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TOPOLOGICAL PROPERTIES OF J-ORTHOGONAL MATRICES

by

SEYEDEH SARA MOOSAVI MOTLAGHIAN

Under the Direction of Frank J. Hall

ABSTRACT

Let Mn be the set of all n×n real matrices. A matrix J ∈Mn is said to be a signature

matrix if J is diagonal and its diagonal entries are ±1. If J is a signature matrix, a nonsingu-

lar matrix A ∈Mn is said to be a J-orthogonal matrix if A>JA = J . Let Ωn be the set of all

n× n, J-orthogonal matrices. Part 2 of this dissertation includes a straightforward proof of

the known topological result that for J 6= ±I, the set of all n× n J-orthogonal matrices has

four connected components. An important tool in this analysis is Proposition 3.2.1 on the

characterization of J-orthogonal matrices in the paper “J-orthogonal matrices: properties



and generation”, SIAM Review 45 (3) (2003), 504–519, by Higham. The expression of the

four components allows formulation of some further noteworthy properties. For example, it

is shown that the four components are homeomorphic and group isomorphic, and that each

component has exactly 2n−2 signature matrices. In Part 3 of this dissertation, the standard

linear operators T : Mn → Mn that strongly preserve J-orthogonal matrices, i.e. T (A) is

J-orthogonal if and only if A is J-orthogonal are characterized. The material in Part 2 of

this dissertation is contained in the article “Topological properties of J-orthogonal matrices”,

Linear and Multilinear Algebra, 66 (2018), 2524-2533, by S. Motlaghian, A. Armandnrjad,

F. J. Hall. The material in Part 3 of this dissertation is contained in the article “Topo-

logical properties of J-orthogonal matrices, Part II”, Linear and Multilinear Algebra, doi:

10.1080/03081087.2019.1601667 by S. Motlaghian, A. Armandnrjad, F. J. Hall. In Part 4 of

this dissertation some connections between J-orthogonal and G-matrices are investigated.

INDEX WORDS: Signature matrix, Signed permutation matrix, Linear preservers, J-
orthogonal matrix, G-matrix.
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PART 1

INTRODUCTION

Let Mn be the set of all n×n real matrices. A matrix J ∈Mn is said to be a signature

matrix if J is diagonal and its diagonal entries are ±1. As in [1], if J is a signature matrix,

a nonsingular matrix A ∈ Mn is said to be a J-orthogonal matrix if A>JA = J . Some

properties of J-orthogonal matrices were investigated in [1]. J-orthogonal matrices were

studied for example in the context of the group theory [2] or generalized eigenvalue problems

[3]. Numerical properties of several orthogonalization techniques with respect to symmetric

indefinite bilinear forms have been analyzed recently in . Although J-orthogonality has many

numerical connections, the recent paper [4] has more of a combinatorial matrix theory point

of view, in particular, the analysis of sign patterns of J-orthogonal matrices.

The following conventions will also be fixed throughout this dissertation:

The set of all real numbers is denoted as usual by R; for A ∈Mn, σ(A) and S(A) are the set

of eigenvalues of A and the set of singular values of A respectively; Eij is the n× n matrix

whose (i, j) entry is one and all other entries are zero; On is the set of all n× n orthogonal

matrices; O+
n is the set of all n × n orthogonal matrices with determinant 1; O−n is the set

of all n × n orthogonal matrices with determinant −1; the matrix norm used in this paper

is the spectral norm ‖ ‖2; Sn is the set of all n× n signature matrices; SPn is the set of all

n × n signed permutation matrices, the n × n matrices with exactly one nonzero entry ±1

in each row and in each column; for J ∈ Sn,

Γn(J) = {A ∈Mn : A>JA = J};

Ωn is the set of all n×n J-orthogonal matrices for all possible n×n matrices J = diag(±1),

that is,

Ωn = ∪J∈SnΓn(J).
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We consider the set of all n× n J-orthogonal matrices and in Part 2 we first find some

interesting properties of these matrices. For example, we show that

Sn = ∩J∈SnΓn(J).

We also find that for P ∈ Mn, P ∈ SPn if and only if P>SnP = Sn. The fact that for

J 6= ±I, Γn(J) has four connected components is known. However, through the use of a

characterization of J-orthogonal matrices contained in the article [1] by N. Higham, we give

a straightforward matrix analysis proof of this topological result. We also show that Ωn

has two connected components. Our expression of the four components allows us to then

formulate some interesting by-products. For example, we show that the four components are

homeomorphic and group isomorphic. Also for J 6= ±I, we prove that every component of

Γn(J) has exactly 2n−2 signature matrices. We also show that for non-scalar matrices J1 and

J2, to determine whether Γn(J1) = Γn(J2), it is sufficient to know whether they contain the

same orthogonal matrices, or whether they contain the same matrices with spectral norm 1.

For A ∈Mn, the linear operator T : Mn →Mn defined by T (X) = A>XA or T (X) =

A>X>A is called a standard linear operator on Mn. In Part 3 we show that a standard linear

operator T : Mn →Mn strongly preserves the set of J-orthogonal matrices if and only if A

is a signed permutation matrix. In fact we show that for a (necessarily nonsingular) matrix

B the following conditions are equivalent:

(i) B ∈ SPn,

(ii) B>SnB = Sn,

(iii) B>ΩnB = Ωn.

The material in Part 2 of this dissertation is contained in the article “Topological prop-

erties of J-orthogonal matrices”, Linear and Multilinear Algebra, 66 (2018), 2524-2533, by S.

Motlaghian, A. Armandnrjad, F. J. Hall. The material in Part 3 of this dissertation is con-

tained in the article “Topological properties of J-orthogonal matrices, Part II”, Linear and
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Multilinear Algebra, doi: 10.1080/03081087.2019.1601667 by S. Motlaghian, A. Armandnr-

jad, F. J. Hall. In Part 4 of this dissertation some connections between J-orthogonal and

G-matrices are investigated.
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PART 2

TOPOLOGICAL PROPERTIES OF J-ORTHOGONAL MATRICES I

2.1 Introduction

Let Mn be the set of all n×n real matrices. A matrix J ∈Mn is said to be a signature

matrix if J is diagonal and its diagonal entries are ±1. As in [1], if J is a signature matrix,

a nonsingular matrix A ∈ Mn is said to be a J-orthogonal matrix if A>JA = J . Some

properties of J-orthogonal matrices were investigated in [1]. J-orthogonal matrices were

studied for example in the context of the group theory [2] or generalized eigenvalue problems

[3]. Numerical properties of several orthogonalization techniques with respect to symmetric

indefinite bilinear forms have been analyzed recently in [5]. Although J-orthogonality has

many numerical connections, the recent paper [4] has more of a combinatorial matrix theory

point of view, in particular, the analysis of sign patterns of J-orthogonal matrices.

The following conventions will also be fixed throughout the paper:

The set of all real numbers is denoted as usual by R; for A ∈Mn, σ(A) is the spectrum of

A, the set of eigenvalues of A; On is the set of all n× n orthogonal matrices; O+
n is the set

of all n × n orthogonal matrices with determinant 1; O−n is the set of all n × n orthogonal

matrices with determinant −1; Sn is the set of all n× n signature matrices; SPn is the set

of all n× n signed permutation matrices, the n× n matrices with exactly one nonzero entry

±1 in each row and in each column; for J ∈ Sn,

Γn(J) = {A ∈Mn : A>JA = J};

Ωn is the set of all n×n J-orthogonal matrices for all possible n×n matrices J = diag(±1),

that is,

Ωn = ∪J∈SnΓn(J).
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In this paper we consider the set of all n × n J-orthogonal matrices and we first find

some interesting properties of these matrices. For example, we show that

Sn = ∩J∈SnΓn(J).

We also find that for P ∈ Mn, P ∈ SPn if and only if P>SnP = Sn. The fact that for

J 6= ±I, Γn(J) has four connected components is known. However, through the use of a

characterization of J-orthogonal matrices contained in the article [1] by N. Higham, we give

a straightforward matrix analysis proof of this topological result. We also show that Ωn

has two connected components. Our expression of the four components allows us to then

formulate some interesting by-products. For example, we show that the four components

are homeomorphic and group isomorphic. Also for J 6= ±I, we prove that every component

of Γn(J) has exactly 2n−2 signature matrices. In the paper, we also show that for non-scalar

matrices J1 and J2, to determine whether Γn(J1) = Γn(J2), it is sufficient to know whether

they contain the same orthogonal matrices, or whether they contain the same matrices with

spectral norm 1.

2.2 Some properties of J-orthogonal matrices

In this section we discuss some general properties of J-orthogonal matrices. These

include algebraic and topological properties of Γn(J) and Ωn.

Proposition 2.2.1. The following statements are true.

(i) Γn(J) is a Lie group for every J ∈ Sn.

(ii) Mn = Span(Ωn) = Span(SPn).

(iii) For every symmetric matrix norm ‖ ‖ (‖A‖ = ‖A>‖), ‖A‖ ≥ 1 for all A ∈ Ωn.

(iv) Sn = ∩J∈SnΓn(J).
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Proof. The fact that Γn(J) is a Lie group is contained for example in [6, page 7]. To prove

(ii), for every 1 ≤ i, j ≤ n let Pij be a permutation matrix with 1 in the (i, j) position and

Qij be the signed permutation matrix such that Pij +Qij = 2Eij. So, Eij = 1
2
(Pij +Qij) and

hence Mn = Span(SPn). Then it is clear that Mn = Span(Ωn), since SPn ⊆ Ωn. To prove

(iii), assume that A ∈ Ωn, so that there exists a signature matrix J such that A>JA = J .

Then

‖A‖‖J‖‖A>‖ ≥ ‖J‖,

and hence ‖A‖ ≥ 1. To prove (iv), since diagonal matrices commute under multiplication,

we have that Sn ⊆ ∩J∈SnΓn(J). Let A = (aij) ∈ ∩J∈SnΓn(J). Then A ∈ Γn(I) (i.e. A

is an orthogonal matrix) and hence the Euclidean norm of every row and every column of

A is 1. Now consider the signature matrix J = (−1) ⊕ In−1. Then A>JA = J and hence

a211 = 1. Since the Euclidean norm of the first row and the first column of A is 1, we have

a12 = · · · = a1n = a21 = · · · = an1 = 0. Similarly, for every 2 ≤ i ≤ n, we can show that

a2ii = 1 and aij = aji = 0 for all j 6= i. Therefore A is a signature matrix.

The following proposition gives an equivalent condition for a matrix to be a J-orthogonal

matrix.

Proposition 2.2.2. Let A ∈Mn. Then A ∈ Ωn if and only if there exists a signature matrix

J such that x>(A>JA)x = x>Jx for all x ∈ Rn.

Proof. If A ∈ Ωn then for some J ∈ Sn, A ∈ Γn(J), so that A>JA = J . Hence x>(A>JA)x =

x>Jx for all x ∈ Rn. Conversely, assume that there exists a signature matrix J such that

x>(A>JA)x = x>Jx for all x ∈ Rn. Then x>(A>JA − J)x = 0 for all x ∈ Rn. Since

A>JA− J is Hermitian, A>JA = J and hence A is J-orthogonal, so that A ∈ Ωn.

Remark 2.2.3. It is known that in any Lie group G, the connected component H containing

the identity also forms a Lie group. Furthermore, H is a normal subgroup of G and G/H

is a discrete group [6]. In Section 3 we will specifically exhibit these facts for the Lie group

Γn(J).
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The following example, the Lorentz group, has particular interest in physics, [6, page

7].

Example 2.2.4. Let J = 1⊕ (−I3). Then

Γ4(J) = {A ∈M4 : d(Ax) = d(x), ∀ x ∈ R4},

where d is the space-time metric d(x1, x2, x3, x4) = x21 − x22 − x23 − x24.

The following proposition shows that every line in Mn passing from the origin, either

does not meet Ωn or meets Ωn at exactly two points. Letting Tn(ε) be the circle {A ∈Mn :

‖A‖ = ε} we also show that when ε ≥ ‖I‖, Tn(ε) ∩ Γn(J) 6= ∅.

Proposition 2.2.5. Let J ∈ Sn. Then the following hold:

(i) For every A ∈Mn, if LA = {rA : r ∈ R}, then LA ∩ Ωn = ∅ or LA ∩ Ωn = {B,−B} for

some B ∈ Ωn.

(ii) If n ≥ 2 and J ∈ Sn with J 6= ±I, then for every ε ≥ ‖I‖, Tn(ε)∩Γn(J) 6= ∅, where ‖ ‖

is any norm on Mn.

Proof. (i). If LA ∩ Ωn = ∅, there is nothing to prove. So assume that LA ∩ Ωn 6= ∅, and

hence there exists some B ∈ LA ∩ Ωn. Then −B ∈ LA ∩ Ωn and so {B,−B} ⊆ LA ∩ Ωn. If

C ∈ LA∩Ωn, then C = rB for some r ∈ R. Hence there exist J1, J2 ∈ Sn such that B>J1B =

J1 and (rB>)J2(rB) = J2. These imply that B = J−11 B−>J1 and r2B = J−12 B−>J2 and

hence σ(B) = r2σ(B). Since σ(B) 6= {0}, r2 = 1, which implies that r = ±1 and hence

LA ∩ Ωn ⊆ {B,−B}.

(ii). Without loss of generality we assume that the first and the second diagonal entries of

J are 1 and −1 respectively (if the 1 and the −1 are in the ith and jth diagonal positions

respectively, the construction is similar). For every t ∈ [0,∞),

Ct =

 √1 + t2 t

t
√

1 + t2

⊕ In−2
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is a J-orthogonal matrix. So we can choose t ∈ [0,∞) such that ‖Ct‖ = ε.

The following example shows that P>ΩnP 6= Ωn for some orthogonal matrix P .

Example 2.2.6. Let P =
√
2
2

 1 1

1 −1

⊕In−2. For J =

 1 0

0 −1

⊕In−2, a J-orthogonal

matrix is A =

 √2 1

1
√

2

⊕ In−2. Now,

P>AP =

 1 +
√

2 0

0 −1 +
√

2

⊕ In−2,
which is not J-orthogonal for any J ∈ Sn.

However, for matrices P ∈ SPn, the following holds.

Theorem 2.2.7. Let P ∈ Mn. Then P ∈ SPn if and only if P>SnP = Sn. Furthermore,

if P ∈ SPn, then P>ΩnP = Ωn.

Proof. If P ∈ SPn, changing the signs of the rows of P is equivalent to changing the signs

of the columns of P , that is SnP = PSn, and hence P>SnP = Sn. To prove the converse,

we use induction on n. If n = 1, the proof is clear. Let n > 1, P ∈Mn, and P>SnP = Sn.

By assumption, P>IP is a signature matrix and by the Sylvester law of inertia, PIP> = I,

which implies that P is an orthogonal matrix. Let J1 = (−1) ⊕ In−1. Then there exists

J2 ∈ Sn such that P>J1P = J2. By again using the Sylvester law of inertia, J2 has exactly

one −1 entry and without loss of generality we may assume that this −1 is in the (1, 1)-

position, so that J1 = J2. Since P is an orthogonal matrix, PJ1 = J1P which implies that

P = (±1) ⊕ Q for some Q ∈ Mn−1. Since P>JP is a signature matrix for every J ∈ Sn,

we can obtain that Q>ĴQ is a signature matrix, for every Ĵ ∈ Sn−1. Now, by the induction

assumption, Q ∈ SPn−1. Thus, P ∈ SPn, which completes the proof of the if and only if.

Finally, since for J ∈ Sn and P ∈ SPn, A>JA = J implies that

(P>AP )>(P>JP )(P>AP ) = (P>JP ),
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the last statement of the theorem is seen to be true.

An interesting open question is the following: if P>ΩnP = Ωn, is it necessarily the case

that P ∈ SPn. If the answer is yes, then topologically this means the following: if the linear

transformation X 7→ P>XP maps Ωn to Ωn, then the transformation must map the special

points Sn to Sn. Although geometrically this appears to be true, it is a nontrivial question.

When n = 2, the result is true, see Example 2.3.7. However, for n > 2, it becomes much

more complicated.

2.3 Connected components of J-orthogonal matrices

The following two propositions are well known results for orthogonal and J-orthogonal

matrices.

Proposition 2.3.1. [7, Theorem 3.67] For every n ≥ 1, On has two connected components,

O+
n and O−n .

The following characterization of J-orthogonal matrices is contained in the article [1] by

N. Higham. As stated in [1], this decomposition was first derived in [8]; it is also mentioned

in [1] that in a preliminary version of [9] (which was published later) the authors treat this

decomposition in more depth.

Proposition 2.3.2. [1, Theorem 3.2 (hyperbolic CS decomposition)] Let q ≥ p and J =

Ip ⊕ (−Iq). Then every A ∈ Γn(J) is of the form

(U1 ⊕ U2)(

 C −S

−S C

⊕ Iq−p)(V1 ⊕ V2), (2.1)

where U1, V1 ∈ Op, U2, V2 ∈ Oq and C, S ∈Mp are nonnegative diagonal matrices such

that C2 − S2 = I. Also, any matrix of the form (3.1) is J-orthogonal.

Corollary 2.3.3. Let q ≥ p and J = Ip ⊕ (−Iq). Then A ∈ Γn(J) if and only if A is of the

form

(U1 ⊕ U2)(

 diag(
√

1 + b2
1, . . . ,

√
1 + b2

p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b2
1, . . . ,

√
1 + b2

p)

⊕ Iq−p)(V1 ⊕ V2), (2.2)
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where U1, V1 ∈ Op, U2, V2 ∈ Oq, and b1, . . . , bp ∈ R.

Proof. The proof of the necessity follows from Proposition 3.2.1. To prove the converse,

observe that by using a suitable signature matrix D, we have

D
(

diag(
√

1 + b21, . . . ,
√

1 + b2p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b21, . . . ,
√

1 + b2p)

)
D =

(
C −S

−S C

)
,

where C = diag(
√

1 + b21, . . . ,
√

1 + b2p) and S = diag(|b1|, . . . , |bp|). Hence, every matrix of

the form (2.2) is of the form (3.1).

Letting Tn be the set of n × n matrices A with spectral norm ‖A‖2 equal to one, we

have the following result.

Corollary 2.3.4. For every n, On = Ωn ∩ Tn.

Proof. If A ∈ On, then clearly A ∈ Ωn and ‖A‖2 = 1. On the other hand, let A ∈ Ωn. By

the use of Corollary 2.3.3,

A = (U1 ⊕ U2)(
(

diag(
√

1 + b21, . . . ,
√

1 + b2p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b21, . . . ,
√

1 + b2p)

)
⊕ Iq−p)(V1 ⊕ V2), for some U1, V1 ∈

Op, U2, V2 ∈ Oq, and b1, . . . , bp ∈ R. If ‖A‖2 = 1, then

‖
(

diag(
√

1 + b21, . . . ,
√

1 + b2p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b21, . . . ,
√

1 + b2p)

)
‖2 ≤ 1.

Therefore ‖(
√

1 + b2j , bj)‖2 ≤ 1 for every j (1 ≤ j ≤ p) and hence b1 = · · · = bp = 0. This

implies that A is orthogonal.

The fact that for J 6= ±I, Γn(J) has four connected components is known, see [10, page

345] (in this book Γn(J) is referred to as an indefinite orthogonal group). However, we can

give a straightforward matrix analysis proof of this topological result. We also show that Ωn

has two connected components.

Theorem 2.3.5. The following assertions hold:

(i) Let J ∈ Sn. If J 6= ±I then Γn(J) has four connected components.
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(ii) Ωn has two connected components.

Proof. (i). Let p and q be the numbers of +1 and −1 diagonal entries of J respectively. If

p > q, we use the fact that Γn(J) = Γn(−J), and so we can assume that q ≥ p. Since for

every n× n permutation matrix P we have

Γn(J) = P (Γn(P>JP ))P>,

without loss of generality we may assume that q ≥ p and J = Ip ⊕ (−Iq). The function

ϕ : Rp →Mn defined by

ϕ(b1, . . . , bp) =
(

diag(
√

1 + b21, . . . ,
√

1 + b2p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b21, . . . ,
√

1 + b2p)

)
⊕ Iq−p,

is continuous and hence {ϕ(b1, . . . , bp) : b1, . . . , bp ∈ R} is a connected set in Mn. From

Proposition 4.3.1, we have Op = O+
p ∪O−p and Oq = O+

q ∪O−q . So we have 16 possible cases

to choose U1, V1 ∈ Op, U2, V2 ∈ Oq. Then by Corollary 2.3.3, Γn(J) = ∪16i=1Φi where

Φ1 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O+
p , U2, V2 ∈ O+

q , b ∈ Rp},

Φ2 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O+
p , U2, V2 ∈ O−q , b ∈ Rp},

Φ3 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O−p , U2, V2 ∈ O+
q , b ∈ Rp},

Φ4 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O−p , U2, V2 ∈ O−q , b ∈ Rp},

——————–

Φ5 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O+
p , U2 ∈ O+

q , V2 ∈ O−q , b ∈ Rp},

Φ6 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O+
p , U2 ∈ O−q , V2 ∈ O+

q , b ∈ Rp},

Φ7 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O−p , U2 ∈ O+
q , V2 ∈ O−q , b ∈ Rp},
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Φ8 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1, V1 ∈ O−p , U2 ∈ O−q , V2 ∈ O+
q , b ∈ Rp},

——————–

Φ9 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O+
p , V1 ∈ O−p , U2 ∈ O+

q , V2 ∈ O−q , b ∈ Rp},

Φ10 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O+
p , V1 ∈ O−p , U2 ∈ O−q , V2 ∈ O+

q , b ∈ Rp},

Φ11 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O−p , V1 ∈ O+
p , U2 ∈ O+

q , V2 ∈ O−q , b ∈ Rp},

Φ12 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O−p , V1 ∈ O+
p , U2 ∈ O−q , V2 ∈ O+

q , b ∈ Rp},

——————–

Φ13 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O+
p , V1 ∈ O−p , U2, V2 ∈ O+

q , b ∈ Rp},

Φ14 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O+
p , V1 ∈ O−p , U2, V2 ∈ O−q , b ∈ Rp},

Φ15 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O−p , V1 ∈ O+
p , U2, V2 ∈ O+

q , b ∈ Rp},

Φ16 = {(U1 ⊕ U2)ϕ(b)(V1 ⊕ V2) : U1 ∈ O−p , V1 ∈ O+
p , U2, V2 ∈ O−q , b ∈ Rp}.

——————–

Since in each of the 16 cases,

{U1 ⊕ U2}, {ϕ(b)}, {V1 ⊕ V2}

are all connected, we have that for every i (1 ≤ i ≤ 16), Φi is a connected set. Let

C1 = ∪4i=1Φi, C2 = ∪8
i=5Φi, C3 = ∪12i=9Φi, C4 = ∪16i=13Φi.

Now,

In ∈ ∩4i=1Φi, In−1 ⊕ (−1) ∈ ∩8i=5Φi,
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(−1)⊕ In−2 ⊕ (−1) ∈ ∩12i=9Φi, (−1)⊕ In−1 ∈ ∩16i=13Φi.

So, C1, C2, C3 and C4 are connected sets. Then Γn(J) = ∪4i=1Ci has at most four connected

components. We show that C1, C2, C3 and C4 are mutually disjoint. Since the sign of the

determinant is constant on a connected set of nonsingular matrices, for every A ∈ C1 ∪ C3,

det(A) > 0 and for every A ∈ C2 ∪ C4, det(A) < 0. Hence, we have that C1 ∩ C2 = C1 ∩ C4 =

C2 ∩ C3 = C3 ∩ C4 = ∅. Assume if possible that A ∈ C1 ∩ C3; then by Proposition 3.2.1, there

exist orthogonal matrices U1, U
′
1, U2, U

′
2, V1, V

′
1 , V2, V

′
2 and diagonal matrices C,C

′
, S, S

′
such

that U1V1 ∈ O+
p , U

′
1V
′
1 ∈ O−p and

A = (U1 ⊕ U2)(
(

C −S

−S C

)
⊕ Iq−p)(V1 ⊕ V2)

= (U
′

1 ⊕ U
′

2)(
(

C
′

−S
′

−S
′

C
′

)
⊕ Iq−p)(V

′

1 ⊕ V
′

2 ).

By a simple multiplication we obtain that U1CV1 = U
′
1C
′
U
′
1 and hence det(C) = −det(C

′
)

which is a contradiction because det(C), det(C
′
) > 0. Therefore C1 ∩ C3 = ∅. Similarly we

can show that C2 ∩ C4 = ∅.

(ii). We know that for every J ∈ Sn, Sn ⊂ On∩Γn(J). Then by (i) and the use of Proposition

4.3.1, for every J ∈ Sn, On ∪ Γn(J) has two connected components C ′1 and C ′2 such that for

every A ∈ C ′1, det(A) > 0 and for every A ∈ C ′2, det(A) < 0. Since the sign of the determinant

is constant on a connected set of nonsingular matrices, Ωn = ∪J∈Sn(On ∪ Γn(J)) has two

connected components.

By Remark 2.2.3, C1, the connected component of Γn(J) containing the identity matrix

is a normal subgroup of Γn(J) and Γn(J)/C1 is a group isomorphic to the Klein four-group

[6]. The following proposition shows that for every i (2 ≤ i ≤ 4), there exists an operation

∗i such that (Ci, ∗i) is a group that is isomorphic to (C1, .).

Proposition 2.3.6. Let J ∈ Sn and J 6= ±I. Then for every i (2 ≤ i ≤ 4), the component

Ci of Γn(J) is homeomorphic and group isomorphic to C1.

Proof. Let Ci (1 ≤ i ≤ 4) be as in the proof of Theorem 2.3.5. We define the binary
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operations ∗i (2 ≤ i ≤ 4) on Ci as follows:

A ∗2 B = A(In−1 ⊕ (−1))B for all A,B ∈ C2,

A ∗3 B = A((−1)⊕ In−2 ⊕ (−1))B for all A,B ∈ C3,

A ∗4 B = A((−1)⊕ In−1)B for all A,B ∈ C4.

We just show that (C2, ∗2) is group isomorphic to (C1, .); the other cases are similar. Clearly,

∗2 is associative. Let A,B ∈ C2. Since C2 is connected and In−1 ⊕ (−1) ∈ C2, there exist

continuous functions f, g : [0, 1] → Γn(J) such that f(0) = A, g(0) = B, f(1) = g(1) =

In−1 ⊕ (−1). Define the continuous functions h, k : [0, 1]→ Γn(J) by

h(x) = f(x)(In−1 ⊕ (−1))g(x)

and

k(x) = f(x)A−1(In−1 ⊕ (−1))

respectively. Then h(0) = A ∗2 B, k(1) = (In−1⊕ (−1))A−1(In−1⊕ (−1)) and h(1) = k(0) =

In−1 ⊕ (−1). These imply that A ∗2 B ∈ C2 (i.e. C2 is closed under the operation ∗2) and

that

Ã := (In−1 ⊕ (−1))A−1(In−1 ⊕ (−1)) ∈ C2.

For every A ∈ C2, A ∗2 (In−1 ⊕ (−1)) = A and A ∗2 Ã = Ã ∗2 A = In−1 ⊕ (−1). Therefore

(C2, ∗2) is a group with In−1 ⊕ (−1) as the identity element.

For every A ∈ C2, define the continuous function l : [0, 1]→ Γn(J) by l(x) = f(x)(In−1⊕

(−1)) where f is as the above. Then l(0) = A(In−1 ⊕ (−1)) and l(1) = In, and hence

A(In−1⊕(−1)) ∈ C1. To complete the proof, just consider the homeomorphism ϕ : (C2, ∗2)→

(C1, .) defined by ϕ(A) = A(In−1 ⊕ (−1)), which also is a group isomorphism.

Example 2.3.7. Let J =

 1 0

0 −1

. With the notation used in Theorem 2.3.5, the
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components of Γ2(J) are as follows:

C1 = {
( √

1 + b2 b

b
√

1 + b2

)
: b ∈ R}, C2 = {

(
−
√

1 + b2 b

b −
√

1 + b2

)
: b ∈ R},

C3 = {
( √

1 + b2 b

−b −
√

1 + b2

)
: b ∈ R}, C4 = {

(
−
√

1 + b2 b

−b
√

1 + b2

)
: b ∈ R}. These components are

also mentioned in Exercise 7, page 24 of [6]. See the following pictures:

The following proposition shows that Sn splits equally between the components of Γn(J).

Proposition 2.3.8. Let J ∈ Sn and J 6= ±I. Then every component of Γn(J) has exactly

2n−2 signature matrices.

Proof. As in the proof of Theorem 2.3.5, we may assume that q ≥ p and J = Ip ⊕ (−Iq).

In fact, we show that for every i (1 ≤ i ≤ 16), Φi in the proof of Theorem 2.3.5 has 2n−2

signature matrices. In Φ1, put b1 = · · · = bp = 0, V1 = Ip and V2 = Iq; then

F1 := {U1 ⊕ U2 : U1 ∈ Sp, U2 ∈ Sq, det(U1) = det(U2) = 1} ⊂ Φ1.

Since F1 has 2n−2 elements, Φ1 has at least 2n−2 signature matrices. With a similar argument

we may show that for every i (2 ≤ i ≤ 16), Φi has at least 2n−2 signature matrices and hence

every component of Γn(J) has at least 2n−2 signature matrices. On the other hand, Γn(J)

has four components and Sn has 2n elements. This implies that every component of Γn(J)

has exactly 2n−2 signature matrices (and also each Φi has exactly 2n−2 signature matrices).

Lemma 2.3.9. Let J ∈ Sn. If J 6= ±I then On * Γn(J).
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Proof. Since J 6= ±I, by Theorem 2.3.5, Γn(J) has four connected components. Assume if

possible that On ⊆ Γn(J), so that Γn(J) = On ∪ Γn(J). As in the proof of Theorem 2.3.5,

On ∪ Γn(J) has two connected components, and then Γn(J) has two connected components

which is a contradiction. Therefore On * Γn(J).

Our final result shows that to determine whether Γn(J1) = Γn(J2), it is sufficient to

know whether they contain the same orthogonal matrices, or whether they contain the same

matrices with spectral norm 1.

Theorem 2.3.10. Let J1, J2 ∈ Sn. If J1 and J2 are non-scalar matrices then the following

conditions are equivalent.

(i) J1 = ±J2,

(ii) Γn(J1) = Γn(J2),

(iii) Γn(J1) ⊆ Γn(J2),

(iv) Γn(J2) ⊆ Γn(J1),

(v) On ∩ Γn(J1) ⊆ On ∩ Γn(J2),

(vi) On ∩ Γn(J2) ⊆ On ∩ Γn(J1),

(vii) On ∩ Γn(J1) = On ∩ Γn(J2)

(viii) Tn ∩ Γn(J1) ⊆ Tn ∩ Γn(J2),

(ix) Tn ∩ Γn(J2) ⊆ Tn ∩ Γn(J1),

(x) Tn ∩ Γn(J1) = Tn ∩ Γn(J2).

Proof. Clearly we have (i)→ (ii)→ (iii)→ (v), (i)→ (ii)→ (iv)→ (vi) and (ii)→ (vii).

By the use of Corollary 2.3.4, we have (v) ↔ (viii), (vi) ↔ (ix) and (vii) ↔ (x). So, it is

enough to show that (v) → (i) and (vi) → (i). For this purpose we show that ∼(i)→∼(v)

and ∼(i)→∼(vi).
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∼(i)→∼(v). Let p and q be the numbers of +1 and−1 diagonal entries of J1 respectively.

Since for every n × n permutation matrix P we have Γn(J1) = P (Γn(P>J1P ))P>, without

loss of generality, we may assume that J1 = Ip ⊕ (−Iq). Let J2 = K1 ⊕ K2 with K1 ∈ Sp

and K2 ∈ Sq. Since J2 6= ±I and J2 6= ±J1, we have that K1 6= ±Ip or K2 6= ±Iq. Without

loss of generality we may assume that K1 6= ±Ip (the other case is similar). By the use

of Lemma 2.3.9, Op * Γp(K1). Then there exists a Q ∈ Op such that Q /∈ Γp(K1). Let

A = Q ⊕ Iq. It is clear that A ∈ On ∩ Γn(J1). Assume if possible that A ∈ Γn(J2). Then

(Q⊕Iq)>(K1⊕K2)(Q⊕Iq) = K1⊕K2 and henceQ>K1Q = K1. This implies thatQ ∈ Γp(K1)

which is a contradiction. So A /∈ Γn(J2) and therefore On ∩ Γn(J1) * On ∩ Γn(J2).

To prove ∼(i)→∼(vi), it is enough to exchange J1 and J2 in ∼(i)→∼(v).
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PART 3

TOPOLOGICAL PROPERTIES OF J-ORTHOGONAL MATRICES II

3.1 Introduction

Let Mn be the set of all n×n real matrices. A matrix J ∈Mn is said to be a signature

matrix if J is diagonal and its diagonal entries are ±1. As in [1] and [11], if J is a signature

matrix, a nonsingular matrix B ∈ Mn is said to be a J-orthogonal matrix if B>JB = J .

Some properties of J-orthogonal matrices were investigated in [4], [1] and [11]. In this paper

some further interesting properties of these matrices are obtained.

The following conventions will also be fixed throughout the paper:

Eij is the n × n matrix whose (i, j) entry is one and all other entries are zero; On is the

set of all n × n orthogonal matrices; O+
n is the set of all n × n orthogonal matrices with

determinant 1; O−n is the set of all n× n orthogonal matrices with determinant -1; Pn is the

set of all n×n permutation matrices; Sn is the set of all n×n signature matrices; SPn is the

set of all n × n signed permutation matrices, the n × n matrices with exactly one nonzero

entry ±1 in each row and in each column; for J ∈ Sn, Γn(J) = {A ∈ Mn : A>JA = J};

Ωn is the set of all n × n J-orthogonal matrices, i.e. Ωn =
⋃
J∈Sn Γn(J); for A ∈Mn, σ(A)

and S(A) are the set of eigenvalues of A and the set of singular values of A respectively; the

matrix norm used in this paper is the spectral norm ‖ ‖2.

In [11], the following conditions were considered for a (necessarily nonsingular) matrix

B:

(i) B ∈ SPn,

(ii) B>SnB = Sn,

(iii) B>ΩnB = Ωn.
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In was shown in [11] that (i) ↔ (ii) and (ii) → (iii). However, the major open question of

whether (iii)→ (i) or (iii)→ (ii) was left unresolved in [11]. The main topic of this paper

is to answer this question in the affirmative. This is done in two major steps: Theorem 3.2.4

for the case that B is orthogonal and Section 3.3 where we reduce the general case of B to

the orthogonal case.

For A ∈Mn, the linear operator T : Mn →Mn defined by T (X) = A>XA or T (X) =

A>X>A is called a standard linear operator on Mn. In this paper we show that a standard

linear operator T : Mn → Mn strongly preserves the set of J-orthogonal matrices if and

only if A is a signed permutation matrix.

3.2 Other properties of J-orthogonal matrices

In this section we first collect some properties of J-orthogonal matrices that have been

mentioned or proved in [1] and [11].

Proposition 3.2.1. [1, Theorem 3.2 (hyperbolic CS decomposition)] Let q ≥ p and J =

Ip ⊕ (−Iq). Then every A ∈ Γn(J) is of the form

(U1 ⊕ U2)(

 C −S

−S C

⊕ Iq−p)(V1 ⊕ V2), (3.1)

where U1, V1 ∈ Op, U2, V2 ∈ Oq and C, S ∈Mp are nonnegative diagonal matrices such

that C2 − S2 = Ip. Also, any matrix of the form (3.1) is J-orthogonal.

Corollary 3.2.2. Let q ≥ p and J = Ip ⊕ (−Iq). Then for every A ∈ Γn(J) the singular

values of A are

ci + si and
1

ci + si
, 1 ≤ i ≤ p; 1,with multiplicity q-p,

where C = diag(c1, . . . , cp) and S = diag(s1, . . . , sp) are as in (3.1).

Proof. Since the singular values are unitarily invariant, we may assume that A =
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 C −S

−S C

⊕ Iq−p. Then A is real symmetric positive definite and hence

S(A) = σ(A) = {ci + si,
1

ci + si
: 1 ≤ i ≤ p} ∪ {1}.

Remark 3.2.3. The following statements are true; see [11].

(i) Γn(J) is a closed multiplicative group for every J ∈ Sn.

(ii) Sn =
⋂
J∈Sn Γn(J).

(iii) If P ∈ SPn, then P>ΩnP = Ωn.

(iv) P ∈ SPn if and only if P>SnP = Sn.

(v) For every n ≥ 1, On has 2 connected components. In fact, On = O+
n

⋃
O−n .

(vi) If J 6= ±I then Γn(J) has 4 connected components and hence Ωn has 2 connected

components.

(vii) Let q ≥ p and J = Ip ⊕ (−Iq). Then Γn(J) is

{(U1 ⊕ U2)(

 diag(
√

1 + b2
1, . . . ,

√
1 + b2

p) diag(b1, . . . , bp)

diag(b1, . . . , bp) diag(
√

1 + b2
1, . . . ,

√
1 + b2

p)

⊕ Iq−p)(V1 ⊕ V2)},
where U1, V1 ∈ Op, U2, V2 ∈ Oq and b1, . . . , bp ∈ R.

(viii) For A ∈ Ωn, ‖A‖=1 if and only if A ∈ On.

Now, we need some preliminaries to prove the following theorem. The implications

(i) ↔ (ii) and (ii) → (iii) in Theorem 3.2.4 are in Remark 3.2.3. In fact we need to prove

(iii)→ (i) or (iii)→ (ii).

Theorem 3.2.4. Let U ∈ On. The following conditions are equivalent.
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(i) U ∈ SPn,

(ii) U>SnU = Sn,

(iii) U>ΩnU = Ωn.

To complete the proof of this theorem we need some other results. For every n ∈ N and

every integer k (0 ≤ k ≤ n
2
), let

Jk =



 In
2
−k 0

0 −In
2
+k

 , if n is even;

 In−1
2
−k 0

0 −In+1
2

+k

 , if n is odd,

Ek =
⋃
P∈Pn

Γn(P>JkP ), and

Fk =


{A ∈ Ek : A has 2k unit singular values}, if n is even;

{A ∈ Ek : A has 2k + 1 unit singular values}, if n is odd.

The following proposition gives some properties of Ek and Fk.

Proposition 3.2.5. For every n ∈ N and every integer k (0 ≤ k ≤ n
2
), the following

properties hold:

(i) If Q ∈ Pn, then Q>EkQ = Ek.

(ii) Ek is a closed subset of Ωn.

(iii) Fk is a dense subset of Ek and hence Fk = Ek.

(iv) Fk ∩ Ej = ∅, for every j > k.
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(v) Ωn =
⋃

0≤k≤n
2
Ek.

(vi) If A ∈ Ek then AJ ∈ Ek for every signature matrix J ∈ Sn.

Proof. (i). For every Q ∈ Pn, Γn(Q>JkQ) = Q>Γn(Jk)Q and hence

Q>EkQ = Q>(
⋃
P∈Pn

Γn(P>JkP ))Q

=
⋃
P∈Pn

Γn(Q>P>JkPQ) =
⋃
P̃∈Pn

Γn(P̃>JkP̃ ) = Ek.

(ii). For every P ∈ Pn, Γn(P>JkP ) is a closed multiplicative group and hence Ek is closed.

(iii). We prove the result when n is even (the odd case is similar). Let A ∈ Γn(Jk). First

assume that A =

 C −S

−S C

 ⊕ I2k. Note that ci + si = 1 if and only if ci = 1 and

si = 0. For every δ > 0, let Aδ =

 D −T

−T D

 ⊕ I2k, where D = diag(d1, . . . , dn
2
−k),

T = diag(t1, . . . , tn
2
−k) and

di =

 ci, if ci 6= 1;

1 + δ, if ci = 1,
and ti =

 si, if ci 6= 1;√
(1 + δ)2 − 1, if ci = 1.

By the use of Corollary 3.2.2, we have Aδ ∈ Fk. For every ε > 0 we may choose

sufficiently small δ such that ‖A−Aδ‖ < ε. Now, assume that A = (U1⊕U2)(

 C −S

−S C

⊕
Iq−p)(V1⊕V2). By substituting Aδ with (U1⊕U2)Aδ(V1⊕V2) in the above, we have ‖A−Aδ‖ <

ε. Finally, if B ∈ Ek, then B ∈ Γn(P>JkP ) where P ∈ Pn, so P>BP ∈ Γn(Jk). From the

above, if ε > 0 then there exists C ∈ Fk such that ‖P>BP−C‖ < ε. Hence ‖B−PCP>‖ < ε.

Observing that Fk is closed under permutational similarity, we have that PCP> ∈ Fk. Thus,

Fk is a dense subset of Ek.

(iv). Every A ∈ Fk has at most 2k+ 1 unit singular values and every A ∈ Ej has at least 2j

unit singular values. Since j > k, 2j > 2k + 1 and this implies that Fk ∩ Ej = ∅.
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(v). This is clear from the definition of Ωn since

Sn = {±P>JkP : 0 ≤ k ≤ n

2
, P ∈ Pn}.

(vi). If A ∈ Ek, then there exists some permutation matrix Q ∈ Pn such that A ∈

Γn(Q>JkQ). Also J ∈ Γn(Q>JkQ). Since Γn(Q>JkQ) is a group, AJ ∈ Γn(Q>JkQ) and

therefore AJ ∈ Ek.

Let J =

 Ip 0

0 −Iq

. For A ∈ Mn, we say that A is conformal to J if A =

 A1 0

0 A2

 with A1 ∈Mp and A2 ∈Mq, see [12].

Lemma 3.2.6. Let J =

 Ip 0

0 −Iq

. If A ∈ Γn(J) ∩ On then A is conformal to J .

Proof. Since A ∈ Γn(J) ∩ On we have AJ = JA and consequently

A =

 A1 0

0 A2

 with A1 ∈ Op and A2 ∈ Oq, which is conformal to J .

Remark 3.2.7. If G is a real positive semi-definite matrix, then there exist an orthogonal

matrix U and a diagonal matrix D = diag(λ1, . . . , λn) such that G = UDU>. So (I+G)
−1
2 −

I = U [(I +D)
−1
2 − I]U> and hence

‖(I +G)
−1
2 − I‖ = 1− 1√

1 + λmax
≤ λmax

2
=
‖G‖

2
.

Lemma 3.2.8. There exits a sequence {Qm}∞m=1 ⊆ On such that Qm has no zero entry for

every m ≥ 1 and limm→∞Qm = I.
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Proof. Let F =



0 −1 −1 . . . −1

1 0 −1 . . . −1

...
...

. . .
...

...

1 . . . 1 0 −1

1 1 . . . 1 0


. For sufficiently large positive integer m, I +

1
m2F

>F is positive definite and we have (I + 1
m
F )>(I + 1

m
F ) = I + 1

m2F
>F . Let Qm =

(I + 1
m
F )(I + 1

m2F
>F )

−1
2 . It is easy to check that Qm is orthogonal. If we put G = 1

m2F
>F

in Remark 3.2.7, then we obtain that

‖(I +
1

m2
F>F )

−1
2 − I‖ ≤ 1

2m2
‖F>F‖ ≤ 1

2m2
‖F‖2.

Let Hm = (I + 1
m2F

>F )
−1
2 − I. Then (I + 1

m2F
>F )

−1
2 = Hm + I and

‖Hm‖ ≤
1

2m2
‖F‖2, ‖ 1

m
FHm‖ ≤

1

2m3
‖F‖3. (3.2)

Now we have

Qm = (I +
1

m
F )(Hm + I) = (I +

1

m
F ) +Hm +

1

m
FHm.

By the use of (3.2), we see that limm→∞Qm = I. Since (I + 1
m
F ) has no zero entry and

1
m
F ∈ o( 1

m
), Hm ∈ o( 1

m2 ) and 1
m
FHm ∈ o( 1

m3 ) we see that Qm has no zero entry for large

enough m.

Theorem 3.2.9. Let U ∈ On. If U>ΩnU = Ωn, then U>EkU = Ek, for every integer k

(0 ≤ k ≤ n
2
).

Proof. We prove the result when n is even (the odd case is similar). First assume that k = 0.

By Proposition 3.2.1, we have

Γn(J0) = {(U1 ⊕ U2)

 C −S

−S C

 (V1 ⊕ V2)},
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where U1, V1, U2, V2 ∈ On
2

and C, S ∈ Mn
2

are nonnegative diagonal matrices such that

C2 − S2 = I. Observe that F0 is the set of n× n J-orthogonal matrices which have no unit

singular values. By assumption, U>ΩnU = Ωn and U ∈ On, and since the singular values

are invariant under an orthogonal similarity, we have that U>F0U = F0. Therefore, using

Proposition 3.2.5,

U>E0U = U>F0U = U>F0U = F0 = E0.

Now let 1 ≤ k ≤ n
2

and assume that U>EjU = Ej for every j < k, and hence

U>(
k−1⋃
j=0

Ej)U =
k−1⋃
j=0

Ej.

We have

Fk = [Fk ∩
k−1⋃
j=0

Ej]
⋃

[Fk ∩ (Ek \
k−1⋃
j=0

Ej)].

Let A ∈ Fk. Then U>AU has n− 2k non-unit singular values. Using Proposition 3.2.5 (iv),

(v) and again the assumption that U>ΩnU = Ωn, U ∈ On, we then have that U>AU ∈⋃k
j=0 Ej and hence

U>FkU ⊆
k⋃
j=0

Ej = (
k−1⋃
j=0

Ej)
⋃

(Ek \
k−1⋃
j=0

Ej),

which is a disjoint union. Since U>(
⋃k−1
j=0 Ej)U =

⋃k−1
j=0 Ej, we obtain that

U>[Fk ∩ (Ek \
k−1⋃
j=0

Ej)]U ⊆ Ek \
k−1⋃
j=0

Ej ⊆ Ek. (3.3)

Now, let A ∈ Fk ∩ (
⋃k−1
j=0 Ej). By Lemma 3.2.8, there exists a sequence {Qm}∞m=1 =

{

 Q1m 0

0 Q2m

}∞m=1 of orthogonal matrices such that Q1m and Q2m have no zero entry

for every m ≥ 1 and limm→∞Q1m = In
2
−k and limm→∞Q2m = In

2
+k. Just from the form

of Qm, we see that Qm ∈ Γn(Jk); also, from Lemma 3.2.6, Qm /∈ Γn(Ji) for every i < k.



26

So Qm /∈
⋃k−1
j=0 Ej. Since A ∈ Fk, there exists a permutation matrix P such that A ∈

Γn(P>JkP ); also, P>QmP /∈ Γn(Ji) for every i < k. For the sequence {P>QmPA}∞m=1, we

have P>QmPA ∈ Ek and P>QmPA /∈
⋃k−1
j=0 Ej which imply that P>QmPA ∈ Ek \

⋃k−1
j=0 Ej

and P>QmPA has n − 2k non-unit singular values. Then P>QmPA ∈ Fk and since Ek is

closed, by (3.3), we have

U>AU = limm→∞U
>P>QmPAU ∈ Ek,

and hence U>(Fk∩(
⋃k−1
j=0 Ej))U ⊆ Ek. Therefore by the use of (3.3), we obtain that U>FkU ⊆

Ek. Thus

U>FkU ⊆ Ek ⇒ U>EkU ⊆ Ek.

Since U>ΩnU = Ωn implies that UΩnU
> = Ωn, we can replace U by U> in the above and

similarly obtain that UEkU> ⊆ Ek. Therefore Ek ⊆ U>EkU and hence U>EkU = Ek.

For k = n
2
, Ek = On and trivially we have U>EkU = Ek.

Proof of Theorem 3.2.4. (iii) → (ii). We prove the result when n is even (the odd

case is similar). Let J be an arbitrary signature matrix of order n. We show that U>JU is

a signature matrix.

Since J ∈ En
2
−1, by Theorem 3.2.9, U>JU ∈ En

2
−1. Then there exists a permutation

matrix P such that P (U>JU)P> ∈ Γn(Jn
2
−1). Put K = P (U>JU)P> and observe that K

is orthogonal so that by the use of Lemma 3.2.6, K is conformal to Jn
2
−1 and hence K has

at least one ±1 on its main diagonal. Assume if possible that K is not a signature matrix;

then K has exactly r ±1s on its main diagonal with 1 ≤ r < n. Without loss of generality

we may assume that K =


±1 0

. . .

0 ±1

⊕ V, where V ∈Mn−r is an orthogonal matrix

with no ±1 entries on its main diagonal. Note that r 6= n− 1; otherwise V = ±1 and then

K is a signature matrix. Also, we will discus the case r = 1 separately.
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Let A =

 B 0

0 In−r

 , where B ∈Mr is an orthogonal matrix with no zero entries.

Since n − r ≥ 1, we have that A ∈ En
2
−1. By the use of equation P (U>En

2
−1U)P> = En

2
−1,

there exists D ∈ En
2
−1 such that P (U>DU)P> = A. By Proposition 3.2.5 (vi), DJ ∈ En

2
−1

and hence

AK = PU>DUP>PU>JUP> = PU>(DJ)UP> ∈ En
2
−1.

On the other hand, when 2 ≤ r ≤ n−2, by a simple computation one can show that AK has

no ±1 on its main diagonal and hence by Lemma 3.2.6, the orthogonal matrix AK /∈ En
2
−1

which is a contradiction.

We now handle the case r = 1. Here, we may assume that K = (±1) ⊕ V , where

V ∈Mn−1 is an orthogonal matrix with no ±1 on its main diagonal. Let A = B⊕ (1) where

B is orthogonal with no zero entries in its first row. We have that A ∈ En
2
−1, so that by

Theorem 3.2.9 there exists D ∈ En
2
−1 such that U>DU = P>AP . Then JD ∈ En

2
−1 and

hence by Theorem 3.2.9 U>JDU ∈ En
2
−1. But

U>JDU = (U>JU)(U>DU)

= P>

 ±1 0

0 V

PP>

 B 0

0 1

P

= P>

 ±1 0

0 V

 B 0

0 1

P = P>V1P,

where V1 =

 ±1 0

0 V

 B 0

0 1

 . Since V1 is orthogonal with no zero entries in the

first n− 1 positions of the first row and V specifically does not have ±1 as its last diagonal

entry, V1 has no ±1 on its main diagonal. Then U>JDU has no ±1 on its main diagonal.

Since U>JDU is orthogonal and U>JDU ∈ En
2
−1, by Lemma 3.2.6, U>JDU has at least

one ±1 on its main diagonal, which is a contradiction.

Therefore K is a signature matrix and consequently U>JU is a signature matrix. Thus,
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we have shown that U>SnU ⊆ Sn. Since the transformation X 7→ U>XU is 1− 1 and Sn is

finite, we conclude that U>SnU = Sn, so that (iii)→ (ii). �

3.3 The general case of U>ΩnU = Ωn

The purpose of this section is to prove that if B>ΩnB = Ωn, then in fact B ∈ On.

First, if W is a nonempty set of n × n invertible matrices, by W−1 we shall mean the set

{A−1 : A ∈ W}. Note that for J ∈ Sn, since Γn(J) is a group, (Γn(J))−1 = Γn(J) and hence

Ω−1n = Ωn.

Lemma 3.3.1. If B ∈Mn and B>ΩnB = Ωn, then BΩnB
> = Ωn and hence B>BΩnB

>B =

Ωn.

Proof. Since B>ΩnB = Ωn = Ω−1n , we have Ωn = (B>)−1Ω−1n B−1 = (BΩnB
>)−1. Then

BΩnB
> = Ω−1n = Ωn.

In what follows, we assume that B ∈ Mn and B>ΩnB = Ωn. In particular, B>B =

B>IB ∈ Γn(J) for at least one J ∈ Sn. For any A ∈ Ωn, let L1(A) = {J ∈ Sn : A ∈ Γn(J)}

and L2(A) = {J ∈ Sn : A /∈ Γn(J)}. Then Sn = L1(A)
⋃
L2(A), for any A ∈ Ωn.

Lemma 3.3.2. Let A ∈ Ωn \ On and A>ΩnA = Ωn. Then A>A ∈
⋃
J∈L2(A)

Γn(J).

Proof. Define the isomorphism T : Mn → Mn by T (X) = A>XA. If J ∈ L1(A), then

A ∈ Γn(J) and since Γn(J) is a group we have A>Γn(J)A = Γn(J). This implies that

T (
⋃
J∈L1(A)

Γn(J)) =
⋃
J∈L1(A)

Γn(J) and hence

T (Ωn \
⋃

J∈L1(A)

Γn(J)) = (Ωn \
⋃

J∈L1(A)

Γn(J)) ⊆
⋃

J∈L2(A)

Γn(J).

By Lemma 3.2.8, there exits a sequence {Qm}∞m=1 ⊆ On such that Qm has no zero entry for

every m ≥ 1 and limm→∞Qm = I. Since A ∈ Ωn \ On, ±I /∈ L1(A) and hence by Lemma

3.2.6, Qm ∈ (Ωn \
⋃
J∈L1(A)

Γn(J)) for every m ≥ 1. Then T (Qm) ∈
⋃
J∈L2(A)

Γn(J), and
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since
⋃
J∈L2(A)

Γn(J) is a closed set, we have

A>A = T (I) = limm→∞T (Qm) ∈
⋃

J∈L2(A)

Γn(J).

Theorem 3.3.3. Let B ∈Mn. If B>ΩnB = Ωn, then B ∈ SPn.

Proof. By Theorem 3.2.4, it is enough to show that B ∈ On. Assume if possible that B /∈ On,

so that B>B /∈ On. By the use of Lemma 3.3.1, B>BΩnB
>B = Ωn and hence by Lemma

3.3.2,

(B>B)2 ∈
⋃

J∈L2(B>B)

Γn(J). (3.4)

If B>B ∈ Γn(J), then (B>B)2 ∈ Γn(J) and hence L1(B
>B) ⊆ L1((B

>B)2). Now, by the

use of (3.4), L1(B
>B) ⊆ L1((B

>B)2). By a similar argument, for every positive integer k,

we can obtain L1((B
>B)k) ⊆ L1((B

>B)2k). Then {L1((B
>B)2k)}∞k=1 is a strictly increasing

sequence of subsets of Sn, so that Sn is an infinite set which is a contradiction. Therefore

B ∈ On.

We have now completely answered the open question raised in [11] in the affirmative.

In fact, for a (necessarily nonsingular) matrix B we showed that the following conditions are

equivalent:

(i) B ∈ SPn,

(ii) B>SnB = Sn,

(iii) B>ΩnB = Ωn.

As an interesting consequence, we have the following theorem that characterizes the

standard linear operators T : Mn →Mn strongly preserving the set of J-orthogonal matrices,

i.e. T (A) is J-orthogonal if and only if A is J-orthogonal.
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Theorem 3.3.4. Let T : Mn → Mn be a standard linear operator. Then T (Ωn) = Ωn if

and only if there exists a signed permutation matrix P such that

T (X) = P>XP, ∀ X ∈Mn,

or

T (X) = P>X>P, ∀ X ∈Mn.

As mentioned earlier in this dissertation, the work in Part 3 will appear in the paper

[13].
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PART 4

SOME CONNECTIONS BETWEEN J-ORTHOGONAL MATRICES AND

G-MATRICES

4.1 Introduction

Let Mn be the set of all n× n real matrices. A nonsingular matrix A ∈Mn is called a

G-matrix if there exist nonsingular diagonal matrices D1 and D2 such that A−T = D1AD2,

where A−T denotes the transpose of the inverse of A. These matrices form a rich class and

were originally studied in [14] by Fiedler and Hall. Some properties of these matrices are as

follows:

All orthogonal (J-orthogonal) matrices are G-matrices.

All nonsingular diagonal matrices are G-matrices.

Any n positive real numbers are the singular values and eigenvalues of a diagonal G-

matrix D.

If A is a G-matrix, then both AT and A−1 are G-matrices.

If A is an n × n G-matrix and D is an n × n nonsingular diagonal matrix, then both

AD and DA are G-matrices.

If A is an n × n G-matrix and P is an n × n permutation matrix, then both AP and

PA are G-matrices.

Cauchy matrices have the form C = [cij], where cij = 1
xi+yj

for some numbers xi and yj.

We shall restrict to square, say n×n, Cauchy matrices - such matrices are defined only

if xi + yj 6= 0 for all pairs of indices i, j, and it is well known that C is nonsingular if and

only if all the numbers xi are mutually distinct and all the numbers yj are mutually distinct.

From M. Fiedler, Notes on Hilbert and Cauchy matrices, LAA, 2010:

Every nonsingular Cauchy matrix is a G-matrix.

The G-matrices were later studied in two papers [15] and [16].
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Denote by J = diag(±1) a diagonal (signature) matrix, each of whose diagonal entries

is +1 or −1. As in [1], a nonsingular real matrix Q is called J-orthogonal if

QTJQ = J,

or equivalently, if

Q−T = JQJ.

Of course, every orthogonal matrix is a J-orthogonal matrix. And clearly, every J-orthogonal

matrix is a G-matrix. Not every G-matrix is a J-orthogonal matrix. But, a G-matrix can

always be “transformed” to a J-orthogonal matrix [4].

4.2 Classes of G-matrices

For nonsingular n × n diagonal matrices D1 and D2, the following known result from

[14] shows that if A−T = D1AD2 then D1 and D2 have the same inertia matrix.

Proposition 4.2.1. Suppose A is a G-matrix and A−T = D1AD2, where D1 and D2 are

nonsingular diagonal matrices. Then the inertia of D1 is equal to the inertia of D2.

Proof. We have ATD1AD2 = I and so ATD1A = D−12 . Since A is nonsingular, the result

follows from Sylvester’s Law of Inertia.

For fixed nonsingular diagonal matrices D1 and D2, let the class of G-matrices

G(D1, D2) = {A ∈Mn : A−T = D1AD2}.

In this section we find a characterization of G(D1, D2).

Let D be a nonsingular diagonal matrix with the inertia matrix J (a signature matrix

having all its positive ones in the upper left corner). Then there exists a permutation matrix

P such that D = |D|P TJP , where |D| is obtained by taking the absolute value on entries
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of D. Recall that for a fixed signature matrix J , Γn(J) = {A ∈Mn : A>JA = J}. In fact,

Γn(J) = G(J, J).

Theorem 4.2.2. Let D1 and D2 be nonsingular diagonal matrices with the inertia matrix

J . Then there exist permutation matrices P and Q such that

G(D1, D2) = {|D1|−1/2P TAQ|D2|−1/2 : A ∈ Γn(J)}.

Proof. Since J is the inertia matrix for D1 and D2, there exist permutation matrices P and

Q such that D1 = |D1|P TJP and D2 = |D2|QTJQ. Then J = P |D1|−1/2D1|D1|−1/2P T =

Q|D2|−1/2D2|D2|−1/2QT . These imply that

A ∈ Γn(J) ⇔ A−T = JAJ

⇔ A−T = P |D1|−1/2D1|D1|−1/2P TAQ|D2|−1/2D2|D2|−1/2QT

⇔ (|D1|−1/2P TAQ|D2|−1/2)−T = D1(|D1|−1/2P TAQ|D2|−1/2)D2

⇔ |D1|−1/2P TAQ|D2|−1/2 ∈ G(D1, D2).

Therefore

G(D1, D2) = {|D1|−1/2P TAQ|D2|−1/2 : A ∈ Γn(J)}.

We will now incorporate the hyperbolic CS Decomposition for Γn(J) into a simplified

version of G(D1, D2). Assume q ≥ p, the common inertia matrix J of D1 and D2 has the

form  Ip 0

0 −Iq


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and that D1 and D2 have the form

 +p 0

0 −q

 ,

where +p (−q) denotes an order p (q) diagonal matrix with positive (negative) diagonal

entries. Then P = Q = I, D1 = |D1|J , and D2 = |D2|J . Using Proposition 3.2.1 on the CS

Decomposition, we then have the following result.

Corollary 4.2.3. With the above notation,

G(D1, D2) = {|D1|−1/2(U1 ⊕ U2)(

 C −S

−S C

⊕ Iq−p)(V1 ⊕ V2)|D2|−1/2}.

where U1, V1 ∈ Op, U2, V2 ∈ Oq and C, S ∈Mp are nonnegative diagonal matrices such

that C2 − S2 = Ip.

Let A be an n× n nonsingular matrix with Singular Value Decomposition

UΣW

where U and W are orthogonal matrices. So, AW T = UΣ. Now, it is easy to see that

UΣ ∈ G(I,Σ−2). (Also: since U is an orthogonal matrix, U is a G-matrix; multiplying U

by the nonsingular diagonal matrix Σ we still have a G-matrix.) Hence, AW T = B, where

B ∈ G(I,Σ−2), so that A = BW . We thus arrive at the following result.

Proposition 4.2.4. Every n × n nonsingular matrix is a product of a G-matrix and an

orthogonal matrix. In particular, if UΣW is a Singular Value Decomposition of a nonsingular

matrix A, then UΣ is a G-matrix.

Note 4.2.5. We can observe that by using Theorem 4.2.2 the above matrix B ∈ G(I,Σ−2)
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simply equals to CΣ, where C is an orthogonal matrix. This yields that

A = BW = CΣW,

a Singular Value Decomposition! In fact, the matrix C must be the same as the matrix U

above.

Remark 4.2.6. Given a fixed n×n inertia matrix J , we have various classes of G-matrices

associated with J . We then have the following relation on the collection of the classes of

n× n G-matrices:

G(D1, D2) ∼ G(D3, D4)

if and only if each class is associated with the same J , i.e. the inertia matrix of D1, D2, D3,

D4 is J . (Note that G(J, J) is in the same equivalence class.) Then, it is clear that ∼ is an

equivalence relation on the collection of the classes of n× n G-matrices.

4.3 The Connected Components

In this section we show that G(D1, D2) has two or four connected components in Mn.

Also we show that

Gn =
⋃

D1,D2

G(D1, D2),

the set of all n×n G-matrices, has two connected components in Mn. Let On be the set of all

n× n orthogonal matrices, O+
n be the set of all n× n orthogonal matrices with determinant

1, and O−n be the set of all n× n orthogonal matrices with determinant −1.

Proposition 4.3.1. [7, Theorem 3.67] For every n ≥ 1, On has two connected components,

O+
n and O−n .

Proposition 4.3.2. [11, Theorem 3.5] Let J be an n × n signature matrix. If J 6= ±I

then Γn(J) has four connected components.
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Corollary 4.3.3. For every n× n signature matrix J , On ∪ Γn(J) has two connected com-

ponents.

Proof. Since every component of Γn(J) has some orthogonal matrices (this is because each

component has signature matrices, which in fact are orthogonal matrices), by the use of

Proposition 4.3.1, the result is obtained.

Theorem 4.3.4. Let D1 and D2 be nonsingular diagonal matrices with the inertia matrix

J .

(i) If J 6= ±I, then G(D1, D2) has four connected components.

(ii) If J = ±I, G(D1, D2) has two connected components.

Proof. Let P and Q be as in the proof of Theorem 4.2.2. Consider the linear operator

T : Mn −→Mn defined by

T (A) = |D1|−1/2P TAQ|D2|−1/2.

Both T and T−1 are continuous and T (Γn(J)) = G(D1, D2) by Theorem 4.2.2. So the

number of connected components of Γn(J) and G(D1, D2) are the same. Now, by the use of

Propositions 4.3.1, 4.3.2, the proof is complete.

Theorem 4.3.5. The set Gn of all n× n G-matrices has two connected components.

Proof. We present the proof in two steps.

Step 1: First we show that G(D1, D2)
⋃
G(|D1|, |D2|) has two connected components, where

J is the inertia matrix of D1 and D2. By Theorem 4.2.2, there exist permutation matrices

P and Q such that

G(D1, D2) = {|D1|−1/2P TAQ|D2|−1/2 : A ∈ Γn(J)},

G(|D1|, |D2|) = {|D1|−1/2P TAQ|D2|−1/2 : A ∈ On},
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where J is the inertia matrix of D1 and D2.

Then G(D1, D2)∪G(|D1|, |D2|) = T (On ∪Γn(J)), where T is the linear operator in the

proof of Theorem 4.3.4. By the use of Corollary 4.3.3, G(D1, D2) ∪ G(|D1|, |D2|) has two

connected components.

Step 2: Let Dn be the set of all n × n diagonal matrices with positive diagonal entries.

It is clear that Dn is a connected set. For every D1, D2 ∈ Dn, we have G(D1, D2) =

D
−1/2
1 (O+

n )D
−1/2
2 ∪D−1/21 (O−n )D

−1/2
2 . Then we have

⋃
D1,D2∈Dn

G(D1, D2) = [
⋃

D1,D2∈Dn

D
−1/2
1 (O+

n )D
−1/2
2 ] ∪ [

⋃
D1,D2∈Dn

D
−1/2
1 (O−n )D

−1/2
2 ].

Since Dn, O+
n and O−n are connected sets,

⋃
D1,D2∈Dn

G(D1, D2)

has two components.

Recalling that Gn =
⋃
D1,D2

G(D1, D2), by use Step 1 and Step 2, the set of all n × n

G-matrices has two connected components.

The work in Part 4 of this dissertation will soon be submitted for publication [17].
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