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TITLE: NOVEL EMPIRICAL LIKELIHOOD METHODS FOR TWO-SAMPLE

PROBLEMS AND THE APPLICATIONS IN SURVIVAL ANALYSIS

by

KANGNI ALEMDJRODO

Under the Direction Yichuan Zhao, PhD

ABSTRACT

Empirical likelihood (EL) is a nonparametric method inspired by the usual maximum

likelihood. There has been a wide range of applications to different statistical parameters

since Owen’s works (1988, 1990). While EL has many advantages over existing inference

methods, it also has some flaws: heavy computations, low accuracy for the small samples

and high-dimensional applications, etc. In this dissertation, we investigate some EL’s exten-

sions, namely the jackknife empirical likelihood (JEL), the i.i.d. empirical likelihood (IID



EL), and the weighted empirical likelihood (WEL) in constructing confidence intervals (CI)

for particular parameters of interest. It contributes to significantly improving the CI by sub-

stantially reducing the extensive computation associated with the EL method, ameliorating

the poor performance of EL for the small sample and heavy-tailed distributions.

We propose a new plug-in approach of JEL to reduce the computational cost in compar-

ing two Gini indices for paired data. One of the main results of the EL is the nonparametric

extension of Wilks’ theorem for parametric likelihood ratios. However, this result is violated

when the data is censored. To circumvent this issue for some specific parameters, we com-

bine the EL method with the influence functions (IID EL) to construct a confidence interval

for the mean residual life (MRL) function in the presence of length-bias. Further, we ex-

tend the IID EL to the two-sample mean difference, where the two samples considered are

right-censored. Last, we consider the weighted empirical likelihood (WEL) for comparing

the areas under two correlated ROC curves (AUC).

For the first three essays, we proved that Wilks’ theorem holds: the log-likelihood ratio

statistic is asymptotically chi-square distributed. And the WEL statistic has a scaled chi-

squared distribution. The extensive simulations demonstrated that, for finite samples, all the

proposed methods outperform the existing EL methods in coverage probability accuracy and

average lengths of CI. Finally, the application to real data demonstrated that the proposed

methods are of practical value.

INDEX WORDS: Area under the ROC curve, Gini index, I.i.d. empirical likelihood, Jack-
knife empirical likelihood, Length-bias, Mean difference, Mean residual
life, Right censoring, Weighted empirical likelihood, Wilks’ theorem.
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CHAPTER 1

INTRODUCTION

The introductory chapter will review the main concepts of empirical likelihood (EL)

and its most essential properties, and will give a brief description of survival data. Then, we

will present the results obtained during this dissertation.

1.1 Empirical Likelihood

The EL can be seen as a nonparametric maximum likelihood, in which the empirical

cumulative distribution function (ECDF) has replaced the unknown distribution function.

Thomas and Grunkemeier (1975) introduced the EL to estimate survival functions with cen-

sored data. Owen (1988, 1990, 2001) generalized the method to complete data, a wide range

of statistical functionals and many different statistical problems. As one of the best non-

parametric methods used to derive confidence intervals, the empirical likelihood has many

advantages: it is distribution-free, has weak regularity conditions, its confidence regions are

Bartlett correctable, and the observed data determine their shapes, etc. Its advantage over

the normal approximation (NA) method is no longer questionable (Hall and La Scala, 1990).

There is no need to estimate the variance when constructing EL confidence intervals contrary

to NA confidence intervals. The most attractive property of the EL method is it retains the

Wilks’ result (asymptotic theorem for the classic likelihood ratio tests) that is -2log(EL

ratio) is asymptotically χ2-distributed (Owen, 1988).

Now we review the basic idea of EL as follows. Let X = {X1, X2, ..., Xn} be an inde-

pendent and identically distributed (i.i.d.) random variable from an unknown distribution

F . Suppose we observe Xi = xi, i = 1, 2, ..., n. Let pi be a probability mass assigned to xi :

pi = P (Xi = xi) = F (xi)− F (xi−)
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with

pi ≥ 0,
n∑
i=1

pi = 1.

The EL function is L(F ) = L(p1, p2, ..., pn;X) =
∏n

i=1 pi. L(F ) is maximized at p̂i = 1/n

and the likelihood L(F ) reaches its maximum n−n under the full nonparametric model.

The maximum empirical likelihood estimator (MELE) of F is F̂ (x) =
∑n

i=1 p̂iI(x ≤ xi) =

n−1
∑n

i=1 I(x ≤ xi), where I(· ) denotes the indicator function. F̂ is none other than the

ECDF Fn based on the i.i.d. sample {x1, x2, ..., xn}. Let µ = EX1 and consider the hypoth-

esis:

H0 : µ = µ0 vs. H1 : µ 6= µ0.

The ELR is L(F )/L(Fn). Following Owen (1988), the ELR at µ can be written as

R (µ) = sup

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pixi = µ

}
.

This optimization problem is solved by the Lagrange multipliers technique and Owen

(1988) obtained the following result:

Theorem 1.1.1. (Owen, 1988) Assume EX2
1 <∞. Then under H0,

−2 logR (µ0)
D−→ χ2

1, as n→∞,

where χ2
1 is a standard chi-squared random variable with one degree of freedom and

D−→ means

converge in distribution.

Similar result has been obtained for random vectors according to the theorem:

Theorem 1.1.2. (Owen, 1988) Let X1,X2, ...,Xn be d × 1 i.i.d random vectors with dis-

tribution F with true mean µ0 and finite variance covariance matrix Σ of rank q > 0.

Then

−2 logR (µ0)
D−→ χ2

q, as n→∞,
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where χ2
q is a standard chi-squared random variable with q degrees of freedom.

A generalization to estimation equations is as follows. Let X1, X2, ..., Xn be i.i.d.

from a distribution F . Suppose a population parameter θ is determined by the equation

E{m(X1,θ)} = 0, where θ is a q × 1 vector, m is a s × 1 vector-valued function. Suppose

θ0 is the true value of θ. The ELR statistic to test H0 : θ = θ0 is

R (θ0) = sup

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pim(Xi,θ0) = 0

}
,

and we have the following result:

Theorem 1.1.3. (Owen, 1990) Assume Var(m(X1, θ0)) < ∞ and has rank r > 0. Then

under H0,

−2 logR (θ0)
D−→ χ2

r, as n→∞,

where χ2
r is a standard chi-squared random variable with r degrees of freedom.

Remark 1.1.1. For the proofs of all the above theorems, see the book ”Empirical Likeli-

hood” by Owen (2001).

Now, the EL has a vast domain of applications for complete and incomplete data and

can handle a wide range of statistical parameters.

1.2 Survival Data

Survival data consists of data in which the time until the event (relapse, progression,

death) is of interest. The response is often referred to as a failure time, survival time, or

event time. Survival analysis provides methods and tools to analyze survival data. Fields

like biomedical sciences (origin of survival data), engineering, economics, finance make use

of survival analysis. Survival data are usually censored or incomplete. Censoring is present

when we have some information about the subject’s event time, but we do not know the
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exact event time. Right censoring occurs when a subject does not experience the event before

the study ends, is lost to follow-up during the study period, or withdraws from the study.

Left-truncation occurs when a subject experienced the event before the study period. Figure

1.1 shows the different types of censoring.

Three topics in the present dissertation deal with survival data. For all the methods

we discuss, the censoring mechanism is independent of the survival mechanism and is called

independent censoring.

Figure 1.1: Different types of censoring.

1.3 Summary

As we pointed out in Section 1.1, EL has its advantages but also has its flaws. We

explained how we solved some of these issues for specific parameters such as the Gini index,

the mean residual life, the mean difference, and the Area Under the ROC Curve in the next

lines.

The Gini index has been widely used as a measure of income (or wealth) inequality
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in social sciences. To construct a confidence interval for the difference of two Gini indices

from the paired samples, Wang and Zhao (2016) used a profile jackknife empirical likelihood.

However, the computing cost with profile empirical likelihood could be very expensive. In

the Chapter 2, we propose an alternative approach of the jackknife empirical likelihood

method to reduce the computational cost. We also investigate the adjusted jackknife empiri-

cal likelihood and the bootstrap-calibrated jackknife empirical likelihood to improve coverage

accuracy for small samples. Simulations show that the proposed methods perform better

than Wang and Zhao’s methods in terms of coverage accuracy and computational time.

Real data applications demonstrate that the proposed methods work very well in practice.

This chapter is the subject of an article published in the Journal of Nonparametric Statistic

(https://doi.org/10.1080/10485252.2019.1650925).

The mean residual life (MRL) function for a given random variable T is the expected re-

maining lifetime of T after a fixed time point t. It is of great interest in survival analysis, reli-

ability, actuarial applications, duration modeling, etc. Liang, Shen, and He (2016) proposed

empirical likelihood (EL) confidence intervals for the MRL based on length-biased right-

censored data. However, their -2log(empirical likelihood ratio) has a scaled chi-squared dis-

tribution. In Chapter 3, to avoid the estimation of the scale parameter in constructing confi-

dence intervals, we propose a new empirical likelihood (NEL) based on independent and iden-

tically distributed (i.i.d.) representation of Kaplan-Meier weights involved in the estimating

equation. We also established the adjusted new empirical likelihood (ANEL) to improve the

coverage probability for small samples. The performance of the NEL and the ANEL com-

pared to the existing EL is demonstrated via simulations: the NEL-based and ANEL-based

confidence intervals have better coverage accuracy than the EL-based confidence intervals.

Finally, our conclusions are illustrated with a real data set. This chapter produced an article

in the Journal of Nonparametric Statistic (https://doi.org/10.1080/10485252.2020.1840568).

Chapter 4 focuses on comparing two means and finding a confidence interval for the dif-

ference of two means with right-censored data using the EL method combined with the

independent and identically distributed (i.i.d.) random functions representation used by He
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et al. (2016). In the literature, Wang and Wang (2001) proposed EL-based confidence inter-

vals for the mean difference based on right-censored data using the synthetic data approach.

However, their empirical log-likelihood ratio statistic has a scaled chi-squared distribution.

To avoid the estimation of the scale parameter in constructing confidence intervals, we pro-

pose an EL method based on i.i.d. representation of Kaplan-Meier weights involved in the

EL ratio. We obtain the standard chi-squared distribution. We also apply the adjusted

empirical likelihood (AEL) to improve coverage accuracy for small samples. In addition, we

investigate a new EL method, the mean empirical likelihood (MEL), within the framework of

our study. The performances of all the EL methods are compared via extensive simulations.

The proposed EL-based confidence interval has better coverage accuracy than these from

Wang and Wang (2001). Finally, our findings are illustrated with a real data set.

The area under the ROC curve (AUC) gives an indicator of the quality of the predic-

tion of a continuous-scale diagnostic test. It can also be used to compare the performance of

two diagnostic tests. Chrzanowski (2014) proposed the weighted empirical likelihood (WEL)

for interval estimation of a single AUC for right-censored data to reduce the computation

associated with the usual empirical likelihood (EL) method. In Chapter 5, we propose the

two-sample WEL to compare AUCs of two correlated ROC curves. A normal approximation

(NA) is derived. We define a WEL ratio and show that the WEL statistic follows a scaled

chi-square distribution. We also apply a calibration method, the adjusted empirical likeli-

hood, to enhance the coverage accuracy of the Confidence interval (CI) for small samples.

The good finite-sample performance of the proposed WEL is assessed via extensive simula-

tions. Finally, the methodology is illustrated by a real example.

Chapter 6 summarizes the findings and proposals of the dissertation, while announcing

the work and possible extensions to be considered in the future.
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CHAPTER 2

REDUCE THE COMPUTATION IN JACKKNIFE EMPIRICAL

LIKELIHOOD FOR COMPARING TWO CORRELATED GINI INDICES

2.1 Background

Since its introduction in 1972 by the Italian statistician and sociologist, Corrado Gini,

the Gini index has been one of the most used measures of the degree of inequality in the dis-

tribution of income and wealth. It has many applications in economics, statistics, medicine,

and biology, etc. It is graphically related to the Lorenz curve, a very commonly used mea-

sure of the size of the distribution of income and wealth. The Lorenz curve is a plot of the

cumulative proportion of total income (or wealth) received against the cumulative number

of recipients, starting with the poorest recipient. Given a distribution, the Gini index is the

ratio of the area between the Lorenz curve of the distribution and the uniform distribution

line and the area under the uniform distribution line. It is also equal to half the relative

mean difference. A Gini index of 0 indicates a perfect income equality and a Gini index of

1, a perfect inequality. Figure 5.1 shows the Gini index. For more details on the Gini index,

the Lorenz curve and their properties, see Gastwirth (1972).

Let F (x) = P (X ≤ x) be the cumulative distribution function of a non-negative random

variable X. The Gini index G is defined as

G =
1

µ

∫ ∞
0

(2F (x)− 1)xdF (x) =
E|X − Y |

2EX
, (2.1)

where X and Y are two independent random variables following the same distribution F (x)

and µ = EX.

For inference on the Gini index, parametric estimations have been adopted. The param-

eters of the distribution F of a random variable X are estimated for a chosen distribution,
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and the Gini index is written as a function of these parameters, see for example Moothathu

(1985, 1990) and Chotikapanich and Griffiths (2002). Bayesian estimations also have been

considered by Abdul-Sathar, Jeevanand, and Nair (2005).

Nonparametric approaches focused on estimating the Gini index and the asymptotic

variance of this estimate. Hoeffding (1948) first derived the asymptotic normality of the

Gini index by estimating it as the ratio of two U -statistics. Ogwang (2000) introduced the

variance estimation based on the ordinary least squares regression. This variance has been

improved later by Giles (2004) and Modarres and Gastwirth (2006). Because implementing

the estimates of the variance using the previous methods is complicated, Yitzhaki (1991)

and Karagiannis and Kovacevic (2000) proposed the jackknife variance estimate for the Gini

index. Davidson (2009) derived a reliable variance estimator of the plug-in estimator of the

Gini index based on i.i.d. random variables.

Interval estimation of the Gini index can be obtained when the variance has been esti-

mated. To avoid the estimation of the variance, some authors used bootstrap and empirical

likelihood (EL) methods. Mills and Zandvakili (1997) and Biewen (2002) developed the

naive bootstrap method. Davidson (2009) developed the bootstrap-t method. Qin, Rao,

and Wu (2010) introduced EL method, but their likelihood ratio test statistic was scale chi-

square distributed and Peng (2011), by modifying the data, obtained the Wilks’ theorem for

the EL method. It has been shown that the EL confidence intervals outperformed normal

approximation (NA) and bootstrap-t confidence intervals. Wang, Zhao, and Gilmore (2016)

derived the jackknife empirical likelihood (JEL) confidence interval for the Gini index and

proved that the JEL performs better than the EL by Peng (2011). The JEL, proposed by

Jing, Yuan, and Zhou (2009), basically turns the parameter of interest in a sample mean

via pseudo-values and make the use of EL easier. Recently, Sang, Dang, and Zhao (2019)

applied the JEL for inference on the Gini correlation, an useful measure in decomposition of

the Gini index, according to income sources.

For comparing two Gini indices, Peng (2011) applied the EL method to obtain a confi-

dence interval and compared it to Davidson’s bootstrap-t interval. Wang and Zhao (2016)
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developed the JEL confidence intervals for the difference of two Gini indices for both inde-

pendent and correlated data. It is worth mentioning that the JEL by Wang and Zhao (2016)

has better coverage probability and shorter confidence interval than the EL by Peng (2011).

The main goal of this chapter is to develop an alternative approach to the JEL method to

reduce the computation associated with the JEL method proposed by Wang and Zhao (2016)

for the paired samples.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the nota-

tions and state the main asymptotic results. In Section 2.3, a simulation study is carried out

to compare the proposed JEL methods with the JEL method from Wang and Zhao (2016)

in terms of coverage probabilities and average lengths of confidence intervals. In Section 2.4,

an application to two real data sets is provided, the conclusions are made in Section 2.5 and

the proofs of theorems are given in the Appendix A.

2.2 Main Results

Given i.i.d. data set X = {X1, X2, ..., Xn}, n ≥ 2, the Gini index defined by equation

(1) can be estimated by the ratio of two U -statistics with kernels h1(x1, x2) = |x1 − x2| and

h2(x1) = x1, that is,

Ĝ =
U1

U2

=

(
n
2

)−1 ∑
1≤i<j≤n

h1(Xi, Xj)

2n−1
∑

1≤i≤n
h2(Xi)

. (2.2)

Based on U -statistics theory, Hoeffding (1948) derived the asymptotic normality of the esti-

mator (2.2) for G. EL and JEL confidence intervals are proven to be efficient when compared

to the normal approximation (NA) method. Therefore, we develop a modified version of the

JEL method to compare two Gini indices from two dependent samples, in the following

subsections.

2.2.1 Jackknife empirical likelihood (JEL)

To derive the proposed JEL confidence intervals for the difference of two correlated

Gini indices for paired samples, we adopt the setting from Wang and Zhao (2016). Let
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Figure 2.1: The Gini Index

{X,Y}′ = {(X1, Y1)
′, ..., (Xn, Yn)′} be i.i.d. bivariate random variables with common dis-

tribution function F (x, y). Let F1(x) = F (x,∞) and F2(y) = F (∞, y) be the marginal

distributions for X and Y , and G1 and G2 be the corresponding Gini indices associated with

F1(.) and F2(.), respectively.

Let ∆ = G1 − G2. Considering ∆ as the parameter of interest and G2 as a nuisance

parameter, we define a vector of functional U -statistics as:

U
′

n(∆, G2) =

((
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj; ∆ +G2),

(
n

2

)−1 ∑
1≤i<j≤n

h(Yi, Yj;G2)

)
,

with the kernel

h(x1, x2;G) = (x1 + x2)G− |x1 − x2|.
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It is easy to check that Eh(X1, X2; ∆ +G2 = 0) and Eh(Y1, Y2;G2) = 0.

Since the Gini index is not a U -statistic, the results of Jing et al. (2009), applicable

to one sample or two-sample U -statistics, cannot be applied directly for inference on the

difference of two correlated Gini indices from paired samples, which is a function of two

U -statistics and involves a nuisance parameter.

One approach to solve this issue is the profile JEL, developed by Wang and Zhao

(2016), in which the estimated nuisance parameter minimizes the JEL ratio when ∆ is fixed.

However, the computation of the profile JEL could be very costly, essentially due to difficulty

in the maximization and moreover was made more complex in the case of two Gini indices

as they involve a vector of U -statistics.

We can significantly reduce the computational burden by avoiding the optimization

when the true value of G2 is known, but in practice, we ignore this value. We may choose

to replace G2 by an estimate or plug-in estimator. The idea is not new. By using plug-in

estimates of nuisance parameters in the estimating equations, Hjort, McKeague, and Van

Keilegom (2009) reduced the computational burden, but their limiting distribution was a

sum of weighted independent chi-squared random variables. Under the strong assumption

that the kernel functions are bounded in both sample and parameter spaces, Li, Xu, and

Zhou (2016) proposed inference procedure based on JEL for U -type estimating equations

and were able to obtain the Wilks’ theorem, but the Gini index requires only a finite second

moment. Our approach uses a plug-in estimate and can establish the Wilks’ theorem under

this latter condition.

For the paired observations, since the equation

(
n

2

)−1 ∑
1≤i<j≤n

h(Yi, Yj;G2) = 0

does not depend on ∆, it can be used to find an estimate Ĝ2 of G2. Solving the above
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equation, we obtain a closed form of Ĝ2:

Ĝ2 =

(
n
2

)−1 ∑
1≤i<j≤n

|Yi − Yj|

2Ȳ
, (2.3)

where Ȳ is the sample mean. Then, plugging in Ĝ2 in h(xi, xj; ∆ + G2), we can apply the

JEL method for ∆. Let

Mn(∆) =

(
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj; ∆ + Ĝ2). (2.4)

To apply JEL as defined by Jing et al. (2009), we define the jackknife pseudo-values as

V̂i(∆) = nMn(∆)− (n− 1)M (−i)
n (∆), (2.5)

where

M (−i)
n (∆) =

(
n− 1

2

)−1 ∑
1≤k<j≤n,k 6=i

h(Xk, Xj; ∆ + Ĝ2)

is obtained after deleting the ith observation Xi from the sample. As the jackknife pseudo-

values are asymptotically independent under mild conditions (Shi 1984), the jackknife estima-

torMn,jack can be viewed as a sample average of approximately independent random variables

V̂i. Then we can apply the standard EL method (Owen 2001) to V̂i. Let P = {p1, p2, ..., pn}

be the probability vector over the V̂i. The JEL ratio at ∆ can be expressed as

R (∆) = sup

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(∆) = 0

}
. (2.6)

Applying the Lagrange multiplier technique, R (∆) is maximized at

pi =
1

n{1 + λV̂i(∆)}
, i = 1, ..., n (2.7)
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where λ = λ(∆) satisfies

1

n

n∑
i=1

V̂i(∆)

1 + λV̂i(∆)
= 0. (2.8)

Equation (2.8) can be solved with respect to λ by a simple grid search method or the

NewtonRaphson procedure. By substituting λ in expression (2.7), we obtain pi, knowing

V̂i(∆), for i = 1, ..., n and finally by replacing pi in (2.6), we obtain the log-likelihood ratio

logR (∆) = −
n∑
i=1

log{1 + λV̂i(∆)}.

Let g(x; ∆, G2) = Eh(x,X2; ∆ +G2) and σ2
g(∆, G2) = V ar(g(X1; ∆, G2)). We have the

Wilks’ theorem for the JEL as follows.

Theorem 2.2.1. Assume EX2
1 <∞ and σ2

g(∆, G2) > 0. Then

−2 logR (∆)
D−→ χ2

1, as n→∞,

where χ2
1 is a standard chi-squared random variable with one degree of freedom.

Remark 2.2.1. Due to the specific form of the Gini index, Theorem 2.2.1 requires finite

second moment EX2
1 < ∞ instead of the regularity condition Eh2(X1, X2) < ∞ assumed

in Theorem 1 of Jing et al. (2009) or the strong assumption on the kernels from Li et al.

(2016).

Remark 2.2.2. Li et al. (2016) also proved that when nuisance parameters are replaced

by plug-in estimates, the -2(log-likelihood ratio) is not a standard chi-square but a weighted

chi-square distribution. However, we obtain the Wilks’ theorem because in our particular

case, the nuisance parameter G2 is estimated as a function of the parameter of interest ∆,

and the -2(log-likelihood ratio) involves only one chi-squared random variable with weight

one (Li et al., 2011).

Remark 2.2.3. One advantage of the proposed method over JEL by Wang and Zhao (2016)

and the EL by Peng (2011) is that it assumes only finite second moment whereas the last
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two methods assume finite third moment. When applied to the income data, these methods

could fail when the distributions are very skewed as the third moment may not exist.

A complete proof of Theorem 2.2.1 is given in the Appendix A. It involves additional

modifications due to the estimator Ĝ2.

Following this theorem, an asymptotic 100 (1− α) % confidence interval for ∆ is given

by

{∆̃ : −2 logR(∆̃) ≤ χ2
1−α (1)},

where χ2
1−α (1) is the 100 (1− α) quantile of the chi-square distribution with one degree of

freedom.

2.2.2 Adjusted jackknife empirical likelihood (AJEL)

The computation of λ, solution of (2.8) requires that the zero point is an interior point

of the convex hull of the pseudo-values. However, when the sample size is small, this may

not be the case and leads to under-coverage issue with the JEL. To resolve this problem for

EL, Chen, Variyath, and Abraham (2008) proposed the adjusted empirical likelihood. We

adapt this method to the JEL. To this end, we add one more pseudo-value

V̂n+1(∆) = −an
n

n∑
i=1

V̂i(∆),

where an = max(1, log(n)/2) as suggested by Chen et al. (2008). The adjusted jackknife

empirical log-likelihood is defined as

logRA (∆) = −
n+1∑
i=1

log{1 + λV̂i(∆)},

where λ = λ(∆) is the solution of

1

n+ 1

n+1∑
i=1

V̂i(∆)

1 + λV̂i(∆)
= 0. (2.9)
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We state Wilks’ theorem for the AJEL as follows.

Theorem 2.2.2. Assume EX2
1 <∞ and σ2

g(∆, G2) > 0. Then

−2 logRA (∆)
D−→ χ2

1, as n→∞.

Thus, an asymptotic 100 (1− α) % AJEL confidence interval for ∆ is given by

{∆̃ : −2 logRA(∆̃) ≤ χ2
1−α (1)}.

A sketch of the proof of Theorem 2.2.2 is given in the Appendix A.

2.2.3 Bootstrap calibration

The asymptotic distribution of the jackknife empirical log-likelihood ratio statistic is a

chi-square distribution. When the sample size is small, χ2
1−α (1) may be a poor critical value

and consequently the under-coverage problem arises. To improve the coverage, we use the

bootstrap-calibrated JEL according to the following procedure:

Step 1. Calculate Ĝ1 and Ĝ2 according to equations (2.2) and (2.3), respectively. Calculate

∆̂ = Ĝ1 − Ĝ2

Step 2. For b = 1, ..., B,

• Generate a bootstrap sample {X∗i , Y ∗i }, of size n, n ≥ 2, from the original sample {Xi, Yi}

with replacement; i = 1, 2, ..., n.

• Calculate the jackknife log-likelihood ratio logRB(∆̂) at ∆̂ over the bootstrapped sample

{X∗i , Y ∗i };

Step 3. Calculate the bootstrap-calibrated 100 (1− α) % JEL confidence interval for ∆ as

{∆̃ : −2 logR(∆̃) ≤ c∗α},

where c∗α is the 100 (1− α) % percentile of the B bootstrapped −2 logRB(∆̂).
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2.3 Simulation Study

Peng (2011) proved that EL-based methods have theoretical advantages over competing

methods such as the percentile-t bootstrap and NA, and Wang and Zhao (2016) demonstrated

that the JEL outperformed the EL by Peng (2011). In this section, we report the results

of a simulation study to compare the performance of the proposed JEL, adjusted JEL and

the bootstrap-calibrated JEL methods named as JEL-AZ, AJEL-AZ and JEL-AZ-Boot, re-

spectively with JEL, adjusted JEL and the bootstrap-calibrated JEL methods in Wang and

Zhao (2016), denoted as JEL-WZ, AJEL-WZ and JEL-WZ-Boot, respectively.

The following scenarios have been used to generate paired data with a preselected cor-

relation (ρ):

S1: X ∼ Uniform(0, 1) and Y ∼ Uniform(0, 1), ρ = 0.80,

S2: X ∼ Exponential(2) and Y ∼ Exponential(2), ρ = 0.80,

S3: X ∼ Weibull(0.5, 2) and Y ∼ Weibull(0.5, 2), ρ = 0.75,

S4: X ∼ Lognormal(0, 1.5) and Y ∼ Lognormal(0, 1.5), ρ = 0.85,

S5: X ∼ Gamma(7.7, 1) and Y ∼ Uniform(1, 1.9), ρ = 0.75,

S6: X ∼ Lognormal(0, 1) and Y ∼ Pareto(1.5, 3), ρ = 0.85.

The differences between the two correlated Gini indices are 0 for S1, S2, S3, S4, 0.1 for S5

and 0.321 for S6, respectively. The data in S1, S2, S3, and S4 have the skewnesses 0, 2, 4.12

and 33.84, respectively. We considered sample sizes 50, 100 and 150 with two nominal levels

α = 0.10 and α = 0.05 for all the simulations. The process is repeated N = 2000 times, and

we used B = 1000 replications for the bootstrap calibrations. Confidence intervals, average

lengths of confidence intervals as well as the computation times to run the simulations are

calculated for ∆ by JEL-WZ, AJEL-WZ, JEL-WZ-Boot, JEL-AZ, AJEL-AZ and JEL-AZ-

Boot methods for all the simulated data. We also add the computation times of the EL by

Peng, denoted EL-Peng. Literature shows that, for the paired samples, EL-Peng is a good

competing nonparametric method for the JEL methods.

The simulation results are summarized in Tables 2.1-2.6 for coverage probability and
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average lengths of confidence intervals. Tables 2.7-2.8 are for running times of the R codes

used for simulations with each method. For reasons of brevity, these times are reported only

for S1 and S2, but the results and conclusions are similar for S3-S6.

Table 2.1: Comparison of coverage probabilities and average lengths of the confidence inter-
vals for different jackknife empirical likelihood methods; X, Y ∼ U(0, 1).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.884 (0.084) 0.940 (0.108) 0.889 (0.054) 0.942 (0.070) 0.897 (0.044) 0.948 (0.057)
JEL-AZ 0.903 (0.114) 0.942 (0.136) 0.895 (0.072) 0.949 (0.093) 0.898 (0.057) 0.948 (0.073)
AJEL-WZ 0.896 (0.089) 0.950 (0.116) 0.898 (0.061) 0.946 (0.080) 0.902 (0.049) 0.951 (0.061)
AJEL-AZ 0.928 (0.134) 0.966 (0.162) 0.929 (0.084) 0.966 (0.106) 0.922 (0.064) 0.960 (0.081)
JEL-WZ-Boot 0.914 (0.086) 0.957 (0.109) 0.893 (0.055) 0.951 (0.071) 0.895 (0.043) 0.949 (0.059)
JEL-AZ-Boot 0.905 (0.115) 0.953 (0.137) 0.899 (0.073) 0.943 (0.094) 0.898 (0.060) 0.950 (0.075)

Table 2.2: Comparison of coverage probabilities and average lengths of the confidence inter-
vals for different jackknife empirical likelihood methods; X, Y ∼ exp(2).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.847 (0.087) 0.915 (0.112) 0.860 (0.058) 0.930 (0.076) 0.872 (0.044) 0.936 (0.060)
JEL-AZ 0.872 (0.139) 0.932 (0.167) 0.889 (0.093) 0.941 (0.116) 0.891 (0.070) 0.952 (0.091)
AJEL-WZ 0.863 (0.089) 0.936 (0.121) 0.868 (0.078) 0.937 (0.080) 0.878 (0.054) 0.942 (0.066)
AJEL-AZ 0.880 (0.176) 0.938 (0.215) 0.904 (0.115) 0.946 (0.140) 0.898 (0.081) 0.943 (0.107)
JEL-WZ-Boot 0.852 (0.091) 0.918 (0.112) 0.876 (0.069) 0.936 (0.094) 0.880 (0.049) 0.950 (0.071)
JEL-AZ-Boot 0.898 (0.148) 0.948 (0.180) 0.898 (0.096) 0.951 (0.122) 0.909 (0.073) 0.953 (0.099)

The following conclusions are made based on the tables.

1) All the coverage probabilities tend to their nominal levels (0.90 and 0.95) as the sample

size increases. However JEL-AZ, AJEL-AZ and JEL-AZ-Boot converge faster than

JEL-WZ, AJEL-WZ and JEL-WZ-Boot, respectively.

2) In general, JEL-AZ, AJEL-AZ and JEL-AZ-Boot based confidence intervals have better
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Table 2.3: Comparison of coverage probabilities and average lengths of the confidence inter-
vals for different jackknife empirical likelihood methods; X, Y ∼ Weibull(0.5, 2).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.823 (0.195) 0.898 (0.236) 0.858 (0.135) 0.910 (0.167) 0.850 (0.110) 0.916 (0.140)
JEL-AZ 0.840 (0.186) 0.901 (0.233) 0.850 (0.126) 0.902 (0.155) 0.852 (0.097) 0.913 (0.134)
AJEL-WZ 0.838 (0.196) 0.910 (0.239) 0.871 (0.135) 0.915 (0.168) 0.856 (0.114) 0.921 (0.148)
AJEL-AZ 0.865 (0.245) 0.907 (0.302) 0.868 (0.162) 0.935 (0.169) 0.876 (0.125) 0.935 (0.154)
JEL-WZ-Boot 0.863 (0.248) 0.916 (0.313) 0.867 (0.164) 0.925 (0.209) 0.881 (0.126) 0.938 (0.163)
JEL-AZ-Boot 0.865 (0.237) 0.922 (0.299) 0.865 (0.157) 0.923 (0.201) 0.878 (0.121) 0.929 (0.156)

Table 2.4: Comparison of coverage probabilities and average lengths of the confidence inter-
vals for different jackknife empirical likelihood methods; X, Y ∼ Lognormal(0, 1.5).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.716 (0.211) 0.793 (0.256) 0.752 (0.164) 0.820 (0.202) 0.778 (0.139) 0.841 (0.173)
JEL-AZ 0.766 (0.193) 0.831 (0.247) 0.799 (0.165) 0.856 (0.207) 0.823 (0.149) 0.884 (0.183)
AJEL-WZ 0.736 (0.212) 0.815 (0.259) 0.760 (0.166) 0.833 (0.203) 0.783 (0.140) 0.845 (0.173)
AJEL-AZ 0.775 (0.280) 0.914 (0.348) 0.875 (0.202) 0.927 (0.258) 0.880 (0.170) 0.929 (0.205)
JEL-WZ-Boot 0.809 (0.334) 0.885 (0.440) 0.832 (0.254) 0.912 (0.328) 0.847 (0.197) 0.916 (0.255)
JEL-AZ-Boot 0.827 (0.434) 0.895 (0.593) 0.871 (0.297) 0.919 (0.398) 0.882 (0.242) 0.924 (0.312)

Table 2.5: Comparison of coverage probabilities and average lengths of the confidence
intervals for different jackknife empirical likelihood methods; X ∼ Gamma(7.7, 1), Y ∼
Uniform(1, 1.9).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.885 (0.048) 0.931 (0.062) 0.893 (0.033) 0.937 (0.043) 0.899 (0.027) 0.948 (0.035)
JEL-AZ 0.894 (0.058) 0.941 (0.074) 0.898 (0.039) 0.944 (0.051) 0.903 (0.032) 0.950 (0.042)
AJEL-WZ 0.900 (0.052) 0.943 (0.067) 0.901 (0.035) 0.944 (0.046) 0.906 (0.028) 0.951 (0.037)
AJEL-AZ 0.901 (0.070) 0.943 (0.090) 0.898 (0.045) 0.945 (0.058) 0.910 (0.036) 0.955 (0.046)
JEL-WZ-Boot 0.887 (0.049) 0.930 (0.064) 0.897 (0.034) 0.943 (0.045) 0.908 (0.028) 0.947 (0.036)
JEL-AZ-Boot 0.888 (0.058) 0.933 (0.076) 0.900 (0.041) 0.945 (0.053) 0.904 (0.033) 0.953 (0.042)
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Table 2.6: Comparison of coverage probabilities and average lengths of the confidence in-
tervals for different jackknife empirical likelihood methods; X ∼ Lognormal(0, 1), Y ∼
Pareto(1.5, 3).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.827 (0.173) 0.894 (0.210) 0.843 (0.122) 0.896 (0.151) 0.868 (0.101) 0.933 (0.128)
JEL-AZ 0.855 (0.181) 0.920 (0.227) 0.867 (0.131) 0.929 (0.162) 0.869 (0.106) 0.938 (0.135)
AJEL-WZ 0.836 (0.182) 0.903 (0.224) 0.848 (0.127) 0.908 (0.156) 0.878 (0.103) 0.933 (0.131)
AJEL-AZ 0.882 (0.221) 0.926 (0.244) 0.891 (0.150) 0.933 (0.184) 0.896 (0.116) 0.940 (0.150)
JEL-WZ-Boot 0.886 (0.237) 0.931 (0.298) 0.886 (0.155) 0.932 (0.195) 0.889 (0.125) 0.937 (0.158)
JEL-AZ-Boot 0.875 (0.271) 0.939 (0.343) 0.886 (0.172) 0.941 (0.221) 0.892 (0.133) 0.953 (0.183)

Table 2.7: Comparison of computing times (in seconds) for different empirical likelihood
methods; X, Y ∼ U(0, 1).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

EL-Peng 5453 6739 6918 6344 7007 7197
JEL-WZ 5294 6239 5998 6219 5513 6236
JEL-AZ 344 428 463 502 437 532
AJEL-WZ 3835 4991 4835 5603 4675 6114
AJEL-AZ 357 453 511 547 456 612
JEL-WZ-Boot 31460 31751 73171 67799 254544 220765
JEL-AZ-Boot 6131 7033 20735 19471 46992 44879

Table 2.8: Comparison of computing times (in seconds) for different empirical likelihood
methods; X, Y ∼ exp(2).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

EL-Peng 6757 7283 7977 9766 8947 13047
JEL-WZ 6143 6744 7597 8139 8687 12194
JEL-AZ 401 421 503 511 529 613
AJEL-WZ 10586 15713 11658 12080 12080 13421
AJEL-AZ 782 999 841 701 0817 1054
JEL-WZ-Boot 53337 51830 93824 97616 985437 1019975
JEL-AZ-Boot 9378 10070 45775 46053 95518 93067
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coverage than these of the JEL-WZ, AJEL-WZ and JEL-WZ-Boot, respectively. The

proposed intervals are wider than Wang and Zhao’s when the distributions are non-

skewed (S1) or moderately skewed (S2). They become comparable and even slightly

shorter when the distributions are highly skewed (S3) or extremely skewed (S4).

3) For all the considered methods, the average lengths of the confidence intervals decrease

when the sample sizes increase.

4) The computational times for EL-Peng and JEL-WZ methods are comparable with a

slight advantage to the JEL-WZ method. The running times of JEL-WZ, AJEL-WZ

and JEL-WZ-Boot simulations are 5 to 20 times these of JEL-AZ, AJEL-AZ and JEL-

AZ-Boot’s, respectively.

5) Both JEL methods faced low coverage probability problem for some scenarios (S3, S4

and S6) but as expected, AJEL and bootstrap calibration improved the coverage prob-

ability in all cases for small samples and fixed the under-coverage issue with bootstrap-

calibration slightly better. However this latter is computationally time-consuming.

Based on the simulation results, we recommend the use of the proposed JEL-AZ method

to obtain interval estimate for the difference of two correlated Gini indices and its AJEL-AZ

for small samples or the bootstrap-calibrated JEL-AZ-Boot when the time is not an issue.

2.4 Real Applications

In this section, we apply the proposed methods to two real data sets. First, the data

are extracted from the Penn World Tables (PWT) database. Since 1950, PWT gathered

information on the production, income, and prices to measure real gross domestic product

(GDP) across countries over time, for 182 countries. A complete description of this data set

can be found in Summers and Heston (1995). We used it to compare the estimates of the

real GDP per capita in constant dollars expressed in international prices, base year 1985,

for the years 1970 and 1990. In this case, the Gini index measures the dispersion of real
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GDP across the 108 countries for which data are available. Figure 2.2 shows histograms and

Lorenz curves for the data at years 1970 and 1990 and the scatter plot between them. We

notice that both data from years 1970 and 1990 seem to be exponentially distributed and

their estimated Gini indexes (0.488 and 0.525) are very close to 0.5, the Gini index of the

exponential distribution. The data from both years are highly correlated (ρ = 0.93) and

moderately skewed with the skewnesses 1.33 and 1.12, respectively for the years 1970 and

1990. We calculate the confidence interval for the difference between the Gini indices at

years 1970 and 1990, at the 90% and 95% levels using our JEL methods and JEL methods

from Wang and Zhao (2016). The difference is obtained using the unbiased estimates (via

U -statistics), and the biased estimates (via plugging in the empirical distribution function)

of the Gini indices and the results are summarized in Table 2.9.

The study confirms that JEL-AZ confidence intervals lengths for the difference between

the Gini indices at years 1970 and 1990 are wider than these of JEL-WZ, which is consistent

with the simulations results according to the skewness of the data (see Table 2.1 and Table

2.2 for non-skewed or moderately skewed data). But in both cases, the confidence intervals

are small enough to conclude that there is a significant difference between the two indices

(G1 < G2).

Table 2.9: Point and interval estimates for the parameters of interest from the PWT data
set.

Point estimate Interval estimate

G1 at 1970 G2 at 1990 G1 −G2 1− α = 0.90 1− α = 0.95

Plug-in 0.484 0.520 −0.037 JEL-WZ (−0.060,−0.011) (−0.056,−0.015)
U -statistic 0.488 0.525 −0.037 JEL-AZ (−0.071,−0.001) (−0.066,−0.007)

AJEL-WZ (−0.059,−0.010) (−0.055,−0.015)
AJEL-AZ (−0.110,−0.010) (−0.098,−0.017)

Second, we consider the Panel Study of Income Dynamics (PSID) data, a longitudinal

panel survey of American families with a sample of over 18,000 individuals in 5,000 house-

holds. The study is directed by the Survey Research Center at the University of Michigan
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Figure 2.2: Exploratory plots for the PWT data set.

since 1968, and the data encompass many health, social, and economic factors. The data can

be downloaded directly from the PSID website (https://psidonline.isr.umich.edu/). Here, the

Gini index is calculated directly based on the total family income, and we are interested in

the difference in the Gini indices for the years 1996 and 1998. These indices are 0.450 and

0.457, respectively. Figure 2.3 shows histograms and Lorenz curves as well as the scatter

plot of the data for years 1996 and 1998. The observations are strongly correlated (ρ = 0.70)

and very skewed. The skewnesses are 4.58 and 8.98 for the years 1996 and 1998, respectively.

One can hardly detect the difference between the two Lorenz Curves. As before, we com-

pute the confidence interval for the difference between the Gini indices at years 1996 and

1998, at the 90% and 95% levels by different JEL methods. Table 2.10 shows the results of
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the application. While all the methods conclude there is no significant difference between

the two Gini indices (G1 = G2), the proposed methods result in slightly shorter confidence

intervals in concordance with the simulation conclusions in Table 2.3 and Table 2.4 for the

very skewed data.
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Figure 2.3: Exploratory plots for the PSID data set.

2.5 Conclusions

In this chapter, we have considered new jackknife empirical likelihood confidence inter-

vals for the difference between two correlated Gini indices based on the paired observations.

We have shown that, under some weak conditions, the log-likelihood ratio statistic converges

to a chi-squared distribution. A confidence interval is then constructed for the difference
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Table 2.10: Point and interval estimates for the parameters of interest from the PSID data
set.

Point estimate Interval estimate

G1 at 1996 G2 at 1998 G1 −G2 1− α = 0.90 1− α = 0.95

Plug-in 0.451 0.458 −0.007 JEL-WZ (−0.017, 0.002) (−0.019, 0.003)
U -statistic 0.450 0.457 −0.007 JEL-AZ (−0.015, 0.002) (−0.016, 0.004)

AJEL-WZ (−0.017, 0.002) (−0.019, 0.003)
AJEL-AZ (−0.015, 0.002) (−0.017, 0.004)

between two correlated Gini indices by using the proposed method, and compared with the

jackknife empirical likelihood-based methods from Wang and Zhao (2016) via extensive sim-

ulation studies. Not only do the confidence intervals tend to the nominal level when the

sample size increases for both methods but also our JEL-AZ methods outperform the JEL-

WZ methods in terms of coverage probability in all cases. Moreover, our JEL-AZ methods

are 5 to 20 times faster than JEL-WZ methods, which allows us to save a lot of computa-

tional time. Finally, real applications are given to illustrate the performance of the proposed

methods.
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CHAPTER 3

NEW EMPIRICAL LIKELIHOOD INFERENCE FOR THE MEAN

RESIDUAL LIFE WITH LENGTH-BIASED AND RIGHT-CENSORED

DATA

3.1 Background

The mean residual life function (MRL) of a non-negative continuous random variable

T at time t is defined as

m (t) = E (T − t|T > t) =

∫∞
t
S (u) du

S (t)
I (S (t) > 0) ,

where S(t) denotes the survival function of T and I (·) is the indicator function. The MRL

exists if and only if m (0) = E (T ) . The mean residual life function is an important charac-

teristic of the survival time as it plays the same role as a probability density function (PDF),

a cumulative distribution function (CDF), or a survival function. Because the MRL function

completely characterizes a lifetime, statisticians have studied its statistical inference for a

long time. It is in this way that Yang (1977) constructed an estimator for m(t) with cen-

sored data based on Kaplan-Meier estimates. Yang (1978) considered an empirical estimate

of m(t) on a finite sample and proved that it is strongly consistent and converges in distri-

bution to a Gaussian process. Kumazawa (1987) showed the consistency of the estimator of

m(t) proposed by Yang (1977) with right-censored data and proved that it converges weakly

to a Gaussian process on the whole line. Oakes and Dasu (1990) proposed the proportional

mean residual life model. Csörgõ and Zitikis (1996) proposed a nonparametric estimator

and constructed a normal approximation (NA)-based confidence intervals of the MRL based

on i.i.d. complete observed lifetimes. Chen and Cheng (2006) and Chen (2007) developed
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the additive mean residual life model. Sun and Zhang (2009) extended the proportional and

additive MRL and introduced a class of transformed m(t) to fit survival data under right

censoring. Zhao and Qin (2006) and Qin and Zhao (2007), developed empirical likelihood

(EL) inference of the MRL for complete i.i.d. data and right censored data and showed

through simulation studies that the EL method performs better than the normal approxi-

mation method. More recently, Zhao, Jiang, and Liu (2013) proposed an estimation method

of the MRL with left truncated and right-censored data and showed that the proposed esti-

mator converges weakly to a Gaussian process.

Length bias is a form of selection bias. It occurs when the probability of sampling a ran-

dom variable is proportional to its length (Cox, 1969) or when the random variable is subject

to left truncation with the truncation variables independent and uniformly distributed on

a well-defined interval: it is called the stationary assumption (Wang, 1991). It often arises

when prevalent sampling is used for recruiting cohort subjects as the subjects that have al-

ready experienced the event of interest and have been recruited after the onset time are often

excluded from the study. Statistical inferences of length-biased data also have been studied

by statisticians. For example, Vardi (1982) derived a nonparametric maximum likelihood

estimator of a lifetime distribution F based on two samples, one from F , the other from the

length-biased distribution of F and proved that it converges to a pinned Gaussian process.

Gupta and Keating (1986) demonstrated the unique relationships between the correspond-

ing reliability measures (i.e., the survival functions, hazard functions, and mean residual life

functions) of a distribution and its length-biased version. Huang and Qin (2012) proposed

a composite partial likelihood method for the Cox model with survival data collected under

length-biased sampling to study the survival between the vascular dementia group and the

possible Alzheimer’s disease group for the Canadian Study of Health and Aging (CSHA)

data. Recently, Li, Ma, and Wang (2017) proposed a semi-parametric method to analyze

general biased data under the additive risk model by estimating the regression parameter

and the non-parametric function. They proved the consistency and asymptotic normality

of the estimators for length-biased data, and they did not need the information about the
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truncation time.

Many other studies involve the MRL function. For example, Chan, Chen, and Di (2012),

to study disease associations with risk factors in epidemiological studies, applied the propor-

tional mean residual life model of Oakes and Dasu (1990) to censored length-biased survival

data. Ning, Qin, Asgharian, and Shen (2013) proposed a constrained EM algorithm to de-

rive nonparametric confidence intervals based on an EL ratio for length-biased right-censored

data. Wu and Luan (2014) proposed an efficient estimator of the MRL with length-biased

and right-censored data and proved that it converges to a zero-mean normal distribution.

Fakoor (2015) developed a nonparametric estimator of the MRL based on estimating the

distribution function of the length-biased lifetime, and the estimate converges to a mean-

zero Gaussian process. In the presence of right censoring, the limiting distribution of the

EL based log-likelihood ratio is a scaled chi-square distribution (Qin and Zhao, 2007). He,

Liang, Shen, and Yang (2016) proposed influence functions in an estimating equation and

showed that under very general conditions, -2log(EL ratio) converges weakly to a standard

chi-square distribution. Similar idea also can be found in Sun et al. (2009) for confidence

regions for the time-dependent regression coefficients in Cox regression models; in Zhao and

Huang (2007) and Wu et al. (2015) for interval estimate of the parameter in AFT models; in

Zhao and Jinnah (2012) to estimate the unspecified baseline hasard function and regression

parameters in the Cox regression model; in Zhao and Yang (2012) for EL inference on the

regression parameters of the survival rate while avoiding a covariance matrix and in Huang

and Zhao (2018) for inference on the bivariate survival function, etc. Recently, Liang et al.

(2016), based on the LR method from Murphy and van der Vaart (1997), proposed an EM-

algorithm to calculate the likelihood ratio directly for length-biased and right-censored data

and proved that the corresponding log-likelihood ratio converges to the standard chi-square

distribution.

To construct confidence intervals for the MRL based on length-biased right-censored

data, the -2log(EL ratio) proposed by Liang et al. (2016) has a scaled chi-squared distribu-

tion. The scale parameter, which is a function of the asymptotic variance must be estimated.
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This fact removes one of the benefits that the EL has over the NA; that is, EL does not need

a variance estimation.

In this chapter, we propose a new empirical likelihood (NEL) inference procedure for

the MRL with length-biased and right-censored data and show that, under some regularity

conditions, the limiting distribution of the empirical log-likelihood ratio for the MRL is a

standard chi-square distribution and by doing so we avoid the estimation of the scale param-

eter from Liang et al. (2016). The asymptotic property is then used to construct NEL-based

confidence interval for the MRL. Moreover, we develop the adjusted new empirical likeli-

hood (ANEL) for the MRL function to solve the convex hull problem encountered in the EL.

Simulations showed that our proposed NEL-based and ANEL-based intervals have better

coverage accuracy than the scaled EL intervals but slightly longer widths.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the no-

tations and state the main asymptotic result. In Section 3.3, a simulation study is carried

out to compare the proposed NEL and ANEL methods with the EL method from Liang et

al. (2016) in terms of coverage probability and average length of confidence interval. In

Section 3.4, an application to the Channing House data set is provided, and the conclusions

are made in Section 3.5. The proofs of Theorems are given in the Appendix B.

3.2 Main Results

3.2.1 New empirical likelihood (NEL)

Following the set up in Liang et al. (2016), let {T1, T2, ..., Tn} be i.i.d. positive random

variables with a common CDF F (T represents the true failure time variable). When a non-

negative random variable Y is observed with probability proportional to its length (Cox,

1969), it has the length-bias CDF

LF (y) =
1

µ

∫ y

0

xdF (x), y ≥ 0
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where µ = ET =
∫∞
0
S(t)d(t) is finite and S = 1− F is the survival function of T .

LF can be seen as the CDF of a randomly left truncated random variable in the sta-

tionary case (Wang 1991). Let A be the left truncated observed variable. A is uniformly

distributed on [0, Y ] and has the survival function

P (A > x) =
1

µ

∫ ∞
x

S(u)d(u).

Let τF = inf{t : F (t) = 1} be the upper bound of T . The residual survival life is R = Y −A

and the MRL m(t0) = E(R|A > t0) at time t0 becomes

m(t0) =
E(RI (A > t0))

P (A > t0)
=

∫∞
t0
uS(u)d(u)∫∞

t0
S(u)d(u)

− t0,

m(t0) =

∫ τF
t0
uS(u)d(u)∫ τF

t0
S(u)d(u)

− t0 =
E(T − t0)2 I (T > t0)

2E(T − t0) I (T > t0)
.

For the rest of the paper, we denote m (t0) by m. The last equality leads to the estimation

equation:

E
[
2 (T − t0)m− (T − t0)2

]
I (T > t0) = 0.

Let {C1, C2, ..., Cn} be i.i.d. random variables with common CDF G, representing the cen-

soring variable. Suppose that T and C are independent. We observe that:

Zi = min(Ti, Ci), δi = I(Ti ≤ Ci), i = 1, 2, ..., n.

The distribution H of Z satisfies (1−H) = (1− F )(1−G). Let {Z(1), Z(2), ..., Z(n)} be the

ordered values of Z and {δ(1), δ(2), ..., δ(n)} the corresponding values of δ associated to Z(i),

i.e., the i-th concomitant. The estimating equation becomes:

E
δ

1−G (Z)

(
2 (Z − t0)m− (Z − t0)2

)
I (Z > t0) = 0,
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as established in Liang et al. (2016). Since G is unknown, it is replaced by its Kaplan-Meier

estimator Ĝn,

Ĝn (t) = 1−
n∏
i=1

[
n− i

n− i+ 1

]I(Z(i)≤t, δ(i)=0)
,

and the proposed estimating equation finally becomes

U (m) =
n∑
i=1

Vni(m) =
n∑
i=1

2 (Zi − t0)m− (Zi − t0)2

1− Ĝn (Zi)
I (Zi > t0) δi = 0, (3.1)

from which EL confidence intervals are derived for the MRL. However, this EL ratio converges

to a scaled χ2
1 distribution. The scale parameter is a function of an unknown asymptotic vari-

ance, which has been estimated using the complicated jackknife estimator of the asymptotic

variance proposed by Stute (1996). Even though any other variance estimator could be used,

the method is time-consuming. One can notice that Equation (1) involves the Kaplan-Meier

weights
(

1− Ĝn (Zi)
)−1

. Many authors have obtained an i.i.d. representation of Kaplan-

Meier estimator, which will be used to obtain our main result.

Suppose that m0 is the true value of m. By replacing
(

1− Ĝn (Zi)
)−1

in Vni(m) (see

Equation (1)) by the i.i.d. representation from He and Huang (2003) (see Lemma 3.1) and

using the counting process notation, we let:

Wi(m) =
Φ (Zi,m) δi
1−G (Zi)

+

∫ ∞
0

ψ (s,m)

H (s)

(
dNC

i (s)− Yi (s) dΛC (s)
)
, (3.2)

where Φ (t,m) = {2 (t− t0)m− (t− t0)2}I (t > t0), ψ (s,m) =
∫∞
s

Φ (x,m) dF (x), H (s) =

EI (Zi ≤ s), NC
i (s) = I (Zi ≤ s, δi = 0), Yi (s) = I (Zi ≥ s) and ΛC (s) = −log (1−G (s)) is

the cumulative hazard function of C.

U (m0) is asymptotically equivalent to
n∑
i=1

Wi(m0), where Wi(m0) are i.i.d. random variables

with mean zero for i = 1, ..., n in the sense that

U (m0) =
n∑
i=1

Wi(m0) + op
(
n1/2

)
.
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Motivated by this i.i.d. representation, we define

Wni (m) =
Φ (Zi,m) δi

1− Ĝn (Zi)
+

∫
∞

0

n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m

)
n−1

n∑
j=1

I (Zj ≥ s)

×
[
dNC

i (s)− Yi (s) dΛ̂C (s)
]
,

(3.3)

by replacing G by Ĝn, H (s) by n−1
n∑
j=1

I (Zj ≤ s), ψ (s,m) by
n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m

)
and dΛC (s) by dΛ̂C (s) = dNC (s) /Y (s) in Wi(m), where NC (s) =

n∑
i=1

NC
i (s), Y (s) =

n∑
i=1

Yi (s) and ω(j) =
δ(j)

n− j + 1

j−1∏
k=1

[
n− k

n− k + 1

]δ(k)
for j = 1, 2, ..., n (see Stute, 1995). Based

on Wni(m)
′
s, we define the estimated EL ratio at the value m (cf. Owen 1988, 1990) as

follows

R (m) = sup

{ n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

piWni(m) = 0, pi ≥ 0

}
.

By the technique of Lagrange multipliers, it is easy to show that

l (m) = −2 logR (m) = 2
n∑
i=1

log{1 + λWni(m)},

where λ = λ (m) satisfies the equation

1

n

n∑
i=1

Wni(m)

1 + λWni(m)
= 0. (3.4)

Although Wni(m)
′
s are not independent, they can be used to construct empirical likelihood

ratio and obtain the usual standard χ2
1 distribution asymptotically, according to the following

Wilks theorem.

Theorem 3.2.1. Let m0 be the true value of m. Assume that the regularity conditions in
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the Appendix hold. Then

l (m0)
D−→ χ2

1, as n→∞,

where χ2
1 is a standard chi-squared random variable with one degree of freedom.

Thus, using Theorem 3.2.1, an asymptotic 100(1−α)% EL confidence interval for m is

given by

I = {m : l (m) ≤ χ2
1 (α)},

where χ2
1 (α) is the upper α−quantile of the distribution of χ2

1.

3.2.2 Adjusted new empirical likelihood (ANEL)

Chen, Variyath, and Abraham (2008) introduced the adjusted empirical likelihood

(AEL) to solve the under-coverage problem encountered by the EL method for small sam-

ples. The key idea of the AEL is to add an observation to the data to ensure that the convex

hull of the Wni(m) always contains zero. By doing so, they solve the empty set problem

and the AEL is well defined for all m. This technique is coupled with the NEL to obtain

the adjusted new empirical likelihood (ANEL). To apply the ANEL, we add a pseudo-data

Wnn+1(m) to the sample

Wnn+1(m) = −an
n

n∑
i=1

Wni(m),

where an = max(1, log(n)/2) as suggested by Chen et al. (2008). Based on the n + 1

observations, we define the adjusted new empirical log-likelihood ratio as

RA (m) = sup

{ n+1∏
i=1

npi :
n+1∑
i=1

pi = 1,
n+1∑
i=1

piWni(m) = 0, pi ≥ 0

}
.

Using the method of Lagrange multipliers, we can show that

lA (m) = −2 logRA (m) = 2
n+1∑
i=1

log{1 + λAWni(m)},
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where λA = λA (m), the Lagrange multiplier, is a solution of the equation

1

n+ 1

n+1∑
i=1

Wni(m)

1 + λAWni(m)
= 0. (3.5)

The ANEL retains Wilks’ theorem as follows.

Theorem 3.2.2. Assume that the regularity conditions in the Appendix hold. Then

lA (m0)
D−→ χ2

1, as n→∞.

Thus, using Theorem 3.2.2, an asymptotic 100(1− α)% ANEL confidence interval for

m is constructed as follows

IA = {m : lA (m) ≤ χ2
1 (α)}.

3.3 Simulation Study

In this section, we report the results of a simulation study to compare the finite-sample

performance of the new empirical likelihood method (NEL) and its adjustment (ANEL) with

the existing empirical likelihood (EL) method in Liang et al. (2016). Once the lifetime T

is generated, the left-truncated variable A is uniformly distributed with an upper bound

larger than the upper bound of T , to ensure the stationary assumption. We generate pairs

of observations (A, T ) until we obtain n pairs satisfying (A ≤ T ). Then, all is right-censored

by a variable C. We consider the following cases for the simulated data:

S1: T ∼ Uniform(0, 1), A ∼ Uniform(0, 10), and C ∼ Uniform(0, c),

S2: T ∼ Weibull(2, 1/
√

2), A ∼ Uniform(0, 15), and C ∼ Exponential(λ) ,

S3: T ∼ Lognormal(2, 1/2), A ∼ Uniform(0, 35), and C ∼ Exponential(λ),

where c and λ are chosen to control the censoring proportion. The true values of the length-
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biased mean residual life function at given time t0 are

m(t0) =
1− t0

3
I(0 ≤ t0 ≤ 1),

m(t0) =
e−

t20
2√

π
2

erfc
(
t0√
2

) − t0,
m(t0) =

e5

2
erfc (ln (t0)− 3)− t20

2
erfc (ln (t0)− 2)

e
9
4 erfc

(
ln (t0)−

5

2

)
− t0 erfc (ln (t0)− 2)

− t0,

for S1, S2 and S3 respectively, where erfc is the complementary error function.

Based on the simulated data set, the EL-based, NEL-based and ANEL-based confidence

intervals and average lengths are calculated according to Theorem 3.1 (Liang et al., 2016),

Theorem 3.2.1, and Theorem 3.2.2 in Section 3.2 for 90% and 95% confidence levels. For

each fixed value of c, λ, and sample size n, the process is repeated 5000 times. The coverage

probabilities and average lengths of confidence intervals are calculated at t0 = 0.1, 0.3, 0.5, 0.7

for S1, at t0 = 0.5, 0.75, 1, 1.5 for S2, and at t0 = 1, 2, 3, 4 for S3, respectively.

For different values of c and λ, 10%, and 30% censoring proportions are achieved. The

simulation results are summarized in Tables 3.1, 3.2, 3.7 for S1, Tables 3.3 and 3.4 for S2,

and Tables 3.5 and 3.6 for S3.

Based on the tables we can make the following conclusions:

1) All the coverage probabilities tend to their nominal levels (0.90 and 0.95) as the sample

size increases. They are close to the nominal levels when t0 is small. They start to

decrease as t0 increases, essentially because there is less information in the data, the

MRL at t0 being defined for values of the sample greater than t0. The best coverage

occurs often when t0 is small.

2) For all censoring rates (10%, 30%), NEL-based confidence intervals perform better

than those of the EL-based confidence intervals.

3) For n ≥ 150, NEL-based confidence intervals attain the fixed nominal levels, but are
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Table 3.1: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 10% censoring rate, for S1.

Nominal level Sample size (n) Method t0=0.1 t0=0.3 t0=0.5 t0=0.7
EL 0.888 (0.0483) 0.887 (0.0428) 0.878 (0.0356) 0.845 (0.0253)

50 NEL 0.898 (0.0505) 0.894 (0.0442) 0.885 (0.0365) 0.846 (0.0256)
ANEL 0.910 (0.0556) 0.903 (0.0512) 0.890 (0.0415) 0.861 (0.0310)

EL 0.891 (0.0339) 0.889 (0.0298) 0.880 (0.0249) 0.863 (0.0193)
100 NEL 0.899 (0.0354) 0.892 (0.0308) 0.885 (0.0256) 0.871 (0.0196)

0.90 ANEL 0.907 (0.0434) 0.898 (0.0408) 0.900 (0.0319) 0.884 (0.0218)
EL 0.899 (0.0279) 0.897 (0.0248) 0.888 (0.0206) 0.879 (0.0158)

150 NEL 0.901 (0.0290) 0.900 (0.0255) 0.891 (0.0210) 0.889 (0.0160)
ANEL 0.916 (0.0335) 0.905 (0.0305) 0.902 (0.0254) 0.896 (0.0217)

EL 0.901 (0.0240) 0.899 (0.0211) 0.893 (0.0183) 0.891 (0.0141)
200 NEL 0.914 (0.0257) 0.913 (0.0223) 0.908 (0.0187) 0.903 (0.0142)

ANEL 0.920 (0.0299) 0.915 (0.0233) 0.910 (0.0218) 0.909 (0.0169)
EL 0.939 (0.0622) 0.941 (0.0553) 0.932 (0.0461) 0.886 (0.0325)

50 NEL 0.945 (0.0646) 0.943 (0.0568) 0.935 (0.0471) 0.887 (0.0328)
ANEL 0.955 (0.0726) 0.947 (0.0659) 0.938 (0.0520) 0.912 (0.0378)

EL 0.945 (0.0442) 0.943 (0.0386) 0.931 (0.0327) 0.920 (0.0255)
100 NEL 0.949 (0.0457) 0.945 (0.0396) 0.938 (0.0335) 0.930 (0.0258)

0.95 ANEL 0.955 (0.0498) 0.950 (0.0469) 0.946 (0.0385) 0.945 (0.0317)
EL 0.949 (0.0363) 0.948 (0.0322) 0.947 (0.0274) 0.936 (0.0208)

150 NEL 0.950 (0.0376) 0.949 (0.0332) 0.949 (0.0277) 0.943 (0.0209)
ANEL 0.961 (0.0457) 0.953 (0.0373) 0.950 (0.0284) 0.950 (0.0278)

EL 0.951 (0.0313) 0.949 (0.0279) 0.946 (0.0238) 0.945 (0.0187)
200 NEL 0.960 (0.0328) 0.957 (0.0288) 0.950 (0.0245) 0.946 (0.0193)

ANEL 0.965 (0.0348) 0.964 (0.0294) 0.956 (0.0252) 0.953 (0.0213)
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Table 3.2: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 30% censoring rate, for S1.

Nominal level Sample size (n) Method t0=0.1 t0=0.3 t0=0.5 t0=0.7
EL 0.872 (0.0554) 0.854 (0.0488) 0.826 (0.0399) 0.761 (0.0236)

50 NEL 0.899 (0.0660) 0.878 (0.0562) 0.835 (0.0433) 0.777 (0.0261)
ANEL 0.900 (0.0667) 0.881 (0.0593) 0.849 (0.0488) 0.784 (0.0351)

EL 0.887 (0.0397) 0.886 (0.0363) 0.883 (0.0316) 0.845 (0.0232)
100 NEL 0.906 (0.0487) 0.900 (0.0431) 0.897 (0.0354) 0.855 (0.0249)

0.90 ANEL 0.910 (0.0548) 0.904 (0.0456) 0.900 (0.0384) 0.862 (0.0254)
EL 0.888 (0.0321) 0.887 (0.0294) 0.872 (0.0260) 0.870 (0.0202)

150 NEL 0.913 (0.0400) 0.908 (0.0350) 0.899 (0.0290) 0.876 (0.0214)
ANEL 0.915 (0.0410) 0.912 (0.0375) 0.906 (0.0318) 0.882 (0.0225)

EL 0.909 (0.0283) 0.898 (0.0261) 0.892 (0.0233) 0.889 (0.0183)
200 NEL 0.912 (0.0346) 0.908 (0.0308) 0.903 (0.0266) 0.900 (0.0196)

ANEL 0.919 (0.0391) 0.910 (0.0342) 0.910 (0.0273) 0.903 (0.0201)
EL 0.921 (0.0708) 0.907 (0.0627) 0.869 (0.0510) 0.817 (0.0421)

50 NEL 0.937 (0.0818) 0.923 (0.0705) 0.878 (0.0551) 0.839 (0.0432)
ANEL 0.944 (0.0858) 0.940 (0.0714) 0.905 (0.0651) 0.845 (0.0483)

EL 0.940 (0.0512) 0.939 (0.0473) 0.934 (0.0404) 0.894 (0.0303)
100 NEL 0.943 (0.0611) 0.941 (0.0549) 0.936 (0.0452) 0.901 (0.0321)

0.95 ANEL 0.946 (0.0677) 0.948 (0.0557) 0.940 (0.0532) 0.918 (0.0430)
EL 0.945 (0.0393) 0.943 (0.0386) 0.941 (0.0338) 0.925 (0.0264)

150 NEL 0.949 (0.0377) 0.940 (0.0374) 0.943 (0.0371) 0.928 (0.0280)
ANEL 0.952 (0.0438) 0.950 (0.0412) 0.949 (0.0383) 0.929 (0.0282)

EL 0.949 (0.0368) 0.950 (0.0340) 0.945 (0.0302) 0.940 (0.0239)
200 NEL 0.956 (0.0435) 0.951 (0.0390) 0.948 (0.0337) 0.943 (0.0256)

ANEL 0.960 (0.0440) 0.957 (0.0397) 0.953 (0.0342) 0.950 (0.0273)
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Table 3.3: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 10% censoring rate, for S2.

Nominal level Sample size (n) Method t0=0.5 t0=0.75 t0=1 t0=1.5
EL 0.821 (0.2058) 0.800 (0.2133) 0.774 (0.2202) 0.656 (0.2240)

50 NEL 0.835 (0.2110) 0.809 (0.2176) 0.783 (0.2239) 0.661 (0.2262)
ANEL 0.840 (0.2116) 0.824 (0.2191) 0.797 (0.2269) 0.671 (0.2266)

EL 0.860 (0.1533) 0.855 (0.1620) 0.835 (0.1726) 0.766 (0.1957)
100 NEL 0.871 (0.1581) 0.863 (0.1656) 0.843 (0.1769) 0.772 (0.1986)

0.90 ANEL 0.884 (0.1592) 0.870 (0.1677) 0.867 (0.1770) 0.801 (0.1996)
EL 0.874 (0.1278) 0.866 (0.1367) 0.862 (0.1478) 0.807 (0.1761)

150 NEL 0.887 (0.1324) 0.878 (0.1412) 0.869 (0.1519) 0.815 (0.1796)
ANEL 0.890 (0.1333) 0.888 (0.1438) 0.887 (0.1560) 0.838 (0.1801)

EL 0.881 (0.1100) 0.878 (0.1185) 0.873 (0.1293) 0.829 (0.1588)
200 NEL 0.886 (0.1139) 0.880 (0.1226) 0.874 (0.1335) 0.833 (0.1626)

ANEL 0.899 (0.1147) 0.887 (0.1304) 0.881 (0.1370) 0.854 (0.1634)
EL 0.884 (0.2436) 0.869 (0.2513) 0.803 (0.2617) 0.720 (0.2619)

50 NEL 0.891 (0.2495) 0.890 (0.2514) 0.841 (0.2634) 0.723 (0.2635)
ANEL 0.913 (0.2501) 0.901 (0.2563) 0.897 (0.2639) 0.888 (0.2674)

EL 0.924 (0.1822) 0.909 (0.1922) 0.890 (0.2044) 0.820 (0.2283)
100 NEL 0.930 (0.1880) 0.917 (0.1977) 0.900 (0.2094) 0.825 (0.2318)

0.95 ANEL 0.945 (0.1897) 0.922 (0.2005) 0.917 (0.2111) 0.848 (0.2384)
EL 0.934 (0.1535) 0.925 (0.1635) 0.912 (0.1762) 0.869 (0.2074)

150 NEL 0.940 (0.1588) 0.930 (0.1687) 0.916 (0.1811) 0.875 (0.2113)
ANEL 0.949 (0.1603) 0.940 (0.1704) 0.936 (0.1824) 0.888 (0.2122)

EL 0.942 (0.1342) 0.930 (0.1434) 0.925 (0.1561) 0.888 (0.1891)
200 NEL 0.945 (0.1382) 0.933 (0.1466) 0.926 (0.1573) 0.895 (0.1943)

ANEL 0.950 (0.1401) 0.941 (0.1489) 0.938 (0.1599) 0.918 (0.1949)
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Table 3.4: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 30% censoring rate, for S2.

Nominal level Sample size (n) Method t0=0.5 t0=0.75 t0=1 t0=1.5
EL 0.780 (0.2098) 0.745 (0.2162) 0.711 (0.2210) 0.564 (0.2252)

50 NEL 0.805 (0.2241) 0.768 (0.2287) 0.729 (0.2305) 0.579 (0.2336)
ANEL 0.828 (0.2319) 0.784 (0.2349) 0.732 (0.2355) 0.621 (0.2363)

EL 0.811 (0.1772) 0.795 (0.1866) 0.765 (0.1961) 0.668 (0.2039)
100 NEL 0.844 (0.1947) 0.823 (0.2022) 0.784 (0.2093) 0.684 (0.2118)

0.90 ANEL 0.859 (0.1997) 0.844 (0.2066) 0.809 (0.2099) 0.711 (0.2154)
EL 0.826 (0.1499) 0.812 (0.1594) 0.792 (0.1705) 0.709 (0.1919)

150 NEL 0.865 (0.1664) 0.845 (0.1753) 0.818 (0.1849) 0.725 (0.2018)
ANEL 0.884 (0.1671) 0.863 (0.1762) 0.827 (0.1896) 0.734 (0.2026)

EL 0.851 (0.1146) 0.839 (0.1226) 0.822 (0.1334) 0.748 (0.1623)
200 NEL 0.864 (0.1314) 0.854 (0.1414) 0.849 (0.1532) 0.806 (0.1800)

ANEL 0.879 (0.1316) 0.871 (0.1420) 0.868 (0.1540) 0.835 (0.1809)
EL 0.840 (0.2478) 0.812 (0.2547) 0.775 (0.2624) 0.627 (0.2641)

50 NEL 0.854 (0.2641) 0.823 (0.2683) 0.789 (0.2694) 0.636 (0.2700)
ANEL 0.860 (0.2644) 0.846 (0.2691) 0.798 (0.2708) 0.651 (0.2715)

EL 0.874 (0.2093) 0.852 (0.2194) 0.826 (0.2296) 0.725 (0.2371)
100 NEL 0.893 (0.2300) 0.875 (0.2375) 0.846 (0.2453) 0.737 (0.2466)

0.95 ANEL 0.904 (0.2308) 0.896 (0.2381) 0.886 (0.2460) 0.771 (0.2473)
EL 0.886 (0.1774) 0.875 (0.1886) 0.853 (0.2011) 0.763 (0.2242)

150 NEL 0.911 (0.1974) 0.901 (0.2072) 0.879 (0.2181) 0.779 (0.2348)
ANEL 0.920 (0.1983) 0.919 (0.2081) 0.887 (0.2199) 0.787 (0.2354)

EL 0.906 (0.1572) 0.896 (0.1684) 0.881 (0.1817) 0.815 (0.2111)
200 NEL 0.937 (0.1659) 0.924 (0.1732) 0.905 (0.1819) 0.827 (0.2114)

ANEL 0.944 (0.1668) 0.929 (0.1734) 0.911 (0.1825) 0.851 (0.2124)
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Table 3.5: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 10% censoring rate, for S3.

Nominal level Sample size (n) Method t0=1 t0=2 t0=3 t0=4
EL 0.732 (1.1422) 0.705 (1.1974) 0.689 (1.2314) 0.662 (1.2855)

50 NEL 0.748 (1.1644) 0.724 (1.2281) 0.706 (1.2892) 0.678 (1.3137)
ANEL 0.759 (1.1661) 0.730 (1.2290) 0.710 (1.2899) 0.699 (1.3185)

EL 0.800 (0.9313) 0.787 (1.0316) 0.766 (1.1533) 0.749 (1.2622)
100 NEL 0.821 (0.9480) 0.810 (1.0681) 0.792 (1.1640) 0.769 (1.2873)

0.90 ANEL 0.847 (0.9482) 0.825 (1.0688) 0.799 (1.1652) 0.788 (1.2880)
EL 0.840 (0.7501) 0.825 (0.8540) 0.810 (0.9947) 0.790 (1.1455)

150 NEL 0.864 (0.8120) 0.753 (0.9323) 0.737 (1.0738) 0.822 (1.2022)
ANEL 0.870 (0.8131) 0.760 (0.9330) 0.745 (1.0749) 0.829 (1.2033)

EL 0.846 (0.6048) 0.837 (0.7260) 0.824 (0.8838) 0.813 (1.0377)
200 NEL 0.872 (0.6270) 0.866 (0.8198) 0.851 (0.9498) 0.840 (1.0921)

ANEL 0.875 (0.6282) 0.871 (0.8204) 0.858 (0.9504) 0.848 (0.0924)
EL 0.803 (1.9211) 0.785 (1.9906) 0.758 (2.0580) 0.729 (2.1100)

50 NEL 0.815 (1.9418) 0.793 (2.0040) 0.769 (2.0601) 0.744 (2.1201)
ANEL 0.831 (1.9422) 0.810 (2.0047) 0.800 (2.0613) 0.769 (2.1211)

EL 0.878 (1.7148) 0.861 (1.8217) 0.843 (1.9838) 0.819 (2.0891)
100 NEL 0.889 (1.7474) 0.873 (1.8769) 0.858 (1.9924) 0.835 (2.1199)

0.95 ANEL 0.905 (1.7484) 0.893 (1.8771) 0.866 (1.9937) 0.849 (2.1206)
EL 0.931 (1.5472) 0.896 (1.5546) 0.884 (1.7253) 0.870 (1.8916)

150 NEL 0.938 (1.5512) 0.922 (1.7254) 0.904 (1.9072) 0.888 (2.0749)
ANEL 0.940 (1.5518) 0.929 (1.7260) 0.919 (1.9085) 0.891 (2.0754)

EL 0.946 (1.3881) 0.908 (1.3990) 0.895 (1.5940) 0.882 (1.7951)
200 NEL 0.948 (1.4179) 0.927 (1.5704) 0.920 (1.7487) 0.909 (1.9571)

ANEL 0.949 (1.4189) 0.934 (1.5714) 0.927 (1.7491) 0.912 (1.9579)
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Table 3.6: Comparison of coverage probabilities (average lengths) of the confidence intervals
with 30% censoring rate, for S3.

Nominal level Sample size (n) Method t0=1 t0=2 t0=3 t0=4
EL 0.548 (2.1983) 0.519 (2.2227) 0.500 (2.2553) 0.465 (2.2701)

50 NEL 0.564 (2.2753) 0.536 (2.3183) 0.511 (2.3813) 0.482 (2.3977)
ANEL 0.575 (2.2761) 0.549 (2.3191) 0.530 (2.3819) 0.492 (2.3982)

EL 0.645 (2.0887) 0.616 (2.1036) 0.602 (2.1881) 0.571 (2.2522)
100 NEL 0.662 (2.1340) 0.640 (2.1557) 0.616 (2.2487) 0.590 (2.2599)

0.90 ANEL 0.669 (2.1343) 0.651 (2.1563) 0.626 (2.2491) 0.605 (2.2604)
EL 0.684 (2.0045) 0.662 (2.0498) 0.640 (2.1111) 0.620 (2.2366)

150 NEL 0.704 (2.0481) 0.682 (2.0992) 0.662 (2.2025) 0.634 (2.2449)
ANEL 0.718 (2.0488) 0.693 (2.0999) 0.675 (2.2040) 0.660 (2.2452)

EL 0.685 (1.9516) 0.662 (2.0103) 0.645 (2.0610) 0.621 (2.0695)
200 NEL 0.714 (2.0202) 0.695 (2.0755) 0.669 (2.1197) 0.641 (2.1425)

ANEL 0.730 (2.0215) 0.712 (2.0759) 0.679 (2.1206) 0.666 (2.1455)
EL 0.603 (2.8973) 0.574 (2.9305) 0.541 (3.0239) 0.508 (3.1289)

50 NEL 0.628 (2.9707) 0.594 (3.0978) 0.580 (3.1068) 0.523 (3.2122)
ANEL 0.641 (2.9717) 0.620 (3.0982) 0.600 (3.1070) 0.534 (3.2127)

EL 0.719 (2.7927) 0.696 (2.8253) 0.670 (2.9128) 0.637 (3.0770)
100 NEL 0.729 (2.8671) 0.699 (2.8797) 0.679 (2.9623) 0.648 (3.1506)

0.95 ANEL 0.736 (2.8679) 0.702 (2.8803) 0.698 (2.9628) 0.681 (3.1517)
EL 0.758 (2.6307) 0.737 (2.6956) 0.715 (2.7443) 0.686 (2.7894)

150 NEL 0.765 (2.6726) 0.747 (2.7089) 0.719 (2.7614) 0.694 (2.8665)
ANEL 0.784 (2.6731) 0.750 (2.7098) 0.723 (2.7630) 0.724 (2.8677)

EL 0.763 (2.5301) 0.742 (2.6179) 0.716 (2.6913) 0.649 (2.7790)
200 NEL 0.801 (2.6409) 0.760 (2.7024) 0.740 (2.7548) 0.710 (2.8003)

ANEL 0.831 (2.6421) 0.782 (2.7051) 0.754 (2.7559) 0.751 (2.8123)

Table 3.7: Comparison of coverage probabilities (average length) of the 95% confidence
intervals with 10% censoring rate, for S1.

Nominal level n Method t0 = 0.1 t0 = 0.3 t0 = 0.5 t0 = 0.7
EL 0.9503 (0.0191) 0.9503(0.0176) 0.9501 (0.0169) 0.9500 (0.0138)

500 NEL 0.9552 (0.0192) 0.9552(0.0180) 0.9541 (0.0165) 0.9539 (0.0122)
EL 0.9489 (0.0131) 0.9487(0.0130) 0.9493 (0.0115) 0.9484 (0.0113)

0.95 1000 NEL 0.9501 (0.0135) 0.9500(0.0131) 0.9500 (0.0110) 0.9499 (0.0106)
EL 0.9492 (0.0051) 0.9492(0.0047) 0.9491 (0.0037) 0.9485 (0.0020)

5000 NEL 0.9500 (0.0053) 0.9501(0.0049) 0.9500 (0.0041) 0.9499 (0.0027)
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slightly wider than the EL-based confidence intervals.

4) The coverage probability is negatively affected by the skewness of the distribution, the

censorship, and the time t0. The more skewed the distribution is and the greater the

time t0 is and the higher the censorship is, the lower the coverage probability is. That

explains why the coverage probabilities in case S3 with 30% censoring are much lower

than their nominal values.

5) For small samples, and in some situations (see S2 and S3), both methods EL and NEL

have low coverage probabilities. The ANEL uniformly improves those coverages by

extending the confidence intervals.

6) For the uniform distribution (S1), we observe a little over-coverage for the sample size

n = 150 or n = 200 and mainly for t0 = 0.1. However, when sample sizes increase to

n = 500, 1000, and 5000, the coverage probabilities decrease and become closer to the

given nominal level (see Table 3.7). Zheng, Shen, and He (2014) encountered these

findings as well. Though this behavior apparently is not due to random variation, and

we could not find a theoretical justification, we notice that the coverage probabilities

become more stable when the sample size increases considerably.

3.4 Real Applications

In this section, we apply the proposed method to estimate the mean residual lifetime

for the Channing House data. A complete description of this data set can be found in Klein

and Moeschberger (1997). Channing House is a retirement center located in Palo Alto,

California. The data set contains the sex, the ages at entry, the ages at death (or leaving

the center) and censoring indicators of 462 retirees, who are composed of 97 men and 365

women and were collected from January 1964 to July 1975 (Hyde, 1980). During the study,

46 men and 130 women died at Channing House. The individuals who left Channing House

or were still in the center at the end of the study were censored. Because an individual must

survive to a sufficient age to enter the retirement center, the data are left-truncated and
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right-censored. The entry age is considered as the left-truncation time. A sub-sample of this

data (448 people), which includes the individuals whose ages at entry are more than 65.5

years (786 months), can be seen as length-biased and right-censored data (Chen and Zhou,

2012). The stationary assumption for this sub-sample has been checked by the methods in

Addona and Wolfson (2006) and Asgharian, Borgan, Gill, and Keiding (2006). The 90%

confidence intervals for the mean residual life function of people in the center based on

the length-biased sub-sample are calculated at selected ages 70, 75, 80, 85, 90 and 95 and

summarized in Table 3.8.

Table 3.8: 90% confidence intervals for the MRL at the selected ages for the Channing house
data.

age (years) 70 75 80 85 90 95
EL (10.08, 11.06) (8.03, 9.05) (6.18, 7.26) (4.77, 5.87) (3.48, 4.43) (2.06, 2.57)
NEL (9.62, 10.85) (7.54, 8.83) (5.67, 7.03) (4.24, 5.64) (2.97, 4.24) (1.62, 2.39)
ANEL (9.52, 11.15) (7.46, 9.11) (5.61, 7.27) (4.13, 5.80) (2.85, 4.29) (1.57, 2.39)

Table 3.9: 90% confidence intervals for the MRL at the selected ages for men versus women
for the Channing house data.

Men Women
age (years) EL NEL ANEL EL NEL ANEL
70 (9.14, 10.41) (8.09, 9.97) (8.04, 10.24) (10.13, 11.27) (9.65, 11.04) (9.55, 11.32)
75 (7.07, 8.33) (5.99, 7.89) (5.30, 8.11) (8.07, 9.25) (7.56, 9.01) (7.40, 9.27)
80 (5.12, 6.36) (3.93, 5.91) (3.36, 6.08) (6.24, 7.46) (5.70, 7.21) (5.65, 7.43)
85 (3.45, 4.60) (2.01, 4.14) (1.74, 4.22) (4.86, 6.06) (4.32, 5.83) (4.22, 5.96)
90 (1.96, 2.78) (0, 2.37) (0, 2.37) (3.57, 4.54) (3.06, 4.36) (2.96, 4.39)
95 — — — (2.04, 2.56) (1.60, 2.39) (1.58, 2.39)

We notice that, as the age increases, the MRL decreases in general. Table 3.8 confirmed

the results of the simulation study: NEL and ANEL confidence intervals for the mean residual

life at selected ages are slightly wider than EL confidence intervals.
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Finally, in Table 3.9, we compared different confidence intervals for men versus women

in the center and reached the well-known conclusion that women have greater MRL than

men, meaning, tend to live longer than men at the same given age.

3.5 Conclusions

In this chapter, we have considered new empirical likelihood confidence intervals for

the mean residual life function with length-biased and right-censored data based on the

estimating equation in Liang et al. (2016). We have shown that the NEL log-likelihood ratio

converges to a chi-squared distribution instead of the scaled chi-squared from Liang et al.

(2016). We have also proposed the adjusted NEL for the MRL. A confidence interval is then

constructed for the MRL at time t0 by using the proposed methods and compared with the

empirical likelihood-based (EL) method via simulations. Not only do the proposed confidence

intervals tend to the nominal level when the sample size increases for all approaches, but

also, the NEL and ANEL outperform the EL method in terms of coverage probability at the

cost of having a wider average length of confidence intervals. It is also easy to implement the

proposed method using existing R packages. Finally, a real application is given to illustrate

the performance of the proposed EL methods.
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CHAPTER 4

NOVEL EMPIRICAL LIKELIHOOD INFERENCE FOR THE MEAN

DIFFERENCE WITH RIGHT-CENSORED DATA

4.1 Background

Examples of comparing two means with two independent or dependent samples are nu-

merous. It is the case in a lot of two-sample problems. For example, in a case-control study,

epidemiologists compare two treatments (one treatment group can be a control group). In

clinical trials, the effects of two drugs (one drug can be a placebo) on patients are compared

to determine how these drugs affect them. In the reliability, the mean lifetimes of electric

components obtained using different procedures or from various providers are analyzed, etc.

Parametric methods such as two-sample Z-test for large samples or two-sample Stu-

dent’s t-test for small samples are used when the underlying distributions of the samples

are assumed to be normal. The likelihood ratio test also is used for hypothesis testing. In

practice, the sampling distributions are unknown, and these methods need to be adjusted.

Nonparametric and semiparametric methods are then used, and one method that has proven

to give good results in these cases is the EL approach.

For two uncensored samples problems, Qin (1994) developed a semiparametric EL model

(maximum likelihood for one sample and EL for the other sample ) for the mean difference.

Jing (1995) and later, Liu et al. (2008) applied the EL method and showed that it is

Bartlett-correctable. For case-control data, Qin (1998) studied semiparametric method in-

ference, and Zhang (2000) found EL based confidence intervals for the treatment effect with

auxiliary information. A weighted version of the two-sample EL for the mean is proposed by

Wu and Yan (2012). Often, these methods can be extended to parameters different from the

sample mean. In this way, Claeskens et al. (2003) used EL to compare two distributions and

find their confidence regions. Zhou and Jing (2003) extended the EL method to the differ-
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ence of quantiles problem, and compare it with the normal approximation method. Liu and

Zhao (2012) used the semi-parametric EL approach to construct confidence intervals for the

ROC curves of two populations with missing data. The jackknife empirical likelihood (JEL)

method for the difference of two correlated continuous-scale ROC curves, the difference of

two quantiles, and the one-sample difference of quantiles are proposed by Yang and Zhao

(2013, 2016, 2018) to avoid estimating link variables associated with the EL method. An and

Zhao (2017) went further and applied the JEL for the difference of two correlated volumes

under ROC surfaces. This technique is used to compare two treatments for discrimination

of three-class classification data. Recently, Liang, Dai, and He (2019) developed the mean

empirical likelihood (MEL), based on the pairwise-means of the data. Their EL statistic is

a weighted sum of chi-squared random variables.

Some work has also been done for censored samples. Wang and Wang (2001) intro-

duced inference in the two-sample random censorship model by the synthetic data approach.

They had to deal with a scale parameter, which made their method complicated. Zhou and

Liang (2005) applied the EL-based semiparametric inference method to the treatment effect.

Some extensions are remarkable for censored samples. In a series of publications, McKeague

and Zhao (2002, 2005, 2006) established the foundation of comparing two distributions or

two survival functions by constructing confidence bands for their difference or ratio. Using

smoothed EL methods, Zhao and Zhao (2011) constructed confidence intervals for the ratio

and difference of two hazard functions. The EL is also used by Zhao et al. (2016) to estimate

odds ratios of survival functions. To our knowledge, no paper used the i.i.d. representation

approach (He et al., 2016) for the two-sample inference with right-censored data.

In the present chapter, we use this i.i.d. representation technique and propose an EL

inference procedure for the mean difference for right-censored data. This method is denoted

IID-EL. We prove that, under some regularity conditions, the limiting distribution of the

empirical log-likelihood ratio is a standard chi-squared. This method allows for avoiding

estimating the scale parameter from Wang and Wang (2001). We can construct an IID-EL-

based confidence interval for the mean difference using the established asymptotic property.
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Simulation studies show that the proposed IID-EL-based intervals have better coverage ac-

curacy than the scaled EL intervals from Wang and Wang (2001).

The rest of the chapter is organized as follows. In Section 4.2, we show the proposed

method and state the main asymptotic results. In Section 4.3, a simulation study is carried

out to compare the performance of proposed IID-EL method with the EL method from Wang

and Wang (2001) in terms of coverage probability and the average length of the confidence

interval. In Section 4.4, an application to the PBC data set is provided. Section 4.5 contains

the conclusions. The proofs are relegated in the Appendix C.

4.2 Main Results

For all the EL methods described in the following subsections, we consider the two-

sample random censorship model. Let {X0
1 , X

0
2 , ..., X

0
m} and {Y 0

1 , Y
0
2 , ..., Y

0
n } be i.i.d. pos-

itive random variables with the CDF F and G from two different populations X0 and Y 0,

respectively. These two samples are randomly censored by the two sets of random variables

{U1, U2, ..., Um} and {V1, V2, ..., Vn} having CDF K and Q, respectively. X0
i and Y 0

j are

not directly observable but, instead we observe (Xi, δi) and (Yj, ηj) for i = 1, 2, ...,m and

j = 1, 2, ..., n, where

Xi = min
(
X0
i , Ui

)
, δi = I

(
X0
i ≤ Ui

)
, i = 1, 2, ...,m,

Yj = min
(
Y 0
j , Vj

)
, ηj = I

(
Y 0
j ≤ Vj

)
, j = 1, 2, ..., n.

In this model, F , G, K, and Q are assumed continuous and unknown. All the variables

X0
i , Ui, Y

0
j , and Vj are supposed to be mutually independent, for i = 1, 2, ...,m and j =

1, 2, ..., n, and I (·) is the indicator function.

4.2.1 I.i.d. empirical likelihood (IID-EL)

This subsection describes how the i.i.d. empirical likelihood method, denoted IID-EL,

is established. Let θ1 and θ2 be the respective means of the two populations X0 and Y 0. We
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are interested in the inference on the difference θ = θ1− θ2. Let θ = θ (F,G) = EX0−EY 0.

Then, by the inverse probability weighting theory, we have

θ (F,G) = E
δX

1−K (X−)
− E ηY

1−Q (Y−)
. (4.1)

To apply the EL, we will replace the unknown K and Q by their Kaplan-Meier estimators

K̂m and Q̂n,

1− K̂m (t) =
m∏
i=1

[
m− i

m− i+ 1

]I(X(i)≤t, δ(i)=0)

and

1− Q̂n (t) =
n∏
j=1

[
n− j

n− j + 1

]I(Y(j)≤t, η(j)=0)
,

where {X(1), X(2), ..., X(m)} (respectively {Y(1), Y(2), ..., Y(n)}) are the ordered values of the

sample X ( respectively the sample Y ) and {δ(1), δ(2), ..., δ(m)} (respectively {η(1), η(2), ..., η(n)}

) the corresponding values of δ associated to X(i)(respectively η associated to Y(j)). Then,

one will test

E
δX

1− K̂m (X−)
− E ηY

1− Q̂n (Y−)
≈ θ. (4.2)

Based on this result, Wang and Wang (2001) derived EL confidence intervals for the mean

difference θ. However, their estimated EL ratio involves the estimated censoring distributions

K̂m and Q̂n and converges to a scaled χ2
1 distribution. The scale parameter is a function of

some unknown asymptotic variances from both samples, which need to be estimated. The

results of this EL are affected by the variance estimators. For example, the plug-in estimator

is not stable, in case of the right censoring, and it leads to the low coverage probability. On

the one hand, Wang and Wang (2001) used the modified jackknife estimator of the asymptotic

variance proposed by Stute (1996) to achieve their results (see Wang and Wang, 2001), on

the other hand, the method is time-consuming. One of the advantages of the EL method

over the non-EL existing methods is that the EL does not need the variance estimation,

but the presence of the scale parameter removes this advantage from the EL. Our approach

tries to restore this primary advantage to the EL. As one notices, the relation (2.2) involves
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the Kaplan-Meier weights
(

1− K̂m (Xi−)
)−1

and
(

1− Q̂n (Yj−)
)−1

, for i = 1, 2, ...,m and

j = 1, 2, ..., n. The i.i.d. representations of Kaplan-Meier estimators exist in the literature

(see Yang, 1997), and they will be used to obtain our main result. The main idea is to write

the weights as the sum of i.i.d. random variables plus a remainder.

By replacing
(

1− K̂m (Xi−)
)−1

and
(

1− Q̂n (Yj−)
)−1

by their i.i.d. representations

from He et al. (2016) (see Equation (3.2)), we let

Vi =
Xiδi

1−K (Xi−)
+

1− δi
H (Xi−)

ϕ (Xi)−
∫ ∞
0

ϕ (s)
I (Xi ≥ s)

H
2

(s−)
dH0 (s) , (4.3)

where H (x) = P (X1 ≤ x), H0 (x) = P (X1 > x, δ1 = 0) and ϕ (x) =
∫∞
x
sdF (s),

Wj =
Yjηj

1−Q (Yj−)
+

1− ηj
L (Yj−)

ψ (Yj)−
∫ ∞
0

ψ (s)
I (Yj ≥ s)

L
2

(s−)
dL0 (s) , (4.4)

where L (y) = P (Y1 ≤ y), L0 (y) = P (Y1 > y, η1 = 0) and ψ (y) =
∫∞
y
sdG (s) and for any

functional A, A = 1− A.

Vi andWj are i.i.d. random variables with means EV1 = θ1 and EW1 = θ2 for i = 1, ...,m

and j = 1, 2, ..., n. At this point, θ (F,G) = EV −EW and the usual EL (see Owen, 1990) to

test whether θ is equal to a given value or to construct confidence interval for θ can be applied.

But Vi and Wj are not observable, due to the presence of the unknown K,H,H0, F,Q, L, L0,

and G. To define an estimated EL ratio, F,G,K, and Q are replaced by their Kaplan-Meier

estimators F̂n, Ĝm,K̂n, and Q̂m, respectively, with

F̂m (t) = 1−
m∏
i=1

[
m− i

m− i+ 1

]I(X(i)≤t, δ(i)=1)
,

Ĝn (t) = 1−
n∏
j=1

[
n− j

n− j + 1

]I(Y(j)≤t, η(j)=1)
,
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H,H0, L, and L0 by their empirical counterparts given by

Hm (x) =
1

m

m∑
k=1

I (Xk ≤ x) , Ln (y) =
1

n

n∑
k=1

I (Yk ≤ y) ,

H0
m (x) =

1

m

m∑
k=1

I (Xk ≤ x, δk = 0) , L0
n (y) =

1

n

n∑
k=1

I (Yk ≤ y, ηk = 0) ,

ϕ (x) by ϕm (x) =
∫∞
x
sdF̂m (s) and ψ (y) by ψn (y) =

∫∞
y
sdĜn (s).

We obtain

Vmi =
Xiδi

1− K̂m (Xi−)
+

1− δi
Hm (Xi−)

ϕm (Xi)−
∫ ∞
0

ϕm (s)
I (Xi ≥ s)

H
2

m (s−)
dH0

m (s) (4.5)

and

Wnj =
Yjηj

1− Q̂n (Yj−)
+

1− ηj
Ln (Yj−)

ψn (Yj)−
∫ ∞
0

ψn (s)
I (Yj ≥ s)

L
2

n (s−)
dL0

n (s) . (4.6)

One fundamental property of Vmi and Wnj is stated as follows.

Theorem 4.2.1. Let Vmi and Wnj be defined as in equations (4.5) and (4.6). Under the

conditions that
∫∞
0
s2/K (s) dF (s) <∞, and

∫∞
0
s2/Q (s) dG (s) <∞, as m→∞, n→∞,

it holds that

1√
m

m∑
i=1

(Vmi − θ1)−
1√
m

m∑
i=1

(Vi − θ1) = op (1)

and

1√
n

n∑
j=1

(Wnj − θ2)−
1√
n

n∑
j=1

(Wj − θ2) = op (1) .

Theorem 4.2.1 is just an adaptation of Theorem 3.1 in He et al. (2016) with the i-

th influence function Vi − θ1 for given θ1 (respectively j-th influence function Wj − θ2 for

given θ2). Hence the reader can refer to this paper for the proof. Zheng, Zhao, and Yu

(2012) proposed the influence function-based EL method when the estimating functions

contain nuisance parameters. They proved that under some mild conditions, the log-EL

ratio statistics limiting distributions are chi-squared. The same idea also can be found in

Sun et al. (2009) for confidence regions for the time-dependent regression coefficients in
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Cox models; in Zhao and Huang (2007) and Wu et al. (2015) for interval estimate of the

parameter in AFT models; in Huang and Zhao (2018) for inference on the bivariate survival

function, etc. Theorem 4.2.1 is useful to prove Lemma C.1 in the Appendix C, which contains

the relations leading to our main result.

Remark 4.2.1. The technique of using influence functions is also known under the denom-

ination i.i.d. representation as
m∑
i=1

(Vmi − θ1) asymptotically can be written as a partial sum

of m i.i.d. influence functions Vi − θ1, for example.

Remark 4.2.2. Although both Vmi
′
s and Wnj

′
s are not independent, they can be used to con-

struct the EL ratio and obtain the standard χ2
1 distribution asymptotically. The main reason

(see the above mentioned Lemma C.1) is that the asymptotic variance of 1/
√
m

m∑
i=1

(Vmi − θ1)

is the limit of 1/m
m∑
i=1

(Vmi − θ1)2, which is σ2
1 = var (Vi). We have the similar result for

Wnj.

Let p1 = (p11, p12, ..., p1m)′ and p2 = (p21, p22, ..., p2n)′ be two probability vectors over

the two samples Vm and Wn, respectively, with

m∑
i=1

p1i = 1, p1i > 0,
n∑
j=1

p2j = 1, p2j > 0.

To find the IID-EL ratio for θ, denoted r (θ), based on Vmi
′
s and Wnj

′
s, we consider one of

the parameters (θ1 for example) as a nuisance parameter, and define the estimated IID-EL

ratio at (θ1, θ) as

R (θ1, θ) = sup

{ m∏
i=1

(mp1i)
n∏
j=1

(np2j) :
m∑
i=1

p1iVmi = θ1;
n∑
j=1

p2jWnj = θ1 − θ
}
.

Note that θ1 will eventually need to be profiled out. The estimated IID-EL log-likelihood

at (θ1, θ) (see Owen 1988, 1990) is

l (p1, p2) =
m∑
i=1

log (p1i) +
n∑
j=1

log (p2j) ,
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and the estimated IID-EL log-likelihood ratio is then

logR (θ1, θ) =
m∑
i=1

log (mp̂1i (θ1)) +
n∑
j=1

log (np̂2j (θ1, θ)) ,

where p̂1i (θ1) and p̂2j (θ1, θ) maximize l (p1, p2) with the constraints



m∑
i=1

p1i = 1,
n∑
j=1

p2j = 1

m∑
i=1

p1iVmi = θ1

n∑
j=1

p2jWnj = θ1 − θ.

Using Lagrange multipliers, it is easy to show that p̂1i (θ1) and p̂2j (θ1, θ) which maximize

l (p1, p2) are given by

p̂1i =
1

m {1 + λ1(Vmi − θ1)}
, i = 1, ...,m

and

p̂2j =
1

n {1 + λ2(Wnj − θ1 + θ)}
, j = 1, ..., n,

where the Lagrange multipliers λ1 and λ2 are solutions to the following equations

1

m

m∑
i=1

Vmi − θ1
1 + λ1 (Vmi − θ1)

= 0 (4.7)

and

1

n

n∑
j=1

Wnj − θ1 + θ

1 + λ2 (Wnj − θ1 + θ)
= 0. (4.8)

The log-EL ratio becomes

logR (θ1, θ) = −
m∑
i=1

log {1 + λ1 (Vmi − θ1)} −
n∑
j=1

log {1 + λ2 (Wnj − θ1 + θ)} . (4.9)
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To derive the IID-EL ratio function for θ, we first need to find the θ̂1, which maximizes

logR (θ1, θ) for θ fixed. Theorem 1 from Qin and Zhao (2000), ensures the existence of θ̂1

such that θ̂1 is a consistent estimate of θ1. In addition, R (θ1, θ) attains its local maximum

value at θ̂1 and
√
m
(
θ̂1 − θ1

)
D−→ N

(
0,

β1β2
β2 + kβ1

)
, (4.10)

where β1 = E(Vm − θ1)2, β2 = E(Wn − θ1 + θ)2 and m/n→ k (k > 0) as m,n→∞ and
D−→

means converges in distribution.

Plugging θ̂1 into the log-likelihood ratio function, we have log r (θ) , logR
(
θ̂1, θ

)
and the

following theorem is established.

Theorem 4.2.2. Let θ0 be the true value of θ. Let s = m + n. Assume the conditions of

Theorem 4.2.1 hold and m/s = δ → δ0 ∈ (0, 1) as s → ∞. Then −2 log r (θ0)
D−→ χ2

1, as

s→∞,

where χ2
1 is a standard chi-squared random variable with one degree of freedom.

Thus, using Theorem 4.2.2, an asymptotic 100(1− α)% IID-EL confidence interval for

θ is given by

I = {θ : −2 log r(θ) ≤ χ2
1 (α)},

where χ2
1 (α) is the upper α−quantile of the distribution of χ2

1.

4.2.2 I.i.d. adjusted empirical likelihood (IID-AEL)

The adjusted empirical likelihood (AEL) introduced by Chen, Variyath, and Abraham

(2008) aims mainly to ensure that the EL ratio is always well-defined by adding a pseudo

point to the original dataset so that the convex hull of the augmented dataset contains the

true mean value. This approach often can solve the under-coverage problem encountered by

the EL method for small samples. We apply this technique to the IID-EL and then obtained

the IID-AEL. For this purpose, we add a pseudo-data to each sample

Vmm+1 − θ1 = −am
m

m∑
i=1

(Vmi − θ1) ;Wnn+1 − θ1 + θ = −an
n

n∑
j=1

(Wnj − θ1 + θ) ,
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where am = max(1, log(m)/2) and an = max(1, log(n)/2).

Adopting the same methodology as in the subsection 4.2.1, we define the estimated

IID-AEL ratio at (θ1, θ) as

RA (θ1, θ) = sup

{m+1∏
i=1

(m+ 1)p1i

n+1∏
j=1

(n+ 1)p2j :
m+1∑
i=1

p1i (Vmi − θ1) = 0;

n+1∑
j=1

p2j (Wnj − θ1 + θ) = 0

}
.

Remark 4.2.3. For any given θ, the IID-AEL ratio RA (θ1, θ) is always well defined because

as n,m → ∞, with probability tending to 1, the true value of θ1 lies in the convex hull of

Vmi’s and the true value of θ1 − θ lies in the convex hull of Wnj’s.

Suppose θ01 is the true value of θ1. In fact, for i.i.d. Vi and by constuction of the AEL,

θ01 lies in the convex hull of Vi’s with probability tending to 1 as m approaches infinity.

This means that for αi ≥ 0,
m+1∑
i=1

αi = 1, we have
m+1∑
i=1

αi
(
Vi − θ01

)
= 0.

We can write

m+1∑
i=1

αi
(
Vmi − θ01

)
=

m+1∑
i=1

αi (Vmi − Vi) +
m+1∑
i=1

αi
(
Vi − θ01

)
=

m+1∑
i=1

αi (Vmi − Vi) .

For βi such that αi =
βi√
m+ 1

, as m→∞, we have

m+1∑
i=1

αi
(
Vmi − θ01

)
=

m+1∑
i=1

βi√
m+ 1

(Vmi − Vi)

≤ max
1≤i≤m+1

βi ×
1√
m+ 1

m+1∑
i=1

(Vmi − Vi)

= op (1) .
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because, as m→∞,
1√
m+ 1

m+1∑
i=1

(Vmi − Vi) = op (1) according to Theorem 4.2.1.

We can prove similar result for Wnj.

The IID-AEL log-ratio at (θ1, θ) is then

logRA (θ1, θ) = −
m+1∑
i=1

log
{

1 + λA1 (Vmi − θ1)
}
−

n+1∑
j=1

log
{

1 + λA2 (Wnj − θ1 + θ)
}
, (4.11)

where the Lagrange multipliers λA1 and λA2 are solutions to the ensuing equations

1

m+ 1

m+1∑
i=1

Vmi − θ1
1 + λA1 (Vmi − θ1)

= 0, (4.12)

and

1

n+ 1

n+1∑
j=1

Wnj − θ1 + θ

1 + λA2 (Wnj − θ1 + θ)
= 0. (4.13)

Profiling out θ1, we write log rA (θ) , logRA
(
θ̂A1 , θ

)
, where θ̂A1 = max

θ1
logRA (θ1, θ) .

We can establish the following Wilks theorem for the IID-AEL ratio, rA(θ).

Theorem 4.2.3. Let θ0 be the true value of θ. Let t = m + n + 2. Assume the conditions

of Theorem 4.2.1 hold and (m+ 1)/t→ ρ ∈ (0, 1) as t→∞. Then −2 log rA (θ0)
D−→ χ2

1, as

t→∞.

Theorem 4.2.3 can be used to obtain, an asymptotic 100(1− α)% IID-AEL confidence

interval for θ as

IA = {θ : −2 log rA(θ) ≤ χ2
1 (α)}.

4.2.3 I.i.d. mean empirical likelihood (IID-MEL)

In order to improve the poor accuracy of the EL methods for small sample sizes and

multi-dimensional parameters, Liang et al. (2019) developed the mean empirical likelihood

(MEL). The MEL ratio is based on pseudo-data, which consists of the pairwise means of

the observed data. The MEL for two-sample comparison was developed in the context of

i.i.d. random samples and its log-likelihood ratio converges in distribution to a weighted
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sum of independent standard chi-square random variables with one degree of freedom. It

can be applied to the samples Vm and Wn as they admit an i.i.d. representation. To obtain

the IID-MEL, we apply the MEL to the samples Vm and Wn with Vmi and Wnj defined in

equations (4.5) and (4.6). For this, we generate the pairwise data


ZV = {(Vmk + Vml) /2; 1 ≤ k ≤ l ≤ m} ,

ZW = {(Wnk +Wnl) /2; 1 ≤ k ≤ l ≤ n} .
(4.14)

The pseudo samples obtained can be written as


ZV

1 , Z
V
2 , ..., Z

V
M ;M = m(m+ 1)/2,

ZW
1 , ZW

2 , ..., ZW
N ;N = n(n+ 1)/2.

(4.15)

To define the two-sample IID-MEL, we let p1 = (p11, p12, ..., p1M)′ and

p2 = (p21, p22, ..., p2N)′ be two probability vectors over the two samples ZV
M and ZW

N , respec-

tively. The estimated IID-MEL ratio at (θ1, θ) is

RM (θ1, θ) = sup

{ M∏
r=1

(Mp1r)
N∏
s=1

(Np2s) :
M∑
r=1

p1rZ
V
r = θ1;

N∑
s=1

p2sZ
W
s = θ1 − θ

}
.

By the Lagrange multipliers method, we can derive the IID-MEL log-ratio at (θ1, θ) as

logRM (θ1, θ) =−
M∑
r=1

log
{

1 + λM1
(
ZV
r − θ1

)}
−

N∑
s=1

log
{

1 + λM2
(
ZW
s − θ1 + θ

)}
,

(4.16)

where the Lagrange multipliers λM1 , λM2 are solutions to the following equations

1

M

M∑
r=1

ZV
r − θ1

1 + λM1 (ZV
r − θ1)

= 0, (4.17)
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and

1

N

N∑
s=1

ZW
s − θ1 + θ

1 + λM2 (ZW
s − θ1 + θ)

= 0. (4.18)

With θ̂M1 being the value which maximizes logRM (θ1, θ) with respect to θ1, we can

write log rM (θ) , logRM
(
θ̂M1 , θ

)
. The following result for the IID-MEL ratio, rM(θ0) is

proven.

Theorem 4.2.4. Let θ0 be the true value of θ. Let s = m + n. Let Vi, Wj be

defined by equations (4.3), (4.4). Assume the conditions of Theorem 4.2.1 hold and

m/s = δ → δ0 ∈ (0, 1) as s → ∞. Then −2 log rM (θ0) /s
D−→ rχ2

1, as s → ∞, where

r =
(
σ2
1

δ0
+

σ2
2

1−δ0

)/(σ2
1

δ20
+

σ2
2

(1−δ0)2

)
, σ2

1 = var(Vi) and σ2
2 = var(Wj).

Therefore, using Theorem 4.2.4, an asymptotic 100(1−α)% IID-MEL confidence interval

for θ is given by

IM = {θ : −2r̂−1 log rM (θ) /s ≤ χ2
1 (α)},

where r̂ is the estimated value of r obtained by replacing σ2
1 and σ2

2 by their estimators σ̂2
1

and σ̂2
2, respectively.

Remark 4.2.4. For the variances σ̂2
1 and σ̂2

2, the modified jackknife estimator (Stute, 1996)

has been used in simulations, but any other consistent estimators can also been considered.

4.3 Simulation Study

In this section, we report the results of a simulation study to compare the finite sample

performance of the proposed IID-EL with the EL method in Wang and Wang (2001), denoted

EL-WW, as well as the IID-AEL and the IID-MEL methods. Since the EL-WW performed

better than the martingale based bootstrap (MBB) and the Efron’s bootstrap (EB) methods

(see Wang and Wang, 2001), we escape them in the simulation study for comparison.

Let us denote ShiftedExp(λ, L) as the shifted exponential distribution with shift pa-

rameter L, rate λ and the CDF G(x) = 1−e−λ(x−L), x > L. Three simulated data have been

considered.
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(i) X0 and Y 0 are generated from the U(0, 1) distribution and are censored by U and V ,

having the U(0, c0) distribution.

(ii) X0 follows Exp(2), Y 0, the ShiftedExp(2, 1). The censoring variables U and V follow

Exp(λ1) and Exp(λ2), respectively.

(iii) X0 is drawn from logNorm(0, 1), Y 0 from χ2
3, U from U(c1, 2c1) and V from Exp(λ3).

The numbers c0, c1, λ1, λ2 and λ3 are used to control the desired censoring proportion.

Based on the data set, the EL-WW-based, IID-EL-based, IID-AEL-based, and IID-MEL-

based confidence intervals and their average lengths are calculated according to Theorem 2.1

(Wang and Wang, 2001), Theorem 4.2.2, Theorem 4.2.3, and Theorem 4.2.4 in Section 4.2

for 90% and 95% confidence levels. For each fixed value of c0, c1, λ1, λ2 and λ3 and sample

sizes (m,n) = (10, 15), (15, 10), (25, 30), (30, 25) and (60, 60), the process is repeated 10000

times. 10%, 25% and 40% censoring rates have been considered. The coverage probabilities

and average lengths of confidence intervals are calculated and the simulation results are

summarized in Tables 4.1-4.3 and Table 4.4-4.6 corresponding to 90% and 95% confidence

levels, respectively.

Based on the tables we can make the following conclusions:

1) The coverage probabilities for all the methods tend to their nominal levels (0.90 and

0.95) as the sample sizes increase. Their performances are subject to the censoring

proportions. As the censoring rate becomes higher, the coverage accuracy decreases.

This behavior is uniform for the IID-EL, whereas it is violated sometimes with the

EL-WW. For example, in Table 4.2, for (m,n) = (30, 25), the coverage is better with

25% censoring rate than 10%. This fact shows the consistency of the IID-EL over the

EL-WW. Also, the EL-WW attains the nominal levels with samples (m,n) = (25, 30),

(m,n) = (30, 25) or (m,n) = (60, 60), while the IID-EL reaches them quickly even

with sample size (m,n) = (10, 15) or (m,n) = (15, 10).

2) For both methods, the average lengths of the confidence intervals increase with the

heavy censoring proportions, but decrease with the larger sample sizes. In most cases,
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Table 4.1: Comparison of coverage probabilities (average lengths) of the confidence intervals
of θ at different censoring rates (CR) with 90% confidence level; X, Y ∼ U(0, 1) and U, V ∼
U(0, c0)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.880 (0.349) 0.907 (0.384) 0.918 (0.459) 0.914 (0.402)
(15, 10) 0.892 (0.340) 0.901 (0.381) 0.917 (0.461) 0.914 (0.402)

0.10 (25, 30) 0.902 (0.253) 0.912 (0.261) 0.919 (0.295) 0.913 (0.265)
(30, 25) 0.895 (0.224) 0.913 (0.258) 0.920 (0.294) 0.915 (0.262)
(60, 60) 0.910 (0.167) 0.919 (0.178) 0.927 (0.192) 0.923 (0.179)
(10, 15) 0.861 (0.418) 0.896 (0.435) 0.917 (0.498) 0.911 (0.464)
(15, 10) 0.844 (0.398) 0.887 (0.438) 0.915 (0.500) 0.909 (0.467)

0.25 (25, 30) 0.856 (0.270) 0.899 (0.289) 0.918 (0.319) 0.910 (0.298)
(30, 25) 0.908 (0.241) 0.910 (0.290) 0.916 (0.319) 0.914 (0.298)
(60, 60) 0.907 (0.150) 0.915 (0.190) 0.920 (0.203) 0.917 (0.192)
(10, 15) 0.818 (0.452) 0.892 (0.534) 0.903 (0.577) 0.902 (0.584)
(15, 10) 0.831 (0.417) 0.885 (0.530) 0.906 (0.571) 0.904 (0.572)

0.40 (25, 30) 0.838 (0.340) 0.889 (0.361) 0.912 (0.381) 0.893 (0.385)
(30, 25) 0.816 (0.281) 0.898 (0.366) 0.908 (0.385) 0.905 (0.389)
(60, 60) 0.877 (0.212) 0.904 (0.232) 0.914 (0.242) 0.909 (0.240)
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Table 4.2: Comparison of coverage probabilities (average lengths) of the confidence inter-
vals of θ at different censoring rates (CR) with 90% confidence level; X ∼ Exp(2), Y ∼
ShiftedExp(2, 1), U ∼ Exp(λ1) and V ∼ Exp(λ2)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.875 (0.414) 0.899 (0.546) 0.909 (0.628) 0.909 (0.580)
(15, 10) 0.893 (0.355) 0.903 (0.514) 0.904 (0.577) 0.915 (0.570)

0.10 (25, 30) 0.903 (0.317) 0.912 (0.475) 0.917 (0.509) 0.921 (0.497)
(30, 25) 0.888 (0.329) 0.907 (0.469) 0.916 (0.521) 0.916 (0.510)
(60, 60) 0.907 (0.274) 0.913 (0.331) 0.922 (0.376) 0.920 (0.343)
(10, 15) 0.866 (0.417) 0.882 (0.559) 0.905 (0.635) 0.892 (0.597)
(15, 10) 0.862 (0.416) 0.866 (0.517) 0.902 (0.624) 0.889 (0.582)

0.25 (25, 30) 0.860 (0.369) 0.903 (0.497) 0.910 (0.563) 0.905 (0.498)
(30, 25) 0.901 (0.386) 0.907 (0.487) 0.912 (0.533) 0.915 (0.497)
(60, 60) 0.904 (0.307) 0.903 (0.393) 0.915 (0.429) 0.908 (0.419)
(10, 15) 0.821 (0.440) 0.857 (0.575) 0.885 (0.651) 0.858 (0.623)
(15, 10) 0.813 (0.457) 0.828 (0.590) 0.888 (0.694) 0.849 (0.601)

0.40 (25, 30) 0.849 (0.366) 0.876 (0.499) 0.890 (0.523) 0.876 (0.555)
(30, 25) 0.837 (0.385) 0.859 (0.489) 0.891 (0.512) 0.882 (0.520)
(60, 60) 0.879 (0.355) 0.892 (0.411) 0.909 (0.436) 0.900 (0.455)



60

Table 4.3: Comparison of coverage probabilities (average lengths) of the confidence intervals
of θ at different censoring rates (CR) with 90% confidence level; X ∼ logNorm(0, 1), Y ∼
χ2
3, U ∼ U(c1, 2c1) and V ∼ Exp(λ3)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.820 (1.104) 0.853 (1.266) 0.902 (1.694) 0.867 (1.469)
(15, 10) 0.800 (0.859) 0.824 (1.031) 0.903 (1.523) 0.839 (1.195)

0.10 (25, 30) 0.833 (0.666) 0.884 (0.733) 0.911 (0.909) 0.890 (0.853)
(30, 25) 0.829 (0.490) 0.871 (0.637) 0.910 (0.819) 0.883 (0.729)
(60, 60) 0.876 (0.204) 0.884 (0.225) 0.914 (0.289) 0.896 (0.275)
(10, 15) 0.803 (1.176) 0.836 (1.353) 0.887 (1.715) 0.853 (1.505)
(15, 10) 0.814 (0.946) 0.839 (1.136) 0.868 (1.534) 0.839 (1.348)

0.25 (25, 30) 0.815 (0.655) 0.864 (0.786) 0.900 (0.986) 0.869 (0.937)
(30, 25) 0.795 (0.546) 0.835 (0.711) 0.899 (0.901) 0.859 (0.861)
(60, 60) 0.857 (0.283) 0.865 (0.312) 0.902 (0.379) 0.869 (0.404)
(10, 15) 0.765 (1.227) 0.833 (1.375) 0.840 (1.744) 0.846 (1.567)
(15, 10) 0.776 (0.995) 0.820 (1.195) 0.842 (1.671) 0.833 (1.546)

0.40 (25, 30) 0.795 (0.792) 0.821 (0.872) 0.842 (1.114) 0.822 (1.029)
(30, 25) 0.785 (0.598) 0.825 (0.748) 0.853 (0.970) 0.853 (0.999)
(60, 60) 0.830 (0.289) 0.851 (0.318) 0.866 (0.433) 0.869 (0.444)
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Table 4.4: Comparison of coverage probabilities (average lengths) of the confidence intervals
of θ at different censoring rates (CR) with 95% confidence level; X, Y ∼ U(0, 1) and U, V ∼
U(0, c0)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.924 (0.432) 0.951 (0.450) 0.958 (0.551) 0.958 (0.487)
(15, 10) 0.930 (0.445) 0.940 (0.459) 0.959 (0.553) 0.951 (0.488)

0.10 (25, 30) 0.937 (0.298) 0.955 (0.310) 0.960 (0.353) 0.957 (0.318)
(30, 25) 0.948 (0.245) 0.958 (0.309) 0.961 (0.353) 0.958 (0.317)
(60, 60) 0.949 (0.185) 0.960 (0.212) 0.969 (0.229) 0.965 (0.214)
(10, 15) 0.920 (0.437) 0.947 (0.525) 0.957 (0.601) 0.953 (0.570)
(15, 10) 0.922 (0.461) 0.938 (0.526) 0.949 (0.601) 0.950 (0.569)

0.25 (25, 30) 0.927 (0.315) 0.947 (0.347) 0.954 (0.383) 0.952 (0.363)
(30, 25) 0.934 (0.305) 0.952 (0.348) 0.956 (0.384) 0.954 (0.364)
(60, 60) 0.948 (0.208) 0.957 (0.227) 0.963 (0.242) 0.960 (0.230)
(10, 15) 0.914 (0.499) 0.941 (0.649) 0.951 (0.698) 0.950 (0.719)
(15, 10) 0.916 (0.555) 0.941 (0.639) 0.949 (0.691) 0.943 (0.701)

0.40 (25, 30) 0.923 (0.365) 0.943 (0.438) 0.952 (0.461) 0.950 (0.480)
(30, 25) 0.922 (0.396) 0.942 (0.444) 0.954 (0.467) 0.951 (0.485)
(60, 60) 0.939 (0.257) 0.952 (0.281) 0.954 (0.292) 0.954 (0.297)
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Table 4.5: Comparison of coverage probabilities (average lengths) of the confidence inter-
vals of θ at different censoring rates (CR) with 95% confidence level; X ∼ Exp(2), Y ∼
ShiftedExp(2, 1), U ∼ Exp(λ1) and V ∼ Exp(λ2)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.928 (0.499) 0.940 (0.589) 0.957 (0.630) 0.956 (0.608)
(15, 10) 0.929 (0.538) 0.938 (0.568) 0.955 (0.645) 0.950 (0.609)

0.10 (25, 30) 0.937 (0.403) 0.957 (0.481) 0.960 (0.586) 0.960 (0.522)
(30, 25) 0.946 (0.392) 0.949 (0.478) 0.964 (0.588) 0.960 (0.540)
(60, 60) 0.949 (0.301) 0.958 (0.361) 0.969 (0.417) 0.966 (0.401)
(10, 15) 0.912 (0.549) 0.939 (0.627) 0.953 (0.699) 0.940 (0.672)
(15, 10) 0.909 (0.551) 0.918 (0.648) 0.947 (0.703) 0.942 (0.692)

0.25 (25, 30) 0.923 (0.472) 0.950 (0.559) 0.954 (0.685) 0.954 (0.604)
(30, 25) 0.925 (0.513) 0.934 (0.592) 0.959 (0.679) 0.951 (0.601)
(60, 60) 0.943 (0.337) 0.957 (0.401) 0.960 (0.444) 0.958 (0.432)
(10, 15) 0.871 (0.576) 0.915 (0.664) 0.945 (0.719) 0.925 (0.736)
(15, 10) 0.866 (0.583) 0.897 (0.653) 0.936 (0.726) 0.907 (0.715)

0.40 (25, 30) 0.900 (0.508) 0.935 (0.691) 0.950 (0.709) 0.941 (0.716)
(30, 25) 0.899 (0.533) 0.924 (0.688) 0.953 (0.702) 0.951 (0.711)
(60, 60) 0.931 (0.405) 0.950 (0.500) 0.958 (0.508) 0.956 (0.558)
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Table 4.6: Comparison of coverage probabilities (average lengths) of the confidence intervals
of θ at different censoring rates (CR) with 95% confidence level; X ∼ logNorm(0, 1), Y ∼
χ2
3, U ∼ U(c1, 2c1) and V ∼ Exp(λ3)

CR (m,n) EL-WW IID-EL IID-AEL IID-MEL
(10, 15) 0.872 (1.607) 0.907 (1.849) 0.936 (2.305) 0.920 (2.118)
(15, 10) 0.884 (1.417) 0.911 (1.588) 0.933 (2.114) 0.926 (1.860)

0.10 (25, 30) 0.903 (0.904) 0.931 (1.176) 0.947 (1.359) 0.947 (1.383)
(30, 25) 0.883 (0.877) 0.928 (1.053) 0.948 (1.253) 0.938 (1.188)
(60, 60) 0.922 (0.459) 0.939 (0.524) 0.955 (0.605) 0.946 (0.621)
(10, 15) 0.850 (1.743) 0.902 (2.001) 0.933 (2.436) 0.929 (2.406)
(15, 10) 0.871 (1.541) 0.905 (1.726) 0.930 (2.154) 0.925 (2.059)

0.25 (25, 30) 0.878 (1.019) 0.897 (1.325) 0.933 (1.494) 0.932 (1.564)
(30, 25) 0.880 (0.994) 0.901 (1.193) 0.935 (1.412) 0.920 (1.482)
(60, 60) 0.901 (0.605) 0.918 (0.690) 0.937 (0.774) 0.934 (0.880)
(10, 15) 0.850 (1.759) 0.890 (2.041) 0.914 (2.467) 0.905 (2.410)
(15, 10) 0.865 (1.726) 0.902 (1.934) 0.919 (2.363) 0.929 (2.404)

0.40 (25, 30) 0.869 (1.156) 0.886 (1.503) 0.921 (1.738) 0.887 (1.806)
(30, 25) 0.873 (1.473) 0.844 (1.377) 0.927 (1.565) 0.889 (1.767)
(60, 60) 0.874 (0.728) 0.887 (0.838) 0.929 (0.935) 0.917 (1.121)
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IID-EL based confidence interval performs better than these of the EL-WW-based

confidence intervals. They provide better coverage probability, but the interval lengths

are slightly wider.

3) The IID-AEL and the IID-MEL boosted the coverage considerably for small samples

and performed almost equally. For both methods, the average length is bigger than

this of IID-EL, resulting in higher coverages. Their usefulness is emphasized when the

censoring rate increases as the coverage probabilities get closer to the fixed nominal

levels.

4) When (m,n) = (60, 60), and in some other cases, The proposed EL confidence intervals

are over-covered, but this behavior vanishes with heavy censored data.

Based on the simulations results, we advise to use the proposed IID-EL method for con-

structing confidence intervals for the difference of two means under right censoring as its

coverage probabilities are the closest to the confidence levels. We can use either IID-AEL or

IID-MEL when the samples are small, and the censoring proportion is significantly high.

4.4 Real Application

In this section, we apply the proposed method to the famous Primary Biliary Cirrhosis

(PBC) data set. The data set can be found in Appendix D of Fleming and Harrington

(1991). This data is from the Mayo Clinic trial in PBC of the liver, conducted between

1974 and 1984. From the 424 patients eligible for the trial, 312 consent to take part in a

double-blinded randomized trial, and we consider these 312 patients for this study. They

were divided into two groups receiving the drug D-penicillamine (DPCA) or a placebo. As of

July 1986, disease and survival status, censoring status and a lot of covariates measurements

were recorded, 125 patients had died (11 deaths not due to PBC), eight had been lost to

follow-up, and 19 had undergone a liver transplant. These latter are considered as censored

for this study. For each group, we consider the subgroup consisting of the male patients.

Thus, the DPCA group has 21 patients with a censoring rate of 33%, and the placebo group
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15 patients and 36% censoring. We are interested in the difference of the mean survival times

θ, between the two groups. The nonparametric maximum likelihood estimator (NPMLE)

for θ is θ̂ = 860 days and the 90% and 95% confidence intervals using the EL-WW, IID-EL,

IID-AEL, and IID-MEL methods are summarized in Table 4.7. Although the IID-EL, IID-

AEL, and IID-MEL intervals are wider than the EL-WW one, all contain zero. We conclude

that there is no statistically significant difference between the mean survival times in the two

groups. This result confirms the conclusion of previous studies, i.e, there are no detectable

difference between the distributions of survival times for the DPCA and placebo groups (see

Fleming and Harrington, 1991).

Table 4.7: 90% and 95% Confidence intervals for θ for the PBC data

1− α = 0.90 1− α = 0.95
EL-WW (-165.38, 1502.31) (-365.41, 1567.23)
IID-EL (-181.67, 1526.01) (-386.22, 1591.96)
IID-AEL (-255.53, 1578.67) (-452.08, 1623.69)
IID-MEL (-246.87, 1607.29) (-419.20, 1709.26)

4.5 Conclusions

In this chapter, we propose inference on the mean difference for right-censored data

using a combination of EL and i.i.d. representation technique (IID-EL). We prove that the

empirical log-likelihood ratio statistic converges to a chi-squared distribution asymptotically,

i.e., Wilks’ theorem is preserved contrary to the plug-in EL method. By inverting the EL

ratio statistic, we construct a confidence interval for the mean difference. The proposed

method (IID-EL) and its calibrations (IID-AEL, IID-MEL) have some advantages over the

plug-in EL, including better coverage probability. The IID-EL has practical value, as shown

by a real data application.
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CHAPTER 5

WEIGHTED EMPIRICAL LIKELIHOOD INFERENCE FOR THE

DIFFERENCE BETWEEN THE AREAS UNDER TWO CORRELATED

ROC CURVES WITH RIGHT-CENSORED DATA

5.1 Background

The area under the ROC curve (AUC) is a synthetic index calculated for ROC curves.

The receiver operating characteristic (ROC) curve is developed initially during World War

II to analyze radar receivers. Its primary purpose was to differentiate enemy aircraft from

a signal noise. It has been quickly adapted to several areas such as psychology, medicine,

epidemiology, radiology, etc. The ROC curve can be used for any analysis method that aims

to distinguish two populations: one with a condition and the other one without it. That is

why it is prolific in a laboratory or diagnostic tests, screening tests that try to discriminate

disease and non-disease patients, and in analyzing the accuracy of statistical models that

classify subjects into one or two groups (linear regression, linear discriminant analysis). An

excellent summary of recent studies and different applications of the ROC curve is provided

by Pepe (2003). We define here the ROC curve and the AUC in the framework of diagnostic

medicine.

Let F and G be the cumulative distribution functions (CDF) of non-disease and disease

populations, respectively. Let X and Y be the response variables of a continuous-scale

diagnostic test for a non-disease and a disease patient, respectively. Patients with a response

greater than a given threshold c are considered as ‘disease’ and those with a response smaller

than c are ‘non-disease’. The true positive rate (TPR) or sensitivity is the probability

that the test detects the disease when it is present, and the false positive rate (FPR), the

complement of specificity, is the probability that the test detects the disease when it is not

present. Sensitivity and specificity of the test are defined as Se(c) = P (Y > c) = 1 − G(c)
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and Sp(c) = P (X ≤ c) = F (c). The ROC curve is the plot of Se(c) against 1 − Sp(c) for

−∞ ≤ c ≤ ∞, or equivalently as a plot of ROC(p) = 1 − G(F−1(1 − p)), for p ∈ [0, 1] ,

where F−1(p) = inf {x ∈ R : F (x) ≥ p} . The area under the ROC curve (denoted ∆) is then

defined as

∆ =

∫ 1

0

ROC(p)dp. (5.1)

Bamber (1975) proved that ∆ = P (X ≤ Y ). Thereby, the AUC can be interpreted

as the probability that, among two subjects chosen at random, a disease patient and a

non-disease patient, the value of the diagnostic test marker is higher for the disease patient

than for the non-disease patient. Therefore, an AUC of 0.5 indicates that the marker is

non-informative. An increase in AUC indicates an improvement in discriminatory abilities,

with a maximum of 1. It provides options to compare two ROC curves generated from

independent groups or paired subjects.

Pepe and Cai (2004) defined the ROC curve as the probability distribution of placement

values. For a given Y from the disease population, the placement value is defined as U =

1−F (Y ). U represents the proportion of non-diseased subjects with their test values larger

than Y , and so marks the placement of Y within the non-diseased population. Based on this

relationship, we can write

∆ = E(1− U) = E(F (Y )). (5.2)

It often happens that two or more diagnostic tests are compared to judge their discrimi-

nating capacity in the face of the patient’s condition. It is also possible that two doctors will

perform a patient’s assessment. The data’s correlated nature must be taken into account in

the statistical analysis of differences between areas when two or more empirical curves are

constructed from tests based on the same individuals. The design using the same individuals

is, in general, more precise because it controls the inter-patient variation.

For complete data, many authors have considered parametric, semi-parametric, and

nonparametric methods for comparing two AUCs. The parametric approach has been pro-

posed alternately by Dorfman and Alf Jr. (1969), McClish (1989), and later Metz et al.



68

(1998). Their method assumes that the samples have a binormal distribution. The area

under an empirical ROC curve is equal to the Mann-Whitney two-sample statistic. Delong

et al. (1988), noting that that the Mann-Whitney statistic is a generalized U -statistic, pro-

posed a test statistic having a standard normal distribution that can be used to construct

CI for the difference ∆. All the above mentioned methods are associated with a massive

computation. Another nonparametric method that has proven itself in reducing the compu-

tation burden is the EL method. To avoid estimating link variables associated with the EL

method, Yang and Zhao (2013) developed the jackknife empirical likelihood (JEL) method

for the difference of two correlated continuous-scale ROC curves. Zhang and Zhang (2014)

developed a semiparametric EL and EL CIs for the difference between two correlated AUCs.

To assess the discriminating power of a diagnostic test with three ordinal groups, An and

Zhao (2017) proposed the JEL for the difference of two volumes under correlated ROC sur-

faces.

While all these methods are developed for uncensored data, the literature does not show

a single published article comparing two correlated AUCs for the censored case. Chraznowski

(2014) proposed the weighted EL (WEL) for a single AUC with right-censored data and es-

tablished its asymptotic properties. Our work is the extension of Chraznowski’s one sample

result in two samples.

In the present chapter, we develop the two-sample WEL method for the difference of

two areas under two correlated ROC curves using the placement value approach. Moreover,

we apply an adjustment to boost the coverage rate of confidence intervals for small samples.

The chapter is organized as follows. In Section 5.2, we introduce the notations and

establish the asymptotic property of the proposed NA, WEL methods and the adjustment

denoted AWEL. Simulation studies are conducted in Section 5.3. We illustrate the proposed

method by a real example in Section 5.4, and a brief conclusion is given in Section 5.5. The

proofs are provided in the Appendix D.
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5.2 Main Results

We use similar notations as Wang et al. (2009) and Chrzanowski (2014) did. Let (T1, T2)

be a pair of diagnostic tests with continuous outcomes. Both tests are performed on m non-

disease subjects and n disease subjects. Let (X1, X2) and (Y1, Y2) be the population of non-

disease and disease subjects, respectively. Let (X0
1 , X

0
2 ) and (Y 0

1 , Y
0
2 ) be the test results for

the non-diseased and diseased subjects, respectively. {(X0
11, X

0
21), (X

0
12, X

0
22), ..., (X

0
1m, X

0
2m)}

and {(Y 0
11, Y

0
21), (Y

0
12, Y

0
22), ..., (Y

0
1n, Y

0
2n)} represent positive bivariate random samples from

(X0
1 , X

0
2 ) and (Y 0

1 , Y
0
2 ) with the cumulative distribution functions (CDF) F (x1, x2) and

G(y1, y2), respectively. These two samples are randomly right-censored by the sets of ran-

dom variables {U11, U12, ..., U1m}, {U21, U22, ..., U2m}, {V11, V12, ..., V1n}, and {V21, V22, ..., V2n}

with CDF K1, K2, Q1, and Q2, respectively. Due to this censoring scheme, we can-

not observe directly (X0
1i, X

0
2i) and (Y 0

1j, Y
0
2j) but, instead we observe (X1i, X2i, δ1i, δ2i) and

(Y1j, Y2j, η1j, η1j) ,

where

X1i = min
(
X0

1i, U1i

)
, δ1i = I

(
X0

1i ≤ U1i

)
, i = 1, 2, ...,m,

X2i = min
(
X0

2i, U2i

)
, δ2i = I

(
X0

2i ≤ U2i

)
, i = 1, 2, ...,m,

Y1j = min
(
X0

1j, V1j
)
, δ1j = I

(
Y 0
1j ≤ V1j

)
, j = 1, 2, ..., n,

Y2j = min
(
X0

2j, V2j
)
, δ2j = I

(
Y 0
2j ≤ V2j

)
, j = 1, 2, ..., n.

All the variables X0
ki, Uki, Y

0
kj, and Vkj are mutually independent, for i = 1, 2, ...,m,

j = 1, 2, ..., n, k = 1, 2, and I (·) is the indicator function.

Let F1(x1) = F (x1,∞), F2(x2) = F (∞, x2), G1(y1) = G(y1,∞), and G2(y2) = G(∞, y2)

be the marginal distributions for X0
1 , X

0
2 , Y

0
1 , and Y 0

2 , respectively. Fk, Gk, Kk, and Qk, for

k = 1, 2 are unknown. Let τf = inf {t : f(t) = 1}. We assume τFk
≤ τKk

, τGk
≤ τQk

and

without loss of generality τFk
≤ τGk

, k = 1, 2. Based on the placement value and denoting
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∆k the AUC corresponding to the test Tk, we have

∆k = EGk
{Fk(Yk1)} . (5.3)

Setting Zkj = Fk(Ykj), we obtain a simpler form ∆k = EGk
{Zk1}. We are interested in the

difference ∆ = ∆1 −∆2. For inference on ∆, all the unknown distributions Fk, Gk, Kk, and

Qk will be replaced by their Kaplan-Meier estimators

1− F̂k (t) =
m∏
i=1

[
m− i

m− i+ 1

]I(X(ki)≤t, δ(ki)=1),

1− Ĝk (t) =
n∏
j=1

[
n− j

n− j + 1

]I(Y(kj)≤t, η(kj)=1),

1− K̂k (t) =
m∏
i=1

[
m− i

m− i+ 1

]I(X(ki)≤t, δ(ki)=0),

1− Q̂k (t) =
n∏
j=1

[
n− j

n− j + 1

]I(Y(kj)≤t, η(kj)=0),

where {X(k1), X(k2), ..., X(km)} (respectively {Y(k1), Y(k2), ..., Y(kn)}) are the ordered values

of the sample Xki (respectively the sample Ykj) and {δ(k1), δ(k2), ..., δ(km)} (respectively

{η(k1), η(k2), ..., η(kn)}) the corresponding values of δki associated to Xki(respectively ηkj as-

sociated to Ykj). Note that we set F̂k(X(km)) = Ĝk(Y(kn)) = K̂k(X(km)) = Q̂k(Y(kn)) = 1 to

make F̂k, Ĝk, K̂k, and Q̂k proper distributions, in case they are not. To estimate the AUC

we use the estimator developed by Wang et al (2009) and define

∆̂k =

∫ X(km)

0

F̂k(t)dĜk(t) + 1− Ĝk(X(km)).

Let Hk(t) = P (Xk1 ≤ t), Lk(t) = P (Yk1 ≤ t),ΛFk
(t) =

∫ t
0
dFk(s)/(1−Fk(s−)),ΛGk

(t) =∫ t
0
dGk(s)/(1 − Gk(s−)). The following theorem describes the asymptotic property of the

estimator ∆̂k and can be extended to obtain this of ∆̂.
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Theorem 5.2.1. (Wang et al., 2009, Theorem 2.2). Let ∆0
k be the true value of ∆k. Assume

that the regularity conditions in the Appendix hold. Then

√
m+ n

(
∆̂k −∆0

k

)
D−→ N (0, σ2

k),

where σ2
k = (1+1/ρ)σ2

xk+(1+ρ)σ2
yk, ρ = lim(m/n),

σ2
xk =

∫ τFk

0

{∫ τFk

t

(1− Fk(s))dGk(s)

}2
1− Fk(t−)

1− Fk(t)
1

1−Hk(t)
dΛFk

(t),

σ2
yk =

∫ τFk

0

{
Fk(t)(1−Gk(t))−

∫ τFk

t

Fk(s)dGk(s)− (1−Gk(τFk
))

}2

× 1−Gk(t−)

1−Gk(t)

1

1− Lk(t)
dΛGk

(t). (5.4)

A consistent estimator of σ2
k can be obtained by replacing Fk and Gk by their Kaplan-

Meier estimators, Hk and Lk by their empirical counterparts Hkm = (1/m)
m∑
i=1

I (Xki ≤ t)

and Lkn = (1/n)
n∑
j=1

I (Ykj ≤ t), and the cumulative hazard functions ΛFk
and ΛGk

by their

Nelson-Aalen estimators Λ̂Fk
and Λ̂Gk

.

5.2.1 Normal approximation (NA)

For the large sample, having a consistent estimate ∆̂ for ∆ and using the Central Limit

Theorem we can establish NA asymptotic results for ∆. Let

Jmxk(t) = I(0 ≤ t ≤ X(km)), Jnyk = I(0 ≤ t ≤ Y(kn)),

H1
km = (1/m)

m∑
i=1

I
(
Xki ≤ t, δ(ki) = 1

)
, L1

kn = (1/n)
n∑
j=1

I
(
Ykj ≤ t, η(kj)

)
,

MFk(t) =
√
m

(
H1
km −

∫ t

0

(1−Hkm(s−))dΛFk(s)

)
,

MGk(t) =
√
n

(
L1
kn −

∫ t

0

(1− Lkn(s−))dΛGk(s)

)
,

α1k =

∫ X(km)

0

{∫ X(km)

t

(1− Fk(s))dGk(s)

}
1− F̂k(t−)

1− Fk(t)
Jmxk(t)

1−Hkm(t−)
dMFk(t), (5.5)
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β1k =

∫ X(km)

0

{
Fk(t)(1−Gk(t))−

∫ X(km)

t

Fk(s)dGk(s)− (1−Gk(X(km)))

}
× 1− Ĝk(t−)

1−Gk(t)

Jnyk
1− Lkn(t−)

dMGk(t). (5.6)

Using Wang et al. (2009) estimator, we can derive the asymptotic distribution of the

difference ∆̂ = ∆̂1 − ∆̂2 according to the following theorem.

Theorem 5.2.2. Let ∆0 be the true value of ∆. Assume that the regularity conditions in

the Appendix hold. Then

√
m+ n

(
∆̂−∆0

)
D−→ N (0, σ2),

σ2 = σ2
1 + σ2

2 − 2σ2
12,

σ2
12 = (1 + 1/ρ)Cov(α11, α12) + (1 + ρ)Cov(β11, β12), ρ = lim(m/n),

where σ2
k is defined in Theorem 5.2.1.

Denoting σ̂2 a consistent estimator for σ2 and using Theorem 5.2.2, a 100(1 − α)%

normal approximation-based confidence interval for ∆ can be constructed as follows.

INA =

∆̂− z1−α/2

√
σ̂2

m+ n
, ∆̂ + z1−α/2

√
σ̂2

m+ n

 ,

where z1−α/2 is the (1− α/2)th quantile of the standard normal distribution.

5.2.2 Weighted empirical likelihood (WEL)

The computation of the normal based CI requires a great amount of calculation due to

the complicated form of the variance that need to be estimated. We turn to the WEL that

does not need a variance estimation as any EL method. We cannot define the WEL on Zkj’s

since they are unknown. They are replaced by Ẑkj = F̂k(Ykj). We defined here the estimated

WEL (EWEL) for the true value ∆0 of ∆, in the sense of Ren (2001, 2008). Let us consider
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the weights ωkj = n∆Ĝk(Ykj) based on the Kaplan-Meier jumps of the estimator Ĝk. They

represent the importance of each observation Ẑkj in the pseudo sample Ẑk1, Ẑk2, ..., Ẑkn, for

k = 1, 2. Moreover, Wang et al. (2009) estimator is a weighted mean of those pseudo-values:

∆̂k = 1∑n
l=1 ωkl

n∑
j=1

ωkjẐkj. Although the sum of the weights is n, for the rest of the chapter

and to avoid any ambiguity we will denote the sample size by n and the sum of the weights∑n
l=1 ωkl by

∑
ωkl.

Let (pk1, pk2, ..., pkn)′ be two probability vectors, k = 1, 2. We have

EWEL
(
∆0
)

= sup

{ 2∏
k=1

n∏
j=1

p
ωkj

kj :
n∑
j=1

ωkjpkj = 1,
n∑
j=1

ωkjpkj(Ẑkj −∆0
k) = 0;

n∑
j=1

ω1jp1jẐ1j −
n∑
j=1

ω2jp2jẐ2j = ∆0

}
.

By the technique of Lagrange multipliers, we can derive that the estimated weighted

empirical log-likelihood ratio (EWELLR) for ∆0, denoted R (∆0) verifies

l
(
∆0
)

= −2 logR
(
∆0
)

= 2

(
n∑
j=1

ω1j log{1 + 2λ(Ẑ1j −∆0
1)}+

n∑
j=1

ω2j log{1− 2λ(Ẑ2j −∆0
2)}

)
,

where λ = λ (∆0) ,∆0
1, and ∆0

2 satisfy the following system of equations



1∑
w1l

n∑
j=1

ω1j(Ẑ1j −∆0
1)

1 + 2λ(Ẑ1j −∆0
1)

= 0,

1∑
w2l

n∑
j=1

ω2j(Ẑ2j −∆0
2)

1− 2λ(Ẑ2j −∆0
2)

= 0,

1∑
w1l

n∑
j=1

ω1jẐ1j

1 + 2λ(Ẑ1j −∆0
1)
− 1∑

w2l

n∑
j=1

ω2jẐ2j

1− 2λ(Ẑ2j −∆0
2)

= ∆0.

(5.7)

Due to the dependent nature of Ẑk1, Ẑk2, ..., Ẑkn, the asymptotic distribution of the EWELLR

statistic is a scaled-χ2
1, as stated in the following theorem.

Theorem 5.2.3. Recall that ∆0 is the true value of ∆. Let r(∆0) = (m+n)(S2
1 +S2

2)/(nσ2).
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Assume that the regularity conditions in the Appendix hold. Then

r(∆0)l
(
∆0
) D−→ χ2

1, as n→∞,

where S2
k = 1∑

ωkl

n∑
j=1

ωkj

(
Ẑkj −∆o

k

)2
, σ2 is defined in Theorem 5.2.2, and χ2

1 is a standard

chi-squared random variable with one degree of freedom.

Thus, using Theorem 5.2.3, an asymptotic 100(1− α)% EL confidence interval for ∆ is

given by

IWEL = {∆ : r̂(∆)l (∆) ≤ χ2
1 (α)},

where χ2
1 (α) is the upper α-quantile of the distribution of χ2

1. The estimate r̂(∆) is obtained

by replacing σ2
1, σ

2
2 and σ2 by consistent estimates σ̂2

1, σ̂
2
2 and σ̂2 in r(∆).

5.2.3 Adjusted weighted empirical likelihood (AWEL)

The adjusted empirical likelihood (AEL) introduced by Chen et al. (2008) is a cali-

bration method, whose primary purpose is to make sure that the EL estimation equations

always have a solution. It is beneficial for small samples as it solves the ‘empty set’ problem.

This is done by adding a pseudo-observation to the data, and by doing so, widen the con-

fidence interval and provide better coverage probability of confidence intervals. Following

Chen et al. (2008)’s suggestion, we define the (n+ 1)th observation Ẑkn+1 as

Ẑkn+1 = −an
n

n∑
j=1

Ẑkj, k = 1, 2,
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where an = max(1, log(n)/2). Let ωkj = (n+1)∆Ĝk(Ykj). Based on the (n+1) observations,

we define the estimated adjusted WEL (EAWEL) likelihood ratio as

EAWEL
(
∆0
)

= sup

{ 2∏
k=1

n+1∏
j=1

p
ωkj

kj :
n+1∑
j=1

ωkjpkj = 1,
n+1∑
j=1

ωkjpkj(Ẑkj −∆0
k) = 0;

n+1∑
j=1

ω1jp1jẐ1j −
n+1∑
j=1

ω2jp2jẐ2j = ∆0

}
.

As in the previous section, with the method of Lagrange multipliers, we can show that

estimated adjusted weighted empirical log-likelihood ratio (EAWELLR) for ∆0, denoted

RA (∆0) verifies

lA
(
∆0
)

= −2 logRA
(
∆0
)

= 2

(
n+1∑
j=1

ω1j log{1 + 2λA(Ẑ1j −∆0
1)}+

n+1∑
j=1

ω2j log{1− 2λA(Ẑ2j −∆0
2)}

)
,

where λA = λA (∆0), the Lagrange multiplier, ∆0
1, and ∆0

2 are solutions of the following

equations



1∑
w1l

n+1∑
j=1

ω1j(Ẑ1j −∆0
1)

1 + 2λA(Ẑ1j −∆0
1)

= 0,

1∑
w2l

n+1∑
j=1

ω2j(Ẑ2j −∆0
2)

1− 2λA(Ẑ2j −∆0
2)

= 0,

1∑
w1l

n+1∑
j=1

ω1jẐ1j

1 + 2λA(Ẑ1j −∆0
1)
− 1∑

w2l

n+1∑
j=1

ω2jẐ2j

1− 2λA(Ẑ2j −∆0
2)

= ∆0.

The first order asymptotic properties of the EL are preserved by the AEL. We establish the

following theorem for the AWEL.

Theorem 5.2.4. Assume that the regularity conditions in the Appendix hold. Then

r(∆0)lA
(
∆0
) D−→ χ2

1, as n→∞.
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Therefore, an asymptotic 100(1 − α)% AWEL confidence interval for ∆ is constructed

as follows

IA = {∆ : r̂(∆)lA (∆) ≤ χ2
1 (α)}.

5.3 Simulation Study

Monte Carlo simulations have been conducted to assess the performance of the proposed

methods for finite and moderate samples. For all the following simulations, five sample sizes

(m,n) = (50, 50), (70, 50), (70, 70), (100, 70), (100, 100) have been considered. We generate

5000 pairs of samples X0 of size m, and 5000 pairs of samples Y 0 of size n from the bi-

variate exponential with mean (1, 1) and bivariate exponential with mean (cG1 , cG2). The

correlation between paired test outcomes is set as r = 0, r = 0.3, and r = 0.7. The cen-

soring variables U1, U2, V1 and V2 are generated from Exponential(cK1), Exponential(cK2),

Exponential(cQ1), and Exponential(cQ2), respectively. In each case, the parameters cG1 ,

cG2 , cK1 , cK2 , cQ1 and cQ2 are suitably chosen to accommodate the different correlations and

censoring rates. A combination of three censoring rates (CR), 10%, 25%, and 40% have

been used. CR1=(0.10, 0.10, 0.10, 0.10 ), CR2=(0.10, 0.25, 0.10, 0.25), CR3=(0.40, 0.25,

0.40, 0.25). The components of CRk, k = 1, 2, 3, correspond to the censoring rates for the

variables U1, U2, V1 and V2 in this order. For all the generated samples, we considered the

95% CIs and the average lengths of CIs for ∆ = −0.1, 0.05 and 0.3. The simulation results

are summarized in Tables 5.1, 5.2 and 5.3 for ∆ = −0.1, 0.05 and 0.3.

Based on the tables we can make the following conclusions:

1) All the coverage probabilities converge to the nominal level as the sample increases.

The coverage probabilities of the WEL-based CIs are closer to the theoretical confidence

level, especially when the sample size is larger.

2) The proposed methods work for correlated (r = 0.3, r = 0.7) but also for the non-

correlated (r = 0) cases. The best coverage probabilities occur when the correlation

between the pair of test observations is high.
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Table 5.1: Comparison of coverage probabilities (average lengths) of the confidence intervals
of ∆ = −0.1 at different censoring rates (CR) with 95% confidence level.

r = 0 r = 0.3 r = 0.7

CR (m,n) NA WEL AWEL NA WEL AWEL NA WEL AWEL
(50, 50) 0.912 0.923 0.931 0.915 0.924 0.929 0.923 0.928 0.930

(0.229) (0.183) (0.184) (0.230) (0.185) (0.187) (0.229) (0.185) (0.188)
(70, 50) 0.914 0.925 0.927 0.924 0.929 0.931 0.927 0.929 0.932

(0.228) (0.184) (0.188) (0.226) (0.189) (0.189) (0.231) (0.186) (0.189)
CR1 (70, 70) 0.920 0.929 0.930 0.921 0.928 0.932 0.922 0.930 0.936

(0.214) (0.163) (0.171) (0.215) (0.163) (0.167) (0.222) (0.169) (0.170)
(100, 70) 0.926 0.931 0.934 0.928 0.930 0.936 0.925 0.930 0.937

(0.191) (0.138) (0.143) (0.192) (0.140) (0.146) (0.190) (0.145) (0.149)
(100, 100) 0.932 0.945 0.948 0.938 0.945 0.947 0.939 0.942 0.944

(0.181) (0.133) (0.135) (0.181) (0.129) (0.132) (0.183) (0.129) (0.129)
(50, 50) 0.882 0.899 0.901 0.881 0.900 0.908 0.882 0.902 0.908

(0.336) (0.201) (0.202) (0.334) (0.202) (0.206) (0.337) (0.201) (0.206)
(70, 50) 0.891 0.901 0.909 0.891 0.903 0.908 0.893 0.902 0.907

(0.338) (0.194) (0.198) (0.340) (0.191) (0.197) (0.339) (0.193) (0.199)
CR2 (70, 70) 0.885 0.924 0.926 0.887 0.925 0.930 0.890 0.918 0.922

(0.309) (0.177) (0.182) (0.308) (0.175) (0.179) (0.311) (0.179) (0.183)
(100, 70) 0.901 0.928 0.930 0.904 0.927 0.932 0.904 0.930 0.933

(0.278) (0.159) (0.163) (0.276) (0.158) (0.163) (0.279) (0.166) (0.168)
(100, 100) 0.907 0.930 0.932 0.906 0.931 0.935 0.905 0.929 0.934

(0.273) (0.154) (0.155) (0.277) (0.154) (0.159) (0.275) (0.154) (0.157)
(50, 50) 0.827 0.840 0.848 0.841 0.843 0.846 0.829 0.842 0.850

(0.381) (0.220) (0.224) (0.380) (0.221) (0.225) (0.383) (0.222) (0.226)
(70, 50) 0.844 0.860 0.865 0.834 0.861 0.868 0.842 0.860 0.866

(0.383) (0.222) (0.225) (0.384) (0.221) (0.227) (0.333) (0.225) (0.226)
CR3 (70, 70) 0.841 0.859 0.861 0.844 0.859 0.868 0.845 0.860 0.869

(0.354) (0.204) (0.226) (0.357) (0.206) (0.210) (0.357) (0.206) (0.211)
(100, 70) 0.875 0.886 0.889 0.871 0.888 0.884 0.870 0.881 0.887

(0.329) (0.188) (0.190) (0.330) (0.191) (0.198) (0.329) (0.191) (0.195)
(100, 100) 0.888 0.909 0.913 0.905 0.911 0.912 0.892 0.919 0.920

(0.328) (0.186) (0.190) (0.322) (0.183) (0.191) (0.326) (0.183) (0.186)
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Table 5.2: Comparison of coverage probabilities (average lengths) of the confidence intervals
of ∆ = 0.05 at different censoring rates (CR) with 95% confidence level.

r = 0 r = 0.3 r = 0.7

CR (m,n) NA WEL AWEL NA WEL AWEL NA WEL AWEL
(50, 50) 0.921 0.934 0.939 0.925 0.939 0.941 0.925 0.937 0.940

(0.230) (0.185) (0.188) (0.234) (0.188) (0.191) (0.229) (0.188) (0.192)
(70, 50) 0.920 0.937 0.939 0.923 0.936 0.939 0.926 0.939 0.942

(0.232) (0.186) (0.191) (0.231) (0.188) (0.188) (0.237) (0.190) (0.193)
CR1 (70, 70) 0.929 0.939 0.942 0.924 0.947 0.949 0.928 0.941 0.946

(0.225) (0.170) (0.173) (0.222) (0.171) (0.175) (0.224) (0.176) (0.180)
(100, 70) 0.936 0.951 0.955 0.938 0.953 0.955 0.927 0.947 0.950

(0.194) (0.139) (0.148) (0.194) (0.141) (0.144) (0.194) (0.147) (0.150)
(100, 100) 0.935 0.954 0.954 0.936 0.955 0.957 0.940 0.952 0.957

(0.185) (0.137) (0.141) (0.185) (0.130) (0.135) (0.184) (0.131) (0.136)
(50, 50) 0.914 0.930 0.932 0.911 0.931 0.938 0.909 0.933 0.938

(0.341) (0.207) (0.210) (0.339) (0.217) (0.223) (0.344) (0.209) (0.211)
(70, 50) 0.910 0.932 0.940 0.915 0.935 0.939 0.914 0.934 0.938

(0.342) (0.200) (0.205) (0.344) (0.199) (0.201) (0.343) (0.200) (0.209)
CR2 (70, 70) 0.920 0.940 0.947 0.919 0.940 0.946 0.916 0.943 0.945

(0.305) (0.174) (0.180) (0.305) (0.173) (0.174) (0.308) (0.177) (0.180)
(100, 70) 0.922 0.947 0.946 0.924 0.947 0.949 0.926 0.948 0.950

(0.279) (0.162) (0.169) (0.281) (0.165) (0.166) (0.276) (0.167) (0.171)
(100, 100) 0.917 0.949 0.950 0.920 0.941 0.945 0.919 0.949 0.950

(0.277) (0.156) (0.158) (0.280) (0.159) (0.165) (0.277) (0.157) (0.160)
(50, 50) 0.836 0.863 0.871 0.824 0.866 0.868 0.840 0.868 0.880

(0.385) (0.226) (0.228) (0.382) (0.227) (0.230) (0.385) (0.227) (0.232)
(70, 50) 0.845 0.888 0.895 0.838 0.881 0.888 0.839 0.887 0.889

(0.387) (0.226) (0.230) (0.388) (0.227) (0.228) (0.383) (0.226) (0.229)
CR3 (70, 70) 0.855 0.899 0.900 0.859 0.890 0.899 0.854 0.891 0.898

(0.358) (0.208) (0.220) (0.361) (0.210) (0.217) (0.361) (0.212) (0.217)
(100, 70) 0.885 0.916 0.919 0.884 0.919 0.926 0.887 0.925 0.830

(0.333) (0.193) (0.199) (0.332) (0.196) (0.200) (0.335) (0.196) (0.199)
(100, 100) 0.900 0.924 0.926 0.906 0.923 0.929 0.906 0.929 0.932

(0.331) (0.190) (0.196) (0.329) (0.187) (0.195) (0.328) (0.187) (0.190)
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Table 5.3: Comparison of coverage probabilities (average lengths) of the confidence intervals
of ∆ = 0.3 at different censoring rates (CR) with 95% confidence level.

r = 0 r = 0.3 r = 0.7

CR (m,n) NA WEL AWEL NA WEL AWEL NA WEL AWEL
(50, 50) 0.900 0.912 0.922 0.905 0.913 0.918 0.915 0.918 0.921

(0.224) (0.178) (0.179) (0.226) (0.180) (0.184) (0.226) (0.181) (0.184)
(70, 50) 0.901 0.914 0.918 0.913 0.916 0.918 0.917 0.919 0.922

(0.225) (0.180) (0.183) (0.226) (0.181) (0.181) (0.229) (0.182) (0.183)
CR1 (70, 70) 0.909 0.919 0.921 0.911 0.917 0.919 0.918 0.919 0.926

(0.210) (0.158) (0.159) (0.210) (0.161) (0.162) (0.217) (0.165) (0.167)
(100, 70) 0.917 0.921 0.927 0.918 0.920 0.926 0.914 0.921 0.927

(0.187) (0.133) (0.140) (0.184) (0.134) (0.144) (0.188) (0.141) (0.144)
(100, 100) 0.925 0.931 0.934 0.928 0.936 0.938 0.929 0.931 0.936

(0.177) (0.128) (0.130) (0.178) (0.124) (0.129) (0.179) (0.124) (0.126)
(50, 50) 0.882 0.899 0.901 0.881 0.900 0.908 0.882 0.902 0.908

(0.336) (0.201) (0.202) (0.334) (0.202) (0.206) (0.337) (0.201) (0.206)
(70, 50) 0.891 0.901 0.909 0.891 0.903 0.908 0.893 0.902 0.907

(0.338) (0.194) (0.198) (0.340) (0.191) (0.197) (0.339) (0.193) (0.199)
CR2 (70, 70) 0.880 0.912 0.917 0.883 0.910 0.917 0.886 0.913 0.915

(0.305) (0.174) (0.180) (0.305) (0.173) (0.174) (0.308) (0.177) (0.180)
(100, 70) 0.892 0.917 0.920 0.894 0.918 0.922 0.896 0.919 0.920

(0.273) (0.154) (0.159) (0.277) (0.155) (0.162) (0.279) (0.159) (0.161)
(100, 100) 0.895 0.919 0.921 0.900 0.920 0.925 0.899 0.919 0.924

(0.270) (0.150) (0.153) (0.272) (0.151) (0.155) (0.271) (0.151) (0.154)
(50, 50) 0.818 0.832 0.839 0.811 0.833 0.838 0.819 0.832 0.839

(0.378) (0.218) (0.220) (0.376) (0.218) (0.220) (0.380) (0.218) (0.220)
(70, 50) 0.831 0.851 0.855 0.821 0.850 0.858 0.830 0.852 0.859

(0.380) (0.219) (0.221) (0.379) (0.220) (0.222) (0.378) (0.220) (0.221)
CR3 (70, 70) 0.832 0.848 0.851 0.834 0.849 0.859 0.833 0.850 0.858

(0.351) (0.200) (0.221) (0.354) (0.202) (0.207) (0.354) (0.202) (0.208)
(100, 70) 0.864 0.876 0.881 0.860 0.879 0.880 0.867 0.879 0.881

(0.326) (0.184) (0.188) (0.325) (0.188) (0.189) (0.327) (0.187) (0.189)
(100, 100) 0.878 0.899 0.900 0.886 0.900 0.902 0.888 0.909 0.903

(0.325) (0.183) (0.186) (0.321) (0.179) (0.190) (0.322) (0.180) (0.182)
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3) The lengths of the CIs decrease with the larger sample size and increase with the heavy

censoring rate. AWEL intervals are wider than WEL’s. In addition, WEL and AWEL

CIs have shorter average length than NA CIs.

4) AWEL boosted the coverage accuracy for the different combinations of light (10%),

moderate (25%), and heavy (40%) censoring rate considered. In all cases, the AWEL

compensates for the loss of information due to the censoring.

5.4 Real Applications

This section applies the proposed methods to compare two regression models. This

is done by comparing the AUCs generated by risk scores induced by the two models. To

compare the AUCs we will compute the CI for their difference. We reuse here the PBC

data from Section 4.4 in Chapter 4. The study is a double-blinded randomized trial in the

liver’s primary biliary cirrhosis, a rare autoimmune liver disease, comparing the drug D-

penicillamine (DPCA) with a placebo. The DPCA group has 158 patients with a censoring

rate of 52%, and the placebo group 154 with a 55% censoring rate. Different covariates

values were recorded during the study. Bilirubin is one of the covariates that has shown

to be the strongest univariate predictor of survival (Fleming and Harrington, 1991). Often

statistical models are built to assess the influence of those covariates on the disease outcome.

Statistical scores are calculated based on the models and are used for the comparison. These

scores play the same role as markers play in diagnostics tests. We consider the Cox regression

model with five covariates as: log(bilirubin), albumin, log(prothrombin time), edema, and

age. The second model contains all the previous covariates except the log(bilirubin). The

models are denoted model 1 and model 2, respectively. Prognostic scores have been created

based on the two models, and they showed good discrimination power. These two models

have been considered by Fleming and Harrington (1991) to show the effect of the bilirubin on

patients survival. The scores are based on the estimated regression coefficients (see Fleming

and Harrington, 1991, Section 4.4 for more details). Heagerty and Zheng (2005) also used
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the same scores for their time-dependent ROC curves. The scores are also highly correlated

with a Pearson correlation of 0.84. We compute the CI for the difference between the AUCs

and the lengths of the CI based on the two model scores using the NA, WEL, and AWEL

methods. The difference ∆ is 0.08 and the results are summarized in Table 5.4. Figure 5.1

depicts the comparison of two AUCs for the model 1 and model 2 with the PBC data.

Table 5.4: 95% Confidence intervals for ∆ for the PBC data

Methods Confidence interval Length
NA (-0.067, 0.227) 0.294
WEL (0.026, 0.216) 0.190
AWEL (0.023, 0.221) 0.198

The application confirms the simulation results. NA intervals are longer than these

of WEL and AWEL. While the NA CI contains 0 and suggests that model 1 (with the

log(Bilirubin)) and model 2 (without the log(Bilirubin)) yield the same conclusion, the WEL

and AWEL CIs do not contain 0, meaning that the model 1 performs better than model 2.

The WEL and AWEL CIs aligned with previous studies’ findings in Fleming and Harrington

(1991) and Heagerty and Zheng (2005).

5.5 Conclusions

This chapter considered the WEL confidence intervals for the difference between two

areas under two correlated ROC curves with right-censored data. The weighted empirical

log-likelihood ratio converges to a scaled chi-squared distribution. One calibration method,

namely AWEL, has been applied to the proposed approach to enhance the small samples’

coverage accuracy. Using the proposed methods, a confidence interval is then constructed

for the difference by extensive simulations. Not only do the confidence intervals tend to

the nominal level when the sample size increases for all proposed methods, but also their

performance is acceptable in terms of coverage probability. The AWEL performs well when
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Figure 5.1: Comparison of AUCs for the PBC data set.

the censoring rate is heavy at the cost of having a longer average length of CIs. It is also

easy to implement the proposed methods using the existing R packages. Finally, a real

application is given to illustrate the performance of the proposed methods.



83

CHAPTER 6

DISCUSSIONS AND FUTURE WORKS

This dissertation research projects fall within the scope of developing new and appeal-

ing statistical methods to solve problems, in particular two-sample ones, related to survival

data. EL (Owen 1988, 1990, 2001) is a reliable nonparametric method with the advantages

of the traditional likelihood method and nonparametric methods’ flexibility. The main focus

of this dissertation is to extend the EL method to make it work in situations where it usually

fails. Among our numerous contributions, we propose the JEL, a fast way to minimize cost

in comparing two Gini indices, the NEL a combination of EL with influence functions to

handle length-bias with the MRL case where other EL methods fail. The IID-EL extends

the NEL approach for censored two-samples problems for the mean. We develop the WEL

to compare two correlated AUCs when censoring is present, knowing that no methods exist

to handle the censored case.

Throughout the dissertation, we demonstrate that the proposed methods have some

advantages over the existing methods, including better coverage probability, less computa-

tion, weak regularity conditions, etc. They also have practical value, as shown by real data

applications. Even though these methods were meant for a particular parameter of interest,

we intend to generalize them to a broader range of statistical parameters.

For the proposed JEL in Chapter 2, we will investigate cases where the data is subject

to censoring in the future. Further, adapt the method to other parameters that can be ex-

pressed as a ratio or combination of U -statistics. Due to its close relation to the Gini index

(GINI = 2AUC − 1), the AUC application is an ongoing project. It will be interesting to

generalize the NEL (Chapter 3) meant for the mean residual life function with length-biased

and right-censored data to other statistics functionals of the mean under the same condi-

tions. In Chapter 4, we propose inference on the mean difference for right-censored data



84

using a combination of EL and i.i.d. representation technique (IID-EL). In the future, it

will be interesting to extend this method to the mean difference with the data subject to

length-bias and also to other parameters of interest such as quantile, distribution functions,

etc. To derive a WEL (Chapter 5) for all parameters of which consistent estimators can be

expressed as a weighted average of given observations is one of the immediate projects.

The independent random censoring case (failure time and censoring time are indepen-

dent) has been considered all along with the study. We will extend the proposed methods

to dependent censoring for all the censored cases as in some studies, covariates might be

associated with both lifetime and censoring mechanisms, inducing dependent censoring. In

this case, standard survival techniques, like Kaplan–Meier estimator, cannot be used or will

lead to biased results.

The area of Biostatistics is inexhaustible, and through this dissertation, we intend to

make the contribution to solving current and future challenges.
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Appendix A

PROOFS OF CHAPTER 2

The following lemmas are needed for the proofs of the theorems.

Lemma A.1. Assume EX2 <∞. Then Eh2 (X1, X2;G) <∞, for 0 ≤ G ≤ 1.

Proof.

Eh2 (X1, X2;G) = E [(X1 +X2)G− |X1 −X2|]2

≤ 2E{(X1 +X2)G}2 + 2E|X1 −X2|2

as E (A+B)2 ≤ 2EA2 + 2EB2.

By Cauchy-Schwarz inequality, we have

E{(X1 +X2)G}2 ≤ E (X1 +X2)
2G2

≤ 2 (EX2
1 + EX2

2 )G2 <∞

and E|X1 −X2|2 ≤ 2 (EX2
1 + EX2

2 )G2 <∞. Thus, Eh2 (X1, X2;G) <∞.

Lemma A.2. Assume EX2
1 < ∞ and σ2

g (∆, G2) > 0. Then, for each ∆, as n → ∞, we

have

P ( min
1≤i≤n

V̂i (∆) < 0 < max
1≤i≤n

V̂i (∆))→ 1,

where V̂i (∆) is given by equation (2.5).

Proof. Define ω(x,∆ + Ĝ2) = (∆ + Ĝ2)Eh2 (x)− Eh1 (x,X1) ,

ψ(x1, x2; ∆ + Ĝ2) = h(x1, x2; ∆ + Ĝ2)− ω(x1; ∆ + Ĝ2)− ω(x2; ∆ + Ĝ2).

By the Hoeffding decomposition, we have
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Mn (∆) =
1

2n

n∑
i=1

ω(Xi; ∆ + Ĝ2) +

(
n

2

)−1 n∑
i<j

ψ(Xi, Xj; ∆ + Ĝ2).

After some simple algebra, one can write

V̂i (∆) = 2ω(Xi; ∆ + Ĝ2) +
2

n− 2

∑
k=i,k 6=i

ψ(Xi, Xk; ∆ + Ĝ2)−(
n− 1

2

)−1 n∑
i<j

ψ(Xi, Xj; ∆ + Ĝ2)

= 2ω(Xi,∆ + Ĝ2) + (Ĝ2 −G2)h2 (Xi) +

2

n− 2

∑
k=i,k 6=i

ψ(Xi, Xk; ∆ +G2)−
(
n− 1

2

)−1 n∑
i<j

ψ(Xi, Xj; ∆ + Ĝ2)

:= 2ω(Xi,∆ + Ĝ2) + (Ĝ2 −G2)h2 (Xi) +Rni(∆ + Ĝ2).

We have

E[(Ĝ2 −G2)h2 (Xi)]
2 → 0, as n→∞.

Since Ĝ2 − G2 = Op

(
n−1/2

)
by asymptotic normality of Ĝ2 (Hoeffding 1948) and

max
1≤i≤n

|h2 (Xi) | = op
(
n1/2

)
by Lemma A.4 of Jing et al. (2009). Further, by Lemma A.1,

E[ψ(X1, X2; ∆ + Ĝ2)]
2 = E[h(X1, X2; ∆ + Ĝ2)− ω(X1,∆ + Ĝ2)− ω(X2,∆ + Ĝ2)]

2 <∞.

Then

E[R2
ni(∆+Ĝ2)] ≤ Cn−1E[ψ(X1, X2; ∆+Ĝ2)]

2+Cn−2E[ψ(X1, X2; ∆+Ĝ2)]
2 → 0 as n→∞,

for some constant C. Therefore, R2
ni(∆+Ĝ2)→ 0 and V̂i(∆)→ 2ω(Xi,∆+Ĝ2) in probability.

Thus, using the same argument as in the proof of Lemma A.1 in Jing et al. (2009), as n→∞,

P ( min
1≤i≤n

V̂i (∆) < 0 < max
1≤i≤n

V̂i (∆))→ 1,

for every ∆.
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Lemma A.3. Assume EX2
1 <∞. Then we have

√
nMn (∆)

2σg (∆, G2)

D−→ N (0, 1) as n→∞,

where Mn (∆) is given by equation (2.4).

Proof. Let

M o
n (∆) =

(
n

2

)−1 n∑
1≤i<j≤n

h (Xi, Xj; ∆ +G2) ,

Mn (∆) = [Mn (∆)−M o
n (∆)] +M o

n (∆) .

It is clear that M o
n (∆) is a U -statistic for the true values ∆ and G2, and

√
nM o

n (∆)

2σg (∆, G2)

D−→ N (0, 1)

as n→∞ according to Lemma A.2 of Jing et al. (2009). Furthermore,

Mn (∆)−M o
n (∆) = (Ĝ2 −G2)

(
n

2

)−1 n∑
1≤i<j≤n

h2 (Xi) ,

which is negligible since Ĝ2 −G2 = op (1).

Lemma A.4. Let Sn(∆) = n−1
n∑
i=1

[V̂i (∆)]2. Assume EX2
1 < ∞. Then with probability one,

we have

Sn(∆) = 4σ2
g (∆, G2) + op (1),

where V̂i (∆) is given by equation (2.5).

Proof. Let V̂ o
i (∆) be the value of V̂i (∆) for the true value G2. Define Son(∆) =

n−1
n∑
i=1

[V̂ o
i (∆)]2.
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We have

Sn(∆) = Son(∆) + (Sn(∆)− Son(∆)) .

From Lemma A.3 in Jing et al. (2009), Son(∆) = 4σ2
g (∆, G2) + op (1). It suffices to show

that Sn(∆)− Son(∆) is negligible. In fact, we can rewrite Mn (∆) as

Mn (∆) = (∆ + Ĝ2)

(
n

2

)−1 n∑
1≤i<j≤n

h2 (Xi)−
(
n

2

)−1 n∑
1≤i<j≤n

h1 (Xi, Xj)

:= (∆ + Ĝ2)U
2
n − U1

n,

where U i
n, i = 1, 2, are U -statistics with kernels being hi (.), i = 1, 2, respectively. Define

V̂ 1
i = nU1

n − (n− 1)U
1(−i)
n−1 and V̂ 2

i = nU2
n − (n− 1)U

2(−i)
n−1 .

Then

V̂i (∆) = (∆ + Ĝ2)V̂
2
i − V̂ 1

i ,

and thus

Sn(∆)− Son(∆) =
1

n

n∑
i=1

{[V̂i (∆)]2 − [V̂ o
i (∆)]2}

= (Ĝ2 −G2)(2∆ + Ĝ2 +G2)
1

n

n∑
i=1

[V̂ 1
i ]2 − 2(Ĝ2 −G2)

1

n

n∑
i=1

[V̂ 1
i V̂

2
i ]2

→ 0, as n→∞.

The above result is valid because

1

n

n∑
i=1

[V 1
i ]2 =

1

n

n∑
i=1

(V̂ 1
i − EU1

n + EU1
n)2

=
1

n

n∑
i=1

(V̂ 1
i − EU1

n)2 + 2EU1
n

1

n

n∑
i=1

V̂ 1
i −

(
EU1

n

)2
=

1

n

n∑
i=1

(V̂ 1
i − EU1

n)2 + 2
(
EU1

n

)
U1
n −

(
EU1

n

)2
,
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in which n−1
n∑
i=1

(V̂ 1
i −EU1

n)2 = C+ op (1), for some constant C by Lemma A.3 of Jing et al.

(2009), and 2U1
nEU

1
n − (EU1

n)
2

goes to a finite number. That is, n−1
n∑
i=1

[V̂ 1
i ]2 = C + op (1)

for some constant C. We can establish a similar result for n−1
n∑
i=1

[V̂ 2
i ]2 and therefore

n−1
n∑
i=1

[V̂ 1
i V̂

2
i ] <∞. In addition, Ĝ2 −G2 = Op

(
n−1/2

)
. Thus, Sn(∆)− Son(∆)→ 0.

Lemma A.5. Let Hn(∆, Ĝ2) = max
1≤i 6=j≤n

|h (Xi, Xj) ; ∆ + Ĝ2|. Assume EX2
1 < ∞. Then

Hn(∆, Ĝ2) = op
(
n1/2

)
, with probability one.

Proof.

Hn(∆, Ĝ2) = max
1≤i 6=j≤n

|(∆ + Ĝ2)h2 (Xi, Xj)− h1 (Xi) |

≤ 2 max
1≤i 6=j≤n

|h2 (Xi, Xj) |+ max
1≤i≤n

|h1 (Xi) |

= op
(
n1/2

)
+ op

(
n1/2

)
= op

(
n1/2

)
,

by applying Lemma A.4 of Jing et al. (2009) to the functions h2 and h1.

Proof of Theorem 2.2.1. Lemma A.2 guarantees the existence and uniqueness of λ, solution

for equation (2.8). Following the above lemmas, and using the same arguments as in the

proof of Theorem 1 in Jing et al. (2009), we have |λ(∆)| = Op(n
−1/2) and also

λ(∆) = S−1n (∆) 1
n

n∑
i=1

[
V̂i (∆)

]
+ β

= S−1n (∆)Mn(∆) + β,

where |β| = op(n
−1/2). Then, we can write

− 2logR(∆) =
nM2

n(∆)

Sn(∆)
− nSn(∆)β2 + 2

n∑
i=1

ηi. (A.1)
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In equation (A.1), nM2
n(∆)/Sn(∆)

D−→ χ2
1 by Lemmas A.3 and A.4,

| − nSn(∆)β2| = n(4σ2
g (∆, G2) + op (1))op

(
n−1
)

= op (1) ,

and

|
n∑
i=1

ηi| ≤ C|λ(∆)|3
n∑
i=1

|V̂i (∆) |3 = Op

(
n−3/2

)
op
(
n3/2

)
= op (1) ,

for some positive constant C.

Therefore, −2 logR(∆)
D−→ χ2

1 by Slutsky’s theorem.

Proof of Theorem 2.2.2. The proof of theorem 2.2.2 is essentially based on above lemmas

with slight adjustments as applied by Chen et al. (2008). Hence, we sketch it here.

We first, show that |λ(∆)| = Op(n
−1/2). From equation (2.9), we can write

0 =
1

n

∣∣∣∣ n+1∑
i=1

V̂i(∆)− λ(∆)
n+1∑
i=1

V̂ 2
i (∆)

1 + λ(∆)V̂i(∆)

∣∣∣∣
≥ |λ(∆)|

n

n+1∑
i=1

V̂ 2
i (∆)

1 + λ(∆)V̂i(∆)
− 1

n

n+1∑
i=1

V̂i(∆)

≥ |λ(∆)|Sn(∆)

1 + |λ(∆)|Wn(∆)
−
∣∣∣∣ 1n

n∑
i=1

V̂i(∆)

∣∣∣∣ (1− an
n

)
,

where Sn(∆) = n−1
n∑
i=1

[
V̂i (∆)

]2
and Wn(∆) = max

1≤i≤n
|V̂i (∆) |. By Lemmas A.3, A.4, and

A.5, one has n−1
n∑
i=1

[
V̂i (∆)

]
= Mn(∆) = Op(n

−1/2), Sn(∆) = 4σ2
g (∆, G2) + op (1) and

Wn(∆) = op(n
1/2). Combined with an = op(n), we get |λ(∆)| = Op(n

−1/2).

Next, we show that λ(∆) = S−1n (∆)Mn(∆) + op(n
−1/2). From equation (2.9), we can

write

0 =
1

n

n+1∑
i=1

V̂i(∆)

1 + λ(∆)V̂i(∆)

=
1

n

n+1∑
i=1

V̂i(∆)− λ(∆)Sn(∆) + op(n
−1/2),

by noting that the (n+ 1)th term of the summation is anOp(n
−3/2).
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Hence, when n→∞, λ(∆) = S−1n (∆)Mn(∆) + op(n
−1/2).

Finally, expanding −2 logRA(∆) and replacing λ(∆) by its expansion, one has that

−2 logRA(∆) = 2
n+1∑
i=1

log(1 + λ(∆)V̂i(∆))

= 2
n+1∑
i=1

(
λ(∆)V̂i(∆)− λ(∆)2V̂ 2

i (∆)/2
)

+ op(1)

=
nM2

n(∆)

Sn(∆)
+ op(1).

Thus, −2 logRA(∆) converges to χ2
1 by Lemmas A.3 and A.4 and Slutsky’s theorem.
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Appendix B

PROOFS OF CHAPTER 3

Let us assume the following regularity conditions:

1) F and G are continuous,

2)

∫ ∞
0

t4

1−G (t)
dF (t) <∞,

3) P (C > τF ) > 0.

Assumption 1 is natural because the time variable is continuous. Assumption 2 ensures that

the variance of Wi(m) is finite. Assumption 3 states that the support of C covers the support

of T . Therefore, one can estimate the MRL at every point. The following lemmas will be

needed for the proof of the theorems.

Lemma B.1. Assume that the regularity conditions hold. Then, as n→∞, we have

1√
n

n∑
i=1

Wni (m0) −→ N
(
0, σ2

)
in distribution,

where σ2 = Var (Wi(m0)) , and Wi(m), Wni(m) are given by Equation (3.2) and Equation

(3.3), respectively.

Proof. Recall the martingale property of dΛ̂C :

n∑
i=1

{dI (Zi ≤ s, δi = 0)− I (Zi ≥ s) dΛ̂C (s)} = 0.
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We can easily show that

1√
n

n∑
i=1

Wni (m0) =
1√
n
U (m0) +

√
n

∫
∞

0

n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m0

)
n∑
j=1

I (Zj ≥ s)

×
n∑
i=1

{dI (Zi ≤ s, δi = 0)− I (Zi ≥ s) dΛ̂C (s)}

=
1√
n
U (m0) .

Thus by the proof of Lemma 5.1 in the Appendix of Liang et al. (2016), Lemma B.1 is

valid.

Lemma B.2. Assume that the regularity conditions hold. Then, as n→∞, we have

1

n

n∑
i=1

W 2
ni (m0) −→ σ2 in probability,

where Wni(m) is given by Equation (3.3).

Proof. For each i, it can be shown that

Wni (m0) = Wi(m0) +
Φ (Zi,m0) δi

1− Ĝn (Zi)
− Φ (Zi,m0) δi

1−G (Zi)

+

∫
∞

0


n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m0

)
n−1

n∑
j=1

I (Zj ≥ s)

− ψ (s,m0)

H (s)

 [dNC
i (s)− I (Zi ≥ s) dΛC (s)

]

−

∫
∞

0

n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m0

)
n−1

n∑
j=1

I (Zj ≥ s)

I (Zi ≥ s) d
[
Λ̂C (s)− ΛC (s)

]

:= Wi(m0) + ri1 + ri2 + ri3.

By the consistency of the Kaplan-Meier estimator Ĝn,
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n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m0

)
, and n−1

n∑
j=1

I (Zj ≥ s), we have

|ri1| ≤ Op (1) sup
s≤Z(n)

|Ĝn (s)−G (s)|

(
1 + sup

s≤Z(n)

∣∣∣∣Ĝn (s)−G (s)

1− Ĝn (s)

∣∣∣∣
)

= op (1) ,

as Zhou (1991) proved that sup
s≤Z(n)

∣∣∣∣Ĝn (s)−G (s)

1− Ĝn (s)

∣∣∣∣ is bounded in probability,

|ri2| ≤ Op (1) sup
s≤Z(n)

∣∣∣∣∣
n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ (Zj,m0)

n−1
n∑
j=1

I (Zj ≥ s)

− ψ (s,m0)

H (s)

∣∣∣∣∣ = op (1) ,

and noting that

Λ̂C (s)− ΛC (s) =

∫ s

0

dMC (u)

Y (u)
,

where MC (u) = NC (u)−
∫ u

0

Y (t) dΛC (t) is a martingale,

ri3 =

∫ ∞
0

gn(s)
Y (s)

d
[
Λ̂C (s)− ΛC (s)

]
,

where gn (s) = nI (Zi ≥ s)
n∑
j=1

ω(j)I
(
Z(j) ≥ s

)
Φ
(
Z(j),m0

)
, and gn(s)/Y (s) predictable and

locally bounded, is a martingale integral. Following the lines of Andersen et al. (1993,

p.190), we apply Lenglart’s inequality to ri3 and have, for any ε, δ > 0

P

(
sup
s≤Z(n)

|ri3| > ε

)
≤ δ

ε2
+ P

(∫ Z(n)

0

gn(s)
Y (s)

dΛC (s) > δ

)
→ 0.
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Then, ri3 converges to zero uniformly in probability for s ≤ Z(n). Therefore

|ri3| = op (1) .

We can write

∣∣∣∣ 1n
n∑
i=1

W 2
ni (m0)−

1

n

n∑
i=1

W 2
i (m0)

∣∣∣∣
=

∣∣∣∣ 1n
n∑
i=1

(Wni (m0)−Wi(m0)) (Wni (m0)−Wi(m0) + 2Wi(m0))

∣∣∣∣
≤ 1

n

n∑
i=1

(Wni (m0)−Wi(m0))
2 +

∣∣∣∣ 2n
n∑
i=1

(Wni (m0)−Wi(m0))Wi(m0)

∣∣∣∣
:= I1 + I2.

From the order op (1) of ri1, ri2 and ri3,

Wni (m0)−Wi(m0) = ri1 + ri2 + ri3 = op (1) .

It can be easily shown that I1 = op (1) and I2 = op (1). Thus,

1

n

n∑
i=1

W 2
ni (m0) =

1

n

n∑
i=1

W 2
i (m0) + op (1) .

By the law of large numbers,

1

n

n∑
i=1

W 2
ni (m0) −→ σ2,

in probability as n→∞.

Proof of Theorem 3.2.1. Following Alemdjrodo and Zhao (2019), we prove it. First we need

to show that (i) max
1≤i≤n

|Wni (m0) | = op
(
n1/2

)
and (ii) λ = Op

(
n−1/2

)
, where λ is a solution
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of Equation (3.4). For each i,

Wni (m0) = Wi(m0) + ri1 + ri2 + ri3.

Since Wi(m0), i = 1, ..., n are i.i.d. random variables with finite second moment, by Lemma

11.2 of Owen (2001), max
1≤i≤n

|Wni (m0) | = op
(
n1/2

)
. Note ri1, ri2 and ri3 are of order op (1), by

applying similar argument in the proof of Theorem 2.2 of Owen (2001), we can prove that

λ = Op

(
n−1/2

)
. We can easily derive

λ =

1

n

n∑
i=1

Wni (m0)

1

n

n∑
i=1

W 2
ni (m0)

+ op
(
n−1/2

)
.

Therefore, as n→∞

l (m0) =
n∑
i=1

λWni (m0) + op (1)

=

(
n∑
i=1

Wni (m0)

)2

n∑
i=1

W 2
ni (m0)

+ op (1)

=


1√
n

n∑
i=1

Wni (m0)√
σ2 + op (1)


2

+ op (1)

D−→ χ2
1.

Proof of Theorem 3.2.2. Let S2
n(m0) = n−1

n∑
i=1

W 2
ni (m0) and W ?

n(m0) = max
1≤i≤n

|Wni (m0) |. By

Lemma B.1, one has W n(m0) = n−1
n∑
i=1

Wni (m0) = Op(n
−1/2). By Lemma B.2, S2

n(m0) =

σ2 + op (1) and by the result (i) in the proof of Theorem 3.2.1, we have W ?
n(m0) = op(n

1/2).

Using these results, we prove that |λA| = Op(n
−1/2) as Zhao et al. (2015) and Wang and
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Zhao (2016) did. Next, from Equation (3.5), we have λA = W n(m0)/S
2
n(m0) + op(n

−1/2).

Finally, we have

lA(m0) = 2
n+1∑
i=1

(
λAWni (m0)−

1

2
(λA)2Wni (m0)

2

)
+ op(1)

=
nW

2

n(m0)

S2
n(m0)

+ op(1).

Thus, lA(m0) converges to χ2
1 by using Lemmas B.1 and B.2.
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Appendix C

PROOFS OF CHAPTER 4

The following lemmas are needed for the proof of the theorems.

Lemma C.1. Let Vi, Wj, Vmi and Wnj be defined by equations (4.3), (4.4), (4.5) and (4.6),

respectively. Under the assumptions of Theorem 4.2.1, as m→∞, n→∞, we have

(i)
1

m

m∑
i=1

(Vmi − Vi)2 = op (1) ,

(ii) max
1≤i≤m

|Vmi − θ1| = op
(
m1/2

)
,

1

m

m∑
i=1

(Vmi − θ1)2 = σ2
1 + op (1) ,

(iii)
1√
m

m∑
i=1

(Vmi − θ1) −→ N
(
0, σ2

1

)
in distribution,

where σ2
1 = Var (Vi),

(iv)
1

n

n∑
j=1

(Wnj −Wj)
2 = op (1) ,

(v) max
1≤j≤n

|Wnj − θ2| = op
(
n1/2

)
,

1

n

n∑
j=1

(Wnj − θ2)2 = σ2
2 + op (1) ,

(vi)
1√
n

n∑
j=1

(Wnj − θ2) −→ N
(
0, σ2

2

)
in distribution,

where σ2
2 = Var (Wj).

Proof. See the proof of Lemma 3.1 in the Appendix of He et al. (2016) for (i), (ii), (iv) and

(v).

Noting that
∫∞
0

(s− θ1) dF (s) = 0, we can write

1√
m

m∑
i=1

(Vmi − θ1) =
√
m

∫ ∞
0

(s− θ1) dF̂m(s)

=
√
m

∫ ∞
0

(s− θ1) d(F̂m(s)− F (s)).
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We obtain the relation (iii) from Corollary 1.2 in Stute (1995). We can prove (vi) similarly.

Lemma C.2. Let ZV and ZW be defined by equations (4.14) and (4.15). Under the as-

sumptions of Theorem 4.2.1, as s→∞, we have

(i) max
1≤r≤M

|ZV
r − θ1| = op

(
s1/2
)
, max
1≤s≤N

|ZW
s − θ1 + θ| = op

(
s1/2
)

(ii)
1

M

M∑
r=1

(
ZV
r − θ1

)2
=
σ2
1

2
+ op (1) ,

1

N

N∑
s=1

(
ZW
s − θ1 + θ

)2
=
σ2
2

2
+ op (1) .

Proof. Recall s = m + n. Let us note that under the condition m/s = δ → δ0 ∈ (0, 1) as

s→∞, Op

(
m−1/2

)
, Op

(
n−1/2

)
and Op

(
s−1/2

)
are all equivalent.

(i) We can write

max
1≤r≤M

|ZV
r − θ1| = max

1≤k≤l≤m

∣∣∣∣Vmk − θ1 + Vml − θ1
2

∣∣∣∣
≤ 1

2

(
max
1≤k≤m

|Vmk − θ1|+ max
l≤l≤m

|Vml − θ1|
)

=
1

2

(
op
(
m1/2

)
+ op

(
m1/2

))
= op

(
m1/2

)
= op

(
s1/2
)
.

Similarly, max
1≤s≤N

|ZW
s − θ1 + θ| = op

(
s1/2
)
.

(ii) We also have

1

M

M∑
r=1

(
ZV
r − θ1

)2
=

1

2M

(
m∑
k=1

m∑
l=1

(
Vmk − θ1 + Vml − θ1

2

)2

+
m∑
k=1

(Vmk − θ1)2
)

=
1

2
× 1

m

m∑
k=1

(Vmk − θ1)2 +
1

2(m+ 1)

(
1√
m

m∑
k=1

(Vmk − θ1)

)2

=
σ2
1

2
+ op (1) .

In the same way, 1/N
N∑
s=1

(
ZW
s − θ1 + θ

)2
= σ2

2/2 + op (1) .
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Proof of Theorem 4.2.2. Firstly, to maximize logR (θ1, θ), we set the derivative

∂ logR (θ1, θ) /∂θ1 = 0, which leads to

mλ1 + nλ2 = 0. (C.1)

Secondly, following the same argument in the proof of Theorem 2.2 of Owen (2001), we can

write that

λ1 =

1

m

m∑
i=1

(Vmi − θ1)

1

m

m∑
i=1

(Vmi − θ1)2
+ op

(
m−1/2

)

= Op

(
m−1/2

)
.

(C.2)

This relationship coupled with the second relationship in (ii) from Lemma C.1 gives

λ1 =
V m − θ1
σ2
1 + op (1)

+ op
(
m−1/2

)
= Op

(
m−1/2

)
= Op

(
s−1/2

)
,

(C.3)

and similarly

λ2 =
W n − θ1 + θ

σ2
2 + op (1)

+ op
(
n−1/2

)
= Op

(
n−1/2

)
= Op

(
s−1/2

)
,

(C.4)

with V m = 1/m
m∑
i=1

Vmi and W n = 1/n
n∑
j=1

Wnj.

Replacing λ1 and λ2 in equation (C.1), we obtain

θ̂1 =

m
σ2
1

m
σ2
1

+ n
σ2
2

V m +

n
σ2
1

m
σ2
1

+ n
σ2
2

(
W n + θ

)
+ op

(
s−1/2

)
.
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We note that

max
1≤i≤m

|Vmi − θ̂1| = max
1≤i≤m

|Vmi − θ1 + θ1 − θ̂1|

≤ max
1≤i≤m

|Vmi − θ1|+ |θ̂1 − θ1|

= op
(
s1/2
)

+ op (1)

= op
(
s1/2
)
,

and

m∑
i=1

|Vmi − θ̂1|2 =
m∑
i=1

|Vmi − θ1 + θ1 − θ̂1|2

≤
m∑
i=1

|Vmi − θ1|2 + 2|θ1 − θ̂1|
m∑
i=1

|Vmi − θ1|+
m∑
i=1

|θ1 − θ̂1|2

= Op (s) +Op

(
s−1/2

)
Op

(
s1/2
)

+Op (1)

= Op (s) .

.

Remark C.0.1. In fact when θ1 is replaced by θ̂1, all the relationships or equations involving

θ̂1 are preserved due to the asymptotic normality (equation (4.10)) and the consistency of θ̂1.

Either |θ1 − θ̂1| = Op

(
s−1/2

)
or |θ1 − θ̂1| = op (1) .

Finally, applying the Taylor expansion to logR (θ, θ1) at θ1 = θ̂1 and θ = θ0, we obtain

the following expansion for log r (θ0)

−2 log r (θ0) = −2 logR
(
θ̂1, θ0

)
= 2

m∑
i=1

{
λ1

(
Vmi − θ̂1

)
− 1

2

{
λ1

(
Vmi − θ̂1

)}2
}

+ rm

+ 2
n∑
j=1

{
λ2

(
Wmj − θ̂1 + θ0

)
− 1

2

{
λ2

(
Wmj − θ̂1 + θ0

)}2
}

+ rn,

(C.5)
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with

|rm| ≤ Cm

m∑
i=1

{
λ1

(
Vmi − θ̂1

)}3

≤ Cm |λ1|3 max
1≤i≤m

|Vmi − θ̂1|
m∑
i=1

|Vmi − θ̂1|2

= Op

(
s−3/2

)
op
(
s1/2
)
Op (s)

= op (1) ,

for some finite Cm ≥ 0. Similarly |rn| = op (1) . Let V = 1/m
m∑
i=1

Vi and W = 1/n
n∑
j=1

Wj.

Noting that

λ1

(
Vmi − θ̂1

)
= λ1 (Vmi − θ1) + λ1

(
θ1 − θ̂1

)
= op (1) + op (1)

= op (1) ,

and λ2

(
Wnj − θ̂1 + θ0

)
= op (1) and substituting λ1 and λ2 in log r (θ0), we have

−2 log r (θ0) =
m

σ2
1

(
V m − θ̂1

)2
+

n

σ2
2

(
W n − θ̂1 + θ0

)2
+ op (1)

=
(
V m −W n − θ0

)2
/

(
σ2
1

m
+
σ2
2

n

)
+ op (1)

=
(
V −W − θ0

)2
/

(
σ2
1

m
+
σ2
2

n

)
+ op (1)

D−→ χ2
1,

as s→∞.

Proof of Theorem 4.2.3. Recall t = m+ n+ 2 and (m+ 1)/t→ ρ ∈ (0, 1). this implies that

as t→∞, Op

(
m−1/2

)
, Op

(
n−1/2

)
and Op

(
t−1/2

)
are all equivalent.

We first, show that |λA1 | = Op(t
−1/2) and |λA2 | = Op(t

−1/2).



117

From equation (4.12), we can write

0 =
1

m

∣∣∣∣m+1∑
i=1

(Vmi − θ1)− λA1
m+1∑
i=1

(Vmi − θ1)2

1 + λA1 (Vmi − θ1)

∣∣∣∣
≥ |λA1 |

m

m+1∑
i=1

(Vmi − θ1)2

1 + λA1 (Vmi − θ1)
−
∣∣∣∣ 1

m

m+1∑
i=1

(Vmi − θ1)
∣∣∣∣

≥ |λA1 |s2m
1 + |λA1 |V ?

m

−
∣∣∣∣ 1

m

m∑
i=1

(Vmi − θ1)
∣∣∣∣ (1− am

m

)
,

where s2m = m−1
m∑
i=1

(Vmi − θ1)2 and V ?
m = max

1≤i≤m
|Vmi − θ1|. By Lemma D.1, one has

m−1
m∑
i=1

[Vmi − θ1] = Op(m
−1/2), s2m = σ2

1 + op (1) and V ?
m = op(m

1/2). With am = op(m),

we get |λA1 |/(1 + |λA1 |op(m1/2)) = Op(m
−1/2) and therefore |λA1 | = Op(m

−1/2) = Op(t
−1/2).

Similarly, we can show that |λA2 | = Op(t
−1/2).

Next, we have

0 =
1

m

m+1∑
i=1

Vmi − θ1
1 + λA1 (Vmi − θ1)

=
1

m

m+1∑
i=1

(Vmi − θ1)−
1

m

m+1∑
i=1

λA1 (Vmi − θ1)2

1 + λA1 (Vmi − θ1)
= V m − θ1 − λA1 s2m + op(m

−1/2).

As t → ∞, we have λA1 = (V m − θ1)/s2m + op(t
−1/2). Similarly, λA2 = (W n − θ1 + θ)/s2n +

op(t
−1/2). We then maximize logRA (θ1, θ), by setting the derivative ∂ logRA (θ1, θ) /∂θ1 = 0,

and obtain

(m+ 1)λA1 + (n+ 1)λA2 = 0. (C.6)

We can find the value of θ̂A1 , which maximizes θ1 by replacing λA1 , λA2 , and s2m by their

respective values in equation (C.6).

The rest of the proof is similar to the proof of Theorem 4.2.2. We have

−2 log rA (θ0) = −2 logRA
(
θ̂A1 , θ0

)
D−→ χ2

1,
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as t→∞.

Proof of Theorem 4.2.4. We first prove that
∣∣λM1 ∣∣ = Op(s

−1/2) and
∣∣λM2 ∣∣ = Op(s

−1/2). From

Lemma D.2, we obtain
1

M

M∑
r=1

(
ZV
r − θ1

)2
=
σ2
1

2
+ op (1) = Op (1) . Noticing that

1

M

M∑
r=1

(
ZV
r − θ1

)
=

1

2M

(
m∑
k=1

m∑
l=1

(
Vmk − θ1 + Vml − θ1

2

)
+

m∑
k=1

(Vmk − θ1)

)
=

m+ 1

2M

m∑
k=1

(Vmk − θ1)

= V m − θ1

= V − θ1

= Op(m
−1/2)

= Op(s
−1/2),

and following the same arguments as in Owen(1990), we have
∣∣λM1 ∣∣ = Op(s

−1/2).
∣∣λM2 ∣∣ =

Op(s
−1/2) can be proved similarly. Now expanding the equation (4.17), we have

0 =
1

M

M∑
r=1

ZV
r − θ1

1 + λM1 (ZV
r − θ1)

=
1

M

M∑
r=1

(ZV
r − θ1)−

λM1
M

M∑
r=1

(ZV
r − θ1)2 +

1

M

M∑
r=1

(λM1 )2(ZV
r − θ1)3

1 + λM1 (ZV
r − θ1)

= V − θ1 − λM1
σ2
1

2
+ γs,

where

γs ≤ (λM1 )2 max
1≤r≤M

|ZV
r − θ1|

1

M

M∑
r=1

(ZV
r − θ1)2 ×

1

1 + λM1 (ZV
r − θ1)

= Op(s
−1)op(s

1/2)Op(1)Op(1)

= op(s
−1/2).

We have then λM1 = 2(V − θ1)/σ2
1 + op(s

−1/2) and λM2 = 2(W − θ1 + θ)/σ2
2 + op(s

−1/2) as
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well. Once again we set the derivative ∂ logRM (θ1, θ) /∂θ1 = 0, which leads to

MλM1 +NλM2 = 0. (C.7)

And by substituting λM1 and λM2 by their expressions in equation (C.7), we can find θ̂M1 ,

which maximizes logRM (θ1, θ) . As in the previous proofs, applying the Taylor expansion

to logRM (θ1, θ) at θ1 = θ̂M1 and θ = θ0, we obtain the following expansion for log r (θ0)

−2 log rM (θ0)

s
= −2

s
logRM

(
θ̂M1 , θ0

)
=

2

s

M∑
r=1

{
λM1

(
ZV
r − θ̂M1

)
− 1

2

{
λM1

(
ZV
r − θ̂M1

)}2
}

+
2

s

N∑
s=1

{
λM2

(
ZW
s − θ̂M1 + θ0

)
− 1

2

{
λM2

(
ZW
s − θ̂M1 + θ0

)}2
}

+
rS
s
,

(C.8)

with

|rS| ≤ CM

M∑
r=1

{
λM1

(
ZV
r − θ̂M1

)}3

+ CN

N∑
s=1

{
λM2

(
ZW
s − θ̂M1 + θ0

)}3

≤ CM
∣∣λM1 ∣∣3 max

1≤r≤M
|ZV

r − θ̂M1 |
M∑
r=1

|ZV
r − θ̂M1 |2

+ CN
∣∣λM2 ∣∣3 max

1≤s≤M
|ZW

s − θ̂M1 + θ0|
M∑
s=1

|ZW
s − θ̂M1 + θ0|2

= Op

(
s−3/2

)
op
(
s1/2
)
Op (s2) +Op

(
s−3/2

)
op
(
s1/2
)
Op (s2)

= op (s) + op (s)

= op (s) ,

for some finite CM ≥ 0 and CN ≥ 0.
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By plugging in λM1 and λM2 in equation (C.8) and after some algebra, we have

−2 log rM (θ0)

s
=

2M

sσ2
1

(V m − θ̂M1 )2 +
2N

sσ2
2

(W n − θ̂M1 + θ0)
2 + op (1)

= s(V m −W n − θ0)2/
(
s2σ2

1

2M
+
s2σ2

2

2N

)
+ op (1)

= s(V m −W n − θ0)2/
(
σ2
1

δ2
+

σ2
2

(1− δ)2

)
+ op (1)

= s(V −W − θ0)2/
(
σ2
1

δ2
+

σ2
2

(1− δ)2

)
+ op (1) .

(C.9)

Applying the Central Limit Theorem, we can write

(V −W − θ0)2/
(
σ2
1

m
+
σ2
2

n

)
+ op (1) = s(V −W − θ0)2/

(
σ2
1

δ
+

σ2
2

1− δ

)
+ op (1)

D−→ χ2
1.

(C.10)

Combining equations (D.9) and (D.10), with δ −→ δ0, we have

−2

s
log rM (θ0)

D−→ rχ2
1,

as s→∞,

where r =

(
σ2
1

δ0
+

σ2
2

1− δ0

)/(σ2
1

δ20
+

σ2
2

(1− δ0)2

)
.
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Appendix D

PROOFS OF CHAPTER 5

Let us assume the following regularity conditions:

1) F , G, K, and Q are continuous,

2) m/n→ ρ as m,n→∞ with 0 < ρ <∞,

3)
√
m+ n

∫ τF
X(m)

Fk(t)dGk(t)
P−→ 0,

4)
√
m+ n(Gk(τF )−Gk(X(m)))

P−→ 0,

5) supt
∣∣∫ τF
t

(1− Fk(s))dGk(s)/(1− Fk(t))
∣∣ ,

6)
∫ τF
0
dFk(s)/(1−Kk(s−)) <∞,

7)
∫ τF
0
dGk(s)/(1−Qk(s−)) <∞,

8) Nxki = I(Xki ≤ t, δki = 1) and Nykj = I(Ykj ≤ t, ηkj = 1) have no common jumps.

These assumptions are borrowed from Wang et al. (2009) and assure the existence of their

proposed estimator for the AUC under right censoring. The following lemma is needed for

the proofs of the theorems.

Lemma D.1. Assume that the regularity conditions hold. Then, as n→∞, we have

1∑
ωkl

n∑
j=1

ωkj

(
Ẑkj −∆0

k

)2 P−→ σ02

k ,

where σ02

k = Var(Zk1).
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Proof.

S2
k = 1∑

ωkl

n∑
j=1

ωkj

(
Ẑkj −∆0

k

)2
=

∫ ∞
0

F̂k (t) dĜk (t) + ∆0
k

(
∆0
k − 2∆̂k

)
P−→

∫ ∞
0

F 2
k (t) dGk (t)−∆0

k
2

for k = 1, 2 as ∆̂k is a consistent estimator of ∆k.∫∞
0
F 2
k (t) dGk (t)−∆0

k
2

= EGk
(Zk1 −∆0

k)
2 = σ02

k . Lemma D.1 is proved.

Proof of Theorem 5.2.2. We can write

√
m+ n

(
∆̂−∆0

)
=
√
m+ n

(
∆̂1 −∆0

1

)
−
√
m+ n

(
∆̂2 −∆0

2

)
=

√
1 +

n

m
(α11 − α12) +

√
1 +

m

n
(β11 − β12),

(D.1)

where α1k and β1k are defined by equations (5.5) and (5.6), respectively. Note that α1k and

β1k correspond to αn,m,1 and βn,m,1 in the Appendix of Wang et al. (2009). Equation (D.1)

is then the martingale representation of
√
m+ n

(
∆̂−∆0

)
.

Noting that Cov(α1k, β1k) = 0, k = 1, 2 by the independence of Xk and Yk, we have

Var
(√

m+ n
(

∆̂−∆0
))

=
(

1 +
n

m

)
Var(α11 − α12) +

(
1 +

m

n

)
Var(β11 − β12)

−2

√(
1 +

n

m

)(
1 +

m

n

)
Cov(α11 − α12, β11 − β12)

=
(

1 +
n

m

)
Var(α11 − α12) +

(
1 +

m

n

)
Var(β11 − β12)

=
(

1 +
n

m

)
(Var(α11) + Var(α12)− 2Cov(α11, α12))

+
(

1 +
m

n

)
(Var(β11) + Var(β12)− 2Cov(β11, β12))

=

(
1 +

1

ρ

)
(σ2

x1 + σ2
x2) + (1 + ρ) (σ2

y1 + σ2
y2)

−2

(
1 +

1

ρ

)
Cov(α11, α12)− 2 (1 + ρ) Cov(β11, β12)

= σ2
1 + σ2

2 − 2σ2
12.

Proof of Theorem 5.2.3. Next, using Lemma D.1 and similar methods used in Owen (1990),
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we can prove |λ| = Op

(
n−1/2

)
. Let Vk = maxj |Ẑkj −∆0

k|, k = 1, 2. From equation (5.7) we

can write

0 =
1∑
ω1l

∣∣∣∣∣∣
n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)
1 + 2λ

(
Ẑ1j −∆0

1

)
∣∣∣∣∣∣

=
1∑
ω1l

∣∣∣∣∣∣∣
n∑
j=1

(
Ẑ1j −∆0

1

)
− 2λ

n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)2
1 + 2λ

(
Ẑ1j −∆0

1

)
∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣
2λ∑
ω1l

n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)2
1 + 2λ

(
Ẑ1j −∆0

1

)
∣∣∣∣∣∣∣−

1∑
ω1l

∣∣∣∣∣
n∑
j=1

(
Ẑ1j −∆0

1

)∣∣∣∣∣
≥ |2λ|S2

1

1 + |2λ|V1
− 1∑

ω1l

∣∣∣∣∣
n∑
j=1

(
Ẑ1j −∆0

1

)∣∣∣∣∣
≥ S2

1

1 + |2λ|V1
− 1∑

ω1l

∣∣∣∣∣
n∑
j=1

(
Ẑ1j −∆0

1

)∣∣∣∣∣
|2λ|

.

It is clear that V1 = Op (1). By Lemma D.1, S2
1 = Op (1), and by Theorem 5.2.1

1∑
ωkl

n∑
j=1

ωkj

(
Ẑkj −∆k

)
= ∆̂k −∆0

k

= Op

(
(m+ n)−1/2

)
= Op

(
n−1/2

)
, k = 1, 2.

Therefore |2λ| = Op

(
n−1/2

)
and |λ| = Op

(
n−1/2

)
.

Since max
1≤i≤n

|Ẑkj −∆0
k| = Op (1), applying Taylor’s expansion, we can write

1

2
l (∆0) =

n∑
j=1

ω1j

{
2λ
(
Ẑ1j −∆0

1

)
− 1

2

(
2λ
(
Ẑ1j −∆0

1

))2}
+R1n

+
n∑
j=1

ω2j

{
−2λ

(
Ẑ2j −∆0

2

)
+

1

2

(
2λ
(
Ẑ2j −∆0

2

))2}
+R2n,

(D.2)
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where

Rkn ≤ C

n∑
j=1

ωkj|λ
(
Ẑkj −∆0

k

)
|3 ≤ C|λ|3n = Op

(
n−1/2

)
, k = 1, 2.

Recall that λ, ∆0
1 and ∆0

2 are solutions of

1∑
ω1l

n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)
1 + 2λ

(
Ẑ1j −∆0

1

) = 0, (D.3)

1∑
ω2l

n∑
j=1

ω2j

(
Ẑ2j −∆0

2

)
1− 2λ

(
Ẑ2j −∆0

2

) = 0, (D.4)

1∑
ω1l

n∑
j=1

ω1jẐ1j

1 + 2λ
(
Ẑ1j −∆0

1

) − 1∑
ω2l

n∑
j=1

ω2jẐ2j

1− 2λ
(
Ẑ2j −∆0

2

) = ∆0. (D.5)

From equations (D.3) and (D.4), we have

2λ =

1∑
ω2l

n∑
j=1

ωkj

(
Ẑkj −∆0

k

)
1∑
ω2l

n∑
j=1

ωkj

(
Ẑkj −∆0

k

)2 + op
(
n−1/2

)
,

n∑
j=1

ωkj.2λ
(
Ẑkj −∆0

k

)
=

n∑
j=1

ωkj

(
2λ
(
Ẑkj −∆0

k

))2
+ op (1) . (D.6)
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Substituting equation (D.6) in equation (D.2), we obtain

l
(
∆0
)

=
n∑
j=1

ω1j.2λ
(
Ẑ1j −∆0

1

)
−

n∑
j=1

ω2j.2λ
(
Ẑ2j −∆0

2

)
+ op (1)

= 2λ

{
n∑
j=1

ω1jẐ1j −
n∑
j=1

ω2jẐ2j −∆0
1

n∑
j=1

ω1j + ∆0
2

n∑
j=1

ω2j

}
+ op (1)

= 2λ

{∑
ω1l∆̂1 −

∑
ω2l∆̂2 −

(
∆0

1

n∑
j=1

ω1j −∆0
2

n∑
j=1

ω2j

)}
+ op (1)

= 2λn
{

∆̂1 − ∆̂2 −
(
∆0

1 −∆0
2

)}
+ op (1) , since

∑
ωkl = n

= 2λn
(

∆̂− ∆̂0
)

+ op (1) . (D.7)

Recall that

1∑
ωkl

n∑
j=1

ωkj

(
Ẑkj −∆k

)
= op (1) , k = 1, 2.

From equation (D.5), we have

1∑
ω1l

n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)(
1 + 2λ

(
Ẑ1j −∆0

1

))
−

1∑
ω2l

n∑
j=1

ω2j

(
Ẑ2j −∆0

2

)(
1− 2λ

(
Ẑ2j −∆0

2

))
= op (λ) . (D.8)

Hence, we have

2λ =

1∑
ω1l

n∑
j=1

ω1jẐ1j −
1∑
ω2l

n∑
j=1

ω2jẐ2j −
(
∆0

1 −∆0
2

)
1∑
ω1l

n∑
j=1

ω1j

(
Ẑ1j −∆0

1

)2
+

1∑
ω2l

n∑
j=1

ω2j

(
Ẑ2j −∆0

2

)2 + op (λ) ,

2λ =
∆̂−∆0

S2
1 + S2

2

+ op
(
n−1/2

)
. (D.9)
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Thus, using equations D.7, D.9, Lemma D.1 and Theorem 5.2.2, we obtain that

r (∆0) l (∆0) = r (∆0)n.

(
∆̂−∆0

)2
S2
1 + S2

2

+ op (1)

= r (∆0) .
nσ2

(m+ n) (S2
1 + S2

2)

√m+ n
(

∆̂−∆0
)

σ

2

+ op (1)

=

(
√
m+ n

∆̂−∆0

σ

)2

+ op (1)

D−→ χ2
1.

Proof of Theorem 5.2.4. The proof of Theorem 5.2.4 is similar to these of Theorem 2.2.2 in

Chapter 2 and Theorem 3.2.2 in Chapter 3.
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