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ABSTRACT 

Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability 

to join the dots into complex assemblies creates many opportunities for scientific discovery. This 

motivated our present research work on QDIPs, DWELLs, and graphene like QDs. The intention of this 

research was to study the size dependent achievements of QDIPs, DWELLs, and graphene like QDs with 

those of competitive technologies, with the emphasis on the material properties, device structure, and 

their impact on the device performance. 

In this dissertation four research studies pertaining to optical properties of quantum dot and dot-

in-a-well infrared photodetectors, I-V characteristics of graphene quantum dots, and energy and spin 

texture of germanene quantum dots are presented. Improving self-assembled QD is a key issue in the 

increasing the absorption and improving the performance. In the present research work, an ideal self-



assembled QD structure is analyzed theoretically with twenty-hole levels (Intraband optical transitions 

within the valence band) and twenty-electron energy levels (DWELL). Continuing the efforts to study 

self-assembled QDs we extended our work to graphene like quantum dots (graphene and germanene) to 

study the electronic transport properties.  

 

We study numerically the intraband optical transitions within the valence band of InxGa1-xAs/GaAs 

pyramidal quantum dots. We analyze the possibility of tuning of corresponding absorption spectra by 

varying the size and composition of the dots. Both ‘x ’ and the size of the quantum dot base are varied. 

We have found that the absorption spectra of such quantum dots are more sensitive to the in-plane 

incident light. 

We present numerically obtained absorption optical spectra of n-doped InAs/In0.15Ga0.85As/GaAs quantum 

dot-in-a-well systems. The absorption spectra are mainly determined by the size of the quantum dot and 

have weak dependence on the thickness of the quantum well and position of the dot in a well. The dot-in-

a-well system is sensitive to both in-plane and out-of-plane polarizations of the incident light with much 

stronger absorption intensities for the in-plane-polarized light.  

We also present theoretically obtained I-V characteristics of graphene quantum dots, which are realized as 

a small piece of monolayer graphene. We describe graphene within the nearest-neighbor tight-binding 

model. The current versus the bias voltage has typical step-like shape, which is due to discrete energy 

spectrum of the quantum dot. The current through the dot system also depends on the position of the 

electrodes relative to the quantum dot. 

In relation to graphene quantum dots, we present our study of buckled graphene-like materials, like 

germanene and silicene. We consider theoretically germanene quantum dot, consisting of 13, 27, and 35 

germanium atoms. Due to strong spin-orbit interaction and buckled structure of the germanene layer, the 

direction of the spin of an electron in the quantum dot depends on both the electron energy and external 

perpendicular electric field. With variation of energy, the direction of spin changes by approximately 4.50. 



Application of external electric field results in rotation of electron spin by approximately 0.50, where the 

direction of rotation depends on the electron energy.  

 

INDEX WORDS: Quantum Dots, Quantum Dot Infrared Photodetector, Quantum Dot-in-a-well 

Infrared Photodetectors, Graphene Quantum Dots, I-V characteristics of Quantum Dots, Energy 

spectrum of Germanene Quantum Dots, Spin Texture of Germanene Quantum Dots.   
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1 INTRODUCTION  

1.1 Quantum dots as artificial atoms 

My research focuses on self assembled semiconductor quantum dots or "artificial atoms" that are 

zero dimensional systems, the electron dynamics in which is restricted in all three spatial directions [10]. 

A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons, 

valence band holes, or excitons (bound pairs of conduction band electrons and valence band holes) in all 

three spatial directions. Zero dimensionality of the system results in discrete energy spectra, which can be 

tuned externally through the nature and strength of confinement potential. The confinement can be due to 

electrostatic potentials such as that are generated by external electrodes, doping, strain, impurities, etc. 

Such quantum dots usually have large size (≈100 nm) with large number of electrons and show unique 

transport properties [17], such as Kondo effect [18] and Coulomb blockade [17].  Also the presence of an 

interface between different semiconductor materials (e.g. in core-shell nanocrystal systems), the presence 

of the semiconductor surface (e.g. semiconductor nanocrystal), or a combination of these can produce the 

required confinement[19].  In this case, the trapping potential is produced by conduction or valence band 

offsets of the corresponding materials. Such quantum dots can have small size (≈ 10 nm) and can be 

grown by Stranski-Krastanow technique. 

The properties of such designed quantum dots are similar to the properties of the 

macromolecules.  High tunability of the energy spectra and corresponding electron states resulted in 

growing interest in the quantum dots and their potential applications, ranging from novel lasers and 

photodetectors to quantum information processing. Therefore, in conventional semiconductor systems, 

quantum dots are introduced by considering a small nano-scale piece of a semiconductor material, or by 

placing a nano-sized material into another material, or by applying spatially designed electrostatic 

confinement potential to low-dimensional systems. In all cases the confinement potential is introduced, 

which results in electron localization within the quantum dot region. Due to unique transport and optical 

properties of quantum dots, they have found their applications in transistors [12], solar cells, light- 

emitting diodes [13], photodetectors [6–9], and diode lasers [14]. The applications of quantum dots as 
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agents for medical imaging [15] and qubits [16] in quantum computing are also under discussion. 

 Quantum dots are just not a doorway to Nanoscale Physics but also one of the most studied 

objects in physics. Due to small nanoscale size of the quantum dots, their properties are described 

quantum mechanically. With the help of quantum dots, quantum behavior on a nanoscale that is larger 

than the atomic scale can be probed. Even though the physics of these devices is closer to classical 

physics than that of atoms, we can still consider the behavior of quantum dots to be sufficiently exhibiting 

quantum phenomena. 

 The electron wave functions in the quantum dot are spatially localized within the dot but could 

extend over many periods of the crystal lattice. A quantum dot contains a small number of elementary 

electric charges in the form of conduction band electrons, valence band holes, or excitons. Colloidal 

semiconductor nanocrystals can be considered as small quantum dots within a range of 2 to 10 nm and 

may contain few atoms to few thousands of atoms within the quantum dot volume. Self-assembled 

quantum dots could be anywhere between 10 to 50 nm in size.  

 Properties of the quantum dots have been intensively studies in relation to their optoelectronics 

and microelectronics applications. Due to nanoscale size of the quantum dots, their properties can be 

controlled by variation of size, structure, and composition of the quantum dots.  
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 The discrete energy spectrum of a quantum dot is illustrated in Figure 1 [19], where the discrete 

density of states is shown. The band gap (conduction and valence) of the quantum dots and the interlevel 

energy separation can be tuned with size. Therefore the frequency of optical transitions within the 

quantum dot, which is the frequency of transitions between the discrete levels of the dot, can be 

controlled by the size of the dot. The energy required to add or remove a charge to a quantum dot depends 

on the size of the quantum dot and hence the electrical transport also depends on the size of the quantum 

dot. Therefore both optical and electrical transport in a quantum dot can be controlled by its size and its 

composition. For example, the color of a solution of quantum dots changes as the sizes of semiconductor 

nano-crystal quantum dots change [87]. Different solutions made of the same semiconductor nano-

crystals but of different sizes exhibit strikingly different colors. This property nowadays is used in 

producing quantum dot TVs, laptops, and phones, which show a big benefit of using colloidal quantum 

dots.  
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Significant advances in the fabrication of molecular wires and diode switches demonstrated 

successful realization of individual molecules as tiny switches and wires, which are on million times 

smaller than those of conventional microchips. To provide ever faster and cheaper computers, the size of 

the microelectronic components should be of the size of atoms or molecules. But the fabrication of 

complete molecular circuits is difficult because inter-molecular connections are difficult to realize. This 

difficulty can be overcome by monomolecular electronics, in which a single molecule will integrate the 

elementary functions and interconnections required for computing. In this relation, fabrication of artificial 

atoms and molecules with specific transport properties becomes very important. One type of such 

artificial atoms (molecules) is semiconductor quantum dot (coupled quantum dots). The quantum dots can 

be used as a building block of nano-scale devices. In this relation it is important to understand the 

transport characteristics, i.e., I-V characteristics of such quantum dots. 

 The optical properties of solids are determined by electronic transitions within the material and 

light scattering effects. The optical transitions within such solids produce electron and hole pair, which is 

called exciton.  Since the exciton is composed of a hole and an electron, the distance between the hole and 

electron is determined by Bohr radius of exciton. When the length of the semiconductor is reduced close 

to the radius of the exciton, quantum confinement effect takes place and the exciton properties are 

changed. The dimension of the confinement determines whether it is a quantum well, quantum wire, or 

quantum dot. In a quantum well, the material size is reduced only in one direction and the exciton is free 

to move in two directions. In a quantum wire, the material size is reduced in two directions and the 

exciton is free to move in only one direction. Whereas in the case of a quantum dot, the material size is 

reduced in all the three directions and the exciton is bound. In all these cases the nature of exciton is 

modified and exceptional optical properties are expected from these materials. Therefore these structures 

can be tuned to become high performance optoelectronic devices like light emitting diodes, IR and UV 

photo detectors, quantum dot TVs, phones, tablets, laptops and laser diodes.    
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1.2 Quantum dot infrared photodetectors 

Infrared photodetectors were the subject of intensive experimental and theoretical research for the last few 

decades [1]. Such photodetectors are based on either intrinsic free carrier and impurity absorptions of 

incident light or intersubband photoabsorption in low-dimensional systems, such as quantum wells or 

quantum dots. One of the main problems of infrared photodetectors is to achieve desirable high 

temperature photoresponse at controllable frequency. Recently, highly p-doped GaAs/Alx Ga1-x As 

semiconductor photodetectors, operating at high temperature in the wavelength range of 3–5 μm, were 

reported [2,3]. The photoresponse of such photodetectors is due to optical transitions between heavy 

(light) hole and split-off subbands [2,3]. According to the authors a GaAs/AlGaAs heterojunction with a 

threshold wavelength of ≈ 20 μm has indicated an operating temperature of 130 K for split-off response in 

the range of 1.5–5 μm with a peak D* of 1.0 x108 Jones. Analysis suggested that practical devices with 

optimized parameters were capable of achieving room temperature operation with higher specific 

detectivity. The photoresponse of split-off photodetectors can be controlled by the composition of the 

material of the photodetector and the strength of its doping, although the frequency range of its 

photoresponse is still relatively broad.  

One way to make the photoresponse of the photodetector narrow and increase its operation 

temperature is to reduce the dimensionality of the active element of the system, i.e., to introduce 

additional dimensional quantization. This is realized in quantum well [4] and quantum dot [5] 

photodetectors, where the active elements are quantum wells and quantum dots, respectively. Therefore, 

in these photodetectors, the absorption of the incident light occur between the states of quantum well 

(quantum well photodetectors) or between the states of quantum dot (quantum dot photodetector).   

Due to zero dimensionality of QDs, the quantum dot infrared photodetectors (QDIP) have some 

advantages over the quantum well infrared photodetectors (QWIP) [81]. Namely,   
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1. QDIP is sensitive to all directions of polarizations of the light, both perpendicular and parallel to the 

growth direction, while QWIPs is sensitive only to the light polarized perpendicularly to the growth 

direction, which is due to corresponding absorption selection rules. The selection rules in QDIPs are 

inherently different, and normal incidence absorption is observed.  

2. Thermal generation of electrons is significantly reduced due to the energy quantization in all three 

dimensions. As a result, the electron relaxation time from excited states increases due to phonon 

bottleneck. Generation by LO phonons is prohibited unless the gap between the discrete energy levels 

equals exactly to that of the phonon. Such restriction does not apply to quantum wells, since the levels are 

quantized only in the growth direction and a continuum exists in the other two directions. Thus, it is 

expected that signal to noise ratio in QDIPs will be significantly larger than that of QWIPs. 

3. Lower than in QWIP dark current in QDIPs is expected which is due to 3D quantum confinement of 

the electron wavefunctions in the quantum dots. 

The infrared photodetectors based on the quantum dots or combination of quantum dots and 

quantum wells were realized experimentally [6–9,26]. Investigation of mid-infrared absorption between 

confined levels of undoped InAs/GaAs self-organized quantum dots has shown intraband absorption in 

the range 90–250 meV [20] along the growth direction (z). The Z-polarized narrow peak at 115 meV was 

attributed to bound-to-bound hole transitions [20].  The dependence of the optical properties on the 

temperature in multiple-stacked InAs/GaAs quantum dots grown on GaAs substrates by using molecular 

beam epitaxy was investigated [21] and the temperature-dependent PL spectra were discussed in terms of 

the inhomogeneous size distribution of the QDs and the carrier repopulation process. Photoluminescence 

and atomic force microscopy were used to characterize optical and structural properties of InAs QDs 

which were grown on InP substrates (Si2 H6 n-type dopant) [22] by low pressure-metalorganic chemical 

vapor deposition and it was found that the PL peak positions varied from 0.73 to 0.88 eV with the 

position of Si doping. Simulations of the photocurrent in InAs Quantum Dot Infrared Photodetector 
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(QDIP) that responded with strong resonance peaks in the ≈10 μm wavelength range were presented [23] 

and reported to be in good agreement with the experimental data generated earlier. Using a combined 

quaternary In0.21 Al0.21 Ga0.58 As and GaAs capping, it was demonstrated that a four color infrared 

response peaks were observed in the midwave- (5.7 μm), longwave- (9.0 μm and 14.5 μm), and far- (17 

μm) infrared regions in the InAs/GaAs QDs [24].  

 Quantum dot infrared photodetectors have shown some unique characteristics. It was reported 

experimentally that QDIP have high gain of 750 at temperature 77 K and bias voltage of 0.7 V [6], high 

detectivity of 3.6 x 1010 cm Hz1/2 /W [7] and 33 x 1011  cm Hz1/2/W at 78 K [8], comparable to the state-

of-the-art quantum well infrared photodetectors in a similar wavelength range. Such high detectivity at 

bias voltage of 1.4 V corresponds to photoresponse peaks at 9.3 and 8.7 μm for positive and negative bias, 

respectively.  

 In Ref.[9], the authors reported high-temperature (240 – 300 K) operation of a tunneling 

quantum-dot infrared photodetector. The device has displayed two-color characteristics with 

photoresponse peaks at ≈ 6 μm and 17 μm. The extremely low dark current density of 1.55 A / cm2 at 300 

K for 1 V bias is made possible by the tunnel filter. It was shown that for the 17 μm absorption, the 

measured peak responsivity was 0.16 A/W (300 K) for a bias of 2 V and the specific detectivity D* was 

1.5 x 107 cm Hz1/2/W (280 K) for bias of 1 V.  

 The thermal generation rate in quantum dots could be significantly smaller than in quantum wells. 

This results in much improved signal to noise ratio [14].  

 Discrete energy levels in quantum dots open another possibility of realizing optical transitions 

between different types of quantum states and correspondingly multipeak structure of the photoresponse. 

The transitions in quantum dot photodetectors can be of different types: intraband transitions between the 

confined states of the quantum dot and bound-to-continuum transitions (transitions between the bound 

states of the quantum dot and the states of the continuum) [20,88], which results in multi-peak structure. 

Using a combined quaternary In0.21 Al0.21 Ga0.58 As and GaAs capping, it was demonstrated that a four 
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color infrared response peaks were observed in the mid-infrared  (5.7 μm), long-wavelength infrared  (9.0 

μm and 14.5 μm), and far-infrared (17 μm) regions in the InAs/GaAs QDs [24]. Narrow spectral widths 

(7% to 9%) were reported at each of these wavelengths including responsivity value 95.3 mA/W at 14.5 

μm. Using strain field and multi-band k.p. theory, authors mapped specific bound-to-bound and bound-to-

quasi-bound transitions to the long-wavelength and mid-infrared responses, respectively. The double-peak 

structure of photoresponse in multiple-stacked InAs/GaAs quantum dot photodetectors has been also 

reported in Ref. [21].  

 Depending on the doping of the quantum dot system, the quantum dot photodetector can be of n-

type or p-type. In n-type quantum dot photodetectors, the optical transitions occur between the quantized 

levels in the conduction band, while in p-type quantum dot photodetectors, the photoresponse is due to 

optical transitions between the quantized states of the valence bands. Since in semiconductor quantum 

dots, there are three types of valence bands: heavy hole valence band, light hole band, and spin-orbit split-

off band, there are additional features and additional lines in the optical spectra of such systems.   

 Although the quantum dot photodetector are expected to show better characteristics than quantum 

well photodetectors, the present quantum dot devices have not fully demonstrated the potential 

advantages [27]. The dominant infrared response in quantum dot photodetectors, realized so far, is 

polarized in the growth direction and the observed dark currents were usually several orders of magnitude 

higher than those for quantum well photodetectors; while ideally they should be lower.  

In addition to QDIP, quantum rings photodetectors [25] and photodetectors, based on quantum 

dot superlattices [25] were reported. Compared to QDIP, In(Ga)As quantum ring infrared photodetectors 

under normal incidence configuration have shown wider photocurrent spectra, more responsitivity with 

temperature change, and lower dark current activation energy [25].  

 Additional control of optical properties of QDs can be realized by placing QDs inside a quantum 

well. The optical properties of such systems can be controlled by changing the width of the quantum well 

and position of the quantum dot inside the well. Such dot-in-a-well (DWELL) structures have two main 
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types of optical transitions: (i) between the states of QD and (ii) between the states of QD and the states of 

quantum well. Using femtosecond spectroscopy, long carrier lifetimes have been reported [28] in 

DWELL hetero-structures and it was demonstrated that these structures are bias-tunable and are able to 

operate in the mid infrared (MIR, 3-5 μm), long infrared (LIR, 8-12 μm) and very long infrared (VLIR, > 

4 μm) regimes with the peak of the spectral response gradually red shifting as the thickness of the InGaAs 

layer is increased from 10 Å to 60Å. Seller et al. [29] has demonstrated the optimized growth of DWELL 

QD devices for 1.3μm lasers in which far-IR modulation technique was applied to determine the electron 

and hole quantization energies of QDs. It was reported that electron and hole quantization energies of 

46.7 ± 0.2 and 13 ± 1 meV, respectively were obtained for the DWELL QD device.  

 A typical two-color photoresponse was reported [30,31] for InAs/InGaAs DWELL detector at 

130 meV– 160 meV (9 μ m – 7 μ m) and at 230 meV (5 μ m) and the possibility of tuning of the spectral 

range by varying the QW thickness was observed. The active region of the structure consisted of multiple 

layers of InAs QDs in In0.15 Ga0.85 As quantum well. It was shown that spectral response has a peak at 5.5 

μm for lower biases and at 8–10 μm for higher biases. Three-color InAs-InGaAs quantum DWELL 

detectors, which have different sizes of quantum wells and quantum dots, were reported [32]. The 

photoresponse of such DWELL detector was at three distinct wavelengths: 6.25 μ m, 10.5 μm and 23.3 

μm. The first two peaks correspond to the bound-to-bound transitions between the ground state in the dot 

and the states in the well, while the long wavelength response corresponds to optical transitions between 

the states of the dot. 

 Thus, the DWELL photodetectors demonstrate typical multi-color (two-color or three-color) 

photoresponse, which can be controlled by changing of the parameters of the system, such as the size of 

the quantum dot and the position of the dot in the well.  
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1.3 Graphene quantum dots 

 Recently, a new type of quantum dots [43-46], based on graphene-like materials [47-49] was 

introduced. The graphene-like materials are semimetals with low energy dispersion relation of relativistic 

Dirac type [47,48,50,51]. The examples of such materials are monolayer graphene, which is just a single 

layer of carbon atoms, and the surface states of 3D topological insulators [49, 52-57], which were first 

predicted theoretically and then observed experimentally in BixSb1-x, Bi2Te3, Sb2Te3, and Bi2Se3 materials.   

 The field of graphene-related research has grown at a spectacular pace since single-layer flakes 

were first isolated in 2004. What began as an exciting material for fundamental physics has now became 

the focus of efforts by scientists in a wide range of disciplines. Organic and material chemists are working 

on new synthetic routes to high-quality single layers, while engineers are designing novel devices to 

exploit graphene’s extraordinary properties.  

 A major issue with graphene-based logic devices is their poor Ion / Ioff ratios [82]. Conductivity in 

graphene is minimized under zero gate bias, but devices are essentially impossible to turn off at any 

reasonable temperature because thermal energy and fluctuations are more than sufficient to produce large 

carrier populations. While a number of approaches have been suggested, the most straightforward way to 

minimize the off current in graphene-based devices is to introduce an appreciable band gap. Therefore 

search for methods to introduce an appreciable band gap in graphene has become imperative. Research on 

graphene’s electronic properties is now matured but is unlikely to start fading any time soon, especially 

because of the virtually unexplored opportunity to control quantum transport by strain engineering and 

various structural modifications. Research on graphene’s non-electronic properties is just gearing up, and 

this should bring up new phenomena that can hopefully prove equally fascinating and sustain, if not 

expand, the graphene boom. Therefore it is essential that more research on the electronic properties of 

graphene is needed.   

 Graphene is a single (Fig. 1.4.1b) atomic layer of graphite, sufficiently isolated from its 

environment to be considered as freestanding but atomic planes of one-atom-thick materials such as 

graphene remained unknown. It is known that the basic reason for this is that nature strictly forbids the 
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growth of low-dimensional crystals. But one can grow a monolayer inside or on top of another crystal (as 

an inherent part of a 3D system). 

 Graphene’s electronic properties are unique and different from those of any other known 

condensed matter system. The reasons are the following: (1) Graphene’s electron spectrum is described 

by a Dirac-like equation rather than the Schrödinger equation. The latter – so successful for understanding 

of quantum properties of other materials – does not work for graphene’s charge carriers with zero 

effective mass. (2) Electron waves in graphene propagate within a layer that is only one atom thick, which 

makes them accessible and amenable to various scanning probes, as well as sensitive to the proximity of 

other materials such as high-κ dielectrics, superconductors, ferromagnetics, etc. (3) Graphene electrons 

can cover submicron distance without scattering, even in samples placed on an atomically rough 

substrate, covered with adsorbents and at room temperature T. (4) Due to the massless nature of the 

carriers and suppressed backscattering, quantum effects in graphene are robust and can survive even at 

room temperature. Also, it is easy to foresee the revisiting of lateral superlattices, magnetic focusing, 

electron optics and many interference and ballistic effects studied previously in the conventional two-

dimensional electronic systems, which is expected to have more uses than thought. The electro- and 

magneto- optics of graphene are still under preliminary studies and we expect graphene to offer many 

unexplored opportunities.  

 Research on bended, folded and scrolled graphene is also gearing up. Furthermore, graphene and 

turbostratic graphene offer a vast opportunity for scanning probe microscopy and we can look forward to 

many possible experiments that can observe supercritical screening, detect local magnetic moments, map 

wave functions in quantizing fields, etc. Quantum Hall Effect and its possibility have already been 

tormenting graphene researchers who occasionally observe plateau-like features at fractional fillings, only 

to find them irreproducible for different devices [103].  
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Graphene is an ultimate incarnation of the surface: It has two faces with no bulk left in between. While 

this surface’s physics is currently at the center of attention, its chemistry remains largely unexplored. 

Despite a lot of possible findings and applications, graphene chemistry has so far attracted little interest 

from professional chemists. One reason is of course that graphene is neither a standard surface nor a 

standard molecule. However, the main obstacle has probably been the lack of samples suitable for 

traditional chemistry.  

 Non-electronic properties of graphene such as how it melts, or what its melting point is, or even 

the order of the phase transition are unknown. Experimental progress in studying graphene’s 

thermodynamic properties has been hindered by small sizes of available crystals. On the other hand, even 

the theoretical progress is slow because small sizes have proven to be a problem also in molecular 

dynamics and other numerical approaches, which struggle to grasp the underlying physics when studying 

crystals of only a few nm in size.  

 Furthermore, transport properties of real graphene devices have turned out to be much more 

complicated than theoretical quantum electrodynamics, and some basic questions about graphene’s 

electronic properties still remain to be answered. For example, there is no consensus about the scattering 

mechanism that currently limits μ, little understanding of transport properties near NP and no evidence for 

many predicted interaction effects. In spite of the above known qualities of graphene, materials like 

graphene-based quantum dots, p-n junctions, nanoribbons, quantum point contacts, and magneto transport 

near NP have not received even a fraction of the attention they deserve [103]. 

 Most of the research is currently around graphene’s long-term prospects in computer electronics. 

It looks that applications are least discussed and remain unnoticed even within parts of the graphene 

community. An extreme example of the former is an idea about graphene becoming the base electronic 

material “beyond the Si age”. Although this possibility cannot be ruled out, it is so far beyond the horizon 

that it cannot be assessed accurately either. At the very least, graphene-based integrated circuits require 

the conducting channel to be completely closed in the off state. Several schemes have been proposed to 
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deal with graphene’s gapless spectrum and, recently, nanoribbon transistors with large on-off current 

ratios at room T were demonstrated [103]. Nevertheless, the prospect of “graphenium inside” remains as 

distant as ever. This is not because of graphene shortfalls but rather because experimental tools to define 

structures with atomic precision are lacking. More efforts in this direction are needed but the progress is 

expected to be painstakingly slow and depend on technological developments outside the research area. 

 Specific feature of quantum dots in graphene-like materials is that, due to the Klein paradox, i.e. 

gapless nature of electron energy spectrum, the electrons in these systems cannot be localize by any 

confinement potential but can be only trapped for a long enough time [44,45].  The electron localization 

in the trapping potential can be achieved in such system if a finite gap in the energy spectrum is 

introduced. This can be done, for example, in bilayer graphene or in thin topological insulator nanofilms, 

where the coupling of degenerate states at two surfaces of the nanofilm opens a gap in the energy 

spectrum.  

 The quantum dots in graphene-like materials can be also realized as a nanosize graphene flake. 

The electron is localized in this case within the region of graphene flake irrespective of the magnitude of 

the band gap. Such graphene quantum dots have been realized experimentally [43]. Connected to 

tunneling contacts, the graphene quantum dots show Coulomb charging phenomena. Transport properties 

of such constructed graphene quantum dots are not well studied and understood.  

1.4 Buckled graphene-like materials 

(a)       (b)    

FIG 1.4.1 (a) Buckled Silicene/Germanene Structure and (b) Graphene 

 Another examples of graphene-like systems, that are recently discovered, are buckled graphene-

like materials such as silicene (Fig. 1.4.1a) and germanene [58-66].  They are monolayers of silicon and 
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germanium with hexagonal lattice structures, where the low energy charge carriers are also massless 

Dirac fermions [67-73]. Experimentally, the 2D silicene was synthesized on Ag (111) [69-72] and 

zirconium diboride substrates [73], while germanene was grown on Ag [74] and Pt [75] substrates. The 

main difference between silicene, germanene and graphene is that due to a larger radius of Si, Ge atom 

compared to C atom, the corresponding hexagonal lattices in germanene and silicene have buckled 

structure [76] - two sublattices in silicene and germanene are displaced vertically by finite distance Lz. 

The silicene and germanene have also large spin-orbit interactions, which open finite band gaps in the 

energy dispersion at the Dirac points Δso ≈ 1.55 - 7.9 meV for silicene [63,77] and Δso ≈ 24 - 93 meV for 

germanene [63,77]. The corresponding spin-orbit-induced gap in graphene is much smaller, 25 μeV [78]. 

The buckled structure of silicene and germanene lattices allows also for the band gap to be controlled by 

an external perpendicular electric field [79], where the size of the band gap increases almost linearly with 

the magnitude of the electric field. In particular, the gap closes at a certain critical value of electric field. 

Topological phase transition occurs from a topological insulator to a band insulator with the increase of 

the electric field [79]. It is also possible to generate helical zero modes anywhere in a silicene sheet by 

adjusting the electric field locally to this critical value. The region may act as a quantum wire or a 

quantum dot surrounded by topological and/or band insulators. 

 Due the finite controllable band gap in silicene and germanene monolayers, the quantum dots 

with localized electron states are expected in these systems, where the dots are created by confinement 

potential. Similar to graphene, silicene/germanene quantum dots can be also created as nanosize flake of 

silicene/germanene monolayer. Although both graphene and silicene/germanene have honeycomb lattice 

structure, the main difference between graphene and silicene/germanene quantum dots is that the 

silicene/germanene quantum dots are sensitive to external electric field and they also have relatively 

strong spin-orbit interaction. Thus, the properties of silicene/germanene quantum dots can be controlled 

by perpendicular electric field and the electron states in silicene/germanene quantum dots should have 

nontrivial spin texture.  
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1.5 Data Collection and Analysis Methods 

This section describes and justifies all methods and tools used for collection and analysis of the data 

(manual and/or computational). 

1.5.1 All about NEXTNANO Software Package 

[http://www.nextnano.com/nextnano3/overview/overview.htm] NEXTNANO [80] is a simulator for 

calculating, in a consistent manner, the realistic electronic structure of three-dimensional heterostructure 

quantum devices under bias and its current density close to equilibrium. The electronic structure is 

calculated fully quantum mechanically, whereas the current is determined by employing a semi-classical 

concept of local Fermi levels that are calculated self-consistently. 

1.5.1.1 What is the method of NEXTNANO program? 

The nano-device simulator solves the 8-band-k.p-Schrödinger-Poisson equation for arbitrarily 

shaped 3D heterostructure device geometries, and for any (III-V and Si/Ge) combination of materials and 

alloys. It includes band offsets of the minimal and higher band edges, absolute deformation potentials, 

local density exchange and correlations (i.e. the Kohn-Sham equations), total elastic strain energy, that is 

minimized for the whole device, the long-range Hartree potential, induced by charged impurity 

distributions, voltage induced charge redistribution, piezo- and pyroelectric charges, as well as surface 

charges, in a fully self-consistent manner. The charge density is calculated for a given applied voltage by 

assuming the carriers to be in a local equilibrium that is characterized by energy-band dependent local 

quasi-Fermi levels EFc(x) for charge carriers of type c, (i.e. in the simplest case, one for holes and one for 

electrons). 
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1.5.1.2 How successful was NEXTNANO in the past? 

 Piezoelectric fields and electron-hole localization in quantum dots 

NEXTNANO simulator was applied to study theoretically single quantum-dot photodiodes 

consisting of self-assembled InGaAs quantum dots with a diameter of 30-40 nm and heights of 4-

8 nm that are embedded in the intrinsic region of a Schottky diode. 

 Towards fully quantum mechanical 3D device simulation Ref. [104] 

 Nonequilibrium band structure of nano-devices Ref. [105] 

 What kind of input is needed? 

 dimension of sample (1D, 2D or 3D) 

 materials and shape of the heterostructure 

 applied bias if any 

 doping if any 

 Where are the quantum regions, where are the classical regions? Specification of desired output 

1.5.1.3 What kind of output can be calculated? 

 band structure 

 strain 

 piezo- and pyroelectric charges 

 electron/hole densities (space charge) 

 electrostatic potential 

 current 

 wave functions 
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1.5.1.4 What is the structure ("Setup") of the program? 

 The input file is processed, i.e. the material data are read in from the database and the geometry 

will be mapped on the grid. 

 The strain is calculated. 

 The band edges  are calculated by taking into account the van-de-Walle model and the strain. 

This can possibly lead to a splitting of degenerate energy states. 

 The piezoelectric and pyro-electric polarization charges are determined. 

 The program sets up quantum regions and allocates quantum states, and all other relevant 

variables that contain the physical solutions. 

 The main program starts. 

 A starting value for the potential is determined. 

 The nonlinear Poisson equation in thermodynamic equilibrium is determined leading to the built-

in potential. 

 Eventually the results  are written into the specified files. 

1.5.2 All about Matlab 

[http://www.mathworks.com/products/matlab/] MATLAB® is the high-level language and interactive 

environment used by millions of engineers and scientists worldwide. It lets you explore and visualize 

ideas and collaborate across disciplines including signal and image processing, communications, control 

systems, and computational finance. 

MATLAB can be used in projects such as modeling energy consumption to build smart power grids, 

developing control algorithms for hypersonic vehicles, analyzing weather data to visualize the track and 

intensity of hurricanes, and running millions of simulations to pinpoint optimal dosing for antibiotics. 
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1.5.2.1 Numeric Computation 

MATLAB provides a range of numerical computation methods for analyzing data, developing algorithms, 

and creating models. The MATLAB language includes mathematical functions that support common 

engineering and science operations. Core math functions use processor-optimized libraries to provide fast 

execution of vector and matrix calculations. Available methods include: 

 Interpolation and regression 

 Differentiation and integration 

 Linear systems of equations 

 Fourier analysis  

 Eigenvalues and singular values 

 Ordinary differential equations (ODEs) 

 Sparse matrices  

MATLAB add-on products provide functions in specialized areas such as statistics, optimization, signal 

analysis, and machine learning. 

1.5.3 FORTRAN 

Fortran (previously FORTRAN, derived from Formula Translating System) is a general-purpose, 

imperative programming language that is especially suited to numeric computation and scientific 

computing. For scientific and engineering applications, Fortran came to dominate this area of 

programming early on and has been in continuous use for over half a century in computationally intensive 

areas such as numerical weather prediction, finite element analysis, computational fluid dynamics, 

computational physics and computational chemistry. It is one of the most popular languages in the area of 

high-performance computing and is the language used for programs that benchmark and rank the world's 

fastest supercomputers.  

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Numerical_weather_prediction
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computational_physics
https://en.wikipedia.org/wiki/Computational_chemistry
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/TOP500
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2 RESULTS ANS DISCUSSIONS 

 

2.1 Research Questions 

 This dissertation focuses on study of optical properties of semiconductor quantum dots in relation 

to quantum dot infrared photodetectors, transport properties (I-V characteristics) of graphene quantum 

dots and molecules (combination of two or more dots), and energy spectrum and spin texture of 

germanene quantum dots. 

 Taking into account the results obtained in Refs. 2 and 3, where the split-off bulk p-doped 

photodetectors were introduced, we study the corresponding p-doped quantum dot photodetectors, 

addressing the possibility of tuning the photoresponse frequency of such quantum dot photodetectors. 

Namely, we study numerically the intraband optical absorptions within the valence bands of p-doped 

semiconductor quantum dots of type Inx Ga1-x As/GaAs. In application to quantum dot photodetectors, we 

study how the size of the dot and its composition affect the optical transitions within the dot. The 

quantum dots under investigation can be realized experimentally by Stranski-Krastanow growth 

technique, which can provide relatively high control over the size of the quantum dot. The electronic 

states and optical transitions in an isolated quantum dot were found numerically within 8 band kp model 

with the use of NEXTNANO [80] software package. We have calculated the absorption spectra for both z 

and x polarized light, where z-direction is the growth direction. The size of the base of the dot has been 

varied from 5 nm to 21nm for different values of In content: x=0.1, x=0.3, x=0.5, x=0.7, x=0.9, and 

x=1.0. Such sizes and compositions of the quantum dot were chosen arbitrary just to illustrate the 

possibility of tuning of optical properties of p-doped quantum dots by varying the geometry and structure 

of the dot and also to determine the extent of such tunability. The problem of tunability of optical 

properties of quantum dots is very important for practical applications of quantum dots in infrared 

photodetectors, which are designed to be sensitive to a specific wavelength of the incident light.  
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 Another topic of this dissertation is study of n-doped DWELL photodetectors [30, 31], where the 

problem of tunability of photoresponse frequency of such photodetectors were addressed. Namely, we 

study numerically the intraband optical absorptions within the conduction band of InAs/Inx Ga1-x 

As/GaAs DWELL structures. We study how the size of the dot, the size of the quantum well, and the 

position of the dot within the well affect both the frequency and the intensity of optical transitions. The 

electronic states and optical transitions in DWELL system were found numerically within the effective 

mass model by employing the Nextnano [80] software package. We have found numerically the 

absorption spectra for both z and x polarized light, where z-direction is the growth direction. The size of 

the base of QD has been varied from 5 nm to 15 nm and the thickness of QW has been varied from 6 nm 

to 15 nm. In all calculations we assume that the In content is x = 0.15 and the doping of the DWELL 

photodetector corresponds to 1 electron per quantum dot. 

 The third topic of the dissertation is study the transport properties of quantum dots, which are 

based on special type of semiconductor material - graphene. Namely, we consider graphene quantum dots 

[35-42] as nanoscale pieces of monolayer graphene and we study I-V characteristics of such quantum dots 

connected to two electrodes with tunneling connections. We study how the size of graphene quantum dot 

and positions and orientations of electrodes affect the I-V characteristics of metal-graphene quantum dot-

metal junction. The importance of this study is related to possible application of graphene quantum dots 

in nanoelectronic devices.   

 The fourth topic of this dissertation is analysis of energy spectra and spin texture of quantum dots 

in buckled graphene-type materials (silicene/germanene). These quantum dots are just small nano-sized 

pieces of these materials. Due to strong spin-orbit interaction in silicene/germanene and their buckled 

structure, the electron states in silicene/germanene quantum dots are expected to have some spin texture 

and be sensitive to external electric field. In this study, we considered only quantum dots based on 

germanene material, which have much stronger spin-orbit interaction than silicene. We study the energy 

spectra and spin structure of electron states in germanene quantum dots and the sensitivity of the quantum 
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dots to perpendicular electric field. Understanding of spin texture of germanene quantum dots, which is 

nontrivial due to relatively strong spin-orbit interaction, is important for spintronics applications of 

germanene quantum dots.    

 

2.2 Intraband Optical Transition in InGaAs/GaAs Pyramidal Quantum Dots 

2.2.1 Model and Main Equations 

 We consider an isolated semiconductor QD of type InxGa1-xAs/GaAs. We assume that the QD has 

a pyramidal shape with a square base. The four sides of the pyramidal QD are oriented in the (011), (0-11), 

(101) and (-101) directions, respectively. Such QD is characterized by two geometric parameters: the size 

of the base, 𝑏 of the dot, which is the size of the corresponding square; and the height, ℎ of the dot. In all 

calculations below we fixed the ratio ℎ/𝑏 and assumed that ℎ = 𝑏/3. Under this condition, the size of the 

QD is determined by only one parameter, e.g. the size of the base of the dot, 𝑏, which we call below just 

the size of the QD. The thickness of the substrate above and below quantum dot is 15 nm in all three 

directions, 𝑥, 𝑦, and 𝑧, while the thickness of the wetting layer is 0.5 nm. The shape of the QD and the 

orientation of the QD in the substrate layer are shown schematically in Fig. 2.2.1.1.  

 

FIG. 2.2.1.1 Shape and position of pyramidal quantum dot InxGa1-xAs. Substrate is GaAs and is 15 nm thick on all sides. For the 

quantum dot of type InxGa1-xAs/GaAs, the InxGa1-xAs is the material of the quantum dot itself and GaAs provide the trapping 

barrier for such quantum dot. We describe the quantum dot system within 8-band k.p model with strain. 
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We describe such QD within k.p model. The corresponding Hamiltonian include the states of one 

conduction band and three valence bands. To find the eigenenergies and eigenfunctions of k.p Hamiltonian 

we use Nextnano software package. This package calculates the electronic and optoelectronic properties of 

semiconductor nanostructures. The geometric and Hamiltonian parameters, used in the simulations of the 

quantum dots, are shown in Tables 2.2.1.1-2.2.1.3. Tables 2.2.1.1 and 2.2.1.2 list the sizes of the quantum 

dot system, which include the sizes of the wetting layers, and geometric orientation of the quantum dot, 

while the Table 2.2.1.3 shows the parameters of 8-band kp Hamiltonian.   

TABLE 2.2.1.1 Pyramidal quantum dots dimensions. Base is a square with equal width and length. Height is always 1/3 

the base width. 

 

 

TABLE 2.2.1.2. Parameters of InxGa1_xAs pyramidal quantum dots. 
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TABLE 2.2.1.3. Parameters of the 8x8 kp model. The interpolation equation for all parameters is given by p[x]= p[0](1-x) 

+ p[1]x- bow_p × x(1 – x). 

 

 

To find the intraband optical transitions within the valence band we calculate 20 valence, i.e., hole, 

states and then find the optical transitions between these states. The optical transitions (absorption) in such 

system are allowed only at a finite p-doping of the quantum dot system. Such p-doping introduces a finite 

number of holes into the system. We assume that the hole concentration is low enough, so that each quantum 

dot is occupied by one hole only. In this case we do no need to take into account interaction between the 

holes and at low temperature only the ground state is occupied. Thus only the ground hole state, �̂�0(𝑟), of 

the valence band is occupied, where 𝑟 is a 3D coordinate vector.  

Then the absorption spectrum is determined by intensities of optical transitions between the ground 

state, �̂�0(𝑟), and excited hole states, �̂�𝑓(𝑟). Within the 8 band k.p model, each wavefunction, �̂�𝑖(𝑟),  has 

8 components, �̂�𝑖(𝑟) = (𝜓𝑖,1, … , 𝜓𝑖,8),  where the components determine the expansion coefficients in the 

original basis of the Bloch wavefunctions, 𝑢𝑘(𝑟), where 𝑘 = 1 … 8. Then the wavefunction of a hole in the 

8 band k.p model has the following form  

                                 Ψ𝑖(𝑟) = ∑ 𝜓𝑖,𝑘(𝑟) 𝑢𝑘(𝑟)8
𝑘=1 ,                                                  (2.2.1.1) 

With numerically calculated hole wavefunctions, we can find the intensity of optical transition, i.e. 

intensity of optical absorption, from initial ground state, Ψ0(𝑟), with energy 𝐸0 to the final excited state, 

Ψ𝑓(𝑟), with energy 𝐸𝑓. The intensity of the transition is calculated from the following expression 
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for x and z polarized light, respectively. Here 𝑧-direction is the growth direction. The frequency 

corresponding to such transition is 𝜔𝑓 = (𝐸𝑓 − 𝐸0)/ℏ. Equations (2.2.1.2) and (2.2.1.3) determine the 

discrete optical absorption spectra. Below for each absorption peak we introduce the finite Gaussian 

broadening with the width of 3 meV. The absorption spectra is also characterized by the total intensity 

𝐼(𝑠) = ∑ 𝐼𝑓
(𝑠)

𝑓 , 𝑠 = 𝑥, 𝑧, the first moment, 𝜔𝑎𝑣
(𝑠)

= ∑ 𝜔𝑓𝐼𝑓
(𝑠)

/𝐼(𝑠)
𝑓 , 𝑠 = 𝑥, 𝑧 and the second moment 𝑤 =

√∑(𝜔𝑓−𝜔𝑎𝑣
(𝑠)

)
2

𝐼𝑓
(𝑠)

𝐼(𝑠) . 

2.2.2 Results and Discussion 

 The intraband absorption spectra of the p-doped InxGa1-xAs/GaAs QD are shown in Figs. 2.2.2.1 

and 2.2.2.2 for x-polarized light and two different In contents: x =1.0, i.e., InAs/GaAs QD (Fig. 2.2.2.1) 

and x = 0.7, i.e., In0.7Ga0.3As/GaAs QD (Fig. 2.2.2.2). The results are shown for different sizes of the 

pyramidal QDs. The properties of two main peaks in the absorption spectra of x-polarized light are 

summarized in Tables 2.2.2.1 and 2.2.2.2. We observe that the structures of the optical spectra have weak 

dependence on x (composition of the QD). The composition of the QD mainly determines the energy 

scale, i.e., the positions of the peaks in the absorption spectra of x-polarized light. The absorption spectra 

of z-polarized light (for “In” content x = 0.7 and 1.0), which is shown in Figs. 2.2.2.3 and 2.2.2.4, have 

different behavior. Similar to x-polarized light, the spectra of z-polarized light are red shifted with 

increasing size of the dot. In Fig. 2.2.2.5, we show the ratio of the intensities of absorption peaks, Ix/Iz, 

𝐼𝑓
(𝑥)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑥 Ψ𝑓(𝑟)|

2
 , (2.2.1.2) 

𝐼𝑓
(𝑧)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑧 Ψ𝑓(𝑟)|

2
 , (2.2.1.3) 
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where for x- and z-polarized light, we consider only the absorption peaks with the highest intensities. The 

results are shown for QDs with In content x = 0.5, 0.7, and 1.0.  

 In Figs. 2.2.2.6 and 2.2.2.7, the first moment of the absorption spectra of p-doped QD is shown as 

a function of size of QD for different “In” content. The results are shown for both x- and z-polarized light. 

Figures 2.2.2.8 and 2.2.2.9 give, respectively, the second moment of the corresponding absorption spectra 

of x- and z-polarized incident light. For large sizes of the quantum dots, > 10 nm, the first moments of the 

absorption spectra have weak dependence on the “In” content of the Inx Ga 1-x As/GaAs quantum dot. The 

photoresponse to z-polarized light is at higher frequency than the photoresponse to x-polarized light. For 

sizes 12 nm and above, we can see a monotonic decrease in the second moment for all the values of “In” 

content “x.” We can observe that the energy of the second moment of x-polarized and z-polarized is about 

the same value for a given “In” content or “x” value. 
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FIG. 2.2.2.1 X-polarized optical transition intensities of  

InxGa1-xAs pyramidal quantum dots for base widths 5nm to 

21nm. Height=width/3. Indium content is x = 0.7.

 

FIG. 2.2.2.2 X-polarized optical transition intensities of  

InxGa1-xAs pyramidal quantum dots for base widths 5nm to 

21nm. Height=width/3. Indium content is x = 1.0. 
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TABLE 2.2.2.1 First intensity peak positions for InxGa1-xAs pyramidal QDs with different sizes and with different “indium” 

content. Sizes are in “nm” and position of the peak at energy in “eV.” 

 

 

TABLE 2.2.2.2 Second intensity peak positions for InxGa1-xAs pyramidal QDs with different sizes and with different “Indium” 

content. Sizes are in “nm” and position of the peak at energy in “eV.” 

 

The intraband absorption spectra of the p-doped InxGa1-xAs/GaAs quantum dot are shown in Figs. 

2.2.2.1 and 2.2.2.2 for x-polarized light and two different In contents: x = 1, i.e., InAs/GaAs quantum dot 

(Fig. 2.2.2.2) and x = 0.7, i.e., In0.7Ga0..3As/GaAs quantum dot (Fig. 2.2.2.1). The results are shown for 

different sizes of pyramidal QDs. In both cases, x = 1 and x = 0.7, we can clearly see the general 

tendency: with increasing the size of the dot, the absorption spectra are red-shifted. This is a property of a 

single particle absorption spectra and it follows directly from the general properties of the energy levels in 

QDs: with increasing the size of the dot, the energy separation between the levels decreases. The structure 

of the absorption spectra also depends on the size of the dot. For small sizes, b ≈ 5 nm, and for large sizes, 

b > 18 nm, of the quantum dots; the absorption spectra have two main peaks with one strong lower 

frequency absorption peak and one weak high frequency peak. At intermediate sizes of the dots, the 

spectra show many-peak structure with one strong peak and few satellites. Comparing the results for x = 

0.7 (Fig. 2.2.2.1) and x = 1 (Fig. 2.2.2.2), we notice that the structures of the optical spectra has weak 
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dependence on x . The composition of the QD (the value of x) mainly determines the energy scale, i.e., 

the positions of the peaks in the absorption spectra of x-polarized light. The properties of the two main 

peaks in the absorption spectra of x-polarized light are summarized in Tables 2.2.2.1 and 2.2.2.2. We 

can see that the highest intensity peak is at almost the same frequency for the quantum dots (with In 

content x = 0.7; x = 0.9, and x = 1). The second highest intensity peak occurs at a lower frequency for x = 

0.7 than for x = 1 and x= 0.9 quantum dots. For all sizes excepting 5 nm quantum dot with “In” content x 

= 0.7, 0.5, and 1.0, the higher intensity absorption peak has the lower frequency than the low intensity 

peak. 

 The absorption spectra of z-polarized light (for “In” content x = 0.7 and 1.0), which is shown in 

Figs. 2.2.2.3 and 2.2.2.4, have different behavior. Although similar to x-polarized light, the spectra of z-

polarized light are red-shifted with increasing the size of the dot, the structure of the absorption spectra of 

z-polarized light is different from the one of x-polarized light. The absorption peak positions and relative 

intensities of the peaks strongly depend now on the composition of the InxGa1-xAs/GaAs quantum dot, 

i.e., on the value of x. This is more clearly visible at intermediates sizes of the quantum dots. For 

example, at the base width of b = 12 nm, for the quantum dot with x = 0.7 (Fig. 2.2.2.3), the high-

intensity absorption peak is at intermediate frequency, while for the quantum dot with x =1 (Fig. 2.2.2.4), 

the high-intensity peak is at low frequency. At intermediate QD sizes, the absorption spectra have many 

peaks with comparable intensities. Results obtained here are comparable to the results obtained by Ref. 20 

in which it was reported that “mid-infrared absorption between confined levels of undoped InAs/GaAs 

self-organized QDs has shown intraband absorption in the range 90-250 meV along the growth direction 

(z).” Hole energies presented in this paper are found to be in qualitative agreement with the theoretical 

predictions of Ref. 88 where the hole energies varied from 0.1 eV to 0.3 eV as the dot size increased from 

6 nm to 18 nm. 
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FIG. 2.2.2.3. Z-polarized optical transition intensities of 

InxGa1-xAs pyramidal quantum dots for base widths 5 nm to 

21 nm. Indium content is x= 0.7 

 
 

FIG. 2.2.2.4. Z-polarized optical transition intensities of 

InxGa1-xAs pyramidal quantum dots for base widths 5 nm to 

21 nm. Height = width/3. Indium content is x =1. 
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FIG. 2.2.2.5. Plot of X-polarized intensity to Z-polarized intensity as a function of base size (nm) of the InxGa1_xAs pyramidal 

quantum dots. Ix to Iz increased from about 5 to 40 as the base size of the pyramid increased from 5 nm to 21 nm. 

 

In addition to different structures of the absorption spectra, the x- and z-polarized lights have quite 

different intensities. Namely, the intensity of the absorption peak of x-polarized light is larger than the 

intensity of the absorption peak of z-polarized light. In Fig. 2.2.2.5, we show the ratio of the intensities of 

absorption peaks, Ix/Iz, for x- and z-polarized light. We consider only the absorption peaks with the 

highest intensities with the QDs having In content x = 0.5, 0.7, and 1.0. These data show that the 

intensities of the absorption peaks for x-polarized light are almost one order of magnitude higher than the 

intensities of the corresponding z-polarized peaks. The ratio of the intensities is non-monotonic function 

of QD size with local minima at ≈ 8 nm and ≈16 nm in the case of x = 0.7. The ratio of intensities 
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decreases with decreasing the In content. The strength of the suppression of the ratio of intensities with 

decreasing In content, x, depends on the size of the dot. For example, for QD with size 16 nm, the ratio of 

intensities decreases by a factor of 2 (see Fig. 2.2.2.5) when the In content is changed from x = 1.0 to x = 

0.7, while for QD with size 12 nm, the ratio of intensities does not depend on the In content (for the 

values of x= 0.5, 0.7, and 1.0). Therefore, from the data of Fig. 2.2.2.5, we can conclude that the p-doped 

QD mainly absorbs the x-polarized light.  

 

 

 In Figs. 2.2.2.6 and 2.2.2.7, respectively, 

we show, for the x-polarized and z-polarized 

incident light, the first moment of the absorption 

spectra as a function of the size of the QD for 

different “In” content. Except for z-polarized 

light and In0.7 Ga0.3 As/GaAs QD, the first 

moment of the spectrum is red-shifted with 

increasing the size of the dot. Therefore, the first 

moment monotonically decreases with 

increasing the size of the dot. For the absorption 

spectrum of z-polarized light and In0.7 

Ga0.3As/GaAs QD, the first moment as a 

function of the dot size has a maximum at dot 

size ≈10 nm. 

 

 
FIG. 2.2.2.6. Plot of first moment (eV) of X-polarization as 

a function of base size (nm) of the InxGa1-xAs pyramidal 

quantum dots. First moment of X-polarization is below that 

of Z-polarization (Fig. 2.2.2.7) by about 0.06 eV and the 

difference maintained as the size increased. 
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FIG. 2.2.2.7. Plot of first moment (eV) of Z-polarization as 

a function of base size (nm) of the InxGa1-xAs pyramidal 

quantum dots. First moment of X-polarization is below that 

of Z-polarization by about 0.06 eV and the difference is 

maintained as the size increased. 

 

FIG. 2.2.2.8. Plot of second moment (eV) of X-. 

 

 

 

 

FIG. 2.2.2.9. Plot of second moment (eV) of Z-polarization 

as a function of base size (nm) of the InxGa1-xAs pyramidal 

quantum dots. 

polarization as a function of base size (nm) of the  

InxGa1-xAs pyramidal quantum dots 

  

 

For large sizes of QDs, > 10 nm, the first moments of the absorption spectra have weak dependence on 

the “In” content of the Inx Ga1x As/GaAs quantum dot. Comparing different polarizations of the light, we 
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can conclude (Figs. 2.2.2.6 and 2.2.2.7) that the frequency of absorbed z-polarized light is larger than the 

frequency of absorbed x-polarized light by ≈ 50 meV. Therefore, the photoresponse to the z-polarized 

light is at higher frequency than the photoresponse to the x-polarized light. Figs. 2.2.2.8 and 2.2.2.9 give, 

respectively, the second moments of the absorption spectra of x-polarized and z-polarized incident light. 

For the QD sizes 12 nm and above, we can see a monotonic decrease in the second moment for all the 

values of “In” content “x.” We observe that the values of the second moment of x-polarized and z-

polarized absorption spectra are about the same for a given “In” content or “x” value. 

 

 Summarizing the analysis of optical spectra of p-doped InxGa1-xAs/GaAs we can conclude that 

optical spectra is sensitive to the size of QD and In content. The QD is sensitive to both x- and z-polarized 

light. For a given size of the quantum dot, the absorption frequency of z-polarized light is higher than the 

absorption frequency of x-polarized light by ≈ 50 meV. With increasing the size of the quantum dot, the 

absorption spectra is shifted to lower energies, which allows tuning the absorption frequency of the 

quantum dot system. For x-polarized light, the corresponding wavelength of absorbed light changes from 

21.4 μm to 250 μm as the size of the base of the quantum dot increases from 5 nm to 21 nm. For z-

polarized light, the corresponding wavelength increases from 11.8 μm to 19.8 μm with increasing the size 

of the dot from 5 nm to 21 nm. The frequency of the light, absorbed by InxGa1-xAs/GaAs quantum dot, 

has weak dependence on In content of the quantum dot, except for the quantum dot of a small size, < 10 

nm.  

 

 

2.3 Optical properties of dot-in-a-well systems  

2.3.1 Model and Main Equation 

  

 We consider an isolated semiconductor QD placed in a QW. The type of the structure is InAs 

(quantum dot)/InxGa1-xAs (quantum well)/GaAs (substrate). We assume that a QD has pyramidal shape 
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with a square base. The four sides of pyramidal QD are oriented in the (011), (0-11), (101) and (-101) 

directions, respectively. Such QD is characterized by two geometric parameters: the size of the base, 𝑏, of 

the dot, which is the size of corresponding square; and the height, ℎ of the dot. In all calculations below we 

fixed the ratio ℎ/𝑏 assuming that ℎ = 𝑏/3. Under this condition, the size of the quantum dot is determined 

by only one parameter, e.g. the size of the base of the dot, 𝑏, which we call below just the size of the 

quantum dot. In our calculations, we vary both the size of QD and the thickness of QW. The thickness of 

substrate above and below quantum well is 15 nm in all three directions, 𝑥, 𝑦, and 𝑧. The shape and position 

of the QD and orientation of the QD in the quantum well and substrate layer are shown schematically in 

Fig. 2.3.1.1a and Fig. 2.3.1.1b. In all calculations below we assumed that In content is 0.15 , i.e., we 

consider InAs/In0.15Ga0.85As/GaAs DWELL systems. 

 To find energy spectrum and corresponding wave functions of DWELL system we employ one 

band (conduction band) effective mass model. To do this we use NEXTNANO software package [80]. This 

package calculates the electronic and optoelectronic properties of semiconductor nanostructures. The 

geometric parameters, used in simulations of quantum dots and quantum wells, are shown in Tables 2.3.1.1 

and 2.3.1.2, where the sizes of DWELL system, geometric orientation of the quantum dot, and parameters 

of the model are listed.  The Hamiltonian of this model is given by, 

𝐻 =  𝑝
1

2𝑚∗(𝑟)
𝑝 + 𝑉(𝑟)                                                                                                     (2.3.1.1) 



 

 

 
35 

 

FIG. 2.3.1.1 Schematic illustration of the dot-in-a-well system. The quantum dot (InAs) is at the 

top (a) and at the bottom (b) of the quantum well (In0.15Ga0.85As). 
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TABLE 2.3.1.1 Dimensions of the quantum well and the pyramidal quantum dot, which are used in our 

calculations. The dot base is a square and we define the dot size as the length, b, of the side of the square. The dot 

height is 1/3 of the dot size, h = b/3. 

 

 

TABLE 2.3.1.2. Parameters of the numerical model of DWELL system. 

 

 

 To find the intraband optical transitions within the conduction band of the system, we calculate 20 

eigenstates of the system and then find the optical matrix elements between these states. The optical 

transitions (absorption) in such system are allowed only at a finite n-doping of the quantum dot system. 

Such n-doping introduces a finite number of electrons into the quantum dot. We assume that the electron 

concentration is low enough, so that each quantum dot is occupied by one electron only. In this case we do 

no need to take into account inter-electron interactions, and at low temperature, only the ground electron 

state, Ψ0(𝑟), of the system is occupied, where 𝑟 is 3D coordinate vector. Then the intensity of optical 

transition, i.e. intensity of optical absorption, from the initial ground state, Ψ0(𝑟), with energy 𝐸0 to the 

final excited state, Ψ𝑓(𝑟), with energy 𝐸𝑓 is determined by the following expression   
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for x and z polarized light, respectively. Here 𝑧-direction is the growth direction. The frequency 

corresponding to such transition is 𝜔𝑓 = (𝐸𝑓 − 𝐸0)/ℏ. Equations (2.3.1.2) and (2.3.1.3) determine the 

discrete optical absorption spectra. Below, for each absorption peak we introduce the finite Gaussian 

broadening with the width of 3 meV. The absorption spectra is also characterized by total intensity 𝐼(𝑠) =

∑ 𝐼𝑓
(𝑠)

𝑓 , 𝑠 = 𝑥, 𝑧, the first moment, 𝜔𝑎𝑣
(𝑠)

= ∑ 𝜔𝑓𝐼𝑓
(𝑠)

/𝐼(𝑠)
𝑓 , 𝑠 = 𝑥, 𝑧 and the second moment 𝑤(𝑠) =

√∑(𝜔𝑓−𝜔𝑎𝑣
(𝑠)

)
2

𝐼𝑓
(𝑠)

𝐼(𝑠)  

 

2.3.2 Results and Discussion 

 The absorption spectra of n-doped InAs/In0.15Ga0.85As/GaAs QWELL system with the dot size of 5 

nm are shown in Fig. 2.3.2.1 for x-polarized light and for two different positions of the QD: at the bottom 

of the QW (Fig. 2.3.2.1(a)) and at the top of the QW (Fig. 2.3.2.1(b)). The results are shown for different 

thicknesses of the quantum well, which is varied in the range between 6 nm and 18 nm. The general 

tendency is clearly visible from the data shown in Fig. 2.3.2.1. Namely, the absorption spectra have very 

weak dependence on the position of the QD, i.e. the spectra shown in the left panel are almost identical to 

the corresponding spectra shown in the right panel. Another feature of the optical spectra shown in Fig. 

2.3.2.1 is a weak dependence of the spectra on the thickness of the QW, hwell. For the thickness of the well 

less than 18 nm the spectrum consists of two main peaks separated by ≈ 100 meV. The positions of the 

𝐼𝑓
(𝑥)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑥 Ψ𝑓(𝑟)|

2
 , (2.3.1.2) 

𝐼𝑓
(𝑧)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑧 Ψ𝑓(𝑟)|

2
 , (2.3.1.3) 
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peaks and their relative intensities do not depend on the QW thickness. The dependence on the well 

thickness occurs at larger values of hwell ≥ 18 nm. For the QW with the thickness of 18 nm, the optical 

spectrum has three well-separated peaks, which is different from small thickness behavior. Weak 

dependence of the optical spectra of DWELL system on the QW thickness was also reported in Ref. [89]. 

The data shown in Fig. 2.3.2.1 illustrates that the optical spectra have weak dependence on the position of 

the QD within the well. Although the results of Fig. 2.3.2.1 corresponds to a given size of the QD and the 

x-polarized light, the weak dependence of the spectra on hwell is also observed for other sizes of the QD and 

for z-polarized light. Therefore below (see Fig. 2.3.2.2) we show the absorption spectra of DWELL system 

only for one position of the dot in the well, e.g., for the QD at the bottom of the well. 

 

FIG. 2.3.2.1 Absorption spectra for x-polarized light. The size of the quantum dot is 5 nm. The dot is (a) at the bottom and (b) at 

the top of the quantum well. 
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FIG. 2.3.2.2. Absorption spectra of DWELL system for (a) x-polarized light and (b) z-polarized light. The thickness of the 

quantum well is 6 nm. The dot is at the bottom of the well. 

 

 The characteristics of two main peaks (see Fig. 2.3.2.1) in the absorption spectra of x-polarized 

light are summarized in Table 2.3.2.1. To compare the actual position of the absorption peaks for x- and 

z-polarized light, we summarize in Table 2.3.2.2 the properties of two main peaks of the absorption 

spectra of z-polarized light (the second peak has much smaller intensity than the main peak). The main 

peak for z-polarized light corresponds to optical transitions from the ground state of the dot to either the 

states of the substrate or the states of the QW. Although the optical spectra show weak sensitivity to the 

QW size, they are sensitive to the size of the QD. The dependence of the absorption spectra on the dot size is 

shown in Fig.2.3.2.2 for x- (Fig. 2.3.2.2(a) and z- (Fig. 2.3.2.2(b)) polarized light and quantum well 

thickness of hwell = 6 nm. The quantum dot is at the bottom of quantum well. We can clearly see that with 

the increasing the size of the dot the absorption lines are red shifted. This is a general property of 
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absorption spectra in QD systems: with increasing the size of the dot the energy separation between the 

levels decreases, which results in red shifting of the absorption spectra. 

 For x-polarized light [see Fig. 2.3.2.2(a)], the shape of the absorption spectra strongly depends on 

the size of the dot. For the dot of small size, b∼ 5 nm, there is one main absorption peak. With increasing 

the size of the dot, more peaks appear in the absorption spectra and the spectra show multipeak structure. 

Redistribution of the absorption intensities between the peaks has non-monotonic dependence on the dot 

size. The characteristics of two main peaks in the absorption spectra of x-polarized light are summarized 

in Table 2.3.2.1. The frequency of the optical transition is red shifted as the size of the dot increases and, 

as it was mentioned before, the frequency is independent on the size of the quantum well for the same dot 

size. For the quantum dot of small size, b = 5 nm, the optical transitions occur between the states of the 

QD and substrate, while at larger dot size, b = 9 and 12 nm, the transitions occur between the states of the 

QD and the QW. 

 For z-polarized light [see Fig. 2.3.2.2(b)], the absorption spectrum consists mainly of a single 

peak, which becomes red-shifted with increasing the size of the dot. This is similar to the absorption 

spectra of x-polarized light [see Fig. 2.3.2.2(a)], but the magnitude of the shift in these two cases is 

different. While the red shift of the absorption line for z-polarized light is around 0.1 eV when the dot size 

changes from 5 nm to 15 nm, the red shift of the main peak of the spectrum for x-polarized light is around 

0.15 eV. Therefore the absorption spectrum of DWELL system is more sensitive to x-polarized light. To 

compare the actual position of the absorption peaks for x- and z-polarized light, we summarize in Table 

2.3.2.2 the properties of two main peaks of the absorption spectra of z-polarized light (the second peak 

has much smaller intensity than the main peak). The main peak for z-polarized light corresponds to 

optical transitions from the ground state of the dot to either the states of the substrate or the states of the 

quantum well. 
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TABLE 2.3.2.1 Optical transitions corresponding to two main peaks of the absorption spectra are listed for x-polarized 

light. 

 

TABLE 2.3.2.2 Optical transitions corresponding to two main peaks of the absorption spectra are listed for z-polarized 

light. 
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FIG. 2.3.2.3. The first moments of the absorption spectrum are shown as a function of the quantum well thickness for (a) x-

polarized light and (b) z-polarized light. Quantum dot is at the bottom of the quantum well. The sizes of the quantum dot are 

shown in the figure. 

 

 In Fig. 2.3.2.3 we show the first moment of the absorption spectrum, which is the average 

characteristic of the absorption line, for x- and z-polarized light. The first moment is shown as a function 
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of the thickness of the quantum well for different dot sizes. The data in Fig. 2.3.2.3 are shown for the 

DWELL system with the QD placed at the bottom of the QW. The first moment is shown as a function of 

the thickness of the quantum well for different dot sizes. For both x- and z-polarized light, the first 

moments of the spectra become red-shifted with increasing the dot size and show weak dependence on the 

thickness of the quantum well, which is consistent with the behavior of the absorption spectra shown in 

Figs. 2.3.2.1 and 2.3.2.2. The data in Fig. 2.3.2.3 are shown for the DWELL system with the QD placed at 

the bottom of the QW. For the DWELL system with the dot placed at the top of the QW the results are 

very similar to what is shown in Fig. 2.3.2.3, which illustrates weak dependence of the optical spectra on 

the position of the QD. 

 Comparing different polarizations of the light, we can conclude (see Fig. 2.3.2.3) that the energy 

of optical transition for z-polarized light is larger than the energy of optical transition for x-polarized light 

by ≈ 70-200 meV. This difference increases with increasing the dot size. Thus, the photoresponse of the 

DWELL system to the z-polarized light is at higher frequency than the photoresponse to the x-polarized 

light. 
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FIG. 2.3.2.4. The second moments of the absorption spectra are shown for x-polarized light for two positions of the quantum dot: 

(a) at the top of the quantum well and (b) at the bottom of the quantum well. The sizes of the quantum dot are shown in the 

figure. 

 

 The second moment, which characterizes the width of the absorption line, is shown for x 

polarized light (Fig. 2.3.2.4) and z-polarized light (Fig. 2.3.2.5) as a function of the thickness of the QW. 

The data are shown for two positions of the dot: at the bottom of the well and at the top of the well. The 

second moment of the absorption spectra depends on the position of the dot. The ratio of the intensities of 
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absorption peaks for x-polarized and z-polarized light as a function of the dot size and quantum well 

thickness is shown in Fig. 2.3.2.6. The second moment has well pronounced non-monotonic dependence 

on the size of the dot with maximum at the dot size of 9 nm. The second moment of the absorption spectra 

has also much stronger dependence on the thickness, hwell, of the QW than the first moment has. Such 

dependence on the well thickness is more pronounced for large values of the thickness, hwell > 12 nm. 

 

FIG. 2.3.2.5. The second moments of the absorption spectra are shown for z-polarized light for two positions of the quantum dot: 

(a) at the top of the quantum well and (b) at the bottom of the quantum well. The sizes of the quantum dot are shown in the 

figure. 
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FIG. 2.3.2.6. Ratio of the intensities (Ix / Iz) for the DWELL system with the dot at the bottom of quantum well is shown as a 

function of the quantum dot size for different quantum well thicknesses. 

 

 The ratio of intensities of absorption peaks for x-polarized and z-polarized light as a function of 

the dot size and QW thickness is shown in Fig. 2.3.2.6. The results clearly illustrate that for the dot size 

greater than 5 nm the intensity of the absorption line for x-polarized light is two orders of magnitude 

larger than the corresponding intensity for z-polarized light. Thus the DWELL structures are more 

sensitive to the x-polarized light. 

 Three color InAs/InGaAs quantum dots-in-a-well detector with wavelengths at 3.8 μm, 8.5 μm 

and 23.2 μm were reported in Ref. [90]. In this paper, the shorter wavelengths (3.8 μm and 8.5 μm) are 

due to bound-to-continuum and bound-to-bound transitions between the states of the dot and states of the 

well. Our results show similar behavior with the absorption spectra in the wavelength range of 3.6 μm to 

2 μm with the longer wavelength optical transition corresponding to the transitions between the states of 
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the QD. 

 Numerical analysis of DWELL system, presented above, shows that DWELL system is more 

sensitive to x-polarized light, for which the intensity of the optical transitions is almost two orders of 

magnitude larger than the corresponding intensities for z-polarized light. 

 

 

2.4      I-V Characteristics of Graphene Quantum Dots  

 2.4.1 Model and Main Equations 

 We consider both graphene QDs and graphene quantum molecules, which are shown in  

Fig. 2.4.1.1 (a) and Fig. 2.4.1.1 (b), respectively. The graphene quantum molecule consists of two 

identical QDs. The size of the QD is determined by the number, ND, of the hexagons, which form the dot. 

We change this number from ND = 7 to ND = 91.  

 We study the current-voltage (I-V) characteristics of a graphene QD (see figure 2.4.2.2) within 

the tight-binding model of graphene connected to two electrodes. The model includes the charge hopping 

between the nearest neighbor sites and is described by the following Hamiltonian 

𝐻 =  𝐻𝑡 + 𝐻𝑙𝑒𝑎𝑑𝑠 + 𝐻𝑄𝐷−𝑙𝑒𝑎𝑑𝑠 ,                          (2.4.1.1) 

where Ht is the tight-binding Hamiltonian of graphene, which describes the electron transfer within the 

quantum dot, Hleads is the Hamiltonian of the charge carriers in two leads i.e. in the right and left contacts, 

and HQD-leads describes the coupling between the quantum dot and the leads.  
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FIG 2.4.1.1 (a) Schematic view of graphene quantum dot and (b) graphene quantum molecule where the size of the quantum dot 

is determined by the number of Hexagons ND in the dot. 

 

Here  

𝐻𝑡 =  −𝛾 ∑ 𝑎𝑖,𝜎
+

<𝑖,𝑗>  𝑎𝑗,𝜎 + ℎ. 𝑐.                             (2.4.1.2) 

where 𝑎𝑖,𝜎
+  and 𝑎𝑗,𝜎  are creation and annihilation operators for an electron with spin σ on site ‘i’ (where ‘i’ 

is the atomic site), γ =-3.03 eV is the hopping integral. The summation in Eq. (2.4.1.2) goes over the 

nearest neighbor sites. The Hamiltonian of the leads describes the electrons in the right and left contacts 

and have the following form 

 𝐻𝑙𝑒𝑎𝑑𝑠 =  ∑ 𝜀𝑄,𝑘𝑄,𝑘,𝜎 𝐶𝑄,𝑘,𝜎
+ 𝐶𝑄,𝑘,𝜎                                 (2.4.1.3) 
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where Q=L,R corresponds to left and right contacts, 𝐶𝑄,𝑘,𝜎
+    and 𝐶𝑄,𝑘,𝜎 are the  annihilation and creation 

operators of an electron with spin σ =±1 and wave-vector k in the contact Q=L,R. The electron system in 

each lead is characterized by the corresponding chemical potential, μL and μR. Then the bias voltage 

across the quantum dot is introduced as    

𝑉𝑏 =  𝜇𝐿 −  𝜇𝑅                                                                      (2.4.1.4) 

The coupling of graphene quantum dot to the leads is introduced through the hopping between the nearest 

to the leads sites and the right and left contacts.  The corresponding Hamiltonian is 

𝐻𝑄𝐷−𝑙𝑒𝑎𝑑𝑠 =  ∑ 𝑉𝐿,𝑘𝑖,𝑗,𝜎 𝐶𝐿,𝑘,𝜎
+ 𝑎𝑖,𝜎 + ℎ. 𝑐. + ∑ 𝑉𝑅,𝑘𝑖,𝑗,𝜎 𝐶𝑅,𝑘,𝜎

+ 𝑎𝑗,𝜎 + ℎ. 𝑐.          (2.4.1.5) 

where VL,k and VR,k are the hopping integrals, which characterize the coupling of the quantum dot to the 

left and right leads, respectively.   

In the above expression, the sites ‘i’ and ‘j’ are the closest sites of the quantum dots to the left and 

right contacts. In the following we also assume that the hopping integrals VR,k and VL,k are the same for 

all states in the contacts, i.e., VR,k = VL,k = V0. 

Under an applied bias voltage, which is equal to the difference of the chemical potentials of the 

leads, the stationary current through the quantum dot can be calculated from the Landauer expression 

𝐼 =  ∫ [𝑓 (𝐸 −
𝑣

2
) − 𝑓 (𝐸 +

𝑣

2
)] 𝑇𝑟[𝐺𝑟(𝐸)Γ𝐿𝐺𝑎(𝐸)Γ𝑅]𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛
                         (2.4.1.6) 

where, 𝑓 (𝐸 −
𝑣

2
) and 𝑓 (𝐸 +

𝑣

2
) are the Fermi-Dirac distribution functions for the left and right contacts, 

respectively and v = V0; Gr and Ga are retarded and advanced Green functions of electrons in the quantum 

dot, and ΓR and ΓL are the level-width matrices, determining the coupling of the quantum dot states 

through the continuous states of the right and left contacts, respectively. 

The retarded and advanced Green functions can be found by means of the equation of motion approach. 

The Green functions have the following form (r = retarded, a = advanced) 

𝐺
𝑟

𝑎(𝐸) = [𝐸 −  𝐻𝑡  ±
𝑖

2
 (Γ𝐿 +  Γ𝑅)]−1                                            (3.1.3.7) 



 

 

 
50 

We numerically calculate the current through the quantum dot as a function of applied bias voltage. We 

start from the tight-binding Hamiltonian of the quantum dot, Eq. (2.4.1.2), and construct the Hamiltonian 

matrix. Then, with the known level-width matrices we calculate the Green functions from Eq.( 2.4.1.7). 

Finally, for a given bias voltage, i.e., the chemical potentials of the leads, we calculate the current through 

the QD from equation (3.1.3.6).  

 

2.4.2.    Results and Discussion 

In Fig. 2.4.2.1 the typical I-V characteristics of graphene quantum dots are shown for different sizes of 

the quantum dot. The I-V characteristic has a step-like behavior, which is due to discrete structure of the 

energy spectrum of the dot.  
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FIG. 2.4.2.1 I-V characteristic of graphene quantum dot where the size of the quantum dot is determined by number ND of the 

hexagons, which in the quantum dot changes from ND = 7 to ND = 91. The coupling to the left and to the right contacts is (a) V0 = 

0.1 eV and (b) V0 = 0.5 eV. All Left points (FIG. 4.4.1(a) L1 to L4) are connected together and all Right points (FIG 2.4.1.1 (a) R1 

to R4) are connected together. 
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FIG. 2.4.2.2 I-V characteristic of graphene quantum molecule where the molecule consists of two quantum dots of size ND. The 

structure of the molecule is shown in Fig. 4.4.1(b). The coupling to the left and to the right contacts is (a) V0 = 0.1 eV and (b) V0 

= 0.5 eV. All Left points (FIG. 4.4.1(a) L1 to L4) are connected together and all Right points (FIG 2.4.1.1 (a) R1 to R4) are 

connected together.  

 

 In Fig. 2.4.2.2 the I-V characteristics of graphene quantum molecule are shown for different sizes 

of the molecules. The molecule consists of two identical quantum dots and the structure of the molecule is 

shown in Fig. 2.4.1.1 (b). Here ND characterizes the corresponding size of the quantum dot. With 

increasing the coupling to the contacts, V0 the current also increases. Another interesting feature of the 
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system is that the current through the quantum dot (see Fig. 2.4.2.1) and through the quantum molecule 

(see Fig. 2.4.2.2) are almost the same for the same size ND.  

 

FIG. 2.4.2.3 Figure shows Saturation Current Vs size of quantum dot or quantum molecule. (a) Saturated current of I-V 

characteristic as a function of quantum dot size. The saturated current is shown for graphene quantum dot and (b) for coupled 

quantum dots (graphene quantum molecule).  The couplings ‘V0’ to the left and right contacts are 0.1 eV and 0.5 eV, which are 

shown near the lines.  

 

One of the characteristics of I-V curves is the saturated current, which is realized at high bias voltage. 

Such saturated current is shown in Fig. 2.4.2.3 for graphene quantum dot, Fig. 2.4.2.3 (a), and coupled 
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quantum dots (graphene quantum molecule), Fig 2.4.2.3 (b). Another control parameter, which can be 

used to tune the current through the graphene quantum dots, is the point of contact between the quantum 

dot and the leads. The current through the dot is sensitive to the position of the contact point. To 

characterize such sensitivity we show in Fig. 2.4.2.3 the difference between the saturated currents through 

the double quantum dot system, consisting of ND = 37 hexagons per dot. For ND = 37 quantum dot 

system, there are four atoms of the dot near the contact. Then keeping the same left contact (connection to 

the dot through the central nearest atom), we calculate the current through the dot for two configurations 

of the right contact: (i) connection through the extreme points and (ii) connection through the central 

point. The general tendency is increase of the saturated current with increasing the size of the system for 

both quantum dot and coupled quantum dots. The saturated current is almost the same for quantum dot 

and corresponding coupled quantum dot systems. For coupled quantum dots (quantum molecule), the 

saturated current is ≈ 15% less than the saturated current through a single quantum dot.  

 

FIG. 2.4.2.4 Difference in Current for ND = 61 quantum molecule. Difference of the saturated currents for different arrangements 

of the contacts (See FIG. 2.4.1.1 (a))(Central Left (L2 & L3) - Extreme Right (R1 & R4) and Central Left (L2 & L3) -Central Right 

(R2 & R3)) is shown. (a) The saturated current is shown for graphene quantum dot and (b) for coupled quantum dots (graphene 

quantum molecule). The couplings ‘V0’ to the left and right contacts are 0.1 eV and 0.5 eV, which are shown near the lines.  

 

 Another control parameter, which can be used to tune the current through the graphene quantum 
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dots, is the point of contact between the quantum dot and the leads. The current through the dot is 

sensitive to the position of the contact point. To characterize such sensitivity we show in Fig. 2.4.2.4 the 

difference between the saturated currents through the double quantum dot system, consisting of ND = 61 

hexagons per dot. For ND = 61 quantum dot system, there are four atoms of the dot near the contact. Then 

keeping the same left contact (connection to the dot through the central nearest atom), we calculate the 

current through the dot for two configurations of the right contact: (i) connection through the extreme 

points and (ii) connection through the central point. The difference between the currents for two 

configurations of the contacts increases with the bias voltage and also has a step-like behavior similar to 

the I-V characteristic. The difference between the currents also show saturation at high bias voltage at ≈ 

0.4 mA for V0 = 0.5 eV. Thus at high bias voltages, by changing the position of the contacts the current 

though graphene quantum dot can be changed by ≈ 2%.  

 Summarizing the above analysis, we can conclude that the I-V characteristics of graphene 

quantum dot connected to two electrodes show typical step-like structure, which is due to discrete energy 

spectrum of the dot. The I-V dependence is characterized by saturated value of the current, which 

increases with increasing the size of the quantum dot. At the same time increasing the size of the system 

by adding additional quantum dot, i.e., in the system of double quantum dots (quantum molecule), has 

weak effect on the current through the system. The current through the dot system increases almost 

linearly with the strength of the dot-contact coupling. The current through the quantum dot system is also 

sensitive to the structure of the electrodes, i.e., on their position and orientation.  
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2.5     Germanene quantum dots: energy spectrum and spin texture  

 2.5.1 Model and Main Equations 

 

 Here we consider quantum dots in buckled graphene-like materials (silicene /germanene). These 

QDs are just small nano-sized pieces of these materials. Due to strong spin-orbit interaction in 

silicene/germanene and their buckled structure, the electron states in silicene/germanene QDs are 

expected to have some spin texture and be sensitive to external electric field. Below we consider only 

QDs based on germanene material, which have much stronger spin-orbit interaction than silicene. We 

study the energy spectra and spin structure of electron states in germanene QDs and the sensitivity of the 

QDs to perpendicular electric field.  

 

                              

FIG. 2.5.1.1: Germanene quantum dot, consisting of 13 Germanium atoms. (a) The arrangement of the germanium atom in the 

quantum dot is shown in x-y plane. The quantum dots consist of two inequivalent set of atoms ”A” and ”B”, shown red and blue 

dots, respectively. (b) The shift of atoms A and B in z direction is shown schematically. The distance between two sets of atoms 

in z direction is 2Lz. 

 

We consider germanene quantum dot, consisting of 13, 27, and 35 germanium atoms and having the 

arrangement of atoms shown in Fig.3.1.4.1. Two sublattices, marked by red and blues dots in Fig. 2.5.1.1 

are shifted in perpendicular (z-) direction by distance 2Lz. Here the plane of the quantum dot is x-y plane. 
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We consider tight-binding model of germanene with nearest-neighbor coupling and an additional spin-

orbit interaction. The corresponding tight-binding Hamiltonian has the following form [38]  

𝐻 =  −𝑡 ∑ 𝐶𝑖𝛼
+ 𝐶𝑗𝛼 + 𝑖

λ𝑆𝑂

3√3
 ∑ 𝜈𝑖𝑗𝐶𝑖𝛼

+ 𝜎𝛼𝛽
𝑧 𝐶𝑗𝛽 − 

2

3
𝑖𝜆𝑅  ∑ 𝜇𝑖𝑗≪𝑖,𝑗≫𝛼𝛽≪𝑖,𝑗≫𝛼𝛽<𝑖,𝑗>𝛼 𝐶𝑖𝛼

+  (𝜎 ×

𝑑𝑖𝑗
0 )

𝛼𝛽

𝑧
𝐶𝑗𝛽 +  ℓ𝑧  ∑ 𝜉𝑖𝛦𝑧𝐶𝑖𝛼

+ 𝐶𝑖𝛼𝑖𝛼                                                     ,                           (2.5.1.1)                  

where t=1.3 eV is the hopping integral, λSO= 43 meV and λR = 10.7 meV are constants of spin-orbit 

interaction, ℓz = 0.33Å, Εz is the external electric field, which has only  z component, σ = (σx, σy, σz) are 

the Pauli matrices, indexes i,j label the germanium atoms, indexes α and β are spin indexes. Here 2D 

vector 𝑑𝑖𝑗
0  is the unit vector 

  𝑑𝑖𝑗
0 =  

𝑑𝑖𝑗

|𝑑𝑖𝑗|
,                                                   (2.5.1.2) 

 

where vector 𝑑𝑖𝑗 is defined as the vector connecting lattice sites i and j, i.e. 𝑑𝑖𝑗 =  𝑑𝑖 − 𝑑𝑗, where 𝑑𝑖 is 

the vector-position of the site i. The constants νij are determined by relative positions of sites i and j and is 

defined as                               

     𝜈𝑖𝑗 =  
(𝑑𝑖×𝑑𝑗)

𝑧

|𝑑𝑖×𝑑𝑗|
                                           (2.5.1.3) 

The coefficient μij is 1 or -1 if both sites ‘i’ and ‘j’ belong to sublattice A and B, respectively. The 

coefficient ξi is 1 and -1 for sublattice A and B, respectively. Based on the tight-binding Hamiltonian 

(3.1.4.1), we construct the Hamiltonian matrix, which in our case has sizes of 26x26, 54x54, and 70x70 

and then we find the corresponding eigenvalues (energy spectrum) and eigenfunctions (wave functions) 

of these matrix. The wave functions have the structure of ѱiα, where 𝑖 = 1, … . . , 13 and α = 1 (for spin-

down) and 2 (for spin-up). With the known wave functions, we calculate spin components at a given site 

‘𝑖′                                                                                                          

                                𝑠𝑖,𝑓 =  
1

2
 Ѱ𝑖

∗𝜎𝑓Ѱ𝑖                                                        (2.5.1.4) 
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Where Ѱ𝑖 = (ѱ𝑖,1; ѱ𝑖,2)  is the two component wave function at a site 𝑖 and 𝑓 = 𝑥, 𝑦, 𝑧. We also define 

the total spin of the system at a given electron state as 

                               𝑆𝑓 =  ∑ 𝑠𝑖,𝑓𝑖                                                                   (2.5.1.5) 

Below we characterize orientation of the total spin in terms of the spherical angles 𝜃𝑧 𝑎𝑛𝑑 𝜑𝑥, defined as  

                                  𝜃𝑧 =  cos−1 𝑆𝑧

√𝑆𝑥
2+𝑆𝑦

2+𝑆𝑧
2
,                                            (2.5.1.6) 

                                      𝜑𝑥 =  cos−1 𝑆𝑥

√𝑆𝑥
2+𝑆𝑦

2
,                                             (2.5.1.7) 

 

 2.5.2 Results and Discussions 

 

 In Fig. 2.5.2.1 the energy spectra of germanene quantum dot (13 atoms) is shown for two values 

of the external electric field, zero field and Ez = 100 meV/Å. Solid lines in the figure correspond to two 

almost degenerate states. Finite electric field lifts the degeneracy of only one level with energy close to 

zero value. Dashed lines show the corresponding levels.  The energy spectrum of the QD has also weak 

dependence on the external electric field. The visible changes in the energies of the levels occur for zero 

energy levels only (dashed lines in Fig. 2.5.2.1).   
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FIG. 2.5.2.1: Energy spectra of germanene quantum dot for (a) Ez = 0 and (b) Ez = 100 meV/Å. The solid lines correspond to 

double degenerate energy levels, while the dashed lines describe the nondegenerate levels. The numbers near the lines are the 

angles between the directions of the spin at the corresponding energy levels and the positive (Ɵz) or negative (1800 - Ɵz) 

directions of the z-axis. The angles are measured in degrees. 

 

 Finite spin-orbit interaction in the germanene QD results in dependence of the electron spin 

orientation on the electron energy in the dot. In Fig. 2.5.2.1 the numbers near the energy levels show the 

angle 𝜃𝑧 (for one of the degenerate levels) and angle 1800 − 𝜃𝑧 (for another level). For two degenerate 

levels, the spin directions are almost opposite, i.e., 𝜃𝑧  at one energy level is almost equal to 1800 −  𝜃𝑧 at 

another level. Here angle 𝜃𝑧 is measured relative to the z-axis. The angle 𝜃𝑧 depends on the energy of the 

level and changes from almost 0 (spin along z-axis) to the maximum angle 4.20  (13 atoms germanene 

QD) at the dot level with energy ≈ 1128 meV (electron energy), At these energy levels the spin-orbit 

interaction has the strongest effect on electron structure of the QD. There is also level with negative 

energy (the hole state for 13 atoms) ≈ - 1128 meV, at which the deviation of the spin from the z-axis is 

also large (𝜃𝑧 =  3.60). The levels with the second largest angles 𝜃𝑧 correspond to the energies ≈ 2343 

meV. 
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 Similar results were obtained for two other sizes of germanene QD: for 27 atoms and 35 atoms 

QDs. The angle 𝜃𝑧 depends on the energy of the level and changes from almost 0.40 to the maximum 

angle 4.870 (27 atoms germanene QD) at the dot level with energy ≈ -2585 meV (hole energy) and, from 

almost 0.40 to the maximum angle 6.20  (35 atoms germanene QD) at the dot  level with energy ≈ -2591 

meV (hole energy). Similarly for 27 atoms germanene QD we find large angles 𝜃𝑧, which correspond to 

hole energies ≈ -2586 meV, -2540 meV and electron energies ≈ 2585 meV, 2540 meV, and 2535 meV.  

For 35 atoms germanene QD large angles 𝜃𝑧 correspond to the hole energies ≈ -2592 meV, -2564 meV, -

2562 meV and the electron energies ≈ 2592 meV. There are no degenerate states in the case of 27 atoms 

and 35 atoms germanene QDs. 

 

 

FIG. 2.5.2.2: Angle Ɵz as a function of perpendicular electric field Ez. The data are shown for 2 energy levels of each size with 

the largest values of Ɵz. The numbers near the lines are the energies of the corresponding levels. The electron states and the hole 

states correspond to the states with positive and negative energies, respectively. 

 

 

To characterize the dependence of the spin orientation on the value of electric field we show in Figure 

2.5.2.2 the angle 𝜃𝑧 as a function of Ez for 2 energy levels (for each size of the quantum dot) with the 
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largest angles 𝜃𝑧. The external electric field Ez also affects the spin orientation in the x-y plane. Such 

orientation is characterized by an angle ϕx.  

 For the electron states (13 atoms QD), i.e. the states with positive energies, angle 𝜃𝑧 increases 

with electric field, i.e. electron spin is rotating away from the z-axis with increasing Ez. For the hole 

states, i.e. the states with negative energies, deviation of the spin from the negative direction of the z-axis 

decreases with electric field. Thus, in this case, with increasing perpendicular electric field, the electron 

spin is rotating toward the z-axis. For the electron states (27 atoms QD), i.e. the states with positive 

energies, angle 𝜃𝑧 decreases with electric field, i.e. electron spin is rotating towards the z-axis with 

increasing Ez. For the hole states, i.e. the states with negative energies, deviation of the spin from the 

negative direction of the z-axis increases with the electric field. Thus, in this case, with increasing 

perpendicular electric field, the electron spin is rotating away from the z-axis. For the hole states (35 

atoms QD), i.e. the states with negative energies, the angle 𝜃𝑧 decreases with electric field, i.e. electron 

spin is rotating towards the z-axis with increasing Ez.  
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FIG. 2.5.2.3: In-plane (x- y plane) component of the spin for different values of electric field. The electric field changes from 0 to 

100 meV/Å. The results are shown for the level with energy (a) 1128 meV (13 atoms), 2584 meV (27 atoms), and 2591 meV (35 

atoms) and (b) - 1128 meV (13 atoms), -2584 meV (27 atoms), and -2591 meV (35 atoms) which correspond to the maximum 

values of Ɵz.  

 

 

 The external electric field Ez also affects the spin orientation in the x-y plane. Such orientation is 

characterized by an angle ϕx. The electric field dependence of in-plane spin polarization and the 
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magnitude of in- plane spin component for 13 atoms quantum dot states with energies 1128 meV is 

shown in [Fig. 2.5.2. 3(a)] and for energies -1128 meV is shown in [Fig. 2.5.2.3 (b)]. Similarly for 27 

atoms quantum dot states with energies 2584 meV is shown in [Fig. 2.5.2. 3(a)] and -2585 meV is shown 

in [Fig. 2.5.2. 3(b)], and for 35 atoms quantum dot states with energies 2591 meV is shown in [Fig. 2.5.2. 

3(a)] and -2592 meV is shown in [Fig 2.5.2. 3(b)]. For these states the angle 𝜃𝑧 is the largest, i.e. x-y 

spin component, which is proportional to sin (𝜃𝑧) has the largest magnitude. The data shows that, 

with increasing electric field, the in-plane component of the spin is rotating in the opposite 

directions for the electron state (positive energy) and for the hole state (negative energy). While for 

the electron state [Fig. 2.5.2. 3(a)] the in-plane component of the spin is rotating counterclockwise, 

for the hole state [Fig. 2.5.2. 3(b)] the in-plane component of the spin is rotating in the clockwise 

direction for all the sizes of the quantum dot.  

 For the smallest (13 atoms) and largest (35 atoms) sizes the angle ϕx is in the third 

quadrant for electron states and the angle ϕx is the fourth quadrant for hole states. Whereas for the 

medium sized quantum dot (27 atoms), the angle ϕx is in the first and second quadrant for the 

electron and hole states respectively. Whatever may be the size, the rotation of spin is in opposite 

direction for the electron and hole states as the electric field is increased. In figure 2.5.2. 3(a) and 

2.5.2. 3(b), the lengths of the lines shown are proportional to the x-y spin component of the 

respective quantum dots. 
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FIG. 2.5.2.4: Spatial distribution of in-plane (x - y plane) component of the spin for the state with energy 1128 meV and zero 

electric field, Ez = 0. The red lines show the orientation of the in-plane component of electron spin at a given site and the length 

of the line is proportional to the magnitude of the in-plane component of the spin. 

 

 In Fig. 2.5.2.4 we show the spatial distribution of electron spin (for 13 electron germanene) for a 

state with energy 1128 meV and maximum angle 𝜃𝑧. Each red line in the figure is characterized by the 

components (𝑠𝑖,𝑥, 𝑠𝑖,𝑦) at a given site ′𝑖′. The distribution of the spin is close to uniform with 

small deviations from the average direction. There is a weak dependence of spin distribution on 

external electric field Ez.  
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FIG. 2.5.2.5: (a) Tunneling current through the 13 atoms germanene quantum dot as a function of electric field, Ez and position 

of ferromagnetic contacts. Also the current changes with the point of contacts on the left and right of the quantum dot. In the 

figure La1 and La2 are the left contacts and Ra1 and Ra2 are the right contacts. (b) Inset: the arrangement of energy levels in the 

quantum dot (QD) and ferromagnetic contacts. The left contact is spin-up polarized, while the right contact is spin-down 

polarized. The energy levels are arranged in such a way that, at low temperatures, the tunneling current occurs through a single 

level in the quantum dot with the energy 1128 meV, corresponding to the largest angle Ɵz. 
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FIG. 2.5.2.6: (a) Tunneling current through the 27 atom quantum dot as a function of electric field, Ez and position of 

ferromagnetic contacts. The left contact is spin-up polarized, while the right contact is spin-down polarized. The energy levels are 

arranged in such a way that, at low temperatures, the tunneling current occurs through a single level in the quantum dot at the 

energy -2584 meV, corresponding to the largest angle Ɵz. In the figure La1 and La2 are left contacts and Ra1 and Ra2 are the 

right contacts. (b) 27 atoms germanene quantum dot with contact points. 
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FIG. 2.5.2.7 (a) Tunneling current through the quantum dot as a function of electric field, Ez and point of ferromagnetic contacts. 

The left contact is spin-up polarized, while the right contact is spin-down polarized. The energy levels are arranged in a such way 

that, at low temperatures, the tunneling current occurs through a single level in the quantum dot with 27 atoms and at the energy -

2591 meV, corresponding to the largest angle Ɵz. In the figure La1 and La2 are left contacts and Ra1 and Ra2 are the right 

contacts. (b) 35 atoms germanene quantum dot with contact points.  

 

 

 The dependence of the spin orientation of electron in germanene quantum dot on the external 

electric field can be probed by tunneling current through the quantum dot with ferromagnetic contacts. 

Indeed, if the quantum dot is attached to two ferromagnetic contacts, where the left contact is spin-up 

polarized, while the right contact is spin-down polarized in relation to z-direction, then the current 

through a single state of such quantum dot is proportional to sin (𝜃𝑧). Schematic illustration of such 

arrangement of quantum dot and ferromagnetic contacts is shown in Fig. 2.5.2.5 (inset), Fig. 2.5.2.6, and 

Fig. 2.5.2.7. By variation of the bias and the gate voltages, one can adjust the levels in such way that the 

current will occur only through a single level [see Fig. 2.5.2. 5(inset)]. In Fig. 2.5.2.5, Fig. 2.5.2.6, and 

Fig. 2.5.2.7 the tunneling current through the quantum dot is shown as a function of external electric field. 

The chemical potentials of the left and right contacts are 1156 meV and 1100 meV respectively for 13 

atoms germanene quantum dot,-2554 meV and -2614 meV respectively for 27 atoms germanene quantum 

dot, and -2561 meV and -2621 meV respectively for 35 atoms germanene quantum dot. 
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 In all the cases the current through the QD is mainly determined by only one QD state with 

energy 1128 meV (13 atoms), -2584 meV (27 atoms), and -2591 meV (35 atoms) which also have the 

largest angle 𝜃𝑧. The data presented in Fig. 2.5.2.5, Fig. 2.5.2.6, and Fig. 2.5.2.7 clearly show that the 

current depends on (a) electric field and (b) the points of ferromagnetic contacts on the left and right of 

the quantum dot. The dependence is almost linear and in the case of 13 atoms germanene QD the current 

changes by ≈ 22% with increasing electric field from zero value to 100 meV/Å. Similarly the dependence 

is almost linear in the case of 27 atoms and 35 atoms germanene QD, where the current changes by ≈ 

0.2% and ≈ 1.5%, respectively, with increasing electric field from zero to 100 meV/Å.    

 In application to spintronics, we can emphasize that if the germanene quantum dot is connected to 

two ferromagnetic contacts, then the current through such quantum dot can be strongly controlled by 

perpendicular electric field . During electron transport through the quantum dot, the electron spin is 

rotating by 1800. 

 

 

3 CONCLUSIONS AND RECOMMENDATIONS 

3.1 Conclusions and Recommendations for “Intraband optical transitions in InGaAs/GaAs 

pyramidal quantum dots” 

We studied numerically the intraband optical transitions within the valence band of the pyramidal 

quantum dots InxGa1-xAs/GaAs. The system is weakly p-doped so that each quantum dot is occupied by 

one hole only and we calculated the absorption spectra of such quantum dot system. We considered both 

x- and z-polarized light, where axis z is along the growth direction. For a given size of the quantum dot, 

the absorption frequency of z-polarized light is higher than the absorption frequency of x-polarized light 

by ≈ 50 meV. With increasing the size of the quantum dot, the absorption spectra is shifted to lower 

energies, which allows tuning the absorption frequency of the quantum dot system. For x-polarized light, 
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the corresponding wavelength of absorbed light changes from 21.4 μm to 250 μm as the size of the base 

of the quantum dot increases from 5 nm to 21 nm. For z-polarized light, the corresponding wavelength 

increases from 11.8 μm to 19.8 μm with increasing the size of the dot from 5 nm to 21 nm. The frequency 

of the light, absorbed by InxGa1-xAs/GaAs quantum dot, has weak dependence on In content of the 

quantum dot, except for the quantum dot of a small size, < 10 nm.  

 

3.1.1 Recommendation(InxGa1-xAs/GaAs quantum dot) 

For small quantum dot, the position of the absorption peak of z-polarized light has strong dependence on 

the “In” content. Our results show that the quantum dot is sensitive to x-polarized light in the range of 

21.4 μm to 250 μm and is useful in the far infrared region, especially the small size QDs with high Indium 

content. If the intensity is not a matter then the quantum dot is useful since it is sensitive to z-polarized 

light in the range of 11.8 μm to 19.8 μm. Also as the quantum dot is strongly dependent on the Indium 

content for the z-polarized light, we can depend on the frequency range selection by the quantum dot. 

 

3.2 Conclusions and Recommendations for “Theoretical study of intraband optical transitions 

in conduction band of a dot-in-a-well system” 

We study the intraband optical spectra of n-doped InAs/ InxGa1-xAs /GaAs DWELL system for different 

sizes of quantum dot and quantum well. The spectra are obtained for two different positions of the dot in 

the well: dot at the bottom and at the top of the well. Our results show that absorption spectra have weak 

dependence on the quantum well size and on the position of the dot in the well. The spectra have strong 

dependence on the dot size. For smaller sizes of the quantum dot,  < 12 nm, the main optical transitions 

occur either between the states of the quantum dot and the quantum well or between the states of the 

quantum dot and substrate. The wavelengths of corresponding optical transitions range between ∼ 2 μm 

and ∼ 3.6 μm. Such types of optical transitions are specific for DWELL system and are not present in 

isolated quantum dot. The DWELL system is sensitive to both x- and z-polarized light. For x-polarized 
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light the absorption spectra have multi-peak structure with well-defined peaks of comparable intensities. 

For z-polarized light, the absorption spectrum has only one peak.  

3.2.1 Recommendations (DWELL) 

The DWELL system is more sensitive to x-polarized light, for which the intensity of the optical 

transitions is almost two orders of magnitude larger than the corresponding intensities for z-polarized 

light. Since the optical transitions of the DWELL are independent of the quantum well thickness, 

manufacturing of the device becomes easy. Also as both x and z polarized light optical transitions are 

approximately in the same range, the device becomes free from direction of the incident wave. These 

devices are very useful in the mid-infrared region. 

 

3.3 Conclusions and Recommendations for “I-V characteristic of graphene quantum dots and 

molecules” 

 

The I-V characteristics of graphene quantum dot connected to two electrodes show typical step-like 

structure, which is due to discrete energy spectrum of the dot. The I-V dependence is characterized by 

saturated value of the current, which increases with increasing the size of the quantum dot. At the same 

time increasing the size of the system by adding additional quantum dot, i.e., in the system of double 

quantum dots (quantum molecule), has weak effect on the current through the system. The current 

through the dot system increases almost linearly with the strength of dot-contact coupling. The current 

through the quantum dot system is also sensitive to the structure of the electrodes, i.e., on their position 

and orientation.  

3.3.1 Recommendations (I-V characteristics of Graphene quantum dot) 

In relation to application of graphene quantum dots in nanoscale devices, our results show that the 

transport properties of graphene quantum dots can be tuned by changing the size of the dot and 

orientation of the dot relative to the contacts, i.e. by changing the points of the contacts between graphene 
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quantum dot and electrodes, the current through the system can be changed by ≈ 2%. 

 

3.4 Conclusions and Recommendations for “Germanene quantum dots: energy spectrum and 

spin texture” 

Strong spin-orbit interaction in germanene quantum dot system results in energy dependence of spin 

polarization of the quantum dot. The direction of electron spin in the 13 atoms quantum dot changes by ≈ 

4.50 with variation of the electron energy. Similarly the direction of electron spin in 27 atoms quantum 

dot changes by ≈ 4.850 and in the 35 atoms quantum dot it changes by ≈ 6.10.  Additional control over the 

direction of electron spin in the quantum dot is introduced by external perpendicular electric field. By 

changing the electric field from zero value to 100 meV/Å, the electron spin in the 13 atoms quantum dot 

is rotating by ≈ 0.50. The direction of rotation of the electron spin for all sizes of germanene quantum dots 

depends on the electron energy: for positive (electron states) and negative (hole states) energies the 

directions of rotation are opposite. The dependence of the direction of electron spin on the external 

electric field can be used to control the tunneling current through the quantum dots, connected to two 

ferromagnetic contacts. By variation of electric field the current through the dot can be changed by almost 

22% in the case of 13 atoms germanene quantum dot. The data presented in chapter 4 & 5 are obtained 

for three sizes of germanene quantum dots. Similar behavior, i.e. dependence of the spin direction of an 

electron in the quantum dot on the electron energy and on the external electric field, is expected for other 

sizes and shapes of the quantum dots.  

 

3.4.1 Recommendations (Silicene and Germanene quantum dots) 

Due to relatively strong spin-orbit interaction in buckled graphene-like materials (silicene/germanene), 

the electron states in quantum dots made of these materials have non-trivial spin texture. The direction of 

spin also depends on external electric field. This property can find some application in the field of 
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spintronics.  For example, the current through silicene/germanene quantum dots connected to two 

ferromagnetic contacts can be controlled by perpendicular electric field.  

 

 

3.5 Overall conclusions of Dissertation 

Optimization of the QDIP architecture is still an open area. Since some of the design parameters 

depend on a device structure (photoconductive and noise gains, dark current, quantum efficiency), the 

performance is still being improved. Poor QDIP performance is generally linked to two sources: non-

optimal band structure and non-uniformity in QD size. In this research work, an ideal self-assembled QDs 

and DWELL structures are analyzed theoretically. Usually, QDs contain additional energy levels between 

the excited and ground state transitions. Previous researches indicate that if these states are similar to the 

thermal excitations or permit phonon scattering between levels, there is a reduction in carrier lifetime 

[81]. In consequence a large increase in dark current and reduction in detectivity may be observed. 

Research indicates that it should also be noticed that in the case of Stranski-Krastanow growth mode 

some degradation of self-assembled QDs occur due to a coupling 2D “wetting layer” [81]. We have not 

considered these into account but both the InxGa(1-x)As/GaAs self-assembled pyramidal QD and 

InAs/In0.15Ga0.85As/GaAs DWELL have been theoretically studied for observing optical transitions within 

the valence band (QD) and conduction band (DWELL). We have observed that optical transitions in 

DWELL have lower wavelength ranges than the QDs. Also these devices are more sensitive to x-

polarized light than z-polarized light (z-is the growth direction of the QD). Due to fact that conventional 

HgCdTe photodiodes are not usable for room temperature FPA applications, it can be expected that 

improvement in technology and design of QDIP detectors will make it possible to achieve both high 

sensitivity and fast response useful for practical application in room temperature FPAs. 
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Graphene is a wonder material with many superlatives to its name. It is the thinnest material in 

the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the 

smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room 

temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal 

conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness 

and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the 

investigation of relativistic quantum phenomena in a bench-top experiment [103]. In sequence to these 

studies we have extended our work to graphene like QDs that includes buckled germanene QDs for their 

electronic transportation properties. In the case of graphene it was concluded that the tunneling current 

increases stepwise with the increase in the applied voltage and also increases with the size of the dot but 

has not much variation when the dot is changed to a molecule with the same size.  In this work, we 

studied spin-dependent transport along the length of the buckled monolayer germanene QD structure. We 

also investigated the spin vector variation with z-axis and in in-plane variation in buckled monolayer 

germanene QD with varying perpendicular electric field (along z-axis). Finally, we studied the effect of 

variation of vertical electric field (Ez) on current conduction in buckled monolayer structure of 

germanene. Germanene QDs show significant potential for future nano-electronics devices.  
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APPENDICES 

Appendix A 

In this section two electronic models of semiconductors are explained i.e., (1) Tight-binding 

model and, (2) k.p. model. In Appendix A.1 the tight-binding model with its equations are explained 

[102] and in Appendix A.2 k.p. model is explained.  

 

Appendix A.1: Tight-binding model 

 

Tight-binding model of graphene connected to two electrodes.  

The model includes the charge hopping between the nearest neighbor sites and is described by the 

following Hamiltonian 

𝐻 =  𝐻𝑡 + 𝐻𝑙𝑒𝑎𝑑𝑠 + 𝐻𝑄𝐷−𝑙𝑒𝑎𝑑𝑠    ----------(A.1.1) 

Ht is the tight-binding graphene Hamiltonian, which describes the electron transfer within the 

quantum dot. Hleads is the Hamiltonian of the charge carriers in the two leads i.e. in the right and left 

contacts. HQD-leads describe the coupling between the quantum dot and the leads.  

Where  

𝐻𝑡 =  −𝛾 ∑ 𝑎𝑖,𝜎
+

<𝑖,𝑗>  𝑎𝑗,𝜎 + ℎ. 𝑐.     ----------(A.1.2) 

where 𝑎𝑖,𝜎
+  and 𝑎𝑗,𝜎  are creation and annihilation operators for an electron with  

spin σ on site ‘i’, γ =-3.03 eV is the hopping integral. The summation in Eq. Ht goes over the 

nearest neighbor sites.  

The Hamiltonian of the leads describes the electrons in the right and left contacts and have the 

following form 

𝐻𝑙𝑒𝑎𝑑𝑠 =  ∑ 𝜀𝑄,𝑘𝑄,𝑘,𝜎 𝐶𝑄,𝑘,𝜎
+ 𝐶𝑄,𝑘,𝜎  -----------(A.1.3) 

where Q=L,R corresponds to left and right contacts, 𝐶𝑄,𝑘,𝜎
+    and 𝐶𝑄,𝑘,𝜎 are the  annihilation and 

creation operators of an electron with spin σ =1 and wave-vector k in the contact Q=L,R. 
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The electron system in each lead is characterized by the corresponding chemical 

potential, μL and μR. Then the bias voltage across the quantum dot is introduced as    

𝑉𝑏 =  𝜇𝐿 −  𝜇𝑅 --------------------------------- (A.1.4) 

The coupling of graphene quantum dot to the leads is introduced through the hopping between the 

nearest to the leads sites and the right and left contacts.  The corresponding Hamiltonian is 

        𝐻𝑄𝐷−𝑙𝑒𝑎𝑑𝑠 =  ∑ 𝑉𝐿,𝑘𝑖,𝑗,𝜎 𝐶𝐿,𝑘,𝜎
+ 𝑎𝑖,𝜎 + ℎ. 𝑐. + ∑ 𝑉𝑅,𝑘𝑖,𝑗,𝜎 𝐶𝑅,𝑘,𝜎

+ 𝑎𝑗,𝜎 + ℎ. 𝑐. ---------- (A.1.5) 

here VL,k and VR,k are the hopping integrals, which characterize the coupling of the quantum dot 

to the left and right leads, respectively. In the above expression, the sites ‘i’ and ‘j’ are the closest sites of 

the quantum dots to the left and right contacts. In the following we also assume that the hopping integrals 

VR,k and VL,k are the same for all states in the contacts, i.e., VR,k = VL,k = V0. 

 

Under an applied bias voltage, which is equal to the difference of the chemical potentials of the 

leads, the stationary current through the quantum dot can be calculated from the Landauer expression 

𝐼 =  ∫ [𝑓 (𝐸 −
𝑣

2
) − 𝑓 (𝐸 +

𝑣

2
)] 𝑇𝑟[𝐺𝑟(𝐸)Γ𝐿𝐺𝑎(𝐸)Γ𝑅]𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛
 ---------- (A.1.6) 

where, fL(ε) and fR(ε) are the Fermi-Dirac distribution functions for the left and right contacts, 

respectively; Gr and Ga are retarded and advanced Green functions of electrons in the quantum dot, and ΓR 

and ΓL are the level-width matrices, determining the coupling of the quantum dot states through the 

continuous states of the right and left contacts, respectively. 

The retarded and advanced Green functions can be found by means of the equation of motion 

approach. The Green functions have the following form 

𝐺
𝑟

𝑎(𝐸) = [𝐸 −  𝐻𝑡  ±
𝑖

2
 (Γ𝐿 +  Γ𝑅)]−1 ------------(A.1.7) 

We numerically calculate the current through the quantum dot as a function of the applied bias 

voltage. We start from the tight-binding Hamiltonian of the quantum dot, Eq.~ Ht, and construct the 

Hamiltonian matrix. Then, with the known level-width matrices we calculate the Green functions from 
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Eq.(7) Finally, for a given bias voltage, i.e., the chemical potentials of the leads, we calculate the current 

through quantum dot from equation (6) and the current in the monolayer using Landauer expression. 

 

Sample Matlab Program for the Hamiltonian, Finding Energy, and relation between Current and Voltage: 

% This symbol indicates that this line is a comment line 

H = zeros(216,216);          % 216 x 216 Matrix for the Hamiltonian  

H(1,2)=1;                         % Row one, column two is having a value 1 

H(1,6)=1; H(1,10)=1;H(2,1)=1;H(2,3)=1;H(2,13)=1;H(3,2)=1;H(3,4)=1;H(3,16)=1;H(4,3)=1; 

H(4,5)=1;H(4,19)=1;H(5,4)=1;H(5,6)=1;H(5,22)=1;H(6,1)=1;H(6,5)=1;H(6,7)=1;H(7,6)=1; 

H(7,8)=1;H(7,24)=1;H(8,7)=1;H(8,9)=1;H(8,27)=1;H(9,8)=1;H(9,10)=1;H(9,30)=1;H(10,1)=1; 

H(10,9)=1;H(10,11)=1;H(11,10)=1;H(11,12)=1;H(11,32)=1;H(12,11)=1;H(12,13)=1; 

H(12,35)=1;H(13,2)=1;H(13,12)=1;H(13,14)=1;H(14,13)=1;H(14,15)=1;H(14,37)=1; 

H(15,14)=1;H(15,16)=1;H(15,40)=1;H(16,3)=1;H(16,15)=1;H(16,17)=1;H(17,16)=1; 

H(17,18)=1;H(17,42)=1;H(18,17)=1;H(18,19)=1;H(18,45)=1;H(19,4)=1;H(19,18)=1; 

H(19,20)=1;H(20,19)=1;H(20,21)=1;H(20,47)=1;H(21,20)=1;H(21,22)=1;H(21,50)=1; 

H(22,5)=1;H(22,21)=1;H(22,23)=1;H(23,22)=1;H(23,24)=1;H(23,52)=1;H(24,7)=1;H(24,23)=1; 

H(24,25)=1;H(25,24)=1;H(25,26)=1;H(25,54)=1;H(26,25)=1;H(26,27)=1;H(26,57)=1; 

H(27,26)=1;H(27,28)=1;H(27,8)=1;H(28,27)=1;H(28,29)=1;H(28,59)=1;H(29,28)=1; 

H(29,30)=1;H(29,62)=1;H(30,29)=1;H(30,31)=1;H(30,9)=1;H(31,30)=1;H(31,32)=1; 

H(31,64)=1;H(32,31)=1;H(32,33)=1;H(32,11)=1;H(33,32)=1;H(33,34)=1;H(33,66)=1; 

H(34,33)=1;H(34,35)=1;H(34,69)=1;H(35,34)=1;H(35,36)=1;H(35,12)=1;H(36,35)=1; 

H(36,37)=1;H(36,71)=1;H(37,36)=1;H(37,38)=1;H(37,14)=1;H(38,37)=1;H(38,39)=1; 

H(38,73)=1;H(39,38)=1;H(39,40)=1;H(39,76)=1;H(40,39)=1;H(40,41)=1;H(40,15)=1; 

H(41,42)=1;H(41,40)=1;H(41,78)=1;H(42,41)=1;H(42,43)=1;H(42,17)=1;H(43,42)=1; 

H(43,44)=1;H(43,80)=1;H(44,43)=1;H(44,45)=1;H(44,83)=1;H(45,44)=1;H(45,46)=1; 
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H(45,18)=1;H(46,45)=1;H(46,47)=1;H(46,85)=1;H(47,46)=1;H(47,48)=1;H(47,20)=1; 

H(48,47)=1;H(48,49)=1;H(48,87)=1;H(49,48)=1;H(49,50)=1;H(49,90)=1;H(50,49)=1; 

H(50,51)=1;H(50,21)=1;H(51,50)=1;H(51,52)=1;H(51,92)=1;H(52,51)=1;H(52,53)=1; 

H(52,23)=1;H(53,52)=1;H(53,54)=1;H(53,94)=1;H(54,53)=1;H(54,55)=1;H(54,25)=1; 

H(55,54)=1;H(55,56)=1;H(55,96)=1;H(56,55)=1;H(56,57)=1;H(56,99)=1;H(57,56)=1; 

H(57,58)=1;H(57,26)=1;H(58,57)=1;H(58,59)=1;H(58,101)=1;H(59,58)=1;H(59,60)=1; 

H(59,28)=1;H(60,59)=1;H(60,61)=1;H(60,103)=1;H(61,60)=1;H(61,62)=1;H(61,106)=1; 

H(62,61)=1;H(62,63)=1;H(62,29)=1;H(63,62)=1;H(63,64)=1;H(63,108)=1;H(64,63)=1; 

H(64,65)=1;H(64,31)=1;H(65,64)=1;H(65,66)=1;H(65,110)=1;H(66,65)=1;H(66,67)=1; 

H(66,33)=1;H(67,66)=1;H(67,68)=1;H(67,112)=1;H(68,67)=1;H(68,69)=1;H(68,115)=1; 

H(69,68)=1;H(69,70)=1;H(69,34)=1;H(70,69)=1;H(70,71)=1;H(70,117)=1;H(71,70)=1; 

H(71,72)=1;H(71,36)=1; H(72,71)=1;H(72,73)=1;H(72,119)=1; H(73,72)=1;H(73,74)=1; 

H(73,38)=1;H(74,73)=1;H(74,75)=1;H(74,121)=1;H(75,74)=1;H(75,76)=1;H(75,124)=1; 

H(76,75)=1;H(76,77)=1;H(76,39)=1;H(77,76)=1;H(77,78)=1;H(77,126)=1;H(78,77)=1; 

H(78,79)=1;H(78,41)=1;H(79,78)=1;H(79,80)=1;H(79,128)=1;H(80,79)=1;H(80,81)=1; 

H(80,43)=1;H(81,80)=1;H(81,82)=1;H(81,130)=1;H(82,81)=1;H(82,83)=1;H(82,133)=1; 

H(83,82)=1;H(83,84)=1;H(83,44)=1;H(84,83)=1;H(84,85)=1;H(84,135)=1;H(85,84)=1; 

H(85,86)=1;H(85,46)=1;H(86,85)=1;H(86,87)=1;H(86,137)=1;H(87,86)=1;H(87,88)=1; 

H(87,48)=1;H(88,87)=1;H(88,89)=1;H(88,139)=1;H(89,88)=1;H(89,90)=1;H(89,142)=1; 

H(90,89)=1;H(90,91)=1;H(90,49)=1;H(91,90)=1;H(91,92)=1;H(91,144)=1;H(92,91)=1; 

H(92,93)=1;H(92,51)=1;H(93,92)=1;H(93,94)=1;H(93,146)=1;H(94,93)=1;H(94,95)=1; 

H(94,53)=1;H(95,94)=1;H(95,96)=1;H(95,148)=1;H(96,95)=1;H(96,97)=1;H(96,55)=1; 

H(97,96)=1;H(97,98)=1;H(97,150)=1;H(98,97)=1;H(98,99)=1;H(98,153)=1;H(99,98)=1; 

H(99,100)=1;H(99,56)=1;H(100,99)=1;H(100,101)=1;H(100,155)=1;H(101,100)=1; 

H(101,102)=1;H(101,58)=1;H(102,101)=1;H(102,103)=1;H(102,157)=1;H(103,102)=1; 
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H(103,104)=1;H(103,60)=1;H(104,103)=1;H(104,105)=1;H(104,159)=1;H(105,104)=1; 

H(105,106)=1;H(105,162)=1;H(106,105)=1;H(106,107)=1;H(106,61)=1;H(107,106)=1; 

H(107,108)=1;H(107,164)=1;H(108,107)=1;H(108,109)=1;H(108,63)=1;H(109,108)=1; 

H(109,110)=1;H(109,166)=1;H(110,109)=1;H(110,111)=1;H(110,65)=1;H(111,110)=1; 

H(111,112)=1;H(111,168)=1;H(112,111)=1;H(112,113)=1;H(112,67)=1;H(113,112)=1; 

H(113,114)=1;H(113,170)=1;H(114,113)=1;H(114,115)=1;H(114,173)=1;H(115,114)=1; 

H(115,116)=1;H(115,68)=1;H(116,115)=1;H(116,117)=1;H(116,175)=1;H(117,116)=1; 

H(117,118)=1;H(117,70)=1;H(118,117)=1;H(118,119)=1;H(118,177)=1;H(119,118)=1; 

H(119,120)=1; H(119,72)=1;H(120,119)=1;H(120,121)=1;H(120,179)=1;H(121,120)=1; 

H(121,122)=1;H(121,74)=1;H(122,121)=1;H(122,123)=1;H(122,181)=1;H(123,122)=1; 

H(123,124)=1;H(123,184)=1;H(124,123)=1;H(124,125)=1;H(124,75)=1;H(125,124)=1; 

H(125,126)=1;H(125,186)=1;H(126,125)=1;H(126,127)=1;H(126,77)=1;H(127,126)=1; 

H(127,128)=1;H(127,188)=1;H(128,127)=1; H(128,129)=1;H(128,79)=1;H(129,128)=1; 

H(129,130)=1;H(129,190)=1;H(130,129)=1;H(130,131)=1;H(130,81)=1;H(131,130)=1; 

H(131,132)=1;H(131,192)=1;H(132,131)=1;H(132,133)=1;H(132,195)=1;H(133,132)=1; 

H(133,134)=1;H(133,82)=1;H(134,133)=1;H(134,135)=1;H(134,197)=1;H(135,134)=1; 

H(135,136)=1;H(135,84)=1;H(136,135)=1;H(136,137)=1;H(136,199)=1;H(137,136)=1; 

H(137,138)=1;H(137,86)=1;H(138,137)=1;H(138,139)=1;H(138,201)=1;H(139,138)=1; 

H(139,140)=1;H(139,88)=1;H(140,139)=1;H(140,141)=1;H(140,203)=1;H(141,140)=1; 

H(141,142)=1;H(141,206)=1;H(142,141)=1;H(142,143)=1;H(142,89)=1;H(143,142)=1; 

H(143,144)=1;H(143,208)=1;H(144,143)=1;H(144,145)=1;H(144,91)=1;H(145,144)=1; 

H(145,146)=1;H(145,210)=1;H(146,145)=1;H(146,147)=1;H(146,93)=1;H(147,146)=1; 

H(147,148)=1;H(147,212)=1;H(148,147)=1;H(148,149)=1;H(148,95)=1;H(149,148)=1; 

H(149,150)=1;H(149,214)=1;H(150,149)=1;H(150,97)=1;H(150,151)=1;H(151,150)=1; 

H(151,152)=1;H(151,216)=1;H(152,151)=1;H(152,153)=1;H(153,152)=1;H(153,154)=1; 
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H(153,98)=1;H(154,153)=1;H(154,155)=1;H(155,154)=1;H(155,156)=1;H(155,100)=1; 

H(156,155)=1;H(156,157)=1;H(157,156)=1;H(157,158)=1;H(157,102)=1;H(158,157)=1; 

H(158,159)=1;H(159,158)=1;H(159,160)=1;H(159,104)=1;H(160,159)=1;H(160,161)=1; 

H(161,160)=1;H(161,162)=1;H(162,161)=1;H(162,163)=1;H(162,105)=1;H(163,162)=1; 

H(163,164)=1; H(164,163)=1; H(164,165)=1;H(164,107)=1;H(165,164)=1;H(165,166)=1; 

H(166,165)=1;H(166,167)=1;H(166,109)=1;H(167,166)=1;H(167,168)=1;H(168,167)=1; 

H(168,169)=1; H(168,111)=1; H(169,168)=1;H(169,170)=1;H(170,169)=1;H(170,171)=1; 

H(170,113)=1;H(171,170)=1;H(171,172)=1;H(172,171)=1;H(172,173)=1;H(173,172)=1; 

H(173,174)=1;H(173,114)=1;H(174,173)=1;H(174,175)=1;H(175,174)=1;H(175,176)=1; 

H(175,116)=1;H(176,175)=1;H(176,177)=1;H(177,176)=1;H(177,178)=1;H(177,118)=1; 

H(178,177)=1;H(178,179)=1;H(179,178)=1;H(179,180)=1;H(179,120)=1;H(180,179)=1; 

H(180,181)=1;H(181,180)=1;H(181,182)=1;H(181,122)=1;H(182,181)=1;H(182,183)=1; 

H(183,182)=1;H(183,184)=1;H(184,183)=1;H(184,185)=1;H(184,123)=1;H(185,184)=1; 

H(185,186)=1;H(186,185)=1;H(186,187)=1;H(186,125)=1;H(187,186)=1;H(187,188)=1; 

H(188,187)=1;H(188,189)=1; H(188,127)=1;H(189,188)=1;H(189,190)=1;H(190,189)=1; 

H(190,191)=1;H(190,129)=1;H(191,190)=1;H(191,192)=1;H(192,191)=1;H(192,193)=1; 

H(192,131)=1;H(193,192)=1;H(193,194)=1;H(194,193)=1;H(194,195)=1;H(195,194)=1; 

H(195,196)=1;H(195,132)=1;H(196,195)=1;H(196,197)=1;H(197,196)=1;H(197,198)=1; 

H(197,134)=1;H(198,197)=1;H(198,199)=1;H(199,198)=1;H(199,200)=1;H(199,136)=1; 

H(200,199)=1;H(200,201)=1;H(201,200)=1;H(201,202)=1;H(201,138)=1;H(202,201)=1; 

H(202,203)=1;H(203,202)=1;H(203,204)=1;H(203,140)=1;H(204,203)=1;H(204,205)=1; 

H(205,204)=1;H(205,206)=1;H(206,205)=1;H(206,207)=1;H(206,141)=1;H(207,206)=1; 

H(207,208)=1;H(208,207)=1;H(208,209)=1;H(208,143)=1;H(209,208)=1;H(209,210)=1; 

H(210,209)=1;H(210,211)=1;H(210,145)=1;H(211,210)=1;H(211,212)=1;H(212,211)=1; 

H(212,213)=1;H(212,147)=1;H(213,212)=1;H(213,214)=1;H(214,213)=1;H(214,215)=1; 
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H(214,149)=1; H(215,214)=1; H(215,216)=1;H(216,215)=1;H(216,151)=1; 

H=3*H;        % Making the value of hoping integral equal to 3 eV 

t=0.1;        % Transfer coefficient = 0.1 

     

 

for nn=1:5           % Selects the number of Hexagons for the program 

    if nn==1 

        j=7; 

    elseif nn==2 

        j=19; 

    elseif nn==3 

        j=37; 

    elseif nn==4 

        j=61; 

    elseif nn==5 

        j=91; 

    end 

 

if j==7        % Fixes the number of Hexagons and the points of contacts for the leads 

     

l=48;        % Fixes the number of Carbon Atoms 

La1=18;    % Left point of contact 

La2=20;    % Left point of contact 

Ra1=35;   % Right point of contact 

Ra2=33;   % Right point of contact 

for n=1:l    

    for m=1:l                 

        if n==La1 && m==La1          

            TLL(n,m)=t;              %Level width Matrices 

            TRR(n,m)=0;              %Level width Matrices 

        elseif n==La2 && m==La2 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==Ra1 && m==Ra1 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

        elseif n==Ra2 && m==Ra2 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        else 

                TRR(n,m)=0;  

                TLL(n,m)=0;   

        end 

    end 

end 

 

for n=1:l/2 

    for m=1:l/2 

        x75(n,m)=H(n,m); 
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    end 

end 

j7=zeros(24,24); 

H72=[x75,j7];  

H27=[j7,x75];H7=[H72;H27];H7(11,42)=1;H7(42,11)=1;H7(9,44)=1;H7(44,9)=1; 

E7=eig(H7);                % Eigen energies 

Emax=max(E7);               % Maximum energy 

Emin=min(E7);       % Minimum energy 

Eh=(Emax - Emin)/1500; 

TLLR=(sqrt(-1))*(TLL+TRR)/2;  

 

for k=1:1501 

  for n=1:l 

      for m=1:l 

          if n==m 

              E7(n,m)=Emin+(k-1)*Eh; 

          else 

              E7(n,m)=0; 

          end 

      end 

  end 

   

IGr=(E7-H7+TLLR);                        %Inverse Retarded Green Function 

IGa=(E7-H7-TLLR);         %Inverse Accelerated Green Function 

Gr=inv(IGr);        %Retarded Green Function 

Ga=inv(IGa);        %Accelerated Green Function 

T(k)=trace(Gr*TLL*Ga*TRR);     %Trace  

T(k)=real(T(k)); 

end 

TK=300;        % Temperature in Kelvin 

BZ=0.00008625;      %Boltzmann Constant 

G=.077;     

V=zeros(80);      % Potential Matrix 

V(1)=0.25;        % Starting potential value 

C=zeros(80);       % Current Matrix 

 

 

for r=1:80         % Calculating Current as a function of Voltage 

    if r>=2 

    V(r)=V(r-1)+0.25; 

    end 

    VV=V(r);     

for k=1:1500           

            Ek=Emin+(k-1)*Eh; 

            a=exp((Ek-(VV/2))/(BZ*TK)); 

            b=exp((Ek+(VV/2))/(BZ*TK)); 

            f=-(1/(b+1))+(1/(a+1)); 

if k==1 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k==1500 
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            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k>1 && k<1500 

         if mod(k,2)==0 

            C(r)=C(r)+4*(Eh/3)*(T(k))*f*G; 

         else 

            C(r)=C(r)+2*(Eh/3)*(T(k))*f*G; 

         end 

end 

end 

end 

subplot (2,2,1), plot(V,C,'k'); 

hold; 

clear E7 

clear TLLR 

elseif j==19 

l=108;    

La1=46; 

La2=44; 

La3=48; 

Ra1=29; 

Ra2=31; 

Ra3=33; 

for n=1:l 

    for m=1:l 

        if n==La1 && m==La1  

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La2 && m==La2  

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La3 && m==La3 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==Ra1 && m==Ra1 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

        elseif n==Ra2 && m==Ra2 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra3 && m==Ra3 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        else 

                TRR(n,m)=0;  

                TLL(n,m)=0;   

        end 

    end 

end 

for n=1:l/2 

    for m=1:l/2 
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        x19(n,m)=H(n,m); 

    end 

end 

j19=zeros(54,54); 

H192=[x19,j19]; 

H219=[j19,x19]; 

H19=[H192;H219]; 

H19(33,98)=1; 

H19(98,33)=1; 

H19(31,100)=1; 

H19(100,31)=1; 

H19(29,102)=1; 

H19(102,29)=1; 

E19=eig(H19);  

Emax=max(E19); 

Emin=min(E19); 

Eh=(Emax - Emin)/1500; 

TLLR=(sqrt(-1))*(TLL+TRR)/2;  

 

for k=1:1501 

   

  for n=1:l 

      for m=1:l 

          if n==m 

              E19(n,m)=Emin+(k-1)*Eh; 

          else 

              E19(n,m)=0; 

          end 

      end 

  end 

IGr=(E19-H19+TLLR);  

IGa=(E19-H19-TLLR);  

Gr=inv(IGr);    

Ga=inv(IGa);   

T(k)=trace(Gr*TLL*Ga*TRR);  

T(k)=real(T(k)); 

end 

TK=300;     

BZ=0.00008625; 

G=.077; 

V=zeros(80); 

V(1)=0.25; 

C=zeros(80); 

 

 

for r=1:80  

    if r>=2 

    V(r)=V(r-1)+0.25; 

    end 

    VV=V(r);     
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for k=1:1500           

            Ek=Emin+(k-1)*Eh; 

            a=exp((Ek-(VV/2))/(BZ*TK)); 

            b=exp((Ek+(VV/2))/(BZ*TK)); 

            f=-(1/(b+1))+(1/(a+1)); 

if k==1 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k==1500 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k>1 && k<1500 

         if mod(k,2)==0 

            C(r)=C(r)+4*(Eh/3)*(T(k))*f*G; 

         else 

            C(r)=C(r)+2*(Eh/3)*(T(k))*f*G; 

         end 

end 

end 

end 

subplot (2,2,1), plot(V,C,'c'); 

clear E19 

clear TLLR 

 

elseif j==37 

 l=192; 

La1=82; 

La2=84; 

La3=86; 

La4=88; 

Ra1=178; 

Ra2=180; 

Ra3=182; 

Ra4=184; 

 

for n=1:l 

    for m=1:l 

        if n==La1 && m==La1 

            TLL(n,m)=t;   

            TRR(n,m)=0;    

        elseif n==La2 && m==La2 

            TLL(n,m)=t;   

            TRR(n,m)=0;  

        elseif n==La3 && m==La3 

            TLL(n,m)=t;   

            TRR(n,m)=0;  

        elseif n==La4 && m==La4 

            TLL(n,m)=t;   

            TRR(n,m)=0;  

        elseif n==Ra1 && m==Ra1 

            TLL(n,m)=0;  

            TRR(n,m)=t; 
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        elseif n==Ra2 && m==Ra2 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra3 && m==Ra3 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra4 && m==Ra4 

            TLL(n,m)=0;  

            TRR(n,m)=t;          

        else 

                TRR(n,m)=0;  

                TLL(n,m)=0;   

        end 

    end 

end 

for n=1:l/2 

    for m=1:l/2 

        x37(n,m)=H(n,m); 

    end 

end 

j37=zeros(96,96); 

H372=[x37,j37]; 

H237=[j37,x37]; 

H37=[H372;H237]; 

H37(67,178)=1; 

H37(178,67)=1; 

H37(65,180)=1; 

H37(180,65)=1; 

H37(63,182)=1; 

H37(182,63)=1; 

H37(61,184)=1; 

H37(184,61)=1; 

E37=eig(H37);  

Emax=max(E37); 

Emin=min(E37); 

Eh=(Emax - Emin)/1500; 

TLLR=(sqrt(-1))*(TLL+TRR)/2;  

 

for k=1:1501 

 for n=1:l 

      for m=1:l 

          if n==m 

              E37(n,m)=Emin+(k-1)*Eh; 

          else 

              E37(n,m)=0; 

          end 

      end 

  end 

IGr=(E37-H37+TLLR);  

IGa=(E37-H37-TLLR);  
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Gr=inv(IGr);    

Ga=inv(IGa);   

T(k)=trace(Gr*TLL*Ga*TRR);  

T(k)=real(T(k)); 

end 

TK=300;     

BZ=0.00008625; 

G=.077; 

V=zeros(80); 

V(1)=0.25; 

C=zeros(80); 

for r=1:80  

    if r>=2 

    V(r)=V(r-1)+0.25; 

    end 

    VV=V(r);     

for k=1:1500           

            Ek=Emin+(k-1)*Eh; 

            a=exp((Ek-(VV/2))/(BZ*TK)); 

            b=exp((Ek+(VV/2))/(BZ*TK)); 

            f=-(1/(b+1))+(1/(a+1)); 

if k==1 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k==1500 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k>1 && k<1500 

         if mod(k,2)==0 

            C(r)=C(r)+4*(Eh/3)*(T(k))*f*G; 

         else 

            C(r)=C(r)+2*(Eh/3)*(T(k))*f*G; 

         end 

end 

end 

end 

subplot (2,2,1),plot(V,C,'r'); 

clear E37 

clear TLLR 

elseif j==61 

    l=300; 

La1=132; 

La2=134; 

La3=136; 

La4=138; 

La5=140; 

Ra1=282; 

Ra2=284; 

Ra3=286; 

Ra4=288; 

Ra5=290; 

for n=1:l 
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    for m=1:l 

        if n==La1 && m==La1 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La2  && m==La2 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La3  && m==La3 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La4  && m==La4 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        elseif n==La5  && m==La5 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

   elseif n==Ra1 && m==Ra1 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra2 && m==Ra2 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra3 && m==Ra3 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

        elseif n==Ra4 && m==Ra4 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra5 && m==Ra5 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        else 

                TRR(n,m)=0;  

                TLL(n,m)=0;   

        end 

    end 

end 

for n=1:l/2 

    for m=1:l/2 

        x61(n,m)=H(n,m); 

    end 

end 

j61=zeros(150,150); 

H612=[x61,j61]; 

H261=[j61,x61]; 

H61=[H612;H261]; 

H61(113,282)=1; 

H61(282,113)=1; 

H61(111,284)=1; 

H61(284,111)=1; 
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H61(109,286)=1; 

H61(286,109)=1; 

H61(107,288)=1; 

H61(288,107)=1; 

H61(105,290)=1; 

H61(290,105)=1; 

 

E61=eig(H61);  

Emax=max(E61); 

Emin=min(E61); 

Eh=(Emax - Emin)/1500; 

TLLR=(sqrt(-1))*(TLL+TRR)/2;  

 

for k=1:1501 

 for n=1:l 

      for m=1:l 

          if n==m 

              E61(n,m)=Emin+(k-1)*Eh; 

          else 

              E61(n,m)=0; 

          end 

      end 

  end 

IGr=(E61-H61+TLLR);  

IGa=(E61-H61-TLLR);  

Gr=inv(IGr);    

Ga=inv(IGa);   

T(k)=trace(Gr*TLL*Ga*TRR);  

T(k)=real(T(k)); 

end 

TK=300;     

BZ=0.00008625; 

G=.077; 

V=zeros(80); 

V(1)=0.25; 

C=zeros(80); 

for r=1:80  

    if r>=2 

    V(r)=V(r-1)+0.25; 

    end 

    VV=V(r);     

for k=1:1500           

            Ek=Emin+(k-1)*Eh; 

            a=exp((Ek-(VV/2))/(BZ*TK)); 

            b=exp((Ek+(VV/2))/(BZ*TK)); 

            f=-(1/(b+1))+(1/(a+1)); 

if k==1 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k==1500 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 
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elseif k>1 && k<1500 

         if mod(k,2)==0 

            C(r)=C(r)+4*(Eh/3)*(T(k))*f*G; 

         else 

            C(r)=C(r)+2*(Eh/3)*(T(k))*f*G; 

         end 

end   

end 

end 

subplot (2,2,1),plot(V,C,'g'); 

clear E61 

clear TLLR 

elseif j==91 

A=zeros(216,216); 

H2=[H,A]; 

H3=[A,H]; 

H4=[H2;H3]; 

H4(171,410)=1; 

H4(410,171)=1; 

H4(169,412)=1; 

H4(412,169)=1; 

H4(167,414)=1; 

H4(414,167)=1; 

H4(165,416)=1; 

H4(416,165)=1; 

H4(163,418)=1; 

H4(418,163)=1; 

H4(161,420)=1; 

H4(420,161)=1; 

l=432; 

La1=194; 

La2=196; 

La3=198; 

La4=200; 

La5=202; 

La6=204; 

Ra1=410; 

Ra2=412; 

Ra3=414; 

Ra4=416; 

Ra5=418; 

Ra6=420; 

 

for n=1:l 

    for m=1:l 

        if n==La1 && m==La1  

            TLL(n,m)=t;   

            TRR(n,m)=0; 

       elseif n==La2 && m==La2 

            TLL(n,m)=t;   
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            TRR(n,m)=0; 

       elseif n==La3 && m==La3 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

       elseif n==La4 && m==La4 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

       elseif n==La5 && m==La5 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

       elseif n==La6 && m==La6 

            TLL(n,m)=t;   

            TRR(n,m)=0; 

        

       elseif n==Ra1 && m==Ra1 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

       elseif n==Ra2 && m==Ra2 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

       elseif n==Ra3 && m==Ra3 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

       elseif n==Ra4 && m==Ra4 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

       elseif n==Ra5 && m==Ra5 

            TLL(n,m)=0;  

            TRR(n,m)=t; 

        elseif n==Ra6 && m==Ra6 

            TLL(n,m)=0;  

            TRR(n,m)=t;  

        

        else 

                TRR(n,m)=0;  

                TLL(n,m)=0;   

        end 

    end 

end 

for n=1:l 

    for m=1:l 

        x(n,m)=H4(n,m); 

    end 

end 

E91=eig(x);  

Emin=min(E91); 

Emax=max(E91); 

 

Eh=(Emax - Emin)/1500; 

TLLR=(sqrt(-1))*(TLL+TRR)/2;  
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for k=1:1501 

  for n=1:l 

      for m=1:l 

          if n==m 

              E91(n,m)=Emin+(k-1)*Eh; 

          else 

              E91(n,m)=0; 

          end 

      end 

  end 

IGr=(E91-x+TLLR);  

IGa=(E91-x-TLLR);  

Gr=inv(IGr);    

Ga=inv(IGa);   

T(k)=trace(Gr*TLL*Ga*TRR);  

T(k)=real(T(k)); 

end 

TK=300;     

BZ=0.00008625; 

G=.077; 

V=zeros(80); 

V(1)=0.25; 

C=zeros(80); 

 

 

for r=1:80  

    if r>=2 

    V(r)=V(r-1)+0.25; 

    end 

    VV=V(r);     

for k=1:1500           

            Ek=Emin+(k-1)*Eh; 

            a=exp((Ek-(VV/2))/(BZ*TK)); 

            b=exp((Ek+(VV/2))/(BZ*TK)); 

            f=-(1/(b+1))+(1/(a+1)); 

if k==1 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k==1500 

            C(r)=C(r)+(Eh/3)*(T(k))*f*G; 

elseif k>1 && k<1500 

         if mod(k,2)==0 

            C(r)=C(r)+4*(Eh/3)*(T(k))*f*G; 

         else 

            C(r)=C(r)+2*(Eh/3)*(T(k))*f*G; 

         end 

end 

end 

end 

subplot (2,2,1),plot(V,C,'b');     % Graph of Current as a function of Voltage 
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end 

xlabel('Voltage (V) '); 

ylabel('Current (mA) '); 

clear ALL 

clear E91 

clear TLLR 

end 

clear EE 

clear ALL 

 

 

 

 

Appendix A.2: kp Model 

 

We describe the QD within k.p model. The corresponding Hamiltonian includes the states of one 

conduction band and three valence bands. To find the eigenenergies and eigenfunctions of k.p Hamiltonian 

we use Nextnano software package. This package calculates the electronic and optoelectronic properties of 

semiconductor nanostructures. The geometric and Hamiltonian parameters, used in the simulations of the 

quantum dots, are shown in Tables A.2.1-A.2.3. Tables A.2.1 and A.2.2 list the sizes of the quantum dot 

system, which include the sizes of the wetting layers, and geometric orientation of the quantum dot, while 

the Table A.2.3 shows the parameters of 8-band kp Hamiltonian.   

 
TABLE A.2.1. Pyramidal quantum dots dimensions. Base is a square with equal width and length. Height is always 1/3 

the base width. 

 
 

TABLE A.2.2. Parameters of InxGa1_xAs pyramidal quantum dots. 
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TABLE A.2.3. Parameters of the 8x8 kp model. The interpolation equation for all parameters is given by p[x]= p[0](1-x) + 

p[1]x- bow_p × x(1 – x). 

 
To find the intraband optical transitions within the valence band we calculate 20 valence, i.e., hole, 

eigenstates and then find the optical transitions between these states. The optical transitions (absorption) in 

such system are allowed only at a finite p-doping of the quantum dot system. Such p-doping introduces a 

finite number of holes into the system. We assume that the hole concentration is low enough, so that each 

quantum dot is occupied by one hole only. In this case we do no need to take into account interaction 

between the holes and at low temperature. Thus only the ground hole state, �̂�0(𝑟), of the valence band is 

occupied, where 𝑟 is a 3D coordinate vector. Then the absorption spectrum is determined by the intensities 

of optical transitions between the ground state, �̂�0(𝑟), and the excited hole states, �̂�𝑓(𝑟). Within the 8 band 

k.p model, each wavefunction, �̂�𝑖(𝑟),  has 8 components, �̂�𝑖(𝑟) = (𝜓𝑖,1, … , 𝜓𝑖,8),  where the components 

determine the expansion coefficients in the original basis of the Bloch wavefunctions, 𝑢𝑘(𝑟), where 𝑘 =
1 … 8. Then the wavefunction of a hole in the 8 band k.p model has the following form  

                                 Ψ𝑖(𝑟) = ∑ 𝜓𝑖,𝑘(𝑟) 𝑢𝑘(𝑟)8
𝑘=1 ,              (A.2.1) 

With the calculated numerically hole wavefunctions, we can find the intensity of optical transition, 

i.e. intensity of optical absorption, from initial ground state, Ψ0(𝑟), with energy 𝐸0 to the final excited state, 

Ψ𝑓(𝑟), with energy 𝐸𝑓. The intensity of the transition has the following form 

 

 for x and z polarized light, respectively. Here 𝑧-direction is the growth direction. The frequency 

corresponding to such transition is 𝜔𝑓 = (𝐸𝑓 − 𝐸0)/ℏ. Equations (A.2.2) and (A.2.3) determine the discrete 

optical absorption spectra. Below for each absorption peak we introduce the finite Gaussian broadening 

with the width of 3 meV. The absorption spectra is also characterized by the total intensity 𝐼(𝑠) = ∑ 𝐼𝑓
(𝑠)

𝑓 , 

𝑠 = 𝑥, 𝑧, and the first moment, 𝜔𝑎𝑣
(𝑠)

= ∑ 𝜔𝑓𝐼𝑓
(𝑠)

/𝐼(𝑠)
𝑓 , 𝑠 = 𝑥, 𝑧 and the second moment 𝑤 =

√∑(𝜔𝑓−𝜔𝑎𝑣
(𝑠)

)
2

𝐼𝑓
(𝑠)

𝐼(𝑠)  

Sample FORTRAN Program for Calculating Intensity. 

PROGRAM COMPONENT1  ! Code to calculate sum of the real components of the Amplitudes of the 

wave functions. 

        REAL M1_REAL(20,9025),RM(20,3059),SUMR(19),X(19) 

        INTEGER N,M,R,J 

        DO M=1,19 

𝐼𝑓
(𝑥)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑥 Ψ𝑓(𝑟)|

2
 , (A.2.2) 

𝐼𝑓
(𝑧)

(𝜔𝑓) = |∫ 𝑑𝑟 Ψ0
∗(𝑟) 𝑧 Ψ𝑓(𝑟)|

2
 , (A.2.3) 
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        SUMR(M)=0.0 

        END DO         

        OPEN(UNIT=11,FILE="wf_amplitude_real_dot_gamma_1_0000_0001.DAT") 

        READ(11,*)(M1_REAL(1,N),N=1,9025) 

        OPEN(UNIT=12,FILE="wf_amplitude_real_dot_gamma_1_0000_0002.DAT") 

        READ(12,*)(M1_REAL(2,N),N=1,9025) 

        OPEN(UNIT=13,FILE="wf_amplitude_real_dot_gamma_1_0000_0003.DAT") 

        READ(13,*)(M1_REAL(3,N),N=1,9025) 

        OPEN(UNIT=14,FILE="wf_amplitude_real_dot_gamma_1_0000_0004.DAT") 

        READ(14,*)(M1_REAL(4,N),N=1,9025) 

        OPEN(UNIT=15,FILE="wf_amplitude_real_dot_gamma_1_0000_0005.DAT") 

        READ(15,*)(M1_REAL(5,N),N=1,9025) 

        OPEN(UNIT=16,FILE="wf_amplitude_real_dot_gamma_1_0000_0006.DAT") 

        READ(16,*)(M1_REAL(6,N),N=1,9025) 

        OPEN(UNIT=17,FILE="wf_amplitude_real_dot_gamma_1_0000_0007.DAT") 

        READ(17,*)(M1_REAL(7,N),N=1,9025) 

        OPEN(UNIT=18,FILE="wf_amplitude_real_dot_gamma_1_0000_0008.DAT") 

        READ(18,*)(M1_REAL(8,N),N=1,9025) 

        OPEN(UNIT=19,FILE="wf_amplitude_real_dot_gamma_1_0000_0009.DAT") 

        READ(19,*)(M1_REAL(9,N),N=1,9025) 

        OPEN(UNIT=20,FILE="wf_amplitude_real_dot_gamma_1_0000_0010.DAT") 

        READ(20,*)(M1_REAL(10,N),N=1,9025) 

        OPEN(UNIT=21,FILE="wf_amplitude_real_dot_gamma_1_0000_0011.DAT") 

        READ(21,*)(M1_REAL(11,N),N=1,9025) 

        OPEN(UNIT=22,FILE="wf_amplitude_real_dot_gamma_1_0000_0012.DAT") 

        READ(22,*)(M1_REAL(12,N),N=1,9025) 

        OPEN(UNIT=23,FILE="wf_amplitude_real_dot_gamma_1_0000_0013.DAT") 

        READ(23,*)(M1_REAL(13,N),N=1,9025) 

        OPEN(UNIT=24,FILE="wf_amplitude_real_dot_gamma_1_0000_0014.DAT") 

        READ(24,*)(M1_REAL(14,N),N=1,9025) 

        OPEN(UNIT=25,FILE="wf_amplitude_real_dot_gamma_1_0000_0015.DAT") 

        READ(25,*)(M1_REAL(15,N),N=1,9025) 

        OPEN(UNIT=26,FILE="wf_amplitude_real_dot_gamma_1_0000_0016.DAT") 

        READ(26,*)(M1_REAL(16,N),N=1,9025) 

        OPEN(UNIT=27,FILE="wf_amplitude_real_dot_gamma_1_0000_0017.DAT") 

        READ(27,*)(M1_REAL(17,N),N=1,9025) 

        OPEN(UNIT=28,FILE="wf_amplitude_real_dot_gamma_1_0000_0018.DAT") 

        READ(28,*)(M1_REAL(18,N),N=1,9025) 

        OPEN(UNIT=29,FILE="wf_amplitude_real_dot_gamma_1_0000_0019.DAT") 

        READ(29,*)(M1_REAL(19,N),N=1,9025) 

        OPEN(UNIT=30,FILE="wf_amplitude_real_dot_gamma_1_0000_0020.DAT") 

        READ(30,*)(M1_REAL(20,N),N=1,9025) 

        DO N=11,30 

        CLOSE(N) 

        END DO 

        DO M=1,20 

        DO N=1,3059 

         RM(M,N)=M1_REAL(M,N) 

        END DO 

        END DO   
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       DO M=1,20 

        DO N=1,5966 

         M1_REAL(M,N)=M1_REAL(M,N+3059)          

        END DO 

        END DO 

        DO M=1,20 

        DO N=1,3059 

         M1_REAL(M,N+5966)=RM(M,N)          

        END DO 

        END DO 

        OPEN(UNIT=31,FILE="wf_amplitude_real_dot_gamma_1_0000_0001.COORD") 

         READ(31,*)(X(M),M=1,19) 

        CLOSE(31) 

        DO 30 N=1,19   

        DO 20 R=1,9025,19 

           J=R 

        DO 10 M=1,19          

        SUMR(N)=(M1_REAL(20,J)*M1_REAL(20-N,J))*X(M)+SUMR(N) 

             J=J+1                  

   10   CONTINUE        

   20   CONTINUE 

   30   CONTINUE 

         OPEN(UNIT=32,FILE="SUMXREAL.TXT") 

         DO N=1,19 

         WRITE(32,*) SUMR(N) 

         END DO 

        END PROGRAM COMPONENT1 

 

 

PROGRAM XINTENSITY             !Calculates the X-Intensity 

         REAL*8 SUMR(19),TOTR(19),I(19),E(19),MU,INC,DE(200),X(200),Y, 

REAL*8 DW_AVR, B,AVRGE,WAVR,ITOT,DU 

       INTEGER N,M 

         CHARACTER PYRAMIDSIZE*20       

         MU=0.0 

         DU=0.0 

         AVRGE=0.0 

         WAVR=0.0 

         ITOT=0.0 

         DW_AVR=0.0 

         PYRAMIDSIZE="X_W5_H1.67_6_BOTTOM" 

         DO 10 N=1,19 

           TOTR(N)=0.0                      !Initializtion of Real values array 

        10  CONTINUE 

         OPEN(UNIT=10,FILE="SUMXREAL.TXT") 

         READ(10,*)(SUMR(N),N=1,19)          

         CLOSE(10) 

                      DO 20 N=1,19            

     TOTR(N)=SUMR(N)+TOTR(N)     

     20  CONTINUE   
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         DO 40 N=1,19            

         I(N)=TOTR(N)*TOTR(N) 

     40  CONTINUE 

     OPEN(UNIT=12,FILE="ENERGY.TXT") 

         READ(12,*)(E(N),N=1,19) 

         CLOSE(12) 

       DO 50 N=1,19 

       IF(MU.LE.I(N))THEN  !MU IS A DUMMY VARIABLE INITIALIZED TO ZERO 

            MU=I(N) 

           ENDIF 

     50  CONTINUE 

     OPEN(UNIT=13,FILE="ABSOLUTEXINTENSITY1.DAT") 

     DO 45 N=1,19 

         WRITE(13,*) E(N),I(N) 

     45  CONTINUE 

         CLOSE(13) 

    OPEN(UNIT=20,FILE="ARELATIVEINTENSITY.DAT") 

         DO 61 N=1,19 

         WRITE(20,*) E(N), I(N)/MU 

     61  CONTINUE      

         CLOSE(20) 

    INC=(E(19)-0.0)/200.0 

         DO 52 N=1,19 

           AVRGE=E(N)+AVRGE 

     52  CONTINUE       

         AVRGE=AVRGE/19.0 

         DO 55 M=1,200 

           DE(M)=0.0 

           X(M)=0.0 

     55  CONTINUE       

         OPEN(UNIT=14,FILE="AXLORINTENSITY.DAT") 

     DO 60 M=1,200 

           X(M)=M*INC 

            DO 70 N=1,19 

              Y=I(N) 

              !A=Y*Y 

              B=(X(M)-E(N))*(X(M)-E(N))/(AVRGE*AVRGE) 

            DE(M)=DE(M)+ (Y/(0.001+B)) 

     70  CONTINUE 

      WAVR=WAVR+X(M)*DE(M) 

         ITOT=ITOT+DE(M) 

     60  CONTINUE  

         DO 80 N=1,200 

 IF(DU.LE.DE(N))THEN  !MU IS A DUMMY VARIABLE INITIALIZED TO ZERO 

            DU=DE(N) 

     ENDIF 

     80  CONTINUE 

         WAVR=WAVR/ITOT 

         DO 90 M=1,200 

         WRITE(14,*)X(M),DE(M)/DU 
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         DW_AVR=DW_AVR+((X(M)-WAVR)**2)*DE(M) 

     90  CONTINUE 

         CLOSE(14) 

         DW_AVR=SQRT(DW_AVR/ITOT) 

         OPEN(UNIT=15,FILE="C:\Users 

\Documents\FIRSTMOMENT\AVERAGEFREQ.DAT",POSITION='APPEND') 

         WRITE(15,*)PYRAMIDSIZE,WAVR,DW_AVR      

         CLOSE(15) 

         END PROGRAM XINTENSITY 
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