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NOVEL EMPIRICAL LIKELIHOOD INFERENCE PROCEDURES FOR

ZERO-INFLATED AND RIGHT CENSORED DATA AND THEIR APPLICATIONS

by

FAYSAL SATTER

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

The empirical likelihood method is a reliable data analysis tool in all statistical areas for

its nonparametric features with parametric likelihood benefits. Because of the versatility of

this method, we investigate its performance under survival and non-survival data structures.

Zero-inflated data may arise in many areas where there are many zero values, and the

non-zero values are often highly positively skewed. Confidence intervals based on a normal

approximation for such zero-inflated data may have low coverage probabilities. We study



empirical likelihood (EL) based inference techniques to construct a nonparametric confidence

interval for the mean of a zero-inflated population, the mean difference of two zero-inflated

skewed populations, and the quantile difference of a zero-inflated population.

We also apply the empirical likelihood method in two different kinds of survival data.

First, we consider panel count data. In panel count data, each study subject can only

be observed at discrete time points rather than continuously. The total number of events

between the two observation times are known, but the exact time of events is unknown.

Furthermore, the observation times can be different among subjects and carry important

information about the underlying recurrent process. The second dataset comes from cohort

study data. Collecting covariate information on all study subjects makes cohort studies

very expensive. One way to reduce the cost while keeping sufficient covariate information is

to use a case-cohort study design. We consider case-cohort data to make inferences about

the regression parameters of semiparametric transformation models. For both datasets, an

empirical likelihood ratio is formulated, and the Wilks’ theorem is established.

Extensive simulation studies are carried out to assess all the methods mentioned earlier

in various data settings. We compare the performance in terms of coverage probabilities

and average lengths by NA and EL methods’ confidence intervals. The applicability of the

methods is also illustrated by real datasets.

INDEX WORDS: Empirical likelihood, Jackknife empirical likelihood, Confidence inter-
val, Wilks’ Theorem, Zero-inflation, Quantile, Panel count data, Case-
cohort study design



NOVEL EMPIRICAL LIKELIHOOD INFERENCE PROCEDURES FOR

ZERO-INFLATED AND RIGHT CENSORED DATA AND THEIR APPLICATIONS

by

FAYSAL SATTER

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2020



Copyright by
Faysal Satter

2020



NOVEL EMPIRICAL LIKELIHOOD INFERENCE PROCEDURES FOR

ZERO-INFLATED AND RIGHT CENSORED DATA AND THEIR APPLICATIONS

by

FAYSAL SATTER

Committee Chair: Yichuan Zhao

Committee: Jing Zhang

Yichen Cheng

Jun Kong

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2020



iv

DEDICATION

This dissertation is dedicated to my family, and friends.



v

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many people.

I want to express my utmost gratitude to my advisor, Dr. Yichuan Zhao, who nurtured

and guided me throughout the doctoral program. I am fortunate enough to have Dr. Zhao

as my advisor from the beginning of my Ph.D. study. The strong motivation, aspiration to

learn, and dedication to research, I got all of them from him. Whenever I needed any help

or guidance, may it be academic or personal, Dr. Zhao was there. I would not continue this

Ph.D. journey without his selfless support and advice.

I would also like to express my sincere gratitude to the committee members Dr. Jing

Zhang, Dr. Yichen Cheng, and Dr. Jun Kong, for accepting my invitation to be a com-

mittee member. I want to thank them for their thoughtful and constructive comments and

suggestions. These suggestions helped me to conduct my research and write the dissertation

in the right direction.

I want to thank the department chair, Dr. Guantao Chen, and the associate chair Dr.

Alexandra Smirnova for their academic and teaching assistantship support. These supports

are crucial and pivotal for this doctoral study.

I want to express my appreciation to my fellow students, Jameson Stillwell, Xue Yu,

Kangni Alemdjrodo, Husneara Rahman, Edem Defor, Bing Liu, Shuenn Siang Ng, Alan Dills

for any personal and academic help or discussion, and made me feel at home. The open-up

conservation with them on any topics helped me relieve stress and stay focused on my study.

I want to thank my parents for believing in me and supporting me emotionally through-

out my whole life. Sending the only son abroad for higher studies was hard for them, and yet

they made that sacrifice to achieve my dream. My wife understands the focus and dedication

needed for the Ph.D. study, and she is super considerate and supportive. I want to thank

my sister, brother-in-law, and other family members for always being by my side.

I want to thank the “Touch the Earth”, Recreational Services’ outdoor recreation pro-



vi

gram at GSU. The weekend outdoor activities are an integral part of my PhD life.

Finally, I want to thank everyone for helping me finish this long doctoral journey, one

way or another. This is about achieving a long-sought dream, and you all are part of it.



vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . xiii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . xiv

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . 1

1.1 Empirical Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Jackknife empirical likelihood . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Adjusted empirical likelihood . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Transformed empirical likelihood . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 EMPIRICAL LIKELIHOOD FOR THEMEANOF A ZERO-

INFLATED POPULATION . . . . . . . . . . . 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Zero-inflated population . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Empirical likelihood procedure . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Adjusted empirical likelihood procedure . . . . . . . . . . . . . . 13

2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3 JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE

FOR THEMEANDIFFERENCE OF TWO ZERO-INFLATED



viii

SKEWED POPULATIONS . . . . . . . . . . . 19

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Jackknife empirical likelihood procedure . . . . . . . . . . . . . . 22

3.2.3 Adjusted jackknife empirical likelihood procedure . . . . . . . . . 25

3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Application to Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 4 JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE QUAN-

TILE DIFFERENCE OF A ZERO-INFLATED POPULA-

TION . . . . . . . . . . . . . . . . . . . . 36

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Jackknife empirical likelihood method . . . . . . . . . . . . . . . . 39

4.2.2 Adjusted jackknife empirical likelihood method . . . . . . . . . . 41

4.2.3 Transformed jackknife empirical likelihood method . . . . . . . . 43

4.2.4 Transformed adjusted jackknife empirical likelihood method . . . 44

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER 5 EMPIRICAL LIKELIHOOD INFERENCE FOR THE PANEL

COUNT DATA WITH INFORMATIVE OBSERVATION

PROCESS . . . . . . . . . . . . . . . . . . 53

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



ix

5.2.2 Semiparametric transformation model . . . . . . . . . . . . . . . . 58

5.2.3 Empirical likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 6 EMPIRICAL LIKELIHOOD INFERENCE FOR THE TRANS-

FORMATIONMODELWITH THE CASE-COHORT STUDY 77

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Normal approximation method . . . . . . . . . . . . . . . . . . . 81

6.2.3 Empirical likelihood method . . . . . . . . . . . . . . . . . . . . . 84

6.2.4 Adjusted empirical likelihood method . . . . . . . . . . . . . . . . 85

6.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 7 CONCLUSIONS . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . 97

APPENDICES . . . . . . . . . . . . . . . . . . . . . . 111

Appendix A PROOFS OF CHAPTER 2 . . . . . . . . . . . 111

Appendix B PROOFS OF CHAPTER 3 . . . . . . . . . . . 114

Appendix C PROOFS OF CHAPTER 4 . . . . . . . . . . . 126

Appendix D PROOFS OF CHAPTER 5 . . . . . . . . . . . 141



x

Appendix E PROOFS OF CHAPTER 6 . . . . . . . . . . . 151



xi

LIST OF TABLES

Table 2.1 Coverage probabilities (average lengths) with nominal level 0.95 when

the skewed data follow the log-normal distribution. . . . . . . . . 16

Table 2.2 Coverage probabilities (average lengths) with nominal level 0.95 when

the skewed data follow the exponential distribution. . . . . . . . . 17

Table 2.3 Coverage probabilities (average lengths) with nominal level 0.95 when

the skewed data follow the chi-squared distribution. . . . . . . . . 18

Table 3.1 Coverage probabilities (average lengths) with confidence level 0.95

when the skewed data follow the exponential distribution. . . . . 31

Table 3.2 Coverage probabilities (average lengths) with confidence level 0.95

when the skewed data follow the chi-squared distribution. . . . . . 32

Table 3.3 Coverage probabilities (average lengths) with confidence level 0.95

when the skewed data follow the Poisson distribution. . . . . . . . 33

Table 3.4 Confidence intervals and lengths with 95% confidence level for the

sexual health study data. . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3.5 Confidence intervals and lengths with 95% confidence level for the

methylation pattern measurement data. . . . . . . . . . . . . . . . 35

Table 4.1 Coverage probabilities (average lengths) of 95% confidence interval

with the non-zero data following chi-square distribution. . . . . . 49

Table 4.2 Coverage probabilities (average lengths) of 95% confidence interval

with the non-zero data following exponential distribution. . . . . . 50

Table 4.3 Coverage probabilities (average lengths) of 95% confidence interval

with the non-zero data following lognormal distribution. . . . . . 51



xii

Table 4.4 Upper limit and lower limit of 95% confidence interval (CI) and length

for the real data with normal approximation (NA), jackknife empiri-

cal likelihood (JEL), adjusted jackknife empirical likelihood (AJEL),

transformed jackknife empirical likelihood (TJEL), and transformed

adjusted jackknife empirical likelihood (TAJEL). . . . . . . . . . 52

Table 5.1 Coverage probabilities (average lengths) for normal approximation

(NA) and empirical likelihood (EL) with nominal level 0.95, g(t) = t

and µ0(t) = t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 5.2 Coverage probabilities (average lengths) for normal approximation

(NA) and empirical likelihood (EL) with nominal level 0.95, g(t) =

log(t) and µ0(t) = t. . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.3 Coverage probabilities (average lengths) for normal approximation

(NA) and empirical likelihood (EL) with nominal level 0.95, g(t) = t2

and µ0(t) = exp(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 5.4 Confidence interval (CI) and length for normal approximation (NA)

and empirical likelihood (EL) with nominal level 0.95 with g(t) = t. 73

Table 5.5 Confidence interval (CI) and length for normal approximation (NA)

and empirical likelihood (EL) with nominal level 0.95 with g(t) =

log(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 6.1 Coverage probabilities (average lengths) for normal approximation

(NA), empirical likelihood (EL), adjusted empirical likelihood (AEL)

with nominal level 0.95 and covariate independent censoring. . . . 91

Table 6.2 Coverage probabilities (average lengths) for normal approximation

(NA), empirical likelihood (EL), adjusted empirical likelihood (AEL)

with nominal level 0.95 and covariate dependent censoring. . . . . 92

Table 6.3 The 95% confidence intervals (CI) and their corresponding lengths

by normal approximation (NA), empirical likelihood (EL), adjusted

empirical likelihood (AEL) methods for the tumor study dataset. 93



xiii

LIST OF FIGURES

Figure 5.1 Plot of confidence interval for normal approximation (NA) and empir-

ical likelihood (EL) with nominal level 0.95 with g(t) = t. . . . . . 75

Figure 5.2 Plot of confidence interval for normal approximation (NA) and empir-

ical likelihood (EL) with nominal level 0.95 with g(t) = log(t). . . 76

Figure 6.1 Plot of 95% confidence intervals by normal approximation (NA), em-

pirical likelihood (EL), adjusted empirical likelihood (AEL) methods

for the tumor study dataset. . . . . . . . . . . . . . . . . . . . . . 94



xiv

LIST OF ABBREVIATIONS

� AEL - Adjusted empirical likelihood

� AJEL - Adjusted jackknife empirical likelihood

� AL - Average length

� BCML - Bias-corrected maximum likelihood

� CCI - Case-cohort study with the same number of cases and controls

� CCII - Case-cohort study with twice as many controls as cases

� CDF - Cumulative distribution function

� CI - Confidence interval

� CP - Coverage probability

� DNA - Deoxyribonucleic acid

� ECDF - Empirical cumulative distribution function

� EL - Empirical likelihood

� ELR - Empirical likelihood ratio

� FH - Favourable histology

� FULL - Full cohort study

� i.i.d. - Independent and identically distributed

� JEL - Jackknife empirical likelihood

� NA - Normal approximation



xv

� TEL - Transformed empirical likelihood

� TJEL - Transformed jackknife empirical likelihood

� TAJEL - Transformed adjusted jackknife empirical likelihood

� UH - Unfavorable histology

� VACURG - Veterans administration cooperative urological research group



1

CHAPTER 1

INTRODUCTION

The idea of nonparametric likelihood is first sketched by Thomas and Grunkemeier (1975)

in survival data analysis, where they proposed a likelihood ratio method to construct a con-

fidence interval for survival probabilities for right censored data. Owen (1988) and Owen

(1990) extended this methodology in more general settings and introduced “empirical like-

lihood” method to construct a confidence interval for the univariate mean with theoretical

justification. This method effectively combines the benefits of the parametric likelihood

approach and the reliability of the nonparametric method. Some notable advantages of

empirical likelihood (EL) are: (1) Unlike parametric likelihood-based methods, the EL tech-

nique does not assume any known family of distribution, yet it produces more efficient and

powerful estimation and tests. (2) EL confidence region is range-preserving and transforma-

tion invariant (3) The shape and orientation of the confidence region are determined entirely

by the data. (4) EL regions are Bartlett correctable, which increases the coverage accuracy.

(5) The variance or variance-covariance matrix is not needed to construct a confidence in-

terval. (6) Unlike normal approximation and the bootstrap method, EL does not require a

pivotal quantity to construct a confidence interval. For a comprehensive review, see Owen

(2001). Because of these attractive features, EL methods have been applied in a wide range

of research areas. In this dissertation, we study the performance and applicability of empiri-

cal likelihood with three different data structures: zero-inflated data, panel count data, and

case-cohort data.

In many situations, we may observe many zeros in the data. These zero values are valid

observations and an indispensable part of the data. These excess zeros make the data zero-

inflated. And often, zero-inflated data is positively skewed. Panel count data is a special

kind of survival data, where study subjects are only observed at discrete time points during
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the study period. As a result, one can only know the total number of events between two

observation time points instead of the events’ actual time. The subject becomes censored if

there are no events at the end of the study period. Also, the observation history may offer

information about the recurrent event process. Cohort studies are designed to evaluate the

association between exposure and disease. This design is very costly and time-consuming

because all the study subjects are followed over the whole study period. A case-cohort study

is designed to reduce the cost with the same level of efficiency. Covariate information is

collected only from a subsample of the full cohort and all cases. This reduces the need to

get covariate information from all study subjects.

1.1 Empirical Likelihood

In this section, we will review the formulation of EL. The cumulative distribution func-

tion (CDF) of a random variable X is defined as

F (x) = Pr(X ≤ x),−∞ < x <∞.

The corresponding empirical cumulative distribution function (ECDF) of independent ran-

dom samples X1, . . . , Xn is

Fn(x) = n−1

n∑
i=1

I(Xi ≤ x),−∞ < x <∞.

Denote pi = Pr(X = Xi) = F (Xi) − F (Xi−), where F (x−) = Pr(X < x). The empirical

likelihood function is

L(F ) =
n∏
i=1

pi.

It can be easily shown that Fn(·) maximizes the likelihood function L(F ). Owen (1988)

defines the nonparametric empirical likelihood ratio (ELR) as

R(F ) =
L(F )

L(Fn)
,
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with the constraints pi ≥ 0 and
∑n

i=1 pi = 1, where pi is a probability vector. For example,

we can define the empirical likelihood for a population mean µ as

L(µ) = max

{ n∏
i=1

pi :
n∑
i=1

piXi = µ,

n∑
i=1

pi = 1, pi ≥ 0.

}
.

Since L(µ) is attains its maximum at n−1 under the constraint
∑n

i=1 pi = 1, the empirical

likelihood ratio at µ is

R(µ) = max

{ n∏
i=1

npi :
n∑
i=1

piXi = µ,

n∑
i=1

pi = 1, pi ≥ 0.

}
. (1.1)

This is a maximization problem with two constraints. The Lagrange multiplier method can

be used to solve this optimization problem. Let λ be the Lagrange multiplier, which can be

computed by solving the equation

n∑
i=1

Xi − µ
1 + λ′(Xi − µ)

= 0.

Plugging λ into eqn. (1.1), and then taking the log yields the empirical log-likelihood ratio

logR(µ) = −
n∑
i=1

log[1 + λ(Xi − µ)].

Let µ0 be the true value of µ. Owen (1990) proved the nonparametric version of Wilks’

theorem for logR(µ0), i.e., −2logR(µ0) converges to a limiting chi-squared distribution with

one degree of freedom. Using the Wilks’ theorem, the 100(1− α)% confidence interval for µ

is given by

I(α) = {µ : −2logR(µ0) ≤ χ2
1(α)}.

Despite having all the benefits, the EL method may suffer from some drawbacks, such

as computational complexity, under-coverage problem, and convex-hull problem. Many re-

searchers proposed several versions of empirical likelihood to overcome these issues. We

highlight a few of them below.
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1.1.1 Jackknife empirical likelihood

In this section, we go over jackknife empirical likelihood (JEL). Jing et al. (2009) pointed

out that EL method is computationally very difficult for non-linear functionals, such as U -

statistics. They proposed a variant of EL method, called jackknife empirical likelihood

method, by combining the EL and the jackknife pseudo-values (Quenouille (1956)). The

idea is to calculate jackknife pseudo-values from the parameter of interest and then apply

EL method to those pseudo-values. Since this is simply a sample mean based EL application,

it is easy to apply and more capable of handling complex non-linear constraints. JEL enjoys

all the EL benefits and Jing et al. (2009) showed that the Wilks’ theorem still holds for JEL

method.

Let θ be the parameter of interest. For n independent random variables X1, . . . , Xn,

define a consistent estimator of θ as the following U -statistics,

Yn = T (X1, . . . , Xn).

Let Y
(−i)
n−1 be the statistic from (n−1) variables after deleting i-th observation from the data.

Then the jackknife pseudo-values are defined as

V̂i = nYn − (n− 1)Y
(−i)
n−1 .

The average of these pseudo-values is the jackknife estimator of θ

Ŷn,jack := n−1

n∑
i=1

V̂i.

Shi (1984) showed that under mild condition, the pseudo-values are asymptotically indepen-

dent. The next step is to apply EL method to these pseudo-values.

Let p = (p1, . . . , pn) be a probability vector. Then pi ≥ 0 and
∑n

i=1 pi = 1 for 1 ≤ i ≤ n.
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Let θp =
∑n

i=1 piEV̂i. Then the empirical likelihood, evaluated at θ, is

L(θ) = max

{ n∏
i=1

pi :
n∑
i=1

piV̂i = θp,

n∑
i=1

pi = 1, pi ≥ 0.

}
.

Then the jackknife empirical likelihood ratio at θ is

R(θ) =
L(θ)

n−n

= max

{ n∏
i=1

npi :
n∑
i=1

piV̂i = θp,

n∑
i=1

pi = 1, pi ≥ 0.

}
.

Using the Lagrange multiplier method, we obtain the jackknife empirical log-likelihood ratio

as follows,

logR(θ) = −
n∑
i=1

log[1 + λ(V̂i − θp)],

where λ satisfies the equation

n∑
i=1

V̂i − θp
1 + λ(V̂i − θp)

= 0.

Let θ0 be the true value of θ. Jing et al. (2009) proved the nonparametric Wilks’ theorem

for logR(θ0), i.e.,

−2logR(θ0)
D→ χ2

1.

1.1.2 Adjusted empirical likelihood

We sketch the procedure of adjusted empirical likelihood (AEL) in reference to con-

structing a empirical likelihood confidence interval for population mean described in Section

1.1. one pivotal step in EL method is to find the Lagrange multiplier by solving the eqn.

n∑
i=1

Xi − µ
1 + λ′(Xi − µ)

= 0.



6

If zero is not in the interior of the convex hull of (Xi − µ), the solution does not exists

and it creates a convex-hull problem for solving the equation. In some situations, empirical

likelihood can suffer from this convex-hull problem, and the overall performance can be

worse. To address this issue, Chen et al. (2008) proposed the adjusted empirical likelihood.

The key idea is to add one more artificial data point to the existing dataset to make sure

that zero is in the interior of the convex hull of (Xi − µ).

We denote gi(µ) = (Xi − µ). The extra artificial value is obtained by

gn+1(µ) = −an
n

n∑
i=1

gi(µ),

where an is a positive constant. A general recommendation by Chen et al. (2008) is to use

an = max(1, log(n)/2), but other values can be appropriate in different situations. With the

new value, the adjusted empirical likelihood ratio at µ is

Ra(µ) = max

{ n+1∏
i=1

(n+ 1)pi :
n+1∑
i=1

piXi = µ,
n+1∑
i=1

pi = 1, pi ≥ 0

}
.

We can optimize the AEL ratio using Lagrange multiplier and Chen et al. (2008) showed

that the Wilks’ theorem also holds for the AEL, i.e.,

−2logRa(µ0)
D→ χ2

1.

This simple adjusted improve the coverage probabilities of the empirical likelihood,

especially when the sample size is small.

1.1.3 Transformed empirical likelihood

Now, we review the transformed empirical likelihood (TEL). TEL is proposed by Jing et

al. (2017) to improve the coverage probability of EL method without adding any complexity

or theoretical justification. This is done by a simple transformation of the original empirical

likelihood. Jing et al. (2017) suggested a set of four properties the transformation should
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possess in order to be considered as a good candidate for the transformation function. Using

these properties and the extended empirical likelihood (proposed by Tsao and Wu (2013))

as starting point, a transformed empirical likelihood method is developed.

Let l(θ) be the original empirical log-likelihood ratio for the parameter θ. Many func-

tions can satisfy the four properties to be considered as good transformation function. The

truncated quadratic transformation gt(l(θ); γ) of l(θ) is a good option, which is defined as

gt(l(θ); γ) = l(θ)×max[1− l(θ)/n, 1− γ],

where γ ∈ [0, 1] is a constant, and n is the sample size. The default choice for γ is 0.5. Then,

the corresponding transformed empirical log-likelihood ratio is

lt(θ) = gt[l(θ); γ = 0.5)]

= l(θ) ∗max[1− l(θ)/n, 0.5],

which can be written as

lt(θ) =

 l(θ)[1− l(θ)/n] if l(θ) ≤ n/2

l(θ)/2 if l(θ) > n/2.

TEL has the same asymptotic properties as EL, i.e., Wilks’ theorem holds for the TEL

such that [cf. Jing et al. (2017)]

−2loglt(θ0)
D→ χ2

1.

The remaining dissertation is organized as follows. In Chapter 2, we illustrate a novel

empirical likelihood and adjusted empirical likelihood methods for the mean of a zero-inflated

population. In Chapter 3, we discuss jackknife empirical likelihood and adjusted jackknife

empirical likelihood methods for the mean difference of two zero-inflated populations. We

study the jackknife empirical likelihood methods for the quantile difference of a zero-inflated

data in Chapter 4. We propose empirical likelihood confidence intervals method for panel
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count data in Chapter 5. Case-cohort data is analyzed by empirical likelihood and adjusted

empirical likelihood methods in Chapter 6. Summary and some concluding remarks are

included in Chapter 7.
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CHAPTER 2

EMPIRICAL LIKELIHOOD FOR THE MEAN OF A ZERO-INFLATED

POPULATION

2.1 Background

In recent years, ecology, public health, medicine, and environmental science often pro-

duce data, which are highly positively skewed and contain significant proportion of zero

values. Zero-inflated data refer to data with a heterogeneous distribution, which has at-

tracted more attention for the psychology and health care research. These zero-inflated and

positive skewed populations are contrary to the simple homogeneous population and unlikely

to follow the normal distribution. As a result, the existing methods, which do not consider

this special kind of data setting may give low coverage probabilities.

Parametric and empirical likelihood methods are used to find a confidence interval

for the population containing many zero values. Welsh et al. (1996) presented parametric

conditional models that incorporate excess zeros with an application to the mean abundance

of rare animals. Dobbie and Welsh (2001) proposed a method of modeling correlated zero-

inflated data. Fletcher et al. (2005) used a combination of ordinary and logistic regression

for skewed data with many zeros. Min and Agresti (2002) proposed a model for nonnegative

observations clumping at zero. Application of zero-inflated Poisson and binomial regression

is given by Hall (2000) and Lambert (1992). An example of Hurdle models for count data

with extra zeros is given by Hu et al. (2011).

Empirical likelihood (EL) method was proposed by Owen (1988, 1990), which has the

advantage of having parametric likelihood benefits without having any distributional assump-

tions. The shape of the confidence region depends on the data, and it is range respective

and transformation invariant. Furthermore, Diciccio et al. (1991) showed that this method is

Bartlett correctable which is later extended by Corcoran (1998) by introducing two broader
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classes of nonparametric discrepancy measures. Hall and La Scala (1990) gave few method-

ologies and algorithms of the empirical likelihood. A comprehensive overview of empirical

likelihood can be found in Owen (2001). Also adding artificial observations to the original

data is discussed in the literature by many authors under different settings. For example, to

address the convex hull problem in the high-dimensional data, Chen et al. (2015) proposed

the balanced augmented EL method, which added two pseudo-observations to the original

data. This simple technique puts the zero vector in the convex hull, which produces good

performance for the high-dimensional case. Another use of two extra pseudo-values to the

data is illustrated in Cheng et al. (2018). They focused on the convex hull problem in the

jackknife empirical likelihood (JEL) (Jing et al. (2009)) inference with the small sample size.

The simulation studies indicated that this modification gave the better performance than

the JEL when zero may not be in the convex hull.

Because of the advantages of empirical likelihood over parametric methods, it has been

using extensively in all statistical areas. Chen and Qin (2003) proposed nonparametric

empirical likelihood method to find confidence intervals for data with zero observations.

Chen et al. (2003) also proposed a similar method without separating the zero and nonzero

values. Kang et al. (2010) gave an application of empirical and parametric likelihood interval

estimation of population having many zero observations. Zhou and Zhou (2005) proposed

empirical likelihood for the mean difference of two skewed populations with many zero values.

Pailden and Chen (2013) also proposed similar empirical likelihood for two zero-inflated

populations. But the empirical likelihood for this data setting is very complicated and

computationally intensified.

In this chapter, we propose an empirical likelihood confidence interval for a mean of

the skewed population with additional zero values. We generate artificial values using the

data structure and apply an empirical likelihood method to those values. We also propose

an adjusted empirical likelihood (AEL) method. The adjusted empirical likelihood method

was proposed by Chen et al. (2008), which enabled us to adjust the empirical likelihood

function by adding one more data point. And this adjustment will produce better coverage
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probability than the empirical likelihood counterpart. Liu and Chen (2010) adjusted the

empirical likelihood with a specific level to attain high level precision even for small sample

or high dimension estimating function. The advantage of our proposed EL and AEL methods

is that they are easy to implement and has simpler interpretation than existing ones.

This chapter is organized as follows. In Section 2.2, empirical likelihood and adjusted

empirical likelihood method are proposed. We conduct simulation studies to evaluate the

proposed methods in Section 2.3. Then we apply this method to a real life data set in Section

2.4. Some concluding remarks are given in Section 2.5. All proofs are given in the Appendix

A.

2.2 Main Results

2.2.1 Zero-inflated population

we consider an unknown skewed population that contains a significant proportion of

zero values. Let X1, X2, . . . , Xn be non-negative i.i.d. random samples from the skewed

population X with E(X) = µ. Let 1 > δ = P (X = 0) > 0 be the probability of having zero

values. For convenience, we assume that n1 represents the number of positive values in Xi’s.

Denote these values as x1, x2, . . . , xn1 . Then, one has n0 = n− n1 number of zero values in

the sample. It can be shown that

µ = E(X) = E(X|X > 0)P (X > 0) = (1− δ)E(X|X > 0).

The nonparametric estimator Tn1 of µ can be written as:

Tn1 =
∑n1
i=1 xi
n

=
∑n1
i=1 xi
n1
· n1

n
.

We denote:

V̂i =
n1xi
n

, i = 1, 2, . . . , n1.
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As n→∞ we have that n1/n→ 1− δ and

Tn1 =
1

n1

n1∑
i=1

V̂i =
n1

n

∑n1

i=1 xi
n1

→ (1− δ)E(X|X > 0) = µ.

2.2.2 Empirical likelihood procedure

We now apply the empirical likelihood method on these values to make inference for µ.

The empirical likelihood ratio at the parameter µ is given by

R(µ) = sup

{
n1∏
i=1

(npi) :

n1∑
i=1

pi = 1,

n1∑
i=1

pi(V̂i − µ) = 0, pi ≥ 0, i = 1, . . . , n1

}
.

By using the Lagrange multiplier method, the empirical log-likelihood ratio is

logR(µ) = −
n1∑
i=1

log[1 + λ(V̂i − µ)].

where λ satisfies the following equation

1

n1

n1∑
i=1

V̂i − µ
1 + λ(V̂i − µ)

= 0. (2.1)

We establish the asymptotic chi-squared distribution of the empirical log-likelihood ratio

statistic and construct the EL and AEL confidence intervals.

Theorem 2.1. Let X1, X2, . . . , Xn be i.i.d. non-negative observations of X. Assume 0 <

δ < 1 and E|X|2 <∞. Let µ0 be the true value of µ = EX = (1− δ)E(X|X > 0). Then

−2logR(µ0)→ χ2
1 in distribution as n→∞.

Based on Theorem, 2.1, we can construct the asymptotic 100(1− α)% empirical likeli-

hood confidence interval for µ0 as

I1(α) = {µ : −2logR(µ) ≤ χ2
1(α)},
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where χ2
1(α) is the (1− α) quantile of a chi-square distribution with 1 degree of freedom.

2.2.3 Adjusted empirical likelihood procedure

For the adjusted empirical likelihood, we add one more data point to the artificial

values and apply an empirical likelihood method. Let gi = V̂i − µ, i = 1, 2, . . . , n1, and

ḡ = n−1
1

∑n1

i=1 gi for any fixed µ. Following Chen et al. (2008), for some an1 > 0, we define

gn1+1 = −an1 ḡ = −an1

n1

n1∑
i=1

gi.

where an1 = max(1, log(n1)/2) as suggested by Chen et al. (2008). We apply EL method to

these n1 + 1 values. Then the adjusted empirical log-likelihood ratio of µ is defined as

R?(µ) = sup

{
n1+1∑
i=1

log {(n1 + 1)pi)} :

n1+1∑
i=1

pi = 1,

n1+1∑
i=1

pi(gi) = 0, pi ≥ 0,

i = 1, . . . , n1 + 1

}
.

Using Lagrange multiplier method, we obtain the adjusted empirical log-likelihood ratio

as follows,

logR?(µ) = −
n1+1∑
i=1

log[1 + λgi],

where λ satisfies

1

n1 + 1

n1+1∑
i=1

gi
1 + λgi

= 0.

Theorem 2.2. Let X1, X2, . . . , Xn be i.i.d. non-negative observations of X. Suppose 0 <

δ < 1 and E|X|2 < ∞. Let µ0 be the true value of µ = EX = (1 − δ)E(X|X > 0). As

n→∞,

−2logR?(µ0)→ χ2
1 in distribution.
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From Theorem 2.2, the asymptotic 100(1 − α)% adjusted empirical likelihood (AEL)

confidence interval for µ0 is as follows,

I2(α) = {µ : −2logR?(µ) ≤ χ2
1(α)}.

2.3 Simulation Study

For the simulation, zero values are generated from binomial distribution with proportion

0.1, 0.2 and 0.5. And the non-zero observations are generated from log-normal, chi-squared

and exponential distributions. All simulations are repeated 10000 times.

We summarize the coverage probabilities and average lengths for the empirical likelihood

(EL), AEL, EL (Chen and Qin (2003)), and NA CIs at a 95% nominal confidence level. We

generate the log-normal distribution with parameters 0 and 1 in the first setting. For the log-

normal distribution, bias-corrected maximum likelihood (BCML) confidence intervals (Zhou

and Tu (2000)) are included for comparison. For the second setting, a data set is generated

from the exponential distribution with parameter 1. Chi-square distribution with parameter

1 is used to generate data for the third setting.

From the simulation studies, we find that the coverage probabilities of the our proposed

empirical likelihood (EL) confidence interval are better than that of based on normal approx-

imation, maximum likelihood and empirical likelihood (see Chen and Qin (2003)) in most

cases. From Tables 2.1, 2.2 and 2.3, our adjusted empirical likelihood confidence interval

has even better coverage probability than other ones. The average length of the adjusted

empirical likelihood confidence interval is longer than ones of other confidence intervals. And

the length gets shorter as the sample size increases.

2.4 Real Data Analysis

To illustrate our method, we use the data from a pilot study aimed to examine the

accuracy of the sexual behavior report of adolescence females. We are interested in the

mean of contemporaneous daily diary report. The data set has been taken from Tang et
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al. (2012). The data is zero-inflated. Out of 47 observations, there are 13 zero observations

and the non-zero observations are right skewed (the skewness is 1.770). The mean and the

standard deviation of diary group are 9.106 and 12.356, respectively.

A point estimate of the mean µ is 9.106. The EL confidence interval is (5.308, 13.929),

and the adjusted empirical likelihood confidence interval is (5.415, 14.246). The correspond-

ing confidence interval based on normal approximation is (5.570, 12.642) and the confidence

interval with the empirical likelihood (Chen and Qin (2003)) is (5.401, 13.526). Since our

simulation study shows that our adjusted empirical likelihood has better coverage than other

methods. In our example, one may want to use (5.415, 14.246) as the confidence interval for

the mean of contemporaneous daily diary report. One might also consider the EL confidence

interval (5.308, 13.929) because of its shorter length than AEL confidence interval even if it

may have less coverage probability than AEL as our simulation study shows.

2.5 Conclusion

Contemporary research studies collect information on an array of measurements with

the significant amount of zeros. More recently, there has been a huge influx of zero-inflated

observations in biology and health care. This has motivated the broad use of statistical

procedures for zero-inflated data in practice. In this chapter, we proposed EL and adjusted

EL methods to obtain the confidence interval for the mean of a skewed population where the

population contains significant number of zero observations. These methods are compared

with the normal approximation method and EL method proposed by Chen and Qin (2003).

The simulation studies show that the EL and AEL interval estimates have more accurate

coverage probability than that of based on normal approximation and empirical likelihood

methods proposed by Chen and Qin (2003). Future studies may involve considering other

more advanced EL methods, such as the extended empirical likelihood, the balanced aug-

mented EL and we extend the new method to the mean difference of two samples, etc.
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Table (2.1) Coverage probabilities (average lengths) with nominal level 0.95 when the skewed
data follow the log-normal distribution.

n δ NA BCML EL (Chen and Qin (2003)) EL AEL

20

.1 .867 (1.593) .881 (1.629) .879 (1.648) .889 (1.724) .889 (1.772)

.2 .836 (1.552) .882 (1.604) .851 (1.795) .891 (1.807) .895 (1.865)

.5 .850 (1.581) .853 (1.605) .854 (1.590) .851 (1.602) .881 (1.694)

50

.1 .889 (1.056) .912 (1.128) .890 (1.146) .892 (1.179) .922 (1.257)

.2 .895 (1.034) .934 (1.109) .925 (1.301) .943 (1.265) .948 (1.358)

.5 .901 (1.021) .936 (1.002) .914 (1.215) .925 (1.198) .945 (1.308)

100

.1 .906 (0.782) .944 (0.785) .933 (0.870) .937 (0.880) .943 (0.906)

.2 .906 (0.751) .944 (0.765) .939 (0.899) .945 (0.922) .950 (0.952)

.5 .915 (0.645) .943 (0.666) .941 (0.892) .947 (0.872) .952 (0.932)

NOTE:
NA: normal approximation
BCML: bias-corrected maximum likelihood
EL: empirical likelihood
AEL: adjusted empirical likelihood
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Table (2.2) Coverage probabilities (average lengths) with nominal level 0.95 when the skewed
data follow the exponential distribution.

n δ NA EL (Chen and Qin (2003)) EL AEL

20

.1 .890 (0.817) .904 (0.840) .917 (0.860) .924 (0.972)

.2 .907 (0.832) .921 (0.932) .924 (0.918) .935 (0.982)

.5 .921 (0.822) .920 (0.889) .937 (0.957) .940 (0.984)

50

.1 .927 (0.523) .930 (0.570) 945 (0.573) .947 (0.593)

.2 .928 (0.519) .933 (0.520) .945 (0.544) .945 (0.585)

.5 .932 (0.520) .936 (0.545) .947 (0.561) .948 (0.566)

100

.1 .930 (0.388) .933 (0.387) .943 (0.418) .946 (0.430)

.2 .933 (0.381) .940 (0.418) .944 (0.440) .950 (0.455)

.5 .937 (0.383) .942 (0.410) .950 (0.450) .956 (0.460)

NOTE:
NA: normal approximation
BCML: bias-corrected maximum likelihood
EL: empirical likelihood
AEL: adjusted empirical likelihood
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Table (2.3) Coverage probabilities (average lengths) with nominal level 0.95 when the skewed
data follow the chi-squared distribution.

n δ NA EL (Chen and Qin (2003)) EL AEL

20

.1 .821 (0.944) .822 (0.962) .875 (1.080) .907 (1.202)

.2 .829 (0.905) .836 (0.998) .858 (1.004) .893 (1.133)

.5 .843 (0.897) .900 (0.902) .937 (0.952) .938 (0.992)

50

.1 .912 (0.736) .917 (0.787) .919 (0.835) .930 (0.870)

.2 .910 (0.713) .912 (0.720) .921 (0.791) .936 (0.828)

.5 .901 (0.593) .908 (0.603) .910 (0.620) .916 (0.708)

100

.1 .932 (0.430) .933 (0.421) .942 (0.466) .946 (0.487)

.2 .929 (0.411) .940 (0.431) .945 (0.442) .952 (0.460)

.5 .918 (0.427) .920 (0.444) .945 (0.446) .954 (0.458)

NOTE:
NA: normal approximation
BCML: bias-corrected maximum likelihood
EL: empirical likelihood
AEL: adjusted empirical likelihood
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CHAPTER 3

JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR THE MEAN

DIFFERENCE OF TWO ZERO-INFLATED SKEWED POPULATIONS

3.1 Background

Many disciplines, such as environmental studies, ecology, biology, biometrics, epidemi-

ology, insurance, meteorology, manufacturing, etc., have the potential to generate datasets

containing many zero values, and non-zero values are highly positively skewed. These zeros

are valid response outcomes, and therefore should not be ignored. For example, in estimating

the mean diagnostic cost (testing charges) of a hospital, it is essential to use the diagnostic

cost of all the patients. However, many patients may not have done any diagnostic tests

during the period of interest, which will result in many zero test charges. Another example

is the rainfall observation records, where there could be no rain for some days.

Various parametric/semiparametric methods have been developed to deal with zero-

inflated datasets with the assumption of the population distribution. Lachenbruch (1976)

assumed some parametric families, including exponential, log-normal distribution, for posi-

tive values and compared two groups using the so-called “two-part” test. Duan et al. (1983)

used a two-part model under the assumption of the log-normal distribution for positive val-

ues. Zhou and Tu (1999), Zhou and Tu (2000) also employed a two-part model, which

is a combination of binomial and log-normal distributions. However, using these methods

depends on the justification of the assumptions about the distribution of the population.

Empirical likelihood method, first introduced by Owen (1988, 1990), is a nonparametric

method for small samples with superior performance. Advantages of empirical likelihood

(EL) include data-driven confidence regions, transformation invariance, and many more.

Also, Diciccio et al. (1991) showed that the Bartlett correction improves the coverage rate

from O(n−1) to O(n−2) for the sample size n, which is a notable improvement compared
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with classic EL. Zhou and Zhou (2005) proposed the empirical likelihood method to find the

confidence interval for the mean difference of two zero-inflated skewed populations. Pailden

and Chen (2013) also developed a similar empirical likelihood method for two zero-inflated

populations.

Nevertheless, the empirical likelihood method involving non-linear estimation equations

is complicated and computationally intensive. Jing et al. (2009) proposed jackknife empirical

likelihood (JEL) method to overcome this computational difficulty. This method essentially

converts the statistic of interest into a sample mean using jackknife pseudo-values. It then

applies empirical likelihood procedures on the mean of those pseudo-values (see Jing et al.

(2009)). This JEL method makes the estimation problem much simpler and computationally

efficient. For the inference of only a part of parameters, Li et al. (2011) implemented JEL

in the profile empirical likelihood.

Furthermore, Chen et al. (2008) proposed an adjusted empirical likelihood (AEL)

method to remove the zero convex hull problem in computing the profile likelihood func-

tion. They added one more data point to the original dataset, and it improved the coverage

probability substantially. Liu and Yu (2010) studied the Bartlett correction on two-sample

adjusted empirical likelihood. More work was done by Liu and Chen (2010), who considered

adjusted empirical likelihood for higher order precision. Zhao et al. (2015) proposed adjusted

jackknife empirical likelihood for the mean absolute deviation. Chen and Ning (2016) later

combined JEL and AEL methods and proposed an adjusted jackknife empirical likelihood

(AJEL) for one-sample and two-sample U -statistics. Another example of using artificial data

points is Chen et al. (2015). They considered the high-dimensional data setting when the

sample size and the data dimension are comparable. In that setting, they dealt with the

convex hull problem by adding two more data points to the data set. They showed the

asymptotic normality of the empirical log-likelihood ratio statistic. More recently, Cheng

et al. (2018) proposed balanced augmented jackknife empirical likelihood for two-sample U -

statistics, where they added two artificial data points to the pseudo-values produced by the

jackknife resampling process.
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The aim of this chapter is to find a better inference method for the mean difference of two

independent zero-inflated skewed populations. The empirical likelihood method proposed by

Zhou and Zhou (2005) involves finding solutions to complicated non-linear equations. Zhou

and Zhou (2005) treated δ1 = P (X = 0) > 0 and δ2 = P (Y = 0) > 0, which are the

probabilities of having zero values in the two populations, as the nuisance parameters and

resulting Wilks’ statistic was maximized over δ1 and δ2 (see the details in Section 2). This

EL formulation added more computational costs. To alleviate this complexity, we propose

the JEL method, which makes the estimation process simpler and computationally more

efficient. The idea is to first estimate δ1 and δ2 consistently. Then, we use jackknife pseudo-

values to construct EL ratio for the mean difference. Motivated by Wang and Zhao (2016) and

Alemdjrodo and Zhao (2019), we also propose AJEL method, which improves the estimation

performance in terms of coverage accuracy.

The rest of the chapter is organized as follows. Jackknife empirical likelihood and

adjusted jackknife empirical likelihood methods for the mean difference are proposed in

Section 3.2. In Section 3.3, we carry out extensive simulation studies. We apply two real-life

datasets to illustrate the proposed methodology in Section 3.4. Section 3.5 includes the

conclusion and some remarks. All proofs are provided in the Appendix B.

3.2 Main Results

3.2.1 Model setup

In this section, we extend the EL approach for the mean of a zero-inflated population

developed in Chapter 2 and propose jackknife empirical likelihood and adjusted jackknife

empirical likelihood for the mean difference of two independent zero-inflated skewed popu-

lations.

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be non-negative random samples from two in-

dependent skewed populations X, Y with means E(X) = µx and E(Y ) = µy, respec-

tively. We are interested in constructing a confidence interval for the mean difference,
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θ = µx − µy. We assume both distributions have a significant amount of zero observa-

tions. Let δ1 = P (X = 0) > 0 and δ2 = P (Y = 0) > 0 be the probability of having zero

values of these two populations. Suppose that there are m1 positive values in Xi’s, and

denote these values as x1, x2, . . . , xm1 . Then, there are m0 = m−m1 zero values in the first

sample. Similarly, there are n1 positive values in Yi’s, and denote them as y1, y2, . . . , yn1 .

Thus, there are n0 = n− n1 zero values in the second sample. We can write µx and µy as

µx = E(X|X > 0)P (X > 0) = (1− δ1)E(X|X > 0),

µy = E(Y |Y > 0)P (Y > 0) = (1− δ2)E(Y |Y > 0).

3.2.2 Jackknife empirical likelihood procedure

We write the estimator of µx as X̄ = m−1
∑m1

i=1 xi = m−1
1

∑m1

i=1 xi · m1/m. Similarly

the estimator of µy is Ȳ = n−1
1

∑n1

j=1 yj · n1/n. Let t = m1 + n1. Denote δ̂1 = m0/m, and

δ̂2 = n0/n. A consistent estimator of the parameter θ is (cf. Satter and Zhao (2020) and the

proof of Lemma 3.1 in the Appendix B)

Tt = X̄ − Ȳ =

∑m1

i=1 xi
m1

m1

m
−
∑n1

j=1 yj

n1

n1

n

= (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

=
1

m1

1

n1

m1∑
i=1

n1∑
j=1

(
m1xi
m
− n1yj

n

)

=
1

m1

1

n1

m1∑
i=1

n1∑
j=1

((1− δ̂1)xi − (1− δ̂2)yj)

=
1

m1

1

n1

m1∑
i=1

n1∑
j=1

h(xi, yj)

= T (x1, . . . , xm1 , y1, . . . , yn1),

where h(xi, yj) = (1− δ̂1)xi − (1− δ̂2)yj, i = 1, 2, . . . ,m1, j = 1, 2, . . . , n1 is a kernel function

with

Eh(Xi, Yj) = E((1− δ̂1)xi − (1− δ̂2)yj)
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= E(E((1− δ̂1)xi − (1− δ̂2)yj)|m1, n1)

= E((1− δ̂1)E(xi|xi > 0)− (1− δ̂2)E(yj|yj > 0))

= E(1− δ̂1)E(xi|xi > 0)− E(1− δ̂2)E(yj|yj > 0)

= E

(
m1

m

)
E(xi|xi > 0)− E

(
n1

n

)
E(yj|yj > 0)

=

(
E(1(x1 > 0) + · · ·+ 1(xm > 0))

m

)
E(xi|xi > 0)

−
(
E(1(y1 > 0) + · · ·+ 1(yn > 0))

n

)
E(yj|yj > 0)

= P (X > 0)E(X|X > 0)− P (Y > 0)E(Y |Y > 0)

= µx − µy

= θ.

Note that the consistent estimate Tt is not a standard U -statistic, since the kernel function

is not fixed. Therefore, the JEL for standard U -statistic by Jing et al. (2009) needs a

modification. Using the estimator Tt, we can generate t jackknife pseudo-values

V̂k = tTt − (t− 1)T
(−k)
t−1 , k = 1, 2, . . . , t,

where T
(−k)
t−1 is based on the (t−1) samples after deleting the ith observation from the original

sample dataset.

Specifically, for k = 1, . . . ,m1,

V̂k = (m1 + n1)

[
(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

]

−(m1 + n1 − 1)

[
(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
− (1− δ̂2)

∑n1

j=1 yj

n1

]

= (1− δ̂1)

[
(m1 + n1)

∑m1

i=1 xi
m1

− (m1 + n1 − 1)

∑m1

i 6=k,i=1 xi

m1 − 1

]

−(1− δ̂2)

∑n1

j=1 yj

n1

, (3.1)
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and for k = m1 + 1, . . . , t,

V̂k = (m1 + n1)

[
(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

]

−(m1 + n1 − 1)

[
(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j 6=k−m1,j=1 yj

n1 − 1

]

= (1− δ̂1)

∑m1

i=1 xi
m1

−(1− δ̂2)

[
(m1 + n1)

∑n1

j=1 yj

n1

− (m1 + n1 − 1)

∑n1

j 6=k−m1,j=1 yj

n1 − 1

]
. (3.2)

The eqns. (3.1) and (3.2) are useful to the proofs of lemmas in the Appendix B.

It can be shown that

Tt =
1

t

t∑
i=1

V̂i.

Next, we apply the JEL to these pseudo-values. We can define the jackknife empirical

likelihood ratio at θ as

R(θ) = sup

{
t∏
i=1

(tpi) :
t∑
i=1

pi = 1,
t∑
i=1

pi(V̂i − θ) = 0, pi ≥ 0, i = 1, . . . , t

}
.

Using the Lagrange multiplier method, the jackknife empirical log-likelihood ratio is

logR(θ) = −
t∑
i=1

log[1 + µ(θ)(V̂i − θ)],

where µ(θ) satisfies the following equation

1

t

t∑
i=1

V̂i − θ
1 + µ(θ)(V̂i − θ)

= 0.

Define

h0(x, y) = (1− δ1)x− (1− δ2)y,

h01(x) = Eh0(x, Y ) = (1− δ1)x− (1− δ2)E(Y |Y > 0), σ2
1 = var(h01(X)),
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h02(y) = Eh0(X, y) = (1− δ1)E(X|X > 0)− (1− δ2)y, σ2
2 = var(h02(Y )).

We now establish the Wilks’ theorem, i.e., an asymptotic chi-squared distribution of the

log-likelihood ratio statistics of the proposed method, and show how to construct confidence

intervals for the mean difference θ.

Theorem 3.1. Assume that 0 < δ1 < 1, 0 < δ2 < 1. Also let Eh0
2(X, Y ) <∞, σ2

1 > 0, σ2
2 >

0, and m/n→ c, 0 < c <∞ as m,n→∞. Then for the true value θ0 of the mean difference

θ,

−2logR(θ0)
D→ χ2

1 as t→∞.

Based on Theorem 3.1, the asymptotic 100(1− α)% jackknife empirical likelihood con-

fidence interval for θ0 is given by

I1(α) = {θ : −2logR(θ) ≤ χ2
1(α)},

where χ2
1(α) is the (1− α) quantile of a chi-square distribution with one degree of freedom.

3.2.3 Adjusted jackknife empirical likelihood procedure

Motivated by Chen et al. (2008), we add one more data point to the jackknife pseudo-

values. We employ the adjusted jackknife empirical method by applying the empirical like-

lihood method to all of these values. Define gi = gi(θ) = V̂i − θ, i = 1, 2, . . . , t, and

ḡt = ḡt(θ) = t−1
∑t

i=1 gi(θ) for any fixed θ. For some at > 0, the additional observation is

defined as

gt+1(θ) = −atḡt(θ) = −at
t

t∑
i=1

gi(θ).

Chen et al. (2008) suggested at = max(1, log(t)/2). Applying empirical likelihood

method to these t+ 1 values, we define the adjusted jackknife empirical log-likelihood ratio

at θ as follows [cf. Lin et al. (2017)],
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R?(θ) = sup

{
t+1∑
i=1

log {(t+ 1)pi)} :
t+1∑
i=1

pi = 1,
t+1∑
i=1

pigi(θ) = 0, pi ≥ 0,

i = 1, 2, . . . , t+ 1

}
.

The adjusted jackknife empirical log-likelihood ratio is

logR?(θ) = −
t+1∑
i=1

log[1 + λ(θ)gi(θ)],

where the Lagrange multiplier λ(θ) satisfies the following equation

1

t+ 1

t+1∑
i=1

gi(θ)

1 + λ(θ)gi(θ)
= 0. (3.3)

Now the Wilks’ theorem for the AJEL method as follows:

Theorem 3.2. Assume that 0 < δ1 < 1, 0 < δ2 < 1, Eh0
2(X, Y ) < ∞, σ2

1 > 0, σ2
2 > 0,

m/n→ c, 0 < c <∞ as m,n→∞. Also let θ0 be the the true value of the mean difference

θ. Then as t→∞,

−2logR?(θ0)→ χ2
1 in distribution.

Based on Theorem 3.2, we obtain the asymptotic 100(1−α)% AJEL confidence interval

for θ0 as follows,

I2(α) = {θ : −2logR?(θ) ≤ χ2
1(α)}.

3.3 Simulation Study

Simulation studies are carried out to assess the performance of the proposed JEL meth-

ods. We compare the jackknife empirical likelihood and adjusted jackknife empirical likeli-

hood confidence intervals with the confidence intervals by the normal approximation (NA)

and the EL method (see Zhou and Zhou (2005)) in terms of coverage accuracy and average

length of the confidence intervals.
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The data from exponential, chi-squared and Poisson distributions are generated for

the simulation purposes. We use the binomial distribution to generate zero values with

proportion 0.1, 0.2, 0.3 and 0.4. For Table 3.1, the non-zero observations for the first

and second samples are generated from an exponential distribution with rate 2 and rate 5,

respectively. For Table 3.2, non-zero observations for the first and the second samples are

generated from a chi-squared distribution with df = 1 and df = 4, respectively. And the

Poisson distributions with mean 1 and mean 2 are used to generate non-zero observations

for the first and the second samples, respectively, for Table 3.3. All simulation results are

based on 10000 repetitions.

Simulation studies show that the coverage probabilities of the 95% jackknife empirical

likelihood (JEL) confidence intervals are better than those of NA and EL confidence intervals

proposed by Zhou and Zhou (2005). The AJEL confidence intervals have even better coverage

probabilities than JEL confidence intervals, especially for smaller sample sizes, although the

AJEL and JEL have longer average length than EL and NA confidence intervals in most

cases.

3.4 Application to Real Data

Morrison-Beedy et al. (2011) conducted a large randomized controlled trial to assess the

effectiveness of HIV-prevention intervention among urban adolescent females. Adolescent

girls from western New York and others (who were interested in that program) were selected

for the trial and sexual behavior data were collected. One usual way of collecting these data

is retrospective recall method, in which the participants recall their sexual behavior over the

study period. But because of possible cognitive (e.g., recollection) biases of this method, a

contemporaneous daily diary method can be used, where the participants record their daily

sexual activities in a diary. A pilot study was conducted before the primary longitudinal

research, and the sexual behavior of adolescence females was collected by contemporaneous

daily diary and retrospective recall methods. The dataset became zero-inflated due to no

sexual behavior being reported for many females during the relevant time period. We are
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interested in testing

H0 : mean difference of the sexual behaviors of these two groups = 0.

Each group has 47 observations, of which 13 are zeros giving δ̂1 and δ̂2 for both groups

are 0.277. The skewnesses for the diary and the recall group are 1.770 and 3.200, respectively.

The mean and the standard deviation of diary group are 9.106 and 12.356, respectively. And

for the recall group, they are 13.808 and 23.559, respectively. The 95% confidence intervals

and the corresponding interval lengths are calculated using the four methods and summarized

in Table 3.4.

All the confidence intervals contain zero, meaning no significant difference between

the two groups. The normal approximation confidence interval has the shortest interval

length, and the adjusted JEL has the longest interval length. Following the conclusion of

our simulation study, JEL and AJEL have more accurate coverage accuracy than the other

two methods, although JEL and AJEL have longer interval lengths.

The second dataset is collected from Neuhäuser (2012), which is originally taken from

Siegmund et al. (2004). This is a study of methylation pattern measurement on cancer

cells. Hypermethylation can serve as a biomarker of cancer, i.e., the presence of methylation

may indicate the possible cancer cell. The absence or partial presence of methylation gives

negative results, which are considered as zero values. Substantial presence of methylation

gives positive values, which are often highly skewed.

The dataset has the methylation test results from two groups: small lung cancer cells

and non-small lung cancer cells. The small lung cancer cell group has 41 observations, out of

which 25 are negative/zero values giving δ̂1 = 0.610. The second group has 46 observations,

and 16 of them are negative/zeros giving δ̂2 = 0.348. The skewnesses for these groups are

5.089 and 1.681, respectively. The mean and standard deviation for the first group are 5.339

and 20.169, respectively. And those for the second groups are 19.641 and 31.892, respectively.
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We are interested in testing

H0 : methylation mean difference of small and non-small lung cancer cells = 0.

All four inference methods are applied to this data set. The confidence intervals and

the corresponding interval lengths are given in Table 3.5.

The 95% confidence intervals by all methods for the methylation pattern dataset do not

contain zero, which shows there is a significant difference between the two groups. The nor-

mal approximation confidence interval has shortest length; whereas, the adjusted jackknife

empirical likelihood has the longest length. However, as our simulation studies suggest, we

can rely more on jackknife empirical likelihood and adjusted jackknife empirical likelihood

confidence intervals because of their better coverage probabilities.

3.5 Conclusion

Zero-inflated skewness is a natural pattern in many studies. Because of the essence of

the zero values, it is important to incorporate them into the statistical analysis. Several

parametric and semi-parametric methods have been developed to deal with zero-inflated

skewed data under the assumption of the population distribution. This assumption may

restrict the wide use of those techniques. One feasible alternative nonparametric method is

empirical likelihood proposed by Zhou and Zhou (2005), but it can be computationally inten-

sive. Considering these difficulties, we proposed jackknife empirical likelihood and adjusted

jackknife empirical likelihood methods. Our JEL methods are computationally simple, and

simulation studies demonstrate that they have better coverage probabilities than those of

normal approximation and empirical likelihood confidence intervals.

The innovative contribution of this chapter is the new formulation of JEL in this setting,

which is beyond the standard U -statistic. The derivation of the Wilks’ theorem for the JEL

is more challenging than the standard setting like U -statistic. The researcher can apply

the techniques developed in this chapter to other more complicated statistical problems and
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makes EL inference with better performance for the small sample size. Two real-life datasets

analyses show the applicability of these methods in practical situations. Future studies of

the proposed methods may involve a further calibration such as the Bartlett correction. In

the future, we use these methods to compare the means of k ≥ 3 zero-inflated populations.

We will also apply mean empirical likelihood proposed by Liang et al. (2019) to the mean

difference and construct JEL confidence intervals to achieve better performance.
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Table (3.1) Coverage probabilities (average lengths) with confidence level 0.95 when the
skewed data follow the exponential distribution.

m n Method
δ1 = 0.1

δ2 = 0.1

δ1 = 0.2

δ2 = 0.2

δ1 = 0.3

δ2 = 0.3

δ1 = 0.4

δ2 = 0.4

δ1 = 0.2

δ2 = 0.3

20 20

AJEL 0.928 (0.484) 0.913 (0.455) 0.904 (0.429) 0.879 (0.396) 0.914 (0.453)

JEL 0.915 (0.457) 0.896 (0.427) 0.881 (0.400) 0.854 (0.366) 0.896 (0.424)

EL 0.879 (0.402) 0.886 (0.417) 0.872 (0.366) 0.860 (0.352) 0.881 (0.396)

NA 0.876 (0.382) 0.873 (0.375) 0.876 (0.367) 0.861 (0.351) 0.873 (0.375)

50 50

AJEL 0.937 (0.298) 0.929 (0.282) 0.910 (0.266) 0.890 (0.246) 0.920 (0.279)

JEL 0.930 (0.290) 0.921 (0.274) 0.900 (0.257) 0.877 (0.237) 0.911 (0.271)

EL 0.904 (0.254) 0.893 (0.248) 0.886 (0.241) 0.880 (0.215) 0.894 (0.262)

NA 0.886 (0.246) 0.890 (0.242) 0.885 (0.236) 0.877 (0.226) 0.883 (0.241)

70 70

AJEL 0.936 (0.250) 0.927 (0.236) 0.919 (0.222) 0.898 (0.207) 0.922 (0.234)

JEL 0.931 (0.245) 0.921 (0.231) 0.912 (0.216) 0.888 (0.201) 0.916 (0.229)

EL 0.909 (0.227) 0.895 (0.221) 0.902 (0.207) 0.887 (0.180) 0.899 (0.212)

NA 0.889 (0.209) 0.892 (0.205) 0.894 (0.200) 0.884 (0.192) 0.891 (0.204)

20 30

AJEL 0.922 (0.474) 0.918 (0.449) 0.903 (0.423) 0.885 (0.389) 0.915 (0.444)

JEL 0.911 (0.453) 0.903 (0.426) 0.891 (0.399) 0.863 (0.364) 0.901 (0.420)

EL 0.897 (0.398) 0.883 (0.405) 0.889 (0.396) 0.860 (0.354) 0.878 (0.389)

NA 0.860 (0.373) 0.870 (0.368) 0.868 (0.359) 0.858 (0.342) 0.868 (0.366)

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
AJEL: adjusted jackknife empirical likelihood
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Table (3.2) Coverage probabilities (average lengths) with confidence level 0.95 when the
skewed data follow the chi-squared distribution.

m n Method
δ1 = 0.1

δ2 = 0.1

δ1 = 0.2

δ2 = 0.2

δ1 = 0.3

δ2 = 0.3

δ1 = 0.4

δ2 = 0.4

δ1 = 0.2

δ2 = 0.3

20 20

AJEL 0.928 (2.873) 0.906 (2.722) 0.880 (2.549) 0.867 (2.365) 0.891 (2.259)

JEL 0.909 (2.714) 0.885 (2.556) 0.888 (2.373) 0.857 (2.181) 0.889 (2.428)

EL 0.884 (2.412) 0.882 (2.267) 0.872 (2.354) 0.879 (2.302) 0.889 (2.401)

NA 0.883 (2.343) 0.882 (2.374) 0.874 (2.352) 0.885 (2.296) 0.888 (2.375)

50 50

AJEL 0.930 (1.754) 0.914 (1.669) 0.892 (1.568) 0.888 (1.454) 0.899 (1.584)

JEL 0.924 (1.708) 0.915 (1.621) 0.890 (1.517) 0.878 (1.404) 0.889 (1.536)

EL 0.890 (1.624) 0.899 (1.613) 0.891 (1.511) 0.880 (1.419) 0.884 (1.520)

NA 0.893 (1.495) 0.895 (1.517) 0.890 (1.507) 0.891 (1.470) 0.891 (1.512)

70 70

AJEL 0.929 (1.470) 0.914 (1.391) 0.898 (1.304) 0.888 (1.215) 0.891 (1.323)

JEL 0.922 (1.437) 0.907 (1.360) 0.889 (1.272) 0.876 (1.181) 0.890 (1.292)

EL 0.889 (1.321) 0.876 (1.278) 0.882 (1.275) 0.871 (1.161) 0.889 (1.291)

NA 0.888 (1.266) 0.898 (1.282) 0.887 (1.272) 0.890 (1.243) 0.891 (1.280)

20 30

AJEL 0.933 (2.433) 0.911 (2.305) 0.892 (2.170) 0.878 (2.010) 0.886 (2.207)

JEL 0.919 (2.321) 0.896 (2.188) 0.891 (2.102) 0.864 (1.880) 0.884 (2.087)

EL 0.899 (2.201) 0.890 (2.102) 0.887 (2.091) 0.873 (1.901) 0.879 (2.001)

NA 0.897 (2.007) 0.894 (2.024) 0.889 (2.014) 0.887 (1.957) 0.883 (2.026)

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
AJEL: adjusted jackknife empirical likelihood
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Table (3.3) Coverage probabilities (average lengths) with confidence level 0.95 when the
skewed data follow the Poisson distribution.

m n Method
δ1 = 0.1

δ2 = 0.1

δ1 = 0.2

δ2 = 0.2

δ1 = 0.3

δ2 = 0.3

δ1 = 0.4

δ2 = 0.4

δ1 = 0.2

δ2 = 0.3

20 20

AJEL 0.940 (1.551) 0.921 (1.476) 0.906 (1.388) 0.885 (1.297) 0.906 (1.413)

JEL 0.924 (1.465) 0.902 (1.385) 0.878 (1.293) 0.853 (1.196) 0.887 (1.322)

EL 0.893 (1.302) 0.876 (1.289) 0.866 (1.214) 0.852 (1.148) 0.870 (1.264)

NA 0.877 (1.237) 0.872 (1.228) 0.864 (1.199) 0.855 (1.155) 0.863 (1.208)

50 50

AJEL 0.937 (0.947) 0.915 (0.897) 0.902 (0.841) 0.884 (0.784) 0.904 (0.861)

JEL 0.932 (0.922) 0.906 (0.871) 0.891 (0.814) 0.872 (0.755) 0.894 (0.835)

EL 0.903 (0.883) 0.883 (0.819) 0.879 (0.780) 0.870 (0.739) 0.886 (0.803)

NA 0.894 (0.801) 0.879 (0.793) 0.876 (0.774) 0.873 (0.747) 0.878 (0.784)

70 70

AJEL 0.936 (0.794) 0.917 (0.749) 0.899 (0.705) 0.881 (0.655) 0.898 (0.719)

JEL 0.929 (0.778) 0.910 (0.733) 0.892 (0.688) 0.871 (0.637) 0.890 (0.702)

EL 0.911 (0.753) 0.889 (0.701) 0.884 (0.660) 0.869 (0.628) 0.879 (0.678)

NA 0.889 (0.681) 0.884 (0.672) 0.880 (0.658) 0.871 (0.633) 0.872 (0.664)

20 30

AJEL 0.940 (1.350) 0.921 (1.280) 0.908 (1.204) 0.885 (1.123) 0.912 (1.240)

JEL 0.927 (1.288) 0.906 (1.215) 0.888 (1.136) 0.863 (1.050) 0.894 (1.172)

EL 0.907 (1.173) 0.879 (1.103) 0.870 (1.061) 0.860 (1.001) 0.877 (1.143)

NA 0.881 (1.085) 0.874 (1.072) 0.867 (1.045) 0.861 (1.006) 0.869 (1.061)

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
AJEL: adjusted jackknife empirical likelihood
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Table (3.4) Confidence intervals and lengths with 95% confidence level for the sexual health
study data.

Method Lower Limit Upper Limit Length

AJEL -14.357 1.658 16.015

JEL -14.043 1.448 15.491

EL -14.202 1.798 16.000

NA -11.096 1.692 12.788

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
AJEL: adjusted jackknife empirical likelihood
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Table (3.5) Confidence intervals and lengths with 95% confidence level for the methylation
pattern measurement data.

Method Lower Limit Upper Limit Length

AJEL -25.452 -2.277 23.175

JEL -24.948 -2.817 22.131

EL -25.102 -3.141 21.961

NA -23.676 -4.929 18.747

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
AJEL: adjusted jackknife empirical likelihood
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CHAPTER 4

JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE QUANTILE

DIFFERENCE OF A ZERO-INFLATED POPULATION

4.1 Background

The inference problem that we are addressing in this chapter has two key features:

one-sample quantile difference and zero-inflated data. A quantile is a useful and essential

statistical measure that gives a robust and meaningful summary statistics of the location of

the data. On the other hand, the one-sample quantile difference provides a descriptive mea-

sure of the spread of the data, especially if the distribution of the population is asymmetric.

One popular quantile difference is the interquartile range, which captures the middle 50% of

the data - enclosed by first and third quartiles. In risk management, quantile difference is

used as a value-at-risk measure for an investment risk. The quantile difference is also used

in risk analysis, reliability analysis, lifetime data analysis, etc. The inference problem of

quantile difference becomes challenging if the data is zero-inflated.

Zero-inflated data naturally arises in many fields, such as epidemiology, astronomy, ecol-

ogy, biology, insurance, meteorology, engineering, psychology, etc. A significant proportion

in such a dataset are zeros, and non-zero values are often highly positively skewed. For

example, one may observe zero-inflation in health insurance data, where there may be no

claims for many insurers. These zero values are “true zeros” and an integral part of the

data. Also, there might be some very high insurance claims. In addictive behavior research,

there might be many non-substance use reports and some high drug abuse cases. Since the

zero values are correct and valid, any inference without using these zero values might give a

misleading result.

Owen (1988, 1990) developed the empirical likelihood (EL) method for the population

mean. The empirical likelihood is a nonparametric technique, i.e., no parametric assumption
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about the distribution is needed. Yet, it preserves some critical parametric properties. For

example, the empirical log-likelihood ratio for the population mean follows the standard chi-

squared distribution. The shape and orientation of the confidence intervals are determined

by the data only. Also, the confidence intervals are transformation invariant and range

preserving. Qin and Lawless (1994) combined EL with an estimating equation. Owen

(2001) has a more general overview of the EL method. However, the empirical likelihood

method loses its efficiency when there are some nonlinear constraints involved. Solving these

nonlinear constraints makes the EL method very computationally costly. To alleviate this

computation burden, Jing et al. (2009) proposed the jackknife empirical likelihood (JEL)

method. The JEL method avoids solving complex nonlinear constraints by transforming the

statistics of interest into the mean of jackknife pseudo-values. the simplicity and computation

efficiency, the JEL method has been used in many statistics fields.

There exist many parametric and nonparametric inference methods for zero-inflated

data. A two-part model is introduced by Duan et al. (1983) under the lognormal distribu-

tion. Zhou and Tu (2000) assumed a lognormal distribution for non-zero values to find study

diagnostic test charge data. Hall (2000) did a case study with zero-inflated Poisson and bi-

nomial regression. Hasan and Krishnamoorthy (2018) considered the parametric confidence

intervals technique for the mean and percentile for zero-inflated lognormal data. Since using

the parametric method requires the justification of the distribution assumption, the non-

parametric EL method is also used for zero-inflated data. See Chen and Qin (2003), Chen et

al. (2003), Zhou and Zhou (2005), Pailden and Chen (2013), Satter and Zhao (2020), Satter

and Zhao (2021), among others.

Empirical likelihood performance can be affected by two factors: convex hull problem

and under-coverage issue. The adjusted empirical likelihood (AEL) method is first proposed

by Chen et al. (2008) to address the EL convex hull problem by adding one extra pseudo-

value. This is very easy to implement and gives a better result than the EL method. Emerson

and Owen (2009) and Liu and Chen (2010) also tried to tackle the convex hull problem by

adding artificial data points. The under-coverage issue can be mitigated by Bartlett correc-
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tion (Diciccio et al. (1991), Chen and Cui (2007)). However, Barlett correction is a complex

computational operation. Jing et al. (2017) investigate another way to improve coverage

probability by transforming the empirical likelihood ratio by a simple transformation. Stew-

art and Ning (2020) studied several versions of EL to construct confidence intervals for the

mean of a zero-inflated population.

The sample quantile is not an efficient estimator [cf. Falk (1984)]. To improve the

efficiency, Yang (1985) gave a nonparametric smooth kernel estimator and established the

asymptotic normality. Sheather and Marron (1990) proposed the kernel quantile estimators

to improve the efficiency. Chen and Hall (1993) first proposed a smoothed empirical likeli-

hood (EL) method for the quantile inference. To avoid solving nonlinear equations, Adimari

(1996) presented a simpler version of an EL method for quantiles, which Zhou and Jing

(2003a) improve with kernel density function. Zhou and Jing (2003b) later extended the

smooth EL for the inference of the quantile difference. As the EL method can be challenging

for nonlinear constraints, Yang and Zhao (2018) developed the JEL method with a kernel

smooth estimator of quantile difference. Quantile difference for two independent populations

is also proposed by Yang and Zhao (2016). To the best of our knowledge, there is no inference

procedure for the quantile difference of zero-inflated data.

In this chapter, we propose the JEL method to construct a confidence interval for

the quantile difference of zero-inflated data. To further improve the performance, we also

present the adjusted jackknife empirical likelihood (AJEL), transformed jackknife empirical

likelihood (TJEL), and transformed the adjusted jackknife empirical likelihood (TAJEL)

method.

The rest of the chapter is organized as follows. Jackknife empirical likelihood, adjusted

jackknife empirical likelihood, transformed jackknife empirical likelihood, and adjusted trans-

formed jackknife empirical likelihood methods for the quantile difference of one sample are

proposed in Section 4.2. Simulation studies are performed in Section 4.3. We apply the

proposed methods to a real dataset to illustrate the application to a real-world problem in

Section 4.4. Conclusion and some related remarks are added in Section 4.5. Finally, proofs
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and corresponding lemmas are provided in the Appendix C.

4.2 Main Results

4.2.1 Jackknife empirical likelihood method

Let X1, X2, . . . , Xn be a random sample of X from a zero -inflated skewed population.

Let δ = P (X = 0) > 0 be the probability of having zero values of the population. Suppose

that there are n1 positive values in Xi’s, and denote these values as x1, x2, . . . , xn1 . Then,

there are n0 = n− n1 zero values in the sample. We denote δ̂ = n0/n.

Let the positive values x1, x2, . . . , xn1 come from a distribution with distribution function

F (x). For any p ∈ (0, 1) and y ∈ <, we can define p-th quantile function as F−1(p) = inf{y :

F (y) ≥ p}. For zero-inflated data, the distribution function is defined as

G(x; δ) =

 δ if x = 0

δ + (1− δ)F (x) if x > 0.
(4.1)

The p-th quantile, denoted by qp, can be obtained by the relation G(qp; δ) = p. Then from

equation (4.1), we get

qp =


0 if p < δ

F−1

(
p−δ
1−δ

)
if p > δ.

(4.2)

The focus of this chapter is to construct a confidence interval for

θ(s, t) = G−1(t; δ)−G−1(s; δ)

= F−1

(
t− δ
1− δ

)
− F−1

(
s− δ
1− δ

)
, (4.3)

where δ < s < t < 1. Define the empirical estimator of F as Fn1(x) = 1/n1

∑n1

i=1 I(xi ≤ x).
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By using the empirical estimator of F−1 and δ, we can estimate θ(s, t) as

θ̂ = θ̂(s, t) = F−1
n1

(
t− δ̂
1− δ̂

)
− F−1

n1

(
s− δ̂
1− δ̂

)
,

where F−1
n1

(·) is the estimator of F−1.

Let w be a symmetric density function and K(x) be the smooth distribution function

with K(x) =
∫
u≤xw(u)du. For a positive bandwidth h, we consider the smoothed estimating

equation for θ as

Tn1(θ; s, t) =
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ)

h

]
− t− δ̂

1− δ̂
.

After deleting j-th observation from n1 positive values, we have

T−jn1
(θ; s, t) =

1

n1 − 1

n1∑
i=1,i 6=j

K

[ s−δ̂
1−δ̂ − F

−j
n1

(xi − θ)
h

]
− t− δ̂

1− δ̂
, 1 ≤ j ≤ n1,

where

F−jn1
(y) =

1

n1 − 1

∑
1≤i≤n1,i 6=j

I(xi ≤ y), i = 1, . . . , n1.

We can define the jackknife pseudo-values as

V̂j(θ; s, t) = n1Tn1(θ; s, t)− (n1 − 1)T−jn1
(θ; s, t), j = 1, . . . , n1.

The jackknife empirical likelihood ratio at the parameter θ is given by

R(θ; s, t) = sup

{
n1∏
i=1

n1pi :

n1∑
i=1

pi = 1,

n1∑
i=1

piV̂i(θ; s, t) = 0, pi ≥ 0, i = 1, . . . , n1

}
. (4.4)

By using the Lagrange multiplier method, the jackknife empirical log-likelihood ratio

l(θ; s, t) = logR(θ; s, t)
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= −
n1∑
i=1

log[1 + λ(θ; s, t)V̂i(θ; s, t)],

where λ(θ; s, t) satisfies the following equation

1

n1

n1∑
i=1

V̂i(θ; s, t)

1 + λ(θ; s, t)V̂i(θ; s, t)
= 0.

We establish Wilks’ theorem for the jackknife empirical log-likelihood ratio as follows.

Theorem 4.1. Assume that 0 < δ < 1 and the regularity conditions C1−C4 in the Appendix

C hold. Then for the true value θ0 of the quantile difference θ, as n→∞

−2l(θ0; s, t)
D→ χ2

1.

Based on Theorem 4.1, the asymptotic 100(1− α)% jackknife empirical likelihood con-

fidence interval for θ0 is given by

I1(α) = {θ : −2l(θ; s, t) ≤ χ2
1(α)},

where χ2
1(α) is the (1− α) quantile of a chi-square distribution with one degree of freedom.

4.2.2 Adjusted jackknife empirical likelihood method

To deal with the zero convex hull problem encountered in the empirical likelihood, Chen

et al. (2008) proposed the adjusted empirical likelihood (AEL) method. This AEL method

involves adding one more data point to V̂i(θ; s, t). Let ui(θ; s, t) = V̂ i(θ; s, t), i = 1, 2, . . . , n1.

Then, the extra data point is generated by

un1+1(θ; s, t) = −an1

n1∑
i=1

ui(θ; s, t)

n1

,

where an1 is a positive constant. The general recommendation is to choose an1 as

max(1, log(n1)/2). Now with the n1 + 1 data points, the adjusted jackknife empirical likeli-
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hood (AJEL) ratio is defined as follows,

Ra(θ; s, t) = sup

{ n1+1∏
i=1

(n1 + 1)pi :

n1+1∑
i=1

pi = 1,

n1∑
i=1

piui(θ; s, t) = 0, pi ≥ 0,

i = 1, . . . , n1 + 1

}
. (4.5)

By using the Lagrange multiplier method, we have the adjusted jackknife empirical

log-likelihood ratio at θ as

la(θ; s, t) = logRa(θ; s, t)

= −
n1+1∑
i=1

log[1 + λa(θ; s, t)ui(θ; s, t)],

where λa(θ; s, t) satisfies the following equation

1

n1 + 1

n1+1∑
i=1

ui(θ; s, t)

1 + λa(θ; s, t)ui(θ; s, t)
= 0.

We establish Wilks’ theorem for the adjusted jackknife empirical log-likelihood ratio as

follows.

Theorem 4.2. Assume that 0 < δ < 1 and the regularity conditions C1−C4 in the Appendix

C hold. Then for the true value θ0 of the quantile difference θ, as n→∞

−2la(θ0; s, t)
D→ χ2

1.

Based on Theorem 4.2, the asymptotic 100(1− α)% jackknife empirical likelihood con-

fidence interval for θ0 is given by

I2(α) = {θ : −2la(θ; s, t) ≤ χ2
1(α)}.
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4.2.3 Transformed jackknife empirical likelihood method

Instead of dealing with the under-coverage problem in empirical likelihood either by

increasing the rate of convergence through the Bartlett correction or by fixing convex hull

constraint problem, Jing et al. (2017) proposed a simple transformation based EL method.

Here we apply transformed empirical likelihood method (TEL) to the jackknife pseudo-values

and develop transformed jackknife empirical likelihood (TJEL) method. Define

w(l(θ; s, t, γ)) = l(θ; s, t) ∗max(1− l(θ; s, t)/n1, 1− γ),

where γ ∈ [0, 1] is a constant and w(l(θ; s, t)) is a truncated quadratic transformation of

l(θ; s, t). Following the recommendation by Jing et al. (2017), we set γ = 0.5. Then the

transformed jackknife empirical log-likelihood ratio at the parameter θ is

ltr(θ; s, t) = w(l(θ; s, t, γ = 0.5))

= l(θ; s, t) ∗max(1− l(θ; s, t)/n1, 0.5),

which can be written explicitly as

ltr(θ; s, t) =

 l(θ; s, t)[1− l(θ; s, t)/n1] if l(θ; s, t) ≤ n1/2

l(θ; s, t)/2 if l(θ; s, t) > n1/2.

The TJEL has the same asymptotic properties as JEL [cf. Jing et al. (2017)]. Therefore,

the Wilks’ theorem for the transformed adjusted empirical log-likelihood ratio is as follows.

Theorem 4.3. Assume that 0 < δ < 1 and the regularity conditions C1−C4 in the Appendix

C hold. Then for the true value θ0 of the quantile difference θ, as n→∞

−2ltr(θ0; s, t)
D→ χ2

1.

Based on Theorem 4.3, the asymptotic 100(1 − α)% transformed jackknife empirical
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likelihood confidence interval for θ0 is given by

I3(α) = {θ : −2ltr(θ; s, t) ≤ χ2
1(α)}.

4.2.4 Transformed adjusted jackknife empirical likelihood method

Here we combine the TEL and AEL method and apply this to the jackknife pseudo-

values to develop transformed adjusted jackknife empirical likelihood (TAJEL) method.

Recall that we obtain the adjusted jackknife empirical log-likelihood ratio la(θ; s, t).

Now, for a constant γ ∈ [0, 1] , define

wta(la(θ; s, t, γ)) = la(θ; s, t) ∗max(1− la(θ; s, t)/(n1 + 1), 1− γ),

where wta(la(θ; s, t, γ)) is a truncated quadratic transformation of la(θ; s, t). Here, we choose

γ = 0.5. Thus, the TAJEL ratio is

lta(θ; s, t) = w(la(θ; s, t, γ = 0.5))

= la(θ; s, t) ∗max(1− la(θ; s, t)/(n1 + 1), 0.5),

which can be written explicitly as

lta(θ; s, t) =

 la(θ; s, t)[1− la(θ; s, t)/(n1 + 1)] if la(θ; s, t) ≤ (n1 + 1)/2

la(θ; s, t)/2 if la(θ; s, t) > (n1 + 1)/2.

The Wilks’ theorem for the transformed adjusted empirical log-likelihood ratio is as

follows.

Theorem 4.4. Assume that 0 < δ < 1 and the regularity conditions C1−C4 in the Appendix

C hold. Then for the true value θ0 of the quantile difference θ, as n→∞

−2lta(θ0; s, t)
D→ χ2

1.

Based on Theorem 4.4, the asymptotic 100(1 − α)% transformed adjusted jackknife
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empirical likelihood confidence interval for θ0 is given by

I4(α) = {θ : −2lta(θ; s, t) ≤ χ2
1(α)}.

4.3 Simulation Study

Three simulation studies are carried out to assess the performance of the proposed JEL

methods. We compare the coverage probabilities and average lengths obtained by the pro-

posed methods under various simulation settings. We choose three different proportions of

zero values 0.1, 0.2, and 0.3, and the non-zero values are generated from a chi-square distri-

bution with one degree of freedom, exponential distribution with mean 2, and log-normal

distribution with zero mean and one unit standard deviation. Three tables are constructed

to present the simulation result for each distribution. We consider random samples of sizes

30, 50, and 70. The coverage probabilities and average lengths of the confidence intervals are

calculated with 2000 repetitions.

We use the biweight kernel function for all simulation studies, which is defined as

w(u) =


15
16

(1− u2)2 if |u| ≤ 1

0 otherwise.

Bandwidth selection is an important aspect of using a kernel function. Here, we implemented

the cross-validation method from Bowman and Azzalini (1997) to find an optimal bandwidth

for the kernel function. R package ‘sm’ (V2.2-5.6; Bowman and Azzalini (2018)) is used for

bandwidth selection, and all the simulations are performed in R (R Core Team (2020)).

Following Zhou and Jing (2003a), and using eqns. (4.1) - (4.3), we can write

√
n1(θ̂(s, t)− θ0(s, t))

D→ N(0, σ2(θ0, s, t)),
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where

σ2(θ0, s, t) =
s−δ
1−δ

(
1− s−δ

1−δ

)
(1− δ)2f 2

{
F−1

(
s−δ
1−δ

)} − 2
(
s−δ
1−δ

)(
1− t−δ

1−δ

)
(1− δ)2f

{
F−1

(
s−δ
1−δ

)}
f
{
F−1

(
t−δ
1−δ

)}
+

t−δ
1−δ

(
1− t−δ

1−δ

)
(1− δ)2f 2

{
F−1

(
t−δ
1−δ

)} ,
where f is the density function of F . Note that the asymptotic distribution of θ̂(s, t) is not

rigorously derived. This is remained as future research.

An estimate of σ2(θ, s, t)), denoted by σ̂2(θ̂, s, t)) is obtained by

σ̂2(θ̂, s, t) =

s−δ̂
1−δ̂

(
1− s−δ̂

1−δ̂

)
(1− δ̂)2f̂ 2

{
F−1
n1

(
s−δ̂
1−δ̂

)} − 2
(
s−δ̂
1−δ̂

)(
1− t−δ̂

1−δ̂

)
(1− δ̂)2f̂

{
F−1
n1

(
s−δ̂
1−δ̂

)}
f̂
{
F−1
n1

(
t−δ̂
1−δ̂

)}
+

t−δ̂
1−δ̂

(
1− t−δ̂

1−δ̂

)
(1− δ̂)2f̂ 2

{
F−1
n1

(
t−δ̂
1−δ̂

)} ,
where f̂ is the estimate of f by the kernel smoothing function. Then the asymptotic 100(1−

α)% confidence interval for θ0 is obtained by

(θ̂ ± zα/2 σ̂(θ̂, s, t)),

where zα/2 is the upper α/2-quantile of N(0, 1).

Table 4.1 tabulates the first simulation study where non-zero values are generated from

a chi-square distribution with one degree of freedom. Five methods, namely, normal approx-

imation (NA), jackknife empirical likelihood (JEL), adjusted jackknife empirical likelihood

(AJEL), transformed jackknife empirical likelihood (TJEL), and transformed adjusted jack-

knife empirical likelihood (TAJEL), are implemented. The simulation results are compared

in terms of coverage probabilities and the average length of the 95% confidence intervals. It

is evident from the simulation study that the NA method has an under-coverage problem,

and the JEL methods give better coverage probability, especially for small sample sizes. As

the sample size increases, the coverage probabilities are get closer to the nominal level. By
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adding one more data point to deal with the convex hull problem, the AJEL method performs

better than the JEL method in terms of coverage probability. TJEL method, which uses a

transformation of the log-likelihood ratio to deal with the under-coverage problem, gives the

similar performance as the AJEL method does. Finally, TAJEL provides the largest cover-

age probabilities among all methods, but sometimes it may incur over-coverage issues. In

general, the average lengths for JEL and AJEL methods are longer than the average length

for NA method. The average length for TJEL is somewhat close to the AJEL method. And

TAJEL gives the largest average length. As the sample size increases, the average lengths

consistently get shorter. There are over-coverage issue when proportion of zeros are high

and the quantile difference is small. In such cases, TJEL or TAJEL perform better. Another

finding from the simulation study is that if the smaller quantile is close to the proportion of

zeros in the data, the results might not be stable.

Table 4.2 and Table 4.3 give simulation results for exponential and log-normal distribu-

tions, respectively. The results for both tables are similar to the results in Table 4.1. The

only exception is when δ = 0.3, and s = 0.50 and t = 0.70. In this setting, the NA method

gives better coverage rate than the JEL method for the exponential distribution. The TJEL

method gives the best result in such a case. On the other hand, the NA method shows

over-coverage issue for the log-normal distribution. TJEL and TAJEL provide better results

in such a simulation setting for the log-normal distribution.

4.4 Real Data Analysis

Siegmund et al. (2004) studied the methylation pattern measurement on cancer cells.

Methylation in DNA happens when the methyl group is added to the DNA. Methylation

regulates gene expression and can often turn a healthy cell into a cancer cell. Identifying

hypermethylation is a vital diagnostic tool, and early detection of cancer is very crucial for

intervention. The diagnosis of methylation gives real numbers {x|x ∈ <}. When the diagno-

sis detects no or partial presence of methylation, it provides negative results. These negative

test results generally mean undetectable methylation. Therefore, they are considered as zero.
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Often there are many zeros in the methylation diagnosis, and some hypermethylated cell can

make the data positively skewed.

Neuhäuser (2012) has a non-small lung cancer cell methylation test result. There are 46

observations in the dataset, and the proportion of zero is δ̂ = 0.348. The mean and standard

deviation of the data is 19.641 and 31.892, respectively. The skewness is 1.681, i.e., the data

is slightly positively skewed.

We applied NA and the proposed methods to this dataset. The 95% confidence intervals

and the corresponding confidence lengths are presented in Table 4.4. The result shows the

confidence intervals for the quantile difference at various quantiles by the above-mentioned

five methods. NA method has the smallest confidence length and TAJEL provides the longest

length. This result is expected as our simulation studies suggested. But since the jackknife

empirical likelihood methods has better coverage probabilities, we recommend the proposed

methods despite the longer confidence length.

4.5 Conclusion

Zero-inflated data is a relatively common phenomenon. Because of the structure of

the data, special statistical technique is required for any inferential analysis. On the other

hand, the quantile difference is an essential statistical measure. In this chapter, we proposed

the jackknife empirical likelihood method to construct a confidence interval for the quantile

difference on zero-inflated data. We introduced a smoothed estimating equation and obtain

jackknife pseudo-values. We set up a jackknife empirical log-likelihood ratio and establish

Wilks’ theorem. To improve the accuracy, we also implement adjusted jackknife empirical

likelihood, transformed jackknife empirical likelihood, and transformed adjusted jackknife

empirical likelihood. Simulation studies confirm the benefits of using our methods. We also

applied DNA methylation data to show the applicability of our proposed methods.

There are more research opportunities in this research area. Future research may involve

the inference for the quantile difference of two independent or two correlated zero-inflated

populations.
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Table (4.1) Coverage probabilities (average lengths) of 95% confidence interval with the
non-zero data following chi-square distribution.

δ s t n NA JEL AJEL TJEL TAJEL

0.1

0.20 0.90

30 0.804 (2.658) 0.898 (3.748) 0.915 (3.864) 0.913 (3.847) 0.935 (3.970)

50 0.826 (2.294) 0.879 (3.018) 0.892 (3.137) 0.892 (3.115) 0.898 (3.192)

70 0.864 (2.062) 0.902 (2.579) 0.909 (2.656) 0.908 (2.647) 0.914 (2.699)

0.25 0.75

30 0.866 (1.571) 0.889 (1.873) 0.906 (2.035) 0.923 (2.364) 0.946 (2.448)

50 0.892 (1.251) 0.921 (1.421) 0.932 (1.475) 0.932 (1.481) 0.938 (1.524)

70 0.898 (1.078) 0.946 (1.138) 0.952 (1.169) 0.952 (1.169) 0.955 (1.200)

0.35 0.65

30 0.879 (0.984) 0.933 (1.148) 0.946 (1.204) 0.949 (1.217) 0.958 (1.292)

50 0.890 (0.783) 0.936 (0.819) 0.944 (0.855) 0.944 (0.860) 0.958 (0.933)

70 0.898 (0.661) 0.937 (0.678) 0.947 (0.712) 0.946 (0.711) 0.953 (0.740)

0.2

0.30 0.90

30 0.837 (2.900) 0.914 (3.806) 0.938 (3.934) 0.938 (3.932) 0.958 (4.048)

50 0.858 (2.537) 0.906 (2.969) 0.918 (3.050) 0.916 (3.048) 0.928 (3.120)

70 0.882 (2.250) 0.910 (2.548) 0.924 (2.637) 0.922 (2.625) 0.928 (2.683)

0.40 0.75

30 0.880 (1.595) 0.924 (1.643) 0.943 (1.736) 0.949 (1.979) 0.970 (2.203)

50 0.907 (1.253) 0.913 (1.164) 0.935 (1.313) 0.937 (1.323) 0.950 (1.370)

70 0.920 (1.098) 0.928 (0.988) 0.939 (1.058) 0.939 (1.058) 0.944 (1.091)

0.45 0.70

30 0.896 (1.233) 0.924 (1.246) 0.934 (1.304) 0.940 (1.346) 0.960 (1.600)

50 0.908 (0.949) 0.921 (0.885) 0.934 (0.931) 0.936 (0.950) 0.950 (1.022)

70 0.922 (0.819) 0.924 (0.743) 0.934 (0.782) 0.934 (0.783) 0.942 (0.820)

0.3

0.40 0.90

30 0.884 (3.277) 0.914 (3.687) 0.942 (3.812) 0.944 (3.821) 0.964 (3.956)

50 0.894 (2.857) 0.890 (2.902) 0.906 (3.015) 0.906 (3.041) 0.915 (3.114)

70 0.919 (2.540) 0.900 (2.488) 0.918 (2.600) 0.915 (2.580) 0.928 (2.663)

0.45 0.85

30 0.889 (2.942) 0.906 (2.565) 0.931 (2.768) 0.948 (3.692) 0.966 (4.183)

50 0.920 (2.262) 0.902 (1.894) 0.916 (2.045) 0.928 (2.350) 0.948 (2.466)

70 0.942 (1.902) 0.928 (1.604) 0.938 (1.663) 0.938 (1.664) 0.958 (1.906)

0.50 0.70

30 0.938 (1.245) 0.904 (1.153) 0.914 (1.254) 0.925 (1.299) 0.948 (1.588)

50 0.949 (0.957) 0.919 (0.797) 0.932 (0.836) 0.935 (0.847) 0.952 (0.936)

70 0.944 (0.809) 0.930 (0.661) 0.940 (0.689) 0.940 (0.690) 0.956 (0.736)

NOTE:
NA: normal approximation
JEL: jackknife empirical likelihood
AJEL: jackknife adjusted empirical likelihood
TJEL: transformed jackknife empirical likelihood
TAJEL:transformed adjusted jackknife empirical likelihood
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Table (4.2) Coverage probabilities (average lengths) of 95% confidence interval with the
non-zero data following exponential distribution.

δ s t n NA JEL AJEL TJEL TAJEL

0.1

0.20 0.90

30 0.830 (3.575) 0.895 (4.637) 0.918 (4.818) 0.917 (4.809) 0.938 (4.967)

50 0.842 (3.011) 0.907 (3.611) 0.916 (3.714) 0.915 (3.694) 0.927 (3.801)

70 0.864 (2.659) 0.924 (3.111) 0.930 (3.194) 0.929 (3.191) 0.934 (3.247)

0.25 0.75

30 0.890 (2.414) 0.914 (2.503) 0.928 (2.691) 0.934 (3.010) 0.955 (3.224)

50 0.922 (1.895) 0.932 (1.904) 0.944 (1.995) 0.944 (2.003) 0.952 (2.084)

70 0.920 (1.607) 0.936 (1.546) 0.945 (1.596) 0.944 (1.596) 0.952 (1.645)

0.35 0.65

30 0.922 (1.775) 0.920 (1.681) 0.938 (1.801) 0.943 (1.833) 0.956 (1.954)

50 0.938 (1.383) 0.942 (1.254) 0.950 (1.312) 0.950 (1.317) 0.964 (1.400)

70 0.937 (1.172) 0.947 (1.048) 0.955 (1.089) 0.955 (1.087) 0.962 (1.129)

0.2

0.30 0.90

30 0.858 (3.943) 0.898 (4.579) 0.920 (4.769) 0.921 (4.777) 0.945 (4.946)

50 0.878 (3.327) 0.887 (3.601) 0.902 (3.761) 0.903 (3.757) 0.914 (3.863)

70 0.890 (2.980) 0.912 (3.059) 0.920 (3.168) 0.919 (3.155) 0.924 (3.240)

0.40 0.75

30 0.928 (2.576) 0.920 (2.278) 0.940 (2.447) 0.946 (2.658) 0.965 (3.033)

50 0.938 (2.041) 0.932 (1.708) 0.946 (1.863) 0.946 (1.881) 0.956 (1.966)

70 0.945 (1.728) 0.945 (1.424) 0.954 (1.502) 0.954 (1.503) 0.960 (1.558)

0.45 0.70

30 0.942 (2.185) 0.920 (1.802) 0.939 (1.918) 0.946 (1.986) 0.958 (2.262)

50 0.948 (1.694) 0.932 (1.361) 0.944 (1.429) 0.946 (1.442) 0.962 (1.540)

70 0.962 (1.418) 0.946 (1.126) 0.952 (1.175) 0.952 (1.175) 0.960 (1.229)

0.3

0.40 0.90

30 0.880 (4.345) 0.908 (4.59) 0.934 (4.788) 0.939 (4.817) 0.964 (5.032)

50 0.902 (3.744) 0.899 (3.527) 0.912 (3.645) 0.912 (3.682) 0.925 (3.795)

70 0.929 (3.361) 0.914 (3.030) 0.926 (3.143) 0.924 (3.130) 0.934 (3.235)

0.45 0.85

30 0.920 (3.974) 0.896 (3.324) 0.920 (3.551) 0.939 (4.454) 0.958 (5.277)

50 0.942 (3.197) 0.912 (2.515) 0.928 (2.661) 0.934 (2.905) 0.952 (3.148)

70 0.952 (2.717) 0.922 (2.132) 0.938 (2.220) 0.936 (2.229) 0.948 (2.438)

0.50 0.70

30 0.972 (2.361) 0.906 (1.695) 0.924 (1.844) 0.940 (1.925) 0.960 (2.254)

50 0.964 (1.804) 0.934 (1.252) 0.944 (1.322) 0.947 (1.336) 0.957 (1.442)

70 0.973 (1.526) 0.938 (1.047) 0.948 (1.093) 0.949 (1.095) 0.960 (1.151)

NOTE:
NA: normal approximation
JEL: jackknife empirical likelihood
AJEL: jackknife adjusted empirical likelihood
TJEL: transformed jackknife empirical likelihood
TAJEL:transformed adjusted jackknife empirical likelihood
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Table (4.3) Coverage probabilities (average lengths) of 95% confidence interval with the
non-zero data following lognormal distribution.

δ s t n NA JEL AJEL TJEL TAJEL

0.1

0.20 0.90

30 0.794 (3.320) 0.883 (5.782) 0.905 (5.974) 0.904 (5.943) 0.924 (6.104)

50 0.826 (2.902) 0.893 (4.42) 0.902 (4.553) 0.900 (4.497) 0.910 (4.610)

70 0.844 (2.578) 0.899 (3.722) 0.904 (3.816) 0.903 (3.817) 0.908 (3.877)

0.25 0.75

30 0.888 (1.774) 0.898 (2.211) 0.912 (2.437) 0.926 (2.831) 0.950 (2.968)

50 0.908 (1.396) 0.924 (1.594) 0.938 (1.663) 0.939 (1.675) 0.948 (1.735)

70 0.927 (1.214) 0.925 (1.268) 0.935 (1.309) 0.936 (1.308) 0.945 (1.349)

0.35 0.65

30 0.919 (1.214) 0.930 (1.246) 0.940 (1.327) 0.945 (1.347) 0.958 (1.436)

50 0.924 (0.919) 0.939 (0.887) 0.954 (0.929) 0.954 (0.934) 0.964 (1.003)

70 0.942 (0.784) 0.934 (0.747) 0.943 (0.778) 0.943 (0.777) 0.949 (0.809)

0.2

0.30 0.90

30 0.829 (3.630) 0.892 (5.776) 0.914 (5.954) 0.915 (5.952) 0.942 (6.097)

50 0.852 (3.172) 0.888 (4.346) 0.906 (4.468) 0.905 (4.442) 0.916 (4.554)

70 0.880 (2.764) 0.906 (3.549) 0.916 (3.636) 0.914 (3.620) 0.920 (3.712)

0.40 0.75

30 0.923 (1.823) 0.922 (1.869) 0.940 (1.993) 0.947 (2.254) 0.966 (2.605)

50 0.936 (1.431) 0.936 (1.312) 0.951 (1.462) 0.952 (1.476) 0.960 (1.534)

70 0.948 (1.227) 0.944 (1.086) 0.953 (1.159) 0.953 (1.160) 0.960 (1.201)

0.45 0.70

30 0.940 (1.463) 0.922 (1.384) 0.940 (1.468) 0.949 (1.514) 0.960 (1.792)

50 0.951 (1.124) 0.923 (0.971) 0.936 (1.024) 0.938 (1.038) 0.950 (1.123)

70 0.959 (0.952) 0.942 (0.810) 0.947 (0.847) 0.946 (0.847) 0.956 (0.889)

0.3

0.40 0.90

30 0.866 (4.056) 0.914 (5.760) 0.944 (5.915) 0.944 (5.929) 0.962 (6.084)

50 0.900 (3.479) 0.894 (4.092) 0.910 (4.260) 0.909 (4.269) 0.922 (4.410)

70 0.918 (3.019) 0.906 (3.395) 0.918 (3.500) 0.915 (3.487) 0.926 (3.577)

0.45 0.85

30 0.904 (3.332) 0.909 (3.335) 0.929 (3.614) 0.938 (5.239) 0.963 (6.181)

50 0.934 (2.587) 0.920 (2.329) 0.933 (2.465) 0.935 (2.873) 0.950 (3.053)

70 0.944 (2.201) 0.920 (1.885) 0.928 (1.969) 0.927 (1.975) 0.941 (2.260)

0.50 0.70

30 0.970 (1.615) 0.895 (1.261) 0.916 (1.373) 0.926 (1.429) 0.947 (1.751)

50 0.979 (1.189) 0.929 (0.877) 0.936 (0.923) 0.938 (0.934) 0.946 (1.025)

70 0.978 (1.004) 0.927 (0.718) 0.940 (0.750) 0.943 (0.752) 0.954 (0.796)

NOTE:
NA: normal approximation
JEL: jackknife empirical likelihood
AJEL: jackknife adjusted empirical likelihood
TJEL: transformed jackknife empirical likelihood
TAJEL:transformed adjusted jackknife empirical likelihood
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Table (4.4) Upper limit and lower limit of 95% confidence interval (CI) and length for the
real data with normal approximation (NA), jackknife empirical likelihood (JEL), adjusted
jackknife empirical likelihood (AJEL), transformed jackknife empirical likelihood (TJEL),
and transformed adjusted jackknife empirical likelihood (TAJEL).

s t NA JEL AJEL TJEL TAJEL

0.40 0.95
Lower limit 58.099 69.780 69.770 69.770 69.770
Upper limit 96.508 135.530 135.530 135.530 135.530

Length 38.409 65.750 65.760 65.760 65.760

0.45 0.95
Lower limit 57.457 70.320 69.490 69.490 69.490
Upper limit 96.65 135.320 135.320 135.320 135.320

Length 39.193 65.000 65.830 65.830 65.830

0.50 0.95
Lower limit 57.003 70.040 70.040 70.040 69.790
Upper limit 96.555 135.140 135.140 135.140 135.140

Length 39.552 65.100 65.100 65.100 65.350

0.55 0.95
Lower limit 56.602 64.630 64.630 64.630 63.800
Upper limit 88.155 130.560 130.560 134.710 134.710

Length 31.553 65.930 65.930 70.080 70.910

NOTE:
NA: normal approximation
JEL: jackknife empirical likelihood
AJEL: jackknife adjusted empirical likelihood
TJEL: transformed jackknife empirical likelihood
TAJEL: transformed adjusted jackknife empirical likelihood
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CHAPTER 5

EMPIRICAL LIKELIHOOD INFERENCE FOR THE PANEL COUNT DATA

WITH INFORMATIVE OBSERVATION PROCESS

5.1 Background

In long-term event-history or longitudinal studies, it is desirable to follow the study

subjects continuously over time so that all the recurrent events of each subject can be

monitored in real time and the exact times of the events are observed. Unfortunately,

sometimes it may not be feasible or even unrealistic to keep continuous track of those study

subjects. Instead they are only observed at discrete time points within the study period and

only the number of events occurred between the two time points are known. Such interval-

censored data are commonly known as panel count data (see Sun and Zhao (2013)). Such

data may occur in medical follow-up, demography, epidemiology, psychology, tumorigenicity

and reliability studies, among others. For example, in a cancer study, patients are often

scheduled to come to the hospital to be screened by the medical professionals at finite

discrete time points, e.g., three months, six months etc. This is a feasible approach for a

follow up study from a practical point of view as patients may visit early or late, or even

miss a scheduled visit. At each visit, only the number of new events, e.g., new cancer cell,

is recorded since the last screening procedure. Since there is an observation gap between

two subsequent screening procedures, the exact timing of the new cancer cell formation is

unknown. Subjects are only observed intermittently, and observations may also be right-

censored.

In panel count data, number of observations differ among study subjects. Also, observa-

tion times can vary from subject to subject. These characteristics lead to two key processes

that control panel count data: the recurrent event process and the observation process. The

number of events occurring between two time points can be viewed as the realizations of the
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underlying recurrent event process and the observation times for each subject is the result of

observation process. The relationship between these processes plays a vital role in analyzing

the panel count data.

Kalbfleisch and Lawless (1985) formulated algorithms for maximum likelihood estima-

tion under a continuous-time Markov model. Estimation of the mean function of the under-

lying point processes that govern the panel count data was discussed by Sun and Kalbfleisch

(1995), which was later extended by Wellner and Zhang (2000). For treatment comparison

of panel count data, several nonparametric methods were proposed. For example, Thall

and Lachin (1988) adopted nonparametric procedure to compare the recurrence rates of two

treatment groups, Sun and Fang (2003) proposed nonparametric test for the comparison

of underlying recurrent point processes. Zhang (2006) and Balakrishnan and Zhao (2009)

devised nonparametric procedures for k (k ≥ 2) comparisons. Regression analysis of panel

count data was also explored. Among others, Sun and Wei (2000) proposed semiparametric

regression methods based on some estimation equations, whereas Zhang (2002) proposed

semiparametric maximum pseudolikelihood estimation for regression parameters. He et al.

(2008) studied regression analysis of multivariate panel count data.

However, in various situations, the two processes may not be independent and the

observation process may carry some important information about the underlying recurrent

event process. E.g., more severely ill subjects are monitored more closely, next follow-up visit

could be chosen based on the current disease status. Or, a subject decides to go to the clinic

when they are in poor conditions. Considering such dependency, Huang et al. (2006), Sun et

al. (2007), He et al. (2009) considered some frailty models to make the connection between

the observation and event processes, and the regression parameters were then estimated

by solving some estimating equations. Li et al. (2010) proposed a more flexible estimation

method via estimating equation approach. Zhao et al. (2013) gave a similar model, but also

included a terminal event in their model. Buzkova (2010) used a joint modeling approach

after predicting the observation times by some time-varying factors such as outcome at

the last visit or cumulative exposure. A more general and robust estimation procedure
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was proposed by Zhao et al. (2013). Zhang and Zhao (2013) adopt robust joint modeling

approach for the estimation of multivariate panel count data with informative observation

process. More recently, Fang et al. (2017) presented a joint model using two latent variables

for panel count data with time-dependent covariates and informative observation process.

With informative observation process, previous analyses of panel count data involve

semiparametric transformation model or joint modeling. In this chapter, we employ non-

parametric empirical likelihood procedure for the inference about the parameters of the

model. We adopted the model representation by Li et al. (2010). Our simulation studies

reveal that when the sample size is small, the normal approximation method suffers from

under-coverage issue. We try to solve this issue by the new nonparametric procedure.

Owen (1988, 1990, 1991) introduced empirical likelihood (EL) as a nonparametric al-

ternative to the classical statistical methods. Since then EL was extensively used in many

statistical areas because of its advantages over other methods. Advantages include transfor-

mation invariance, range preservation, shape and orientation determination of the confidence

region by the data itself, and Bartlett correctability Diciccio et al. (1991), Chen and Cui

(2006)). See Owen (2001) for a more comprehensive review.Hall and La Scala (1990) gave

some fundamental algorithms of empirical likelihood. Another benefit of EL method is that

unlike traditional normal approximation (NA) method, it does not require estimating co-

variance matrix to construct confidence regions. Instead an implicit studentization is carried

out internally. Also many papers showed better performance of EL methods in comparison

to NA methods for the small sample size through their numerical results. These attractive

features encourage many researchers to extend the EL methods to the survival and longi-

tudinal data analysis. Yu et al. (2011) proposed EL for linear transformation model for

right censored survival data.Liu et al. (2014) examined EL for the additive hazard model

with current status data, i.e., one observation time for each study subject. Zhang and Zhao

(2013) formulated EL methods for linear transformation models for interval-censored failure

time data. Wang et al. (2010) presented two generalized EL methods for analyzing longitu-

dinal data: element-wise and subject wise empirical likelihood methods. Hu and Lin (2012)
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analyzed longitudinal data with within-subject correlation by empirical likelihood. Dauxois

et al. (2016) applied EL for mean functions of recurrent events with competing risks un-

der random censorship and with a terminal event. Longitudinal neuroimaging data are, for

example, analyzed using two-stage empirical likelihood method by Shi et al. (2011).

The rest of this chapter is organized as follows. Section 5.2 illustrates the notations

and assumptions, which are needed to present the model. An overview of existing NA

approaches, followed by EL inference procedure with the asymptotic distributions of the

empirical likelihood ratio test statistic is also given in Section 5.2. In Section 5.3, some

simulation studies are presented to compare the empirical likelihood method with the normal

approximation based method. Section 5.4 includes the application of the proposed method

to a real dataset. Finally, some concluding remarks are given in Section 5.4. The proofs of

Theorems are provided in the Appendix D.

5.2 Main Results

5.2.1 Model setup

We will review the normal approximation method developed by Li et al. (2010) for the

completeness. We use the similar notation as Li et al. (2010) did. Consider a recurrent event

study involving n independent study subjects. For subject i, let Yi(t) be the underlying

recurrent event process that represents the cumulative number of event occurrences before

or at time t and Oi(t) denote the observation process that counts the total observations

before or at time t. Suppose that Yi(t) is observed only at the potential time points 0 <

Ti,1 < · · · < Ti,Mi
≤ τ , where Mi is the total number of possible observation point for subject

i and τ denotes the maximum study duration. These observation times are assumed to

be generated from the observation process Oi(t) =
∑Mi

j=1 I(Ti,j ≤ t), i = 1, · · · , n. Define

O∗i (t) = Oi{min(t, Ci)}, where Ci is the follow-up or censoring time for subject i, i = 1, · · · , n.

The censoring time Ci ≤ τ is either the last observation time or the administrative study

end time. Thus, O∗i (t) represents the observed/actual observation process that jumps only
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at observation time. In other words, one can observe panel count data on the Yi(t)’s at time

t only when O∗i (t) jumps. Therefore, the total number of actual observation for subject i,

m∗i = Oi(Ci) = O∗i (Ci). Additionally, a vector of covariates, possibly time-dependent, is also

available from a left-continuous covariate process Zi(t) for each subject i. Since O∗i (t) and

Zi(t) are only known and observable as long as individual i is under study and not censored,

we have 0 ≤ t ≤ Ci; i = 1, · · · , n. Combining all of them, one can observe the dataset:

{O∗i (t), Zi(t), Yi(Ti,1), · · · , Yi(Ti,Mi
); 0 ≤ t, Ti,Mi

≤ Ci, i = 1, · · · , n,K = 1, · · · ,M},

i.e., we only have panel count data on Yi(t)’s.

Define Fit = {Oi(s), 0 ≤ s < t} as the history or filtration of the observation process Oi

up to time t−, i = 1, · · · , n. Assume that Ci is independent of {Oi(t), Yi(t)} conditional on

Zi(t). Let dOi(t) denote the indicator of whether the ith subject to be observed in [t, t+dt).

Following Li et al. (2010) and Zhao et al. (2013), the observation process Oi(t) follows the

proportional rate model [cf. Cook and Lawless (2007)]

E{dOi(t)|Zi(t)} = eγZi(t)λ0(t)dt, (5.1)

where γ is a vector of unknown parameters, Zi(t) is the covariate process at time t, and λ0(·)

is an unspecified baseline rate function.

Model (1) can be expressed as [cf. Lin et al. (2000)]

E{dOi(t)|Zi(t)} = eγZi(t)dΛ0(t), (5.2)

where Λ0(·) is an unknown function. Here, model (5.1) implies model (5.2) with dΛ0(t) =

λ0(t). Model (5.2) is more attractive because of it’s flexibility in allowing various dependent

structures among recurrent events and applicability to any recurrent event counting process.

Considering the effects of covariates on the recurrent event process Yi(t), we model the
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conditional mean function of Yi(t) given Zi(t) and Fit as

E{Yi(t)|Zi(t),Fit} = g{µ0(t)eβ
′
1Zi(t)+β

′
2H(Fit)}, (5.3)

where g(·) is a known twice continuously differentiable and strictly increasing function, µ0(t)

denotes an unknown arbitrary function of t, β1 and β2 are vectors of unknown regression

parameters, and H(·) is a vector of known functions of Fit. It is also assumed that given

Zi(t) and Fit, Oi(t) and Yi(t) are independent. The model as given in equation (5.3) is

chosen for its apparent flexibility. Please see Li et al. (2010) for details.

Let β10, β20 and γ0 denote the true values of β1, β2 and γ. Also let Xi(t) =

(Zi(t)
′, H(Fit)′)′, β = (β′1, β

′
2)′, β0 = (β′10, β

′
20)′ for easy presentation.

5.2.2 Semiparametric transformation model

We go over the normal approximation (NA) method in detail proposed by Li et al.

(2010). The NA method is the foundation of our EL method. Define

Mi(t; β1, β2, γ) =

∫ t

0

Yi(u)∆i(u)dOi(u)−
∫ t

0

g{µ0(u)eβ
′
1Zi(u)+β′2H(Fiu)}∆i(u)eγ

′Zi(u)dΛ0(u),

where ∆i(t) = I(Ci ≥ t) is the at risk indicator for subject i, i = 1, . . . , n. Then un-

der models (5.1) and (5.3), it can be easily shown that E{Mi(t; β10, β20, γ0)} = 0. Then

Mi(t; β10, β20, γ0)’s are zero-mean stochastic processes.

Li et al. (2010) proposed the following generalized estimating equations.

n∑
i=1

[
Yi(t)∆i(t)dOi(t)− g{µ0(t)eβ

′Xi(t)}∆i(t)e
γ′Zi(t)dΛ0(t)

]
= 0, 0 ≤ t ≤ τ, (5.4)

U(β; γ) =
n∑
i=1

∫ τ

0

W (t)Xi(t)
[
Yi(t)∆i(t)dOi(t)− g{µ0(t)eβ

′Xi(t)}∆i(t)e
γ′Zi(t)dΛ0(t)

]
, (5.5)

to estimate µ0(t) and β, respectively, where W (t) is a possibly data-dependent weight func-

tion. For fixed γ, let µ̂0(t) and β̂ = (β̂1

′
, β̂2

′
)′ be the estimates of µ0(t) and β0 obtained by
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solving equations (5.4) and (5.5), respectively.

Let the limit of S(j)(t; γ), EX(t; β, γ), and R(t; β, γ) be denoted by s(j)(t; γ), ex(t; β, γ)

and r(t; β, γ), respectively,

where, same as in Li et al. (2010)

EX(t; β, γ) =

∑n
i=1 ∆i(t)Xi(t)ġ{µ0(t)eβ

′Xi(t)}eβ′Xi(t)+γ′Zi(t)∑n
i=1 ∆i(t)ġ{µ0(t)eβ′Xi(t)}eβ′Xi(t)+γ′Zi(t)

,

R(t; β, γ) = n−1

n∑
i=1

{Xi(t)− EX(t; β, γ)}∆i(t)g{µ0(t)eβ
′Xi(t)}eγ′Zi(t).

S(j)(t; γ) = n−1

n∑
i=1

∆i(t)Zi(t)
jeγ

′Zi(t), j = 1, 2.

Also let z̄(t; γ) = s(1)(t; γ)/s(0)(t; γ). Define

Mi(t; β, γ) =

∫ t

0

Yi(u)∆i(u)dOi(u)−
∫ t

0

g{µ0(u)eβ
′Xi(u)}∆i(u)eγ

′Zi(u)dΛ0(u),

M∗
i (t; γ) =

∫ t

0

∆i(u)dOi(u)−
∫ t

0

∆i(u)eγ
′Zi(u)dΛ0(u),

P (β, γ) = E

[ ∫ τ

0

w(t)∆i(t)g{µ0(t)eβ
′Xi(t)}eγ′Zi(t){Xi(t)

−ex(t; β, γ)}{Zi(t)− z̄(t; γ)}′dΛ0(t)

]
,

D(γ) = E

[∫ τ

0

{Zi(t)− z̄(t; γ)}⊗2∆i(t)e
γ′Zi(u)dΛ0(t)

]
.

Further denote

A(β; γ) = E

[∫ τ

0

w(t)∆i(t)ġ{µ0(t)eβ
′Xi(t)}{Xi(t)− ex(t; β, γ)}⊗2eβ

′Xi(t)+γ′Zi(t)µ0(t)dΛ0(t)

]
,

Σ(β; γ) = E

[∫ τ

0

w(t){Xi(t)− ex(t; β, γ)}dMi(t; β, γ)−
∫ τ

0

w(t)r(t; β, γ)

s(0)(t; γ)
dM∗

i (t; γ)
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−P (β, γ)[D(γ)]−1

∫ τ

0

{Zi(t)− z̄(t; γ)}dM∗
i (t; γ)

]⊗2

.

Now, we want to establish the asymptotic properties of β̂. Under the regularity condi-

tions (D1)-(D5) in the Appendix D, Li et al. (2010) proved that

√
n(β̂ − β0)

D→ N(0, [A(β0; γ0)]−1Σ(β0; γ0)[A(β0; γ0)]−1).

At first, γ and Λ0(t) are unknown and need to be estimated. This estimation can be

done based on the recurrent event data on the Oi(t)’s [cf. Andersen et al. (1993) and Cook

and Lawless (2007)]. Then a consistent estimator of γ, denoted by γ̂ can be estimated by

solving the following estimating equation

V (γ) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ)}∆i(t)dOi(t) = 0,

where Z̄(t; γ) = S(1)(t; γ)/S(0)(t; γ), and Λ0(t) can be estimated by

Λ̂0(t; γ̂) =
n∑
i=1

∫ t

0

∆i(u)dOi(u)

nS(0)(u; γ̂))
.

Then the estimating equation to estimate µ0(t; β, γ̂) becomes

n∑
i=1

[
Yi(t)∆i(t)dOi(t)− g{µ0(t; β, γ̂)eβ

′Xi(t)}∆i(t)e
γ̂′Zi(t)dΛ̂0(t; γ̂)

]
= 0, 0 ≤ t ≤ τ, (5.6)

And after replacing µ0(t; β, γ̂) by it’s estimate µ̂0(t; β, γ̂), the estimating equation U(β; γ̂)

becomes

U(β; γ̂) =
n∑
i=1

∫ τ

0

W (t)Xi(t)
[
Yi(t)∆i(t)dOi(t)− g{µ̂0(t; β, γ̂)eβ

′Xi(t)}∆i(t)e
γ̂′Zi(t)dΛ̂0(t; γ̂)

]
,

(5.7)
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Define

M̂i(t; β, γ̂) =

∫ t

0

Yi(u)∆i(u)dOi(u)−
∫ t

0

g{µ̂0(u; β, γ̂)eβ
′Xi(u)}∆i(u)eγ̂

′Zi(u)dΛ̂0(u; γ̂) ,

M̂∗
i (t; γ̂) =

∫ t

0

∆i(u)dOi(u)−
∫ t

0

∆i(u)eγ̂
′Zi(u)dΛ̂0(u; γ̂) ,

ÊX(t; β, γ̂) =

∑n
i=1 ∆i(t)Xi(t)ġ{µ̂0(t; β, γ̂)eβ

′Xi(t)}eβ′Xi(t)+γ̂′Zi(t)∑n
i=1 ∆i(t)ġ{µ̂0(t; β, γ̂)eβ′Xi(t)}eβ′Xi(t)+γ̂′Zi(t)

,

R̂(t; β, γ̂) = n−1

n∑
i=1

{Xi(t)− ÊX(t; β, γ̂)}∆i(t)g{µ̂0(t; β, γ̂)eβ
′Xi(t)}eγ̂′Zi(t) ,

D̂ = n−1

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}⊗2∆i(t)dOi(t) ,

and

P̂ (β, γ̂) = n−1

n∑
i=1

∫ τ

0

W (t)∆i(t)g{µ̂0(t; β, γ̂)eβ
′Xi(t)}eγ̂′Zi(t){Xi(t)ÊX(t; β.γ̂)}

{Zi(t)− Z̄(t; γ̂)}′dΛ̂0(u; γ̂) .

In the above, ġ(t) = dg(t)/dt, and υ⊗2 = υυ′ for a vector υ.

Then as n → ∞,
√
n(β̂ − β0) is asymptotically approximated by a normal distri-

bution with mean zero and a covariance matrix that can be consistently estimated by

(Â(β̂, γ̂))−1Σ̂(β̂, γ̂)(Â(β̂, γ̂))−1 [cf. Li et al. (2010)],

where

Â(β, γ̂) = n−1

n∑
i=1

∫ τ

0

W (t)∆i(t)ġ{µ̂0(t; β, γ̂)eβ
′Xi(t)}{Xi(t)− ÊX(t; β, γ̂)}⊗2

eβ
′Xi(t)+γ̂′Zi(t)µ̂0(t; β, γ̂)dΛ̂0(t; γ̂)

and

Σ̂(β, γ̂) = n−1

n∑
i=1

[∫ τ

0

W (t){Xi(t)− ÊX(t; β, γ̂)}dM̂i(t; β, γ̂)
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−
∫ τ

0

W (t)R̂(t, β, γ̂)

S(0)(t; γ̂)
dM̂∗

i (t; γ̂)

−P̂ (β, γ̂)D̂−1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}dM̂∗
i (t; γ̂)

]⊗2

.

Li et al. (2010) showed overall satisfactory performance of the normal approximation

method in their simulation analysis for the sample size 100 and 300. This method, however,

requires rigorous variance computations. Also, there may exist an under-coverage issue when

the sample size is small as shown by our simulation studies. To deal with these issues, we

propose an empirical likelihood method in the next section.

5.2.3 Empirical likelihood

Motivated by Owen (1988, 1990) and Qin and Lawless (1994), we apply empirical like-

lihood method to find the confidence intervals of the parameters. Define

Uni(β; γ̂) =

∫ τ

0

W (t){Xi(t)− ÊX(t; β, γ̂)}dM̂i(t; β, γ̂)−
∫ τ

0

W (t)R̂(t; β, γ̂)

S(0)(t, γ̂)
dM̂∗

i (t; γ̂)−

P̂ (β, γ̂)D̂−1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}dM̂∗
i (t; γ̂), i = 1, 2, . . . , n,

where ÊX(t; β, γ̂), R̂(t; β, γ̂), M̂i(t; β, γ̂), M̂∗
i (t; γ̂), P̂ (β, γ̂) and D̂ are defined as in Section

5.2.2.

The idea of empirical likelihood is to consider the data observations as if they are from a

fixed and unknown distribution F . To model F by a multinomial distribution concentrated

on the observations, with pi as the probability mass at the ith observation. The empirical

likelihood is L(F ) =
∏n

i=1 pi and the empirical likelihood ratio is of the form L(F )/L(Fn),

where Fn is the empirical distribution dividing the probability equally among n observations.

Let p = (p1, p2, · · · , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1, and pi ≥ 0 for all i.

The empirical likelihood at true parameter value β0 is defined as:

L(β0) = sup{
n∏
i=1

pi :
n∑
i=1

piUni(β0; γ̂) = 0, pi ≥ 0,
n∑
i=1

pi = 1}.
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A unique maximum exists for L(β0) for a given β0, provided that 0 in inside the convex hull

of the points {Uni}, i = 1, 2, . . . , n. Also,
∏n

i=1 attains its maximum at pi = 1/n under the

restrictions
∑n

i=1 pi = 1 and pi ≥ 0, i = 1, 2, . . . , n. Then, the empirical likelihood ratio at

true parameter value β0 is defined by

R(β0) = sup{
n∏
i=1

npi :
n∑
i=1

piUni(β0; γ̂) = 0, pi ≥ 0,
n∑
i=1

pi = 1}.

Using the Lagrange multiplier method, R(β0) is maximized when

pi =
1

n

1

1 + λ′Uni(β; γ̂)
,

where λ = (λ1, · · · , λp)′ is the solution to

n∑
i=1

Uni(β; γ̂)

1 + λ′Uni(β; γ̂)
= 0.

Then the empirical log-likelihood ratio at β is

l(β) = −2 logR(β)

= 2
n∑
i=1

log{1 + λ′Uni(β; γ̂)}.

We establish the Wilks’ theorem for the empirical log-likelihood ratio as follows.

Theorem 5.1. Under the regularity conditions stated in the Appendix D, l(β0) converges in

distribution to χ2
p as n→∞, where χ2

p is a chi-square distribution with p degrees of freedom.

Based on Theorem 5.1, we can construct the asymptotic 100(1−α)% empirical likelihood

confidence region for β0 as

I1(α) = {β : l(β) ≤ χ2
p(α)},

where χ2
p(α) is the (1− α) quantile of χ2

p.

In practice, one may be more interested in the inference of a single component of the
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parameter β. Subramanian (2007), Yu et al. (2011) and Zhao (2011) proposed the profile

empirical likelihood method for this purpose. The idea is to profile out nuisance parameters

from the full EL, then construct confidence interval for the actual components that one is

interested in.

Define β0 = ((β
(1)
0 )′, (β

(2)
0 )′)′. Suppose we want to construct EL confidence regions for

a q-dimensional (q < p) subvector β
(1)
0 . This can be done by profiling out β

(2)
0 from the full

EL. Then the profile EL ratio at β(1) is

lprofile(β(1)) = min
β(2)

l((β
(1)
0 )′, (β

(2)
0 )′).

We establish Wilks’ theorem for lprofile(β(1)) as follows:

Theorem 5.2. Under the regularity conditions stated in the Appendix D, the profile EL

statistic lprofile(β
(1)
0 ) converges in distribution to χ2

q as n → ∞, where χ2
q is a chi-square

distribution with q degrees of freedom.

Based on Theorem 5.2, we can construct the asymptotic 100(1−α)% empirical likelihood

confidence region for β
(1)
0 as

I2(α) = {β(1) : lprofile(β
(1)
0 ) ≤ χ2

q(α)},

where χ2
q(α) is the (1− α) quantile of χ2

q.

5.3 Simulation Study

To evaluate the performance of the proposed empirical likelihood method, an extensive

simulation study is conducted. First, the covariate Zi(t) and follow-up time Ci were generated

from a Bernoulli (p = 0.5) and a U (τ/2, τ) distribution, respectively.

We assumed that Oi(t) is a Poisson process with λ0(t) = c/τ , where c is a constant.

Then given Zi, the number of observations, m∗i , follows the Poisson
(

mean = cCie
γZi

τ

)
and

the observation times (Ti,1, ..., Ti,m∗i ) were obtained from the order statistics of a random
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sample of size m∗i from U(0, Ci). For the generation of panel count data Yi(Ti,j), we assumed

that

Yi(Ti,j) = Y ∗i (Ti,1) + Y ∗i (Ti,2 − Ti,1) + · · ·+ Y ∗i (Ti,j − Ti,j−1),

with Ti, 0 = 0. Also given Zi(t) and Fit, we assumed that Y ∗i (Ti,1) and Y ∗i (Ti,j − Ti,j−1)

followed Poisson distribution with the mean functions

g{µ0(Ti,1)eβ1Zi+β2H(FiTi,1 )}

and

g{µ0(Ti,j)e
β1Zi+β2H(FiTi,j )} − g{µ0(Ti,j−1)eβ1Zi+β2H(Fiti,j−1

)},

respectively, i = 1, · · · , n, j = 1, · · · ,m∗i .

For all situations, we took W (t) = 1, c = 5, γ = 1, and H(Fit) = Oi(t−). We choose

4 different sets for the true value of β = (β1, β2) : (0.1, 0.1), (0.3, 0), (0, 0.1), (0.3, 0.1) and

considered samples sized n = 30, 50, 70. The simulation results in terms of coverage prob-

abilities (CP) and average lengths (AL) of the confidence intervals for β = (β1, β2) with

{g(t) = t, µ0(t) = t} , {g(t) = log(t), µ0(t) = t} and {g(t) = t2, µ0(t) = exp(t)} were cal-

culated, and shown in Table 5.1, Table 5.2 and Table 5.3, respectively. Also two different

settings for µ0(t) are considered. All simulation results were based on 2,000 repetitions.

From Table 5.1, we see that in almost all cases, the empirical likelihood method out-

performs the normal approximation method in terms of coverage probabilities of confidence

intervals. The result is noteworthy specially when the sample size is small. The empirical

likelihood approach remains stable across different parameter settings. As the sample size

increases, the coverage probabilities get closer to the nominal level of 0.95. It is also notice-

able that we achieved the better coverage probabilities for empirical likelihood method at

the cost of a bigger average length. We obtain similar results in Table 5.2 and Table 5.3.

The results are similar for normal approximation and empirical likelihood with bigger

sample sizes. Also the empirical likelihood method is computationally expensive. And the
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computation would become very time-consuming for the high-dimensional data. Considering

these, one may prefer empirical likelihood method when the sample size is relatively small.

5.4 Real Data Analysis

The bladder cancer dataset is a well-known and well-analyzed example of panel count

data. This dataset was originated from the cancer follow-up study conducted by Veterans

Administration Cooperative Urological Research Group (VACURG) of USA, and was pre-

sented in Andrews and Herzberg (1985). In the beginning, 118 patients with superficial

bladder tumors were selected for the study. The number of tumors and the size of the

largest tumor were recorded. After the tumors were transurethrally removed, the patients

were randomly assigned to one of the three treatment groups: Placebo, thiotepa and pyri-

doxine. The patients were then scheduled to visit the medical centers at pre-determined

intervals. However, patients failed to visit the medical centers as scheduled (reasons might

include personal, family, health issues). As a result, the visiting times and censoring times

differ from patient to patient. At each visit, the visiting times and the number of new blad-

der tumors since the last visit were recorded. Unfortunately, the exact times of the new

tumor occurrences were unknown. The new tumors were transurethrally removed and the

patients were followed again until the patient died or the study ended. As two patients had

no follow-up visits, they were discarded from the data. The main aim of the study was to

investigate the treatment effect on the rate of tumor occurrences.

The study gives us panel count data, which consists of the observation or visit times,

number of new tumors between two visits, and three covariates: type of treatment, the

number of initial tumors and the size of the largest tumor. As studies showed that pyridoxine

was ineffective in reducing the tumor recurrence, we focus our analysis on two other groups:

placebo and thiotepa. These two groups have 47 and 38 patients, respectively. The average

number of observations for placebo and thiotepa groups are 8.66 and 15.30, respectively.

The average number of new tumors found for the placebo and thiotepa groups are 0.70 and

0.23, respectively. Also, the average follow up times for these two groups are 16.8 and 17.4
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months, respectively. The complete dataset of these 85 patients can be found in Sun and

Zhao (2013).

For the analysis, define covariate Z ′ = (Z ′1, Z
′
2, Z

′
3)′, where Z1 is the treatment indicator

with Z1 = 1 if the patients are in the thiotepa group and Z1 = 0 if the patients are in the

placebo group, Z2 is the size of the largest tumor and Z3 is the number of initial tumors.

Then β1, β2 and β3 represent the effects of the treatment, the size of the largest tumor, and

the number of initial tumors, respectively. In addition, β4 is the effect of the observation or

visit process on the tumor recurrence process.

We apply NA method and our proposed EL method to the above panel count data. We

assume that total number of patients’ visit may carry some information about the recurrence

of bladder tumors, i.e., H(Fit) = Oi(t−) and we choose W (t) = 1.

Table 5.4 and Table 5.5 show the result with the link function g(t) = t and g(t) = log(t),

respectively. Each table gives the 95% confidence intervals with the length of the confidence

intervals for the normal approximation and empirical likelihood method. The results in Table

5.4 and Table 5.5 are also presented in Figure 5.1 and Figure 5.2, respectively.

The results in Table 5.4 and Table 5.5 suggest that the thiotepa treatment has a sig-

nificant effect in reducing the recurrence rate of bladder tumor. Also the initial number of

tumors has positive significant relation with the recurrence of the tumor, while the largest

tumor size has no significant effect. It is also evident from Table 5.4, which considers the

link function g(t) = t, that the recurrence rate of the tumors is significantly related to the

observation process, i.e., the observation does carry important information about the un-

derlying recurrent process. However, with the link function g(t) = log(t), Table 5.5 gives

us a different result for the significance of observation history. In Table 5.5, the normal

approximation confidence interval gives a significant positive effect, whereas the empirical

likelihood confidence interval includes zero, affirming no significance effect of observation

history on the recurrent event. This arises the question of selecting the best link function,

g(t). Li et al. (2010) provided a goodness-of-the-fit test that evaluates the model (5.2) for a

given g. The results from this goodness-of-the-fit suggest that it is more reasonable to use
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the link function g(t) = t than g(t) = log(t). It is also noteworthy that in almost all cases,

the empirical likelihood gives us confidence intervals with longer length than the normal ap-

proximation confidence intervals. But our simulation study shows that empirical likelihood

performs better than the normal approximation does in terms of coverage probability at the

cost of longer average length. One may rely more on the empirical likelihood confidence

intervals for the small data set.

5.5 Conclusion

We propose an empirical likelihood procedure for panel count data with informative

observation times. Motivated by the flexible semiparametric transformation model proposed

by Li et al. (2010), the empirical log-likelihood ratio is developed. We proved the Wilks’

theorem of this log-likelihood ratio, i.e., the empirical log-likelihood ratio follows limiting

chi-square distribution. Using this asymptotic distribution, one can construct a confidence

region of the parameters. To get the inference for a subset of parameters, e.g., to get a

confidence interval of a parameter, we also formulate a profile empirical likelihood method

by profiling nuisance parameters from the full EL.

One advantage of the proposed methods is that they perform better in terms of coverage

probabilities. We performed numerical studies under various simulation settings. We found

that EL methods have better coverage probabilities than the NA methods, especially when

the sample size is small. Also, unlike NA based methods, EL confidence intervals can be

constructed without computing complex variance-covariance matrix. However, our proposed

method involves solving a non-linear equation, which can be computation-intensive. Other

EL methods, such as jackknife empirical likelihood, can be investigated, which can avoid or

reduce the computation burden.

A critical aspect of the semiparametric transformation model is to select a robust link

function. The same issue also exists for the empirical likelihood. We rely on the same

goodness-of-fit test to choose the right candidate for the link function. Further research can

be done to find an optimal link function.
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Different researchers model panel count data with informative observation times dif-

ferently. Consequently, the analysis procedures are different. Also, other factors, such as

terminal events, follow-up processes, etc., can be included in the new model. Future research

may include these extensions into the empirical likelihood procedure.
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Table (5.1) Coverage probabilities (average lengths) for normal approximation (NA) and
empirical likelihood (EL) with nominal level 0.95, g(t) = t and µ0(t) = t.

τ = 1 τ = 5
β1 β2 β1 β1

(β1, β2) NA EL NA EL NA EL NA EL

n = 30

(0.1, 0.1)
0.888

(1.996)
0.894
(2.071)

0.836
(0.236)

0.857
(0.259)

0.885
(1.061)

0.889
(1.092)

0.836
(0.153)

0.869
(0.168)

(0.3, 0)
0.896

(2.444)
0.895

(2.538)
0.850

(0.325)
0.877

(0.353)
0.900

(1.199)
0.902

(1.233)
0.859

(0.180)
0.893

(0.196)

(0, 0.1)
0.901

(2.077)
0.907

(2.156)
0.851

(0.248)
0.887

(0.273)
0.889

(1.076)
0.892

(1.110)
0.831

(0.156)
0.872

(1.172)

(0.3, 0.1)
0.886

(1.916)
0.891

(1.986)
0.847

(0.226)
0.879

(0.248)
0.854

(1.043)
0.860

(1.073)
0.820

(0.149)
0.864

(0.164)
n = 50

(0.1, 0.1)
0.908

(1.578)
0.911

(1.614)
0.868

(0.188)
0.899

(0.202)
0.922

(0.858)
0.922

(0.877)
0.862

(0.121)
0.890

(0.133)

(0.3, 0)
0.906

(1.927)
0.911

(1.970)
0.882

(0.260)
0.909

(0.276)
0.928

(0.950)
0.931

(0.971)
0.894

(0.145)
0.922

(0.157)

(0, 0.1)
0.919

(1.618)
0.924

(1.653)
0.869

(0.193)
0.905

(0.209)
0.898

(0.860)
0.906

(0.881)
0.851

(0.121)
0.890

(0.133)

(0.3, 0.1)
0.908

(1.513)
0.913

(1.545)
0.853

(0.176)
0.894

(0.190)
0.916

(0.840)
0.915

(0.860)
0.838

(0.119)
0.885

(0.131)
n = 70

(0.1, 0.1)
0.914

(1.353)
0.916

(1.376)
0.880

(0.162)
0.912

(0.174)
0.907

(0.728)
0.911

(0.745)
0.869

(0.104)
0.908

(0.115)

(0.3, 0)
0.922

(1.654)
0.922

(1.682)
0.902

(0.227)
0.921

(0.238)
0.936

(0.816)
0.935

(0.833)
0.913

(0.126)
0.933

(0.136)

(0, 0.1)
0.920

(1.378)
0.919

(1.402)
0.889

(0.165)
0.913

(0.177)
0.919

(0.745)
0.924

(0.762)
0.886

(0.106)
0.919

(0.116)

(0.3, 0.1)
0.926

(1.300)
0.924

(1.322)
0.878

(0.150)
0.916

(0.163)
0.913

(0.720)
0.918

(0.935)
0.878

(0.104)
0.909

(0.114)
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Table (5.2) Coverage probabilities (average lengths) for normal approximation (NA) and
empirical likelihood (EL) with nominal level 0.95, g(t) = log(t) and µ0(t) = t.

τ = 1 τ = 5
β1 β2 β1 β1

(β1, β2) NA EL NA EL NA EL NA EL

n = 30

(0.1, 0.1)
0.904

(1.205)
0.910
(1.433)

0.844
(0.282)

0.866
(0.290)

0.905
(1.765)

0.927
(1.891)

0.853
(0.393)

0.888
(0.388)

(0.3, 0)
0.929
(1.023)

0.938
(1.302)

0.869
(0.208)

0.879
(0.228)

0.906
(1.634)

0.909
(1.786)

0.861
(0.332)

0.873
(0.343)

(0, 0.1)
0.907

(1.134)
0.909

(1.369)
0.845

(0.267)
0.852

(0.275)
0.915
(1.685)

0.917
(1.816)

0.846
(0.380)

0.858
(0.380)

(0.3, 0.1)
0.906

(1.290)
0.915
(1.480)

0.839
(0.303)

0.845
(0.308)

0.912
(1.815)

0.915
(1.959)

0.842
(0.414)

0.856
(0.411)

n = 50

(0.1, 0.1)
0.916

(1.954)
0.921

(1.311)
0.879

(0.234)
0.890
(0.253)

0.926
(1.424)

0.928
(1.662)

0.871
(0.328)

0.877
(0.337)

(0.3, 0)
0.934

(0.803)
0.940

(1.196)
0.896

(0.166)
0.912
(0.213)

0.921
(1.298)

0.925
(1.581)

0.902
(0.274)

0.910
(0.298)

(0, 0.1)
0.921
(0.913)

0.925
(1.309)

0.861
(0.226)

0.882
(0.251)

0.923
(1.388)

0.929
(1.643)

0.879
(1.323)

0.889
(0.334)

(0.3, 0.1)
0.921
(1.048)

0.925
(1.426)

0.866
(0.256)

0.871
(0.276)

0.929
(1.507)

0.930
(1.757)

0.886
(0.344)

0.896
(0.351)

n = 70

(0.1, 0.1)
0.937

(0.817)
0.943

(1.150)
0.885
(0.207)

0.901
(0.247)

0.930
(1.210)

0.935
(1.556)

0.893
(0.286)

0.895
(0.304)

(0.3, 0)
0.933

(0.681)
0.949
(1.047)

0.905
(0.146)

0.921
(0.207)

0.937
(1.117)

0.941
(1.494)

0.898
(0.237)

0.911
(0.266)

(0, 0.1)
0.929

(0.816)
0.933

(1.153)
0.883

(0.209)
0.899
(0.248)

0.924
(1.200)

0.931
(1.568)

0.904
(0.287)

0.910
(0.306)

(0.3, 0.1)
0.924

(0.910)
0.931

(1.387)
0.880
(0.225)

0.897
(0.259)

0.921
(1.281)

0.927
(1.607)

0.905
(0.302)

0.906
(0.316)
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Table (5.3) Coverage probabilities (average lengths) for normal approximation (NA) and
empirical likelihood (EL) with nominal level 0.95, g(t) = t2 and µ0(t) = exp(t).

τ = 1 τ = 2
β1 β2 β1 β1

(β1, β2) NA EL NA EL NA EL NA EL

n = 30

(0.1, 0.1)
0.836

(0.494)
0.847

(0.533)
0.826

(0.080)
0.866

(0.105)
0.818

(0.596)
0.840

(0.657)
0.801

(0.088)
0.840

(0.116)

(0.3, 0)
0.893

(0.503)
0.898

(0.525)
0.840

(0.078)
0.865

(0.084)
0.858

(0.462)
0.863

(0.480)
0.840

(0.073)
0.852

(0.078)

(0, 0.1)
0.830

(0.490)
0.845

(0.531)
0.817

(0.078)
0.868

(0.103)
0.817

(0.597)
0.825

(0.661)
0.817

(0.089)
0.943

(0.116)

(0.3, 0.1)
0.867

(0.527)
0.884

(0.581)
0.832

(0.082)
0.871

(0.109)
0.829

(0.663)
0.863

(0.747)
0.803

(0.090)
0.844

(0.121)
n = 50

(0.1, 0.1)
0.860

(0.399)
0.868

(0.422)
0.836

(0.063)
0.884

(0.084)
0.842

(0.507)
0.855

(0.545)
0.818

(0.072)
0.860

(0.095)

(0.3, 0)
0.917

(0.403)
0.921

(0.414)
0.875

(0.064)
0.891

(0.066)
0.887

(0.375)
0.899

(0.385)
0.857

(0.058)
0.875

(0.060)

(0, 0.1)
0.867

(0.400)
0.873

(0.425)
0.845

(0.063)
0.874

(0.083)
0.835

(0.494)
0.843

(0.531)
0.808

(0.070)
0.860

(0.092)

(0.3, 0.1)
0.873

(0.432)
0.895

(0.466)
0.838

(0.063)
0.886

(0.085)
0.861

(0.556)
0.879

(0.604)
0.808

(0.072)
0.858

(0.098))
n = 70

(0.1, 0.1)
0.869

(0.351)
0.877

(0.366)
0.833

(0.054)
0.891

(0.071)
0.856

(0.453)
0.876

(0.483)
0.828

(0.061)
0.900

(0.088)

(0.3, 0)
0.924

(0.346)
0.931

(0.354)
0.903

(0.055)
0.912

(0.056)
0.912

(0.327)
0.924

(0.341)
0.883

(0.050)
0.928

(0.058)

(0, 0.1)
0.850

(0.346)
0.870

(0.369)
0.826

(0.054)
0.915

(0.076)
0.821

(0.436)
0.849

(0.469)
0.810

(0.061)
0.898

(0.087)

(0.3, 0.1)
0.892

(0.381)
0.915

(0.414)
0.840

(0.055)
0.922

(0.080)
0.882

(0.494)
0.904

(0.536)
0.829

(0.063)
0.905

(0.091)
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Table (5.4) Confidence interval (CI) and length for normal approximation (NA) and empirical
likelihood (EL) with nominal level 0.95 with g(t) = t.

NA EL
Estimate (SE) 95% CI Length 95% CI Length

β1 -1.742 (0.380) (-2.487, -0.997) 1.490 (-2.497, -0.979) 1.518
β2 -0.101 (0.108) (-0.313, 0.111) 0.424 (-0.342, 0.103) 0.445
β3 0.286 (0.066) (0.157, 0.415) 0.258 (0.161, 0.436) 0.275
β4 0.053 (0.024) (0.006, 0.100) 0.094 (0.002, 0.095) 0.093
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Table (5.5) Confidence interval (CI) and length for normal approximation (NA) and empirical
likelihood (EL) with nominal level 0.95 with g(t) = log(t).

NA EL
Estimate (SE) 95% CI Length 95% CI Length

β1 -0.816 (0.372) (-1.545, -0.087) 1.458 (-2.274, -0.720) 1.554
β2 0.021 (0.096) (-0.167, 0.209) 0.376 (-0.320, 0.090) 0.409
β3 0.212 (0.063) (0.089, 0.335) 0.246 (0.152, 0.544) 0.392
β4 0.047 (0.023) (0.002, 0.092) 0.090 (-0.017, 0.112) 0.129
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Figure 5.1: Plot of confidence interval for normal approximation (NA) and empirical likeli-
hood (EL) with nominal level 0.95 with g(t) = t.
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Figure 5.2: Plot of confidence interval for normal approximation (NA) and empirical likeli-
hood (EL) with nominal level 0.95 with g(t) = log(t).



77

CHAPTER 6

EMPIRICAL LIKELIHOOD INFERENCE FOR THE TRANSFORMATION

MODEL WITH THE CASE-COHORT STUDY

6.1 Background

Case-cohort study, proposed by Prentice (1986), is designed to use the information from

a cohort study in a more cost-efficient and flexible way. Under this study design, a random

subsample is selected from the full cohort. Covariate information is collected only from the

chosen subsample and any cases, i.e., any subject who experiences the event of interest.

This design efficiently uses covariate information from the redundant full cohort. It also

reduces the selection and information bias as all cases and controls are sampled from the

same population, and the investigators are blind to the case status. Other advantages include

studying multiple outcomes using the same subcohort, and measuring risk at any time up

to a given time.

Prentice (1986) design was based on the Cox model (Cox (1972)) under the proportional

hazards model assumption. He adopted a pseudo-likelihood approach to estimate the relative

risk regression parameters. Self and Prentice (1988) further justified the method by giving

asymptotic distribution theory and efficiency results using martingale and finite population

convergence results. Lin and Ying (1993) extended the pseudo-likelihood approach in more

general missing covariate data under the Cox Model, which includes the case-cohort design

as a special case. These estimators are later improved by Chen and Lo (1999), which gives

more asymptotic efficiency. Chen (2001b) proposed a unified approach to generalize the

case-cohort study that can include nested case-cohort, case-cohort, and classical case-control

designs. As the assumptions for proportional hazards models may not be valid in some

situations, there were other studies that incorporate different survival models. Kulich and

Lin (2000) proposed an estimation procedure for the additive hazards regression model for the
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case-cohort design. The proportional odds model under a case-cohort study is investigated

by Chen (2001b). Nan et al. (2006) and Kong and Cai (2009) developed a semiparametric

accelerated failure time model for the case-cohort study. Recently, Sun et al. (2016) discussed

a class of general additive-multiplicative hazard models which includes the Cox model and

additive hazard model as special cases.

A more general semiparametric linear transformation model has also been used for case-

cohort studies. The semiparametric transformation model is given by

H(T ) = −β′Z + ε, (6.1)

where H is an unknown monotone increasing function, T is the failure time, β is a p dimen-

sional unknown vector of the parameter of interest, Z is a vector of covariates, and ε is a

random variable with a known continuous distribution. ε is assumed to be independent of

both Z and the censoring time C. The well-known proportional hazards model and the pro-

portional odds model are special cases of the model (6.1). Let Λ(t) be the cumulative hazard

function for ε, i.e., pr(ε > t) = exp{−Λ(t)} with Λ(−∞) = 0 and t ∈ (−∞,∞). Model

(6.1) becomes a proportional hazards model if Λ(t) = exp(t), i.e., ε follows an extreme value

distribution, and proportional odds model if Λ(t) = log(1 + exp(t)), i.e., ε follows a logistic

distribution.

Several inference procedures exist for the semiparametric transformation model un-

der the covariate independent censoring assumption. Cheng et al. (1995) and Fine et al.

(1998) proposed inference procedures based on rank-based estimating equations, which is

later extended by Kong et al. (2004) for the classical case-cohort design. Also, a conditional

profile likelihood-based method is proposed for a modified version of the case-cohort study

in which the censoring times of all the censored subjects in the cohort are observed (cf. Chen

(2001a)). But the assumption of censoring variable and covariate may not be appropriate

in many situations. Chen et al. (2002) proposed martingale based estimating equations,

which can be applied with a covariate-censoring dependency assumption. Lu and Tsiatis
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(2006) adopted this martingale-based inference method for the case-cohort design. On the

other hand,Chen and Zucker (2009) proposed approximate profile likelihood and pseudo-

partial likelihood methods for full-cohort data and then extended those to accommodate the

case-cohort design.

In this chapter, we apply an empirical likelihood (EL) method to make inference about

the regression parameters of the case-cohort design based on martingale representation by

Lu and Tsiatis (2006). The empirical likelihood method was first introduced by Owen (1988,

1990) as a nonparametric approach to constructing confidence regions for the parameter of

interest. It is a nonparametric likelihood approach, meaning that it enjoys the benefit of the

likelihood method without any parametric distributional assumptions. Also, this method

does not require complex variance computation to construct confidence intervals. Other key

advantages of EL include transformation invariance, Bartlett correctability (Diciccio et al.

(1991), data determining the shape of the confidence region, etc. Interested readers are

referred to the comprehensive review by Owen (2001) and Chen and Van Keilegom (2009).

Because of all the appealing and useful properties, the empirical likelihood method has been

used in many statistical analysis areas. A class of functionals of survival functions was stud-

ied by Wang and Jing (2001). Li and Wang (2003) proposed EL for linear regression for

right-censored data using a synthetic data approach. Zhou (2016) explored some important

survival analysis areas using empirical likelihood. Lu and Liang (2006) developed the em-

pirical likelihood method for censored survival data under the linear transformation models.

They showed that the limiting distribution of the empirical likelihood ratio is a weighted

sum of the standard chi-squared distributions. Yu et al. (2011) later modified that EL al-

gorithm in which the limiting distribution of the empirical likelihood ratio follows standard

chi-squared distribution. Other research on the empirical likelihood for linear transformation

models includes Shen (2012), Zhang and Zhao (2013), Yang et al. (2017). So far, there is no

work for the linear transformation model for the case-cohort study design.

The rest of the chapter is organized as follows. We set up the model and define the

counting processes in Section 6.2.1. Section 6.2.2 gives a review of the existing normal
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approximation method based on inference techniques by the weighted estimation equation.

In Sections 6.2.3 and 6.2.4, we develop the empirical likelihood and the adjusted empirical

likelihood methods, respectively, for a vector of regression parameters, along with the profile

empirical likelihood method for a subset of regression parameters. Extensive simulation

studies are carried out in Section 6.3. A real dataset is used to apply our method in Section

6.4. Lastly, a short discussion is given in Section 6.5. All the technical details and proofs

are provided in the Appendix E.

6.2 Main Results

6.2.1 Model setup

We use similar notations as in Lu and Tsiatis (2006). Let V and C represent the time to

failure from the onset and the censoring time, respectively. For n subjects, one can observe

the complete data as n i.i.d. random vectors Ti, δi, Zi, i = 1, 2, . . . , n, where Ti = min(Vi, Ci)

and δi = I(Vi ≤ Ci). Using the usual counting process notations, for i = 1, 2, . . . , n, we can

define the following

Ni(t) = I(Ti ≤ t, δi = 1)

Yi(t) = I(Ti ≥ t),

and a martingale process (Anderson et al., 1993)

Mi(t) = Ni(t)−
∫ t

0

Yi(t)dΛ{H0(s) + β′0Zi},

where (β0, H0) are the true value of (β,H).

In the classical case-cohort study design (see Prentice (1986)), a random sample of size

ns, named subcohort, is selected from the full cohort without replacement. Let ξi =I(subject

i is in the subcohort) be the subcohort indicator. The covariate information Zi is collected

for all the subjects in the subcohort, i.e., ξi = 1, and all remaining cases, i.e., ξi = 0 and
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δi = 1. We assume that the censoring time C is independent of T , given Z. Then, one

can observe [Ti, δi, ξi, {δi + (1 − δi)ξi}Zi] for i = 1, 2, . . . , n. Note that ξi is independent of

(Ti, δi, Zi), i = 1, 2, . . . , n, but the ξi’s, i = 1, 2, . . . , n are dependent because of the sampling

without replacement.

Let the probabilities for the subjects to be selected in the subsample be equal and

denoted by p̃, p̃ ∈ (0, 1). Because of sampling without replacement, we can write p = ns/n.

Here as in Lu and Tsiatis (2006), we assume that p̃ converges to a positive constant p as

ns, n→∞. Let the limit of the p̃ be denoted by p.

6.2.2 Normal approximation method

A common method to utilize the available information from the full-cohort data is to

use the inverse selection probabilities to define a weight for each subject in the full-cohort.

In this section, we review the normal approximation method proposed by Lu and Tsiatis

(2006). We adopt the similar notations as Lu and Tsiatis (2006) did. As in Kong et al.

(2004), Lu and Tsiatis (2006), we define a weight ρi = δi + (1 − δi)ξi/p̃ for each subject in

the full cohort by the inverse selection probabilities. Here ρi takes

ρi =


1 if δi = 1;

1/p̃ if δi = 0, ξi = 1 ;

0 if δi = 0, ξi = 0.

Using the results from Robins et al. (1994), we can replace p̃ by its empirical estimator p

and we have weights πi = δi + (1− δi)ξi/p for each subject i, i = 1, 2, . . . , n, that allow us to

use information from the full-cohort data.

Lu and Tsiatis (2006) proposed the following estimating equations

n∑
i=1

πi[dNi(t)− Yi(t)dΛ{H(t) + β′Zi}] = 0, (0 ≤ t ≤ τ), H(0) = −∞, (6.2)
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U(β,H) =
n∑
i=1

∫ ∞
0

Ziπi[dNi(t)− Yi(t)dΛ{H(t) + β′Zi}] = 0 (6.3)

to estimate H and β, respectively. Here τ = inf{t : pr(Vi > t) = 0}. Equations (6.2) and

(6.3) can be solved iteratively using a similar algorithm by Chen et al. (2002). Let (β̂, Ĥ) be

the solution of (6.2) and (6.3). Note that Ĥ is estimated as a nondecreasing step function

with jumps only at the observed failure times. Denote λ̇(t) = d/dt(λ). For any t, s ∈ (0, τ ],

define

B1(β, t) = E[λ̇{H0(t) + β′Z1}Y1(t)],

B2(β, t) = E[λ{H0(t) + β′Z1}Y1(t)],

B(β, t, s) = exp

(∫ t

s

B−1
2 (β, u)B1(β, u)dH0(u)

)
,

µZ(β, t) =
E[Z1λ{H0(T1) + β′Z1}Y1(t)B(β, t, T1)]

E[λ{H0(t) + β′Z1}Y1(t)]
,

Mi(β, t) = Ni(t)−
∫ t

0

Yi(u)dΛ{H0(u) + β′Zi},

A(β) =

∫ τ

0

E[{Z1 − µZ(β, t)}Z ′1λ̇{H0(t) + β′Z1}Y1(t)]dH0(t),

Σ(β) = E

(
{δi + (1− δi)/p̃}

[ ∫ τ

0

{Z1 − µZ(β, t)}dM1(β, t)

]⊗2)

−1− p̃
p̃

(
E

[ ∫ τ

0

{Z1 − µZ(β, t)}dM1(β, t)

])⊗2

.

Then under the regularity conditions given in the Appendix E, Lu and Tsiatis (2006) showed

that
√
n(β̂ − β0)

D→ N(0, (A(β0))−1Σ(β0)((A(β0))−1)′),

where v⊗2 = vv′, for any real vector v.

The consistent estimators of A and Σ, denoted by Â(β̂) and Σ̂(β̂), respectively, can be
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obtained by

Â(β̂) =
1

n

n∑
i=1

∫ τ

0

πi{Zi − Z̄(β̂, t)}Z ′iλ̇{Ĥ(β̂, t) + β̂′Zi}Yi(t)]dĤ(β̂, t),

Σ̂(β̂) =
1

n

n∑
i=1

π2
i

[ ∫ τ

0

{Zi − Z̄(β̂, t)}dM̂i(β̂, t)

]⊗2

−1− p
p

[
1

n

n∑
i=1

δi

∫ τ

0

{Zi − Z̄(β̂, t)}dM̂i(β̂, t)

]⊗2

,

respectively,

where for any s, t ∈ (0, τ ]

Z̄(β, t) =

∑n
i=1 πiZiλ{Ĥ(β, Ti) + β′Zi}Yi(t)B̂(β, t, Ti)∑n

i=1 πiλ{Ĥ(β, Ti) + β′Zi}Yi(t)
,

B̂(β, t, u) = exp

[ ∫ t

u

{
B̂2
−1

(β, u)B̂1(β, u)
}
dĤ(β, u)

]
,

B̂1(β, t) = n−1

n∑
i=1

πiλ̇{Ĥ(β, t) + β′Zi}Yi(t),

B̂2(β, t) = n−1

n∑
i=1

πiλ{Ĥ(β, t) + β′Zi}Yi(t),

M̂i(β, t) = Ni(t)−
∫ t

0

Yi(u)dΛ{Ĥ(β, u) + β′Zi}.

Then, the 100(1 − α)% normal approximation based confidence region for β developed by

Lu and Tsiatis (2006) can be constructed as

RNA
α =

{
β : n(β̂ − β)′Â(β̂)(Σ̂(β̂))−1(Â(β̂))′(β̂ − β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.
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6.2.3 Empirical likelihood method

Motivated by the estimating equation (6.3), we propose

Uni(β) =

∫ t

0

πi(Zi − Z̄(β, t))dM̂i(β, t), i = 1, 2, . . . , n,

where Z̄(β, t) and dM̂i(t) are defined in the previous section.

For a probability vector wi, the empirical likelihood ratio, evaluated at β is defined as:

R(β) = sup

{ n∏
i=1

nwi :
n∑
i=1

wiUni(β) = 0,
n∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , n

}
.

The empirical log-likelihood ratio at β is defined as

l(β) = −2logR(β)

= 2
n∑
i=1

log{1 + (θ(β))′Uni(β)},

where θ(β) is the solution to

n∑
i=1

Uni(β)

1 + (θ(β))′Uni(β)
= 0. (6.4)

Thus, the Wilks’ theorem for the empirical log-likelihood ratio is given in Theorem 6.1.

Theorem 6.1. Let β0 be the true value of β. Under the regularity conditions given in the

Appendix E, as n→∞,

l(β0)
D→ χ2

p,

where χ2
p is a standard chi-square distribution with p degrees of freedom.

Based on Theorem 6.1, we can construct the asymptotic 100(1−α)% empirical likelihood

confidence region for β0 as

REL(α) = {β : l(β) ≤ χ2
p(α)},
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where χ2
p(α) is the upper α-quantile of χ2

p.

In practice, only a part of the parameters may be of interest. Then one can use profile

empirical likelihood (Subramanian (2007), Yu et al. (2011)) by profiling out nuisance pa-

rameters from the full EL. Define β0 = ((β
(1)
0 )′, (β

(2)
0 )′)′. Suppose we want to construct EL

confidence regions for a q-dimensional (q < p) subvector β
(1)
0 . This can be done by profiling

out β(2) from the full EL. Then the profile EL ratio at β(1) is

lprofile(β(1)) = min
β(2)

l((β(1))′, (β(2))′).

We establish Wilks’ theorem for lprofile(β(1)) as follows:

Theorem 6.2. Under the regularity conditions given in the Appendix E, as n→∞,

lprofile(β
(1)
0 )

D→ χ2
q,

where χ2
q is a standard chi-square distribution with q degrees of freedom.

Based on Theorem 6.2, we can construct the asymptotic 100(1−α)% empirical likelihood

confidence region for β
(1)
0 as

REL

profile(α) = {β(1) : lprofile(β(1)) ≤ χ2
q(α)},

where χ2
q(α) is the (1− α) quantile of χ2

q.

6.2.4 Adjusted empirical likelihood method

The EL method requires us to find the Lagrange multiplier θ(β) by solving equation

(6.4). This may create the convex hull problem or the empty set problem if 0 is not in the

convex hull of {Uni(β), i = 1, 2, . . . , n}. To improve the coverage probability of the empirical

likelihood methods, Chen et al. (2008) proposed the adjusted empirical likelihood (AEL)

method.
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In the AEL method, one artificial data point is added into the data set and we apply

the EL method on the new data set. Define the artificial point as

Un(n+1)(β) = −an
n

n∑
i=1

Uni(β),

for some positive constant an. The general recommendation for an is to take an =

max(1, log(n)/2). With the artificial data point, we have the new data set Uad
ni (β), i =

1, 2, . . . , (n+ 1).

Applying EL method on these (n + 1) data points, we have the adjusted empirical

likelihood ratio function, evaluate at β as

Rad(β) = sup

{ n+1∏
i=1

(n+ 1)wi :
n+1∑
i=1

wiU
ad
ni (β) = 0,

n+1∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , n+ 1

}
.

Therefore, the adjusted empirical log-likelihood ratio at β is

lad(β) = −2logRad(β)

= 2
n+1∑
i=1

log{1 + (θad(β))′Uad
ni (β)},

where θad(β) is the solution to

n+1∑
i=1

Uad
ni (β)

1 + (θad(β))′Uad
ni (β)

= 0. (6.5)

Theorem 6.3. Under the regularity conditions given in the Appendix E, as n→∞,

lad(β0)
D→ χ2

p,

where χ2
p is a standard chi-square distribution with p degrees of freedom.

Based on Theorem 6.3, we can construct the asymptotic 100(1−α)% adjusted empirical



87

likelihood confidence region for β0 as

RAEL(α) = {β : lad(β) ≤ χ2
p(α)},

where χ2
p(α) is the upper α-quantile of χ2

p.

Similar to Section 6.2.3, we derive the Wilks’ Theorem for the profile AEL ratio in

Thoerem 6.4.

Theorem 6.4. Under the regularity conditions given in the Appendix E, as n→∞,

ladprofile(β
(1)
0 )

D→ χ2
q,

where χ2
q is a standard chi-square distribution with q degrees of freedom.

Based on Theorem 6.4, we can construct the asymptotic 100(1−α)% adjusted empirical

likelihood confidence region for β
(1)
0 as

RAEL

profile(α) = {β(1) : ladprofile(β(1)) ≤ χ2
q(α)},

where χ2
q(α) is the (1− α) quantile of χ2

q.

6.3 Simulation Study

Extensive simulation studies are carried out to assess the finite sample performance of

the proposed methods and compare the results with the performance of the existing NA

method in Lu and Tsiatis (2006). As in Dabrowska and Doksum (1988), we assume that

the hazard function of the error term ε is of the form λ(t) = exp(t)/{1 + γ exp(t)}, with

γ = 0, 1, 2. Note that λ(t) with γ = 0 and 1 corresponds to the proportional hazards and

the proportional odds model, respectively. The transformation function H(t) is chosen to be

log(t), log(et − 1) and log(0.5e2t − 0.5) for γ = 0, 1, and 2, respectively. Two covariates are

generated independently as Z1 ∼ U(0, 1) and Z2 ∼ Ber(0.5).



88

For the first set of simulations, the regression parameters are set to be β = (β1, β2)′ =

(1, 1)′. The censoring scheme is chosen to be covariate independent. The censoring times are

generated from U(0, c), where c is chosen such that the expected proportion of censoring rate

is 70% and 85%. Sample sizes 100 and 200 are considered. Two case-cohort study designs

are considered. In one setting, a case-cohort study is designed to have the same number of

cases and controls (denoted by CCI setting) and in the other setting, twice the number of

controls as cases are taken (denoted by CCII setting). A full cohort study, where all the

cases and controls are selected, is also considered (denoted by FULL setting). All simulation

results are based on 2500 repetitions.

Table 6.1 shows the results from the first simulation studies. The results are shown in

terms of coverage probabilities of the 95% confidence intervals and the corresponding average

length in the parenthesis. For the proportional hazard model, i.e., when γ = 0, the normal

approximation method has under coverage. The empirical likelihood method improves the

coverage probabilities, which can further be improved by the adjusted empirical likelihood

method. However, the average lengths of the confidence intervals also increase at the same

time. As the sample size increases, the coverage probabilities approach the nominal level

with smaller average lengths. When γ = 1 or γ = 2, the simulation results are different as, in

general, NA method exhibits over coverage probabilities. Applying EL method in such cases

gives under-coverage probabilities, but AEL method provides coverage probabilities that are

closer to the nominal level.

The second set of simulation studies consider covariate dependent scheme. Here the

censoring times are generated from βcZ1/5+U [0, c], where βc = 0.1 or 0.3, and c is chosen such

that the expected proportion of censoring rate is 75%. Two sets of regression parameters,

β = (β1, β2)′ = (1, 1)′ and β = (β1, β2)′ = (0, 0)′ are chosen. Only the first case-cohort

study design (CCI) is used for this simulation. All other simulation settings are same as

the first simulation settings. The results are summarized in Table 6.2. When γ = 0, the

empirical likelihood and the adjusted empirical likelihood methods improve the coverage

probabilities. When γ = 1 or γ = 2, EL and AEL methods give coverage probabilities closer
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to 95% nominal level. In general, our proposed methods perform better even with dependent

covariate structure.

6.4 Real Data Analysis

To illustrate the practical usage, we apply our proposed methods to the Wilms’ Tumor

Study (D’Angio et al. (1989); Green et al. (1998)) dataset. Wilms’ tumor or nephroblastoma

is a rare renal cancer that starts in the kidney precursor cells. Children under 5 are most

susceptible to this type of cancer. Wilms’ tumor patient with favorable histology (FH) is

easier to treat than patients with unfavorable histology (UH). This histological classification

of tumor is an important factor that affects the survival and tumor recurrence. Other factors

include the cancer spread stage (I-IV) and tumor diameter. There are total 3, 915 subjects

in the full cohort and cancer recurrence rate among them is 17%. In our analysis, we treat

cancer recurrence as cases and consider 4 indicator variables I(state II), I(stage III), I(stage

IV), I(Central UH), and one continuous variable tumor diameter as covariates in our analysis.

In this analysis, we want to evaluate the significance of these covariates on tumor recurrence.

The assessment of histology of the tumor was done in two phases: first by pathologists

at different local sites and then by experts in a centralized location. The central reevaluation

of tumor histology is considered “accurate”, but it is an expensive and timely process. The

case-cohort sampling scheme can be very useful and cost-effective as we only need to have

central pathological histology for cases and for the subsample instead of all patients. In our

analysis, we implement “CCI” sampling scheme, i.e., a subsample of size 669 is randomly

selected. The central pathological histology and other covariate information are available for

all cases and subsample. Same as in simulation studies, we consider three regression models

with γ = 0, 1, and 2. We applied EL and AEL methods to find 95% confidence intervals

for the parameters. Then, we compare the results with the confidence intervals by normal

approximation proposed by Lu and Tsiatis (2006).

The confidence intervals and their corresponding confidence lengths obtained by afore-

mentioned three models are presented in Table 6.3 and Figure 6.1. From all the three models,
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covariates Stages II, stage III, stage IV and UH are found to have significant positive asso-

ciation with the tumor recurrence. The other covariate, Diameter, has no significant effect.

6.5 Conclusion

In this chapter, empirical likelihood and adjusted empirical likelihood methods are pro-

posed to make inferences for the semiparametric transformation model for the case-cohort

study. A case-cohort study is a very useful technique to save time and cost by efficiently us-

ing the covariates without losing the key information. Using the martingale representation,

we developed log-likelihood ratio test statistics for both empirical likelihood and adjusted

empirical likelihood methods. The limiting distributions of these test statistics follow a

standard chi-square distribution, which enables our methods to conveniently make inference

about the model parameters by avoiding the variance calculation. Our simulation results

depict the usefulness of the proposed methods. Also, we implement our methods to Wilms’s

tumor dataset to show the practical usage in real life.
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Table (6.1) Coverage probabilities (average lengths) for normal approximation (NA), em-
pirical likelihood (EL), adjusted empirical likelihood (AEL) with nominal level 0.95 and
covariate independent censoring.

CR=70% CR=85%

NA EL AEL NA EL AEL

n = 100

CCI

γ = 0 β1 0.913 (3.484) 0.921 (3.713) 0.928 (3.803) 0.881 (5.977) 0.894 (6.555) 0.903 (6.735)

β2 0.924 (2.088) 0.930 (2.260) 0.931 (2.313) 0.913 (3.482) 0.919 (3.965) 0.926 (4.071)

γ = 1
β1 0.937 (4.676) 0.929 (4.693) 0.938 (4.793) 0.930 (7.823) 0.930 (7.282) 0.936 (7.475)

β2 0.943 (2.649) 0.944 (2.693) 0.950 (2.920) 0.934 (4.223) 0.928 (4.294) 0.937 (4.413)

γ = 2
β1 0.968 (5.783) 0.934 (5.436) 0.938 (5.573) 0.938 (9.955) 0.930 (8.098) 0.941 (8.293)

β2 0.962 (3.200) 0.938 (3.107) 0.942 (3.187) 0.940 (5.472) 0.935 (4.721) 0.944 (4.866)

CCII

γ = 0
β1 0.928 (2.925) 0.931 (3.032) 0.939 (3.115) 0.927 (4.928) 0.930 (5.383) 0.936 (5.550)

β2 0.930 (1.767) 0.936 (1.841) 0.942 (1.892) 0.925 (2.917) 0.926 (3.322) 0.932 (3.416)

γ = 1
β1 0.961 (3.728) 0.942 (3.654) 0.946 (3.745) 0.963 (6.077) 0.932 (5.886) 0.938 (6.064)

β2 0.956 (2.124) 0.941 (2.124) 0.944 (2.171) 0.962 (3.713) 0.938 (3.505) 0.944 (3.614)

γ = 2
β1 0.971 (4.679) 0.942 (4.438) 0.947 (4.559) 0.975 (7.280) 0.933 (6.548) 0.938 (6.744)

β2 0.960 (2.595) 0.943 (2.538) 0.949 (2.606) 0.972 (4.847) 0.930 (3.817) 0.937 (3.936)

FULL

γ = 0
β1 0.940 (2.557) 0.941 (2.640) 0.946 (2.712) 0.939 (3.687) 0.941 (3.888) 0.945 (4.012)

β2 0.958 (1.575) 0.947 (1.638) 0.954 (1.684) 0.946 (2.342) 0.945 (2.606) 0.947 (2.703)

γ = 1
β1 0.959 (3.356) 0.946 (3.302) 0.948 (3.388) 0.963 (4.419) 0.937 (4.374) 0.941 (4.508)

β2 0.959 (1.934) 0.945 (1.939) 0.952 (1.990) 0.968 (2.686) 0.945 (2.838) 0.951 (2.932)

γ = 2
β1 0.966 (4.094) 0.938 (3.899) 0.942 (4.004) 0.972 (5.130) 0.935 (4.859) 0.940 (5.006)

β2 0.971 (2.298) 0.952 (2.254) 0.955 (2.314) 0.975 (3.182) 0.944 (3.016) 0.949 (3.113)

n = 200

CCI

γ = 0
β1 0.936 (2.457) 0.938 (2.563) 0.942 (2.610) 0.906 (4.003) 0.913 (4.207) 0.918 (4.269)

β2 0.942 (1.465) 0.942 (1.554) 0.945 (1.584) 0.932 (2.346) 0.934 (2.503) 0.939 (2.545)

γ = 1
β1 0.954 (3.177) 0.942 (3.146) 0.945 (3.189) 0.941 (4.697) 0.939 (4.790) 0.943 (4.847)

β2 0.952 (1.811) 0.948 (1.816) 0.950 (1.843) 0.947 (2.657) 0.952 (2.853) 0.954 (2.897)

γ = 2
β1 0.955 (3.833) 0.943 (3.731) 0.947 (3.784) 0.957 (5.371) 0.944 (5.227) 0.948 (5.307)

β2 0.958 (2.162) 0.946 (2.141) 0.949 (2.167) 0.959 (2.972) 0.945 (2.936) 0.947 (2.979)

CCII

γ = 0
β1 0.931 (2.033) 0.934 (2.082) 0.939 (2.111) 0.941 (3.283) 0.942 (3.395) 0.944 (3.445)

β2 0.949 (1.223) 0.949 (1.256) 0.951 (1.272) 0.942 (1.956) 0.943 (2.043) 0.945 (2.074)

γ = 1
β1 0.955 (2.593) 0.946 (2.583) 0.953 (2.619) 0.961 (3.688) 0.944 (3.693) 0.947 (3.747)

β2 0.953 (1.487) 0.951 (1.501) 0.954 (1.523) 0.957 (2.120) 0.943 (2.151) 0.947 (2.184)

γ = 2
β1 0.962 (3.114) 0.952 (3.048) 0.956 (3.092) 0.967 (4.299) 0.949 (4.223) 0.952 (4.288)

β2 0.955 (1.761) 0.949 (1.747) 0.951 (1.772) 0.969 (2.406) 0.949 (2.394) 0.950 (2.430)

FULL

γ = 0
β1 0.945 (1.799) 0.947 (1.836) 0.949 (1.862) 0.947 (2.568) 0.948 (2.644) 0.952 (2.684)

β2 0.952 (1.100) 0.948 (1.126) 0.950 (1.143) 0.955 (1.615) 0.949 (1.688) 0.950 (1.714)

γ = 1
β1 0.951 (2.285) 0.945 (2.270) 0.949 (2.303) 0.961 (2.947) 0.952 (2.967) 0.953 (3.007)

β2 0.955 (1.328) 0.942 (1.332) 0.946 (1.351) 0.959 (1.771) 0.957 (1.804) 0.958 (1.831)

γ = 2
β1 0.957 (2.757) 0.950 (2.699) 0.954 (2.738) 0.965 (3.321) 0.948 (3.278) 0.950 (3.327)

β2 0.962 (1.571) 0.954 (1.560) 0.957 (1.582) 0.965 (1.937) 0.944 (1.930) 0.947 (1.970)
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Table (6.2) Coverage probabilities (average lengths) for normal approximation (NA), em-
pirical likelihood (EL), adjusted empirical likelihood (AEL) with nominal level 0.95 and
covariate dependent censoring.

βc = 0.1 βc = 0.3

NA EL AEL NA EL AEL

n = 100

(1, 1)

γ = 0
β1 0.909 (3.939) 0.912 (4.138) 0.919 (4.251) 0.920 (4.041) 0.922 (4.254) 0.929 (4.372)

β2 0.926 (2.343) 0.928 (2.454) 0.934 (2.521) 0.920 (2.342) 0.922 (2.342) 0.926 (2.519)

γ = 1
β1 0.940 (5.108) 0.934 (4.973) 0.941 (5.111) 0.956 (5.176) 0.934 (5.029) 0.941 (5.169)

β2 0.945 (2.881) 0.941 (2.868) 0.948 (2.945) 0.953 (2.849) 0.944 (2.837) 0.947 (2.912)

γ = 2
β1 0.957 (6.240) 0.937 (5.827) 0.944 (5.990) 0.967 (6.252) 0.933 (5.823) 0.939 (5.988)

β2 0.958 (3.408) 0.935 (3.296) 0.945 (3.385) 0.960 (3.363) 0.943 (3.255) 0.947 (3.343)

(0, 0)

γ = 0
β1 0.917 (3.955) 0.926 (4.061) 0.932 (4.171) 0.916 (3.955) 0.927 (4.060) 0.933 (4.171)

β2 0.926 (2.256) 0.929 (2.299) 0.934 (2.359) 0.924 (2.247) 0.930 (2.288) 0.936 (2.348)

γ = 1
β1 0.937 (4.950) 0.930 (4.822) 0.937 (4.953) 0.940 (4.925) 0.935 (4.789) 0.941 (4.920)

β2 0.932 (2.751) 0.931 (2.728) 0.937 (2.799) 0.929 (2.730) 0.925 (2.705) 0.931 (2.775)

γ = 2
β1 0.958 (6.038) 0.938 (5.677) 0.943 (5.834) 0.956 (6.004) 0.940 (5.636) 0.945 (5.792)

β2 0.945 (3.285) 0.938 (3.202) 0.943 (3.285) 0.957 (3.243) 0.939 (3.157) 0.943 (3.239)

n = 200

(1, 1)

γ = 0
β1 0.934 (2.779) 0.940 (2.852) 0.942 (2.893) 0.931 (2.826) 0.934 (2.902) 0.936 (2.942)

β2 0.940 (1.640) 0.943 (1.692) 0.945 (1.715) 0.933 (1.632) 0.935 (1.680) 0.939 (1.702)

γ = 1
β1 0.956 (3.440) 0.951 (3.403) 0.952 (3.452) 0.959 (4.109) 0.947 (3.972) 0.950 (4.047)

β2 0.944 (1.955) 0.943 (1.958) 0.945 (1.987) 0.940 (1.935) 0.941 (1.942) 0.943 (1.968)

γ = 2
β1 0.954 (4.069) 0.943 (3.948) 0.947 (4.005) 0.961 (4.030) 0.943 (3.908) 0.946 (3.964)

β2 0.952 (2.276) 0.946 (2.248) 0.949 (2.284) 0.956 (2.241) 0.951 (2.214) 0.953 (2.248)

(0, 0)

γ = 0
β1 0.943 (2.743) 0.944 (2.764) 0.949 (2.803) 0.928 (2.745) 0.929 (2.768) 0.933 (2.807)

β2 0.946 (1.575) 0.949 (1.584) 0.951 (1.606) 0.947 (1.567) 0.949 (1.578) 0.952 (1.599)

γ = 1
β1 0.957 (3.337) 0.942 (3.289) 0.945 (3.336) 0.960 (3.322) 0.950 (3.271) 0.953 (3.318)

β2 0.939 (1.887) 0.936 (1.876) 0.941 (1.902) 0.944 (1.872) 0.943 (1.861) 0.946 (1.887)

γ = 2
β1 0.955 (3.970) 0.940 (3.855) 0.945 (3.910) 0.960 (3.926) 0.943 (3.809) 0.947 (3.864)

β2 0.956 (2.224) 0.949 (2.196) 0.953 (2.226) 0.954 (2.193) 0.945 (2.165) 0.948 (2.194)
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Table (6.3) The 95% confidence intervals (CI) and their corresponding lengths by normal
approximation (NA), empirical likelihood (EL), adjusted empirical likelihood (AEL) methods
for the tumor study dataset.

NA EL AEL
CI Length CI Length CI Length

γ = 0
Stage II (0.472, 1.070) 0.598 (0.511, 1.112) 0.601 (0.509, 1.111) 0.602
Stage III (0.325, 0.931) 0.606 (0.357, 0.966) 0.609 (0.357, 0.967) 0.610
Stage IV (0.863, 1.599) 0.736 (0.884, 1.625) 0.741 (0.886, 1.630) 0.744
UH (1.107, 1.695) 0.588 (1.117, 1.714) 0.597 (1.120, 1.722) 0.602
Diameter (-0.015, 0.048) 0.063 (-0.003, 0.062) 0.065 (-0.003, 0.063) 0.066

γ = 1
Stage II (0.451, 1.102) 0.651 (0.562, 1.183) 0.621 (0.563, 1.186) 0.623
Stage III (0.295, 0.961) 0.666 (0.393, 1.027) 0.634 (0.392, 1.028) 0.636
Stage IV (0.932, 1.771) 0.839 (1.011, 1.793) 0.782 (1.011, 1.795) 0.784
UH (1.247, 1.971) 0.724 (1.298, 1.993) 0.695 (1.297, 1.997) 0.700
Diameter (-0.036, 0.035) 0.071 (-0.005, 0.061) 0.066 (-0.005, 0.061) 0.066

γ = 2
Stage II (0.504, 1.228) 0.724 (0.621, 1.297) 0.676 (0.619, 1.297) 0.678
Stage III (0.328, 1.070) 0.742 (0.420, 1.142) 0.722 (0.420, 1.145) 0.725
Stage IV (1.047, 2.004) 0.957 (1.127, 2.058) 0.931 (1.126, 2.060) 0.934
UH (1.427, 2.299) 0.872 (1.497, 2.320) 0.823 (1.497, 2.321) 0.824
Diameter (-0.038, 0.041) 0.079 (-0.006, 0.067) 0.073 (-0.006, 0.069) 0.075

NOTE:
NA: normal approximation
EL: empirical likelihood
AEL: adjusted empirical likelihood
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Figure 6.1: Plot of 95% confidence intervals by normal approximation (NA), empirical like-
lihood (EL), adjusted empirical likelihood (AEL) methods for the tumor study dataset.
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CHAPTER 7

CONCLUSIONS

We apply empirical likelihood methods in three different survival and non-survival data

to construct confidence intervals in this dissertation. Zero-inflated data is more common

in many scientific and social study areas. Because of the true nature of the zeros, these

zeros should be included in any statistical analysis. But at the same time, using normal

approximation based method on zero-inflated data incur under-coverage issue. The empirical

likelihood method is a nonparametric alternative in such cases. In empirical likelihood, no

parametric assumption about the distribution is required, yet it enjoys all the parametric

likelihood benefits. But the empirical likelihood method becomes computationally intensive

if it involves solving a non-linear estimating equation.

We seek to alleviate the computation burden by applying the empirical likelihood

method to zero-inflated data. We proposed a novel EL method to obtain the confidence

interval for the mean of a zero-inflated skewed population. Our methods are computa-

tionally easier than other alternatives such as normal approximation or the traditional EL

method. Moreover, the simulation study shows that the proposed methods give better cov-

erage probabilities than the existing methods. To further improve coverage probability, we

propose the adjusted empirical likelihood by adding one more data point to the original data.

Simulation studies are carried out, as well as one real dataset is used to show the application

of our proposed methods. Another popular technique to deal with empirical likelihoods’

complex computation is the jackknife empirical likelihood. We apply the jackknife empirical

likelihood and adjusted jackknife empirical likelihood method for the inference of the mean

difference of two independent zero-inflated skewed populations. Our JEL methods are com-

putationally simple, and simulation studies confirm better coverage probabilities than those

of normal approximation and empirical likelihood confidence intervals proposed by Zhou
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and Zhou (2005). We apply two real-life datasets to illustrate the proposed techniques. We

also apply jackknife empirical likelihood and its variants to construct confidence intervals for

the quantile difference of a zero-inflated population. We show that our proposed methods

provide better accuracy through the simulation study. A practical use is also illustrated by

a real dataset.

We also investigate the performance of empirical likelihood in survival data. A panel

count data is a special type of survival data, where each study subject is observed only

at discrete time points. Also, the observation times itself can be very informative about

the underlying recurrent process. We apply the empirical likelihood method on the panel

count data. Numerical studies reveal better performance regarding coverage probability

with empirical likelihood method than NA based method. Bladder tumor data is used to

illustrate the actual usage of the proposed method with real-world data. Finally, we propose

EL and AEL methods for case-cohort data. Case-cohort is a cost-effective technique to

analyze cohort data. Under this study design, only cases and a random subsample of the

study subjects provide the covariate information. The simulation study shows the proposed

EL method has better performance than other existing NA based method. We demonstrate

the proposed methods by analyzing the Wilms’ tumor dataset.
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Appendix A

PROOFS OF CHAPTER 2

Proof of Theorem 2.1. The proof is similar to Owen (1988, 1990). From equation (2.1),

we have

0 = 1
n1

∣∣∣∑n1

i=1(V̂i − µ)− λ
∑n1

i=1
(V̂i−µ)2
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− 1

n1

∣∣∣∑n1

i=1(V̂i − µ)
∣∣∣

≥ |λ|S
1+|λ|Zn1

−
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where S = 1
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∑n1

i=1(V̂i − µ)2 and Zn1 = max
1≤i≤n1

|V̂i − µ|.
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µ+ µ2

→ (1− δ)2E(X2|X > 0)− 2µ2 + µ2

= (1− δ)2E(X2|X > 0)− (1− δ)2(E(X|X > 0))2

= (1− δ)2(E(X2|X > 0)− (E(X|X > 0))2)

= (1− δ)2V ar(X|X > 0)

< V ar(X)

for 0 < δ < 1, and the second term is Op(n
−1/2). Also, Zn1 = max

1≤i≤n1

|V̂i−µ| ≤ max
1≤i≤n1

|V̂i|+µ ≤

max
1≤i≤n1

|xi|+ µ = max
1≤i≤n

|Xi|+ µ = o(n1/2) using Lemma 3 of Owen (1990). Then it follows

|λ|S
1+|λ|Zn1

= Op(n
−1/2).

Therefore, we have |λ| = Op(n
−1/2). Let γi = λ(V̂i − µ). Then

max
1≤i≤n1

|γi| = Op(n
−1/2)o(n1/2) = op(1).
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Expanding equation (2.1), one has

0 = 1
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where the final term is o(n1/2)Op(n
−1)Op(1) = op(n

−1/2). We can write,
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1
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(
1

n1

n1∑
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)
+ β =

1

S
(Tn1 − µ) + β,

where β = op(n
−1/2). By the Taylor expansion, one has
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where for some finite B > 0, P (|ηi| ≤ B|γi|3, 1 ≤ i ≤ n1)→ 1. Since n1(Tn1−µ)2/S converges

to χ2
1, | − n1Sβ

2| = n1(σ2
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Op(n
−3/2)o(n3/2) = op(1). Therefore, the proof is completed. �

Proof of Theorem 2.2. The proof is similar to Chen et al. (2008), Zhao et al. (2015) and

Wang and Zhao (2016). Denote gi = V̂i− µ and ḡn1 = 1
n1

∑n1

i=1 V̂i− µ. Let λ be the solution

to
n1+1∑
i=1

gi
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= ḡn1 − λV̂n1 + op(n1
−1/2).

As n1 →∞, λ =
ḡn1
V̂n1

+ op(n1
−1/2).

−2logR?(µ0) = 2
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i=1 log(1 + λgi)

= 2
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{
λgi − (λgi)

2

2
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Replacing λ by
ḡn1
V̂n1

+ op(n1
−1/2), we have

−2logR?(µ0) =
n1ḡ2n1
V̂n1

+ op(1).

Thus, we finish the proof. �
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Appendix B

PROOFS OF CHAPTER 3

Lemma 3.1. Let Eh2
0(X, Y )2 <∞ and σ2

1 > 0 and σ2
2 > 0. Then, as m1 →∞, P ( min

1≤i≤t
(V̂i−

θ0) < 0 < max
1≤i≤t

(V̂i − θ0))→ 1.

Proof of Lemma 3.1. Let φ(x, y) = h(x, y) − h1(x) − h2(y) + θ0, where h(x, y) = (1 −

δ̂1)x−(1− δ̂2)y, h1(x) = Eh(x, Y ) = (1− δ̂1)x−(1−δ2)E(Y |Y > 0) and h2(y) = Eh(X, y) =

(1− δ1)E(X|X > 0)− (1− δ̂2)y. Then by the Hoeffding decomposition,
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∑m1

i=1 xi
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Let T 0
t be a two-sample U -statistic, defined as
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1
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Also let φ0(x, y) = h0(x, y) − h01(x) − h02(y) + θ0, where h0(x, y) = (1 − δ1)x − (1 − δ2)y,

h01(x) = (1 − δ1)x − (1 − δ2)E(Y |Y > 0) and h02(y) = (1 − δ1)E(X|X > 0) − (1 − δ2)y.

Then, again by the Hoeffding decomposition,

T 0
t =

1

m1n1

m1∑
i=1

n1∑
j=1

((1− δ1)xi − (1− δ2)yj)

= θ0 +
1

m1

m1∑
i=1

(h01(xi)− θ0) +
1

n1

n1∑
j=1

(h02(yj)− θ0) +
1

m1n1

m1∑
i=1

n1∑
j=1

φ0(xi, yj).

As m → ∞, (1 − δ̂1) → (1 − δ1) and n → ∞, (1 − δ̂2) → (1 − δ2). Then δ̂1 − δ1 → 0 and
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δ̂2 − δ2 → 0. In addition,

∑m1
i=1 xi
m1

→ E(X|X > 0) and
∑n1
j=1 yj

n1
→ E(Y |Y > 0).

One has

Tt − T 0
t = (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

− 1

m1n1

m1∑
i=1

n1∑
j=1

((1− δ1)xi − (1− δ2)yj)

= (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

− 1

m1n1

m1∑
i=1

n1∑
j=1

(1− δ1)xi

+
1

m1n1

m1∑
i=1

n1∑
j=1

(1− δ2)yj

= (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

− 1

m1n1

m1∑
i=1

n1(1− δ1)xi

+
1

m1n1

m1

n1∑
j=1

m1(1− δ2)yj

= (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

− 1

m1

m1∑
i=1

(1− δ1)xi +
1

n1

n1∑
j=1

(1− δ2)yj

= (δ̂1 − δ1)

∑m1

i=1 xi
m1

− (δ̂2 − δ2)

∑n1

j=1 yj

n1

→ 0.

Also let T−k,0m1−1,n1
be the statistics after deleting xk, k = 1, 2, . . . ,m1. Then

Vk,0 = m1Tt − (m1 − 1)T−k,0m1−1,n1

= m1

[
(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

]

−(m1 − 1)

[
(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
− (1− δ̂2)

∑n1

j=1 yj

n1

]

= m1(1− δ̂1)

∑m1

i=1 xi
m1

−m1(1− δ̂2)

∑n1

j=1 yj

n1

−(m1 − 1)(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
+ (m1 − 1)(1− δ̂2)

∑n1

j=1 yj

n1
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= (1− δ̂1)

m1∑
i=1

xi − (1− δ̂1)

m1∑
i 6=k,i=1

xi − (1− δ̂2)

∑n1

j=1 yj

n1

= (1− δ̂1)xk − (1− δ̂2)

∑n1

j=1 yj

n1

, k = 1, 2, . . . ,m1.

By the central limit theorem,

√
m|δ̂1 − δ1| =

√
m

∣∣∣∣1(X1 = 0) + · · ·+ 1(Xm = 0)

m
− P (X = 0)

∣∣∣∣
= Op(1),

√
n|δ̂2 − δ2| =

√
n

∣∣∣∣1(Y1 = 0) + · · ·+ 1(Yn = 0)

n
− P (Y = 0)

∣∣∣∣
= Op(1),

and max
1≤k≤m1

|xk| = op(m
1/2), max

1≤k≤n1

|yk| = op(n
1/2) and n−1

1

∑n1

j=1 yj → E(Y |Y > 0) as n→∞.

Therefore,

|Vk,0 − h01(xk)| = |(1− δ̂1)xk − (1− δ̂2)

∑n1

j=1 yj

n1

− (1− δ1)xk + (1− δ2)E(Y |Y > 0)|

= |(1− δ̂1)xk − (1− δ̂2)[E(Y |Y > 0) + op(1)]

−(1− δ1)xk + (1− δ2)E(Y |Y > 0)|

≤ |(δ̂1 − δ1)xk − (δ̂2 − δ2)E(Y |Y > 0)|+ |1− δ̂2|op(1)

= |(δ̂1 − δ1)xk|+ |(δ̂2 − δ2)E(Y |Y > 0)|+ op(1)

≤ |δ̂1 − δ1| max
1≤k≤m1

|xk|+ |δ̂2 − δ2| max
1≤k≤n1

E(Y |Y > 0) + op(1)

= Op(m
−1/2)op(m

1/2) +Op(n
−1/2)op(n

1/2) + op(1)

= op(1) + op(1) + op(1)

= op(1).

Therefore, |Vk,0 − h01(xk)| → 0 in probability.

Now we make a connection between V̂k and Vk,0. From equation (3.1), for k = 1, . . . ,m1,
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V̂k = (1− δ̂1)

[
t

∑m1

i=1 xi
m1

− (t− 1)

∑m1

i 6=k,i=1 xi

m1 − 1

]
− (1− δ̂2)

∑n1

j=1 yj

n1

= t(1− δ̂1)

∑m1

i=1 xi
m1

− (t− 1)(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
− (1− δ̂2)

∑n1

j=1 yj

n1

= t(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂1)

∑m1

i=1 xi
m1

+ (1− δ̂1)

∑m1

i=1 xi
m1

−(t− 1)(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
− (1− δ̂2)

∑n1

j=1 yj

n1

= (t− 1)(1− δ̂1)

∑m1

i=1 xi
m1

− (t− 1)(1− δ̂1)

∑m1

i 6=k,i=1 xi

m1 − 1
+ (1− δ̂1)

∑m1

i=1 xi
m1

−(1− δ̂2)

∑n1

j=1 yj

n1

= (t− 1)(1− δ̂1)

[∑m1

i=1 xi
m1

−
∑m1

i 6=k,i=1 xi

m1 − 1

]
+ Tt

= (t− 1)(1− δ̂1)

[
1

m1(m1 − 1)
{(m1 − 1)

m1∑
i=1

xi −m1

m1∑
i 6=k,i=1

xi}

]
+ Tt

= (t− 1)(1− δ̂1)

[
1

m1(m1 − 1)
{m1

m1∑
i=1

xi −
m1∑
i=1

xi −m1

m1∑
i 6=k,i=1

xi}

]
+ Tt

= (t− 1)(1− δ̂1)

[
1

m1(m1 − 1)
{m1

m1∑
i=1

xi −m1

m1∑
i 6=k,i=1

xi −
m1∑
i=1

xi}

]
+ Tt

= (t− 1)(1− δ̂1)

[
1

m1(m1 − 1)
{m1xk −

m1∑
i=1

xi}

]
+ Tt

= (t− 1)(1− δ̂1)

[
1

m1(m1 − 1)
m1xk −

1

m1(m1 − 1)

m1∑
i=1

xi}

]
+ Tt

= (t− 1)(1− δ̂1)
1

(m1 − 1)
xk − (t− 1)(1− δ̂1)

1

m1(m1 − 1)

m1∑
i=1

xi + Tt

=
t− 1

m1 − 1
(1− δ̂1)xk −

t− 1

m1 − 1
(1− δ̂1)

∑m1

i=1 xi
m1

+ Tt

=
t− 1

m1 − 1
(1− δ̂1)xk −

t− 1

m1 − 1
(1− δ̂2)

∑n1

j=1 yj

n1

+
t− 1

m1 − 1
(1− δ̂2)

∑n1

j=1 yj

n1

−

t− 1

m1 − 1
(1− δ̂1)

∑m1

i=1 xi
m1

+ Tt

=
t− 1

m1 − 1

[
(1− δ̂1)xk − (1− δ̂2)

∑n1

j=1 yj

n1

]
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− t− 1

m1 − 1

[
(1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

]
+ Tt

=
t− 1

m1 − 1
Vk,0 −

t− 1

m1 − 1
Tt + Tt

=
t− 1

m1 − 1
Vk,0 −

t−m1

m1 − 1
Tt

=
t− 1

m1 − 1
Vk,0 −

n1

m1 − 1
Tt.

Then for k = 1, . . . ,m1,

V̂k − θ0 =
t− 1

m1 − 1
Vk,0 −

n1

m1 − 1
Tt − θ0

=
t− 1

m1 − 1
Vk,0 −

n1

m1 − 1
Tt −

(
t− 1

m1 − 1
− n1

m1 − 1

)
θ0

=
t− 1

m1 − 1
(Vk,0 − θ0)− n1

m1 − 1
(Tt − θ0)

=
t− 1

m1 − 1
[h01(xk)− θ0]− n1

m1 − 1
(Tt − θ0) + op(1)

= g1(xk)−R1k + op(1),

where g1(xk) = (t− 1)(m1 − 1)−1[h01(xk)− θ0] and R1k = n1(m1 − 1)−1(Tt − θ0).

Let ζtk = Ψ(V̂k − θ0), where Ψ(x) is a nondecreasing, twice differentiable function with

bounded first and second derivatives such that

Ψ(x) =


0, if x ≤ 0

a(x), if 0 < x < ε

1, if x ≥ ε,

with 0 < a(x) < 1 for 0 < x < ε. A Taylor expansion gives

ζtk = Ψ(g1(xk)) + Ψ′(g1(xk))R1k + ηk(R1k)
2,

where |ηk| < C for some generic constant C > 0.
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Since

E[R1k] = E

(
n1

m1 − 1
(Tt − θ0)

)
= E

[
E

(
n1

m1 − 1
(Tt − θ0)

∣∣∣∣m1, n1

)]
= E

[
n1

m1 − 1
E((Tt − θ0)|m1, n1)

]
= E

[
n1

m1 − 1
{(1− δ̂1)E(X|X > 0)− (1− δ̂2)E(Y |Y > 0)− θ0}

]
→ E

[
n1

m1 − 1
{(1− δ1)E(X|X > 0)− (1− δ2)E(Y |Y > 0)− θ0}

]
= E

[
n1

m1 − 1
(θ0 − θ0)

]
= 0.

and

E[R2
1k] = E

[(
n1

m1 − 1

)2

(Tt − θ0)2

]

= E

[
E

{(
n1

m1 − 1

)2

(Tt − θ0)2

∣∣∣∣∣m1, n1

}]

= E

[(
n1

m1 − 1

)2

E
{

(Tt − θ0)2|m1, n1

}]

= E

[(
n1

m1 − 1

)2

{(1− δ̂1)E(X|X > 0)− (1− δ̂2)E(Y |Y > 0)− θ0}2

]

→ E

[(
n1

m1 − 1

)2

(θ0 − θ0)2

]
= 0.

Therefore,

Eζtk = E[Ψ(g1(xk))] + E[Ψ′(g1(xk))R1k] + E[ϕ(R1k)
2]→ E[Ψ(g1(xk))].



120

Also,

E(g1(xk)) = E

[
t− 1

m1 − 1
{h01(xk)− θ0}

]
= E

[
t− 1

m1 − 1
[(1− δ1)xk − (1− δ2)E(Y |Y > 0)− θ0]

]
= E

[
E

{
t− 1

m1 − 1
[(1− δ1)xk − (1− δ2)E(Y |Y > 0)− θ0]

∣∣∣∣m1, n1

}]
= E

[
t− 1

m1 − 1
{(1− δ1)E(xk|m1)− (1− δ2)E(Y |Y > 0)− θ0]}

]
= E

[
t− 1

m1 − 1
{(1− δ1)E(X|X > 0)− (1− δ2)E(Y |Y > 0)− θ0}

]
= E

[
t− 1

m1 − 1
(θ0 − θ0)

]
= 0,

and as σ2
1 > 0, we have P (g1(xk) > 0) > 0. Then E[Ψ(g1(xk))] > 0.

Similarly, for k = m1 + 1, . . . , t, it can be shown that E[Ψ(g2(yk))] > 0, where g2(yk) =

t1(n1 − 1)−1[h02(yk)− θ0].

Then, using the same arguments from Lemma A.6 of Jing et al. (2009), Lemma 3.1 can

be proved. �

Lemma 3.2. Let S2
m1,n1

= σ2
1/m1 + σ2

2/n1. If Eh2
0(X, Y ) <∞, σ2

1 > 0, σ2
2 > 0. Then

Tt−θ0
Sm1,n1

D−→ N(0, 1) as t→∞.

Proof of Lemma 3.2. For our method, we have the consistent estimator of θ,

Tt = (1− δ̂1)
∑m1
i=1 xi
m1

− (1− δ̂2)
∑n1
j=1 yj

n1
.

We can write,

Tt = (Tt − T 0
t ) + T 0

t .

Since T 0
t is a U -statistic for fixed δ1 and δ2, we have

T 0
t − θ0

Sm1,n1

D−→ N(0, 1) as t→∞.
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Also, Tt − T 0
t → 0 from Lemma 3.1. Thus, we prove Lemma 3.2. �

Lemma 3.3. Let St = t−1
∑t

i=1(V̂i − θ0)2 and Eh2
0(X, Y )2 <∞. Then with probability one,

we have St = tS2
m1,n1

+ o(1).

Proof of Lemma 3.3. Let V̂ 0
i denote the pseudo-values from equations (3.1) and (3.2)

when δ̂1 and δ̂2 are replaced by fixed δ1 and δ2, respectively. Define S0
t = t−1

∑t
i=1(V̂ 0

i −θ0)2.

Then we can rewrite,

St = S0
t + [St − S0

t ].

Using Lemma A.7 of Jing et al. (2009), S0
t = tS2

m1,n1
+ o(1). We also need to show that

St − S0
t is negligible. To this end, we have

Tt = (1− δ̂1)

∑m1

i=1 xi
m1

− (1− δ̂2)

∑n1

j=1 yj

n1

= (1− δ̂1)Um1 − (1− δ̂2)Un1 ,

where Um1 = 1/m1

∑m1

i=1 xi and Un1 = 1/n1

∑n1

j=1 yj are one sample U -statistics for

x1, x2, . . . , xm1 and y1, y2, . . . , yn1 , respectively. We can define

V̂ I
k = tUm1 − (t− 1)U

(−k)
m1−1 and V̂ II

k = tUn1 − (t− 1)U
(−k)
n1−1.

Then,

V̂k = (1− δ̂1)V̂ I
k − (1− δ̂2)Un1 ; for k = 1, 2, . . . ,m1,

and

V̂k = (1− δ̂1)Um1 − (1− δ̂2)V̂ II
k ; for k = m1 + 1,m1 + 2, . . . , t.

Now,

St − S0
t =

1

t

t∑
k=1

[(V̂k − θ0)2 − (V̂ 0
k − θ0)2]

=
1

t

t∑
k=1

[((V̂k)
2 − (V̂ 0

k )2)− 2θ0(V̂k − V̂ 0
k )]
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=
1

t

t∑
k=1

((V̂k)
2 − (V̂ 0

k )2)− 2θ0
1

t

t∑
k=1

(V̂k − V̂ 0
k )

=
1

t

[
m1∑
k=1

((V̂k)
2 − (V̂ 0

k )2) +
t∑

k=m1+1

((V̂k)
2 − (V̂ 0

k )2)

]

−2θ0
1

t

[
m1∑
k=1

(V̂k − V̂ 0
k ) +

t∑
k=m1+1

(V̂k − V̂ 0
k )

]

=
1

t

[
m1∑
k=1

{((1− δ̂1)V̂ I
k − (1− δ̂2)Un1)

2 − ((1− δ1)V̂ I
k − (1− δ2)Un1)

2}

+
t∑

k=m1+1

{((1− δ̂1)Um1 − (1− δ̂2)V̂ II
k )2 − ((1− δ1)Um1 − (1− δ2)V̂ II

k )2}

]

−2θ0
1

t

[
m1∑
k=1

{(1− δ̂1)V̂ I
k − (1− δ̂2)Un1 − (1− δ1)V̂ I

k + (1− δ2)Un1}

+
t∑

k=m1+1

{(1− δ̂1)Um1 − (1− δ̂2)V̂ II
k − (1− δ1)Um1 + (1− δ2)V̂ II

k }

]

=
m1

t

1

m1

[
m1∑
k=1

{(V̂ I
k )2((1− δ̂1)2 − (1− δ1)2)− 2V̂ I

k Un1((1− δ̂1)(1− δ̂2)

−(1− δ1)(1− δ2)) + U2
n1

((1− δ̂2)2 − (1− δ2)2)}
]

+
n1

t

1

n1

[ t∑
k=m1+1

{((1− δ̂1)2U2
m1
− 2V̂ II

k Um1((1− δ̂1)(1− δ̂2)

−(1− δ1)(1− δ2)) + (V̂ II
k )2((1− δ̂2)2 − (1− δ2)2)}

]
−2θ0

[
m1

t

1

m1

m1∑
k=1

{V̂ I
k (δ1 − δ̂1)− Un1(δ2 − δ̂2)}

+
n1

t

1

n1

t∑
k=m1+1

{Um1(δ1 − δ̂1)− V̂ II
k (δ2 − δ̂2)}

]
→ 0 as t→∞.

This is true because

1

m1

m1∑
k=1

V̂ I
k =

1

m1

m1∑
k=1

tUm1 −
1

m1

m1∑
k=1

(t− 1)U
(−k)
m1−1

= tUm1 −
1

m1

(t− 1)m1Um1
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= Um1 <∞.

Similarly, n−1
1

∑t
k=m1+1 V̂

II
k <∞. Also

1

m1

m1∑
k=1

(V̂ I
k )2 =

1

m1

m1∑
k=1

(V̂ I
k − E(Um1) + E(Um1))

2

=
1

m1

m1∑
k=1

(V̂ I
k − E(Um1))

2 + 2E(Um1)
1

m1

m1∑
k=1

V̂ I
k − E(Um1)

2

=
1

m1

m1∑
k=1

(V̂ I
k − E(Um1))

2 + 2Um1E(Um1)− E(Um1)
2,

in which both 1/m1

∑m1

k=1(V̂ I
k −E(Um1))

2 and 2Um1E(Um1)−E(Um1)
2 go to a finite number,

i.e., 1/m1

∑m1

k=1(V̂ I
k )2 = C + o(1) for some constant C. Similarly, 1/n1

∑t
k=m1+1(V̂ II

k )2 =

C + o(1) for some constant C. One has 0 < 1/m1 < 1, 0 < 1/n1 < 1, (δ̂1 − δ1) → 0 and

(δ̂2 − δ2)→ 0. Therefore, St − S0
t → 0. �

Lemma 3.4. Let Ht = max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ̂1)xi− (1− δ̂2)yj|. If EX2
1 <∞ and EY 2

1 <∞,

then Ht = op(t
1/2), as t→∞.

Proof of Lemma 3.4. We can write

Ht = max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ̂1)xi − (1− δ1)xi + (1− δ1)xi − (1− δ̂2)yj

+(1− δ2)yj − (1− δ2)yj|

= max
1≤i≤m1

|(δ̂1 − δ1)xi|+ max
1≤j≤n1

|(δ̂2 − δ2)yj|

+ max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ1)xi − (1− δ2)yj|

= |δ̂1 − δ1| max
1≤i≤m1

|xi|+ |δ̂2 − δ2| max
1≤j≤n1

|yj|

+ max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ1)xi − (1− δ2)yj|.

As |δ̂1 − δ1| = Op(m
−1/2) and |δ̂2 − δ2| = Op(n

−1/2),

Ht = Op(m
−1/2)op(m

1/2) +Op(n
−1/2)op(n

1/2)
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+ max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ1)xi − (1− δ2)yj|

= op(1) + op(1) + max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ1)xi − (1− δ2)yj|

= max
1≤i≤m1,1≤j≤n1,i 6=j

|(1− δ1)xi − (1− δ2)yj|+ op(1).

By using Lemma A.8 in Jing et al. (2009), Ht = op(t
1/2), as t→∞. �

Proof of Theorem 3.1.Using the same arguments in the proof of Theorem 1 in Jing et al.

(2009), Theorem 3.1 can be proved. The details are omitted here. �

Proof of Theorem 3.2. The proof follows Chen et al. (2008) and Zhao et al. (2015). We

give a sketch of the proof following Satter and Zhao (2020). From equation (3.3), let λ(θ0)

be the solution to
t+1∑
i=1

gi(θ0)

1 + λ(θ0)gi(θ0)
= 0,

where gi(θ0) is defined as gi(θ0) = V̂i−θ0, i = 1, 2 . . . , t, and gt+1(θ0) = −(at/t)
∑t

i=1 gi(θ0) =

−atḡ(θ0).

We have g?(θ0) = max
1≤i≤t
|V̂i − θ0| ≤ max

1≤i≤t
|V̂i|+ θ0 = max

1≤i≤t
|xi|+ θ0 = op(t

1/2), and ḡt(θ0) =

Op(t
−1/2). Let ρ(θ0) = ||λ(θ0)|| and λ̂(θ0) = λ(θ0)/ρ(θ0). Then

0 =
λ̂(θ0)

t

t+1∑
i=1

gi(θ0)

1 + λ(θ0)gi(θ0)

=
λ̂(θ0)

t

t+1∑
i=1

gi(θ0)− ρ(θ0)

t

t+1∑
i=1

(λ̂(θ0)gi(θ0))2

1 + ρ(θ0)λ̂(θ0)gi(θ0)

≤ λ̂(θ0)ḡt(θ0)(1− at
t

)− ρ(θ0)

t(1 + ρ(θ0)g?(θ0))

t∑
i=1

(λ̂(θ0)gi(θ0))2.

With at = op(t), one has

ρ(θ0)

1 + ρ(θ0)g?(θ0)
≤ λ̂(θ0)ḡt(θ0)

(
1− at

t

)(1

t

t∑
i=1

(λ̂(θ0)gi(θ0))2

)−1

= Op(t
−1/2).
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It implies λ(θ0) = Op(t
−1/2). With V̂t(θ0) = 1/t

∑t
i=1 g

2
i (θ0), we have

0 =
1

t

t+1∑
i=1

gi(θ0)

1 + µ(θ0)gi(θ0)

= ḡt(θ0)− λ(θ0)V̂t(θ0) + op(t
−1/2).

As t → ∞, we have, λ(θ0) = ḡt(θ0)

/
V̂t(θ0) + op(t

−1/2). Therefore, by substituting λ(θ0) by

the previous equation

−2logR?(θ0) = 2
t+1∑
i=1

log(1 + λ(θ0)gi(θ0))

= 2
t+1∑
i=1

{
λ(θ0)gi(θ0)− (λ(θ0)gi(θ0))2

2

}
+ op(1).

=
tḡ2
t (θ0)

V̂t(θ0)
+ op(1).

Hence, −2logR?(θ0)→ χ2
1 as t→∞. �
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Appendix C

PROOFS OF CHAPTER 4

Let D(θ; s, t) = F

[
θ + F−1

(
s−δ
1−δ

)]
−
(
t−δ
1−δ

)
. For the theoretical development, we

assume the following regularity conditions:

(C1) w(u) is a symmetric density function with support [−1, 1] and w′(u) is bounded and

continuous for u ∈ [−1, 1];

(C2) h = h(n)→ 0, nh2/log(n) as n→∞, and nh4 → 0 as n→∞;

(C3) F (x) and its first derivative f(x) are bounded and continuous. Assume that

f{F−1(s)} > 0 and f{F−1(t)} > 0;

(C4) D(θ; s, t) and its first first derivation with respect to s, D′(θ; s, t) are bounded and

continuous.

Lemma 4.1. Assume that 0 < δ < 1 and the regularity conditions C1− C4 hold. Then for

θ0, the true quantile difference between s and t,

Tn1(θ0; s, t)
P→ 0,

Proof of Lemma 4.1. Let

T̃n1(θ0; s, t) =
1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]
− t− δ

1− δ
.

We can decompose Tn1(θ0; s, t) as

Tn1(θ0; s, t) =
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂
− T̃n1(θ0; s, t) + T̃n1(θ0; s, t)
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We can further simplify T̃n1(θ0; s, t) as

T̃n1(θ0; s, t) =
1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]
− t− δ

1− δ

=

∫ ∞
−∞

K

[ s−δ
1−δ − F (x− θ0)

h

]
dFn1(x)− t− δ

1− δ

= K

[ s−δ
1−δ − F (x− θ0)

h

]
Fn1(x)|∞−∞

−
∫ ∞
−∞

Fn1(x)dK

[ s−δ
1−δ − F (x− θ0)

h

]
− t− δ

1− δ

=
1

h

∫ ∞
−∞

Fn1(x)w

[ s−δ
1−δ − F (x− θ0)

h

]
dF (x− θ0)− t− δ

1− δ

= −
∫ 1

−1

Fn1

[
F−1

(
s− δ
1− δ̂

− uh
)

+ θ0

]
w(u)du−− t− δ

1− δ

= −
∫ 1

−1

{
Fn1

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
− F

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
+F

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
− F

[
F−1

(
s− δ
1− δ

)
+ θ0

]}
w(u)du

= op(1).

The above equation is obtained by the Glivenko–Cantelli theorem of F and the bounded

derivative of D(θ0; s, t).

As n→∞, (1− δ̂)→ (1− δ). Then (δ̂ − δ)→ 0. Also

s− δ̂
1− δ̂

=
s− δ̂
1− δ̂

− s− δ
1− δ

+
s− δ
1− δ

= s

[
1

1− δ̂
− 1

1− δ

]
−
[

δ̂

1− δ̂
− δ

1− δ

]
+
s− δ
1− δ

= s

[
1− δ − 1 + δ̂

(1− δ̂)(1− δ)

]
−
[
δ̂(1− δ)− δ(1− δ̂)

(1− δ̂)(1− δ)

]
+
s− δ
1− δ

= s

[
δ̂ − δ

(1− δ̂)(1− δ)

]
−
[

δ̂ − δ
(1− δ̂)(1− δ)

]
+
s− δ
1− δ

=
s− δ
1− δ

+ op(1). (C.1)
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Similarly,

t− δ̂
1− δ̂

=
t− δ
1− δ

+ op(1). (C.2)

Using eqns. (C.1) and (C.2), we have

Tn1(θ0; s, t) =
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂

=
1

n1

n1∑
i=1

K

[ s−δ
1−δ − Fn1(xi − θ0)

h

]
− t− δ

1− δ
+ op(1).

Now, extending eqns. (10) and (11) in Gong et al. (2010), we have

Tn1(θ0; s, t)− T̃n(θ0; s, t) =
1

n1

n1∑
i=1

K

[ s−δ
1−δ − Fn1(xi − θ0)

h

]
− t− δ

1− δ

− 1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]
+
t− δ
1− δ

+ op(1)

=
1

n1

n1∑
i=1

K

[ s−δ
1−δ − Fn1(xi − θ0)

h

]
− 1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]
+ op(1)

= op(1) + op(1)

= op(1).

Then

Tn1(θ0; s, t)
P→ 0.

�

Lemma 4.2. Assume that 0 < δ < 1 and the regularity conditions C1− C4 hold. Then for

θ0, the true quantile difference between s and t,

√
n1Tn1(θ0; s, t)

D→ N(0, σ2
1),
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where

σ2
1 =

(
1− s− δ

1− δ

)(
s− δ
1− δ

)
{D′(θ0; s, t)}2 + 2

{
s− δ
1− δ

∧ t− δ
1− δ

−
(
s− δ
1− δ

)(
t− δ
1− δ

)
D′(θ0; s, t)

}
+

(
1− t− δ

1− δ

)(
t− δ
1− δ

)
.

Proof of Lemma 4.2. We can write

√
n1Tn1(θ0; s, t) =

√
n1T̃n1(θ0; s, t) +

√
n1[Tn1(θ0; s, t)− T̃n1(θ0; s, t)]

:= I + II.

For term I,

√
n1T̃n1(θ0; s, t) =

∫ 1

−1

√
n1

{
Fn1

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
−F
[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
+F

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
− F

[
F−1

(
s− δ
1− δ

)
+ θ0

]}
w(u)du

=

∫ 1

−1

WF

[
F−1

(
s− δ
1− δ

− uh
)

+ θ0

]
w(u)du

+
√
n1

∫ 1

−1

D′(θ0; s, t)
uh

1− δ
w(u)du+Op(

√
n1h

2)

=

∫ 1

−1

WF

[
F−1

(
s− δ
1− δ

)
+ θ0

]
w(u)du+ op(1)

= WF

[
F−1

(
t− δ
1− δ

)]
+ op(1),

where WF (t) =
√
n1[Fn1(t)− F (t)]. Note that

√
n1

∫ 1

−1
D′(θ0; s, t)uh w(u)du = 0 because of

the symmetric property of kernel function.

Using similar steps as Gong et al. (2010), we can write term II as

√
n1[Tn1(θ0; s, t)− T̃n1(θ0; s, t)] =

√
n1

{
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
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− 1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]}
=
√
n1

{
1

n1

n1∑
i=1

K

[ s−δ
1−δ − Fn1(xi − θ0)

h

]
− 1

n1

n1∑
i=1

K

[ s−δ
1−δ − F (xi − θ0)

h

]}
+ op(1)

= −
∫ ∞
−∞

WF (x− θ0)w

[ s−δ
1−δ − F (x− θ0)

h

]
dF (x)

+Op(n
−1/2
1 h−1) + op(1)

=

∫ 1

−1

WF

[
F−1

(
s− δ
1− δ

)]
w(u)D′(θ0; s, t)du

+op(1) + op(1)

= WF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t) + op(1).

By the covariance properties of Wiener process, we have

Cov

{
WF

(
s− δ
1− δ

)
,WF

(
t− δ
1− δ

)}
= F

(
s− δ
1− δ

∧ t− δ
1− δ

)
− F

(
s− δ
1− δ

)
F

(
t− δ
1− δ

)
,

where
√
n1{Fn1(x)−F (x)} D→ WF (x). Then, the cross-effect of Fn1

(
s−δ
1−δ

)
and Fn1

(
t−δ
1−δ

)
is

given by 2

(
s−δ
1−δ ∧

t−δ
1−δ −

s−δ
1−δ

t−δ
1−δ

)
D′(θ0; s, t). Therefore, by the Donsker Theorem,

√
n1Tn1(θ0; s, t) = WF

[
F−1

(
t− δ
1− δ

)]
+WF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t) + op(1)

D→ BF

[
F−1

(
t− δ
1− δ

)]
+BF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t)

= N(0, σ2
1), (C.3)

where BF (·) is a Brownian bridge for F and

Var

{
BF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t) +BF

[
F−1

(
t− δ
1− δ

)]}
= Var

{
BF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t)

}
+ Var

{
BF

[
F−1

(
t− δ
1− δ

)]}
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+2 Cov

{
BF

[
F−1

(
s− δ
1− δ

)]
D′(θ0; s, t), BF

[
F−1

(
t− δ
1− δ

)]}
=

(
1− s− δ

1− δ

)(
s− δ
1− δ

)
{D′(θ0; s, t)}2 + 2

{
s− δ
1− δ

∧ t− δ
1− δ

−
(
s− δ
1− δ

)(
t− δ
1− δ

)
D′(θ0; s, t)

}
+

(
1− t− δ

1− δ

)(
t− δ
1− δ

)
= σ2

1.

�

Lemma 4.3. Assume that 0 < δ < 1 and the regularity conditions C1− C4 hold. Then for

θ0, the true quantile difference between s and t,

√
n1

{
1

n1

n1∑
i=1

Vi(θ0; s, t)

}
D→ N(0, σ2

1).

Proof of Lemma 4.3. One has

F−in1
(xj)− Fn1(xj) =

1

n1 − 1

n1∑
k=1,k 6=i

I(xk ≤ xj)−
1

n1

n1∑
k=1

I(xk ≤ xj)

=
1

n1 − 1

n1∑
k=1

I(xk ≤ xj)−
1

n1

n1∑
k=1

I(xk ≤ xj)

− 1

n1 − 1

n1∑
k=1

I(xk ≤ xj) +
1

n1 − 1

n1∑
k=1,k 6=i

I(xk ≤ xj)

=

(
1

n1 − 1
− 1

n1

) n1∑
k=1

I(xk ≤ xj)

− 1

n1 − 1

{ n1∑
k=1

I(xk ≤ xj)−
n1∑

k=1,k 6=i

I(xk ≤ xj)

}

=

(
1

n1 − 1
− 1

n1

) n1∑
k=1

I(xk ≤ xj)−
1

n1 − 1
I(xi ≤ xj)

=
1

n1(n1 − 1)

n1∑
k=1

I(xk ≤ xj)−
1

n1 − 1
I(xi ≤ xj)

=
1

n1 − 1

(
1

n1

n1∑
k=1

I(xk ≤ xj)

)
− 1

n1 − 1
I(xi ≤ xj)

=
1

n1 − 1
{Fn1(xj)− I(xi ≤ xj)}.
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Now, we establish some properties of F−in1
as:

F−in1
(xj)− Fn1(xj) =

1

n1 − 1
{Fn1(xj)− I(xi ≤ xj)}

= Op

(
1

n1 − 1

)
, j = 1, 2, . . . , n1.

And

n1∑
i=1

{F−in1
(xj)− Fn1(xj)} =

n1∑
i=1

1

n1 − 1
{Fn1(xj)− I(xi ≤ xj)}

=
1

n1 − 1

n1∑
i=1

Fn1(xj)−
1

n1 − 1

n1∑
i=1

I(xi ≤ xj)

=
n1

n1 − 1
Fn1(xj)−

n1

n1 − 1

1

n1

n1∑
i=1

I(xi ≤ xj)

=
n1

n1 − 1
Fn1(xj)−

n1

n1 − 1
Fn1(xj)

= 0.

Using equation (16) in Gong et al. (2010), we have

1

n1

n1∑
i=1

Vi(θ0; s, t)

= n1Tn1(θ0; s, t)− n1 − 1

n1

n1∑
i=1

T−in1
(θ0; s, t)

= n1

(
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂

)

−n1 − 1

n1

(
1

n1 − 1

n1∑
i=1,i 6=j

K

[ s−δ̂
1−δ̂ − F

−j
n1

(xi − θ0)

h

]
− t− δ̂

1− δ̂

)

=

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− 1

n1

n1∑
i=1

n1∑
i=1,i 6=j

K

[ s−δ̂
1−δ̂ − F

−j
n1

(xi − θ0)

h

]
− t− δ̂

1− δ̂

=

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− 1

n1

n1∑
i=1

n1∑
i=1,i 6=j

K

[ s−δ̂
1−δ̂ − F

−j
n1

(xi − θ0)

h

]
− t− δ̂

1− δ̂
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=

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− 1

n1

n1∑
i=1

n1∑
i=1,i 6=j

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]

+
1

n1

n1∑
i=1

n1∑
i=1,i 6=j

(
K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
−K

[ s−δ̂
1−δ̂ − F

−i
n1

(xi − θ0)

h

])
− t− δ̂

1− δ̂

=
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂
+Op

(
n2

1

n1(n1 − 1)2h

)

=
1

n1

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂
+ op(1)

= Tn1(θ0; s, t) + op(1). (C.4)

From equations (C.3) and (C.4),

√
n1

{
1

n1

n1∑
i=1

Vi(θ0; s, t)

}
=
√
n1Tn1(θ0; s, t) + op(1)

D→ N(0, σ2
1).

�

We define the pseudo-sample variance as

v2
n(θ0; s, t) =

1

n1

n1∑
i=1

{Vi(θ0; s, t)− 1

n1

n1∑
i=1

Vi(θ0; s, t)}2.

Lemma 4.4. Assume that 0 < δ < 1 and the regularity conditions C1− C4 hold. Then for

θ0, the true quantile difference between s and t,

v2
n(θ0; s, t)

P→ σ2
1.

Proof of Lemma 4.4. For 1 ≤ i ≤ n1,

Vi(θ0; s, t) =

n1∑
i=1

K

[ s−δ̂
1−δ̂ − Fn1(xi − θ0)

h

]
− t− δ̂

1− δ̂
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=

n1∑
j=1

{
K

[ s−δ̂
1−δ̂ − Fn1(xj − θ0)

h

]
−K

[ s−δ̂
1−δ̂ − F

−i
n1

(xj − θ0)

h

]}

+K

[ s−δ̂
1−δ̂ − F

−i
n1

(xi − θ0)

h

]
− t− δ̂

1− δ̂
.

Then,

1

n1

n1∑
i=1

V 2
i (θ0; s, t) =

1

n1

n1∑
i=1

{ n1∑
j=1

K

[ s−δ̂
1−δ̂ − Fn1(xj − θ0)

h

]
− t− δ̂

1− δ̂

}2

=
1

n1

n1∑
i=1

{ n1∑
j=1

K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
− t− δ

1− δ

}2

+ op(1)

=
1

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xj − θ0)

h

])}2

+
1

n1

n1∑
i=1

{
K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
− t− δ

1− δ

}2

+
2

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

])
(
K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
− t− δ

1− δ

)}
+ op(1)

=
1

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xj − θ0)

h

])}2

+

{
1

n1

n1∑
i=1

K2

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
−
(
t− δ
1− δ

)2

−
2 t−δ

1−δ

n1

n1∑
i=1

K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]}
+

2

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

])
(
K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
− t− δ

1− δ

)}
+ op(1)

:= T1 + T2 + T2 + op(1). (C.5)
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Now,

T1 =
1

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xj − θ0)

h

])}2

=
1

n1

n1∑
i=1

{ n1∑
j=1

w

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
Fn1(xj − θ0)− F−in1

(xj − θ0)

h

}2

+ op(1)

=
1

n1(n1 − 1)2h2

n1∑
i=1

n1∑
j=1

n1∑
l=1

{Fn1(xj − θ0)Fn1(xl − θ0)

−Fn1(xj − θ0)I(xi ≤ xl − θ0)− Fn1(xl − θ0)I(xi ≤ xj − θ0)

+I(xi ≤ xj − θ0)I(xi ≤ xl − θ0)}w
[ s−δ

1−δ − Fn1(xj − θ0)

h

]
w

[ s−δ
1−δ − Fn1(xl − θ0)

h

]
+ op(1)

=
1

h2

∫ ∞
−∞

∫ ∞
−∞
{Fn1(x1 ∧ x2 − θ0)− Fn1(x1 − θ0)Fn1(x2 − θ0)}

w

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]
w

[ s−δ
1−δ − Fn1(x2 − θ0)

h

]
dFn1(x1)dFn1(x2) + op(1)

=
1

h2

∫ 1

−1

∫ 1

−1

[
F

{
F−1

(
s− δ
1− δ

− u1h

)
∧ F−1

(
s− δ
1− δ

− u2h

)}
−F
{
F−1

(
s− δ
1− δ

− u1h

)}
F

{
F−1

(
s− δ
1− δ

− u2h

)}]
w(u1)w(u2)

dF

{
F−1

(
s− δ
1− δ

− u1h

)
+ θ0

}
dF

{
F−1

(
s− δ
1− δ

− u2h

)
+ θ0

}
+ op(1)

=

∫ 1

−1

∫ 1

−1

s− δ
1− δ

(
1− s− δ

1− δ

)
{D′(θ0; s, t)}2w(u1)w(u2)du1du2

=
s− δ
1− δ

(
1− s− δ

1− δ

)
{D′(θ0; s, t)}2 + op(1). (C.6)

For T2, following eqn. (18) of Gong et al. (2010), we have

T2 =
1

n1

n1∑
i=1

K2

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
−
(
t− δ
1− δ

)2

−
2 t−δ

1−δ

n1

n1∑
i=1

K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
=

1

n1

n1∑
i=1

K2

[ s−δ
1−δ − Fn1(xi − θ0)

h

]
−
(
t− δ
1− δ

)2
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−
2 t−δ

1−δ

n1

n1∑
i=1

K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
+ op(1)

P→ t− δ
1− δ

(
1− t− δ

1− δ

)
. (C.7)

And the third term,

T3 =
2

n1

n1∑
i=1

{ n1∑
j=1

(
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
−K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

])
(
K

[ s−δ
1−δ − F

−i
n1

(xi − θ0)

h

]
− t− δ

1− δ

)}
=

2

n1

n1∑
i=1

n1∑
j=1

{
w

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
F−in1

(xj − θ0)− Fn1(xj − θ0)

h

}
{
K

[ s−δ
1−δ − Fn1(xj − θ0)

h
− t− δ

1− δ

}
+ op(1)

=
2

n1h

n1∑
i=1

({
K

[ s−δ
1−δ − Fn1(xj − θ0)

h

]
− t− δ

1− δ

}
1

n1 − 1

n1∑
j=1

{Fn1(xj − θ0)

I(xi < xj − θ0)}w
[ s−δ

1−δ − Fn1(xj − θ0)

h

])
+ op(1)

=
2

h

∫ ∞
−∞

∫ ∞
−∞

[Fn1(x2 − θ0)− I(x1 < x2 − θ0)]w

[ s−δ
1−δ − Fn1(x2 − θ0)

h

]
dFn1(x2){

K

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]
− t− δ

1− δ

}
dFn1(x1) + op(1).

Replacing
s−δ
1−δ−Fn1 (xj−θ0)

h
by u2,

2

h

∫ ∞
−∞

∫ ∞
−∞

[(
s− δ
1− δ

− u2h

)
− I
{
x1 < F−1

n1

(
s− δ
1− δ

− u2h

)}]
w(u2)

dFn1

(
F−1
n1

(
s− δ
1− δ

− u2h

)
+ θ0

)
{
K

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]
− t− δ

1− δ

}
dFn1(x1) + op(1)

= 2D′(θ0; s− u2h, t)

∫ ∞
−∞

∫ ∞
−∞

w(u2)

[
s− δ
1− δ

− u2h− I
{
x1 < F−1

n1

(
s− δ
1− δ

− u2h

)}]
du2

{
t− δ
1− δ

−K
[ s−δ

1−δ − Fn1(x1 − θ0)

h

]}
dFn1(x1) + op(1)
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= 2D′(θ0; s, t)

∫ ∞
−∞

w(u2)du2

∫ ∞
−∞

[
s− δ
1− δ

− I
{
x1 < F−1

n1

(
s− δ
1− δ

)}]
{
t− δ
1− δ

−K
[ s−δ

1−δ − Fn1(x1 − θ0)

h

]}
dFn1(x1) + op(1)

= 2D′(θ0; s, t)

{
s− δ
1− δ

t− δ
1− δ

− s− δ
1− δ

∫ ∞
−∞

K

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]
dFn1(x1)

− t− δ
1− δ

∫ ∞
−∞

I

(
x1 − F−1

n1

(
s− δ
1− δ

))
dFn1(x1)

+

∫ F−1
n1

( s−δ
1−δ )

−∞
K

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]
dFn1(x1) + op(1)

= 2D′(θ0; s, t)

{
Fn1(x1)K

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]∣∣∣∣F−1
n1

( s−δ
1−δ )

∞

−
∫ F−1

n1
( s−δ
1−δ )

−∞
Fn1(x1)

[ s−δ
1−δ − Fn1(x1 − θ0)

h

]}
+ 2D′(θ0; s, t)

{
s− δ
1− δ

t− δ
1− δ

−s− δ
1− δ

Fn1

(
(F−1

n1

(
s− δ
1− δ

)
+ θ0

)
+
t− δ
1− δ

Fn1

(
F−1
n1

(
s− δ
1− δ

))}
+ op(1)

= 2D′(θ0; s, t)

{
s− δ
1− δ

K

[ s−δ
1−δ − Fn1

(
F−1
n1

(
s−δ
1−δ

)
− θ0

)
h

]
+

∫ ∞
s−δ
1−δ−Fn1 (F−1

n1
( s−δ
1−δ )−θ0)

h

Fn1

(
F−1
n1

(
s− δ
1− δ

− hu
)

+ θ0

)
dK(u)− s− δ

1− δ
t− δ
1− δ

}
+ op(1)

= 2D′(θ0; s, t)

{
s− δ
1− δ

K

[ s−δ
1−δ − Fn1

(
F−1
n1

(
s−δ
1−δ

)
− θ0

)
h

]
+

∫ ∞
s−δ
1−δ−Fn1 (F−1

n1
( s−δ
1−δ )−θ0)

h

t− δ
1− δ

dK(u)− s− δ
1− δ

t− δ
1− δ

}
+ op(1)

= 2D′(θ0; s, t)

{
s− δ
1− δ

K

[ s−δ
1−δ − Fn1

(
F−1
n1

(
s−δ
1−δ

)
− θ0

)
h

]
+
t− δ
1− δ

K(u)

∣∣∣∣∞s−δ
1−δ−Fn1 (F−1

n1
( s−δ
1−δ )−θ0)

h

− s− δ
1− δ

t− δ
1− δ

}
+ op(1).

As h→ 0, the function K

{
s−δ
1−δ − Fn1

(
F−1
n1

(
s−δ
1−δ

)
− θ0

)/
h

}
→ I(θ0 > 0). Then

T3 = 2D′(θ0; s, t)

{
s− δ
1− δ

I(θ0 > 0) +
t− δ
1− δ

(1− I(θ0 > 0)− s− δ
1− δ

t− δ
1− δ

}
+ op(1)

= 2D′(θ0; s, t)

{
s− δ
1− δ

I

(
t− δ
1− δ

>
s− δ
1− δ

)
+
t− δ
1− δ

I

(
t− δ
1− δ

≤ s− δ
1− δ

)
−s− δ

1− δ
t− δ
1− δ

}
+ op(1)
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P→ 2

(
s− δ
1− δ

∧ t− δ
1− δ

− s− δ
1− δ

t− δ
1− δ

)
D′(θ0; s, t). (C.8)

Plugging the results from eqns. (C.6), (C.7), (C.8) in Eqn. (C.5), one has

v2
n(θ0; s, t) =

1

n1

n1∑
i=1

{
Vi(θ0; s, t)− 1

n1

n1∑
i=1

Vi(θ0; s, t)
}2

=
1

n1

n1∑
i=1

V 2
i (θ0; s, t)−

(
1

n1

n1∑
i=1

Vi(θ0; s, t)

)2

=
1

n1

n1∑
i=1

V 2
i (θ0; s, t) + op(1)

P→ σ2
1.

�

Proof of Theorem 4.1. Using the standard arguments in Owen (1988), combining with

Lemmas 4.3 and Lemma 4.4, Theorem 4.1 can be proved. The details are omitted here.

�

Proof of Theorem 4.2. Using the similar arguments in Chen et al. (2008), Theorem 4.2

can be proved.

�

Proof of Theorem 4.3. Since transformed jackknife empirical likelihood shares the same

asymptotic properties as jackknife empirical likelihood [cf. Jing et al. (2017)]. The proof of

Theorem 4.3 is established.

�

Proof of Theorem 4.4. Following Jing et al. (2017), the transformed jackknife empirical

log-likelihood ratio, lta(θ0; s, t), should have the following properties so that it maintains the

asymptotic properties of la(θ0; s, t) [cf. Jing et al. (2017)] :

(P1) 0 ≤ lta(θ0; s, t) ≤ la(θ0; s, t);

(P2) lta(θ0; s, t) is a monotonically increasing function of la(θ0; s, t);

(P3) lta(θ0; s, t) = la(θ0; s, t) + op(1);
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(P4) The level-τ1 contour of lta(θ0; s, t), {θ0 : lta(θ0; s, t) = τ1;∀ τ1 ∈ [0,+∞)} is the same in

shape as some level-τ2 contour of lta(θ0; s, t), {θ0 : lta(θ0; s, t) = τ2}; and lta(θ̃0; s, t) <

lta(θ0; s, t) for θ0 6= θ̃0.

As in Jing et al. (2017), we set γ = 0.5 and check if lta(θ0; s, t) maintains the above

mentioned properties:

(P1) Note that la(θ0; s, t) ≥ 0, which implies

0 < max{1− la(θ0; s, t)/(n1 + 1), γ = 0.5} ≤ 1.

Then 0 ≤ lta(θ0; s, t) ≤ la(θ0; s, t).

(P2) The function lta(θ0; s, t) = la(θ0; s, t)[1 − la(θ0; s, t)/(n1 + 1)] is a strictly mono-

tonically increasing function of la(θ0; s, t) over the interval for [0, (n1 + 1)/2]. For

la(θ0; s, t) > (n1 + 1)/2, lta(θ0; s, t) = la(θ0; s, t)/2 is also a strictly monotonically in-

creasing function of la(θ0; s, t). lta(θ0; s, t) is also continuous over the entire interval of

[0,∞). Therefore, lta(θ0; s, t) is non-negative, continuous, and strictly monotonically

increasing over la(θ0; s, t) ∈ [0,∞).

(P3) (i) Since the limiting distribution of la(θ0; s, t) is χ2
1 distribution, we have la(θ0; s, t) =

Op(1).

(ii) From (i), we have la(θ0; s, t) ≤ (n1 + 1)/2 with probability tending to unity.

Thus, for all asymptotic discussions, we may assume that lta(θ0; s, t) = la(θ0; s, t)[1 −

la(θ0; s, t)/(n1 + 1)].

Combining (i) and (ii), we have lta(θ0; s, t) = la(θ0; s, t) + op(1).

(P4) For a level-τ1 contour of lta(θ0; s, t), {θ0 : lta(θ0; s, t) = τ1} (by P2). Let τ2 =

(lta)−1(θ0; s, t)(τ1). Then, {θ0 : lta(θ0; s, t) = τ1} = {θ0 : la(θ0; s, t) = τ2}. Also, as

la(θ0; s, t) typically has a unique minimum at some θ̃0, the second part of (P4) also

follows from the monotonicity of lta(θ0; s, t).
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Therefore, all four desired properties are satisfied by lta(θ0; s, t). They make this trans-

formation a good candidate transformation that in turns preserves the asymptotic properties

of la(θ0; s, t). It follows as n→∞,

−2lta(θ0; s, t)
D→ χ2

1.

�
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Appendix D

PROOFS OF CHAPTER 5

We assume the following regularity conditions throughout the chapter.

(D1) The covariate vector X(t) and the weight function W (t) are bounded for all t ∈ [0, τ ].

(D2) The function g is twice continuously differentiable.

(D3) The function W (t) converges uniformly to a deterministic function w(t) for all t ∈ [0, τ ]

a.s.

(D4) There exists a τ > 0 such that Pr(Ci ≥ τ) > 0, i = 1, · · · , n.

(D5) The matrix Σ is positive definite for all t ∈ [0, τ ].

(D6) A∗ = E
[∫ τ

0
{Z(t)− z̄(t; γ0)}⊗2∆i(t)e

γ′0Z(t)λ0(t)dt
]

is positive definite, where E is the

expectation.

Lemma 5.1. Assume that the conditions (D1)-(D6) hold. If β0 = (β′10, β
′
20)′ are the true

values of the parameters, then

1√
n

n∑
i=1

Uni(β0; γ̂)
D→ N(0,Σ).

Proof. Note that

n∑
i=1

dM̂i(t; β0, γ̂) =
n∑
i=1

[
Yi(t)∆i(t)dOi(t)− g{µ̂0(t)eβ

′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)
]

= 0,

and

n∑
i=1

dM̂∗
i (t; γ̂) =

n∑
i=1

[
∆i(t)dOi(t)−∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)
]
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=
n∑
i=1

[
∆i(t)dOi(t)−∆i(t)e

γ̂′Zi(t)

∑n
i=1 ∆i(t)dOi(t)∑n
i=1 ∆i(t)eγ̂

′Zi(t)

]
=

n∑
i=1

∆i(t)dOi(t)−
n∑
i=1

∆i(t)e
γ̂′Zi(t)

∑n
i=1 ∆i(t)dOi(t)∑n
i=1 ∆i(t)eγ̂

′Zi(t)

=
n∑
i=1

∆i(t)dOi(t)−
n∑
i=1

∆i(t)dOi(t)

= 0.

Since γ̂ is the maximum partial likelihood estimate of γ obtained by solving V (γ) = 0

at γ = γ̂, we have [cf. p. 148-149, Therneau and Grambsch (1990)]

0 = V (γ̂)

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}∆i(t)dOi(t)

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}dM̂∗
i (t; γ̂).

Some simple algebra lead to

n∑
i=1

Uni(β0; γ̂) =
n∑
i=1

[∫ τ

0

W (t){Xi(t)− ÊX(t; β0, γ̂)}dM̂i(t; β0, γ̂)

−
∫ τ

0

W (t)R̂(t; β0, γ̂)

S(0)(t, γ̂)
dM̂∗

i (t; γ̂)

−P̂ (β0, γ̂)D̂−1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}dM̂∗
i (t; γ̂)

]

=
n∑
i=1

∫ τ

0

W (t){Xi(t)− ÊX(t; β0, γ̂)}dM̂i(t; β0, γ̂)

−
∫ τ

0

W (t)R̂(t; β0, γ̂)

S(0)(t, γ̂)

n∑
i=1

dM̂∗
i (t; γ̂)

−P̂ (β0, γ̂)D̂−1

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}dM̂∗
i (t; γ̂)

=
n∑
i=1

∫ τ

0

W (t)Xi(t)dM̂i(t; β0, γ̂)
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−
n∑
i=1

∫ τ

0

W (t)ÊX(t; β0, γ̂)dM̂i(t; β0, γ̂)

=
n∑
i=1

∫ τ

0

W (t)Xi(t)dM̂i(t; β0, γ̂)

−
∫ τ

0

W (t)ÊX(t; β0, γ̂)
n∑
i=1

dM̂i(t; β0, γ̂)

=
n∑
i=1

∫ τ

0

W (t)Xi(t)dM̂i(t; β0, γ̂)

=
n∑
i=1

∫ τ

0

W (t)Xi(t)
[
Yi(t)∆i(t)dOi(t)− g{µ̂0(t; β0, γ̂)eβ

′
0Xi(t)}∆i(t)

eγ̂
′Zi(t)dΛ̂0(t; γ̂)

]
= U(β0, γ̂).

As shown in the appendix of Li et al. (2010) that n−1/2U(β0; γ̂) converges to a zero

mean Gaussian distribution with covariance matrix Σ, we have

1√
n

n∑
i=1

Uni(β0; γ̂) =
1√
n

n∑
i=1

U(β0; γ̂)
D→ N(0,Σ).

Lemma 5.2. Assume that the conditions (D1)-(D6) hold. If β0 = (β′10, β
′
20)′ are the true

values of the parameters, then

1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0; γ̂)
p→ Σ.

Proof. It can be shown that

Uni(β0; γ̂) = Ui(β0; γ̂) +

∫ τ

0

{W (t)− w(t)}Xi(t)Yi(t)∆i(t)dOi(t)

+(−1)

∫ τ

0

(
W (t)ÊX(t; β0, γ̂)− w(t)ex(t)

)
Yi(t)∆i(t)dOi(t)

+(−1)
(∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)−∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)
)
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+
(∫ τ

0

W (t)ÊX(t; β0, γ̂)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)−∫ τ

0

w(t)ex(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)
)

+(−1)

∫ τ

0

(W (t)R̂(t; β0, γ̂)

S(0)(t; γ̂)
− w(t)r(t)

s(0)(t; γ0)

)
∆i(t)dOi(t)

+

∫ τ

0

(
P̂ (β0, γ̂)D̂−1{Zi(t)− Z̄(t; γ̂)} − P (β0, γ0)D−1{Zi(t)− z̄(t; γ0)}

)]
∆i(t)dOi(t)

+
(∫ τ

0

[W (t)R̂(t; β0, γ̂)

S(0)(t, γ̂)
− P̂ (β0, γ̂)D̂−1{Zi(t)− Z̄(t; γ̂)}

]
∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)

−
∫ τ

0

[ w(t)r(t)

s(0)(t; γ0)
− P (β0, γ)D−1{Zi(t)− z̄(t; γ0)}

]
∆i(t)e

γ̂′Zi(t)dΛ0(t)
)

:= Ui(β0; γ̂) + εi1 + εi2 + εi3 + εi4 + εi5 + εi6 + εi7.

Under condition (D1) and (D3), ||εi1|| = op(1), ||εi2|| = op(1), ||εi5|| = op(1), ||εi6|| =

op(1) hold.

Note that [cf. p. 1103-1104,Andersen and Gill (1982)]

Λ̂0(t; γ0)− Λ0(t) =
1

n

n∑
i=1

∫ τ

0

dM∗
i (u)

s(0)
+ op(n

−1/2).

Then under conditions (D1)-(D3) and by the consistency of µ̂0(t) to µ0(t), we have

εi3 =

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)

−
∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)

=

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ̂0(t; γ̂)

−
∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ0(t)

+

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)dΛ0(t)

−
∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)
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=

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ̂′Zi(t)d[Λ̂0(t; γ̂)− Λ0(t)]

+(1 + op(1))

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)

−
∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)

= (1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)d[Λ̂0(t; γ̂)− Λ0(t)]

+

∫ τ

0

W (t)Xi(t)g{µ̂0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t)

−
∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)dΛ0(t) + op(1)

= (1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)d[Λ̂0(t; γ̂)− Λ0(t)]

+

∫ τ

0

(
W (t)g{µ̂0(t)eβ

′
0Xi(t)} − w(t)g{µ0(t)eβ

′
0Xi(t)}

)
Xi(t)∆i(t)e

γ′0Zi(t)dΛ0(t) + op(1)

= (1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)d[Λ̂0(t; γ0)− Λ0(t)]

+(1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)d[Λ̂0(t; γ̂)− Λ̂0(t; γ0)]

+

∫ τ

0

(
W (t)g{µ̂0(t)eβ

′
0Xi(t)} − w(t)g{µ0(t)eβ

′
0Xi(t)}

)
Xi(t)∆i(t)e

γ′0Zi(t)dΛ0(t) + op(1)

= (1 + op(1))
1

n

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)
∑n

i=1 dM
∗
i (t)

s(0)

+(1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)d[Λ̂0(t; γ̂)− Λ̂0(t; γ0)]

+op(1)

:= E1 + E2 + op(1).

In the term E1, for each i, w(t)Xi(t)g{µ0(t)β
′
0Xi(t)}∆i(t)e

γ′0Zi(t)
/
s(0) is predictable and finite,

and M∗
i (t) is a martingale. Then

∫ τ

0

w(t)Xi(t)g{µ0(t)β
′
0Xi(t)}∆i(t)e

γ′0Zi(t)
∑n

i=1 dM
∗
i (u)

s(0)

is a martingale integral and converges to zero in probability. Also, similar to p. 300 of

Fleming and Harrington (1991), the Taylor series expansion of Λ̂0(t; γ̂) − Λ̂0(t; γ0) about
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γ = γ0 in the term E2 can be written as

H ′(t; γ∗)(γ̂ − γ0),

where γ∗ is on the line segment between γ̂ and γ0 and H is the column vector defined as

H(t; γ) = −
n∑
i=1

∫ t

0

S(1)(u; γ)∆i(u)dOi(u)

n{S(0)(u : γ)}2
.

Following Lin et al. (2000), it can be shown that H(t; γ0) converges almost surely to the

deterministic function

h(t; γ0) = −
∫ t

0

s(0)(u; γ0)

s(1)(u; γ0)
λ0(t)du

uniformly in t and

γ̂ − γ0 = n−1A−1
∗

n∑
i=1

∫ τ

0

{Zi(t)− z̄(t; γ0)}dM∗
i (t) + op(n

−1/2).

Therefore, Λ̂0(t; γ̂)− Λ̂0(t; γ0) in the term E2 is tight and therefore equal to

n−1h′(t; γ0)A−1
∗

n∑
i=1

∫ τ

0

{Zi(t)− z̄(t; γ0)}dM∗
i (t) + op(n

−1/2).

Hence,

E2 = (1 + op(1))

∫ τ

0

w(t)Xi(t)g{µ0(t)eβ
′
0Xi(t)}∆i(t)e

γ′0Zi(t)

[h′(t; γ0)A−1
∗

n∑
i=1

1

n
{Zi(t)− z̄(t; γ0)}dM∗

i (t)] + op(n
−1/2),

where
∫ τ

0
w(t)Xi(t)g{µ0(t)eβ

′
0Xi(t)}∆i(t)e

γ′0Zi(t)[h′(t; γ0)A−1
∗
∑n

i=1
1
n
{Zi(t)−z̄(t; γ0)}dM∗

i (t)] is

a martingale integral and converges to zero in probability. Thus εi3 = op(1). Using similar

arguments, it can be shown that εi4 = op(1) and εi7 = op(1). Therefore,

Uni(β0; γ̂) = Ui(β0; γ̂) + op(1), i = 1, 2, · · · , n. (D.1)
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Let Q̂n = 1
n

∑n
i=1 Uni(β0; γ̂)U ′ni(β0) and Qn = 1

n

∑n
i=1 Wi(β0)W ′

i (β0). For any c ∈ Rp,

the following decomposition holds:

c′(Q̂n −Qn)c = c′
( 1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0)− 1

n

n∑
i=1

Wi(β0)W ′
i (β0)

)
=

1

n

n∑
i=1

[c′Uni(β0; γ̂)−Wi(β0)]2 +
2

n

n∑
i=1

[c′Wi(β0)][c′(Uni(β0; γ̂)− Ui(β0))]

:= I1 + 2I2.

Both I1 and I2 are op(1) by D.1. As a result,

1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0) =
1

n

n∑
i=1

Wi(β0)W ′
i (β0) + op(1).

By the law of large numbers, as n→∞,

1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0)
p→ E[Wi(β0)W ′

i (β0)],

i.e.,

1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0)
p→ Σ.

Lemma 5.3. Assume that the conditions (D1)-(D6) hold. If β0 = (β′10, β
′
20)′ are true value

of the parameters, then

Zn = max
1≤i≤n

||Uni(β0; γ̂)|| = op(n
1/2).

Proof. In eqn. (D.1), we have Uni(β0; γ̂) = Ui(β0) + op(1), i = 1, 2, · · · , n. As Ui(β0) are

i.i.d. r.v. and E[Wi(β0)W ′
i (β0) = Σ <∞, Ui(β0) has finite second moment. Then by Lemma

11.2 of Owen (2001), Lemma 5.3 can be proven.

Proof of Theorem 5.1. Following Owen (1990), Let q(λ) = 1
n

∑n
i=1

Uni(β0;γ̂)
1+λ′Uni(β0;γ̂)

and λ = ρθ,

where ρ ≥ 0 and ||θ|| = 1. Then

0 = ||q(λ)||



148

= ||q(ρθ)||

≥ |θ′q(ρθ)|

=
1

n

∣∣∣∣∣θ′
n∑
i=1

Uni(β0; γ̂)

1 + λ′Uni(β0; γ̂)

∣∣∣∣∣
=

1

n

∣∣∣∣∣θ′
{

n∑
i=1

Uni(β0; γ̂)− ρ
n∑
i=1

Uni(β0; γ̂)θ′Uni(β0; γ̂)

1 + ρθ′Uni(β0; γ̂)

}∣∣∣∣∣
≥ ρ

n
θ′

n∑
i=1

Uni(β0; γ̂)θ′Uni(β0; γ̂)

1 + ρθ′Uni(β0; γ̂)
θ − 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0; γ̂)

∣∣∣∣∣
≥ ρθ′Q̂nθ

1 + ρZn
− 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0; γ̂)

∣∣∣∣∣.

We have showed that Q̂n = 1
n

∑n
i=1 Uni(β0; γ̂)U ′ni(β0) = 1

n

∑n
i=1Wi(β0)W ′

i (β0) + op(1) in

Lemma 4.2. Then as n→∞, lim
n→∞

Q̂n = Σ. Also Zn = op(n
1/2) by Lemma 5.3. Then, based

on Lemma 5.2,

1

n

∣∣∣∣∣
n∑
i=1

Uni(β0; γ̂)

∣∣∣∣∣ = Op(n
1/2).

Then, it follows from eqn. (5.6) and Owen (1990) that

||λ|| = Op(n
1/2).

Combining ||λ|| = Op(n
1/2) and Zn = op(n

1/2), it can be shown that

λ =

(
1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0)

)−1(
1

n

n∑
i=1

Uni(β0; γ̂)

)
+ op(n

−1/2).

By Taylor expansion of eqn. (5.5), one obtains

l(β0) = 2
n∑
i=1

λ′Uni(β0; γ̂)−
n∑
i=1

λ′Uni(β0; γ̂)U ′ni(β0)λ+ op(1)

=

(
1√
n

n∑
i=1

Uni(β0; γ̂)

)′(
1

n

n∑
i=1

Uni(β0; γ̂)U ′ni(β0)

)−1(
1√
n

n∑
i=1

Uni(β0; γ̂)

)
+ op(1)
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By Lemma 5.2 and the Slutsky theorem, Theorem 5.1 is proved.

Proof of Theorem 5.2. The proof is similar to the proof of Proposition 3 of Yu et al. (2011).

We can write Z = ((Z(1))′, (Z(2))′)′ so that X = ((X(1))′, (X(2)))′, which is corresponding to

β0 = ((β
(1)
0 )′, (β

(2)
0 )′). Define

A∗(β0) = E

[ ∫ τ

0

w(t)∆i(t)ġ{µ0(t, β0)eβ0
′Xi(t)}{X(2)

i (t)− ex(t)}⊗2

eβ0
′Xi(t)+γ0′Zi(t)µ0(t, β0)dΛ0(t)

]
.

A(β0) is assumed to be positive definite. Therefore the rank of A∗(β0) is p− q. Denote

β̂2(β
(1)′

0 ) = arg inf
β(2)

l((β
(1)
0 )′, (β(2))′)′. We also denote

Ψ(β0) = [A∗(β0)]′[Σ(β0)]−1A∗(β0).

Using the similar arguments from Qin and Lawless (1994) and Yu et al. (2011), we have that

√
n(β̂2 − β(2)′

0 ) = −[Ψ(β0)]−1[A∗(β0)]′[Σ(β0)]−1 1√
n

n∑
i=1

Uni(β0; γ̂) + op(1),

and the Lagrange multiplier satisfies that

√
nλ2 =

{
I − [Σ(β0)]−1A∗(β0)[Ψ(β0)]−1[A∗(β0)]′

}
[Σ(β0)]−1 1√

n

n∑
i=1

Uni(β0; γ̂) + op(1).

By Taylor expansion,

lprofile(β
(1)
0 ) =

(
1√
n

n∑
i=1

Uni(β0; γ̂)

)′ (
[Σ(β0)]−1 − [Σ(β0)]−1A∗(β0)[Ψ(β0)]−1

[A∗(β0)]′[Σ(β0)]−1
)( 1√

n

n∑
i=1

Uni(β0; γ̂)

)
+ op(1)

=

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0; γ̂)

)′
S

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0; γ̂)

)
+ op(1),
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where

S = I − [Σ(β0)]−1/2A∗(β0)[Ψ(β0)]−1[A∗(β0)]′[Σ(β0)]−1/2.

One can easily verify that S is a symmetric and idempotent matrix and tr(S) = q. Then by

Lemma 5.2,

[Σ(β0)]−1/2 1√
n

n∑
i=1

Uni(β0; γ̂)
D→ N(0, Ip×p).

Theorem 5.2 is completed.
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Appendix E

PROOFS OF CHAPTER 6

We assume the following regularity conditions as Lu and Tsiatis (2006) did.

(R.1) The covariate vector Z is bounded, i.e., P (|Z| < C) = 1 for some constant C.

(R.1) p converges to a positive constant p̃ ∈ (0, 1) as n, n→∞.

(R.3) λ(·) is positive and λ̇(·) is bounded and continuous on (−∞, C), where C is any finite

constant.

(R.4) H0(·) has continuous and positive derivatives on [0, τ ].

(R.5) The matrix A and Σ are finite and nonsingular.

Additionally, we assume one more regularity condition.

(R.6) E
[
πZY (t)dΛ{H0(t) + β′0Z}

]2
<∞.

Lemma 6.1. Under the regularity conditions in the Appendix E, if β0 is the true values of

β,

1√
n

n∑
i=1

Uni(β0)
D→ N(0,Σ(β0)).

Proof. Note that

n∑
i=1

πidM̂i(β0, t) =
n∑
i

πi[dNi(t)− Yi(t)dΛ{Ĥ(β0, t) + β′0Zi}]

= 0.

Denote

Ui(β0) =

∫ τ

0

πi(Zi − µZ(β0, t))dMi(β0, t), i = 1, 2, . . . , n.
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We can show that

1√
n

n∑
i=1

Uni(β0) =
1√
n

n∑
i=1

∫ τ

0

πi(Zi − Z̄(β, t))dM̂i(β0, t)

=
1√
n

n∑
i=1

∫ τ

0

πiZidM̂i(β0, t)−
1√
n

n∑
i=1

∫ τ

0

πiZ̄(β, t)dM̂i(β0, t)

=
1√
n

n∑
i=1

∫ τ

0

πiZidM̂i(β0, t)−
1√
n

∫ τ

0

Z̄(β, t)
n∑
i=1

πidM̂i(β0, t)

=
1√
n

n∑
i=1

∫ τ

0

πiZidM̂i(β0, t)

=
1√
n

n∑
i=1

∫ τ

0

πiZi[dNi(t)− Yi(t)dΛ{Ĥ(β0, t) + β′0Zi}]

=
1√
n

[ n∑
i=1

∫ τ

0

πiZidMi(β0, t)

−
n∑
i=1

πiZi[Λ{Ĥ(β0, t) + β′0Zi} − Λ{H(β0, t) + β′0Zi}]
]

=
1√
n

[ n∑
i=1

∫ τ

0

πi(Zi − µZ(β0, t))dMi(β0, t)

]
+ op(1)

:=
1√
n

n∑
i=1

Ui(β0) + op(1).

Here, the second last equation comes from page 213 in the Appendix of Lu and Tsiatis

(2006). Then following the steps in the Appendix of Lu and Tsiatis (2006), as n→∞,

1√
n

n∑
i=1

Uni(β0)
D→ N(0,Σ(β0)).

Lemma 6.2. Under the regularity conditions in the Appendix E, if β0 is the true values of

β,

1

n

n∑
i=1

Uni(β0)(Uni(β0))′
p→ Σ(β0).

Proof. It can be shown that for i = 1, 2, . . . , n,

Uni(β0) = Ui(β0) +

∫ τ

0

πi(Z̄(β, t)− µZ(β, t))dNi(t)



153

+Zi

(∫ τ

0

πiYi(t)dΛ{Ĥ(β0, t) + β′0Zi} −
∫ τ

0

πiYi(t)dΛ{H0(t) + β′0Zi}
)

+(−1)

(∫ τ

0

πiZ̄(β, t)Yi(t)dΛ{Ĥ(β0, t) + β′0Zi}

−
∫ τ

0

πiµZ(β, t)Yi(t)dΛ{H0(t) + β′0Zi}
)

:= Ui(β0) + εi1 + εi2 + εi3.

It is easy to obtain the uniform consistency of Z̄(β, t), i.e.,

sup
0≤t≤τ

|Z̄(β, t)− µZ(β, t)| p→ 0. (E.1)

Using the similar arguments from Ma et al. (2016), we can show that

Ĥ(β0, t)−H0(t) =
1

n

n∑
j=1

∫ t

0

B(β0, s, t)

B2(β0, s)
dMj(s) + op(n

−1/2).

We can write

∫ τ

0

πiYi(t)dΛ{Ĥ(β0, t) + β′0Zi} −
∫ τ

0

πiYi(t)dΛ{H0(t) + β′0Zi}

=

∫ τ

0

πiYi(t)d[Λ{Ĥ(β0, t) + β′0Zi} − Λ{H0(t) + β′0Zi}]

=

∫ τ

0

πiYi(t)d[Λ{H0(t) + β′0Zi}{Ĥ(β0, t)−H0(t)}]

=

∫ τ

0

πiYi(t)d

[
Λ{H0(t) + β′0Zi}

(
1

n

n∑
j=1

∫ t

0

B(β0, u, t)

B2(β0, u)
dMj(u) + op(n

−1/2)

)]

=

∫ τ

0

{
πiYi(t)

[
Λ{H0(t) + β′0Zi}

(
1

n

n∑
j=1

B(β0, t, t)

B2(β0, t)
dMj(t)

)

+

(
1

n

n∑
j=1

∫ t

0

B(β0, u, t)

B2(β0, u)
dMj(u) + op(n

−1/2)

)
dΛ{H0(t) + β′0Zi}

]}

Here, Mj(t), j = 1, 2, . . . , n, is a martingale, and B(β0, u, t)/B2(β0, u) is bounded. Also, by
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condition (R.6),

∣∣∣∣ ∫ τ0 πiY (t)dΛ{H0(t) + β′0Zi}
∣∣∣∣ has a finite second moment. This follows

∣∣∣∣∣∣∣∣ ∫ τ

0

πiYi(t)dΛ{Ĥ(β0, t) + β′0Zi} −
∫ τ

0

πiYi(t)dΛ{H0(t) + β′0Zi}
∣∣∣∣∣∣∣∣ = op(1). (E.2)

Similarly, with (R.1) and (E.1), we can show that

∣∣∣∣∣∣∣∣ ∫ τ

0

πiZ̄(β, t)Yi(t)dΛ{Ĥ(β0, t) + β′0Zi} −
∫ τ

0

πiµZ(β, t)Yi(t)dΛ{H0(t) + β′0Zi}
∣∣∣∣∣∣∣∣ = op(1).

(E.3)

Thus, by (E.1), (E.2), (E.3), we have ||εi1|| = op(1), ||εi2|| = op(1), ||εi3|| = op(1). Then

Uni(β0) = Ui(β0) + op(1). (E.4)

For any c ∈ Rp, the following decomposition holds:

c′
( 1

n

n∑
i=1

Uni(β0)(Uni(β0)′ − 1

n

n∑
i=1

Ui(β0)(Ui(β0)′
)
c

=
1

n

n∑
i=1

[c′Uni(β0)− Ui(β0)]2 +
2

n

n∑
i=1

[c′Ui(β0)][c′(Uni(β0)− Ui(β0))]

:= I1 + 2I2.

By eqn. (E.4), both I1 and I2 of the above equation are op(1).Then

1

n

n∑
i=1

Uni(β0)(Uni(β0))′ =
1

n

n∑
i=1

Ui(β0)(Ui(β0))′ + op(1).

By the law of large numbers, as n→∞,

1

n

n∑
i=1

Uni(β0)(Uni(β0))′
p→ E[Ui(β0)(Ui(β0))′].

Therefore,

1

n

n∑
i=1

Uni(β0)(Uni(β0))′
p→ Σ(β0).
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�

Lemma 6.3. Under the regularity conditions in the Appendix E, if β0 is the true value of

β, then

Mn = max
1≤i≤n

||Uni(β0)|| = op(n
1/2).

Proof. By Lemma 6.2, we have Uni(β0) = Ui(β0) + op(1), for i = 1, 2, . . . , n. Now,

E[Ui(β0)U ′i(β0)] = Σ(β0) < ∞ and the fact that Ui(β0) are i.i.d. random variables, im-

ply that Ui(β0) has a finite second moment. Then by Lemma 11.2 of Owen (2001), we

have,

Mn = max
1≤i≤n

||Uni(β0)|| = op(n
1/2).

�

Proof of Theorem 6.1. Let q(θ) = 1
n

∑n
i=1

Uni(β0)
1+(θ(β0))′Uni(β0)

and θ = ρη, where ρ ≥ 0 and

||η|| = 1. Then following the arguments from Owen (1990),

0 = ||q(θ)||

= ||q(ρη)||

≥ |η′q(ρη)|

=
1

n

∣∣∣∣∣η′
n∑
i=1

Uni(β0)

1 + (θ(β0))′Uni(β0)

∣∣∣∣∣
=

1

n

∣∣∣∣∣η′
{

n∑
i=1

Uni(β0)− ρ
n∑
i=1

Uni(β0)η′Uni(β0)

1 + ρη′Uni(β0)

}∣∣∣∣∣
≥ ρ

n
η′

n∑
i=1

Uni(β0)(Uni(β0))′

1 + ρη′Uni(β0)
η − 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣
≥ ρη′Wn(β0)η

1 + ρMn

− 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣, (E.5)

where Wn(β0) = n−1
∑n

i=1 Uni(β0)(Uni(β0))′.

From Lemma 6.2, we have Wn(β0) = n−1
∑n

i=1 Ui(β0)(Ui(β0))′ + op(1). Then,

lim
n→∞

Wn(β0) = E[Ui(β0)(Ui(β0))′] = Σ(β0) as n → ∞. Also Mn = op(n
1/2) by Lemma
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6.3. By Lemma 6.1, we have

1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣ = Op(n
−1/2).

Then, it follows from eqn. (E.5) and Owen (1990) that

ρ = ||θ|| = Op(n
−1/2).

Combining ||θ|| = Op(n
1/2) and Mn = op(n

1/2), it can be shown that

θ =

(
1

n

n∑
i=1

Uni(β0)(Uni(β0))′

)−1(
1

n

n∑
i=1

Uni(β0)

)
+ op(n

−1/2). (E.6)

By Taylor expansion to l(β0), one obtains

l(β0) = 2
n∑
i=1

θ′Uni(β0)−
n∑
i=1

θ′Uni(β0)(Uni(β0))′θ + op(1)

=

(
1√
n

n∑
i=1

Uni(β0)

)′(
1

n

n∑
i=1

Uni(β0)(Uni(β0))′

)−1(
1√
n

n∑
i=1

Uni(β0)

)
+ op(1).

By Lemma 6.1 and the Slutsky theorem, l(β0) converges to χ2
p in distribution. Hence,

Theorem 6.1 is proved. �

Proof of Theorem 6.2. Theorem 6.2 is proved using the similar arguments in Yu

et al. (2011) and Yu and Zhao (2019). Let β0 = ((β
(1)
0 )′, (β

(2)
0 )′), corresponding to

Z = ((Z(1))′, (Z(2))′)′. Define

Ã(β0) =

∫ τ

0

E[{Z − µZ(β0, t)}(Z(2))′λ̇{H0(t) + β′0Z}Y (t)]dH0(t).

As A(β0) is assumed to be positive definite, the rank of Ã(β0) is p − q. Let β̂II(β
(1)′

0 ) =

arg inf
β(2)

l((β
(1)
0 )′, (β(2))′)′. Using the arguments from Qin and Lawless (1994) and Yu et al.
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(2011),

√
n(β̂II − β(2)′

0 ) = −[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1 1√
n

n∑
i=1

Uni(β0) + op(1),

√
nθ2 =

{
I − [Σ(β0)]−1Ã(β0)[Ψ(β0)]−1[Ã(β0)]′

}
[Σ(β0)]−1 1√

n

n∑
i=1

Uni(β0) + op(1),

where θ2 is the corresponding Lagrange multiplier, and

Ψ(β0) = [Ã(β0)]′[Σ(β0)]−1Ã(β0).

By Taylor expansion, we have

lprofile(β
(1)
0 ) =

(
1√
n

n∑
i=1

Uni(β0)

)′ (
[Σ(β0)]−1 − [Σ(β0)]−1Ã(β0)[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1

)
(

1√
n

n∑
i=1

Uni(β0)

)
+ op(1)

=

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0)

)′
S

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0)

)
+ op(1),

where

S = I − [Σ(β0)]−1/2Ã(β0)[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1/2

is a symmetric and idempotent matrix with trace q. Then by Lemma 6.1,

[Σ(β0)]−1/2 1√
n

n∑
i=1

Uni(β0)
D→ N(0, Ip×p).

Hence, we prove Theorem 6.2. �

Proof of Theorem 6.3. This proof is motivated by Chen et al. (2008) and Yu and Zhao

(2019). Define

g(θad) =
1

n+ 1

n+1∑
i=1

Uad
ni (β0)

1 + (θad)′Uad
ni (β0)

,

and θad = ρadηad, where ρad > 0 and ||ηad|| = 1. First, we want to show that θad = Op(n
−1/2).
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From the results of Theorem 6.1 and eqn. (6.5), we can write

0 = ||g(θad)||

≥ |(ηad)′g(ρadηad)|

≥ 1

n

∣∣∣∣∣(ηad)′
n+1∑
i=1

Uad
ni (β0)

1 + (θad)′Uad
ni (β0)

∣∣∣∣∣
≥ ρad

n(1 + ρadMad
n )

n∑
i=1

[(ηad)′Uad
ni (β0)]2 − 1

n

∣∣∣∣∣
n∑
i=1

Uad
ni (β0)

∣∣∣∣∣
(

1− an
n

)

=
ρad

n(1 + ρadMad
n )

n∑
i=1

[(ηad)′Uad
ni (β0)]2 − 1

n

∣∣∣∣∣
n∑
i=1

Uad
ni (β0)

∣∣∣∣∣+Op(n
−2/3an),

where Mad
n = max

1≤i≤n
||Uad

ni (β0)||. Using the similar arguments from Chen et al. (2008) and

following the proof of Theorem 6.2, we have θad = Op(n
−1/2) as an = op(n). Also, similar to

eqn. (E.6), we have

θad =

(
1

n

n∑
i=1

Uad
ni (β0)(Uad

ni (β0))′

)−1(
1

n

n∑
i=1

Uad
ni (β0)

)
+ op(n

−1/2).

By Taylor expansion to lad(β0), one obtains

lad(β0) = 2
n+1∑
i=1

log(1 + (θad)′Uad
ni (β0))

= 2
n+1∑
i=1

{
(θad)′Uad

ni (β0)− (θad)′Uad
ni (β0)(Uad

ni (β0))′θad/2

}
+ op(1).

Substituting the expansion of θad, we have

lad(β0) =

(
1√
n

n∑
i=1

Uad
ni (β0)

)′(
1

n

n∑
i=1

Uad
ni (β0)(Uad

ni (β0))′

)−1(
1√
n

n∑
i=1

Uad
ni (β0)

)
+ op(1).

Therefore,

lad(β0)
D→ χ2

p.

�
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Proof of Theorem 6.4. Combining Theorems 6.2 and 6.3, we can prove Theorem 6.4

easily. �
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