensitivity based on extensions of Agresti and Coull’s results

on confidence intervals for binomial proportions [27] and showed that the new bootstrap in-

tervals have better coverage accuracy than the NA and BCa intervals. Empirical likelihood

(EL), introduced by Owen [28], has become a popular approach in statistical research be-
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cause it does not rely on parametric assumptions on the data but still enjoys the advantages

of likelihood methods. In particular, EL methods have been used widely in the evaluation

of diagnostic tests. For example, Gong et al. [15] proposed a smoothed jackknife empirical

likelihood (JEL) method for the ROC curve. Qin et al. [16] developed a hybrid EL (HEL)

method for sensitivity.

This part provides a thorough review of these methods and comprehensive numerical

studies to compare their performance in different settings. Moreover, we study two improve-

ments of current methods. Firstly, we note that in the approach of Qin et al. [16], the hybrid

empirical likelihood ratio follows a scaled chi-square distribution asymptotically. Thus an

extra step is required to estimate this scale. We propose a new influence function-based EL

(IFEL) method following Yu et al. [29]. The idea is to replace the estimating function in the

EL with an influence function of the sensitivity. The corresponding empirical log-likelihood

ratio statistic converges to a standard chi-square distribution, making inference for sensi-

tivity more convenient. Secondly, we develop Bayesian EL (BEL) approaches. Despite the

extensive use in the frequentist context, EL has only recently been used in Bayesian analysis.

Lazar [17] observed that EL’s properties are in many respects similar to those of parametric

likelihoods, and EL could be used in Bayesian inference like parametric likelihoods. To our

knowledge, Bayesian EL methods have not been used in evaluating diagnostic tests. We

propose to apply Bayesian EL methods to the inference of sensitivity. A critical part of

Bayesian approaches is choosing an appropriate prior, which becomes quite tricky since no

parametric model is assumed for EL. We consider building EL and assigning priors on ei-

ther the sensitivity parameter itself or the probability vector (p1, . . . , pn) in building EL. For

EL on the sensitivity parameter, we follow Clarke and Yuan [30] to derive reference priors

[31][32][33]. Also, we apply the idea of Rao and Wu [34] to employ Bayesian EL based on

(p1, . . . , pn).

This part is organized as follows. In Section 2.2, we review several existing methods

for interval estimation of sensitivity. In Section 2.3, we introduce a new EL ratio statistic

for sensitivity based on influence function. In Section 2.4, we propose Bayesian EL methods
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based on influence function and hybrid methods. In Section 2.5, we conduct simulation

studies to compare the performance of the proposed methods with existing methods. In

Section 2.6, we apply the new methods to a real dataset to assess three biomarkers’ diagnostic

accuracy in the detection of Alzheimer’s disease.

2.2 Existing Methods of Constructing Confidence Intervals for Sensitivity

Let Y and X be the results from a continuous-scale test for diseased and non-diseased

individuals, respectively. Suppose individuals are diagnosed as diseased if the results are

greater than a cutoff η, and non-diseased if the results are below η. The sensitivity and

specificity of this test are defined by

Sensitivity = P (Y > η) = 1−G(η), Specificity = P (X ≤ η) = F (η),

where G and F are the distribution functions of Y and X, respectively. Therefore, when the

specificity of the test is p (0 < p < 1), the corresponding sensitivity is θ = 1−G(F−1(p)). Let

{Y1, . . . , Yn} and {X1, . . . , Xm} be the test results of a random sample of diseased subjects

and non-diseased subjects, respectively. The statistical problem is to construct confidence

intervals for the sensitivity θ at a fixed specificity p based on these observations.

2.2.1 Normal approximation-based bootstrap methods

As mentioned in the introduction section, Zhou and Qin [14] developed two boot-

strap intervals for the sensitivity, which have better coverage accuracy than other normal-

approximation based confidence intervals. Their methods used Agresti and Coull’s idea for

the construction of the confidence interval of a binomial proportion [27]. The first confidence

interval called bootstrap I (BTI) interval, for θ is defined by

(
θ̃ − z1−α/2

√
V ∗(θ̃), θ̃ + z1−α/2

√
V ∗(θ̃)

)
,
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where

θ̃ =

∑n
j=1 I[Yj ≥ F̂−1(p)] + 1

2
z2

1−α/2

n+ z2
1−α/2

,

F̂−1(p) is the p-th quantile of F̂ , F̂ (x) = 1
m

∑m
j=1 I(Xj ≤ x) is the empirical distribution

function of F , z1−α/2 is the (1 − α/2)-th quantile of the standard normal distribution, and

the variance V ∗(θ̃) of θ̃ is estimated by the following bootstrap procedure:

(1) Draw a resample Y ∗j ’s of size n and a separate resampleX∗i ’s of sizem with replacement,

from the diseased sample Yj’s and the non-diseased sample Xi’s, respectively.

(2) Calculate the bootstrap version of θ̃:

θ̃∗ =

∑n
j=1 I[Y ∗j ≥ F̂ ∗−1(p)] + 1

2
z2

1−α/2

n+ z2
1−α/2

,

where F̂ ∗−1(p) is the p-th sample quantile based on the bootstrap resample X∗i ’s.

(3) Repeat the first two steps B times (B ≥ 200 is recommended) to obtain a set of

bootstrap replications θ̃∗(b)(b = 1, . . . , B). Then, the bootstrap variance estimator

V ∗(θ̃) is defined by

V ∗(θ̃) =
1

B − 1

B∑
b=1

(θ̃∗(b) − θ̄∗)2,

where θ̄∗ = 1
B

∑B
b=1 θ̃

∗(b).

The second confidence interval, called bootstrap II (BTII) interval, for θ is defined by

(
θ̄∗ − z1−α/2

√
V ∗(θ̃), θ̄∗ + z1−α/2

√
V ∗(θ̃)

)
.

BTI and BTII intervals are shown to have better coverage accuracy and shorter interval

lengths than the normal approximation-based interval and the BCa interval regardless of the

sample sizes and for both normal and non-normal data when specificity p is high. However,

the coverage accuracy usually deteriorates for small sample sizes.
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2.2.2 Jackknife empirical likelihood (JEL) method

Motivated by the JEL method for a U-statistic [35], Gong et al. [15] proposed a

smoothed jackknife method by applying the standard EL method to the jackknife sample

mean. A simple empirical estimator for θ is defined as

θ̃m,n = 1− Ĝ(F̂−1(p)), (2.1)

where Ĝ(y) = 1
n

∑n
i=1 I(Yi ≤ y) is the empirical distribution functions of G.

Gong et al. [15] defined a smooth version of θ̃m,n as

θ̂m,n = 1− 1

n

n∑
i=1

K(
p− F̂ (Yi)

h
),

where K(x) =
∫ x
−∞w(y)dy, w is a symmetric density function with support [−1, 1], and

h = h(n) > 0 is a bandwidth.

Let

θ̂m,n,j = 1− 1

n− 1

∑
1≤i≤n,i6=j

K

(
p− F̂ (Yi)

h

)
, for 1 ≤ j ≤ n,

and

θ̂m,n,j = 1− 1

n

n∑
i=1

K

(
p− F̂m,j−n(Yi)

h

)
, for n < j ≤ n+m,

where

F̂m,k(x) =
1

m− 1

∑
1≤j≤m,j 6=k

I(Xj ≤ x), k = 1, . . . ,m.

The jackknife pseudo-sample is then defined as

V̂j(p) = (n+m)θ̂m,n − (n+m− 1)θ̂m,n,j, j = 1, . . . , n+m,
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and the JEL for the sensitivity θ is defined as

Ln,m(θ) = sup
p

{
n+m∏
j=1

pj :
n+m∑
j=1

pj = 1,
n+m∑
j=1

pjV̂j(p) = θ

}
.

By standard Lagrange multiplier arguments, the empirical log-likelihood ratio can be derived

as

ln,m(θ) = −
n+m∑
j=1

log
{

1 + λ
[
V̂j(p)− θ

]}
,

where λ satisfies

1

n+m

n+m∑
j=1

V̂j(p)− θ
1 + λ[V̂j(p)− θ]

= 0.

Gong et al. [15] showed that −2ln,m(θ) converges in distribution to the standard chi-

square distribution with one degree of freedom, and a 100(1−α)% level JEL-based confidence

interval on θ is given by

CIJEL(θ) = {θ : −2ln,m(θ) ≤ χ2
1(1− α)},

where χ2
1(1− α) is the (1 − α)-th quantile of χ2

1. As previously mentioned, JEL method

needs to choose a bandwidth for kernel estimation.

2.2.3 Hybrid empirical likelihood (HEL) method

A challenge in constructing confidence intervals for sensitivity is to estimate the cut-off

point that yields the desired specificity. Qin et al. [16] proposed a hybrid EL-based procedure

which does not estimate an explicit cut-off point.

For a test value Y from a diseased subject, let U = 1−F (Y ). U is called the placement

value of Y and can be interpreted as the proportion of the non-diseased population with

test value greater than Y . It essentially marks the placement of Y within the non-diseased

distribution[36]. We have

E [I(U ≤ 1− p)] = P (F (Y ) ≥ p) = P (Y ≥ F−1(p)) = θ.
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Based on this relationship between θ and U ,

WHj(θ, p) = I(Uj ≤ 1− p)− θ, (2.2)

can be used in EL as the estimating function. Qin et al. [16] proposed a profile EL which

replaces F with the corresponding empirical distribution function as follow:

LH(θ) = sup
p

{
n∏
j=1

pj :
n∑
j=1

pj = 1,
n∑
j=1

pjŴHj(θ, p) = 0

}
, (2.3)

where ŴHj(θ, p) = I(Ûj ≤ 1− p)−θ with Ûj = 1−F̂ (Yj), for j = 1, . . . , n. The corresponding

empirical log-likelihood ratio is

lH(θ) = −
n∑
j=1

log{1 + λŴHj(θ, p)}, (2.4)

where λ is the solution of

1

n

n∑
j=1

ŴHj(θ, p)

1 + λŴHj(θ, p)
= 0.

The asymptotic distribution of −2lH(θ) is a scaled chi-squared distribution with one

degree of freedom. Thus, a 100(1 − α)% level hybrid EL and bootstrap confidence interval

for θ can be constructed as follows:

CIH(θ) = {θ : −2c∗lH(θ) ≤ χ2
1(1− α)},

where c∗ can be estimated from the following bootstrap procedure:

(1) Draw a resample Y ∗j ’s of size n and a separate resampleX∗i ’s of sizem with replacement,

from the diseased sample Yj’s and the non-diseased sample Xi’s, respectively.

(2) Calculate the bootstrap estimator of θ:

θ∗ =

∑n
j=1 I[Y ∗j ≥ F̂ ∗−1(p)]

n
,
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where F̂ ∗−1(p) is the p-th sample quantile based on the bootstrap resample X∗i ’s.

(3) Repeat the first two steps B times to obtain a set of bootstrap replications θ∗b(b =

1, . . . , B). Then c∗ is defined by

c∗ =
θ̄∗b(1− θ̄∗b)

n
B−1

∑B
b=1(θ∗b − θ̄∗b)2

, (2.5)

where θ̄∗b = 1
B

∑B
b=1 θ

∗b.

Qin et al. [16] showed that this HEL interval has good coverage probability when sample size

(m,n) is greater than (50, 50). However, estimating c∗ could be computationally expensive

and not desirable.

2.3 Influence Function-Based Empirical Likelihood (IFEL) Method

Yu et al. [29] proposed an EL function based on influence functions of parameters of

interest. Motivated by their study, we propose a new influence function-based EL method

to construct confidence intervals for sensitivity. Recall that θ = 1−G(F−1(p)), and θ̃m,n =

1− Ĝ(F̂−1(p)). Denote η = F−1(p) = G−1(1− θ), η̂ = F̂−1(p) (i.e., the p-th sample quantile

of Xi’s), and the combined samples as

Zk =

 Yk, k = 1, . . . , n,

Xk−n, k = n+ 1, . . . , n+m.

We have the following decomposition:

θ̃m,n − θ = [G(η)− Ĝ(η)] + [Ĝ(η)− Ĝ(η̂)]

with

G(η)− Ĝ(η) =
1

n

n∑
i=1

[I(Yi > η)− θ] =
1

m+ n

n∑
k=1

m+ n

n
[I(Zk > η)− θ].
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From the Bahadur representation for the sample quantile η̂ [37],

η̂ − η =
p− 1

m

∑m
i=1 I(Xi ≤ η)

f(η)
+ op(m

− 1
2 ),

it follows that

Ĝ(η)− Ĝ(η̂) =

∫
[I(y ≤ η)− I(y ≤ η̂)]dĜ(y)

=

∫
[I(y ≤ η)− I(y ≤ η̂)]dG(y) + op(n

−1/2)

= −g(η)(η̂ − η) + op(m
−1/2 + n−1/2)

=
1

m

g(η)

f(η)

m∑
i=1

[I(Xi ≤ η)− p] + op(m
−1/2 + n−1/2)

=
1

m+ n

n+m∑
k=n+1

m+ n

m

g(η)

f(η)
[I(Zk ≤ η)− p] + op((m+ n)−1/2),

where f and g are the densities for X and Y , respectively.

Therefore,

θ̃m,n − θ =
1

m+ n

n+m∑
k=1

Wk(θ, p) + op((m+ n)−1/2) (2.6)

where

Wk(θ, p) =


m+n
n

[I(Zk > η)− θ], k = 1, . . . , n,

m+n
m

g(η)
f(η)

[I(Zk ≤ η)− p], k = n+ 1, . . . , n+m,
(2.7)

is called the influence function of θ.

From (2.6), we can easily get the following asymptotic distribution of the empirical

estimator for θ.

Proposition 2.1: Assume that F and G are continuous distribution functions with

density functions f and g, respectively, f(η) is strictly positive, g′(x) and g(x)
f(x)

are bounded

in a neighborhood of η = F−1(p). If lim m
n

= ρ (0 < ρ <∞), then

√
m+ n(θ̃m,n − θ)

d→ N(0, σ2), (2.8)
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where σ2 = (1 + ρ)θ(1− θ) + (1 + ρ−1)p(1− p) g
2(η)
f2(η)

.

Linnet [13] heuristically derived the conclusion in Proposition 1, but he didn’t explicitly

give the formula for the asymptotic variance (see Zhou and Qin [14]).

Based on the influence function, an EL for the sensitivity θ can be defined as follows:

LIF (θ) = sup
p

{
m+n∏
k=1

pk :
m+n∑
k=1

pk = 1,
m+n∑
k=1

pkŴk(θ, p) = 0

}
, (2.9)

where Ŵk(θ, p) is the estimated influence function of θ given as follows

Ŵk(θ, p) =


m+n
n

[I(Zk > η̂)− θ], k = 1, . . . , n,

m+n
m

ĝ(η̂)

f̂(η̂)
[I(Zk ≤ η̂)− p], k = n+ 1, . . . , n+m,

where ĝ and f̂ are the density estimators for g and f , respectively.

Here we use the following kernel estimator for f :

f̂(x) =
1

mhX

m∑
i=1

K(
x−Xi

hX
),

where K(·) is a Gaussian kernel function, and the bandwidth is the “rule-of-thumb” band-

width [38] defined by:

hX = 0.9min(sX ,
iqrX
1.34

)m−1/5,

where sX and iqrX are, respectively, the standard deviation and the inter-quartile range, of

the sample Xi’s. The above bandwidth is also adopted by Zou et al. [39].

The density function g can be estimated similarly. When f and g are uniformly contin-

uous, the kernel estimators f̂ and ĝ defined above are almost surely and uniformly consistent

[40].

By the Lagrange multiplier, the maximization of (2.9) is achieved at

p̃k =
1

m+ n
[1 + λŴk(θ, p)]

−1, k = 1, . . . ,m+ n,
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where λ is the solution of

1

m+ n

m+n∑
k=1

Ŵk(θ, p)

1 + λŴk(θ, p)
= 0. (2.10)

The corresponding empirical log-likelihood ratio statistic is

lIF (θ) = −
m+n∑
k=1

log{1 + λŴk(θ, p)}. (2.11)

When test results Yk’s are not all greater/smaller than η̂, the empirical log-likelihood

ratio lIF (θ) is well defined on (0, 1). The following theorem establishes the asymptotic dis-

tribution of lIF (θ) and the proof is given in the Appendix A.

Theorem 2.1: Assume that F and G are distribution functions with uniformly con-

tinuous density functions f and g, respectively, f(η) is strictly positive, f ′(x) and g′(x) and

g(x)
f(x)

are bounded in a neighborhood of η = F−1(p). If θ0 is the true value of the sensitivity

at a fixed level p of specificity, and lim m
n

= ρ (0 < ρ <∞), then the limiting distribution of

−2lIF (θ0) is a standard chi-squared distribution with one degree of freedom as m,n −→∞.

From Theorem 1, a 100(1 − α)% level influence function-based EL confidence interval

for θ can be constructed as

CIIF (θ) = {θ : −2lIF (θ) ≤ χ2
1(1− α)}.

2.4 Bayesian Empirical Likelihood (BEL) Method

Lazar[17] noted that EL has many of the same asymptotic properties as those derived

from parametric models. In this sense, EL could be used as the basis for Bayesian inference.

Conceptually, Bayesian EL enjoys the advantages of both EL and Bayesian methods: (i) no

parametric assumption is needed by incorporating EL; (ii) Bayesian framework quantifies

uncertainty more naturally, and with proper choices of priors, the Bayesian EL methods can

outperform the classical EL methods[41]. We propose two types of Bayesian EL methods to

construct credible intervals for sensitivity.
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2.4.1 Bayesian empirical likelihood based on sensitivity

We noticed that the classical EL intervals (e.g, HEL and JEL) for sensitivity at a

high specificity level (e.g, p = 0.95) sometimes have under-coverage problems with small

sample sizes (e.g., (n;m) = (20; 20), (50; 50). See Section 2.5). With prior knowledge on

the diagnostic accuracy (i.e., sensitivity/specificity) of a test, Bayesian EL methods could

improve small sample performances of the classical EL methods, which motivated us propose

Bayesian EL methods for inference in medical diagnostics. To our knowledge, this article is

the first application of Bayesian EL in medical diagnostics. We follow Lazar[17] to combine

empirical likelihood L(θ) with a specified prior π(θ) on θ via the Bayes theorem to obtain a

posterior

π(θ|data) ∝ L(θ)π(θ).

Instead of using parametric likelihood in traditional Bayesian framework, we use empirical

likelihood here. An important step is to choose an appropriate prior on sensitivity θ. We con-

sider reference priors in this study. Reference priors, originally introduced by Bernardo[31],

and further developed by Berger, Bernardo, and Sun [32][33], are a popular choice for ob-

jective priors. They are an important type of objective priors which only depend on the

assumed model and the available data. In our problem, since we do not have a parametric

model, we follow Clarke and Yuan[30] to derive reference priors for EL. The following propo-

sition gives the reference priors for the Bayesian hybrid EL method where LH(θ)c
∗

is used as

the likelihood, and LH(θ) and c∗ are defined in Equations (2.3) and (2.5) from Section 2.3.

Proposition 2.2: The reference prior based on the relative entropy for HEL using

WHj(θ, p) from (2.2) is

πH,1(θ) = β(
3

2
,
3

2
),

and the reference prior based on Hellinger distance is

πH,2(θ) = β(
1

2
,
1

2
),
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where β(a, b) is the beta distribution with parameters a and b. The corresponding posterior

is

πH(θ|Y ) ∝
n∏
j=1

[1 + λ̃ŴHj(θ, p)]
−c∗πH(θ),

where πH(θ) = πH,1(θ), or πH,2(θ), and c∗ is from Equation (2.5).

Based on these posteriors, we can calculate two equal-tail credible intervals for θ. We

call them as the Bayesian Hybrid Empirical Likelihood 1 (BHEL1) interval and the Bayesian

Hybrid Empirical Likelihood 2 (BHEL2) interval using priors πH,1(θ) and πH,2(θ), respec-

tively.

Similarly, to construct Bayesian credible intervals for θ based on the IFEL using Wk(θ, p)

in (2.7), we propose the following reference priors:

πIF,1(θ) ∝
[
(1 +

m

n
)θ(1− θ) + (1 +

n

m
)p(1− p) g

2(η)

f 2(η)

] 1
2
,

and

πIF,2(θ) ∝
[
(1 +

m

n
)θ(1− θ) + (1 +

n

m
)p(1− p) g

2(η)

f 2(η)

]− 1
2
.

These two priors are both proper since πIF,1(θ) is bounded by a constant and πIF,2(θ)

is bounded by a beta distribution. In practice, we use Ŵk(θ, p) to estimate the influence

function Wk(θ, p), and replace f , g, and η with their estimates since they are generally

unknown. The posterior based on this approach is then

πIF (θ|Z) ∝
m+n∏
k=1

[1 + λ̃Ŵk(θ, p)]
−1πIF (θ).

where πIF (θ) = πIF,1(θ), or πIF,2(θ).

Based on these posteriors, we also can calculate two equal-tail credible intervals for θ.

We call them as Bayesian Influence Function-based Empirical Likelihood 1 (BIFEL1) and

Bayesian Influence Function-based Empirical Likelihood 2 (BIFEL2) intervals using priors

πIF,1(θ) and πIf,2(θ), respectively.
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2.4.2 Bayesian pseudo empirical likelihood (BpEL) based on probability vector

The methods presented in Section 4.1 are based on the posterior distributions of θ. In

this section, instead of applying priors on θ, we apply Rao and Wu’s method [34] to obtain an

alternative approach for Bayesian EL inference on θ based on probability vector (p1, . . . , pl).

We treat (p1, . . . , pl) as unknown parameters and the EL function is:

LEL(p1, . . . , pl) =
l∏

i=1

pi,

where l = n for hybrid EL, and l = m+ n for influence function EL. Consider the Dirichlet

prior D(α1, . . . , αl) on (p1, . . . , pl):

π(p1, . . . , pl) = c(α1, . . . , αl)
l∏

i=1

pαi−1
i ,

where c(α1, . . . , αl) = Γ(
∑l

i=1 αi)/
∏l

i=1 Γ(αi). The posterior distribution of (p1, . . . , pl) given

the data is Dirichlet D(1 + α1, . . . , 1 + αl) and is given by:

π(p1, . . . , pl|data) = c(1 + α1, . . . , 1 + αn)
l∏

i=1

pαi
i .

The posterior of sensitivity θ satisfies the following equation:

l∑
i=1

piQ̂i(θ) = 0, (2.12)

where Q̂i(θ) is an estimating/influence function and (p1, . . . , pl) follows the Dirichlet dis-

tribution D(1 + α1, . . . , 1 + αl). In practice, we can generate samples of (p1, . . . , pl) from

D(1 + α1, . . . , 1 + αl), and by solving (2.12), we get the posterior samples of θ. Based on

these posterior samples, we can calculate the equal-tail credible intervals for sensitivity θ.

Similar to Section 2.4.1, we consider two types of EL: hybrid EL (2.3) and influence

function EL (2.9). We call them Bayesian pseudo hybrid EL (BpHEL) and Bayesian pseudo
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influence function EL (BpIFEL), respectively. For BpHEL, we use ŴHj(θ, p) to replace

Q̂i(θ) in (2.12), and consider D(c∗, . . . , c∗) and D(c∗ + 1
n
, . . . , c∗ + 1

n
) as the priors (labeled

BpHEL1 and BpHEL2, respectively), where c∗ is the scale estimate defined in Section 2.2.

For BpIFEL, similarly, we use Ŵk(θ, p) to replace Q̂i(θ) in (2.12), and consider D(1, . . . , 1)

and D(1 + 1
n+m

, . . . , 1 + 1
n+m

) as the priors (labeled BpIFEL1 and BpIFEL2, respectively).

2.5 Simulation Study

Simulation studies are conducted to examine the finite sample performance of the pro-

posed approaches: influence function-based empirical likelihood (IFEL), Bayesian influence

function empirical likelihood methods (BIFEL1 and BIFEL2) with reference priors πIF,1(θ)

and πIF,2(θ), Bayesian hybrid empirical likelihood methods (BHEL1 and BHEL2) with ref-

erence priors πH,1(θ) and πH,2(θ), Bayesian pseudo influence function empirical likelihood

method (BpIFEL), and Bayesian pseudo hybrid empirical likelihood method (BpHEL). We

compare them with existing approaches, including BTI, BTII, smoothed JEL method, hybrid

empirical likelihood method (HEL), and the modified normal approximation (NA) method

proposed by Linnet [13].

2.5.1 Simulation settings

We consider seven simulation settings for the underlying non-diseased distribution F

and diseased distribution G: (i) Normal distributions with F = N(0, 1) and G = N(1, 1),

(ii) Normal distributions with F = N(0, 1) and G = N(2, 1), (iii) Normal distributions with

F = N(0, 1) and G = N(2.5, 1), (iv) Exponential distributions with F = Exponential(1) and

G = Exponential(0.25), (v) Exponential distributions with F = Exponential(4.25) and G =

Exponential(0.25), (vi) Mixed distributions with F = N(1, 1) and G = Exponential(0.5),

and (vii) Mixed distributions with F = N(0, 1) and G = Exponential(0.1). Under settings

(i), (ii) and (iii), both the diseased and non-diseased distributions of test results are normal

distributions but with different degrees of separation and corresponding to low, medium,

and high sensitivity, respectively. Similarly, settings (iv), (vi) and settings (v), (vii) are



20

corresponding to medium and high sensitivity, respectively. Random samples of size m and

n are generated from F andG respectively. Sample sizes (m,n)=(20, 20), (50, 50), (100, 100),

(50, 100), (100, 50), (500, 500) are considered. We construct 95% level confidence (credible)

intervals for sensitivity θ at specificity levels p = 80%, 90% and 95%, respectively. The

simulation procedure is repeated 5, 000 times to find the frequentist coverage probabilities

and average lengths of the intervals. For JEL method, we use the kernel w(x) = 15
16

(1 −

x2)2I(|x| ≤ 1) and h = n−1/3 as suggested by Gong et al. [15].

2.5.2 Simulation results

The simulation results under the normal distribution settings are reported in Tables 2.1

- 2.3 and Figure 2.1. From Table 2.1, where the sensitivity is at a low level, we observe that

HEL and Bayesian approaches based on HEL have the best overall performance. Bayesian

approaches generally have similar or improved performance over HEL. We note that BpHEL2

intervals generally have lower coverage probabilities than the three other Bayesian HEL

intervals when the sample size is (20, 20). The possible reason is that the modified prior

is not suitable for the small sample size. IFEL and corresponding Bayesian approaches

have slightly worse performance comparing with HEL related approaches, especially when

specificity is high.

BTI and BTII are generally not as good, especially when the sample size is small.

JEL performs the best under one setting (when the sample size is (20, 20) and specificity

p = 95%) but has poor performance comparing with our methods for other settings. Under

the unbalanced sample setting, our new methods are similar to or better than others, and

BHEL and BpHEL methods are much better than HEL. We also notice that the performance

for sample size (100, 50) is much better than that of sample size (50, 100). It indicates that

non-diseased samples are more critical in the inference of sensitivity with high specificity.

Comparing the results from the normal distribution setting (i) with those from the normal

distribution settings (ii) and (iii), which have a higher degree of separation and a higher

sensitivity, we can see from Table 2.2 and 2.3 that the performance of methods does not
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Figure (2.1) Boxplots of 95% coverage probabilities under Normal distribution settings.

obviously depend on the degree of separation of test outcomes in the diseased and non-

diseased groups. The methods have similar or slightly worse finite sample performance with

the higher degree of separation of test results in terms of coverage probability. For example,

when the sample size is (20, 20) and (50, 50) with specificity p = 0.8 and sensitivity θ = 0.95,

the performance of IF related methods is worse than that with the lower sensitivity settings.

Place Tables 2.1 to 2.3 here

The simulation results under the exponential distribution settings are reported in Table

2.4, 2.5, and Figure 2.2. HEL and BHEL intervals still perform well in both balanced and

unbalanced settings. The performance of BHEL1 and BHEL2 intervals is improved com-

pared with that of HEL intervals, and the coverage probabilities of BHEL1 and BHEL2



22

Figure (2.2) Boxplots of 95% coverage probabilities under Exponential distribution settings.

intervals are very close to 95% when sensitivity is at a medium level. Especially when the

sample size is (20, 20) and specificity p = 0.95, BHEL1 interval has the highest coverage

probability 94.3%, which is very close to the nominal confidence level 95%. Influence func-

tion related IFEL, BIFEL, and BpIFEL intervals do not work well here, possibly because of

the poor density estimation. NA, BTI, and BTII intervals have poor performance with the

small sample size and high specificity. JEL interval has very poor performance, especially

when p = 0.95. Compared with Table 2.5 where the sensitivity is at high level, we note that

the overall performance of the methods is worse than that of Table 2.4, especially when the

sample sizes are (20,20) and (50,50).

Place Table 2.4 and 2.5 here

The simulation results under the mixed distribution settings are reported in Table 2.6,

2.7 and Figure 2.3. Similar to the exponential distribution settings, the performances of

BHEL1 and BHEL2 intervals are much improved comparing with that of HEL intervals

when the sample size is (20, 20) and specificity p = 0.95. The performance of influence
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Figure (2.3) Boxplots of 95% coverage probabilities under Mixed distribution settings.

function related IFEL, BIFEL, and BpIFEL intervals are even better than that of the HEL

related intervals in Table 2.6 with the medium level of sensitivity. BIFEL2 interval has the

best coverage probability 94.3%, close to the nominal confidence level 95% when the sample

size is (20, 20) and specificity p = 95%. However, when sensitivity is at a higher level (Table

2.7), the overall performance is poor when the sample size is small. The performance of NA

method, which also needs density estimation, is acceptable in most of the settings. However,

when the sample size is small, and specificity is high, the new methods always perform

better. BTI and BTII intervals have poor performance with the small sample size and high

specificity. JEL interval also has very poor performance. The poor performance of JEL might

be due to the bandwidth problem in the smoothed jackknife method. The IF-related EL

intervals have acceptable coverage probabilities with a large sample size (500, 500), although

some of them have slightly under-coverage problems due to the possible bandwidth selection

problem for the kernel estimators of the density function g and f .

Place Table 2.6 and 2.7 here

In summary, HEL interval and new Bayesian intervals, especially BHEL1 and BIFEL2 in-

tervals, have coverage probabilities closer to the nominal confidence level and shorter average
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interval lengths than other intervals.

2.6 A Real Example in the Detection of Alzheimer’s Disease

In this section, we illustrate the application of the proposed methods to assess the

diagnostic accuracy of biomarkers in detecting Alzheimer’s disease (AD). Alzheimer’s disease

is the most common cause of dementia. There are an estimated 5.8 million Americans of

all ages living with Alzheimer’s dementia in 2019, and the total Medicaid spending of the

United States for people with Alzheimer’s or other dementia is projected to be $49 billion

in 2019 [42]. The data used in this section were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI study’s goal

is to track the progression of the diseases, mild cognitive impairment (MCI) and AD, using

biomarkers and clinical measures.

We apply the proposed methods to a small subset of a data-freeze named “QT-PAD

Project Data” downloaded on June 29th 2017. It is available in the “Test Data/Data for

Challenges” section of the LONI website (ADNI database). Here we only consider non-

missing records based on three commonly used biomarkers [43][44][20]: the ratio of lev-

els of total protein Tau and protein Aβ42 (TAU/ABETA), fluorodeoxyglucose (FDG), and

Alzheimer’s Disease Assessment Scale 11 (ADAS11). The dataset we used consists of 170 AD

patients and 152 control subjects (CN). The distribution of tau-related biomarker was skewed

to the right, and TAU/ABETA was log-transformed before analysis to reduce skewness. Fig-

ure 2.4 presents the estimated density curves of log TAU/ABETA, FDG and ADAS11 for

the two groups.

The point estimates and confidence intervals for sensitivity of these three biomarkers

when specificity p = 0.95, 0.90, 0.80 are reported in Tables 2.8–2.10, respectively. TAU/A-

BETA has very low (0.01 to 0.25) sensitivity when the specificity is above 0.80 and achieves

0.5 when specificity p = 0.7 (results are not reported here). It suggests that TAU/ABETA

is not a good biomarker for the diagnosis of AD. FDG has moderate (0.69) to high (0.87)

adni.loni.usc.edu
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Figure (2.4) Estimated densities for log TAU/ABETA, FDG, and ADAS11 in the ADNI
data.
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sensitivity when the specificity is fixed at p = 0.95, 0.90, 0.80. The sensitivity for FDG

drops by around 13 percentage points if specificity is increased from 0.8 to 0.9, and drops

by around 7 to 10 percentage points when specificity is further increased to 0.95. ADAS11

achieves very high (0.85 to 1) sensitivity when the specificity is above 0.80, suggesting it has

high diagnostic accuracy in detecting the Alzheimer’s Disease. Comparing these 95% level

confidence/credible intervals for sensitivity, influence function-based approaches, especially

BIFEL1, always have shorter interval lengths.

Place Table 2.8 , 2.9, and 2.10 here
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Table (2.1) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = N(0, 1) and G = N(1, 1)

(m,n) Methods p = 0.95, θ = 0.26 p = 0.90, θ = 0.39 p = 0.80, θ = 0.56
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20,20) NA 0.821 0.539 0.865 0.597 0.898 0.603

BTI 0.817 0.596 0.874 0.609 0.898 0.573
BTII 0.809 0.596 0.884 0.609 0.918 0.573
JEL 0.901 0.314 0.892 0.378 0.906 0.456
HEL 0.829 0.540 0.932 0.574 0.953 0.547
BHEL1 0.842 0.521 0.939 0.529 0.972 0.509
BHEL2 0.855 0.552 0.919 0.566 0.955 0.539
BpHEL1 0.856 0.553 0.909 0.582 0.932 0.553
BpHEL2 0.837 0.525 0.896 0.553 0.916 0.528
IFEL 0.820 0.485 0.902 0.594 0.924 0.614
BIFEL1 0.819 0.457 0.909 0.560 0.951 0.594
BIFEL2 0.822 0.465 0.900 0.581 0.932 0.620
BpIFEL1 0.836 0.571 0.877 0.625 0.919 0.625
BpIFEL2 0.837 0.564 0.873 0.616 0.914 0.618

(50,50) NA 0.874 0.379 0.902 0.405 0.921 0.394
BTI 0.901 0.425 0.918 0.435 0.927 0.401
BTII 0.901 0.425 0.931 0.435 0.940 0.401
JEL 0.931 0.236 0.879 0.288 0.922 0.332
HEL 0.888 0.384 0.944 0.423 0.951 0.395
BHEL1 0.926 0.386 0.945 0.400 0.964 0.375
BHEL2 0.943 0.392 0.945 0.414 0.963 0.393
BpHEL1 0.943 0.390 0.942 0.422 0.960 0.401
BpHEL2 0.923 0.378 0.936 0.411 0.956 0.391
IFEL 0.915 0.388 0.919 0.422 0.933 0.405
BIFEL1 0.915 0.364 0.934 0.414 0.951 0.408
BIFEL2 0.912 0.370 0.931 0.426 0.944 0.417
BpIFEL1 0.893 0.401 0.901 0.405 0.924 0.391
BpIFEL2 0.902 0.407 0.913 0.414 0.940 0.402

(100,100) NA 0.899 0.277 0.921 0.294 0.934 0.284
BTI 0.929 0.318 0.935 0.317 0.941 0.293
BTII 0.944 0.318 0.944 0.317 0.952 0.293
JEL 0.907 0.183 0.865 0.224 0.931 0.249
HEL 0.934 0.309 0.943 0.314 0.953 0.290
BHEL1 0.927 0.304 0.947 0.304 0.954 0.283
BHEL2 0.935 0.310 0.945 0.312 0.954 0.287
BpHEL1 0.934 0.312 0.942 0.316 0.955 0.291
BpHEL2 0.933 0.306 0.943 0.311 0.948 0.287

0.915 0.291 0.933 0.304 0.940 0.288
BIFEL1 0.907 0.284 0.940 0.306 0.950 0.287
BIFEL2 0.907 0.289 0.937 0.311 0.944 0.290
BpIFEL1 0.902 0.281 0.925 0.296 0.934 0.284
BpIFEL2 0.898 0.285 0.932 0.299 0.943 0.285
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(m,n) Methods p = 0.95, θ = 0.26 p = 0.90, θ = 0.39 p = 0.80, θ = 0.56
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.933 0.132 0.933 0.137 0.951 0.129

BTI 0.944 0.145 0.944 0.145 0.944 0.145
BTII 0.952 0.145 0.952 0.145 0.952 0.145
JEL 0.937 0.139 0.938 0.113 0.942 0.139
HEL 0.947 0.145 0.944 0.144 0.956 0.133
BHEL1 0.944 0.144 0.943 0.143 0.957 0.132
BHEL2 0.947 0.144 0.944 0.144 0.956 0.133
BpHEL1 0.937 0.144 0.934 0.145 0.961 0.133
BpHEL2 0.936 0.144 0.931 0.144 0.958 0.132
IFEL 0.934 0.134 0.935 0.138 0.951 0.129
BIFEL1 0.938 0.136 0.939 0.139 0.953 0.130
BIFEL2 0.941 0.137 0.941 0.139 0.952 0.130
BpIFEL1 0.928 0.135 0.939 0.138 0.954 0.130
BpIFEL2 0.926 0.134 0.941 0.138 0.950 0.130

(50,100) NA 0.857 0.335 0.892 0.359 0.924 0.349
BTI 0.896 0.389 0.919 0.394 0.932 0.359
BTII 0.903 0.389 0.928 0.394 0.941 0.359
JEL 0.872 0.216 0.857 0.284 0.919 0.313
HEL 0.897 0.357 0.929 0.384 0.938 0.350
BHEL1 0.910 0.351 0.931 0.363 0.952 0.337
BHEL2 0.917 0.358 0.934 0.379 0.954 0.346
BpHEL1 0.917 0.357 0.928 0.386 0.948 0.351
BpHEL2 0.906 0.348 0.925 0.377 0.944 0.345
IFEL 0.893 0.337 0.912 0.378 0.931 0.360
BIFEL1 0.867 0.310 0.917 0.366 0.948 0.362
BIFEL2 0.864 0.310 0.914 0.369 0.943 0.366
BpIFEL1 0.882 0.370 0.909 0.370 0.937 0.352
BpIFEL2 0.883 0.369 0.907 0.368 0.936 0.351

(100,50) NA 0.911 0.326 0.922 0.349 0.930 0.341
BTI 0.924 0.358 0.919 0.366 0.935 0.345
BTII 0.932 0.358 0.932 0.366 0.944 0.345
JEL 0.943 0.196 0.875 0.237 0.924 0.283
HEL 0.928 0.350 0.952 0.366 0.955 0.345
BHEL1 0.937 0.344 0.953 0.349 0.960 0.333
BHEL2 0.942 0.351 0.949 0.361 0.952 0.342
BpHEL1 0.940 0.352 0.951 0.367 0.952 0.347
BpHEL2 0.933 0.344 0.949 0.359 0.951 0.342
IFEL 0.924 0.336 0.933 0.357 0.941 0.343
BIFEL1 0.927 0.328 0.950 0.355 0.959 0.341
BIFEL2 0.933 0.337 0.948 0.365 0.952 0.348
BpIFEL1 0.916 0.334 0.940 0.356 0.947 0.344
BpIFEL2 0.912 0.333 0.941 0.354 0.946 0.343
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Table (2.2) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = Normal(0, 1) and G = Normal(2, 1)

(m,n) Methods p = 0.95, θ = 0.64 p = 0.90, θ = 0.76 p = 0.80, θ = 0.88
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20, 20) NA 0.768 0.534 0.853 0.480 0.868 0.363

BTI 0.779 0.558 0.860 0.496 0.903 0.359
BTII 0.784 0.558 0.877 0.496 0.913 0.359
JEL 0.783 0.236 0.800 0.260 0.748 0.270
HEL 0.826 0.500 0.819 0.389 0.563 0.225
BHEL1 0.933 0.475 0.935 0.411 0.947 0.224
BHEL2 0.890 0.523 0.928 0.482 0.820 0.388
BpHEL1 0.858 0.527 0.926 0.466 0.854 0.305
BpHEL2 0.834 0.498 0.918 0.441 0.854 0.292
IFEL 0.768 0.428 0.876 0.443 0.833 0.313
BIFEL1 0.845 0.398 0.858 0.433 0.899 0.257
BIFEL2 0.835 0.456 0.857 0.450 0.893 0.121
BpIFEL1 0.797 0.546 0.859 0.497 0.876 0.363
BpIFEL2 0.783 0.539 0.858 0.491 0.871 0.358

(50, 50) NA 0.857 0.402 0.887 0.335 0.910 0.240
BTI 0.888 0.456 0.910 0.363 0.918 0.245
BTII 0.902 0.456 0.923 0.363 0.929 0.245
JEL 0.820 0.205 0.888 0.230 0.884 0.217
HEL 0.955 0.445 0.943 0.345 0.878 0.203
BHEL1 0.951 0.418 0.967 0.348 0.947 0.248
BHEL2 0.940 0.437 0.955 0.351 0.960 0.245
BpHEL1 0.932 0.446 0.942 0.350 0.944 0.235
BpHEL2 0.920 0.431 0.932 0.340 0.936 0.231
IFEL 0.891 0.433 0.916 0.343 0.923 0.232
BIFEL1 0.902 0.405 0.945 0.353 0.923 0.240
BIFEL2 0.889 0.410 0.935 0.355 0.930 0.196
BpIFEL1 0.897 0.441 0.928 0.348 0.941 0.245
BpIFEL2 0.892 0.439 0.925 0.346 0.938 0.244

(100, 100) NA 0.883 0.305 0.914 0.246 0.934 0.173
BTI 0.917 0.352 0.930 0.264 0.937 0.176
BTII 0.929 0.352 0.940 0.264 0.946 0.176
JEL 0.905 0.150 0.842 0.191 0.903 0.158
HEL 0.935 0.344 0.953 0.262 0.936 0.169
BHEL1 0.956 0.330 0.959 0.259 0.959 0.181
BHEL2 0.944 0.340 0.950 0.260 0.960 0.176
BpHEL1 0.926 0.341 0.946 0.258 0.958 0.173
BpHEL2 0.918 0.335 0.936 0.255 0.954 0.171
IFEL 0.904 0.314 0.927 0.250 0.947 0.174
BIFEL1 0.907 0.314 0.937 0.256 0.953 0.174
BIFEL2 0.902 0.316 0.929 0.257 0.954 0.174
BpIFEL1 0.897 0.314 0.927 0.251 0.943 0.174
BpIFEL2 0.897 0.313 0.926 0.250 0.944 0.173
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(m,n) Methods p = 0.95, θ = 0.64 p = 0.90, θ = 0.76 p = 0.80, θ = 0.88
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.921 0.149 0.938 0.115 0.950 0.078

BTI 0.948 0.165 0.944 0.120 0.947 0.078
BTII 0.953 0.165 0.950 0.120 0.955 0.078
JEL 0.940 0.236 0.930 0.233 0.932 0.212
HEL 0.953 0.163 0.950 0.120 0.949 0.078
BHEL1 0.955 0.162 0.952 0.120 0.954 0.079
BHEL2 0.954 0.163 0.950 0.120 0.955 0.078
BpHEL1 0.958 0.163 0.944 0.120 0.936 0.078
BpHEL2 0.958 0.162 0.948 0.120 0.932 0.078
IFEL 0.931 0.150 0.942 0.115 0.951 0.078
BIFEL1 0.937 0.153 0.950 0.116 0.949 0.078
BIFEL2 0.936 0.153 0.950 0.116 0.948 0.078
BpIFEL1 0.933 0.152 0.946 0.116 0.944 0.078
BpIFEL2 0.939 0.151 0.944 0.116 0.945 0.078

(50, 100) NA 0.834 0.363 0.879 0.295 0.917 0.206
BTI 0.882 0.421 0.912 0.328 0.931 0.213
BTII 0.890 0.421 0.924 0.328 0.941 0.213
JEL 0.894 0.188 0.927 0.221 0.909 0.195
HEL 0.927 0.408 0.934 0.315 0.911 0.190
BHEL1 0.935 0.384 0.953 0.312 0.955 0.218
BHEL2 0.922 0.400 0.943 0.314 0.956 0.209
BpHEL1 0.910 0.406 0.934 0.312 0.946 0.201
BpHEL2 0.900 0.394 0.928 0.305 0.944 0.198
IFEL 0.870 0.367 0.910 0.307 0.936 0.208
BIFEL1 0.845 0.338 0.927 0.302 0.942 0.211
BIFEL2 0.840 0.340 0.915 0.303 0.945 0.209
BpIFEL1 0.877 0.400 0.918 0.305 0.944 0.209
BpIFEL2 0.880 0.399 0.919 0.303 0.944 0.208

(100, 50) NA 0.893 0.354 0.921 0.295 0.922 0.213
BTI 0.916 0.393 0.926 0.308 0.926 0.214
BTII 0.929 0.393 0.936 0.308 0.931 0.214
JEL 0.911 0.172 0.921 0.200 0.922 0.187
HEL 0.960 0.388 0.958 0.307 0.913 0.193
BHEL1 0.964 0.369 0.959 0.304 0.952 0.224
BHEL2 0.953 0.382 0.955 0.305 0.963 0.218
BpHEL1 0.952 0.387 0.950 0.307 0.954 0.211
BpHEL2 0.946 0.377 0.940 0.301 0.952 0.208
IFEL 0.907 0.363 0.932 0.295 0.925 0.208
BIFEL1 0.932 0.372 0.950 0.302 0.922 0.211
BIFEL2 0.928 0.378 0.945 0.304 0.934 0.174
BpIFEL1 0.916 0.365 0.940 0.300 0.940 0.214
BpIFEL2 0.919 0.363 0.936 0.299 0.939 0.213
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Table (2.3) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = Normal(0, 1) and G = Normal(2.5, 1)

(m,n) Methods p = 0.95, θ = 0.80 p = 0.90, θ = 0.90 p = 0.80, θ = 0.95
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20, 20) NA 0.765 0.292 0.892 0.267 0.827 0.268

BTI 0.820 0.307 0.908 0.281 0.849 0.234
BTII 0.838 0.307 0.897 0.281 0.864 0.234
JEL 0.821 0.282 0.797 0.225 0.785 0.220
HEL 0.747 0.287 0.751 0.239 0.805 0.178
BHEL1 0.963 0.352 0.963 0.338 0.944 0.312
BHEL2 0.969 0.338 0.968 0.318 0.964 0.287
BpHEL1 0.928 0.303 0.910 0.268 0.912 0.216
BpHEL2 0.923 0.294 0.908 0.261 0.891 0.211
IF 0.848 0.259 0.854 0.221 0.882 0.165
BIFEL1 0.844 0.364 0.898 0.368 0.878 0.222
BIFEL2 0.887 0.367 0.849 0.373 0.895 0.182
BpIF1 0.926 0.278 0.892 0.251 0.886 0.211
BpIF2 0.924 0.275 0.890 0.248 0.812 0.209

(50, 50) NA 0.868 0.119 0.882 0.185 0.869 0.157
BTI 0.901 0.225 0.906 0.197 0.925 0.166
BTII 0.915 0.225 0.904 0.197 0.911 0.166
JEL 0.782 0.213 0.802 0.195 0.892 0.160
HEL 0.929 0.233 0.923 0.194 0.909 0.151
BHEL1 0.954 0.238 0.959 0.210 0.956 0.185
BHEL2 0.951 0.234 0.955 0.202 0.968 0.173
BpHEL1 0.943 0.230 0.939 0.196 0.933 0.164
BpHEL2 0.942 0.228 0.936 0.194 0.924 0.161
IF 0.915 0.220 0.918 0.172 0.916 0.139
BIFEL1 0.900 0.140 0.916 0.125 0.909 0.070
BIFEL2 0.915 0.950 0.895 0.129 0.901 0.107
BpIF1 0.915 0.394 0.919 0.179 0.918 0.152
BpIF2 0.915 0.338 0.919 0.178 0.918 0.152

(100, 100) NA 0.902 0.153 0.902 0.135 0.915 0.113
BTI 0.918 0.167 0.924 0.144 0.921 0.119
BTII 0.914 0.167 0.927 0.144 0.923 0.119
JEL 0.842 0.190 0.882 0.122 0.909 0.129
HEL 0.944 0.169 0.958 0.145 0.916 0.120
BHEL1 0.950 0.170 0.959 0.149 0.958 0.126
BHEL2 0.947 0.169 0.955 0.146 0.961 0.121
BpHEL1 0.944 0.167 0.953 0.144 0.950 0.119
BpHEL2 0.945 0.167 0.957 0.143 0.947 0.118
IF 0.916 0.148 0.941 0.131 0.913 0.109
BIFEL1 0.924 0.148 0.934 0.114 0.928 0.080
BIFEL2 0.915 0.147 0.945 0.111 0.911 0.082
BpIF1 0.916 0.148 0.943 0.131 0.931 0.111
BpIF2 0.915 0.148 0.944 0.131 0.910 0.110
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(m,n) Methods p = 0.95, θ = 0.80 p = 0.90, θ = 0.90 p = 0.80, θ = 0.95
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.941 0.073 0.943 0.063 0.958 0.052

BTI 0.949 0.075 0.949 0.065 0.958 0.054
BTII 0.952 0.075 0.951 0.065 0.956 0.054
JEL 0.901 0.097 0.929 0.076 0.913 0.085
HEL 0.959 0.076 0.949 0.065 0.957 0.054
BHEL1 0.956 0.076 0.949 0.065 0.957 0.055
BHEL2 0.958 0.075 0.947 0.065 0.954 0.054
BpHEL1 0.953 0.075 0.942 0.065 0.952 0.054
BpHEL2 0.954 0.075 0.947 0.064 0.952 0.054
IF 0.939 0.069 0.937 0.061 0.946 0.051
BIFEL1 0.950 0.083 0.945 0.060 0.953 0.048
BIFEL2 0.949 0.083 0.941 0.060 0.950 0.048
BpIF1 0.939 0.069 0.935 0.061 0.944 0.051
BpIF2 0.938 0.069 0.933 0.061 0.945 0.051

(50, 100) NA 0.900 0.848 0.899 0.139 0.911 0.116
BTI 0.912 0.185 0.922 0.157 0.932 0.128
BTII 0.932 0.185 0.932 0.157 0.927 0.128
JEL 0.892 0.163 0.901 0.167 0.916 0.125
HEL 0.945 0.190 0.954 0.157 0.907 0.126
BHEL1 0.943 0.192 0.966 0.162 0.961 0.135
BHEL2 0.946 0.190 0.959 0.158 0.967 0.129
BpHEL1 0.940 0.188 0.951 0.156 0.954 0.126
BpHEL2 0.937 0.186 0.950 0.154 0.954 0.125
IF 0.908 0.180 0.933 0.133 0.909 0.110
BIFEL1 0.902 0.125 0.911 0.112 0.921 0.106
BIFEL2 0.901 0.123 0.915 0.109 0.909 0.105
BpIF1 0.907 0.139 0.932 0.134 0.922 0.112
BpIF2 0.904 0.089 0.930 0.133 0.900 0.112

(100, 50) NA 0.878 0.204 0.907 0.184 0.911 0.156
BTI 0.901 0.214 0.903 0.188 0.928 0.159
BTII 0.913 0.214 0.916 0.188 0.922 0.159
JEL 0.901 0.224 0.921 0.188 0.901 0.168
HEL 0.931 0.218 0.926 0.189 0.918 0.149
BHEL1 0.956 0.223 0.945 0.200 0.956 0.177
BHEL2 0.952 0.219 0.952 0.193 0.964 0.166
BpHEL1 0.941 0.215 0.936 0.189 0.933 0.158
BpHEL2 0.940 0.213 0.931 0.186 0.930 0.157
IF 0.922 0.197 0.917 0.171 0.908 0.139
BIFEL1 0.917 0.172 0.930 0.104 0.926 0.070
BIFEL2 0.924 0.169 0.935 0.110 0.913 0.107
BpIF1 0.927 0.199 0.917 0.178 0.930 0.151
BpIF2 0.925 0.199 0.917 0.178 0.930 0.151
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Table (2.4) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = exp(1) and G = exp(0.25)

(m,n) Methods p = 0.95, θ = 0.47 p = 0.90, θ = 0.56 p = 0.80, θ = 0.67
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20, 20) NA 0.826 0.485 0.890 0.487 0.880 0.971

BTI 0.844 0.520 0.890 0.505 0.904 0.458
BTII 0.846 0.520 0.905 0.505 0.916 0.458
JEL 0.639 0.289 0.705 0.337 0.893 0.389
HEL 0.923 0.513 0.959 0.507 0.934 0.451
BHEL1 0.943 0.476 0.971 0.469 0.976 0.439
BHEL2 0.926 0.505 0.952 0.494 0.962 0.454
BpHEL1 0.919 0.524 0.938 0.506 0.953 0.460
BpHEL2 0.910 0.503 0.931 0.487 0.944 0.444
IFEL 0.872 0.472 0.902 0.486 0.935 0.445
BIFEL1 0.901 0.449 0.927 0.471 0.942 0.437
BIFEL2 0.871 0.470 0.906 0.495 0.936 0.454
BpIFEL1 0.879 0.483 0.893 0.488 0.941 0.450
BpIFEL2 0.837 0.564 0.873 0.616 0.914 0.618

(50, 50) NA 0.904 0.412 0.913 0.333 0.922 0.307
BTI 0.915 0.376 0.931 0.351 0.933 0.313
BTII 0.925 0.376 0.939 0.351 0.945 0.313
JEL 0.396 0.209 0.646 0.246 0.927 0.275
HEL 0.947 0.382 0.956 0.351 0.956 0.314
BHEL1 0.955 0.356 0.963 0.337 0.965 0.306
BHEL2 0.947 0.368 0.956 0.347 0.957 0.312
BpHEL1 0.942 0.373 0.956 0.353 0.955 0.314
BpHEL2 0.938 0.366 0.953 0.346 0.950 0.309
IFEL 0.923 0.395 0.927 0.335 0.936 0.297
BIFEL1 0.928 0.382 0.933 0.334 0.941 0.294
BIFEL2 0.925 0.390 0.927 0.341 0.938 0.299
BpIFEL1 0.904 0.332 0.909 0.310 0.934 0.294
BpIFEL2 0.898 0.331 0.911 0.309 0.933 0.293

(100, 100) NA 0.905 0.264 0.927 0.246 0.939 0.222
BTI 0.932 0.281 0.939 0.256 0.944 0.226
BTII 0.943 0.281 0.945 0.256 0.950 0.226
JEL 0.256 0.163 0.649 0.192 0.937 0.204
HEL 0.946 0.279 0.951 0.256 0.956 0.227
BHEL1 0.949 0.272 0.955 0.250 0.959 0.223
BHEL2 0.947 0.277 0.952 0.255 0.957 0.226
BpHEL1 0.934 0.281 0.937 0.257 0.944 0.226
BpHEL2 0.928 0.277 0.938 0.255 0.942 0.224
IFEL 0.923 0.267 0.935 0.246 0.942 0.214
BIFEL1 0.930 0.266 0.937 0.246 0.946 0.213
BIFEL2 0.926 0.269 0.934 0.248 0.943 0.215
BpIFEL1 0.911 0.262 0.925 0.245 0.934 0.214
BpIFEL2 0.873 0.231 0.901 0.221 0.923 0.208
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(m,n) Methods p = 0.95, θ = 0.47 p = 0.90, θ = 0.56 p = 0.80, θ = 0.67
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.933 0.123 0.944 0.113 0.950 0.101

BTI 0.945 0.127 0.948 0.115 0.951 0.102
BTII 0.951 0.127 0.953 0.115 0.953 0.102
JEL 0.837 0.139 0.838 0.113 0.842 0.139
HEL 0.947 0.272 0.944 0.203 0.954 0.209
BHEL1 0.949 0.272 0.955 0.250 0.959 0.223
BHEL2 0.947 0.277 0.952 0.255 0.957 0.226
BpHEL1 0.944 0.127 0.942 0.115 0.946 0.103
BpHEL2 0.936 0.127 0.938 0.115 0.942 0.102
IFEL 0.943 0.124 0.947 0.113 0.949 0.099
BIFEL1 0.935 0.124 0.946 0.113 0.953 0.101
BIFEL2 0.935 0.124 0.946 0.113 0.952 0.101
BpIFEL1 0.944 0.124 0.939 0.113 0.951 0.099
BpIFEL2 0.941 0.123 0.936 0.113 0.950 0.099

(50, 100) NA 0.869 0.254 0.893 0.275 0.922 0.250
BTI 0.907 0.329 0.925 0.301 0.936 0.261
BTII 0.912 0.329 0.934 0.301 0.947 0.261
JEL 0.349 0.185 0.721 0.226 0.934 0.235
HEL 0.933 0.328 0.941 0.298 0.951 0.259
BHEL1 0.939 0.311 0.950 0.289 0.960 0.254
BHEL2 0.934 0.320 0.942 0.296 0.951 0.258
BpHEL1 0.923 0.328 0.939 0.300 0.940 0.259
BpHEL2 0.918 0.323 0.935 0.296 0.937 0.257
IFEL 0.900 0.338 0.904 0.281 0.925 0.241
BIFEL1 0.897 0.317 0.913 0.280 0.932 0.241
BIFEL2 0.894 0.320 0.907 0.283 0.928 0.244
BpIFEL1 0.859 0.272 0.876 0.247 0.901 0.232
BpIFEL2 0.861 0.271 0.876 0.246 0.906 0.231

(100, 50) NA 0.915 0.319 0.928 0.312 0.939 0.286
BTI 0.929 0.336 0.934 0.315 0.941 0.286
BTII 0.939 0.336 0.943 0.315 0.948 0.286
JEL 0.324 0.188 0.621 0.223 0.932 0.254
HEL 0.950 0.337 0.957 0.317 0.959 0.289
BHEL1 0.958 0.325 0.963 0.307 0.965 0.283
BHEL2 0.951 0.334 0.958 0.315 0.961 0.288
BpHEL1 0.948 0.340 0.957 0.319 0.960 0.298
BpHEL2 0.940 0.334 0.953 0.315 0.953 0.286
IFEL 0.928 0.328 0.943 0.308 0.943 0.277
BIFEL1 0.934 0.327 0.946 0.305 0.954 0.273
BIFEL2 0.929 0.333 0.943 0.309 0.948 0.277
BpIFEL1 0.926 0.327 0.944 0.309 0.942 0.278
BpIFEL2 0.904 0.299 0.931 0.290 0.933 0.274



35

Table (2.5) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = exp(4.25) and G = exp(0.25)

(m,n) Methods p = 0.95, θ = 0.85 p = 0.90, θ = 0.88 p = 0.80, θ = 0.92
Coverage Average Coverage Average Coverage Average

(20, 20) NA 0.747 0.409 0.814 0.334 0.734 0.219
BTI 0.764 0.424 0.864 0.350 0.819 0.218
BTII 0.773 0.424 0.873 0.350 0.835 0.218
JEL 0.721 0.411 0.751 0.328 0.758 0.213
HEL 0.794 0.279 0.796 0.211 0.714 0.151
BHEL1 0.841 0.271 0.832 0.201 0.853 0.284
BHEL2 0.898 0.263 0.873 0.079 0.851 0.308
BpHEL1 0.882 0.382 0.879 0.292 0.874 0.143
BpHEL2 0.870 0.361 0.864 0.277 0.870 0.148
IF 0.808 0.275 0.791 0.253 0.769 0.138
BIFEL1 0.776 0.105 0.858 0.074 0.855 0.100
BIFEL2 0.886 0.111 0.857 0.174 0.843 0.100
BpIF1 0.879 0.412 0.875 0.338 0.877 0.208
BpIF2 0.888 0.407 0.861 0.333 0.842 0.205

(50, 50) NA 0.844 0.317 0.876 0.231 0.892 0.147
BTI 0.858 0.365 0.884 0.257 0.823 0.150
BTII 0.892 0.365 0.889 0.257 0.882 0.150
JEL 0.794 0.342 0.866 0.257 0.854 0.161
HEL 0.896 0.348 0.922 0.205 0.902 0.161
BHEL1 0.939 0.359 0.951 0.261 0.912 0.059
BHEL2 0.949 0.360 0.948 0.243 0.917 0.036
BpHEL1 0.926 0.354 0.948 0.237 0.932 0.131
BpHEL2 0.920 0.343 0.944 0.231 0.927 0.129
IF 0.906 0.336 0.916 0.229 0.908 0.112
BIFEL1 0.902 0.416 0.945 0.300 0.923 0.146
BIFEL2 0.889 0.422 0.935 0.294 0.930 0.136
BpIF1 0.905 0.345 0.940 0.242 0.901 0.146
BpIF2 0.899 0.343 0.936 0.241 0.901 0.146

(100, 100) NA 0.885 0.237 0.917 0.171 0.920 0.105
BTI 0.874 0.279 0.903 0.184 0.904 0.105
BTII 0.892 0.279 0.904 0.184 0.902 0.105
JEL 0.841 0.274 0.848 0.196 0.898 0.120
HEL 0.927 0.267 0.917 0.169 0.911 0.070
BHEL1 0.962 0.273 0.957 0.191 0.929 0.101
BHEL2 0.952 0.272 0.954 0.183 0.953 0.089
BpHEL1 0.935 0.265 0.938 0.176 0.938 0.100
BpHEL2 0.932 0.260 0.932 0.173 0.932 0.099
IF 0.897 0.247 0.933 0.172 0.911 0.093
BIFEL1 0.907 0.395 0.937 0.242 0.953 0.138
BIFEL2 0.902 0.398 0.929 0.242 0.954 0.137
BpIF1 0.919 0.247 0.926 0.173 0.930 0.104
BpIF2 0.899 0.246 0.923 0.173 0.931 0.104
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(m,n) Methods p = 0.95, θ = 0.85 p = 0.90, θ = 0.88 p = 0.80, θ = 0.92
Coverage Average Coverage Average Coverage Average

(500, 500) NA 0.942 0.116 0.941 0.079 0.949 0.047
BTI 0.940 0.126 0.944 0.081 0.940 0.047
BTII 0.948 0.126 0.955 0.081 0.945 0.047
JEL 0.939 0.165 0.9314 0.078 0.934 0.042
HEL 0.947 0.126 0.949 0.081 0.949 0.044
BHEL1 0.947 0.126 0.947 0.082 0.941 0.048
BHEL2 0.947 0.126 0.948 0.081 0.949 0.047
BpHEL1 0.934 0.126 0.942 0.081 0.952 0.047
BpHEL2 0.934 0.125 0.938 0.081 0.947 0.046
IF 0.943 0.117 0.945 0.079 0.951 0.043
BIFEL1 0.939 0.137 0.945 0.101 0.946 0.107
BIFEL2 0.936 0.137 0.945 0.102 0.947 0.071
BpIF1 0.937 0.117 0.946 0.119 0.946 0.095
BpIF2 0.942 0.117 0.943 0.109 0.947 0.096

(50, 100) NA 0.826 0.279 0.899 0.202 0.915 0.124
BTI 0.885 0.335 0.914 0.230 0.927 0.125
BTII 0.892 0.335 0.928 0.230 0.937 0.125
JEL 0.898 0.343 0.829 0.206 0.848 0.126
HEL 0.918 0.321 0.901 0.188 0.893 0.067
BHEL1 0.929 0.328 0.955 0.239 0.918 0.113
BHEL2 0.924 0.329 0.955 0.225 0.952 0.095
BpHEL1 0.908 0.322 0.934 0.210 0.934 0.112
BpHEL2 0.902 0.312 0.930 0.206 0.932 0.111
IF 0.874 0.287 0.919 0.206 0.910 0.107
BIFEL1 0.845 0.483 0.927 0.239 0.942 0.143
BIFEL2 0.840 0.485 0.915 0.239 0.945 0.141
BpIF1 0.877 0.310 0.905 0.208 0.930 0.121
BpIF2 0.893 0.310 0.904 0.208 0.928 0.121

(100, 50) NA 0.900 0.279 0.908 0.210 0.905 0.132
BTI 0.901 0.316 0.915 0.220 0.908 0.131
BTII 0.904 0.316 0.913 0.220 0.910 0.131
JEL 0.860 0.315 0.906 0.221 0.846 0.133
HEL 0.912 0.300 0.933 0.193 0.918 0.099
BHEL1 0.968 0.313 0.958 0.228 0.936 0.149
BHEL2 0.942 0.310 0.952 0.215 0.931 0.026
BpHEL1 0.942 0.302 0.942 0.210 0.946 0.119
BpHEL2 0.940 0.295 0.940 0.207 0.940 0.117
IF 0.925 0.286 0.908 0.202 0.903 0.093
BIFEL1 0.932 0.469 0.950 0.240 0.922 0.172
BIFEL2 0.928 0.477 0.945 0.240 0.934 0.170
BpIF1 0.924 0.288 0.947 0.212 0.938 0.129
BpIF2 0.924 0.287 0.945 0.210 0.927 0.128
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Table (2.6) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = Normal(1, 1) and G = exp(0.5)

(m,n) Methods p = 0.95, θ = 0.27 p = 0.90, θ = 0.32 p = 0.80, θ = 0.40
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20, 20) NA 0.898 0.430 0.922 0.461 0.926 0.496

BTI 0.879 0.432 0.903 0.449 0.915 0.468
BTII 0.878 0.432 0.909 0.449 0.924 0.468
JEL 0.874 0.272 0.903 0.327 0.939 0.410
HEL 0.902 0.430 0.938 0.453 0.959 0.475
BHEL1 0.934 0.421 0.949 0.433 0.968 0.445
BHEL2 0.940 0.433 0.949 0.450 0.959 0.468
BpHEL1 0.936 0.437 0.949 0.459 0.954 0.483
BpHEL2 0.932 0.423 0.944 0.444 0.944 0.467
IFEL 0.932 0.427 0.943 0.460 0.949 0.496
BIFEL1 0.943 0.414 0.955 0.448 0.957 0.483
BIFEL2 0.944 0.435 0.951 0.472 0.953 0.510
BpIFEL1 0.926 0.430 0.949 0.467 0.943 0.504
BpIFEL2 0.915 0.425 0.943 0.461 0.939 0.498

(50, 50) NA 0.926 0.282 0.939 0.297 0.943 0.316
BTI 0.925 0.289 0.931 0.300 0.940 0.312
BTII 0.930 0.289 0.936 0.300 0.946 0.312
JEL 0.775 0.180 0.874 0.224 0.946 0.278
HEL 0.946 0.286 0.949 0.302 0.955 0.315
BHEL1 0.949 0.282 0.951 0.294 0.958 0.305
BHEL2 0.948 0.285 0.949 0.300 0.955 0.312
BpHEL1 0.948 0.284 0.956 0.302 0.952 0.317
BpHEL2 0.945 0.280 0.955 0.297 0.952 0.312
IFEL 0.938 0.293 0.946 0.299 0.952 0.317
BIFEL1 0.955 0.289 0.951 0.299 0.951 0.316
BIFEL2 0.952 0.300 0.955 0.308 0.959 0.323
BpIFEL1 0.951 0.289 0.952 0.298 0.957 0.318
BpIFEL2 0.949 0.287 0.950 0.297 0.948 0.317

(100, 100) NA 0.933 0.199 0.940 0.210 0.946 0.224
BTI 0.940 0.209 0.942 0.214 0.943 0.223
BTII 0.946 0.209 0.948 0.214 0.950 0.223
JEL 0.649 0.134 0.869 0.169 0.944 0.203
HEL 0.948 0.209 0.953 0.215 0.951 0.224
BHEL1 0.947 0.207 0.951 0.212 0.955 0.221
BHEL2 0.95 0.208 0.953 0.214 0.952 0.224
BpHEL1 0.944 0.210 0.950 0.215 0.951 0.225
BpHEL2 0.947 0.208 0.947 0.214 0.952 0.223
IFEL 0.940 0.202 0.944 0.211 0.951 0.224
BIFEL1 0.944 0.205 0.949 0.212 0.959 0.223
BIFEL2 0.941 0.208 0.946 0.215 0.956 0.226
BpIFEL1 0.936 0.201 0.942 0.211 0.953 0.224
BpIFEL2 0.939 0.201 0.941 0.211 0.953 0.224
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(m,n) Methods p = 0.95, θ = 0.27 p = 0.90, θ = 0.32 p = 0.80, θ = 0.40
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.946 0.090 0.949 0.094 0.947 0.100

BTI 0.949 0.093 0.952 0.096 0.952 0.100
BTII 0.953 0.093 0.953 0.096 0.953 0.100
JEL 0.857 0.168 0.892 0.300 0.944 0.281
HEL 0.952 0.093 0.952 0.096 0.951 0.101
BHEL1 0.950 0.093 0.952 0.096 0.953 0.100
BHEL2 0.952 0.093 0.952 0.096 0.951 0.100
BpHEL1 0.944 0.093 0.935 0.096 0.934 0.100
BpHEL2 0.948 0.093 0.942 0.096 0.937 0.100
IFEL 0.948 0.091 0.950 0.094 0.948 0.100
BIFEL1 0.943 0.091 0.936 0.095 0.945 0.100
BIFEL2 0.944 0.092 0.935 0.095 0.944 0.100
BpIFEL1 0.942 0.091 0.934 0.095 0.933 0.100
BpIFEL2 0.943 0.091 0.935 0.095 0.932 0.100

(50, 100) NA 0.923 0.220 0.930 0.233 0.943 0.251
BTI 0.930 0.234 0.934 0.241 0.941 0.251
BTII 0.930 0.234 0.942 0.241 0.950 0.251
JEL 0.665 0.151 0.862 0.190 0.930 0.227
HEL 0.947 0.231 0.943 0.241 0.950 0.251
BHEL1 0.945 0.228 0.944 0.237 0.953 0.246
BHEL2 0.948 0.230 0.943 0.240 0.950 0.250
BpHEL1 0.944 0.230 0.939 0.241 0.942 0.252
BpHEL2 0.945 0.228 0.937 0.239 0.939 0.250
IFEL 0.942 0.234 0.938 0.238 0.949 0.254
BIFEL1 0.954 0.231 0.946 0.241 0.949 0.256
BIFEL2 0.944 0.235 0.941 0.245 0.951 0.260
BpIFEL1 0.943 0.230 0.929 0.236 0.948 0.254
BpIFEL2 0.941 0.229 0.928 0.235 0.948 0.253

(100, 50) NA 0.936 0.264 0.942 0.278 0.944 0.293
BTI 0.933 0.267 0.933 0.276 0.942 0.288
BTII 0.939 0.267 0.942 0.276 0.948 0.288
JEL 0.767 0.168 0.872 0.210 0.940 0.261
HEL 0.947 0.270 0.953 0.280 0.955 0.292
BHEL1 0.952 0.266 0.954 0.274 0.961 0.285
BHEL2 0.951 0.269 0.952 0.278 0.956 0.290
BpHEL1 0.953 0.269 0.951 0.279 0.945 0.293
BpHEL2 0.951 0.265 0.946 0.276 0.948 0.290
IFEL 0.940 0.264 0.949 0.276 0.953 0.291
BIFEL1 0.955 0.262 0.955 0.273 0.957 0.287
BIFEL2 0.947 0.268 0.952 0.279 0.950 0.293
BpIFEL1 0.945 0.262 0.950 0.276 0.941 0.292
BpIFEL2 0.945 0.261 0.946 0.275 0.942 0.291
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Table (2.7) Coverage probabilities and average lengths of 95% confidence intervals for sensi-
tivity θ at a fixed level of specificity p when F = Normal(0, 1) and G = exp(0.1)

(m,n) Methods p = 0.95, θ = 0.85 p = 0.90, θ = 0.89 p = 0.80, θ = 0.92
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(20, 20) NA 0.754 0.283 0.872 0.257 0.730 0.205

BTI 0.790 0.280 0.878 0.259 0.800 0.215
BTII 0.816 0.280 0.864 0.259 0.826 0.215
JEL 0.802 0.272 0.800 0.279 0.714 0.291
HEL 0.806 0.256 0.889 0.210 0.855 0.128
BHEL1 0.908 0.343 0.902 0.338 0.915 0.327
BHEL2 0.925 0.295 0.895 0.284 0.911 0.267
BpHEL1 0.920 0.290 0.912 0.258 0.891 0.195
BpHEL2 0.919 0.281 0.892 0.250 0.909 0.189
IF 0.808 0.248 0.831 0.212 0.823 0.138
BIFEL1 0.822 0.242 0.841 0.211 0.898 0.160
BIFEL2 0.805 0.259 0.844 0.231 0.867 0.179
BpIF1 0.915 0.270 0.867 0.244 0.872 0.196
BpIF2 0.914 0.266 0.860 0.242 0.872 0.193

(50, 50) NA 0.903 0.199 0.903 0.181 0.874 0.149
BTI 0.888 0.211 0.906 0.192 0.900 0.161
BTII 0.904 0.211 0.910 0.192 0.906 0.161
JEL 0.821 0.191 0.841 0.208 0.836 0.172
HEL 0.913 0.213 0.906 0.172 0.910 0.125
BHEL1 0.949 0.226 0.958 0.208 0.930 0.188
BHEL2 0.947 0.211 0.958 0.190 0.959 0.164
BpHEL1 0.935 0.217 0.936 0.192 0.931 0.157
BpHEL2 0.931 0.214 0.928 0.189 0.929 0.155
IF 0.901 0.193 0.889 0.173 0.854 0.124
BIFEL1 0.906 0.194 0.866 0.170 0.824 0.130
BIFEL2 0.876 0.193 0.884 0.171 0.852 0.133
BpIF1 0.895 0.194 0.887 0.175 0.856 0.144
BpIF2 0.893 0.193 0.887 0.174 0.856 0.143

(100, 100) NA 0.893 0.146 0.927 0.131 0.901 0.109
BTI 0.906 0.156 0.922 0.139 0.914 0.117
BTII 0.918 0.156 0.924 0.139 0.916 0.117
JEL 0.860 0.180 0.859 0.140 0.890 0.124
HEL 0.954 0.158 0.946 0.138 0.918 0.107
BHEL1 0.957 0.161 0.955 0.145 0.958 0.127
BHEL2 0.956 0.155 0.953 0.138 0.962 0.118
BpHEL1 0.951 0.157 0.945 0.140 0.938 0.117
BpHEL2 0.949 0.157 0.947 0.139 0.939 0.116
IF 0.932 0.145 0.928 0.130 0.915 0.105
BIFEL1 0.947 0.143 0.934 0.130 0.897 0.106
BIFEL2 0.923 0.142 0.910 0.128 0.888 0.105
BpIF1 0.930 0.142 0.919 0.128 0.914 0.106
BpIF2 0.931 0.141 0.919 0.127 0.914 0.105
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(m,n) Methods p = 0.95, θ = 0.85 p = 0.90, θ = 0.89 p = 0.80, θ = 0.92
Coverage Average Coverage Average Coverage Average

Probability Length Probability Length Probability Length
(500, 500) NA 0.938 0.068 0.937 0.061 0.941 0.051

BTI 0.934 0.071 0.932 0.064 0.950 0.053
BTII 0.940 0.071 0.946 0.064 0.954 0.053
JEL 0.936 0.080 0.931 0.086 0.922 0.072
HEL 0.947 0.071 0.951 0.064 0.953 0.053
BHEL1 0.948 0.071 0.949 0.064 0.948 0.054
BHEL2 0.943 0.071 0.950 0.063 0.955 0.053
BpHEL1 0.946 0.071 0.952 0.064 0.951 0.053
BpHEL2 0.943 0.071 0.955 0.063 0.951 0.053
IF 0.933 0.068 0.946 0.061 0.939 0.051
BIFEL1 0.941 0.066 0.939 0.059 0.933 0.050
BIFEL2 0.940 0.066 0.936 0.059 0.934 0.049
BpIF1 0.938 0.066 0.937 0.059 0.935 0.049
BpIF2 0.935 0.066 0.936 0.059 0.936 0.049

(50, 100) NA 0.871 0.150 0.904 0.136 0.890 0.113
BTI 0.898 0.166 0.906 0.151 0.896 0.127
BTII 0.902 0.166 0.910 0.151 0.902 0.127
JEL 0.847 0.209 0.911 0.144 0.892 0.131
HEL 0.951 0.171 0.929 0.147 0.891 0.108
BHEL1 0.951 0.175 0.954 0.158 0.960 0.140
BHEL2 0.955 0.167 0.949 0.149 0.961 0.127
BpHEL1 0.946 0.171 0.940 0.151 0.935 0.126
BpHEL2 0.945 0.169 0.932 0.149 0.933 0.125
IF 0.906 0.152 0.916 0.134 0.895 0.107
BIFEL1 0.868 0.141 0.894 0.131 0.912 0.108
BIFEL2 0.885 0.141 0.896 0.130 0.900 0.108
BpIF1 0.908 0.146 0.890 0.130 0.902 0.108
BpIF2 0.896 0.145 0.904 0.130 0.917 0.108

(100, 50) NA 0.914 0.197 0.922 0.179 0.903 0.148
BTI 0.894 0.202 0.918 0.182 0.922 0.154
BTII 0.902 0.202 0.908 0.182 0.930 0.154
JEL 0.876 0.200 0.895 0.207 0.832 0.189
HEL 0.909 0.200 0.911 0.171 0.885 0.129
BHEL1 0.954 0.212 0.955 0.197 0.938 0.176
BHEL2 0.950 0.199 0.951 0.182 0.962 0.156
BpHEL1 0.934 0.204 0.929 0.185 0.926 0.152
BpHEL2 0.931 0.202 0.926 0.183 0.921 0.150
IF 0.912 0.190 0.909 0.172 0.888 0.127
BIFEL1 0.888 0.192 0.887 0.171 0.902 0.130
BIFEL2 0.896 0.191 0.896 0.171 0.881 0.133
BpIF1 0.911 0.192 0.909 0.174 0.908 0.143
BpIF2 0.910 0.191 0.909 0.174 0.900 0.143
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Table (2.8) 95% level confidence intervals and point estimates for the sensitivity θ of different
biomarkers at specificity p = 0.95.

Confidence interval Point estimate θ̂
Biomarker TAU/ABETA FDG ADAS11 TAU/ABETA FDG ADAS11
HEL (0.001, 0.024) (0.537, 0.825) (0.688, 0.964) 0.012 0.694 0.865
BHEL1 (0.005, 0.067) (0.529, 0.813) (0.654, 0.941) 0.027 0.679 0.821
BHEL2 (0.001, 0.049) (0.539, 0.821) (0.688, 0.958) 0.017 0.689 0.850
BpHEL1 (0.000, 0.073) (0.511, 0.848) (0.721, 0.962) 0.012 0.694 0.864
BpHEL2 (0.000, 0.071) (0.522, 0.841) (0.720, 0.960) 0.012 0.694 0.865
IFEL (0.000, 0.039) (0.617, 0.804) (0.813, 0.959) 0.017 0.719 0.896
BIFEL1 (0.004 ,0.037) (0.610, 0.799) (0.804, 0.953) 0.021 0.711 0.886
BIFEL2 (0.001, 0.036) (0.613, 0.801) (0.809, 0.957) 0.017 0.714 0.891
BpELIF1 (0.001, 0.042) (0.625, 0.806) (0.818, 0.962) 0.017 0.719 0.896
BpELIF2 (0.001, 0.043) (0.617, 0.805) (0.818, 0.959) 0.017 0.718 0.896

Table (2.9) 95% level confidence intervals and point estimates for the sensitivity θ of different
biomarkers at specificity p = 0.9.

Confidence interval Point estimate θ̂
Biomarker TAU/ABETA FDG ADAS11 TAU/ABETA FDG ADAS11
HEL (0.010, 0.128) (0.666, 0.847) (0.913, 0.986) 0.059 0.765 0.959
BHEL1 (0.024, 0.207) (0.659, 0.840) (0.894, 0.980) 0.095 0.755 0.945
BHEL2 (0.012, 0.175) (0.666, 0.845) (0.908, 0.985) 0.071 0.762 0.955
BpHEL1 (0.005, 0.166) (0.594, 0.899) (0.864, 0.998) 0.059 0.766 0.959
BpHEL2 (0.006, 0.167) (0.597, 0.898) (0.859, 0.998) 0.058 0.764 0.959
IFEL (0.000, 0.128) (0.658, 0.844) (0.919, 0.995) 0.051 0.758 0.963
BIFEL1 (0.004, 0.130) (0.651, 0.839) (0.913, 0.989) 0.059 0.751 0.956
BIFEL2 (0.004, 0.127) (0.654, 0.842) (0.919, 0.993) 0.056 0.754 0.961
BpELIF1 (0.003, 0.131) (0.661, 0.844) (0.921, 0.995) 0.057 0.758 0.963
BpELIF2 (0.003, 0.127) (0.659, 0.846) (0.921, 0.995) 0.056 0.757 0.963
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Table (2.10) 95% level confidence intervals and point estimates for the sensitivity θ of different
biomarkers at specificity p = 0.8.

Confidence interval Point estimate θ̂
Biomarker TAU/ABETA FDG ADAS11 TAU/ABETA FDG ADAS11
HEL (0.082, 0.401) (0.808, 0.929) (0.988, 1.000) 0.212 0.876 0.994
BHEL1 (0.100, 0.427) (0.802, 0.921) (0.925, 0.997) 0.246 0.867 0.973
BHEL2 (0.086, 0.402) (0.810, 0.925) (0.952, 1.000) 0.223 0.873 0.988
BpHEL1 (0.085, 0.377) (0.739, 0.969) (0.953, 1.000) 0.213 0.877 0.994
BpHEL2 (0.088, 0.374) (0.739, 0.966) (0.954, 1.000) 0.211 0.877 0.994
IFEL (0.044, 0.356) (0.800, 0.937) (0.987, 1.000) 0.209 0.874 1.000
BIFEL1 (0.051, 0.355) (0.795, 0.933) (0.987, 0.999) 0.206 0.868 0.994
BIFEL2 (0.047, 0.353) (0.799, 0.937) (0.987, 1.000) 0.202 0.872 0.995
BpELIF1 (0.050, 0.363) (0.802, 0.938) (0.981, 1.000) 0.210 0.874 1.000
BpELIF2 (0.049, 0.359) (0.798, 0.937) (0.980, 1.000) 0.211 0.872 1.000
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PART 3

BAYESIAN AND INFLUENCE FUNCTION BASED EMPIRICAL

LIKELIHOODS FOR INFERENCE OF SENSITIVITY TO THE EARLY

DISEASED STAGE IN DIAGNOSTIC TESTS

3.1 Introduction

In practice, a disease process might be more complicated and involve three diagnostic

stages: the non-diseased stage, the early diseased stage, and the fully diseased stage. For

example, mild cognitive impairment (MCI) is a transitional stage between the cognitive

changes of normal aging and the more severe Alzheimer’s Disease (AD)[18]. To be more

specific, let Y1, Y2, and Y3 denote the continuous test results of a diagnostic test from the

non-diseased, the early diseased, and the fully diseased groups respectively, F1, F2, and F3

represent the corresponding cumulative distribution functions of the test results, and n1, n2,

and n3 denote the corresponding sample sizes. Assume that the higher values of the test

results indicate greater severity of the disease. Given a pair of threshold values c1 and c2

(c1 < c2), the subject is identified as non-diseased if the test result is smaller than c1, as

fully diseased if the test result is greater than c2, and as early diseased if the test result is

between c1 and c2. The specificity P1, which is the correct classification rate of individuals

in the non-diseased stage, the sensitivity P2 to the early diseased stage, and the sensitivity

P3 to the fully diseased stage, are defined as

P1 = F1(c1),

P2 = F2(c2)− F2(c1) = F2[F−1
3 (1− P3)]− F2[F−1

1 (P1)],

P3 = 1− F3(c2),

respectively. Given P1 and P3, c1 and c2 can be determined if F1 and F3 are known/specified.

P2, the sensitivity to the early diseased stage given the specificity P1 and the sensitivity to
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the fuly diseased stage P3, can be formulated as a function of P1 and P3, which also defines

a surface in the three-dimensional space (P1, P3, P2) with 0 ≤ P1, P3 ≤ 1, namely, the ROC

surface of the test. The ROC surface was introduced by Scurfield [45]. A few years later,

Mossman [46] independently proposed a similar construction, implemented in Mathematical

by Heckerling[47]. A non-parametric estimation of ROC surface was proposed by Nakas and

Yiannoutsos[48] and was reshaped later by Xiong et al.[49], and Li and Zhou[50].

The probability associated with the early detection of the disease, such as AD, is a very

important accuracy measure for the diagnostic test of the disease with three ordinal stages.

Dong et al.[19] first provided parametric and non-parametric confidence intervals for P2, the

sensitivity to the early diseased stage, depending on either normality assumption or Box–Cox

transformation to normality. However, their approaches fail if the normal assumption can

not be satisfied. Dong and Tian[20] proposed two empirical likelihood (EL) based confidence

intervals (ELP and ELB) for P2, which can overcome the normal assumption. However, the

empirical likelihood ratio follows a scaled chi-square distribution asymptotically. Thus an

extra step, density estimation, or bootstrap procedure is required to estimate this scale,

respectively. Similar to the study in two classification problems, we proposed an influence

function empirical likelihood-based and Bayesian empirical likelihood (BEL and BpEL) based

confidence intervals for P2 at a given value of the pair (P1, P3) in this part.

The part is organized as follows. In Section 3.2, we review Dong and Tian[20]’s EL

methods for interval estimation of sensitivity to the early stage. In Section 3.3, we introduce

a new EL ratio statistic for sensitivity to the early stage based on the influence function.

In Section 3.4, we propose Bayesian EL methods based on influence function and Dong

and Tian[20]’s EL methods. In Section 3.5, we conduct simulation studies to compare the

performance of the proposed methods with existing methods. In Section 3.6, we apply the

new methods to a real data set to assess the diagnostic accuracy of two biomarkers in the

detection of Alzheimer’s disease.
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3.2 Existing methods for sensitivity to early stage inference

Without normal assumption, Dong and Tian[20] proposed two empirical likelihood-

based confidence intervals for P2. They defined an indicator function Φ:

Φ(X, Y, Z) =



1, X < Y < Z,

1
2
, X = Y < Z or X < Y = Z,

1
6
, X = Y = Z,

0, otherwise,

and a random variable U :

U(Y ) = Φ[F−1
1 (P1), Y, F−1

3 (1− P3)].

The value of U(Y2) can be interpreted as the placement value of Y2 in the healthy and fully

diseased populations.

Let {Y1,j : j = 1, 2, · · · , n1}, {Y2,j : j = 1, 2, · · · , n2}, and {Y3,j : j = 1, 2, · · · , n3}

denote the n1, n2, and n3 test results from the non-diseased, early stage, and diseased

groups respectively. From the following relationship between U(Y2) and P2,

E(U(Y2)) = E{Φ[F−1
1 (P1), Y2, F

−1
3 (1− P3)]}

= P [F−1
1 (P1) < Y2 < F−1

3 (1− P3)]

= P [F−1
1 (P1) < Y2 ≤ F−1

3 (1− P3)]

= P2,

a profile empirical likelihood for P2 can be defined as

L(P2) = sup
p

{
n2∏
j=1

pj :

n2∑
j=1

pj = 1,

n2∑
j

pj(Ûj − P2) = 0

}
, (3.1)

where Ûj = Φ[F̂−1
1 (P1), Y2,j, F̂

−1
3 (1 − P3)], j = 1, 2, . . . , n2, F̂1 and F̂3 are the empirical
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distributions of F1 and F3, respectively. Using the Lagrange multiplier method, we can

easily obtain the expression of pj:

p̃j =
1

n2

{1 + λ̃(Ûj − P2)}−1

where λ̃ is the solution of

1

n2

n2∑
j=1

Ûj − P2

1 + λ̃(Ûj − P2)
= 0,

and the corresponding profile empirical log-likelihood ratio for P2:

l(P2) = 2

n2∑
j=1

log{1 + λ̃(Ûj − P2)}.

Dong and Tian[20] shown that the asymptotic distribution of the log-EL ratio is a scaled

chi-square distribution with one degree of freedom. Thus, a 100(1 − α)% level empirical

likelihood-based confidence interval (ELP) for P2 can be constructed as follows:

CI1(P2) = {P2 : r̂P1,P2,P3l(P2) ≤ χ2
1(1− α)},

where χ2
1(1 − α) is the (1 − α)th quantile of χ2

1, and r̂P1,P2,P3 is an estimate for the scale

constant:

r̂P1,P2,P3 =
ˆ̄P2(1− ˆ̄P2)

n2σ̂2
ˆ̄P2

(3.2)

where

ˆ̄P2 =

∑n2

j=1 I[F̂−1
1 (P1) < Y2,j ≤ F̂−1

3 (1− P3)]

n2

, (3.3)

σ̂2
ˆ̄P2

=
ˆ̄P2(1− ˆ̄P2)

n2

+
P1(1− P1)

n1

f̂ 2
2 [F̂−1

1 (P1)]

f̂ 2
1 [F̂−1

1 (P1)]
+
P3(1− P3)

n3

f̂ 2
2 [F̂−1

3 (1− P3)]

f̂ 2
3 [F̂−1

3 (1− P3)]
, (3.4)

and f̂i is a kernel density estimate for the probability density function fi of Yi, i = 1, 2, 3.

In order to estimate the density function fi, Dong and Tian[20] used the “over-smoothed

bandwidth selector” by Wand and Jones [51] to select the bandwidth with a Gaussian kernel
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function. The performance of this method highly depends on the kernel density estimates

with the Gaussian kernel, whose bandwidth is chosen without a well recognized standard.

Therefore, they proposed the following bootstrap procedure to obtain a bootstrap estimate

σ̂2∗
ˆ̄P2

for the variance instead of σ̂2
ˆ̄P2

in Equation (3.2):

Step 1: Draw bootstrap resamples of sizes n1, n2, and n3 with replacement from the non-

diseased sample Y1j’s, the early diseased sample Y2j’s, and the fully diseased sample

Y3j’s, respectively. Denote the bootstrap samples as {Y b
ij}, i = 1, 2, 3, j = 1, 2, . . . , ni.

Step 2: Calculate the bootstrap version ˆ̄P b
2 of ˆ̄P2 according to Equation (3.3).

Step 3: Repeat the first two steps B times to obtain the bootstrap variance estimate of ˆ̄P2,

which is defined as

σ̂2∗
ˆ̄P2

=
1

B − 1

B∑
b=1

( ˆ̄P b
2 −

¯̄̂
P ∗2 )2,

where
¯̄̂
P ∗2 = 1

B

∑B
b=1

ˆ̄P b
2 .

This leads to the second 100(1 − α)% level empirical likelihood confidence interval (ELB)

for P2:

CI2(P2) = {P2 : r∗P1,P2,P3
l(P2) ≤ χ2

1(1− α)},

where

r∗P1,P2,P3
=

¯̄̂
P ∗2 (1− ¯̄̂

P ∗2 )

n2σ̂2∗
ˆ̄P2

(3.5)

3.3 Influence function-based empirical likelihood (IF) method

The application of the existing empirical likelihood-based ELP and ELB intervals for

P2 needs estimation of a scale constant by density estimation and bootstrap process which

is time consuming. The finite sample performance of ELP and ELB intervals depends on
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the estimation accuracy of the estimators for the scale constant. To get rid of the estimation

for the unknown scale constant, we propose a new influence function-based EL method to

construct confidence intervals for sensitivity to the early diseased stage in this section.

We combine the samples {Yi,j : i = 1, 2, 3; j = 1, 2, · · · , ni} as:

Zl =


Y1,l, l = 1, . . . , n1,

Y2,l−n1 , l = 1 + n1, . . . , n1 + n2,

Y3,l−n1−n2 , l = 1 + n1 + n2, . . . , N,

where N = n1 + n2 + n3.

Let c1 = F−1
1 (P1), and c2 = F−1

3 (1 − P3). Define F̂2 as the empirical distribution of

F2, ĉ1 = F̂−1
1 (P1) (i.e., the P1-th sample quantile of Y1,j’s), and ĉ2 = F̂−1

3 (1 − P3) (i.e., the

(1−P3)-th sample quantile of Y3,j’s). Then the sensitivity P2 of the test to the early diseased

stage can be consistently estimated by

P̃2 = F̂2(ĉ2)− F̂2(ĉ1) = F̂2[F̂−1
3 (1− P3)]− F̂2[F̂−1

1 (P1)] ≡ P̂2(P1, P3).

We have the following decomposition:

P̃2 − P2 = [F̂2(ĉ2)− F̂2(ĉ1)]− [F2(c2)− F2(c1)]

= [F̂2(ĉ2)− F̂2(c2)]− [F̂2(ĉ1)− F̂2(c1)] +
{

[F̂2(c2)− F̂2(c1)]− [F2(c2)− F2(c1)]
}

≡ I1 − I2 + I3. (3.6)

The third term of Equation (3.6) can be written as

I3 = [F̂2(c2)− F̂2(c1)]− [F2(c2)− F2(c1)]

=
1

n2

n2∑
j=1

[I(c1 < Y2,j ≤ c2)− P2]

=
1

N

n1+n2∑
l=n1+1

N

n2

[I(c1 < Zl ≤ c2)− P2]. (3.7)
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From the Bahadur representation for the sample quantiles ĉ1 and ĉ2 [37],

ĉ1 − c1 =
P1 − 1

n1

∑n1

j=1 I(Y1,j ≤ c1)

f1(c1)
+ op(n1

− 1
2 ),

ĉ2 − c2 =
1
n3

∑n3

j=1 I(Y3,j > c2)− P3

f3(c2)
+ op(n3

− 1
2 ),

it follows that

I2 = F̂2(ĉ1)− F̂2(c1) =

∫
[I(y ≤ ĉ1)− I(y ≤ c1)]dF̂2(y)

=

∫
[I(y ≤ ĉ1)− I(y ≤ c1)]dF2(y) + op(n

−1/2
2 )

= f2(c1)(ĉ1 − c1) + op(n
−1/2
2 + n

−1/2
1 )

= − 1

n1

f2(c1)

f1(c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1] + op(n
−1/2
2 + n

−1/2
1 )

= − 1

N

n1∑
l=1

N

n1

f2(c1)

f1(c1)
[I(Zl ≤ c1)− P1] + op(N

−1/2), (3.8)

I1 = F̂2(ĉ2)− F̂2(c2) =

∫
[I(y ≤ ĉ2)− I(y ≤ c2)]dF̂2(y)

=

∫
[I(y ≤ ĉ2)− I(y ≤ c2)]dF2(y) + op(n

−1/2
2 )

= f2(c2)(ĉ2 − c2) + op(n
−1/2
2 + n

−1/2
3 )

=
1

n3

f2(c2)

f3(c2)

n3∑
j=1

[I(Y3,j > c2)− P3] + op(n
−1/2
2 + n

−1/2
3 )

=
1

N

N∑
l=n1+n2+1

N

n3

f2(c2)

f3(c2)
[I(Zl > c2)− P3] + op(N

−1/2). (3.9)

Therefore,

P̃2 − P2 =
1

N

N∑
l=1

Wl(P1, P2, P3) + op(N
−1/2), (3.10)
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where

Wl(P1, P2, P3) =


N
n1

f2(c1)
f1(c1)

[I(Zl ≤ c1)− P1], l = 1, . . . , n1,

N
n2

[I(c1 < Zl ≤ c2)− P2], l = n1 + 1, . . . , n1 + n2,

N
n3

f2(c2)
f3(c2)

[I(Zl > c2)− P3], l = n1 + n2 + 1, . . . , N,

(3.11)

is called the influence function of P2.

From Equation (3.10), we can get the following asymptotic distribution of the empirical

estimator P̃2 for P2.

Proposition 3.1: Assume that F1, F2, and F3 are continuous distribution functions

with density functions f1, f2 and f3, respectively, f ′2(x) is bounded in neighborhoods of

c1 = F−1
1 (P1) and c2 = F−1

3 (1−P3), f1(c1) and f3(c2) are strictly positive, f2(x)
f1(x)

is bounded in

a neighborhood of c1 = F−1
1 (P1), and f2(x)

f3(x)
is bounded in a neighborhood of c2 = F−1

3 (1−P3).

If lim n1

n2
= ρ1 (0 < ρ1 <∞), lim n3

n2
= ρ2 (0 < ρ2 <∞) and lim n1

n3
= ρ3 (0 < ρ3 <∞), then

√
N(P̃2 − P2)

d→ N(0, σ2), (3.12)

where N = n1 + n2 + n3, and

σ2 = (1 + ρ−1
1 + ρ−1

3 )P1(1− P1)
f22 [F−1

1 (P1)]

f21 [F−1
1 (P1)]

+ (1 + ρ1 + ρ2)P2(1− P2)

+(1 + ρ−1
2 + ρ3)P3(1− P3)

f22 [F−1
3 (1−P3)]

f23 [F−1
3 (1−P3)]

.

Dong and Tian[20] derived a similar conclusion to Proposition 1, but they didn’t explic-

itly give the proof. Proposition 1 can be used to construct a normal approximation-based

confidence interval for P2 if we can get a good estimate for σ2. But estimating σ2 involves an

estimation of unknown densities and quantiles. To avoid the complex variance estimation,

we propose the following influence function-based EL method for inference of P2.

Based on the influence function in (3.11), an EL for the sensitivity P2 to the early
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diseased stage at a given pair of (P1, P3) can be defined as follows:

LIF (P1, P2, P3) = sup
p

{
N∏
l=1

pl :
N∑
l=1

pl = 1,
N∑
l=1

plŴl(P1, P2, P3) = 0

}
, (3.13)

where p = (p1, · · · , pN) is a probability vector, and Ŵl(P1, P2, P3) is the estimated influence

function of P2 given as follows

Ŵl(P1, P2, P3) =


N
n1

f̂2(ĉ1)

f̂1(ĉ1)
[I(Zl ≤ ĉ1)− P1], l = 1, . . . , n1,

N
n2

[I(ĉ1 < Zl ≤ ĉ2)− P2], l = n1 + 1, . . . , n1 + n2,

N
n3

f̂2(ĉ2)

f̂3(ĉ2)
[I(Zl > ĉ2)− P3], l = n1 + n2 + 1, . . . , N,

(3.14)

where f̂i is the density estimators for fi, i = 1, 2, 3. We use the “over-smoothed bandwidth

selector” to select the bandwidth for the Gaussian kernel function for fi as described in Dong

and Tian’s study[20].

By the Lagrange multiplier, the maximization of Equation (3.13) is achieved at

pl =
1

N
[1 + λŴl(P1, P2, P3)]−1, l = 1, . . . , N,

where λ is the solution of

1

N

N∑
l=1

Ŵl(P1, P2, P3)

1 + λŴl(P1, P2, P3)
= 0. (3.15)

The corresponding empirical log-likelihood ratio statistic is

lIF (P1, P2, P3) = −
N∑
l=1

log{1 + λŴl(P1, P2, P3)}. (3.16)

When test results Yi,j’s are not all greater/smaller than ĉi, the empirical log-likelihood

ratio lIF (P1, P2, P3) is well defined on (0, 1). The following theorem establishes the asymp-

totic distribution of lIF (P1, P2, P3), and the proof is given in the Appendix B.

Theorem 3.1: Assume that F1, F2, and F3 are continuous distribution functions with
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density functions f1, f2 and f3, respectively, f ′2(x) is bounded in neighborhoods of c1 =

F−1
1 (P1) and c2 = F−1

3 (1 − P3), f1(c1) and f3(c2) are strictly positive, f2(x)
f1(x)

is bounded in a

neighborhood of c1 = F−1
1 (P1) and f2(x)

f3(x)
is bounded in a neighborhood of c2 = F−1

3 (1− P3).

If lim n1

n2
= ρ1 (0 < ρ1 < ∞), lim n3

n2
= ρ2 (0 < ρ2 < ∞) and lim n1

n3
= ρ3 (0 < ρ3 < ∞),

and P 0
2 is the true value of sensitivity P2 to the early diseased stage at a fixed level P1 of

specificity and P3 of sensitivity to the fully diseased stage, then the asymptotic distribution

of −2lIF (P1, P
0
2 , P3) is a standard chi-squared distribution with one degree of freedom as

n1, n2, n3 −→∞.

From Theorem 3.1, a 100(1−α)% level influence function-based EL confidence interval

(IFEL) for P2 can be constructed as follows:

CIIF (P1, P2, P3) = {P2 : −2lIF (P1, P2, P3) ≤ χ2
1(1− α)}.

3.4 Bayesian Empirical Likelihood (BEL) Method

Bayesian empirical likelihood has the potential to be used as the basis for Bayesian

inference. As Lazar[17] pointed out that EL has many asymptotic properties obtained from

parametric models, Bayesian EL methods are naturally used to quantify uncertainty and

can have good small sample properties. In this section, we propose two types of Bayesian

EL methods to construct reliable intervals to improve sensitivity to early disease.

3.4.1 Bayesian empirical likelihood-based on sensitivity

We follow Lazar[17]’s idea to combine empirical likelihood L(P2) with prior π(P2) on

P2 by the Bayesian theorem to obtain a posterior:

π(P2|data) ∝ L(P2)π(P2).

We consider reference priors, originally introduced by [31], and further developed in

[32333233], on P2 in this study. Reference priors only depend on the assumed model and the
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available data. In our problem, we do not have a parametric model. Therefore, we follow [30]

to derive reference priors for EL based on different measurements. The following proposition

gives the reference priors for the Bayesian EL method where [L(P2)]r̂P1,P2,P3 in ELP is used

as the likelihood.

Proposition 3.2: The reference prior based on the relative entropy for ELP is

πEL,1(P2) = β(
3

2
,
3

2
),

and the reference prior based on Hellinger distance is

πEL,2(P2) = β(
1

2
,
1

2
),

where β(a, b) is the beta distribution with parameters a and b.

The corresponding posterior is

πEL(P2|Y ) ∝
n2∏
j=1

[1 + λ̃(Ûj − P2)]−r̂P1,P2,P3πEL(P2),

where πEL(P2) = πEL,1(P2), or πEL,2(P2), and Ûj = Φ[F̂−1
1 (P1), Y2,j, F̂

−1
3 (1 − P3)], j =

1, 2, . . . , n2. Based on these posteriors, we can calculate equal-tail credible intervals for P2.

These two new methods are called as Bayesian Empirical likelihood 1 (BEL1) and Bayesian

Empirical likelihood 2 (BEL2).

Similarly, to construct Bayesian credible intervals for P2 based on the IFEL using influ-

ence function Wl(P1, P2, P3) in Equation (3.11), we propose the following reference priors:

πIF,1(P2) ∝
[ 1

n1

P1(1− P1)
f 2

2 [F−1
1 (P1)]

f 2
1 [F−1

1 (P1)]
+

1

n2

P2(1− P2) +
1

n3

P3(1− P3)
f 2

2 [F−1
3 (1− P3)]

f 2
3 [F−1

3 (1− P3)]

] 1
2
,
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and

πIF,2(P2) ∝
[ 1

n1

P1(1− P1)
f 2

2 [F−1
1 (P1)]

f 2
1 [F−1

1 (P1)]
+

1

n2

P2(1− P2) +
1

n3

P3(1− P3)
f 2

2 [F−1
3 (1− P3)]

f 2
3 [F−1

3 (1− P3)]

]− 1
2
.

These two priors are both proper since πIF,1(P2) is bounded by a constant and πIF,2(P2)

is bounded by a beta distribution. In practice, we use Ŵl(P1, P2, P3) to estimate the influence

function Wl(P1, P2, P3), and replace f1, f2, f3, c1 and c2 with their estimates since they are

generally unknown. The posterior based on this approach is then

πIF (P2|Z) ∝
N∏
l=1

[1 + λ̃Ŵl(P1, P2, P3)]−1πIF (P2).

where πIF (P2) = πIF,1(P2), or πIF,2(P2). Based on these posteriors, we can calculate equal-

tail credible intervals for P2. Therefore, we have two more new methods called as Bayesian

influence function based Empirical likelihood 1 (BIF1) and Bayesian influence function based

Empirical likelihood 2 (BIF2).

3.4.2 Bayesian pseudo empirical likelihood (BpEL) based on probability vector

In previous section, we apply Bayesian framework to P2, the sensitivity to early diseased

stage, as the interested parameter. In this section, we apply Rao and Wu’s method [34]

to obtain Bayesian EL based on probability vector (p1, . . . , pl) instead of P2. We treat

(p1, . . . , pl) as unknown parameters and the EL function is:

LEL(p1, . . . , pl) =
l∏

i=1

pi,

where l = n2 for ELP, and l = N for influence function based EL. Consider the Dirichlet

prior D(α1, . . . , αl) on (p1, . . . , pl):

π(p1, . . . , pl) = c(α1, . . . , αl)
l∏

i=1

pαi−1
i ,
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where c(α1, . . . , αl) = Γ(
∑l

i=1 αi)/
∏l

i=1 Γ(αi). The posterior distribution of (p1, . . . , pl) given

the data is Dirichlet D(1 + α1, . . . , 1 + αl) and is given by:

π(p1, . . . , pl|data) = c(1 + α1, . . . , 1 + αn)
l∏

i=1

pαi
i .

The posterior of the early stage sensitivity P2 satisfies the following equation:

l∑
i=1

piQ̂i(P2) = 0, (3.17)

where Q̂i(P2) is an estimating/influence function and (p1, . . . , pl) follows the Dirichlet dis-

tribution D(1 + α1, . . . , 1 + αl). In practice, we can generate samples of (p1, . . . , pl) from

D(1 + α1, . . . , 1 + αl), and by solving Equation (2.12), we get the posterior samples of P2.

Based on these posterior samples, we can calculate the equal-tail credible intervals for sen-

sitivity P2.

Similar to Section 3.4.1, we consider two types of EL: EL in Equation (3.1) as in ELP

method and influence function EL in Equation (3.13). We call them Bayesian pseudo EL

(BpEL) and Bayesian pseudo influence function based EL (BpIF), respectively. For BpEL,

we use ŴELP (P1, P2, P3) to replace Q̂i(P2) in Equation (3.17), and consider D(r∗, . . . , r∗)

and D(r∗ + 1
n2
, . . . , r∗ + 1

n2
) as the priors (labeled BpEL1 and BpEL2, respectively), where

r∗ = r̂P1,P2,P3 is the estimate defined in Equation (3.2) in section 2 for the scale constant. For

BpIFEL, similarly, we use Ŵl(P1, P2, P3) to replace Q̂i(P2) in Equation (3.17), and consider

D(1, . . . , 1) and D(1+ 1
N
, . . . , 1+ 1

N
) as the priors (labeled as BpIF1 and BpIF2, respectively).

3.5 Simulation Study

Simulation studies are conducted to examine the finite sample performance of the pro-

posed approaches: influence function-based empirical likelihood (IF), Bayesian influence

function empirical likelihood methods (BIF1 and BIF2) with reference priors πIF,1(P2) and

πIF,2(P2), Bayesian EL methods (BEL1 and BEL2) with reference priors πELP,1(P2) and
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πELP,2(P2), Bayesian pseudo influence function empirical likelihood methods (BpIF1 and

BpIF2), and Bayesian pseudo ELP methods (BpEL1 and BpEL2). We compare them with

the existing approaches ELP and ELB proposed by [20]. For comparison purpose, we also

include the normal approximation (NA) method by using ˆ̄P2 in Equation (3.2) as the point

estimate and σ̂2
ˆ̄P2

Equation (3.3) as the variance estimate.

We evaluate these approaches under scenarios when the underlying distributions are

normal distrutions, beta distributions, and the combined scenario where the normality as-

sumptions cannot be met, that is, gamma distribution for the non-diseased, log-normal

distribution for the early diseased and Weibull distribution for the fully diseased groups.

Sample sizes (n1, n2, n3) are set as (10, 10, 10), (30, 30, 30), (50, 30, 30), (50, 50, 50), (100,

100, 100), (100, 50, 50) and (100, 100, 50). With a fixed 80% or 90% specificity and a fixed

80% or 90% sensitivity to the fully diseased stage, the parameters for the distributions are

chosen correspondingly so that P2 equals to 80% or 90%. Under each distribution scenario,

there are four settings corresponding to different levels of P1 and P3, and true value of P2:

(i) P1=P3=0.8 and P2=0.8, (ii) P1=P3=0.9 and P2=0.8, (iii) P1=P3=0.8 and P2=0.9, (iv)

P1=P3=0.9 and P2=0.9. Under each setting, 5000 random samples are generated. The

simulation results are presented in Tables 3.1–3.2 and Figures 3.1–3.3.

Place Tables 3.1–3.2 here

Under the normal scenario (Table 3.1–3.2 and Figure 3.1), we observe that the con-

fidence intervals of IF related methods(IF, BIF1, BIF2, BpIF1, and BpIF2) are generally

conservative. The confidence intervals of the existing methods(NA, ELP, and ELB) are also

conservative except the small sample size (10, 10, 10). New methods always have better

performance comparing with NA, ELP, and ELB methods for all settings consider here.

Especially, BEL1 has the best overall performance in terms of coverage probability closed

to 95%. Bayesian and Bayesian pseudo approaches generally have similar or improved per-

formance over ELP, ELB, or IF. IF function related methods have poor performance when

the sample size is small. The possible reason is limited small sample results in the poor
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Figure (3.1) Boxplots of coverage probabilities under normal distribution setting.

density estimation involved in IF related methods. Comparing the results from the normal

distribution setting (i) and (iii) with those from the normal distribution setting (ii) and (iv),

which have higher specificity(P1) and sensitivity(P3) to the fully diseased group, we can see

that the performance of NA, ELB, ELP and IF related methods all depends on the degree of

separation of test outcomes in the diseased, early diseased and non-diseased groups. Under

the higher specificity and sensitivity to full diseased group, they have lower coverage prob-

ability. However, the performance of BEL1, BEL2, BpEL1, and BpEL2 does not obviously

change with different P1 ans P3. Comparing the results from the normal distribution set-

ting (i) with (iii) or normal distribution setting (ii) with (iv), which have fixed P1 and P3

but higher true value of P2, we note that ELP, ELB, BEL2, BpEL1, IF, BIF1, and BIF2

generally have similar or poorer finite sample performance with higher true value of P2 and

other methods are similar or slightly better. For example, when the sample size is (100,100)

with P1=P3=0.8, the coverage probability of ELB dropped from 0.944 to 0.906 when the

true value of P2 is changed from 0.8 to 0.9.

The simulation results under Beta distribution setting are reported in Table 3.3 – 3.4
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and Figure 3.2. Similar as the normal distribution setting, we observe that the confidence

intervals of NA, ELP, ELB, and FI-related methods(IF, BIF1, BIF2, BpIF1, and BpIF2)

are generally conservative. New methods always have better performance and BEL1 has the

best overall performance because the coverage probability is closed to 95% except the first

setting where IF related methods work well. The performance of NA, ELB, ELP, BpEL1,

BpEL2, and IF related methods all depend on the degree of separation of test outcomes

in the diseased, early diseased and non-diseased groups. Under the higher specificity and

sensitivity to full diseased group, they have slightly lower coverage probability. However,

BEL1 and BEL2 do not obviously change when P1 ans P3 increase. Comparing the results

from the beta distribution setting (i) with (iii) or beta distribution setting (ii) with (iv),

which have fixed P1 ans P3 but higher true value of P2, we note that BEL1, BpEL1, and

BpEL2 generally have similar or better finite sample performance with higher true value of

P2 and other methods are similar or slightly worse except BpIF1 and BpIF2, which have

no obvious trend. Specifically, BpIF1 and BpIF2 perform very well when P1=P3=0.8 and

true P2 = 0.8 and has similar or slightly lower coverage probability than that of P2 = 0.9.

However the coverage probability of BpIF1 and BpIF2 work better when the true value of

P2 is changed from 0.8 to 0.9.

Place Table 3.3–3.4 here

The simulation results under the combined distribution setting are reported in Table 3.5–

3.6 and Figure 3.3. Clearly, the new methods always have better performance comparing with

ELB and ELP. However, BEL1 does not always have the best overall performance. Bayesian

pseudo empirical likelihood methods(BpEL1, BpEL2, BpIF1, and BpIF2) also perform well

in most settings considered here. IF related methods also work well when true P2 = 0.8. The

performance of ELB, ELP, and IF related methods all depend on the degree of separation

of test outcomes in the fully diseased, early diseased, and non-diseased groups. Under the

higher specificity and sensitivity to fully diseased group, they have slightly lower coverage

probability. NA, BEL1, BEL2, BpEL1, and BpEL2 do not obviously change when P1 ans
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Figure (3.2) Boxplots of 95% coverage probabilities under Beta distribution setting.

P3 increase. Comparing the results from the beta distribution setting (i) with (iii) or beta

distribution setting (ii) with (iv) which have fixed P1 ans P3 but higher true value of P2,

we can see that BEL1, BEL2, BpEL1, BpEL2, BpIF1, and BpIF2 generally have similar or

better finite sample performance with higher true value of P2 and other methods are obvious

worse when the true value of P2 is changed from 0.8 to 0.9, especially IF and Bayesian IF

methods. The possible reason might be it is more difficult to preform density estimation

when the true P2 value is higher(higher degree of separation of early diseased test outcomes

from other groups).

Place Table 3.5–3.6 here

In summary, new Bayesian and Bayesian pseudo empirical likelihood methods, espe-

cially BEL1, are consistent and have coverage probabilities closer to the nominal confidence

level than other methods in all settings. The performance of IF and Bayesian IF methods

are acceptable in some settings due to poor density estimation.
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Figure (3.3) Boxplots of 95% coverage probabilities under the combined distribution setting.

3.6 A Real Example in the Detection of Alzheimer’s Disease

In this section, we illustrate the application of the proposed methods to assess the

diagnostic accuracy of biomarkers in detecting Alzheimer’s disease (AD). The data used in

this section were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). The goal of the ADNI study is to track the progression

of the diseases, mild cognitive impairment (MCI) and AD, using biomarkers and clinical

measures.

We apply the proposed methods to a small subset of a data-freeze named “QT-PAD

Project Data” downloaded on June 29th 2017. It is available in the “Test Data/Data for

Challenges” section of the LONI website (ADNI database). Here we only consider non-

missing records based on two commonly used biomarkers: fluorodeoxyglucose (FDG), and

Alzheimer’s Disease Assessment Scale 11 (ADAS11). The dataset we used consists of 203

control subjects (CN) , 389 MCI, and 237 AD patients. We consider MCI as the early stage

of AD. Figure 3.4 presents the estimated density curves of FDG and ADAS11 for these three

adni.loni.usc.edu
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Figure (3.4) Estimated densities for FDG and ADAS11 in the ADNI data.

groups, respectively. We note that the results of MCI patients are very similar with that of

control groups. Therefore, we can expect that the sensitivity of MCI will not be high enough.

Place Table 3.7 here

The point estimates and confidence intervals for the sensitivity to the early stage MCI

for these two biomarkers when P1 = P3 = 0.6 or 0.7 are reported in Table 3.7. As expecting,

the pointing estimates of FDG and ADS11 are all small. FDG sensitivity for FDG drops

from 0.37 to 0.2 (around 50 percentage points) if the P1 and P3 are increased from 0.6 to 0.7.

Specifically, BEL1 and BEL2 methods provide larger point estimates of P2 using FDG and

other methods have similar points estimates. It is consistent with the longer length of the

confidence interval comparing with other methods. ADAS11 achieves moderate (0.61) sensi-

tivity when the P1 and P3 are 0.60, suggesting it has higher diagnostic accuracy in detecting

Alzheimer’s Disease compared with FDG. However, BEL1 and BEL2 methods provide sim-

ilar or smaller point estimates of P2 using ADAS11 as other methods, although they have a

longer length of the confidence interval comparing with other methods.
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Table (3.1) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under Normal distributions with P2 = 0.8

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (i): (µ1, σ1) = (0, 1),(µ2, σ2) = (3, 1.2),(µ3, σ3) = (5.858, 2), P1 = P3 = 0.8, P2 = 0.8

NA CP 0.798 0.896 0.872 0.909 0.939 0.914 0.912
AL 0.796 0.493 0.491 0.388 0.283 0.393 0.359

ELB CP 0.99 0.853 0.827 0.87 0.944 0.867 0.911
AL 0.744 0.443 0.437 0.37 0.285 0.373 0.348

ELP CP 0.991 0.845 0.827 0.862 0.944 0.867 0.905
AL 0.749 0.439 0.428 0.354 0.276 0.362 0.344

BEL1 CP 0.982 0.970 0.957 0.964 0.950 0.959 0.960
AL 0.708 0.472 0.462 0.375 0.277 0.375 0.345

BEL2 CP 0.988 0.985 0.960 0.963 0.953 0.971 0.962
AL 0.774 0.477 0.467 0.375 0.277 0.375 0.346

BpEL1 CP 0.983 0.960 0.960 0.939 0.948 0.937 0.932
AL 0.691 0.453 0.447 0.361 0.273 0.368 0.343

BpEL2 CP 0.966 0.949 0.947 0.935 0.944 0.932 0.926
AL 0.627 0.432 0.426 0.350 0.269 0.356 0.334

IF CP 0.872 0.935 0.914 0.933 0.947 0.942 0.936
AL 0.635 0.476 0.479 0.392 0.290 0.397 0.370

BIF1 CP 0.927 0.939 0.923 0.953 0.948 0.952 0.956
AL 0.663 0.484 0.484 0.393 0.290 0.370 0.398

BIF2 CP 0.919 0.939 0.925 0.943 0.946 0.945 0.944
AL 0.669 0.482 0.483 0.392 0.291 0.370 0.397

BpIF1 CP 0.843 0.926 0.918 0.925 0.926 0.919 0.919
AL 0.872 0.526 0.512 0.402 0.287 0.402 0.366

BpIF2 CP 0.838 0.928 0.918 0.927 0.922 0.917 0.919
AL 0.872 0.526 0.512 0.402 0.287 0.402 0.366

Setting (ii): (µ1, σ1) = (0, 1),(µ2, σ2) = (4, 1.2),(µ3, σ3) = (7.625, 2), P1 = P3 = 0.9, P2 = 0.8
Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
NA CP 0.668 0.828 0.806 0.852 0.881 0.857 0.857

AL 0.650 0.512 0.498 0.416 0.314 0.429 0.400
ELB CP 0.997 0.776 0.781 0.799 0.906 0.812 0.865

AL 0.732 0.461 0.481 0.401 0.328 0.399 0.394
ELP CP 0.994 0.783 0.759 0.796 0.906 0.791 0.842

AL 0.770 0.441 0.442 0.361 0.301 0.368 0.359
BEL1 CP 0.986 0.974 0.965 0.960 0.939 0.952 0.948

AL 0.735 0.485 0.486 0.391 0.298 0.395 0.368
BEL2 CP 0.997 0.975 0.961 0.948 0.930 0.953 0.934

AL 0.809 0.491 0.494 0.390 0.298 0.396 0.369
BpEL1 CP 0.989 0.930 0.920 0.914 0.925 0.892 0.878

AL 0.677 0.454 0.457 0.377 0.299 0.379 0.363
BpEL2 CP 0.967 0.913 0.903 0.904 0.914 0.884 0.870

AL 0.616 0.430 0.432 0.363 0.293 0.365 0.350
IF CP 0.643 0.883 0.858 0.885 0.902 0.889 0.894

AL 0.417 0.469 0.465 0.413 0.318 0.428 0.406
BIF1 CP 0.839 0.852 0.836 0.908 0.920 0.899 0.901

AL 0.490 0.427 0.421 0.398 0.319 0.369 0.409
BIF2 CP 0.677 0.850 0.825 0.891 0.912 0.891 0.893

AL 0.436 0.427 0.422 0.398 0.318 0.369 0.409
BpIF1 CP 0.730 0.877 0.856 0.889 0.923 0.892 0.867

AL 0.757 0.537 0.519 0.419 0.314 0.429 0.396
BpIF2 CP 0.723 0.874 0.854 0.887 0.923 0.891 0.866

AL 0.757 0.537 0.519 0.419 0.314 0.429 0.396
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Table (3.2) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under Normal distributions with P2 = 0.9

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (iii): (µ1, σ1) = (0, 1),(µ2, σ2) = (3, 1.2),(µ3, σ3) = (6.515, 2), P1 = P3 = 0.8, P2 = 0.9

NA CP 0.762 0.914 0.912 0.918 0.942 0.926 0.924
AL 0.562 0.334 0.334 0.257 0.182 0.258 0.223

ELB CP 0.980 0.827 0.805 0.816 0.908 0.812 0.882
AL 0.743 0.351 0.346 0.233 0.175 0.230 0.203

ELP CP 0.982 0.795 0.781 0.809 0.905 0.806 0.876
AL 0.753 0.345 0.340 0.226 0.172 0.226 0.203

BEL1 CP 0.931 0.950 0.931 0.952 0.950 0.946 0.956
AL 0.726 0.434 0.429 0.303 0.197 0.294 0.244

BEL2 CP 0.979 0.985 0.977 0.982 0.970 0.980 0.977
AL 0.792 0.424 0.420 0.285 0.187 0.277 0.231

BpEL1 CP 0.975 0.985 0.985 0.966 0.963 0.970 0.954
AL 0.614 0.329 0.322 0.243 0.177 0.245 0.217

BpEL2 CP 0.958 0.977 0.981 0.963 0.961 0.964 0.953
AL 0.559 0.314 0.308 0.237 0.175 0.239 0.212

IF CP 0.866 0.906 0.871 0.931 0.961 0.931 0.956
AL 0.465 0.304 0.310 0.249 0.186 0.251 0.226

BIF1 CP 0.915 0.918 0.868 0.915 0.966 0.942 0.919
AL 0.529 0.320 0.323 0.253 0.186 0.227 0.254

BIF2 CP 0.929 0.908 0.867 0.914 0.963 0.934 0.917
AL 0.527 0.311 0.315 0.246 0.184 0.223 0.248

BpIF1 CP 0.829 0.932 0.936 0.944 0.955 0.942 0.945
AL 0.646 0.363 0.345 0.268 0.189 0.269 0.234

BpIF2 CP 0.824 0.932 0.935 0.943 0.954 0.944 0.945
AL 0.633 0.361 0.344 0.267 0.189 0.268 0.234

Setting (iv): (µ1, σ1) = (0, 1),(µ2, σ2) = (4, 1.2),(µ3, σ3) = (8.189, 2), P1 = P3 = 0.9, P2 = 0.9
NA CP 0.619 0.849 0.845 0.864 0.899 0.882 0.878

AL 0.473 0.355 0.348 0.287 0.212 0.299 0.271
ELB CP 0.973 0.769 0.774 0.734 0.845 0.763 0.804

AL 0.738 0.439 0.436 0.268 0.196 0.279 0.238
ELP CP 0.988 0.778 0.781 0.757 0.867 0.753 0.789

AL 0.815 0.405 0.421 0.267 0.193 0.268 0.225
BEL1 CP 0.944 0.948 0.937 0.952 0.944 0.935 0.957

AL 0.762 0.496 0.489 0.344 0.227 0.352 0.291
BEL2 CP 0.987 0.983 0.982 0.984 0.953 0.973 0.963

AL 0.841 0.498 0.489 0.326 0.214 0.337 0.274
BpEL1 CP 0.977 0.989 0.986 0.963 0.945 0.958 0.911

AL 0.635 0.353 0.362 0.269 0.204 0.274 0.248
BpEL2 CP 0.960 0.986 0.979 0.955 0.940 0.953 0.905

AL 0.578 0.334 0.342 0.260 0.200 0.265 0.241
IF CP 0.591 0.804 0.793 0.888 0.929 0.887 0.916

AL 0.297 0.310 0.308 0.272 0.211 0.284 0.265
BIF1 CP 0.880 0.692 0.691 0.802 0.879 0.870 0.794

AL 0.395 0.279 0.276 0.260 0.208 0.240 0.269
BIF2 CP 0.670 0.708 0.713 0.808 0.875 0.866 0.797

AL 0.331 0.281 0.282 0.257 0.205 0.238 0.265
BpIF1 CP 0.714 0.887 0.864 0.901 0.938 0.906 0.891

AL 0.569 0.388 0.370 0.293 0.217 0.305 0.273
BpIF2 CP 0.713 0.886 0.864 0.905 0.936 0.905 0.891

AL 0.559 0.385 0.368 0.292 0.217 0.304 0.272
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Table (3.3) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under Beta distributions with P2 = 0.8

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (i): (α1, β1) = (2, 6),(α2, β2) = (8, 6),(α3, β3) = (21.3, 6), P1 = P3 = 0.8, P2 = 0.8

NA CP 0.865 0.931 0.925 0.930 0.944 0.936 0.940
AL 0.625 0.378 0.356 0.295 0.210 0.275 0.229

ELB CP 0.990 0.907 0.904 0.926 0.972 0.946 0.970
AL 0.656 0.377 0.359 0.303 0.219 0.284 0.238

ELP CP 0.986 0.894 0.887 0.934 0.962 0.938 0.961
AL 0.624 0.362 0.334 0.287 0.209 0.268 0.226

BEL1 CP 0.973 0.968 0.959 0.964 0.963 0.963 0.964
AL 0.618 0.367 0.351 0.289 0.208 0.270 0.225

BEL2 CP 0.987 0.976 0.975 0.961 0.957 0.969 0.957
AL 0.655 0.365 0.349 0.287 0.207 0.268 0.224

BpEL1 CP 0.988 0.968 0.970 0.953 0.955 0.964 0.946
AL 0.580 0.355 0.339 0.285 0.207 0.266 0.224

BpEL2 CP 0.980 0.960 0.960 0.946 0.954 0.957 0.944
AL 0.541 0.345 0.331 0.280 0.205 0.262 0.221

IF CP 0.885 0.961 0.962 0.948 0.954 0.955 0.948
AL 0.541 0.370 0.353 0.299 0.213 0.278 0.232

BIF1 CP 0.938 0.956 0.956 0.961 0.962 0.957 0.973
AL 0.560 0.364 0.349 0.294 0.213 0.232 0.275

BIF2 CP 0.912 0.953 0.953 0.951 0.957 0.949 0.957
AL 0.563 0.365 0.352 0.297 0.215 0.234 0.278

BpIF1 CP 0.855 0.950 0.942 0.941 0.963 0.954 0.961
AL 0.678 0.392 0.363 0.301 0.212 0.277 0.230

BpIF2 CP 0.847 0.949 0.943 0.942 0.964 0.953 0.961
AL 0.678 0.392 0.363 0.301 0.212 0.277 0.230

Setting (ii): (α1, β1) = (1, 6),(α2, β2) = (6, 6),(α3, β3) = (15.2, 6) = (8.189, 2), P1 = P3 = 0.9, P2 = 0.8
NA CP 0.791 0.900 0.916 0.918 0.940 0.925 0.919

AL 0.748 0.522 0.491 0.415 0.301 0.382 0.331
ELB CP 0.995 0.859 0.877 0.882 0.963 0.924 0.962

AL 0.656 0.428 0.397 0.356 0.267 0.314 0.278
ELP CP 0.992 0.808 0.852 0.844 0.924 0.902 0.928

AL 0.692 0.394 0.368 0.338 0.261 0.297 0.262
BEL1 CP 0.990 0.981 0.979 0.965 0.953 0.962 0.959

AL 0.676 0.427 0.388 0.345 0.259 0.298 0.260
BEL2 CP 0.996 0.965 0.965 0.938 0.934 0.960 0.940

AL 0.730 0.427 0.386 0.344 0.258 0.296 0.259
BpEL1 CP 0.994 0.934 0.931 0.910 0.921 0.937 0.916

AL 0.598 0.397 0.369 0.336 0.257 0.293 0.258
BpEL2 CP 0.984 0.918 0.917 0.899 0.915 0.926 0.913

AL 0.551 0.380 0.356 0.327 0.253 0.287 0.254
IF CP 0.706 0.894 0.914 0.882 0.911 0.931 0.908

AL 0.421 0.380 0.374 0.349 0.273 0.309 0.274
BIF1 CP 0.772 0.894 0.915 0.918 0.917 0.913 0.964

AL 0.456 0.369 0.361 0.330 0.264 0.265 0.300
BIF2 CP 0.753 0.879 0.897 0.884 0.904 0.906 0.933

AL 0.449 0.366 0.362 0.330 0.267 0.268 0.303
BpIF1 CP 0.717 0.851 0.876 0.875 0.907 0.918 0.907

AL 0.673 0.456 0.408 0.367 0.270 0.311 0.271
BpIF2 CP 0.714 0.848 0.878 0.868 0.901 0.916 0.904

AL 0.673 0.456 0.408 0.367 0.270 0.311 0.271
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Table (3.4) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under Normal distributions with P2 = 0.9

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (iii): (α1, β1) = (2, 6),(α2, β2) = (8, 6),(α3, β3) = (31.8, 6), P1 = P3 = 0.8, P2 = 0.9

NA CP 0.728 0.920 0.923 0.914 0.940 0.940 0.937
AL 0.452 0.283 0.262 0.224 0.160 0.199 0.164

ELB CP 0.985 0.817 0.824 0.815 0.922 0.843 0.910
AL 0.695 0.310 0.289 0.211 0.162 0.190 0.164

ELP CP 0.981 0.822 0.805 0.815 0.919 0.836 0.917
AL 0.702 0.322 0.283 0.206 0.159 0.192 0.161

BEL1 CP 0.929 0.955 0.947 0.951 0.955 0.954 0.953
AL 0.687 0.376 0.342 0.259 0.171 0.224 0.175

BEL2 CP 0.988 0.984 0.974 0.982 0.969 0.980 0.975
AL 0.740 0.363 0.329 0.243 0.164 0.211 0.167

BpEL1 CP 0.988 0.987 0.983 0.969 0.959 0.961 0.964
AL 0.529 0.277 0.258 0.217 0.158 0.193 0.161

BpEL2 CP 0.983 0.987 0.981 0.965 0.956 0.956 0.964
AL 0.490 0.268 0.252 0.213 0.156 0.190 0.160

IF CP 0.813 0.850 0.860 0.918 0.956 0.936 0.952
AL 0.357 0.247 0.240 0.214 0.163 0.196 0.167

BIF1 CP 0.921 0.850 0.848 0.909 0.962 0.967 0.923
AL 0.407 0.247 0.238 0.210 0.161 0.164 0.193

BIF2 CP 0.893 0.850 0.849 0.902 0.954 0.950 0.921
AL 0.393 0.241 0.234 0.206 0.161 0.164 0.191

BpIF1 CP 0.777 0.921 0.914 0.919 0.963 0.947 0.963
AL 0.526 0.303 0.269 0.232 0.165 0.205 0.168

BpIF2 CP 0.772 0.920 0.916 0.918 0.963 0.948 0.961
AL 0.515 0.302 0.268 0.232 0.164 0.204 0.168
Setting (iv): (α1, β1) = (1, 6),(α2, β2) = (6, 6),(α3, β3) = (20.4, 6), P1 = P3 = 0.9, P2 = 0.9

NA CP 0.787 0.889 0.906 0.903 0.931 0.911 0.929
AL 0.612 0.440 0.406 0.349 0.253 0.311 0.268

ELB CP 0.966 0.786 0.789 0.745 0.877 0.816 0.874
AL 0.738 0.421 0.361 0.277 0.197 0.234 0.197

ELP CP 0.989 0.800 0.782 0.803 0.924 0.827 0.913
AL 0.708 0.331 0.296 0.210 0.164 0.191 0.167

BEL1 CP 0.956 0.960 0.945 0.958 0.961 0.959 0.966
AL 0.704 0.391 0.354 0.271 0.177 0.235 0.183

BEL2 CP 0.986 0.986 0.974 0.980 0.973 0.979 0.968
AL 0.763 0.382 0.342 0.257 0.169 0.221 0.174

BpEL1 CP 0.987 0.990 0.981 0.950 0.962 0.957 0.954
AL 0.521 0.285 0.265 0.224 0.163 0.200 0.168

BpEL2 CP 0.972 0.989 0.977 0.944 0.958 0.954 0.955
AL 0.483 0.274 0.257 0.219 0.161 0.196 0.166

IF CP 0.636 0.816 0.820 0.909 0.954 0.929 0.944
AL 0.295 0.243 0.239 0.215 0.169 0.201 0.173

BIF1 CP 0.896 0.808 0.807 0.894 0.969 0.929 0.917
AL 0.381 0.242 0.237 0.210 0.165 0.166 0.197

BIF2 CP 0.721 0.801 0.811 0.885 0.956 0.910 0.915
AL 0.342 0.237 0.234 0.207 0.165 0.166 0.194

BpIF1 CP 0.686 0.901 0.901 0.918 0.951 0.929 0.941
AL 0.492 0.312 0.279 0.242 0.172 0.213 0.177

BpIF2 CP 0.679 0.901 0.902 0.916 0.950 0.929 0.939
AL 0.483 0.310 0.278 0.242 0.171 0.213 0.177
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Table (3.5) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under combined distributions with P2 = 0.8

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (i): Gamma(α, β) = (4, 10),LN(µ, σ) = (1, 0.5),Weibull(a, b) = (4.07, 6), P1 = P3 = 0.8, P2 = 0.8

NA CP 0.852 0.920 0.921 0.926 0.938 0.928 0.914
AL 0.757 0.359 0.362 0.284 0.200 0.235 0.280

ELB CP 0.983 0.902 0.903 0.930 0.957 0.924 0.946
AL 0.594 0.348 0.350 0.285 0.203 0.280 0.237

ELP CP 0.982 0.911 0.910 0.938 0.960 0.941 0.956
AL 0.607 0.343 0.346 0.279 0.202 0.280 0.240

BEL1 CP 0.957 0.968 0.970 0.951 0.961 0.964 0.964
AL 0.607 0.358 0.360 0.284 0.202 0.280 0.237

BEL2 CP 0.979 0.977 0.970 0.959 0.957 0.952 0.959
AL 0.642 0.356 0.358 0.283 0.201 0.279 0.237

BpEL1 CP 0.986 0.952 0.947 0.948 0.957 0.941 0.954
AL 0.563 0.348 0.349 0.281 0.201 0.277 0.236

BpEL2 CP 0.970 0.940 0.938 0.942 0.953 0.939 0.957
AL 0.526 0.338 0.339 0.276 0.199 0.272 0.234

IF CP 0.876 0.944 0.940 0.948 0.956 0.939 0.953
AL 0.551 0.366 0.368 0.293 0.206 0.290 0.247

BIF1 CP 0.914 0.936 0.929 0.958 0.959 0.959 0.950
AL 0.578 0.368 0.370 0.294 0.206 0.249 0.289

BIF2 CP 0.895 0.934 0.934 0.948 0.958 0.955 0.941
AL 0.582 0.369 0.371 0.295 0.207 0.250 0.291

BpIF1 CP 0.869 0.936 0.938 0.945 0.950 0.938 0.948
AL 0.629 0.372 0.374 0.293 0.205 0.288 0.244

BpIF2 CP 0.871 0.934 0.932 0.944 0.948 0.937 0.952
AL 0.629 0.372 0.374 0.293 0.205 0.288 0.244

Setting (ii): Gamma(α, β) = (4, 10),LN(µ, σ) = (0.5, 0.5),Weibull(a, b) = (2.8, 6), P1 = P3 = 0.9, P2 = 0.8
NA CP 0.754 0.886 0.870 0.907 0.917 0.891 0.887

AL 0.701 0.483 0.487 0.396 0.278 0.349 0.383
ELB CP 0.996 0.850 0.840 0.886 0.954 0.871 0.926

AL 0.678 0.445 0.442 0.378 0.286 0.368 0.348
ELP CP 0.997 0.852 0.849 0.905 0.952 0.890 0.916

AL 0.740 0.433 0.430 0.366 0.281 0.369 0.353
BEL1 CP 0.991 0.991 0.982 0.971 0.970 0.968 0.970

AL 0.703 0.463 0.462 0.379 0.278 0.370 0.337
BEL2 CP 0.995 0.981 0.973 0.967 0.962 0.953 0.947

AL 0.768 0.471 0.471 0.383 0.278 0.372 0.340
BpEL1 CP 0.993 0.955 0.946 0.945 0.949 0.931 0.932

AL 0.659 0.446 0.447 0.379 0.277 0.367 0.340
BpEL2 CP 0.989 0.949 0.934 0.939 0.946 0.926 0.929

AL 0.602 0.424 0.424 0.366 0.272 0.355 0.330
IF CP 0.719 0.928 0.910 0.934 0.944 0.928 0.930

AL 0.454 0.474 0.474 0.418 0.295 0.404 0.377
BIF1 CP 0.795 0.922 0.897 0.949 0.955 0.939 0.938

AL 0.482 0.439 0.438 0.407 0.298 0.347 0.391
BIF2 CP 0.721 0.916 0.896 0.940 0.949 0.930 0.925

AL 0.450 0.439 0.438 0.407 0.298 0.348 0.391
BpIF1 CP 0.788 0.908 0.901 0.928 0.937 0.921 0.924

AL 0.808 0.520 0.519 0.420 0.291 0.406 0.368
BpIF2 CP 0.787 0.910 0.897 0.928 0.938 0.920 0.924

AL 0.808 0.520 0.519 0.420 0.291 0.406 0.368
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Table (3.6) Coverage probabilities and average lengths of 95% level confidence intervals for
P2 under combined distributions with P2 = 0.9

Size (10,10,10) (30,30,30) (50,30,30) (50,50,50) (100,100,100) (100,50,50) (100,100,50)
Setting (iii): Gamma(α, β) = (4, 10),LN(µ, σ) = (1, 0.5),Weibull(a, b) = (4.07, 7.49), P1 = P3 = 0.8, P2 = 0.9

NA CP 0.689 0.911 0.910 0.923 0.940 0.928 0.900
AL 0.398 0.253 0.256 0.204 0.142 0.164 0.198

ELB CP 0.977 0.820 0.793 0.833 0.946 0.818 0.917
AL 0.638 0.275 0.276 0.195 0.142 0.187 0.159

ELP CP 0.990 0.810 0.829 0.853 0.922 0.849 0.917
AL 0.678 0.277 0.272 0.195 0.143 0.191 0.164

BEL1 CP 0.923 0.974 0.952 0.946 0.967 0.956 0.961
AL 0.681 0.342 0.343 0.234 0.151 0.229 0.178

BEL2 CP 0.978 0.990 0.982 0.968 0.974 0.982 0.972
AL 0.732 0.330 0.331 0.222 0.145 0.216 0.170

BpEL1 CP 0.976 0.995 0.986 0.950 0.965 0.952 0.957
AL 0.507 0.256 0.259 0.202 0.142 0.196 0.164

BpEL2 CP 0.970 0.994 0.984 0.949 0.960 0.948 0.956
AL 0.473 0.249 0.252 0.199 0.141 0.193 0.163

IF CP 0.764 0.838 0.821 0.914 0.965 0.903 0.955
AL 0.365 0.240 0.243 0.205 0.146 0.197 0.171

BIF1 CP 0.836 0.831 0.805 0.892 0.964 0.925 0.884
AL 0.432 0.243 0.245 0.204 0.146 0.172 0.197

BIF2 CP 0.805 0.827 0.804 0.897 0.962 0.924 0.884
AL 0.409 0.237 0.240 0.201 0.146 0.171 0.194

BpIF1 CP 0.745 0.932 0.927 0.936 0.960 0.933 0.948
AL 0.444 0.265 0.268 0.211 0.145 0.204 0.171

BpIF2 CP 0.736 0.933 0.928 0.939 0.959 0.932 0.948
AL 0.435 0.263 0.267 0.210 0.145 0.204 0.170

Setting (iv): Gamma(α, β) = (4, 10),LN(µ, σ) = (1, 0.5),Weibull(a, b) = (4.25, 6), P1 = P3 = 0.9, P2 = 0.9
NA CP 0.629 0.906 0.900 0.904 0.926 0.910 0.895

AL 0.369 0.252 0.254 0.209 0.145 0.163 0.199
ELB CP 0.987 0.798 0.812 0.822 0.924 0.822 0.905

AL 0.634 0.298 0.304 0.204 0.151 0.195 0.169
ELP CP 0.989 0.816 0.805 0.807 0.929 0.819 0.918

AL 0.700 0.286 0.288 0.192 0.145 0.189 0.166
BEL1 CP 0.937 0.959 0.958 0.958 0.958 0.960 0.973

AL 0.691 0.355 0.351 0.242 0.153 0.230 0.175
BEL2 CP 0.990 0.983 0.984 0.979 0.961 0.977 0.965

AL 0.749 0.345 0.342 0.228 0.147 0.217 0.167
BpEL1 CP 0.985 0.990 0.991 0.957 0.948 0.949 0.947

AL 0.503 0.254 0.257 0.203 0.143 0.195 0.162
BpEL2 CP 0.981 0.988 0.988 0.952 0.942 0.949 0.947

AL 0.469 0.247 0.250 0.200 0.142 0.192 0.160
IF CP 0.583 0.805 0.801 0.904 0.944 0.884 0.946

AL 0.282 0.235 0.238 0.206 0.148 0.197 0.169
BIF1 CP 0.765 0.745 0.740 0.852 0.932 0.842 0.834

AL 0.355 0.227 0.229 0.201 0.149 0.156 0.191
BIF2 CP 0.605 0.751 0.751 0.855 0.930 0.849 0.839

AL 0.296 0.223 0.226 0.199 0.148 0.156 0.189
BpIF1 CP 0.670 0.910 0.914 0.925 0.940 0.929 0.937

AL 0.418 0.263 0.264 0.213 0.147 0.203 0.168
BpIF2 CP 0.668 0.910 0.914 0.924 0.939 0.929 0.939

AL 0.411 0.261 0.263 0.213 0.147 0.203 0.168
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Table (3.7) 95% level confidence intervals and point estimates for the sensitivity P2 for MCI.

Biomarker FDG ADAS11
Point estimate CI Point estimate CI

P1 = P3 = 0.6
BEL1 0.395 (0.163 , 0.655) 0.583 (0.325 , 0.819)
BEL2 0.377 (0.135 , 0.658) 0.598 (0.319 , 0.845)
BpEL1 0.365 (0.283 , 0.451) 0.608 (0.523 , 0.689)
BpEL2 0.365 (0.282 , 0.451) 0.606 (0.525 , 0.687)
IF 0.365 (0.278 , 0.450) 0.614 (0.520 , 0.687)
BIF1 0.364 (0.278 , 0.451) 0.603 (0.520 , 0.687)
BIF2 0.364 (0.277 , 0.451) 0.604 (0.520 , 0.688)
BpIF1 0.364 (0.277 , 0.452) 0.604 (0.524 , 0.686)
BpIF2 0.365 (0.277 , 0.448) 0.614 (0.522 , 0.688)

P1 = P3 = 0.7
BEL1 0.262 (0.075 , 0.515) 0.459 (0.216 , 0.712)
BEL2 0.222 (0.044 , 0.488) 0.452 (0.194 , 0.725)
BpEL1 0.196 (0.118 , 0.287) 0.448 (0.347 , 0.547)
BpEL2 0.196 (0.121 , 0.290) 0.447 (0.348 , 0.546)
IF 0.195 (0.112 , 0.282) 0.463 (0.352 , 0.558)
BIF1 0.198 (0.113 , 0.284) 0.455 (0.351 , 0.558)
BIF2 0.196 (0.111 , 0.282) 0.455 (0.351 , 0.558)
BpIF1 0.195 (0.111 , 0.284) 0.454 (0.352 , 0.554)
BpIF2 0.195 (0.109 , 0.282) 0.463 (0.348 , 0.557)
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PART 4

DIRECT ESTIMATION OF THE AREA UNDER THE RECEIVER

OPERATING CHARACTERISTIC CURVE WITH VERIFICATION BIASED

DATA

4.1 Introduction

For a diagnostic test that yields a continuous test result, the receiver operating charac-

teristic (ROC) curve is a popular tool for evaluating the ability of the test to discriminate

between diseased and non-diseased subjects. The continuous test results can be separated

at a specified cutoff point, and the sensitivity and specificity can be computed. If we use T

denote the continuous-scale test result of a subject in both diseased and non-diseased groups,

and let D be a disease indicator with 1 as the diseased subject and 0 as the non-diseased

subject, then, for a given cut-off point c, the sensitivity and the specificity of the test can

be defined as follows:

Sensitivity(c) = P (T > c|D = 1), Specificity(c) = P (T ≤ c|D = 0),

respectively.

When we vary the cut-off point throughout the entire real line, the resulting pairs (1-

specificity, sensitivity) form the ROC curve. The area under the ROC curve (AUC) is

commonly used as a summary index of the accuracy of the diagnostic test. The AUC can

be interpreted as P (T1 > T2), where T1 is the test result from a randomly selected diseased

subject and T2 is the test result from a randomly selected non-diseased subject. The AUC

of a test of interest is bounded between 0.5 and 1. A larger AUC value represents a better

separation in test/biomarker values between the diseased and non-diseased populations. In

particular, a perfect test would achieve an AUC of 1.0, whereas an uninformative test would
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have an AUC of 0.5.

In medical diagnostics, not all subjects with given screening test results ultimately have

their true disease status verified through a very accurate gold standard test. That is to say,

the labels referred to as true disease status of the subjects are partially missing. One reason

for the missing is that the gold standard test is usually costly and invasive. So the common

practice is to apply it only on high-risk subjects based on screening test results. Because

patients at low-risk are more likely to have their true disease status missing, simply ignoring

this missingness and using only subjects with verified disease status may lead to biased re-

sults. Such bias is called verification bias.[21] The missing at random (MAR) assumption[22]

will be adopted to deal with missing labels. Under the MAR assumption, the probability

of a subject being verified does not depend on the true disease status. The application of

existing completed data approaches to MAR problems may result in biased inference and

loss of efficiency. Such bias may mislead in real data analyses. To correct verification bias,

Alonzo and Pepe[23] proposed several methods for estimating the sensitivity and the speci-

ficity of a test by using parametric models (e.g. Probit model or Logistic regression model)

for the probability that a subject is diseased/verified. He et al.[24] developed an inverse

probability weighting (IPW) based method for directly estimating the AUC in the setting

of verification bias. Adimari and Chiogna[25] proposed a fully non-parametric method for

the AUC estimator based on K nearest-neighbor imputation. To apply this non-parametric

method for accurate inference of the AUC, sufficient information from the data needs to be

provided, and a suitable value for K needs to be selected in practice.

This part aims to develop new methods directly estimating the AUC in the presence

of verification bias when the test result is continuous under the assumption that the true

disease status, if missing, is missing at random. We derive new closed-form expressions for

the AUC estimators. The proposed AUC estimators can be easily computed and directly

applied in practice. Our simulation results show that the newly proposed AUC estimators

have outstanding finite sample performance. In section 4.2, we give a brief review of existing

methods to estimate the AUC with verification biased data. The new estimators and their
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properties are introduced in section 4.3. A numeric simulation study is presented in section

4.4. In section 4.5, the competing methods are illustrated using a data set from a study of

neonatal hearing screening.

4.2 Existing Methods with Verification Bias

As mentioned in section 1, Alonzo and Pepe[23] proposed several methods, including

the inverse probability weighting (IPW) method, the full imputations (FI) method, the mean

score imputation (MSI) method and the semi-parametric efficient (SPE) method, to estimate

sensitivity and specificity. We briefly introduce these methods in this section.

Let Ti denote the continuous test result and let Di denote the true disease status for the

i-th subject, i = 1, 2, . . . , n, where Di = 1 indicates that the subject has a disease and Di =

0 indicates that subject does not have the disease. Only a subset of the subjects have their

disease status verified. Let Vi = 1 if the i-th subject has the true disease status verified, and

Vi = 0 otherwise. Let Ai be a vector of observed covariates for the i-th subject that may

be associated with both Di and Vi. The cumulative distribution functions of T |D = 1 and

T |D = 0 are F1 and F0, respectively. Without loss of generality, suppose that larger values

of T are more indicative of disease. All of the methods reviewed in this section are based

on the assumption that disease status verification is conditionally independent of the true

disease status given the test result. The decision to verify the subject’s true disease status

depends on the true disease status only through A and T . If all subjects have their disease

status verified, i.e., Vi = 1, i = 1, 2, . . . , n, we have a complete data set. For any cutoff point

c, the sensitivity, Se(c), and specificity, Sp(c), of the test can be easily estimated by

ŜeFull(c) =

∑n
i=1 I(Ti ≥ c)Di∑n

i=1Di

,

ŜpFull(c) =

∑n
i=1 I(Ti < c)(1−Di)∑n

i=1(1−Di)
,

respectively. These estimators are unbiased for Se(c) and Sp(c), respectively.
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4.2.1 Estimation Methods for Sensitivity and Specificity with Verification Bias

Full Imputation One approach to estimating the prevalence of disease in a two-

phase design is to use full imputation (FI) over the distribution P (D|T,A), [23][52] i.e., FI

imputes the probability of disease for all subjects in the study as a function of (T,A). The

FI estimator of the disease prevalence is

P̂ (D = 1) =
1

n

n∑
i=1

ρ̂i,

where ρ̂i is an estimate of ρi = P (Di = 1|Ti, Ai) that is obtained by using, for example, a

logistic regression model. By the MAR assumption, the disease model P (D = 1|T,A) can

be estimated by using the verified sample.

The ratio of FI estimators of P (T ≥ c,D = 1) and P (D = 1) yields the following FI

estimators for Se(c) and Sp(c):

ŜeFI(c) =

∑n
i=1 I(Ti ≥ c)ρ̂i∑n

i=1 ρ̂i
, (4.1)

ŜpFI(c) =

∑n
i=1 I(Ti < c)(1− ρ̂i)∑n

i=1(1− ρ̂i)
. (4.2)

Mean Score Imputation Mean score imputation (MSI) is another approach used

for estimating the prevalence of disease in two-phase studies.[53][54] In contrast with FI,

MSI only imputes disease status for subjects who are not in the verification sample and uses

the observed disease status for those who are in the verification sample. The ratio of MSI

estimators of P (T ≥ c,D = 1) and P (D = 1) yields the following MSI estimators for Se(c)

and Sp(c):

ŜeMSI(c) =

∑n
i=1 I(Ti ≥ c){ViDi + (1− Vi)ρ̂i}∑n

i=1{ViDi + (1− Vi)ρ̂i}
, (4.3)

ŜpMSI(c) =

∑n
i=1 I(Ti < c){Vi(1−Di) + (1− Vi)(1− ρ̂i)}∑n

i=1{Vi(1−Di) + (1− Vi)(1− ρ̂i)}
. (4.4)
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Again, the MAR assumption implies data from the verification sample can be used to obtain

a valid estimate ρ̂i for ρi.

Inverse Probability Weighting An inverse probability weighting (IPW) estimator

[55] that weights each observation in the verification sample by the inverse of the sampling

fraction (i.e. the probability that the subject was selected for verification) is another ap-

proach used to estimate the prevalence of disease in a two-phase design. The ratio of IPW

estimators of P (T ≥ c,D = 1) and P (D = 1) yields the following IPW estimators for Se(c)

and Sp(c):

ŜeIPW (c) =

∑n
i=1 I(Ti ≥ c)ViDiπ̂

−1
i∑n

i=1 ViDiπ̂
−1
i

, (4.5)

ŜpIPW (c) =

∑n
i=1 I(Ti < c)Vi(1−Di)π̂

−1
i∑n

i=1 Vi(1−Di)π̂
−1
i

(4.6)

where π̂i is an estimate for πi = P (Vi = 1|Ti, Ai). IPW corrects for the biased sampling by

weighting the observed value by inverting the probability that the subject was verified.

Semi-parametric Efficient Approach Following the semi-parametric efficient (SPE)

approach of Alonzo and Pepe,[23] the ratio of SPE estimators of P (T ≥ c,D = 1) and

P (D = 1) yields the following SPE estimators for Se(c) and Sp(c):

ŜeSPE(c) =

∑n
i=1 I(Ti ≥ c){ViDiπ̂

−1
i − (Vi − π̂i)ρ̂iπ̂−1

i }∑n
i=1{ViDiπ̂

−1
i − (Vi − π̂i)ρ̂iπ̂−1

i }
, (4.7)

ŜpSPE(c) =

∑n
i=1 I(Ti < c){Vi(1−Di)π̂

−1
i − (Vi − π̂i)(1− ρ̂i)π̂−1

i }∑n
i=1{Vi(1−Di)π̂

−1
i − (Vi − π̂i)(1− ρ̂i)π̂−1

i }
. (4.8)

For each of the above approaches, when c varies throughout the real line, an empirical

bias corrected ROC curve can be obtained by plotting the pairs (1− Ŝp(c), Ŝe(c)), and the

associated AUC needs to be calculated numerically. A limitation to these methods is that

there is no closed-form expression for the AUC estimators, which motivates the search of

direct estimation methods for the AUC with verification biased data.
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4.2.2 Direct Estimation of the AUC based on IPW

When the verification probability πi = P (Vi = 1|Ti, Ai) is assumed to be known, He et

al.[24] proposed the following estimator of the AUC in the presence of verification bias:

ˆAUC =

∑n
i=1

∑n
j=1 π

−1
i π−1

j ViVjI(Ti > Tj)I(Di > Dj)∑n
i=1

∑n
j=1 π

−1
i π−1

j ViVjI(Di > Dj)

=

∑n
i=1

∑n
j=1

1
2
π−1
i π−1

j ViVj[I(Ti > Tj)I(Di > Dj) + I(Ti < Tj)I(Di < Dj)]∑n
i=1

∑n
j=1

1
2
π−1
i π−1

j ViVj[I(Di > Dj) + I(Di < Dj)]
.

(4.9)

Note that the reason for writing the estimator in the second form (symmetric form) is to

express it as a function of U-statistics. This estimator uses IPW to correct verification bias,

where the weight π−1
i π−1

j is attached to all possible pairs of verified subjects. This estimator

is not unbiased, but it is consistent.

According to Equations (4.5) and (4.6), we define two weights:

rIPW,j = VjDjπ̂
−1
j , j = 1, · · · , n, (4.10)

wIPW,i = Vi(1−Di)π̂
−1
i , i = 1, · · · , n. (4.11)

When πi is known, we take π̂i = πi. Then we can rewrite the AUC estimate from Equation

(4.9) as:

δ̂IPW =

∑n
i=1 ĝIPW (Ti)wIPW,i∑n

i=1wIPW,i
, (4.12)

where

ĝIPW (Ti) =

∑n
j=1 I(Tj ≥ Ti)rIPW,j∑n

j=1 rIPW,j
. (4.13)
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4.2.3 Non-parametric Verification Bias-Corrected AUC Estimation based on K-NN

Method

Adimari and Chiogna [25] proposed a nonparametric verification bias-corrected AUC

estimator using a K-nearest-neighbor (K-NN) imputation method. For a finite positive

integer K and a suitable distance measure, a nearest neighbor imputation estimate of ρi =

P (Di = 1|Ti, Ai), for a subject with true disease status not verified, is defined as

ρ̂Ki =
1

K

K∑
j=1

Di(j),

where {(Yi(j), Di(j)) : Vi(j) = 1, j = 1, . . . , K} is a set of K observed data pairs and Yi(j)

denotes the j-th nearest neighbor to Yi = (Ti, Ai) among all Yh’s corresponding to the

verified patients, i.e., to those Dh’s with Vh = 1. Then, the estimate ρ̂Ki could be used

as an imputation value for the missing label Di. This leads to Adimari and Chiogna’s

non-parametric estimator for the AUC:

ˆAUC =

∑n
i=1

∑n
j=1,j 6=i I(Ti > Tj)D̂Ki(1− D̂Ki)∑n
i=1

∑n
j=1,j 6=i D̂Ki(1− D̂Ki)

, (4.14)

where

D̂Ki = ViDi + (1− Vi)ρ̂Ki.

This method is based on the K-nearest-neighbor imputation, which requires the choice of a

value for K. Simulation results in the study of Adimari and Chiogna[25] suggested that a

value for K around 3 could to be adequate. In this paper, we choose K = 3 in our simulation

study and real data analysis.



76

4.3 New Direct Estimation Methods for the AUC with Verification Bias

Observe that the AUC can be expressed as

δ = P (Tj ≥ Ti|Dj = 1, Di = 0)

= EF0

{
EF1 [I(Tj ≥ Ti|Ti, Dj = 1, Di = 0)]

}
= EF0 [g(Ti)] =

∫ ∞
−∞

g(t)dF0(t), (4.15)

where

g(Ti) = EF1 [I(Tj ≥ Ti|Ti, Dj = 1, Di = 0)],

g(t) = EF1 [I(Tj ≥ t|Dj = 1)] = P (Tj ≥ t|Dj = 1) = Se(t),

F0(t) = P (Ti < t|Di = 0)] = Sp(t).

In other words, the AUC can be directly derived based on sensitivity Se(t) and specificity

Sp(t). Therefore, we can directly get an estimate for the AUC

δ̂ =

∫ ∞
−∞

ĝ(t)dF̂0(t) (4.16)

when an estimate ĝ(t) for g(t) and an estimate F̂0(t) for F0(t) are available.

4.3.1 AUC Estimates based on SPE, FI and MSI

Alonzo and Pepe[23] proposed estimating bias-corrected AUC by applying the trape-

zoidal rule to bias-corrected estimates of true positive fractions and false positive fractions.

But they didn’t give the explicit formulas of the AUC estimators. Motivated by He et al.[24]

and Alonzo and Pepe[23], we derive three new closed-form AUC estimators with verification

bias by applying the estimation methods (SPE, FI, and MSI) for sensitivity and specificity

mentioned in section 4.2.
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According to Equation (4.8), the SPE estimate for F0(t) is

F̂0(t) =ŜpSPE(t) =

∑m
i=1 I(Ti < t)wSPE,i∑m

i=1wSPE,i
, (4.17)

where the weight wSPE,i is defined as

wSPE,i = Vi(1−Di)π̂
−1
i − (Vi − π̂i)(1− ρ̂i)π̂−1

i (4.18)

with π̂i = P̂ (Vi = 1|Ti, Xi), ρ̂i = P̂ (Di = 1|Ti, Xi), i = 1, · · · , n.

From Equation (4.7), we get the SPE estimate for g(t):

ĝ(t) = ĝSPE(t) =ŜeSPE(t) =

∑n
j=1 I(Tj ≥ t)rSPE,j∑n

j=1 rSPE,j
, (4.19)

where the weight rSPE,j is defined as

rSPE,j = VjDjπ̂
−1
i − (Vj − π̂j)ρ̂jπ̂−1

j , j = 1, · · · , n. (4.20)

From Equations (4.16), (4.17) and (4.19), we get an SPE-based estimate for the AUC:

δ̂SPE =

∫ ∞
−∞

ĝSPE(t)dF̂0(t)

=

∑n
i=1 ĝSPE(Ti)wSPE,i∑n

i=1wSPE,i
.

(4.21)

The direct AUC estimate δ̂IPW defined in equation (4.12) can be derived by using equa-

tions (4.5) and (4.6) and the similar approach above.

Similarly, we can get an MSI-based estimate for the AUC using MSI weights as following:

δ̂MSI =

∑n
i=1 ĝMSI(Ti)wMSI,i∑n

i=1wMSI,i

, (4.22)
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where

wMSI,i = Vi(1−Di) + (1− Vi)(1− ρ̂i), i = 1, · · · , n, (4.23)

ĝMSI(Ti) =

∑n
j=1 I(Tj ≥ Ti)rMSI,j∑n

j=1 rMSI,j

(4.24)

with

rMSI,j = VjDj + (1− Vj)ρ̂j, j = 1, · · · , n, (4.25)

and a FI-based estimate for the AUC using FI weights as follows

δ̂FI =

∑n
i=1 ĝFI(Ti)wFI,i∑n

i=1wFI,i
, (4.26)

where

wFI,i = 1− ρ̂i, i = 1, · · · , n, (4.27)

ĝFI(Ti) =

∑n
j=1 I(Tj ≥ Ti)rFI,j∑n

j=1 rFI,j
(4.28)

with

rFI,j = ρ̂j, j = 1, · · · , n. (4.29)

4.3.2 AUC Estimates based on Combined SPE, MSI, FI and IPW Approaches

Since AUC can be directly derived from (4.15) based on sensitivity Se(t) and speci-

ficity Sp(t) that can be estimated using w-weights (i.e., wSPE,i’s, wMSI,i’s, wFI,i’s, wIPW,i’s)

and r-weights (i.e., rSPE,j’s, rMSI,j’s, rFI,j’s, rIPW,j’s), one question is if an optimal/better
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combination(s) of w-weights and r-weights can be identified to produce an optimal/better

estimate(s) for the AUC, which motivates us propose twelve new estimators for the AUC by

using different combinations of w-weights and r-weights in this section.

According to Equations (4.10), (4.13), (4.17) and (4.18), rIPW and wSPE weights can

be used to estimate sensitivity g(t) and specificity F0(t), respectively. Hence, we get the

following IPW-SPE estimator of the AUC by combining weights rIPW,j’s and wSPE,i’s:

δ̂IPW−SPE =

∑n
i=1 ĝIPW (Ti)wSPE,i∑n

i=1wSPE,i
. (4.30)

Similarly, according to Equations (4.13), (4.23) and (4.24), we get the following IPW-

MSI estimator of the AUC by combining weights rIPW,j’s and wMSI,i’s:

δ̂IPW−MSI =

∑n
i=1 ĝIPW (Ti)wMSI,i∑n

i=1wMSI,i

. (4.31)

According to Equations (4.13), (4.27) and (4.28), we get the following IPW-FI estimator

of the AUC by combining weights rIPW,j’s and wFI,i’s:

δ̂IPW−FI =

∑n
i=1 ĝIPW (Ti)wFI,i∑n

i=1wFI,i
. (4.32)

According to Equations (4.19), (4.20) and (4.11), we get the following SPE-IPW esti-

mator of the AUC by combining weights rSPE,j’s and wIPW,i’s:

δ̂SPE−IPW =

∑n
i=1 ĝSPE(Ti)wIPW,i∑n

i=1wIPW,i
. (4.33)

According to Equations (4.19), (4.20) and (4.23), we get the following SPE-MSI esti-

mator of the AUC by combining weights rSPE,j’s and wMSI,i’s:

δ̂SPE−MSI =

∑n
i=1 ĝSPE(Ti)wMSI,i∑n

i=1 wMSI,i

. (4.34)

According to Equations (4.19), (4.20) and (4.27), we get the following SPE-FI estimator
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of the AUC by combining weights rSPE,j’s and wFI,i’s:

δ̂SPE−FI =

∑n
i=1 ĝSPE(Ti)wFI,i∑n

i=1 wFI,i
. (4.35)

According to Equations (4.24), (4.25) and (4.11), we get the following MSI-IPW esti-

mator of the AUC by combining weights rMSI,j’s and wIPW,i’s:

δ̂MSI−IPW =

∑n
i=1 ĝMSI(Ti)wIPW,i∑n

i=1wIPW,i
. (4.36)

According to Equations (4.24), (4.25) and (4.18), we get the following MSI-SPE esti-

mator of the AUC by combining weights rMSI,j’s and wSPE,i’s:

δ̂MSI−SPE =

∑n
i=1 ĝMSI(Ti)wSPE,i∑n

i=1wSPE,i
. (4.37)

According to Equations (4.24), (4.25) and (4.27), we get the following MSI-FI estimator

of the AUC by combining weights rMSI,j’s and wFI,i’s:

δ̂MSI−FI =

∑n
i=1 ĝMSI(Ti)wFI,i∑n

i=1wFI,i
. (4.38)

According to Equations (4.28), (4.29) and (4.11), we get the following FI-IPW estimator

of the AUC by combining weights rFI,j’s and wIPW,i’s:

δ̂FI−IPW =

∑n
i=1 ĝFI(Ti)wIPW,i∑n

i=1wIPW,i
. (4.39)

According to Equations (4.28), (4.29) and (4.18), we get the following FI-SPE estimator

of the AUC by combining weights rFI,j’s and wSPE,i’s:

δ̂FI−SPE =

∑n
i=1 ĝFI(Ti)wSPE,i∑n

i=1wSPE,i
. (4.40)

According to Equations (4.28), (4.29) and (4.23), we get the following FI-MSI estimator
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of the AUC by combining weights rFI,j’s and wMSI,i’s:

δ̂FI−MSI =

∑n
i=1 ĝFI(Ti)wMSI,i∑n

i=1wMSI,i

. (4.41)

Obviously, all the new estimators for the AUC proposed above have closed-form expres-

sions and can be easily computed. These estimators have the following property.

Theorem: All the new estimators for the AUC proposed in section 3 are consistent.

Proof: From the results on bias-corrected estimators of sensitivity and specificity in

Alonzo et al.[54] (see also Alonzo et al.[23]), it follows that the estimators ĝ(t) for g(t) (which

are the SPE, FI, MSI, IPW estimators for Se(t)) and the estimators F̂0(t) for F0(t) (which

are SPE, FI, MSI, IPW estimators for Sp(t)) are consistent. Then the theorem follows from

(4.16) and consistency of ĝ(t) and F̂0(t) right away.

He et al.[24] proposed an asymptotic variance estimate for the IPW-based AUC esti-

mator under the assumption that the probability πi of verification is known. However, in

practice the true value of πi is unknown, and explicitly estimating the variances of the new

estimators for the AUC is still an open question. However, bootstrap method can be used

to estimate the variances of the new estimators.

4.4 Simulation Studies

In this section, simulation studies are conducted to evaluate the finite sample per-

formance and robustness of the proposed various bias-corrected estimators of the AUC in

terms of mean squared error (MSE) and absolute bias. We also compare our newly proposed

methods with the existing IPW-based method and the nonparametric K-NN method. The
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simulation set-up is similar to that of Alonzo and Pepe’s study.[23] Briefly, D is generated

as a dichotomous variable indicating whether a random variable Z = Z1 + Z2 ∼ N(0, 1)

is greater than a threshold h, where Z1 ∼ N(0, 0.5), and Z2 ∼ N(0, 0.5). In this study,

we select h to make the disease prevalence equal 0.3 and 0.5, respectively. T and A are

generated from T = ν1Z1 + τ1Z2 + ε1 and A = ν2Z1 + τ2Z2 + ε2, where ε1 ∼ N(0, 0.25) and

ε2 ∼ N(0, 0.25), and ε1 and ε2 are independent. The inherent accuracy of T or A can be

altered by changing the values of ν1 or ν2 and τ1 or τ2 respectively. We fix ν2 and τ2 and

then select different values of ν1 and τ1 to generate reasonable values of the AUC.

4.4.1 Correct Models

To introduce the verification bias under the MAR assumption, V is generated by us-

ing a Bernoulli random variable with P (V = 1) = 1 for subjects with T > t(0.8) and

P (V = 1) = 0.2 for the rest, where t(0.8) is the 80-th quantile of the distribution of T .

This verification mechanism results in an average of 36% of the subjects receiving disease

verification. Empirical estimates of the verification probabilities yield:

π̂i =

 1.0, Ti > t(0.8)

∑n
i=1 ViI(Ti≤t(0.8))∑n
i=1 I(Ti≤t(0.8))

, Ti ≤ t(0.8)
(4.42)

To apply FI, MSI, and SPE methods, a parametric model for disease probabilities, ρi’s,

must be specified. It was shown in Alonzo and Pepe [23] that a probit model that was linear

in T and A was a true model under above settings. We apply the same probit model for our

correct model study. To apply the K-NN method, we choose K = 3 and Euclidean distance

based on both T and A. 2000 random samples are drawn from underlying distributions with

the sample sizes n = 100, 200, 500, and 1000, respectively, to evaluate the performance of

the proposed estimators and the K-NN estimator for the AUC in terms of MSE and bias.

At this moment, we fix ν2 = τ2 = 1, and select h to make the prevalence of disease equal to

0.3 and 0.5, respectively. Different values of ν1, τ1 are selected to generate the true AUC,
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which equals 0.7, 0.8, 0.9, and 0.96, respectively. We report the numerical results in Table

4.2 (with 0.3 disease prevalence) and Table 4.3 (with 0.5 disease prevalence) and boxplots in

Figure 4.1 .

Place Table 4.2–4.3 here

From Tables 4.2–4.3, we can see that all methods always have lower MSE and bias

with larger sample sizes and higher AUC than those with smaller sample size and lower

AUC. Since the correct disease and verification models are used with the FI, MSI, IPW, and

SPE estimators, it is not surprising that little MSE and absolute bias are observed for their

estimators of the AUC when the sample size is bigger. Obviously, more samples with higher

level separation of disease stages associated with higher AUC can achieve higher accuracy

of the AUC estimators. We also note that all methods almost always have lower MSE and

absolute bias with disease prevalence 0.5 than that with disease prevalence 0.3, especially

when sample size is small (n=100 and 200). It indicates that the balanced diseased and

non-diseased small samples provide higher accuracy of AUC estimates. The K-NN method

works well, especially when the disease prevalence is 0.5. The overall top six methods, MSI,

MSI-FI, FI-MSI, FI-SPE, SPE-FI and SPE-MSI, except the K-NN method, are all MSI and

FI related approaches. We also note that SPE does not work very well but becomes accurate

when it is combined with FI and MSI. MSI method almost always has the best AUC estimate

in terms of lowest MSE and absolute bias under all settings considered here.

4.4.2 Misspecified Models

In this subsection, the misspecification of underlying models will be introduced. We

use similar simulation settings in Alonzo and Pepe’s study [23] included both misspecified

disease models and misspecified verification models.

Misspecified Diseased Models We consider two misspecified diseased models here.

Recall that disease status is simulated as D = I(Z1 +Z2 > h), and T and A are generated as
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Figure (4.1) Boxplots of MSE and Bias with Correct Models.

linear combinations of Z1 and Z2. In the setting where T contains information only about Z1

(i.e. ν1 = 1 and τ1 = 0) and A contains information only about Z2 (i.e. ν2 = 0 and τ2 = 1),

the disease model P (D|T ) only linear in T is misspecified because the true disease process

depends on aspects of A that are not included in T . By borrowing this idea and generating

V in the same way as section 4.1, we have the first misspecified diseased model. We keep

τ1 = 0, ν2 = 0, τ2 = 1 and select reasonable values of ν1 to generate AUC which equals

0.7, 0.8, and 0.84, respectively. To apply the K-NN method, we use K-nearest neighbors

with K = 3 and Euclidean distance based on only T . As mentioned in Section 4.1, only FI,

MSI, and SPE depend on diseased probabilities ρi’s, so we expect there is no much change

for IPW method in this model compared with the correct model. We report the numerical

results in Table 4.4 and boxplots in Figure 4.2 .

Place Table 4.4 here

Similar to the correct models, generally all methods have lower MSE and bias with larger
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sample size and higher AUC than that with smaller sample size and lower AUC. However,

the MSE and bias have no big change as the disease prevalence changes from 0.3 to 0.5. The

reason is that we are using an incorrect disease model and the accuracy of AUC estimator

depends on the estimation of disease probability. Although using the correct verification

process in misspecified disease setting, FI, MSI, and their related estimators of the AUC

that use the incorrect disease model for P (D|T ) are less efficient than the corresponding

estimators that use the correct model for P (D|T,A). Specifically, FI and MSI estimators

that use this incorrect disease model have bigger MSE and absolute bias, especially with

small sample size and small AUC. As expected, there is no much change for IPW method

comparing with the correct model. However, other methods, for example, SPE and SPE

related methods, perform much better than IPW. The overall top six methods are SPE-

MSI, IPW-MSI, SPE, IPW-SPE, IPW, and SPE-IPW. For some settings MSI method also

performs well, especially when the sample size is small (n = 100). The K-NN method does

not perform well except when the disease prevalence is 0.5, and sample size is big (n=1000).

The previous simulations all generated verification as a function of only T . Now, con-

sider the setting where V is simulated such that the true verification model is specified as

a function of T and A. we set log( π
1−π ) = −0.7 + T + A with π = P (V = 1|T,A). In the

presence of verification bias, D is only available for those patients with V = 1. Therefore,

disease status results are available for roughly 40% of patients when ν2 = 1 and τ2 = 1. The

disease model is misspecified if P (D|T ) linear in T is used because A contains information

about the disease process not captured by T . For the K-NN method, we still only consider

T to calculate the distance to estimate the probability of disease. This is the second mis-

specified disease model. Similar as section 4.1, we fix ν2 = τ2 = 1 and select different values

of ν1 and τ1 to generate AUC which equals 0.7, 0.8, 0.9 and 0.96, respectively. We report

the numerical results in Tables 4.5–4.6 and boxplots in Figure 4.2 . Place Table 4.5–4.6 here

Using the misspecified disease model 2, all methods always have lower MSE and bias

with larger sample size and higher AUC than that with smaller sample size and lower AUC.
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Figure (4.2) Boxplots of MSE and Bias with misspecified disease Models.
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However, the performance of the AUC estimates is even worse as the disease prevalence

changes from 0.3 to 0.5 because of the misspecified disease model. Due to the new underlying

model of verification, the performance of IPW is worse compared with the correct model

and misspecified disease model 1. Moreover, the performance of all these methods is worse

than that in previous settings when AUC is less than 0.9. The overall top three methods are

IPW-FI, IPW-MSI, and IPW-SPE. It is because the IPW weight is not depending on disease

probability. Beside these three IPW related methods, FI, MSI-FI, and SPE-FI methods also

perform well comparing with other methods. Note that FI-MSI method and MSI method

are comparable with top IPW related methods when AUC = 0.96.The performance of the

K-NN estimators is not acceptable in this setting.

Misspecified Verification Model We keep the correct diseased model as in section

4.1 and generate V by a logit model as the second misspecified disease model. However,

we estimate the verification probabilities, πi = P (V |T ), by a logistic regression instead of

a correct way. Then a misspecified verification model happens because A is omitted from

logistic regression when we estimate πi but verification depends on both T and A in this

setting. Similar as section 4.1, we keep ν2 = τ2 = 1 and select different values of ν1 and τ1

to generate AUC which equals 0.7, 0.8, 0.9 and 0.96, respectively. We report the numerical

results in Tables 4.7–4.8 and boxplots in Figure 4.3 .

Place Table 4.7–4.8 here

From Tables 4.7–4.8 , we observe that the overall performance trend is similar to that

with misspecified disease models. In addition, some methods, for example, SPE methods and

SPE related methods, always have big MSE through all settings of this model. Especially

when the sample size is small (n = 100), the MSE of SPE related methods is around thousand

time of the best ones under the same setting. In order to show the mean difference between

methods we set 29.531, the maximum value of MSE in misspecified disease model 2, as a

upper bound to adjust the MSE for the boxplots in Figure 4.3 . The overall top four methods
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Figure (4.3) Boxplots of MSE and Bias with Misspecified Verification Models.

are MSI, FI-MSI, MSI-FI, and FI. It is obviously due to MSI and FI weights not depending

on verification probability πi. Beside these four methods, FI-SPE and MSI-SPE are the best

methods expected as SPE method is double robust (see [23]). IPW-FI and IPW-MSI also

work well compared with other methods. The K-NN estimators are still not acceptable in

this setting.

4.5 Study of Neonatal Hearing Screening Data

We apply the proposed methods to estimate AUC in the presence of verification bias to

a neonatal hearing screening data set. Congenital hearing loss (hearing loss present at birth)

is one of the most prevalent chronic conditions in children. Early detection and intervention

will prevent delays in speech and language development and have long-lasting beneficial

effects on social and emotional development and quality of life.[56] The Identification of

Neonatal Hearing Impairment (INHI) is a study designed to evaluate the accuracy of two

passive electronic devices, the Distortion Product Otoacoustic Emissions (DPOAE) test
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and the Transient Evoked Otoacoustic Emissions (TEOAE) test.[23] These two tests can

be administered soon after birth compared with the gold standard test for determining

neonatal hearing loss, the Visual Reinforcement Audiometry (VRA) test, which cannot be

administered until infants are eight to 12 months old. Therefore, the evaluation of these two

screening tests is necessary for the earliest possible diagnosis.

The subset of the INHI data used in this section was generated by Alonzo and Pepe[23]

following a two-phase design. In the first phase, DPOAE and TEOAE test results are

available for all infants. In the second phase, all infants with DPOAE test results greater than

the 80-th quantile of the distribution of DPOAE test results for at least one ear are sent to be

verified, and remaining infants are verified with probability 0.4. The subset includes TEOAE

and DPOAE test results on 5103 ears, corresponding to 2763 infants. Also, verification

statuses Vi’s and VRA results, Di’s, for 1571 verified infants are available. We follow the

same argument in Alonzo and Pepe’s study[23] to let T =DPOAE and A =TEOAE. Logistic

regression is used to fit P (D|T,A) to obtain ρi’s in the final model. We use 5103 observations

in our real case study, and the AUC is 0.632 based on the full data. For infants with DPOAE

test results greater than the 80-th quantile of DPOAE results, the verification proportion

πi = 1; for infants with DPOAE test results below the threshold, πi = 0.4. We find the point

estimates of the AUC and the corresponding confidence interval using bootstrap variances.

The results are provided in Table 4.1 . Comparing to the full data, all these methods

overestimate the AUC. IPW method, which gives an AUC estimate closest to 0.632, has

the best performance. IPW-related methods also work better than other methods. FI and

FI-related methods have a shorter half length of confidence interval. The sample R code to

estimate the AUC for the real example is provided in appendix.
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Table (4.1) Real data AUC estimates and confidence intervals with verification bias.

Methods Estimated AUC Confidence Interval
Full data 0.632 (0.585, 0.679)
3-NN 0.640 (0.568, 0.711)
FI 0.646 (0.597, 0.694)
MSI 0.650 (0.597, 0.703)
SPE 0.644 (0.575, 0.714)
IPW 0.637 (0.577, 0.697)
SPE-FI 0.645 (0.576, 0.713)
SPE-MSI 0.645 (0.576, 0.714)
SPE-IPW 0.642 (0.572, 0.712)
FI-IPW 0.643 (0.592, 0.695)
FI-MSI 0.646 (0.598, 0.694)
FI-SPE 0.645 (0.597, 0.694)
IPW-SPE 0.639 (0.582, 0.696)
IPW-FI 0.639 (0.582, 0.696)
IPW-MSI 0.639 (0.582, 0.696)
MSI-FI 0.650 (0.598, 0.703)
MSI-SPE 0.650 (0.597, 0.703)
MSI-IPW 0.648 (0.593, 0.703)
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Table (4.2) Correct models: MSE (×100) and Bias (×10) of AUC estimates with verification
bias. Disease prevalence =0.3.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.3 KNN 0.610 0.627 0.323 0.455 0.148 0.302 0.073 0.214
FI 0.754 0.696 0.332 0.461 0.139 0.298 0.075 0.220
MSI 0.716 0.676 0.307 0.444 0.125 0.284 0.065 0.204
SPE 0.875 0.747 0.377 0.488 0.153 0.312 0.076 0.222
IPW 1.268 0.905 0.576 0.612 0.211 0.365 0.117 0.272
SPE-FI 0.788 0.708 0.335 0.461 0.134 0.293 0.067 0.208
SPE-MSI 0.783 0.706 0.333 0.459 0.134 0.293 0.067 0.208
SPE-IPW 0.991 0.794 0.442 0.528 0.170 0.329 0.090 0.241
FI-IPW 0.882 0.754 0.402 0.508 0.160 0.323 0.089 0.238
FI-MSI 0.739 0.689 0.324 0.456 0.135 0.294 0.072 0.216
FI-SPE 0.754 0.694 0.328 0.458 0.136 0.295 0.071 0.214
IPW-SPE 1.152 0.860 0.512 0.576 0.195 0.350 0.103 0.256
IPW-FI 1.085 0.836 0.480 0.560 0.181 0.338 0.096 0.246
IPW-MSI 1.074 0.831 0.475 0.557 0.179 0.337 0.095 0.245
MSI-FI 0.730 0.683 0.314 0.449 0.129 0.287 0.067 0.208
MSI-SPE 0.738 0.685 0.316 0.449 0.128 0.287 0.065 0.205
MSI-IPW 0.862 0.742 0.388 0.498 0.151 0.314 0.082 0.229

0.8 0.3 KNN 0.426 0.521 0.236 0.387 0.116 0.270 0.058 0.192
FI 0.474 0.555 0.239 0.392 0.099 0.254 0.058 0.194
MSI 0.454 0.540 0.221 0.376 0.083 0.232 0.043 0.166
SPE 0.613 0.628 0.296 0.433 0.117 0.273 0.062 0.198
IPW 0.872 0.756 0.415 0.515 0.168 0.327 0.086 0.232
SPE-FI 0.527 0.585 0.257 0.405 0.099 0.252 0.050 0.180
SPE-MSI 0.529 0.585 0.258 0.406 0.102 0.255 0.053 0.185
SPE-IPW 0.725 0.687 0.342 0.464 0.135 0.292 0.071 0.210
FI-IPW 0.568 0.614 0.282 0.427 0.109 0.266 0.059 0.197
FI-MSI 0.460 0.545 0.229 0.383 0.092 0.244 0.050 0.181
FI-SPE 0.473 0.553 0.234 0.388 0.092 0.244 0.050 0.180
IPW-SPE 0.750 0.695 0.375 0.487 0.152 0.310 0.078 0.221
IPW-FI 0.685 0.668 0.344 0.467 0.135 0.294 0.067 0.206
IPW-MSI 0.679 0.662 0.342 0.466 0.137 0.295 0.069 0.209
MSI-FI 0.464 0.547 0.228 0.383 0.089 0.239 0.047 0.174
MSI-SPE 0.474 0.552 0.230 0.383 0.086 0.235 0.044 0.168
MSI-IPW 0.573 0.613 0.279 0.422 0.104 0.258 0.053 0.185

0.9 0.3 KNN 0.231 0.368 0.125 0.276 0.058 0.190 0.032 0.141
FI 0.222 0.383 0.112 0.275 0.059 0.201 0.043 0.178
MSI 0.215 0.368 0.098 0.251 0.039 0.159 0.022 0.121
SPE 0.331 0.448 0.160 0.311 0.061 0.196 0.034 0.145
IPW 0.428 0.518 0.209 0.359 0.080 0.225 0.043 0.164
SPE-FI 0.269 0.413 0.127 0.282 0.047 0.174 0.024 0.125
SPE-MSI 0.278 0.414 0.134 0.286 0.052 0.182 0.029 0.135
SPE-IPW 0.393 0.489 0.192 0.343 0.069 0.208 0.038 0.155
FI-IPW 0.261 0.414 0.129 0.295 0.054 0.190 0.033 0.150
FI-MSI 0.213 0.371 0.100 0.258 0.046 0.174 0.030 0.143
FI-SPE 0.218 0.376 0.105 0.262 0.046 0.175 0.030 0.142
IPW-SPE 0.364 0.478 0.178 0.330 0.073 0.213 0.038 0.156
IPW-FI 0.312 0.452 0.150 0.307 0.059 0.193 0.029 0.137
IPW-MSI 0.317 0.449 0.155 0.309 0.064 0.200 0.034 0.146
MSI-FI 0.221 0.378 0.105 0.264 0.048 0.178 0.031 0.146
MSI-SPE 0.226 0.376 0.105 0.259 0.041 0.163 0.023 0.123
MSI-IPW 0.273 0.418 0.132 0.294 0.049 0.179 0.027 0.132
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.96 0.3 KNN 0.070 0.200 0.038 0.151 0.014 0.094 0.008 0.070
FI 0.065 0.216 0.040 0.176 0.031 0.159 0.028 0.159
MSI 0.063 0.205 0.030 0.145 0.016 0.108 0.013 0.098
SPE 0.102 0.251 0.044 0.163 0.017 0.104 0.008 0.072
IPW 0.136 0.288 0.060 0.192 0.022 0.118 0.011 0.084
SPE-FI 0.075 0.225 0.035 0.155 0.015 0.102 0.009 0.079
SPE-MSI 0.080 0.226 0.035 0.150 0.014 0.095 0.007 0.067
SPE-IPW 0.134 0.280 0.056 0.183 0.021 0.114 0.010 0.080
FI-IPW 0.077 0.226 0.038 0.164 0.021 0.125 0.016 0.114
FI-MSI 0.062 0.207 0.032 0.154 0.020 0.125 0.017 0.119
FI-SPE 0.064 0.210 0.032 0.153 0.019 0.119 0.016 0.112
IPW-SPE 0.103 0.258 0.047 0.171 0.018 0.107 0.009 0.075
IPW-FI 0.079 0.236 0.040 0.164 0.017 0.106 0.010 0.081
IPW-MSI 0.083 0.236 0.040 0.160 0.015 0.099 0.008 0.070
MSI-FI 0.064 0.212 0.036 0.164 0.024 0.138 0.022 0.135
MSI-SPE 0.067 0.211 0.031 0.146 0.016 0.105 0.012 0.092
MSI-IPW 0.082 0.231 0.038 0.160 0.018 0.112 0.012 0.095

Table (4.3) Correct models:MSE (×100) and Bias (×10) of AUC estimates with verification
bias. Disease prevalence =0.5.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.5 KNN 0.583 0.606 0.287 0.422 0.134 0.294 0.079 0.225
FI 0.567 0.593 0.275 0.420 0.102 0.254 0.053 0.181
MSI 0.555 0.586 0.268 0.415 0.101 0.251 0.055 0.185
SPE 0.707 0.662 0.346 0.467 0.139 0.293 0.083 0.231
IPW 1.061 0.827 0.532 0.585 0.204 0.356 0.118 0.279
SPE-FI 0.580 0.601 0.278 0.422 0.104 0.254 0.057 0.190
SPE-MSI 0.584 0.601 0.282 0.424 0.110 0.262 0.064 0.202
SPE-IPW 0.897 0.744 0.460 0.538 0.174 0.328 0.101 0.255
FI-IPW 0.791 0.703 0.406 0.510 0.150 0.307 0.081 0.229
FI-MSI 0.555 0.586 0.269 0.415 0.100 0.250 0.052 0.181
FI-SPE 0.580 0.600 0.282 0.426 0.106 0.257 0.058 0.192
IPW-SPE 0.895 0.755 0.429 0.524 0.173 0.328 0.105 0.261
IPW-FI 0.804 0.717 0.377 0.495 0.145 0.301 0.081 0.227
IPW-MSI 0.798 0.714 0.378 0.495 0.149 0.304 0.087 0.237
MSI-FI 0.561 0.590 0.271 0.417 0.100 0.251 0.052 0.180
MSI-SPE 0.591 0.604 0.289 0.430 0.111 0.263 0.063 0.200
MSI-IPW 0.800 0.705 0.411 0.512 0.153 0.309 0.085 0.234

0.8 0.5 KNN 0.437 0.523 0.213 0.369 0.089 0.238 0.046 0.171
FI 0.438 0.531 0.246 0.402 0.116 0.279 0.083 0.240
MSI 0.415 0.513 0.211 0.370 0.083 0.233 0.050 0.180
SPE 0.528 0.580 0.248 0.397 0.088 0.237 0.048 0.176
IPW 0.806 0.719 0.379 0.491 0.142 0.302 0.073 0.217
SPE-FI 0.434 0.525 0.219 0.375 0.085 0.235 0.051 0.182
SPE-MSI 0.430 0.520 0.206 0.362 0.074 0.219 0.040 0.161
SPE-IPW 0.694 0.659 0.327 0.456 0.118 0.276 0.063 0.199
FI-IPW 0.613 0.624 0.308 0.452 0.120 0.281 0.068 0.209
FI-MSI 0.420 0.516 0.221 0.379 0.092 0.246 0.059 0.197
FI-SPE 0.442 0.531 0.227 0.385 0.088 0.240 0.053 0.185
IPW-SPE 0.667 0.653 0.309 0.442 0.115 0.273 0.061 0.199
IPW-FI 0.585 0.617 0.293 0.436 0.116 0.275 0.064 0.203
IPW-MSI 0.574 0.608 0.275 0.421 0.104 0.260 0.053 0.186
MSI-FI 0.430 0.524 0.232 0.390 0.103 0.261 0.070 0.217
MSI-SPE 0.446 0.532 0.222 0.379 0.082 0.231 0.047 0.173
MSI-IPW 0.618 0.625 0.304 0.446 0.115 0.274 0.062 0.199
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.9 0.5 KNN 0.255 0.393 0.121 0.278 0.052 0.184 0.027 0.133
FI 0.262 0.419 0.156 0.331 0.091 0.259 0.076 0.245
MSI 0.250 0.404 0.129 0.294 0.060 0.201 0.042 0.171
SPE 0.336 0.458 0.154 0.313 0.054 0.185 0.028 0.133
IPW 0.474 0.541 0.222 0.375 0.077 0.218 0.040 0.162
SPE-FI 0.258 0.410 0.130 0.292 0.056 0.194 0.036 0.155
SPE-MSI 0.261 0.410 0.123 0.280 0.046 0.173 0.025 0.127
SPE-IPW 0.450 0.521 0.198 0.352 0.070 0.209 0.037 0.154
FI-IPW 0.366 0.479 0.173 0.340 0.071 0.217 0.046 0.176
FI-MSI 0.253 0.408 0.137 0.304 0.068 0.217 0.051 0.193
FI-SPE 0.263 0.411 0.134 0.297 0.057 0.195 0.037 0.158
IPW-SPE 0.367 0.486 0.182 0.339 0.064 0.200 0.032 0.145
IPW-FI 0.300 0.453 0.158 0.324 0.066 0.208 0.041 0.166
IPW-MSI 0.301 0.448 0.150 0.312 0.056 0.189 0.030 0.140
MSI-FI 0.256 0.413 0.146 0.317 0.079 0.239 0.063 0.220
MSI-SPE 0.269 0.414 0.132 0.292 0.052 0.185 0.031 0.143
MSI-IPW 0.375 0.482 0.172 0.338 0.067 0.209 0.040 0.164

0.96 0.5 KNN 0.106 0.238 0.047 0.168 0.019 0.109 0.010 0.079
FI 0.081 0.243 0.052 0.200 0.040 0.180 0.037 0.179
MSI 0.079 0.237 0.045 0.181 0.030 0.151 0.025 0.142
SPE 0.119 0.276 0.056 0.189 0.023 0.121 0.011 0.082
IPW 0.153 0.305 0.075 0.215 0.029 0.134 0.014 0.095
SPE-FI 0.083 0.240 0.043 0.172 0.023 0.129 0.016 0.106
SPE-MSI 0.086 0.242 0.042 0.169 0.021 0.120 0.013 0.093
SPE-IPW 0.152 0.303 0.068 0.207 0.026 0.129 0.013 0.090
FI-IPW 0.111 0.268 0.053 0.191 0.026 0.134 0.017 0.111
FI-MSI 0.080 0.240 0.048 0.189 0.034 0.163 0.030 0.158
FI-SPE 0.086 0.244 0.045 0.177 0.023 0.127 0.016 0.106
IPW-SPE 0.124 0.283 0.061 0.198 0.025 0.125 0.012 0.087
IPW-FI 0.089 0.250 0.048 0.183 0.025 0.132 0.017 0.111
IPW-MSI 0.092 0.252 0.047 0.180 0.023 0.124 0.014 0.098
MSI-FI 0.079 0.239 0.049 0.191 0.035 0.167 0.031 0.162
MSI-SPE 0.088 0.246 0.044 0.174 0.021 0.121 0.013 0.095
MSI-IPW 0.114 0.270 0.053 0.189 0.024 0.128 0.015 0.101
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Table (4.4) Misspecified-disease model 1: MSE (×100) and Bias (×10) of AUC estimates
with verification bias.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.3 KNN 1.342 0.933 0.644 0.646 0.248 0.399 0.123 0.279
FI 2.149 1.270 1.511 1.071 1.198 0.998 1.117 0.999
MSI 1.474 1.027 0.922 0.814 0.659 0.713 0.585 0.702
SPE 1.280 0.908 0.588 0.616 0.225 0.381 0.113 0.268
IPW 1.266 0.910 0.578 0.607 0.223 0.378 0.116 0.272
SPE-FI 1.132 0.857 0.509 0.575 0.203 0.359 0.108 0.263
SPE-MSI 1.057 0.824 0.471 0.552 0.183 0.341 0.094 0.245
SPE-IPW 1.375 0.946 0.602 0.617 0.231 0.385 0.120 0.277
FI-IPW 2.065 1.237 1.357 1.006 1.021 0.904 0.919 0.889
FI-MSI 1.998 1.221 1.388 1.023 1.094 0.951 1.015 0.950
FI-SPE 1.963 1.204 1.319 0.989 1.003 0.897 0.915 0.892
IPW-SPE 1.320 0.920 0.625 0.636 0.237 0.388 0.118 0.273
IPW-FI 1.162 0.867 0.538 0.593 0.211 0.368 0.112 0.268
IPW-MSI 1.089 0.835 0.501 0.571 0.192 0.349 0.099 0.251
MSI-FI 1.630 1.084 1.034 0.866 0.744 0.762 0.663 0.752
MSI-SPE 1.452 1.013 0.876 0.786 0.594 0.664 0.513 0.645
MSI-IPW 1.570 1.055 0.918 0.807 0.613 0.676 0.520 0.646

0.8 0.3 KNN 0.941 0.777 0.428 0.524 0.165 0.326 0.084 0.232
FI 1.271 1.019 1.089 0.967 0.970 0.950 0.941 0.951
MSI 0.795 0.765 0.567 0.654 0.422 0.593 0.383 0.585
SPE 0.806 0.727 0.391 0.502 0.145 0.305 0.075 0.217
IPW 0.836 0.739 0.417 0.518 0.153 0.316 0.080 0.226
SPE-FI 0.712 0.693 0.365 0.490 0.148 0.312 0.085 0.236
SPE-MSI 0.653 0.655 0.322 0.456 0.119 0.278 0.061 0.198
SPE-IPW 0.890 0.754 0.427 0.524 0.155 0.318 0.081 0.227
FI-IPW 1.102 0.931 0.860 0.835 0.708 0.790 0.666 0.787
FI-MSI 1.068 0.918 0.871 0.851 0.744 0.821 0.712 0.821
FI-SPE 1.056 0.910 0.837 0.826 0.702 0.791 0.663 0.788
IPW-SPE 0.823 0.733 0.403 0.508 0.149 0.309 0.076 0.220
IPW-FI 0.729 0.700 0.374 0.496 0.153 0.318 0.086 0.239
IPW-MSI 0.671 0.663 0.333 0.463 0.124 0.282 0.063 0.200
MSI-FI 0.974 0.862 0.743 0.767 0.595 0.721 0.554 0.716
MSI-SPE 0.797 0.765 0.547 0.637 0.396 0.565 0.351 0.552
MSI-IPW 0.863 0.797 0.581 0.658 0.406 0.570 0.357 0.554

0.84 0.3 KNN 0.693 0.662 0.316 0.446 0.126 0.282 0.062 0.199
FI 0.927 0.882 0.838 0.864 0.763 0.849 0.744 0.850
MSI 0.564 0.647 0.415 0.566 0.317 0.515 0.286 0.508
SPE 0.632 0.644 0.290 0.433 0.117 0.272 0.058 0.192
IPW 0.661 0.660 0.319 0.456 0.123 0.278 0.062 0.200
SPE-FI 0.553 0.613 0.283 0.430 0.125 0.287 0.073 0.221
SPE-MSI 0.510 0.583 0.243 0.396 0.097 0.249 0.048 0.175
SPE-IPW 0.690 0.670 0.323 0.458 0.124 0.279 0.062 0.199
FI-IPW 0.771 0.784 0.625 0.721 0.526 0.687 0.493 0.682
FI-MSI 0.745 0.774 0.632 0.733 0.548 0.709 0.525 0.708
FI-SPE 0.737 0.766 0.611 0.715 0.520 0.686 0.494 0.685
IPW-SPE 0.647 0.648 0.297 0.437 0.120 0.275 0.059 0.194
IPW-FI 0.568 0.621 0.290 0.436 0.128 0.291 0.075 0.223
IPW-MSI 0.527 0.589 0.250 0.401 0.100 0.253 0.049 0.177
MSI-FI 0.719 0.750 0.581 0.691 0.481 0.656 0.452 0.653
MSI-SPE 0.567 0.644 0.403 0.551 0.299 0.495 0.267 0.486
MSI-IPW 0.616 0.673 0.426 0.566 0.308 0.501 0.268 0.484
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.5 KNN 1.173 0.856 0.573 0.606 0.214 0.372 0.109 0.261
FI 1.735 1.129 1.238 0.970 0.951 0.884 0.894 0.895
MSI 1.141 0.886 0.648 0.666 0.365 0.505 0.292 0.470
SPE 1.134 0.854 0.523 0.573 0.194 0.353 0.097 0.250
IPW 1.087 0.837 0.519 0.573 0.195 0.354 0.100 0.255
SPE-FI 1.070 0.842 0.602 0.638 0.343 0.494 0.277 0.462
SPE-MSI 0.888 0.753 0.424 0.519 0.172 0.333 0.102 0.261
SPE-IPW 1.296 0.901 0.592 0.605 0.215 0.370 0.112 0.268
FI-IPW 1.397 0.988 0.788 0.737 0.425 0.543 0.324 0.487
FI-MSI 1.346 0.977 0.834 0.769 0.540 0.633 0.469 0.619
FI-SPE 1.254 0.931 0.712 0.696 0.401 0.523 0.311 0.481
IPW-SPE 1.169 0.864 0.561 0.600 0.214 0.369 0.105 0.259
IPW-FI 1.113 0.863 0.637 0.654 0.359 0.503 0.288 0.468
IPW-MSI 0.927 0.774 0.460 0.546 0.189 0.350 0.111 0.272
MSI-FI 1.467 1.025 0.977 0.846 0.692 0.737 0.630 0.736
MSI-SPE 1.100 0.861 0.574 0.616 0.272 0.422 0.181 0.352
MSI-IPW 1.258 0.922 0.654 0.659 0.298 0.448 0.196 0.365

0.8 0.5 KNN 0.855 0.728 0.397 0.501 0.143 0.302 0.072 0.214
FI 1.211 0.994 1.028 0.938 0.937 0.937 0.913 0.939
MSI 0.741 0.728 0.495 0.602 0.354 0.533 0.316 0.524
SPE 0.792 0.709 0.357 0.478 0.130 0.291 0.069 0.213
IPW 0.782 0.705 0.385 0.501 0.139 0.298 0.073 0.217
SPE-FI 0.703 0.703 0.441 0.558 0.309 0.492 0.265 0.476
SPE-MSI 0.564 0.609 0.281 0.428 0.128 0.291 0.084 0.238
SPE-IPW 0.913 0.751 0.420 0.516 0.149 0.309 0.078 0.224
FI-IPW 0.886 0.793 0.548 0.633 0.348 0.513 0.291 0.485
FI-MSI 0.873 0.808 0.638 0.702 0.504 0.657 0.469 0.655
FI-SPE 0.796 0.749 0.497 0.599 0.330 0.503 0.282 0.482
IPW-SPE 0.796 0.709 0.375 0.491 0.136 0.295 0.072 0.217
IPW-FI 0.734 0.715 0.461 0.568 0.315 0.493 0.269 0.475
IPW-MSI 0.592 0.626 0.302 0.446 0.134 0.297 0.088 0.243
MSI-FI 1.027 0.898 0.823 0.823 0.719 0.810 0.690 0.810
MSI-SPE 0.713 0.695 0.397 0.522 0.221 0.396 0.171 0.355
MSI-IPW 0.817 0.746 0.456 0.565 0.241 0.414 0.181 0.364

0.84 0.5 KNN 0.720 0.670 0.328 0.459 0.121 0.281 0.062 0.198
FI 0.947 0.891 0.852 0.873 0.772 0.856 0.763 0.863
MSI 0.592 0.656 0.425 0.571 0.313 0.510 0.288 0.509
SPE 0.651 0.642 0.289 0.425 0.113 0.268 0.056 0.191
IPW 0.677 0.661 0.313 0.444 0.119 0.277 0.061 0.199
SPE-FI 0.559 0.631 0.368 0.520 0.255 0.450 0.225 0.442
SPE-MSI 0.462 0.553 0.236 0.396 0.114 0.276 0.077 0.229
SPE-IPW 0.768 0.695 0.340 0.456 0.126 0.283 0.063 0.201
FI-IPW 0.683 0.701 0.434 0.569 0.278 0.463 0.234 0.440
FI-MSI 0.688 0.723 0.538 0.658 0.430 0.614 0.408 0.618
FI-SPE 0.604 0.657 0.400 0.548 0.265 0.455 0.230 0.441
IPW-SPE 0.652 0.643 0.293 0.427 0.117 0.273 0.059 0.195
IPW-FI 0.582 0.645 0.375 0.524 0.259 0.450 0.229 0.443
IPW-MSI 0.484 0.571 0.244 0.401 0.118 0.280 0.080 0.234
MSI-FI 0.812 0.808 0.695 0.775 0.606 0.751 0.592 0.756
MSI-SPE 0.550 0.616 0.323 0.479 0.184 0.364 0.145 0.334
MSI-IPW 0.642 0.667 0.364 0.508 0.199 0.376 0.150 0.337
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Table (4.5) Misspecified-disease model 2: MSE (×100) and Bias (×10) of AUC estimates
with verification bias. Disease prevalence=0.3.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.3 KNN 11.420 3.026 10.983 3.079 10.287 3.090 10.188 3.127
FI 10.513 2.776 9.364 2.768 8.367 2.759 8.124 2.775
MSI 11.235 2.987 10.605 3.049 9.964 3.069 9.875 3.093
SPE 13.433 3.372 13.100 3.464 12.625 3.490 12.628 3.519
IPW 7.787 2.601 7.399 2.626 7.004 2.610 6.954 2.617
SPE-FI 11.677 2.981 10.751 3.016 9.865 3.024 9.678 3.045
SPE-MSI 12.363 3.163 11.748 3.229 11.091 3.247 11.011 3.272
SPE-IPW 20.992 4.479 21.229 4.562 21.148 4.583 21.212 4.597
FI-IPW 18.166 4.143 18.633 4.264 18.719 4.308 18.823 4.329
FI-MSI 10.717 2.893 10.044 2.949 9.383 2.969 9.279 2.994
FI-SPE 11.492 3.072 11.180 3.172 10.753 3.209 10.747 3.239
IPW-SPE 4.311 1.706 3.355 1.570 2.605 1.475 2.432 1.480
IPW-FI 4.564 1.688 3.004 1.378 1.840 1.121 1.488 1.055
IPW-MSI 4.165 1.637 2.964 1.418 2.063 1.254 1.822 1.236
MSI-FI 10.813 2.839 9.790 2.853 8.866 2.853 8.654 2.872
MSI-SPE 12.129 3.181 11.825 3.277 11.394 3.310 11.395 3.339
MSI-IPW 19.159 4.270 19.527 4.372 19.550 4.405 19.638 4.423

0.8 0.3 KNN 13.467 3.278 13.247 3.323 12.313 3.303 12.097 3.339
FI 6.452 1.957 4.725 1.794 3.456 1.673 3.099 1.657
MSI 8.402 2.377 6.956 2.317 5.729 2.246 5.406 2.244
SPE 11.128 2.864 9.822 2.858 8.587 2.806 8.292 2.811
IPW 8.237 2.684 7.800 2.702 7.412 2.687 7.340 2.690
SPE-FI 7.581 2.182 5.886 2.065 4.571 1.969 4.206 1.958
SPE-MSI 9.349 2.539 7.840 2.486 6.545 2.415 6.208 2.413
SPE-IPW 25.187 4.851 25.685 4.991 25.678 5.037 25.820 5.065
FI-IPW 21.166 4.412 21.927 4.597 22.110 4.669 22.303 4.705
FI-MSI 7.767 2.256 6.327 2.183 5.128 2.110 4.809 2.108
FI-SPE 9.205 2.547 8.012 2.537 6.898 2.493 6.625 2.500
IPW-SPE 2.686 1.206 1.637 0.980 0.933 0.797 0.739 0.752
IPW-FI 2.045 1.030 0.918 0.714 0.313 0.441 0.157 0.317
IPW-MSI 2.221 1.063 1.145 0.777 0.490 0.532 0.311 0.438
MSI-FI 6.876 2.048 5.193 1.910 3.919 1.803 3.563 1.791
MSI-SPE 9.991 2.685 8.774 2.680 7.623 2.634 7.344 2.640
MSI-IPW 22.936 4.616 23.598 4.779 23.710 4.839 23.884 4.871
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.9 0.3 KNN 11.707 2.946 11.136 2.906 10.250 2.845 9.544 2.787
FI 1.250 0.723 0.564 0.527 0.223 0.359 0.147 0.305
MSI 2.111 0.980 1.193 0.822 0.672 0.697 0.561 0.679
SPE 3.149 1.280 2.018 1.145 1.302 1.025 1.154 1.012
IPW 5.985 2.257 5.649 2.285 5.238 2.253 5.167 2.254
SPE-FI 1.567 0.821 0.801 0.645 0.387 0.497 0.295 0.464
SPE-MSI 2.383 1.063 1.396 0.907 0.819 0.783 0.697 0.767
SPE-IPW 17.298 3.826 16.684 3.902 15.469 3.855 15.290 3.867
FI-IPW 13.748 3.342 13.500 3.478 12.656 3.476 12.581 3.502
FI-MSI 1.868 0.904 1.005 0.736 0.530 0.602 0.430 0.580
FI-SPE 2.461 1.081 1.489 0.942 0.901 0.828 0.782 0.817
IPW-SPE 0.552 0.460 0.194 0.309 0.069 0.202 0.043 0.166
IPW-FI 0.327 0.431 0.156 0.347 0.129 0.335 0.123 0.337
IPW-MSI 0.385 0.387 0.108 0.243 0.034 0.148 0.018 0.111
MSI-FI 1.391 0.764 0.671 0.580 0.297 0.424 0.214 0.382
MSI-SPE 2.792 1.181 1.750 1.048 1.104 0.934 0.972 0.922
MSI-IPW 15.633 3.616 15.237 3.720 14.231 3.695 14.110 3.714

0.96 0.3 KNN 5.681 1.763 4.458 1.509 3.605 1.332 3.326 1.263
FI 0.065 0.211 0.038 0.173 0.029 0.156 0.027 0.155
MSI 0.099 0.207 0.037 0.137 0.012 0.083 0.006 0.059
SPE 0.172 0.271 0.073 0.193 0.031 0.140 0.022 0.124
IPW 2.279 1.327 1.991 1.318 1.777 1.298 1.735 1.299
SPE-FI 0.067 0.191 0.027 0.132 0.011 0.089 0.008 0.074
SPE-MSI 0.117 0.223 0.045 0.150 0.016 0.095 0.009 0.073
SPE-IPW 4.014 1.667 3.014 1.571 2.431 1.498 2.302 1.485
FI-IPW 2.715 1.266 1.996 1.215 1.561 1.173 1.477 1.175
FI-MSI 0.085 0.203 0.033 0.140 0.012 0.089 0.007 0.068
FI-SPE 0.117 0.223 0.044 0.149 0.014 0.090 0.007 0.066
IPW-SPE 0.048 0.164 0.024 0.119 0.011 0.082 0.007 0.068
IPW-FI 0.035 0.162 0.025 0.140 0.020 0.129 0.018 0.128
IPW-MSI 0.031 0.137 0.014 0.095 0.005 0.060 0.003 0.043
MSI-FI 0.062 0.190 0.028 0.141 0.016 0.109 0.013 0.101
MSI-SPE 0.144 0.244 0.058 0.169 0.023 0.115 0.015 0.096
MSI-IPW 3.487 1.523 2.631 1.450 2.115 1.390 2.008 1.383
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Table (4.6) Misspecified-disease model 2: MSE (×100) and Bias (×10) of AUC estimates
with verification bias. Disease prevalence=0.5.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.5 KNN 20.639 4.211 18.541 4.057 16.736 3.962 15.846 3.904
FI 20.623 3.965 21.031 4.135 21.672 4.418 21.568 4.521
MSI 20.987 4.233 21.679 4.485 22.351 4.680 22.480 4.720
SPE 22.493 4.442 22.889 4.652 23.225 4.784 23.205 4.801
IPW 12.810 3.229 11.528 3.199 10.827 3.221 10.531 3.210
SPE-FI 21.390 4.054 21.964 4.242 22.786 4.545 22.767 4.654
SPE-MSI 22.038 4.345 22.609 4.583 23.191 4.768 23.288 4.805
SPE-IPW 25.239 4.877 24.589 4.889 24.338 4.910 24.135 4.901
FI-IPW 22.903 4.635 22.661 4.691 22.644 4.736 22.519 4.734
FI-MSI 20.100 4.136 20.860 4.395 21.577 4.597 21.725 4.640
FI-SPE 20.380 4.216 21.040 4.455 21.559 4.608 21.605 4.632
IPW-SPE 11.798 3.028 10.676 3.016 10.052 3.078 9.816 3.089
IPW-FI 15.490 3.344 14.385 3.264 13.032 3.212 11.933 3.194
IPW-MSI 12.029 3.023 10.975 3.030 10.347 3.099 10.118 3.125
MSI-FI 20.939 4.003 21.451 4.184 22.199 4.479 22.143 4.586
MSI-SPE 21.345 4.321 21.904 4.549 22.356 4.693 22.377 4.714
MSI-IPW 23.972 4.748 23.563 4.785 23.456 4.820 23.299 4.815

0.8 0.5 KNN 24.382 4.523 21.688 4.314 19.299 4.164 18.015 4.087
FI 15.919 3.103 13.210 2.804 9.926 2.532 7.544 2.324
MSI 20.311 3.868 20.429 4.066 21.086 4.379 21.355 4.518
SPE 22.497 4.139 22.916 4.434 23.919 4.755 24.337 4.874
IPW 12.327 3.085 10.745 3.027 9.929 3.061 9.564 3.050
SPE-FI 16.519 3.174 13.819 2.886 10.571 2.635 8.164 2.441
SPE-MSI 21.157 3.952 21.124 4.140 21.706 4.446 21.946 4.582
SPE-IPW 29.531 5.253 29.067 5.305 29.225 5.380 29.094 5.382
FI-IPW 27.075 5.022 27.169 5.128 27.623 5.231 27.601 5.242
FI-MSI 19.491 3.784 19.721 3.990 20.432 4.307 20.722 4.449
FI-SPE 20.643 3.953 21.361 4.273 22.524 4.611 23.004 4.738
IPW-SPE 10.629 2.713 8.931 2.558 7.869 2.576 7.463 2.611
IPW-FI 11.078 2.587 8.190 2.201 4.319 1.577 2.146 1.123
IPW-MSI 10.327 2.627 8.642 2.467 7.237 2.385 6.628 2.387
MSI-FI 16.201 3.137 13.513 2.845 10.253 2.584 7.859 2.384
MSI-SPE 21.551 4.046 22.142 4.355 23.239 4.686 23.693 4.809
MSI-IPW 28.280 5.137 28.125 5.218 28.447 5.308 28.375 5.315
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.9 0.5 KNN 25.945 4.569 24.058 4.444 21.073 4.239 18.851 4.020
FI 6.831 1.628 3.376 1.023 0.613 0.465 0.147 0.269
MSI 11.423 2.377 9.962 2.206 5.633 1.725 3.484 1.474
SPE 12.979 2.562 12.228 2.618 8.291 2.314 6.187 2.145
IPW 9.438 2.598 8.169 2.553 6.994 2.531 6.606 2.516
SPE-FI 7.004 1.654 3.496 1.047 0.653 0.480 0.162 0.279
SPE-MSI 11.743 2.413 10.183 2.235 5.755 1.751 3.571 1.498
SPE-IPW 28.964 5.047 29.543 5.250 30.160 5.433 30.345 5.482
FI-IPW 26.942 4.855 28.129 5.121 29.077 5.334 29.378 5.394
FI-MSI 11.059 2.336 9.705 2.172 5.490 1.696 3.384 1.447
FI-SPE 12.162 2.470 11.632 2.541 7.919 2.250 5.901 2.087
IPW-SPE 5.779 1.680 4.230 1.416 1.854 0.934 0.916 0.664
IPW-FI 3.750 1.336 2.169 1.106 0.979 0.943 0.943 0.965
IPW-MSI 5.130 1.497 3.815 1.327 1.460 0.829 0.593 0.560
MSI-FI 6.921 1.641 3.440 1.035 0.634 0.473 0.155 0.274
MSI-SPE 12.593 2.518 11.950 2.582 8.120 2.284 6.054 2.118
MSI-IPW 27.998 4.956 28.883 5.190 29.665 5.388 29.908 5.442

0.96 0.5 KNN 20.442 3.953 20.708 4.018 17.521 3.699 15.739 3.510
FI 4.578 1.195 1.442 0.502 0.050 0.174 0.028 0.149
MSI 2.743 1.014 1.732 0.621 0.198 0.227 0.059 0.137
SPE 2.045 0.859 1.779 0.656 0.338 0.309 0.109 0.212
IPW 3.990 1.569 3.662 1.572 2.744 1.507 2.482 1.506
SPE-FI 4.586 1.196 1.444 0.501 0.049 0.170 0.027 0.143
SPE-MSI 2.766 1.019 1.745 0.625 0.200 0.229 0.060 0.139
SPE-IPW 15.874 3.369 16.727 3.642 15.848 3.778 15.633 3.851
FI-IPW 14.834 3.230 16.152 3.571 15.588 3.749 15.489 3.836
FI-MSI 2.710 1.008 1.713 0.617 0.195 0.224 0.058 0.136
FI-SPE 1.967 0.843 1.735 0.645 0.327 0.301 0.104 0.205
IPW-SPE 0.891 0.577 0.728 0.446 0.119 0.268 0.075 0.251
IPW-FI 0.889 0.694 0.429 0.489 0.158 0.397 0.158 0.397
IPW-MSI 0.534 0.365 0.588 0.400 0.125 0.315 0.106 0.311
MSI-FI 4.583 1.195 1.443 0.501 0.049 0.172 0.027 0.145
MSI-SPE 2.011 0.852 1.761 0.651 0.333 0.306 0.107 0.209
MSI-IPW 15.401 3.306 16.475 3.611 15.743 3.767 15.583 3.846
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Table (4.7) Misspecified-verification model: MSE (×100) and Bias (×10) of AUC estimates
with verification bias. Disease prevalence=0.3.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.3 KNN 2.394 1.319 2.062 1.253 1.712 1.164 1.615 1.160
FI 0.735 0.666 0.337 0.462 0.138 0.297 0.074 0.220
MSI 0.704 0.648 0.330 0.458 0.137 0.299 0.078 0.227
SPE 208.639 1.526 3.784 0.859 0.931 0.692 0.710 0.664
IPW 12.007 3.148 11.057 3.123 9.919 3.057 9.716 3.069
SPE-FI 479.406 1.788 6.385 0.902 0.918 0.680 0.662 0.637
SPE-MSI 458.758 1.747 6.161 0.882 0.883 0.665 0.638 0.624
SPE-IPW 22.175 2.119 3.996 1.574 1.724 1.100 1.125 0.904
FI-IPW 4.485 1.711 3.183 1.490 2.171 1.310 1.900 1.283
FI-MSI 0.718 0.656 0.329 0.456 0.132 0.291 0.071 0.214
FI-SPE 1.183 0.671 0.337 0.463 0.145 0.310 0.085 0.237
IPW-SPE 9.302 1.509 2.627 1.449 2.303 1.434 2.263 1.460
IPW-FI 2.683 1.400 2.527 1.441 2.368 1.466 2.382 1.505
IPW-MSI 2.743 1.421 2.585 1.462 2.412 1.482 2.423 1.519
MSI-FI 0.719 0.658 0.338 0.464 0.143 0.306 0.082 0.234
MSI-SPE 1.168 0.666 0.343 0.468 0.155 0.321 0.096 0.255
MSI-IPW 4.556 1.728 3.168 1.485 2.086 1.281 1.794 1.243

0.8 0.3 KNN 3.531 1.634 3.091 1.556 2.728 1.488 2.448 1.443
FI 0.489 0.526 0.210 0.363 0.089 0.241 0.053 0.188
MSI 0.474 0.507 0.200 0.349 0.079 0.227 0.046 0.173
SPE 100.222 2.341 13.014 1.167 6.603 0.961 5.486 0.828
IPW 14.081 3.308 12.930 3.298 11.430 3.219 11.035 3.229
SPE-FI 244.420 3.187 20.466 1.253 10.471 1.029 7.744 0.871
SPE-MSI 230.040 3.115 19.751 1.226 10.184 1.001 7.545 0.839
SPE-IPW 148.301 1.000 7.266 1.764 4.079 1.295 3.563 0.980
FI-IPW 3.850 1.527 2.512 1.282 1.530 1.064 1.231 1.001
FI-MSI 0.483 0.518 0.203 0.354 0.081 0.228 0.045 0.171
FI-SPE 0.501 0.525 0.237 0.363 0.087 0.239 0.052 0.186
IPW-SPE 4.969 1.605 5.303 1.660 3.320 1.666 3.282 1.720
IPW-FI 3.098 1.443 3.121 1.540 3.123 1.637 3.213 1.713
IPW-MSI 3.241 1.489 3.266 1.588 3.260 1.680 3.348 1.753
MSI-FI 0.477 0.516 0.207 0.359 0.088 0.242 0.055 0.192
MSI-SPE 0.508 0.521 0.245 0.363 0.088 0.241 0.055 0.190
MSI-IPW 4.006 1.568 2.565 1.299 1.517 1.061 1.199 0.988
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.9 0.3 KNN 4.530 1.820 4.018 1.747 3.451 1.659 3.316 1.668
FI 0.196 0.340 0.086 0.241 0.048 0.184 0.037 0.167
MSI 0.190 0.314 0.070 0.209 0.029 0.138 0.018 0.110
SPE 12.216 1.232 221.075 1.469 46.229 1.185 22.283 0.997
IPW 10.999 2.696 9.886 2.688 8.348 2.610 7.785 2.610
SPE-FI 17.510 1.269 31.858 1.242 110.345 1.295 40.878 1.085
SPE-MSI 16.577 1.246 30.799 1.222 108.162 1.276 40.227 1.067
SPE-IPW 6.727 1.899 9.899 1.719 19.154 1.510 11.166 1.283
FI-IPW 2.235 1.074 1.258 0.860 0.635 0.655 0.448 0.576
FI-MSI 0.196 0.329 0.077 0.223 0.035 0.153 0.023 0.125
FI-SPE 0.258 0.344 1.718 0.259 0.043 0.159 0.023 0.126
IPW-SPE 9.101 1.232 193.422 1.552 3.908 1.327 2.504 1.362
IPW-FI 1.758 0.964 1.835 1.048 1.888 1.163 1.931 1.250
IPW-MSI 1.913 1.024 1.995 1.117 2.050 1.233 2.099 1.317
MSI-FI 0.186 0.324 0.077 0.226 0.041 0.168 0.030 0.150
MSI-SPE 0.270 0.339 2.238 0.257 0.041 0.149 0.020 0.113
MSI-IPW 2.439 1.145 1.363 0.911 0.687 0.692 0.484 0.607

0.96 0.3 KNN 3.517 1.448 2.832 1.273 2.343 1.210 2.093 1.171
FI 0.043 0.179 0.031 0.157 0.027 0.152 0.026 0.154
MSI 0.034 0.143 0.015 0.101 0.007 0.072 0.005 0.062
SPE 1.919 0.390 2.394 0.391 0.750 0.301 4.802 0.315
IPW 3.454 1.246 2.726 1.180 2.046 1.121 1.738 1.116
SPE-FI 3.485 0.376 3.865 0.368 0.195 0.246 0.154 0.232
SPE-MSI 3.285 0.365 3.757 0.358 0.205 0.247 0.168 0.243
SPE-IPW 2.395 0.940 2.107 0.870 1.249 0.766 1.021 0.754
FI-IPW 0.576 0.486 0.253 0.355 0.104 0.250 0.065 0.208
FI-MSI 0.038 0.160 0.021 0.124 0.014 0.104 0.012 0.101
FI-SPE 0.039 0.160 0.026 0.125 0.015 0.101 0.026 0.096
IPW-SPE 0.652 0.406 0.926 0.408 0.861 0.413 4.793 0.457
IPW-FI 0.284 0.326 0.272 0.311 0.256 0.310 0.222 0.330
IPW-MSI 0.328 0.352 0.313 0.345 0.296 0.358 0.264 0.386
MSI-FI 0.036 0.157 0.022 0.127 0.016 0.112 0.014 0.111
MSI-SPE 0.039 0.149 0.024 0.107 0.010 0.073 0.028 0.062
MSI-IPW 0.721 0.578 0.341 0.438 0.161 0.329 0.110 0.287
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Table (4.8) Misspecified-verification model: MSE (×100) and Bias (×10) of AUC estimates
with verification bias. Disease prevalence=0.5.

AUC Prevalence Methods n=100 n=200 n=500 n=1000
MSE Bias MSE Bias MSE Bias MSE Bias

0.7 0.5 KNN 5.810 2.006 4.419 1.849 3.835 1.811 3.451 1.766
FI 2.205 1.044 0.831 0.665 0.254 0.393 0.115 0.271
MSI 2.320 1.062 0.929 0.694 0.291 0.411 0.130 0.285
SPE 138.694 1.457 1.107 0.760 0.365 0.463 0.171 0.327
IPW 20.145 4.195 17.713 3.979 15.761 3.856 14.908 3.794
SPE-FI 3.513 1.129 1.014 0.733 0.328 0.445 0.156 0.315
SPE-MSI 3.506 1.132 1.073 0.747 0.344 0.451 0.158 0.316
SPE-IPW 14.151 3.267 11.245 2.958 8.821 2.740 7.695 2.631
FI-IPW 13.325 3.138 10.782 2.887 8.718 2.741 7.765 2.663
FI-MSI 2.263 1.047 0.894 0.680 0.273 0.399 0.120 0.274
FI-SPE 138.059 1.390 0.933 0.692 0.288 0.408 0.129 0.283
IPW-SPE 651.943 2.287 1.838 1.142 1.330 1.069 1.258 1.078
IPW-FI 2.749 1.253 1.535 1.023 1.075 0.945 1.010 0.955
IPW-MSI 2.919 1.298 1.727 1.103 1.254 1.035 1.190 1.047
MSI-FI 2.245 1.056 0.857 0.676 0.266 0.400 0.119 0.276
MSI-SPE 138.122 1.405 0.972 0.708 0.308 0.422 0.141 0.295
MSI-IPW 13.762 3.199 11.104 2.935 8.941 2.777 7.947 2.694

0.8 0.5 KNN 8.121 2.402 6.457 2.234 5.420 2.171 4.886 2.099
FI 1.936 0.948 0.696 0.607 0.229 0.395 0.139 0.317
MSI 1.938 0.937 0.748 0.613 0.219 0.371 0.106 0.267
SPE 119.058 2.174 1.144 0.711 0.385 0.461 0.218 0.355
IPW 22.634 4.408 19.499 4.107 16.800 3.915 15.431 3.809
SPE-FI 461.225 3.153 1.222 0.721 0.430 0.495 0.278 0.413
SPE-MSI 428.042 3.059 1.222 0.714 0.394 0.464 0.224 0.359
SPE-IPW 49.884 3.353 10.496 2.732 7.224 2.355 5.603 2.143
FI-IPW 13.127 2.998 10.082 2.658 7.242 2.382 5.851 2.226
FI-MSI 1.895 0.926 0.726 0.603 0.211 0.366 0.104 0.267
FI-SPE 2.787 0.978 0.780 0.614 0.217 0.369 0.105 0.266
IPW-SPE 9.622 1.421 1.898 1.069 1.411 1.032 1.370 1.073
IPW-FI 2.557 1.164 1.509 0.935 1.125 0.887 1.079 0.926
IPW-MSI 2.684 1.187 1.693 1.015 1.324 0.993 1.290 1.037
MSI-FI 1.963 0.957 0.712 0.615 0.233 0.396 0.137 0.312
MSI-SPE 2.868 0.990 0.803 0.624 0.226 0.374 0.107 0.267
MSI-IPW 13.551 3.056 10.357 2.698 7.396 2.406 5.954 2.244
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continued from previous page
AUC Prevalence Methods n=100 n=200 n=500 n=1000

MSE Bias MSE Bias MSE Bias MSE Bias

0.9 0.5 KNN 11.853 2.987 10.554 2.894 8.421 2.703 7.672 2.637
FI 2.270 0.892 0.485 0.466 0.139 0.322 0.106 0.293
MSI 1.615 0.785 0.528 0.464 0.120 0.285 0.072 0.229
SPE 50.738 2.485 120.114 0.832 0.791 0.421 0.484 0.375
IPW 20.798 2.089 18.204 3.838 14.696 3.543 12.724 3.348
SPE-FI 118.810 2.500 1.815 0.610 1.644 0.500 1.275 0.481
SPE-MSI 116.920 2.363 1.789 0.603 1.581 0.456 1.201 0.413
SPE-IPW 48.455 2.343 9.142 2.438 5.013 1.851 3.166 1.498
FI-IPW 11.147 2.593 8.599 2.294 4.960 1.837 3.375 1.580
FI-MSI 1.592 0.779 0.517 0.457 0.115 0.280 0.069 0.225
FI-SPE 1.958 0.704 119.228 0.694 0.114 0.275 0.066 0.217
IPW-SPE 27.902 1.201 80.042 1.045 1.107 0.797 1.034 0.846
IPW-FI 2.073 0.982 1.068 0.708 0.808 0.655 0.771 0.690
IPW-MSI 1.850 0.884 1.200 0.753 0.949 0.741 0.930 0.795
MSI-FI 2.280 0.896 0.493 0.471 0.143 0.326 0.108 0.294
MSI-SPE 2.030 0.711 119.242 0.700 0.119 0.281 0.069 0.221
MSI-IPW 11.497 2.642 8.786 2.319 5.017 1.844 3.384 1.578

0.96 0.5 KNN 12.859 3.146 13.073 3.189 10.660 2.960 9.098 2.800
FI 4.564 1.175 1.392 0.492 0.054 0.194 0.040 0.189
MSI 1.939 0.820 0.673 0.392 0.040 0.165 0.027 0.149
SPE 3.721 0.767 128.663 0.743 26.871 0.416 0.797 0.280
IPW 11.147 2.748 10.333 2.663 7.793 2.375 6.354 2.202
SPE-FI 5.636 1.249 88.462 0.772 72.814 0.477 2.326 0.357
SPE-MSI 2.972 0.897 85.983 0.673 73.649 0.454 2.328 0.324
SPE-IPW 7.352 2.044 6.431 1.858 3.169 1.332 1.641 1.014
FI-IPW 6.297 1.772 5.437 1.630 2.620 1.160 1.384 0.906
FI-MSI 1.933 0.819 0.670 0.391 0.039 0.162 0.026 0.146
FI-SPE 3.292 0.689 2.265 0.359 0.111 0.158 0.022 0.130
IPW-SPE 7.578 0.671 143.390 0.701 6.403 0.448 0.420 0.396
IPW-FI 1.727 0.837 0.723 0.477 0.242 0.305 0.217 0.296
IPW-MSI 0.569 0.434 0.373 0.363 0.273 0.327 0.257 0.337
MSI-FI 4.565 1.176 1.393 0.493 0.055 0.196 0.041 0.191
MSI-SPE 3.298 0.690 2.573 0.363 0.114 0.161 0.023 0.134
MSI-IPW 6.519 1.815 5.536 1.647 2.630 1.159 1.371 0.897
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PART 5

CONCLUSIONS

In the medical diagnostic study, the sensitivity/ sensitivity to the early stage, ROC

curve/ROC surface and AUC/VUS(Area Under the ROC surface) are meaningful mea-

sures of the diagnostic accuracy. In this dissertation, we developed Bayesian and influence

function-based empirical likelihood methods to construct confidence intervals for sensitivity

and sensitivity to early stage in two and three ordinal diagnostic classes case. We also de-

rive several closed-form expressions of the AUC estimator with verification bias data under

missing at random (MAR) assumption.

5.1 Inference of Sensitivity in Diagnostic Test

In Part 2, we focused on the two classes diagnostic test that classifies individuals with/

without targeted disease. We reviewed the existing methods for inference on sensitivity

given specificity that include normal approximation based methods (NA, BTI, BTII) and

empirical likelihood methods (JEL, HEL) for comparison. We proposed various influence

function empirical likelihood (IFEL) and Bayesian empirical likelihood (BEL and BpEL)

confidence intervals for sensitivity given the fixed specificity (80%, 90%, and 95%). The idea

of IFEL is to replace the estimating function in the EL with an influence function of the

parameter of interest (sensitivity). The corresponding empirical log-likelihood ratio statistic

converges to a standard chi-square distribution with one degree of freedom, making inference

for sensitivity more convenient. The proposed Bayesian EL approaches (BEL and BpEL)

include two types according to unknown parameters we consider. We considered building

EL and assigning priors on either the sensitivity parameter itself or the probability vector

(p1, . . . , pn) in building EL. Then we used the empirical likelihood in Bayesian inference

like parametric likelihoods. Numerical studies are performed to compare the finite sample
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performance of the proposed approaches with existing methods. The simulation studies show

that the existing HEL interval performs well and the proposed intervals have similar or better

coverage accuracy than the existing intervals. The BHEL and BpHEL intervals have good

small sample performance and do not require density estimation. However, they involve

bootstrap process, which is computationally expensive and might be undesirable. We note

that influence function-based intervals perform slightly worse than the hybrid EL intervals,

probably because of the poor density estimation. IFEL, BIFEL, and BpIFEL methods are

good alternative methods when computational cost is a concern.

In Part 3, we extended a similar study as in Part 2 to three ordinal classes diagnostic test

that classifies individuals into three stage: normal healthy stage, early diseased stage and full

diseased stage. We reviewed two empirical likelihood methods (ELP and ELB) and proposed

various influence function empirical likelihood (IF) and Bayesian empirical likelihood (BEL

and BpEL) confidence intervals for sensitivity to the early stage given the fixed specificity

(80% and 90%) and sensitivity (80% and 90%) to the fully diseased stage. Similarly, the

corresponding empirical log-likelihood ratio statistic of IF empirical likelihood converges to a

standard chi-square distribution with one degree of freedom and both two types of Bayesian

EL are considered. The simulation studies show that the proposed intervals have better

coverage accuracy than the existing EL intervals. The BEL and BpEL intervals are consistent

and always have the best performance estimation. We note that influence function-based

intervals perform slightly worse than the BEL and BpEL intervals. In addition, IF, BIF1

and BIF2 methods do not work well when P2, the true sensitivity to the early stage, is high

(P2 = 0.9). However, BpIF1 and BpIF2 has better or similar performance when P2 is high.

The possible reason is that the BpEL is constructed by assigning prior to the probability

vector, which does not depend on the true sensitivity. Unexpectedly, NA methods work

acceptably in most of the settings consider here. The performance of ELP and ELB is

similar and not acceptable.

In practice, clinicians sometimes need to compare two tests in terms of their sensitivi-

ties/sensitivities to early stage at the same specificity/(specificity and sensitivity to full dis-
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eased stage). The inference procedure is simpler with the proposed Bayesian approach. We

can generate posterior samples of these two sensitivities separately to obtain posterior sam-

ples of the difference of them. Based on these posterior samples, Bayesian credible intervals

can be constructed. In addition, the influence function techniques can extend immediately

to the difference between the sensitivities of two tests at a fixed specificity since the influence

function of the difference is the difference between respective influence functions. Similar

ideas can also applied to three diagnostic classes cases for the inference of the difference

between sensitivities to the early stage. The EL methods considered in this dissertation

could be extended for the difference between the corresponding sensitivities θ(p1)− θ(p2) by

constructing suitable estimating functions. Alternatively, we can consider two-dimensional

estimating functions to apply EL method on (θ(p1), θ(p2)) and then construct a confidence

region. Furthermore, credible intervals for θ(p1)−θ(p2) can be constructed based on posterior

samples of (θ(p1), θ(p2)).

5.2 Inference for the AUC with Verification Biased Data

Medical diagnostic procedure usually involves two-phrase tests, diagnostic/screening

test (non-invasive) and gold standard test that verifies the true disease status. A diagnostic

test need to be evaluated by a study with the selected true non-diseased and true diseased

samples determined according to the gold standard test. However, in many situations, not

all individuals with given diagnostic/screening test results ultimately have their true disease

status verified through a very accurate gold standard test. That is to say, the labels referred

to as true disease status of the individuals are partially missing. Because the estimates

of AUC based on partially validated subjects are usually biased, it is usually necessary to

estimate AUC from a bias-corrected ROC curve. He et al.[24] proposed an estimator for the

AUC that is based on IPW and has a simple closed-form expression. Innovated by He et

al.[24] and Alonzo and Pepe’s[23] work, in Part 4, we proposed various direct estimations

of the AUC based on combination of w and r weights of FI, MSI, IPW, and SPE with

verification biased data when the test result is continuous under the assumption that the
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true disease status, if missing, is missing at random (MAR). He et al.[24] also proposed a

closed form expression for the asymptotic variance of the IPW-based estimator for the AUC

under the assumption that the verification probability is known. However, in practice, the

verification mechanism for true disease status is unknown. Hence it is very challenging to

provide explicit variance estimates for the proposed AUC estimators. Alonzo and Pepe[23]

suggested that bootstrap resampling can be used to obtain confidence intervals for the AUC

based on their bias-corrected ROC curves. Similarly, bootstrap method can be used to

estimate the variances of the new AUC estimators and construct bootstrap-based confidence

intervals for the AUC.

Our simulation results show that the newly proposed AUC estimators are accurate for

the biased sampling if the disease and verification models are correctly specified. Especially,

FI and MSI related methods almost always perform best. Misspecifying the disease model

yields biased FI and MSI estimates, and misspecifying the verification model yields biased

IPW and SPE related estimates.

However, MSI and IPW related estimators, SPE-MSI, IPW-MSI , FI-MSI, IPW-FI and

IWP-MSI still perform well although using incorrect disease models.

FI-SPE, MSI-SPE, IPW-FI and IWP-MSI methods work well even under the misspec-

ified verification model. The K-NN methods work well if the model is correct and the

prevalence rate is high (0.5). However, when model misspecification is involved, the K-NN

methods have poor performances. Based on our simulation study results, we recommend the

use of IPW-FI and IWP-MSI estimators for the AUC to assess the accuracy of a continuous-

scale test if the disease model and verification model are unknown. In the situation with the

disease model being correctly specified or well approximated, it is preferable to use MSI and

FI estimators for the AUC.

The proposed AUC estimators have closed-form expressions and can be easily computed

and directly applied in practice under the common MAR assumption for the verification

biased data. However, disease validations in practice may depend on some unobserved

covariates associated with the disease, which results in nonignorable verification biased data.
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Liu and Zhou[57] proposed four types of estimates (i.e, FI, MSI, IPW, and PDR estimators)

for sensitivity and specificity as well as the AUC under nonignorable missing data mechanism

using imputation and reweighting methods. Similarly, the direct approaches proposed in

this dissertation can be extended to find explicit estimators for the AUC with nonignorable

verification biased data.
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Appendix A

PROOFS IN PART 2

Proof of Proposition 2.1.

From (2.6), we only need to prove that

1

σ
√
m+ n

m+n∑
k=1

Wk(θ, p)
d→ N(0, 1). (A.1)

From (2.7), we have that

1√
m+ n

m+n∑
k=1

Wk(θ, p) =
√
m+ n

{ 1

n

n∑
j=1

[I(Yj > η)− θ] +
g(η)

f(η)

1

m

m∑
i=1

[I(Xi ≤ η)− p]
}
.

Since I(Yj > η)’s
iid∼ Binomial(1, θ), and I(Xi ≤ η)’s

iid∼ Binomial(1, p), by Central Limit

Theorem, we have that

1√
n

n∑
j=1

[I(Yj > η)− θ] d−→ N(0, θ(1− θ)),

1√
m

m∑
i=1

[I(Xi ≤ η)− p] d−→ N(0, p(1− p)).

Hence, (A.1) and Proposition 2.1 follows immediately from (2.6) and the independence

of Yj’s and Xi’s.

We need the following lemma 2.1 for the proof of Theorem 2.1.

Lemma 2.1. Under the conditions in Theorem 2.1, we have that

(i) 1
σ
√
m+n

∑m+n
k=1 Ŵk(θ, p)

d−→ N(0, 1).

(ii) 1
m+n

∑m+n
k=1 Ŵ 2

k (θ, p)
p−→ σ2.
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Proof.

(i) From (A.1), we only need to prove that

1√
m+ n

m+n∑
k=1

Ŵk(θ, p) =
1√

m+ n

m+n∑
k=1

Wk(θ, p) + op(1).

We have the following decomposition:

1√
m+ n

m+n∑
k=1

Ŵk(θ, p) =
1√

m+ n

m+n∑
k=1

Wk(θ, p) +
√
m+ n

{ 1

n

n∑
j=1

[I(Yj > η̂)− I(Yj > η)]
}

+
√
m+ n

{ ĝ(η̂)

f̂(η̂)

1

m

m∑
i=1

[I(Xi ≤ η̂)− p]− g(η)

f(η)

1

m

m∑
i=1

[I(Xi ≤ η)− p]
}
.

Using the Bahadur representation of the sample quantile η̂,

η̂ − η =
p− 1

m

∑m
i=1 I(Xi ≤ η)

f(η)
+ op(m

− 1
2 ),

we get that

1

n

n∑
j=1

[I(Yj > η̂)− I(Yj > η)] =

∫
[I(y ≤ η)− I(y ≤ η̂)]dĜ(y)

=

∫
[I(y ≤ η)− I(y ≤ η̂)]dG(y) + op(n

−1/2)

=g(η)(η − η̂) + op(m
−1/2 + n−1/2)

=
g(η)

f(η)

1

m

m∑
i=1

[I(Xi ≤ η)− p] + op((m+ n)−1/2),

(A.2)
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and

1

m

m∑
i=1

[I(Xi ≤ η̂)− p] =
1

m

n∑
j=1

[I(Xi ≤ η̂)− I(Xi ≤ η)] +
1

m

n∑
j=1

[I(Xi ≤ η)− p]

=

∫
[I(x ≤ η̂)− I(x ≤ η)]dF̂ (x) +

1

m

n∑
j=1

[I(Xi ≤ η)− p]

=

∫
[I(x ≤ η̂)− I(x ≤ η)]dF (x) + op(m

−1/2) +
1

m

n∑
j=1

[I(Xi ≤ η)− p]

=f(η)(η̂ − η) +
1

m

n∑
j=1

[I(Xi ≤ η)− p] + op(m
−1/2)

=op(m
−1/2).

(A.3)

Therefore,

1√
m+ n

m+n∑
k=1

Ŵk(θ, p) =
1√

m+ n

m+n∑
k=1

Wk(θ, p) +
√
m+ n

{ g(η)

f(η)

1

m

m∑
i=1

[I(Xi ≤ η)− p]
}

+
√
m+ n

{ ĝ(η̂)

f̂(η̂)

1

m

m∑
i=1

[I(Xi ≤ η̂)− p]− g(η)

f(η)

1

m

m∑
i=1

[I(Xi ≤ η)− p]
}

+ op(1)

=
1√

m+ n

m+n∑
k=1

Wk(θ, p) +
√
m+ n

ĝ(η̂)

f̂(η̂)

1

m

m∑
i=1

[I(Xi ≤ η̂)− p] + op(1)

=
1√

m+ n

m+n∑
k=1

Wk(θ, p) + op(1).

The last equality holds by the uniform consistency of the density estimates ĝ and f̂ [40], and

g(η)
f(η)

= O(1). Lemma 2.1 (i) is thus proved.
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(ii) Since

1

m+ n

m+n∑
k=1

W 2
k (θ, p) =

m+ n

n2

n∑
j=1

[(I(Yj ≥ η)− θ)]2 +
m+ n

m2

g2(η)

f 2(η)

m∑
i=1

[I(Xi ≤ η)− p]2

= (1 + ρ)E[I(Yj ≥ η)− θ]2 + (1 + ρ−1)
g2(η)

f 2(η)
E[I(Xi ≤ η)− p]2 + op(1)

= (1 + ρ)θ(1− θ) + (1 + ρ−1)p(1− p) g
2(η)

f 2(η)
+ op(1) = σ2 + op(1),

we only need to prove that

1

m+ n

m+n∑
k=1

Ŵ 2
k (θ, p) =

1

m+ n

m+n∑
k=1

W 2
k (θ, p) + op(1).

Under the assumptions in Theorem 2.1, using the uniform consistency of the density

estimate f̂ [40] and the strong consistency of the sample quantile η̂, we get that

∣∣f̂(η̂)− f(η)
∣∣ ≤ ∣∣f̂(η̂)− f(η̂)

∣∣+
∣∣f(η̂)− f(η)

∣∣
≤ sup

x

∣∣f̂(x)− f(x)
∣∣+ op(1) = op(1).

So, f̂(η̂) = f(η) + op(1). Similarly, we have ĝ(η̂) = g(η) + op(1). By Slutsky’s Theorem, we

have that ĝ2(η̂)

f̂2(η̂)
= g2(η)

f2(η)
+ op(1).

From (A.2), it follows that

1

n

n∑
j=1

[I(Yj ≥ η)− I(Yj ≥ η̂)] = − g(η)

f(η)
[

1

m

m∑
i=1

I(Xi ≤ η)− p] + op((m+ n)−1/2)

= Op(m
−1/2) + op((m+ n)−1/2) = Op((m+ n)−1/2).

Similarly, we have

1

m

m∑
i=1

[I(Xi ≤ η)− I(Xi ≤ η̂)] = Op((m+ n)−1/2).
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Therefore,

∣∣∣ 1

m+ n

m+n∑
k=1

W 2
k (θ, p)− 1

m+ n

m+n∑
k=1

Ŵ 2
k (θ, p)

∣∣∣
= (m+ n)

∣∣∣1− 2θ

n2

n∑
j=1

[I(Yj ≥ η)− I(Yj ≥ η̂)] +
p2

m

[ g2(η)

f 2(η)
− ĝ2(η̂)

f̂ 2(η̂)

]
+

1− 2p

m2

m∑
i=1

[( g2(η)

f 2(η)
− ĝ2(η̂)

f̂ 2(η̂)

)
I(Xi ≤ η) +

ĝ2(η̂)

f̂ 2(η̂)
(I(Xi ≤ η)− I(Xi ≤ η̂))

]∣∣∣.
≤ op(1),

and Lemma 2.1 (ii) is proved.

Proof of Theorem 2.1:

By the definition of Ŵk(θ, p), we have

max
k
|Ŵk(θ, p)| ≤ 2 max{m+ n

m

ĝ(η̂)

f̂(η̂)
,
m+ n

n
} = Op(1).

Moreover, from Lemma (ii), it follows that

1

m+ n

m+n∑
k=1

|Ŵk(θ, p)|3 ≤ max
k
|Ŵk(θ, p)|

1

m+ n

m+n∑
k=1

|Ŵk(θ, p)|2 = Op(1). (A.4)

Using arguments similar to Owen [58], we can prove that

|λ| = Op((m+ n)−1/2). (A.5)

Hence, we have

max
k
|λŴk(θ, p)| = Op((m+ n)−1/2). (A.6)
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Recall (2.10)

0 =
1

m+ n

m+n∑
k=1

Ŵk(θ, p)

1 + λŴk(θ, p)

=
1

m+ n

m+n∑
k=1

Ŵk(θ, p)[1− λŴk(θ, p) +
(λŴk(θ, p))

2

1 + λŴk(θ, p)
]

=
1

m+ n

m+n∑
k=1

Ŵk(θ, p)−
1

m+ n
λ
m+n∑
k=1

Ŵ 2
k (θ, p) +

1

m+ n

m+n∑
k=1

Ŵk(θ, p)(λŴk(θ, p))
2

1 + λŴk(θ, p)
.

(A.7)

From Lemma 2.1 (ii), (A.4), (A.5) and (A.6), the final term in (A.7) is bounded by

|λ|2 1

m+ n

m+n∑
k=1

|Ŵk(θ, p)|3 max |(1 + λŴk(θ, p))
−1| = Op((m+ n)−1)Op(1)Op(1) = Op((m+ n)−1),

which implies that

λ =

∑m+n
k=1 Ŵk(θ, p)∑m+n
k=1 Ŵ 2

k (θ, p)
+Op((m+ n)−1). (A.8)

Further, multiplying both side of Equation (2.10) by λ, we get that

0 =
1

m+ n

m+n∑
k=1

λŴk(θ, p)

1 + λŴk(θ, p)

=
1

m+ n

m+n∑
k=1

λŴk(θ, p)−
1

m+ n

m+n∑
k=1

λ2Ŵ 2
k (θ, p) +

1

m+ n

m+n∑
k=1

(λŴk(θ, p))
3

1 + λŴk(θ, p)
.

(A.9)

Similarly, the final term in (A.9) is bounded by

|λ|3 1

m+ n

m+n∑
k=1

|Ŵk(θ, p)|3 max |(1 + λŴk(θ, p))
−1| = Op((m+ n)−3/2)Op(1)Op(1) = Op((m+ n)−3/2).

Hence, we have

m+n∑
k=1

λŴk(θ, p) =
m+n∑
k=1

λ2Ŵ 2
k (θ, p) +Op((m+ n)−1/2). (A.10)
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By Taylor’s expansion of Equation (2.11) and using (A.8), (A.10), and Lemma, we have that

−2lIF (θ, p) = 2
m+n∑
k=1

log{1 + λŴk(θ, p)}

= 2λ
m+n∑
k=1

Ŵk(θ, p)− λ2

m+n∑
k=1

Ŵ 2
k (θ, p) + rn

=
[ 1
(m+n)1/2

∑m+n
k=1 Ŵk(θ, p)]

2

1
m+n

∑m+n
k=1 Ŵ 2

k (θ, p)
+

m+n∑
k=1

Ŵk(θ, p)Op((m+ n)−1) +Op((m+ n)−1/2) + rn,

where

|rn| ≤ C

m+n∑
k=1

|λŴk(θ, p)|3 ≤ C|λ|3
m+n∑
k=1

|Ŵk(θ, p)|3 = Op((m+ n)−3/2)(m+ n)Op(1) = Op((m+ n)−1/2).

From Lemma, it follows that

m+n∑
k=1

Ŵk(θ, p)Op((m+ n)−1) = Op((m+ n)1/2)Op((m+ n)−1) = Op((m+ n)−1/2),

and

−2lIF (θ, p) =
[ 1
(m+n)1/2

∑m+n
k=1 Ŵk(θ, p)]

2

1
m+n

∑m+n
k=1 Ŵ 2

k (θ, p)
+ op(1)

d−→ χ2
1.

Proof of Proposition 2.2:

We first briefly introduce Clarke and Yuan’s approach [30]. Define the outer product

matrix Ω = E[g(Zj, θ)g
′(Zj, θ)], Jacobian matrix D(θ) = E[∂g(Zj, θ)/∂θ] and the matrix

Λ(θ) = D′(θ)Ω−1(θ)D(θ), where g(Zj, θ) is an estimating function.

For our Bayesian hybrid EL approach, g(Zj, θ) = WHj(θ, p) = I(F (Yj) ≥ p)− θ, and

Ω(θ) = E[g(Zj, θ)]
2 = E[I(F (Yj) ≥ p)− θ]2 = θ(1− θ).
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Thus we have

Λ(θ) = D′(θ)Ω−1(θ)D(θ) =
1

θ(1− θ)
.

So the reference prior for the hybrid EL under the relative entropy is

πH,1(θ) ∝ |Λ−1(θ)|1/2 =
√
θ(1− θ),

i.e.,

πH,1(θ) = β(
3

2
,
3

2
),

and the reference prior for the hybrid EL under Hellinger distance is

πH,2(θ) ∝ |Λ(θ)|1/2 =
1√

θ(1− θ)
,

i.e.,

πH,2(θ) = β(
1

2
,
1

2
).
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Appendix B

PROOFS IN PART 3

Proof of Proposition 3.1.

From (3.10), we only need to prove that

1

σ
√
N

N∑
l=1

Wl(P1, P2, P3)
d→ N(0, 1). (B.1)

From (3.11), we have that

1√
N

N∑
l=1

Wl(P1, P2, P3) =
√
N
{ 1

n1

f2(c1)

f1(c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1]

+
1

n2

n2∑
j=1

[I(c1 < Y2,j ≤ c2)− P2] +
1

n3

f2(c2)

f3(c2)

n3∑
j=1

[I(Y3,j > c2)− P3]
}
.

Since I(Y1,j ≤ c1)’s
iid∼ Binomial(1, P1), I(c1 < Y2,j ≤ c2)’s

iid∼ Binomial(1, P2), and I(Y3,j >

c2)’s
iid∼ Binomial(1, P3), by Central Limit Theorem, we have that

1
√
n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1]
d−→ N(0, P1(1− P1)),

1
√
n2

n2∑
j=1

[I(c1 < Y2,j ≤ c2)− P2]
d−→ N(0, P2(1− P2)),

1
√
n3

n3∑
i=1

[I(Y3,j > c2)− P3]
d−→ N(0, P3(1− P3)).

Hence, (B.1) and Proposition 3.1 follows immediately from (3.10) and the independence of

Y1,i’s, Y2,j’s and Y3,k’s.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.1. Under the conditions in Theorem 3.1, we have that

(i) 1
σ
√
N

∑N
l=1 Ŵl(P1, P2, P3)

d−→ N(0, 1).



125

(ii) 1
N

∑N
l=1 Ŵ

2
l (P1, P2, P3)

p−→ σ2.

Proof.

(i) From (B.1), we only need to prove that

1√
N

N∑
l=1

Ŵl(P1, P2, P3) =
1√
N

N∑
l=1

Wl(P1, P2, P3) + op(1).

We have the following decomposition:

1√
N

N∑
l=1

Ŵl(1, P2, P3)

=
1√
N

N∑
l=1

Wl(P1, P2, P3) +
√
N
{ 1

n2

n2∑
j=1

[I(ĉ1 < Y2,j ≤ ĉ2)− I(c1 < Y2,j ≤ c2)]
}

+
√
N
{ 1

n1

f̂2(ĉ1)

f̂1(ĉ1)

n1∑
j=1

[I(Y1,j ≤ ĉ1)− P1]− 1

n1

f2(c1)

f1(c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1]
}

+
√
N
{ 1

n3

f̂2(ĉ2)

f̂3(ĉ2)

n3∑
j=1

[I(Y3,j > ĉ2)− P3]− 1

n3

f2(c2)

f3(c2)

n3∑
j=1

[I(Y3,j > c2)− P3]
}
.

As we mentioned in Section 3.3, using the Bahadur representation of the sample quan-

tiles ĉ1 and ĉ2[37],

ĉ1 − c1 =
P1 − 1

n1

∑n1

j=1 I(Y1,j ≤ c1)

f1(c1)
+ op(n

− 1
2

1 ),

ĉ2 − c2 =
1
n3

∑n3

j=1 I(Y3,j > c2)− P3

f3(c2)
+ op(n

− 1
2

3 ),
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and Equation 3.8 and 3.9, we get that

1

n2

n2∑
j=1

[I(ĉ1 < Y2,j ≤ ĉ2)− I(c1 < Y2,j ≤ c2)]

=
1

n2

n2∑
j=1

[I(Y2,j ≤ ĉ2)− I(Y2,j ≤ ĉ1)]− 1

n2

n2∑
j=1

[I(Y2,j ≤ c2)− I(Y2,j ≤ c1)]

=
1

n2

n2∑
j=1

[I(Y2,j ≤ ĉ2)− I(Y2,j ≤ c2)]− 1

n2

n2∑
j=1

[I(Y2,j ≤ ĉ1)− I(Y2,j ≤ c1)]

= [F̂2(ĉ2)− F̂2(c2)]− [F̂2(ĉ1)− F̂2(c1)]

=
1

n3

f2(c2)

f3(c2)

n3∑
j=1

[I(Y3,j > c2)− P3] +
1

n1

f2(c1)

f1(c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1] + op(N
−1/2).

(B.2)

In addition, we have

1

n1

n1∑
j=1

[I(Y1,j ≤ ĉ1)− P1]

=
1

n1

n1∑
j=1

[I(Y1,j ≤ ĉ1)− I(Y1,j ≤ c1)] +
1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1]

=

∫
[I(y ≤ ĉ1)− I(y ≤ c1)]dF̂1(y) +

1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1]

=

∫
[I(y ≤ ĉ1)− I(y ≤ c1)]dF1(y) + op(n

−1/2
1 ) +

1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1]

= f1(c1)(ĉ1 − c1) +
1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1] + op(n
−1/2
1 )

= op(n
−1/2
1 ), (B.3)
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and

1

n3

n3∑
j=1

[I(Y3,j > ĉ2)− P3]

=
1

n3

n3∑
j=1

[I(Y3,j > ĉ2)− I(Y3,j > c2)] +
1

n3

n3∑
j=1

[I(Y3,j > c2)− P3]

= −
∫

[I(y ≤ ĉ2)− I(y ≤ c2)]dF̂3(y) +
1

n3

n3∑
j=1

[I(Y3,j > c2)− P3]

= −
∫

[I(y ≤ ĉ2)− I(y ≤ c2)]dF3(y) + op(n
−1/2
3 ) +

1

n3

n3∑
j=1

[I(Y3,j > c2)− P3]

= −f3(c2)(ĉ2 − c2) +
1

n3

n3∑
j=1

[I(Y3,j > c2)− P3] + op(n
−1/2
3 )

= op(n
−1/2
3 ), (B.4)

Therefore,

1√
N

N∑
l=1

Ŵl(1, P2, P3) =
1√
N

N∑
l=1

Wl(P1, P2, P3)

+

√
N

n1

f̂2(ĉ1)

f̂1(ĉ1)

n1∑
j=1

[I(Y1,j ≤ ĉ1)− P1] +

√
N

n3

f̂2(ĉ2)

f̂3(ĉ2)

n3∑
j=1

[I(Y3,j > ĉ2)− P3] + op(1)

=
1√
N

N∑
l=1

Wl(P1, P2, P3) + op(1).

The last equality holds by the uniform consistency of the density estimates f̂1, f̂2 and f̂3

[40], and f2(c1)
f1(c1)

= O(1), f2(c2)
f3(c2)

= O(1). Lemma 3.1 (i) is thus proved.
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(ii) Since

1

N

N∑
l=1

W 2
l (P1, P2, P3)

=
N

n2
1

f 2
2 (c1)

f 2
1 (c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1]2 +
N

n2
2

n2∑
j=1

[I(c1 < Y2,j ≤ c2)− P2]2

+
N

n2
3

f 2
2 (c2)

f 2
3 (c2)

n3∑
j=1

[I(Y3,j > c2)− P3]2

= (1 + ρ−1
1 + ρ−1

3 )
f 2

2 (c1)

f 2
1 (c1)

E[I(Y1,j ≤ c1)− P1]2 + (1 + ρ1 + ρ2)E[I(c1 < Y2,j ≤ c2)− P2]2

+ (1 + ρ−1
2 + ρ3)

f 2
2 (c2)

f 2
3 (c2)

E[I(Y3,j > c2)− P3]2 + op(1)

= (1 + ρ−1
1 + ρ−1

3 )P1(1− P1)
f 2

2 (c1)

f 2
1 (c1)

+ (1 + ρ1 + ρ2)P2(1− P2)

+ (1 + ρ−1
2 + ρ3)

f 2
2 (c2)

f 2
3 (c2)

P3(1− P3) + op(1) = σ2 + op(1),

we only need to prove that

1

N

N∑
l=1

Ŵ 2
l (P1, P2, P3) =

1

N

N∑
l=1

W 2
l (P1, P2, P3) + op(1).

Under the assumptions in Theorem 3.1, using the uniform consistency of the density

estimate f̂1 [40] and the strong consistency of the sample quantile ĉ1, we get that

∣∣f̂1(ĉ1)− f1(c1)
∣∣ ≤ ∣∣f̂1(ĉ1)− f1(ĉ1)

∣∣+
∣∣f1(ĉ1)− f1(c1)

∣∣
≤ sup

x

∣∣f̂1(x)− f1(x)
∣∣+ op(1) = op(1).

So, f̂1(ĉ1) = f1(c1)+op(1). Similarly, we have f̂3(ĉ2) = f3(c2)+op(1), f̂2(ĉ1) = f2(c1)+op(1),

and f̂2(ĉ2) = f2(c2) + op(1). By Slutsky’s Theorem, we have that
f̂22 (c1)

f̂21 (c1)
=

f22 (c1)

f21 (c1)
+ op(1) and

f̂22 (c2)

f̂23 (c2)
=

f22 (c2)

f23 (c2)
+ op(1).
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From Equation (B.2) and CLT, it follows that

1

n2

n2∑
j=1

[
I(c1 < Y2,j ≤ c2)− I(ĉ1 < Y2,j ≤ ĉ2)

]
= − 1

n3

f2(c2)

f3(c2)

n3∑
j=1

[I(Y3,j > c2)− P3]− 1

n1

f2(c1)

f1(c1)

n1∑
j=1

[I(Y1,j ≤ c1)− P1] + op(N
−1/2)

= Op(n
−1/2
1 ) +Op(n

−1/2
3 ) + op(N

−1/2)

= Op(N
−1/2).

Similarly, from Equation (3.8) and Bahadur representation of the sample quantile, we have

that

1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− I(Y1,j ≤ ĉ1)] = f1(c1)(c1 − ĉ1) + op(n
−1/2
1 )

=
1

n1

n1∑
j=1

[I(Y1,j ≤ c1)− P1] + op(n
−1/2
1 )

= Op(n
−1/2
1 )

and

1

n3

n3∑
j=1

[I(Y3,j > c2)− I(Y3,j > ĉ2)] = Op(n
−1/2
3 ).
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Therefore,

∣∣∣ 1

N

N∑
l=1

W 2
l (P1, P2, P3)− 1

N

N∑
l=1

Ŵ 2
l (P1, P2, P3)

∣∣∣
= (N)

∣∣∣1− 2P2

n2
2

n2∑
j=1

[
I(c1 < Y2,j ≤ c2)− I(ĉ1 < Y2,j ≤ ĉ2)

]
+
P 2

1

n2

[f 2
2 (c1)

f 2
1 (c1)

− f̂ 2
2 (c1)

f̂ 2
1 (c1)

]
+

1− 2P1

n2
1

n1∑
j=1

{(f 2
2 (c1)

f 2
1 (c1)

− f̂ 2
2 (c1)

f̂ 2
1 (c1)

)
I(Y1,j ≤ c1) +

f̂ 2
2 (c1)

f̂ 2
1 (c1)

[
I(Y1,j ≤ c1)− I(Y1,j ≤ ĉ1)

]}
+

1− 2P3

n2
3

n3∑
j=1

{(f 2
2 (c2)

f 2
3 (c2)

− f̂ 2
2 (c2)

f̂ 2
3 (c2)

)
I(Y3,j > c2) +

f̂ 2
2 (c2)

f̂ 2
3 (c2)

[
I(Y3,j > c2)− I(Y3,j > ĉ2)

]}
+
P 2

3

n3

[f 2
2 (c2)

f 2
3 (c2)

− f̂ 2
2 (c2)

f̂ 2
3 (c2)

]∣∣∣
≤ op(1),

and Lemma 3.1 (ii) is proved.

Proof of Theorem 3.1:

By the definition of Ŵl(P1, P2, P3), we have

max
l
|Ŵl(P1, P2, P3)| ≤ 2 max{N

n1

f̂2(ĉ1)

f̂1(ĉ1)
,
N

n2

,
N

n3

f̂2(ĉ2)

f̂3(ĉ2)
} = Op(1).

Moreover, from Lemma 3.1 (ii), it follows that

1

N

N∑
l=1

|Ŵl(P1, P2, P3)|3 ≤ max
l
|Ŵl(P1, P2, P3)| 1

N

N∑
l=1

|Ŵl(P1, P2, P3)|2 = Op(1). (B.5)

Using arguments similar to Owen [58], we get

|λ| = Op(N
−1/2). (B.6)

Hence, we have

max
l
|λŴl(P1, P2, P3)| = Op(N

−1/2). (B.7)



131

Recall (3.15)

0 =
1

N

N∑
l=1

Ŵl(P1, P2, P3)

1 + λŴl(P1, P2, P3)

=
1

N

N∑
l=1

Ŵl(P1, P2, P3)
[
1− λŴl(P1, P2, P3) +

(λŴl(P1, P2, P3))2

1 + λŴl(P1, P2, P3)

]
=

1

N

N∑
l=1

Ŵl(P1, P2, P3)− 1

N
λ

N∑
l=1

Ŵ 2
l (P1, P2, P3)

+
1

N

N∑
l=1

Ŵl(P1, P2, P3)(λŴl(P1, P2, P3))2

1 + λŴl(P1, P2, P3)
. (B.8)

From Lemma 3.1 (ii), (A.4), (A.5) and (A.6), it follows that the final term in (A.7) is bounded

by

|λ|2 1

N

N∑
l=1

|Ŵl(P1, P2, P3)|3 max |(1 + λŴl(P1, P2, P3))−1| = Op(N
−1),

which implies that

λ =

∑N
l=1 Ŵl(P1, P2, P3)∑N
l=1 Ŵ

2
l (P1, P2, P3)

+Op(N
−1). (B.9)

Further, multiplying both side of Equation (3.15) by λ, we get that

0 =
1

N

N∑
l=1

λŴl(P1, P2, P3)

1 + λŴl(P1, P2, P3)

=
1

N

N∑
l=1

λŴl(P1, P2, P3)− 1

N

N∑
l=1

λ2Ŵ 2
l (P1, P2, P3)

+
1

N

N∑
l=1

(λŴl(P1, P2, P3))3

1 + λŴl(P1, P2, P3)
. (B.10)

Similarly, the final term in (A.9) is bounded by

|λ|3 1

N

N∑
k=1

|Ŵl(P1, P2, P3)|3 max |(1 + λŴl(P1, P2, P3))−1| = Op(N
−3/2).
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Hence, we have

N∑
l=1

λŴl(P1, P2, P3) =
N∑
l=1

λ2Ŵ 2
l (P1, P2, P3) +Op(N

−1/2). (B.11)

By Taylor’s expansion of Equation (3.16) and using (B.9), (B.11), we have that

− 2lIF (P1, P2, P3) = 2
N∑
l=1

log{1 + λŴl(P1, P2, P3)}

= 2λ
N∑
l=1

Ŵl(P1, P2, P3)− λ2

N∑
l=1

Ŵ 2
l (P1, P2, P3) + rn

= λ
N∑
l=1

Ŵl(P1, P2, P3) +Op(N
−1/2) + rn

where

|rn| ≤ C
N∑
l=1

|λŴl(P1, P2, P3)|3 ≤ C|λ|3
N∑
l=1

|Ŵl(P1, P2, P3)|3

= Op(N
−3/2)Op(N) = Op(N

−1/2).

From (B.9) and Lemma, it follows that

−2lIF (P1, P2, P3) =
σ2
[

1
σN1/2

∑N
l=1 Ŵl(P1, P2, P3)

]2
1
N

∑N
l=1 Ŵ

2
l (P1, P2, P3)

+ op(1)
d−→ χ2

1.

Proof of Proposition 3.2:

We first briefly introduce Clarke and Yuan’s approach [30]. Define the outer product

matrix Ω = E[g(Zj, P2)g′(Zj, P2)], Jacobian matrix D(P2) = E[∂g(Zj, P2)/∂P2] and the

matrix Λ(P2) = D′(P2)Ω−1(P2)D(P2), where g(Zj, P2) is an estimating function.

For our Bayesian EL approach, g(Zj, P2) = U(Y2,j) − P2, where U(Y ) is defined in

Section 3.2, and

Ω(P2) = E[g(Zj, P2)]2 = E[U(Y2,j)− P2]2 = P2(1− P2).
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Thus we have

Λ(P2) = D′(P2)Ω−1(P2)D(P2) =
1

P2(1− P2)
.

So the reference prior for the EL under the relative entropy is

πEL,1(P2) ∝ |Λ−1(P2)|1/2 =
√
P2(1− P2),

i.e.,

πEL,1(P2) = β(
3

2
,
3

2
),

and the reference prior for the hybrid EL under Hellinger distance is

πEL,2(P2) ∝ |Λ(P2)|1/2 =
1√

P2(1− P2)
,

i.e.,

πEL,2(P2) = β(
1

2
,
1

2
).
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