
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

8-10-2021

Network Inference, Influence Estimation and Maximization via Network Inference, Influence Estimation and Maximization via

Neural Mean-field Dynamics on Diffusion Network Neural Mean-field Dynamics on Diffusion Network

Shushan He

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

Recommended Citation Recommended Citation
He, Shushan, "Network Inference, Influence Estimation and Maximization via Neural Mean-field Dynamics
on Diffusion Network." Dissertation, Georgia State University, 2021.
doi: https://doi.org/10.57709/23984105

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/math_diss
https://scholarworks.gsu.edu/math
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/23984105
mailto:scholarworks@gsu.edu

Network Inference, Influence Estimation and Maximization via Neural Mean-field

Dynamics on Diffusion Network

by

Shushan He

Under the Direction of Xiaojing Ye, PhD

ABSTRACT

We propose two novel learning frameworks using neural mean-field (NMF) dynamics

for inference and estimation problems on heterogeneous diffusion networks in discrete-time

and continuous-time setting, respectively. The frameworks leverages the Mori-Zwanzig for-

malism to obtain an exact evolution equation of the individual node infection probabilities,

which renders a delay differential equation with memory integral approximated by learnable

time convolution operators. Directly using information diffusion cascade data, our frame-

works can simultaneously learn the structure of the diffusion network and the evolution of

node infection probabilities. Connections between parameter learning and optimal control

are also established, leading to a rigorous and implementable algorithm for training NMF.

Moreover, we show that the projected gradient descent method can be employed to solve the

challenging influence maximization problem, where the gradient is computed extremely fast

by integrating NMF forward in time just once in each iteration. Extensive empirical studies

show that our approach is versatile and robust to variations of the underlying diffusion net-

work models, and significantly outperform existing approaches in accuracy and efficiency on

both synthetic and real-world data.

INDEX WORDS: Diffusion networks, Influence estimation, Network inference, Mori-
Zwanzig formalism, Influence maximization.

Network Inference, Influence Estimation and Maximization via Neural Mean-field

Dynamics on Diffusion Network

by

Shushan He

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2021

Copyright by
Shushan He

2021

NETWORK INFERENCE, INFLUENCE ESTIMATION AND MAXIMIZATION ON

DIFFUSION NETWORK USING DEEP LEARNING TOOL AND OPTIMAL

CONTROL THEORIES

by

SHUSHAN HE

Committee Chair: Xiaojing Ye

Committee: Guantao Chen

Jonathan Shihao Ji

Alexandra B Smirnova

Michael Stewart

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2021

iv

DEDICATION

This dissertation is dedicated to my parents, my sister, and my husband.

v

ACKNOWLEDGEMENTS

When I start to write on this page, I am sitting in front of a bright window, a messy

table with books, and my unfinished breakfast... I am trying to summarize the process for

me to get here, but I realize it is so difficult and my tear suddenly comes out without control.

One question jump to my mind: how to become a good mathematician? This is one question

from my advisor, Dr. Guantao Chen, who likes to discuss it with us especially when there is

new member joining the team. I can not remember any conclusions from these discussions,

but this question appears in my mind often with a big question mark.

As a person who spend most of her best life time to learn the mathematics, I do not

think I am a good mathematician, but I am sure I love it. I chose mathematics as my

major when I was 18. At that moment, my only dream is becoming a teacher who can share

knowledge, experience, kindness, positive energy and many others to the students. I did not

even have the idea on what I should teach until my English teacher suggested me to go with

maths. At that time, I could never know how important this decision is to me. Even I could

not contribute too much, I learn a lot from my major which helps me becoming who I am

now. So my first thanks I want to give to the mathematics.

One of the most important people during my PhD life is my advisor, Dr. Guantao

Chen. Thank you for taking me on under your guidance. You are like a father who always

have our back and support us unconditionally. You are also a reliable mentor who helps me

to build my research mindset, and find my research interests. Without you, this thesis would

not have been completed. Thank you for making me a Doctor.

Many thanks also to my another advisor Dr. Xiaojing Ye. Thank you for everything

you have done for me. You opened the door of artificial intelligence for me and show me

the magnificent view which extends my world and starts my new career dream. Now when

I look back, all the memories look so peaceful, and only good ones left. But I know, it is

not always the truth. In the process, I was almost beat by my bad emotions. You gave me

vi

the most of patience I have never got from other people. If without your help and support,

I might be stuck in some fight with myself. Thank you for sharing the research topic of this

thesis with me. Thank you for all the research training you did to me. Thank you for all

the talks you gave to me. Thank you Dr. Ye.

I would also like to thank my other thesis committee members: Dr. Jonathan Shihao

Ji, Dr. Alexandra B Smirnova, and Dr. Michael Stewart. Thank you for your

invaluable feedback and mentorship.

At the end, please allow me to write down my special appreciation to my families and

friends.

Mr. Xiaomei He and Mrs. Xiangkun Li, my parents, you are the best parents

in the world. Thank you for bring me to the world and teach me to be kind and grateful.

Thank you for all your sacrifices for sister and me.

Mrs. Shuhui He, my sister, thank you for your love, and support in every aspect

throughout my life. I am so proud of you being the best sister. Same thanks to Mr. Liang

Wang, my brother in law, for the support to the whole family.

Mr. Chun Wei Wang, my husband, in the adventure to USA, you are the best gift

to me. Thank you for your love with patience, kind, endurance and support.

Mr. Ruei Chih Wang and Mrs. Shouli Wanglin, my parents in law, thank you

for your love and support. Dear father, we miss you. Have a good trip in the heaven.

Dr. Yan Cao and Dr. Guangming Jing, my friends, thank you for your supports.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER 1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Diffusion model . 2

1.3 Cascade data . 3

1.4 Influence estimation and network inference 4

1.5 Influence maximization . 5

1.6 Overview . 5

CHAPTER 2 BACKGROUND 7

2.1 Diffusion models . 7

2.1.1 Triggering diffusion models 7

2.1.2 Continuous-time Independent Cascade (CIC) model . . . 9

2.2 Influence estimation . 9

2.3 Network inference . 13

2.4 Influence maximization . 14

CHAPTER 3 NEURAL MEAN-FIELD (NMF) DYNAMICS APPLIED

ON INFLUENCE ESTIMATION AND NETWORK IN-

FERENCE 19

3.1 Mean-field dynamics of diffusion . 19

3.1.1 Notations . 19

viii

3.1.2 Modelling diffusion by stochastic jump processes 19

3.1.3 Mori-Zwanzig memory closure 23

3.1.4 Delay differential equation 26

3.2 Discrete NMF algorithm . 28

3.2.1 Formulation of discrete NMF model 29

3.2.2 Learning the parameters of discrete NMF 30

3.2.3 Revisiting optimal control theory 30

3.2.4 Optimal control of parameter training 32

3.2.5 Implementation details . 36

3.2.6 Comparison models . 39

3.2.7 Experiment results . 40

3.3 Continuous NMF algorithm . 46

3.3.1 ODE system for continuous NMF 47

3.3.2 Evolutionary point processes and loss function 48

3.3.3 Optimal control formulation of parameter learning 52

3.3.4 Revisiting neural ODE (NODE) 53

3.3.5 Backpropagation in continuous NMF 55

3.3.6 Experiment evaluation . 62

CHAPTER 4 INFLUENCE MAXIMIZATION WITH LEARNED CON-

TINUOUS NMF 70

4.1 Optimal control formulation . 70

4.1.1 On original influence maximization 70

4.1.2 On relaxed influence maximization 71

4.2 Projected gradient descent (PGD) 71

4.3 Gradients calculation for relaxed IM 72

4.4 Proposed algorithm NMF-InfMax 73

4.5 Experiment evaluation . 74

4.5.1 Comparison algorithms . 74

ix

4.5.2 Experiment setting . 75

4.5.3 Comparison results . 76

4.5.4 Real data . 77

CHAPTER 5 SUMMARY AND DISCUSSION 79

5.1 Summary . 79

5.2 Future work . 79

5.2.1 Implementation for application 79

5.2.2 Dynamic diffusion network 80

5.2.3 Context-aware problems . 81

REFERENCES . 82

x

LIST OF TABLES

3.1 Frequently used notations 20

3.2 Performance of structure inference using NetRate and the proposed

discrete NMF on Random, Hierarchical, and Core-periphery networks

with Rayleigh distribution as the diffusion time model on edges. Quality

of the learned edge set E and distribution parameter A are measured

by precision (Prc), recall (Rcl), accuracy (Acc), and correlation (Cor). 42

3.3 Performance of network structure inference using NetRate [35] and

the proposed continuous NMF on Random, Hierarchical, and Core-

periphery networks consisting of 128 nodes and 512 edges with Expo-

nential and Rayleigh as diffusion distribution on edges. Quality of the

learned edge set E and distribution parameter A are measured by pre-

cision (Prc), recall (Rcl), accuracy (Acc), and correlation (Cor). Larger

value indicates higher accuracy. 66

xi

LIST OF FIGURES

1.1 Example of a sample cascade on a diffusion network. The cascade was

originated from the source set S = { 1 } and gradually propagates to

other nodes through their directed edge connections. The time line

below the network shows the wall-clock time ti that each node i was

infected during the cascade with t1 = 0. The orange edges indicate

whom each node got infection from, and tij := tj − ti is the time that

node i took to infect node j. 2

3.1 MAE of node infection probability by LSTM, InfluLearner, and discrete

NMF on each of the 9 different combinations of Hierarchical (Hier),

Core-periphery (Core) and Random (Rand) networks, and exponential

(Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion models. Mean (cen-

terline) and standard deviation (shade) over 100 tests are shown. . 43

3.2 MAE of influence by LSTM, InfluLearner, and discrete NMF on each

of the 9 different combinations of Hierarchical (Hier), Core-periphery

(Core) and Random (Rand) networks, and exponential (Exp), Rayleigh

(Ray) and Weibull (Wbl) diffusion models. Mean (centerline) and stan-

dard deviation (shade) over 100 tests are shown. 44

3.3 Ground truth A∗ (left) and A inferred NetRate (middle) and discrete

NMF (right) under the same color scale using cascaded data from a

Hierarchical network with Rayleigh diffusion model. 45

3.4 (a)–(b) MAE of influence (Inf) and infection probability (Prob) esti-

mated by discrete NMF for Hierarchical networks with increasing net-

work sizes from 256 to 2048. (c) runtime (in seconds) for training versus

network sizes in log-log scale. 46

xii

3.5 (a) MAE of influence estimated by LSTM, InfluLearner on Weibo data;

(b)–(c) MAE of influence and infection probability of discrete NMF for

different network densities. 46

3.6 MAE of node infection probability (bottom) by InfluLearner [24] and

continuous NMF on each of the 9 different combinations of Core-

periphery (Core), Random (Rand) and Hierarchical (Hier) networks,

and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion

models. Mean (centerline) and standard deviation (shade) over 50 test

source sets are shown. Each network has two configurations of (n, d):

(128, 4) and (1024, 4), where n is the number of nodes in the diffusion

network, and d is the average out-degree per node. 64

3.7 MAE of scaled influence by InfluLearner [24] and continuous NMF on

each of the 9 different combinations of Core-periphery (Core), Ran-

dom (Rand) and Hierarchical (Hier) networks, and exponential (Exp),

Rayleigh (Ray) and Weibull (Wbl) diffusion models. Mean (centerline)

and standard deviation (shade) over 50 test source sets are shown. Each

network has two configurations of (n, d): (128, 4) and (1024, 4), where

n is the number of nodes in the diffusion network, and d is the average

out-degree per node. 65

3.8 Ground truth A∗ (left) and A inferred by NetRate (middle) and con-

tinuous NMF (right) in same color scale using cascades from a Hierar-

chical network consisting of 128 nodes and 512 edges with exponential

diffusion model. Darker pixel indicates larger value of an entry of A. 67

3.9 MAE of infection probability (a) and influence (b) obtained by In-

fluLearner [24] and continuous NMF on Hierarchical networks of size

n = 128 and increasing d from 4 to 6. 67

xiii

3.10 (a) Training time (in seconds) of continuous NMF versus density (av-

erage out-degree per node) d. (b) Training time (in seconds) versus

network size n. 68

4.1 Influence of the source sets selected by the compared methods on three

different types of networks: (a) Hierarchical, (b) Random, and (c) Core-

periphery, with exponential diffusion model at T = 10 and varying

source sizes n0 from 1 to 10. Each network consists of 1024 nodes and

2048 edges (top) or 4096 edges(bottoms). 77

4.2 (a) Influence generated the source sets selected by NMF-InfMax trained

using increasing number of cascades on Hierarchical networks with

1,024 nodes and 4,096 edges. (b) Influence generated by the source

sets selected by IMINFECTOR and NMF-InfMax on the MemeTracker

dataset at T = 10 hours. 78

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Continuous-time information diffusion on heterogenous networks is a prevalent phe-

nomenon [7,73,79]. News spreading on social media [25,30,96], viral marketing [50,51,100],

computer malware propagation, and epidemics of contagious diseases [6, 70, 79, 89] are all

examples of diffusion on networks, among many others. For instance, a piece of informa-

tion (such as a tweet) can be retweeted by users (nodes) with followee-follower relationships

(edge) on the Twitter network. We call a user infected if she retweets and healthy otherwise.

Her followers see her retweet and can also become infected if they retweet in turn, and so

on. Such information diffusion mimics the epidemic spread where an infectious virus can

spread to individuals (human, animal, or plant) and then to many others upon their close

contact. This information diffusion impact our lives by transmitting information, behavior,

news, advertisement, and many others. It enables companies to create a cascade of product

adoptions via the word-of-month effect which has big potential commercial values in viral

marketing by suggesting new strategies to advertising a product by a set of influencial users

in some social network.

For a given social network G = (V , E), if the budget size k is given, the problem

to identify the set S ⊆ V with k most influencial users to maximize the influence δ(S),

the expected number of follow-up adoptions by S, is referred to as influence maximization.

Practically, the advertising process is expected as soon as possible. That is, the company will

expect to adopt the product in a short time. Thus, we suppose the time horizon T is finite

and scheduled at the beginning. Intuitively, the node selection phase to find the solution

of influence maximization should depend on one evaluation of the influence σ(·) which is

the solution of the problem referred to as influence estimation. When the diffusion model is

2

1

i

n

9

8

7

6

5

4

3

2

j

t1 t2 t3 t4 t5 t6 t7 t8

Figure (1.1). Example of a sample cascade on a diffusion network. The cascade was origi-

nated from the source set S = { 1 } and gradually propagates to other nodes through their

directed edge connections. The time line below the network shows the wall-clock time ti that

each node i was infected during the cascade with t1 = 0. The orange edges indicate whom

each node got infection from, and tij := tj − ti is the time that node i took to infect node j.

fully modeled, then the phase to calculate the expected influence of a source set have been

solved by using Monte Carlo simulation which is simple but expansive on computation in

many literature. Since the network structure is difficult to know in practice, algorithms to

uncover the existence and strength of connections between nodes are also discussed, which

is referred to network structure inference.

1.2 Diffusion model

The study of heterogeneous diffusion networks only emerged in the past decade and is

considered very challenging, mainly because of the extremely large scale of modern networks,

the heterogeneous inter-dependencies between the nodes, and the randomness exhibited in

cascade data. In Figure 1.1, we illustrate one such cascade originated from a singleton

source set S = { 1 }, which spreads to other nodes during the propagation. The orange

edges indicate whom a node got infection from, for example, node 4 succeeded in infecting

node 6 before node 1 did. The time line below the network indicates the wall-clock time ti

3

of each node i got infected in this cascade. In particular, t1 = 0. Moreover, tij := tj − ti is

the time node i took to infect node j. Note that this is one sample cascade of S = { 1 },

and a different sample cascade of the same source S may yield different infected nodes and

infection times due to the randomness of tij.

In this thesis, we will only use diffusion models in continuous-time setting, which de-

scribes the distribution p(t;αij) of the time t that an infected node i takes to infect her

healthy neighbor j ∈ {j′ : (i, j′) ∈ E}. Here αij is the infection rate of i on j which

vary across different edges. That is, tij is a random variable following the density function

p(t;αij) for each (i, j) ∈ E . We assume that the infection is progressive, i.e., a node will not

be infected again nor recover once infected, since generalization to the case with recovery

is straightforward. Then, given a source set S (a subset of V) of nodes that are infected

at time 0, they will infect their healthy neighbors with random infection times described

above; and the infected neighbors will then infect their healthy neighbors, and so on. As

such, the infection initiated by S at time 0 propagates to other nodes of the network. We

call one course of such propagation a cascade. For simplicity, it is common to assume that

the infection times across different edges are independent, known as the continuous-time

independent cascade (CIC) model [25,34,39].

The standard diffusion model with exponential distribution p(t;α) = αe−αt is mostly

widely used in the literature. That is, tij ∼ p(t;αij) for each (i, j) ∈ E . Note that the param-

eter αij > 0 in the exponential distribution indicates the strength of impact node i has on

j—the expectation of tij ∼ p(t;αij) is 1/αij—and the larger αij is, the sooner node j will be

infected by i on expectation. We focus on the diffusion model with exponential distribution

in this work. Other distributions, such as Rayleigh and general Weibull distributions, are

also experimented in our empirical studies in this work.

1.3 Cascade data

Observation data D of a diffusion network are often in the form of sample cascades

D := {Ck = (Sk, τk) ∈ V × Rn
+ : k ∈ [K]}, where the kth cascade Ck records its source

4

set Sk ⊂ V and the time (τk)i ≥ 0 which indicates when node i was infected (if i was not

infected during Ck then (τk)i = ∞). See Figure 1.1 for one of such sample cascades, where

we have τ = {t1, . . . , t8,∞, . . . ,∞} if no other nodes were infected in this cascade. Cascade

data are collected from historical events for training purposes.

1.4 Influence estimation and network inference

Given the network G = (V , E), as well as the CIC diffusion model specified by a distri-

bution p(t;αij) for edge (i, j), and the transmission rate matrix A, the influence prediction

(or influence estimation) is to compute

x(t;χS) = [x1(t;χS), . . . , xn(t;χS)]> ∈ [0, 1]n (1.1)

for all time t ≥ 0 and any source set S ⊂ V . The probability x(t;χS) can also be used to

compute the influence function

σ(t;S) = 1>nx(t;χS). (1.2)

On the other hand, the objective of network inference problem is to learn the network

connectivity E and A given cascade data D. Influence prediction may also require network

inference when only cascade data D are available, resulting in a two-stage approach: a

network inference is performed first to learn the network structure E and the diffusion model

parameters A, and then an influence estimation is used to compute the influence for the

source set S. However, approximation errors and biases in the two stages will certainly

accumulate. Alternatively, one can use a one-stage approach to directly estimate x(t;χS)

of any S from the cascade data D, which is more versatile and less prone to diffusion model

misspecification. Our method is a such kind of one-stage method. Additionally, it allows

knowledge of E and/orA, if available, to be integrated for further performance improvement.

We now give a statement on the main goal to achieve by our models.

5

Problem 1 (Multi-task learning for influence estimation and network inference). Given a

directed network G with node set V, a time horizon T , and a cascade data D, the objective is

(i) to predict the infection probability function x(t;χS) for time t and source set χS ; and

(ii) to infer the network connection E and the transmission matrix A.

1.5 Influence maximization

In a network G = (V , E), for any source set S, influence σ(t;S) captures the expected

number of infected nodes. Let n0 ∈ [n] be the budget size to impose constraint on the size

of the source set. The problem could be defined as follows.

Problem 2 (Influence maximization). Given network G = (V , E), budget size n0, and time

horizon T , the objective of influence maximization problem is to find the source set S ⊆ V

of size n0 to maximize σ(T ;S). That is, the problem could be formulated as

max
S

σ(T ;S), s.t. S ⊂ V , |S| = n0. (1.3)

There are two main ingredients of an influence maximization method for solving (1.3):

an influence prediction subroutine that evaluates the influence σ(t;S) for any given source

set S, and an (approximate) combinatorial optimization solver to find the optimal set S of

(1.3) that repeatedly calls the subroutine. The combinatorial optimization problem is NP-

hard and is often approximately solved by greedy algorithms with guaranteed sub-optimality

when σ(t;S) is submodular in S.

1.6 Overview

The rest of this thesis is organized as follows.

In Chapter 2, we first review the commonly discussed diffusion models which apply

different mechanisms to capture how the node status change through the interaction between

6

nodes, and then review the literature on influence estimation, network inference and influence

maximization in order.

In Chapter 3, we develop the proposed framework of neural mean-field dynamics in

both discrete and continuous setting for estimating the infection probability of nodes and

uncovering the existence and strength of edges on diffusion networks, as well as an opti-

mal control formulation for parameter learning. The performance of the proposed methods

are demonstrated in empirical research on a variety of synthetic networks and real social

networks.

By employing the proposed model in continuous setting as subroutine, we also propose

an efficient algorithm for influence maximization and show its performance by numerical

experiments on both synthetic and real data in Chapter 4.

In Chapter 5, we summarize our contributions, and discuss the possible extensions to

this work.

7

CHAPTER 2

BACKGROUND

In this section, we first conduct a comprehensive review of the literature on topics

involved in our proposed method, namely, influence estimation, network inference, and in-

fluence maximization, starting from the review of diffusion models commonly used for these

problems.

2.1 Diffusion models

Consider a diffusion network model, which consists of a directed network G = (V , E)

with node set V = [n] and directed edge set E ⊆ V × V , and a diffusion model M to cap-

ture the propagation behaviors across through edges between nodes. The types of diffusion

models could be divided into two big classes: discrete-time and continuous-time. Most of

existing works on influence estimation and maximization have been considered for discrete-

time models which assume node infections only occur at discrete time points. Independent

Cascade (IC) [33] and Linear Threshold (LT) [41, 91] diffusion model are two most classic

and general discussed discrete-time diffusion models. In contrast to discrete-time models,

continuous-time diffusion models allow arbitrary event occurrence times and hence are more

accurate in modeling real-world diffusion processes. In our work, we only propose algorithms

under the continuous-time independent (CIC) model. However, in this section, we also in-

troduce the Triggering model [50] which generalizes the IC and LT models for referring to

other related works.

2.1.1 Triggering diffusion models

The process starts from a initially activated (of infected) node set S. For each node

v ∈ V , it is associated with some triggering distribution T (v) over subsets of its incoming

8

neighbor set NI(v). According to the distribution, we take a sample T (v) from T (v). At

timestamp t + 1, a healthy node v becomes infected if there is at least one node u ∈ T (v)

infected at timestamp t. The process is terminated when no more nodes can be infected.

One equivalent formulation of Triggering model in term of edges is as follows: after we fix

S and T (v) for each node v, we can generate the induced subgraph g of G by vertex set

S ∪ {T (v) : v ∈ V}. Then a node u is infected at timestamp t if there is a directed path

from one node w ∈ S to u contained in g such that the distance from S to u is t. Kempe et

al. proved that

Theorem 2.1.1. [50] In every instance of the Triggering model, the influence function σ(·)

is submodular i.e., σ(S1 ∪ {v}) − σ(S1) ≥ σ(S2 ∪ {v}) − σ(S2) for any S1 ⊆ S2 ⊆ V and

v ∈ V − S2.

Independent Cascade (IC) model considers an edge weighted network G = (V , E ,W)

with W : E → [0, 1] which identifies the probability of an infected node u to infect a healthy

node v through an edge u → v. It is important to note that each infected node u has only

one try to infect its healthy outgoing neighbors, and after that, it can not infect any node.

IC model is a special case of Triggering model by taking a triggering distribution T (v) for

each node v such that any node u in v’s incoming neighbor set independently selected for

T (v) with probability W(u→ v).

Linear Threshold (LT) model considers a node and edge weighted network G =

(V , E ,Wnode,Wedge) with node weight Wnode : V → [0, 1] and edge weight Wedge : E → [0, 1]

such that
∑

u∈NI(v)
Wedge(u→ v) ≤ 1. At timestamp t+ 1, a healthy node v is infected if

∑
u∈NI(v) and u in infected at t

Wedge(u→ v) ≥ Wnode(v).

LT model is also a special case of Triggering model by assuming a node v switching from

healthy to infected if the total weight of infected nodes in T (v) is at least Wnode(v).

9

2.1.2 Continuous-time Independent Cascade (CIC) model

The continuous-time diffusion model for cascade data is introduced in [35] to uncover the

structure of social networks by considering the likelihood of pairwise propagation between

nodes which is a continuous distribution of time. It is formulated by Du et al. in [25].

CIC model considers an edge weighted network G = (V , E ,W) withW : E → R+ which

indicates the infection strength αij of an infected node i to impact on the node j through the

edge from i to j. The model draw a distribution p(t;αij) on the transmission time tij = tj−ti

for node j to infect i. That is, if a node j get infected at time tj by another node i which was

infected at time ti, then ti < tj, i → j ∈ E and tij := ti − tj is a random variable following

the density function p(t;αij). we assume transmission times are independent. Then, we

can sample an instance g of the CIC model, by generating the time tij weight following the

diffusion distribution p(t;αij) for each edge. Then for any infected node i and healthy node

j (not necessary adjacent), the transmission time tij is equal to the distance between them

in g. And we call the neighbor of i contained in the shortest path given the distance is

the father of j. Clearly, a node might be infected by multiple neighbors. We only call the

neighbor first infects the node as its true father. In this thesis, we only discuss our algorithms

under CIC model.

2.2 Influence estimation

Most of existing methods on influence estimation are sampling based and used as sub-

routine of influence maximization. In [50], the IC and LT models are considered and the

propagation spread of a source set S is simply estimated by the expected reachable set size

of S taken over the randomness of the influence propagation process. That is

Theorem 2.2.1. [50] Let G be the distribution of g induced by the randomness in sampling

from each node’s triggering distribution. For given network G = (V , E) and source set S,

σ(S) = E[|R(S)|]

10

where R(S) is the set of nodes in g ∈ G that are reachable from nodes in S.

Hence we could estimate the expected influence by taking the average measurement of

|R(S)| over multiple instances of g. To improve the efficiency of Monte Carlo simulations

used here, a method with provable performance guarantee is developed which iterates over

a sequence of guesses on the true influence until the verifier accepts in [67]. Insider, the

influence is estimated by a standard Riemann sum as follows.

Proposition 2.2.2. Let I(S) be the random variable denoting the set of nodes influenced.

Then we have

σ(S) = E
[
|I(S)|

]
=

n∑
k=1

Pr
(
|I(S)| > k

)
.

Thus the influence can be approximated using a standard Riemann sum:

∑
k∈{1,(1+ε),(1+ε)2,··· ,n}

kε

1 + ε
Pk,

where Pk is the fraction of L sampled graphs g ∈ G in which the set S reaches at least k

nodes.

The major components of this method are:

• Iterate the guess on τ ∈
{
n, n/(1 + ε), n/(1 + ε)2, . . . , |S|

}
which is from large to

small.

• Sample L instances of graph g ∈ G and approximate the influence by Proposi-

tion 2.2.2.

• If the estimated influence is close to the guess, then accept it as estimated influence

and stop the iteration.

In [8], the reverse reachable (RR) sets of nodes are adopted which is defined as follows

Definition 2.2.3 (Reverse Reachable Set). [93] Let v be a node in V. A reverse reachable

(RR) set for v is the set of nodes in g ∈ G that can reach v. A random RR set is an RR set

for a node selected uniformly at random from V.

11

Let R be a set of sampled random RR sets. Tang el at. [94] proved if the size of R is

big enough, then we have

Theorem 2.2.4. [94] Let FR(S) be fraction of RR sets in R covered by S. Then

E[n · FR(S)] = σ(S).

The sample size |R| can be controlled by a given threshold [8], a pre-calculated param-

eter [94], or some stop conditions [93] to achieve a balance between efficiency and accuracy.

Instead of using the full network structure as the methods, sketch-based approaches

[12,14,19,75,76,98] only characterize propagation instances for influence computation, such

as the method in [19], which considers per-node summary structures defined by the bottom-k

min-bash [18] sketch of the combined reachability set.

In CIC models, influence estimation can be reformulated as the problem of finding

the least label list which contains information about the distance to the smallest reachable

labels from the source [25, 39]. Compared to methods using a fixed number of samples,

a more scalable approximation scheme with a built-in block is developed to minimize the

number of samples needed for the desired accuracy [74]. The influence function can also

be approximated by solving a jump stochastic differential equation [103] or a deterministic

differential equation that governs the evolution of the influence counter [16]. Inspired by [93],

algorithms proposed in [8,93,94] can be extended from the Triggering model to CIC models

by generalizing the definition of RR sets as follows.

Definition 2.2.5 (Reverse Influence Set). [93] For a node v ∈ V, a reverse influence (RI)

set R ⊆ V for v is a node set such that for any source set S ⊆ V, the probability that

R ∩ S 6= ∅ equals the probability that S can activate v in a diffusion process. A random RI

set is an RI set for a node selected uniformly at random from V.

Combining with the definition of CIC model, we could generate one RI set R for v by

the following steps: 1) generate a weighted graph g = (V , E ,W) whereW(e) = tij ∼ p(t;αij)

with e = i→ j ∈ E ; 2) Invoke the Dijkstra’s algorithm on g to identify the shortest distance

12

from each node u ∈ V to v; 3) insert all nodes into R with distance to v no more than the

maximum observation time.

The aforementioned methods require knowledge of cascade traces [20] or the diffusion

networks, such as node connectivity and node-to-node infection rates, as well as various

assumptions on the diffusion of interests. However, such knowledge about the diffusion

networks may not be available in practice, and the assumptions on the propagation or data

formation are often application-specific and do not hold in most other problems. InfluLearner

[24] is a state-of-the-art method that does not require knowledge of the underlying diffusion

network. InfluLearner estimates the influence directly from cascades data in the CIC models

by learning the influence function with a parameterization of the coverage functions using

random basis functions as follows.

Theorem 2.2.6. [24] Let R ∈ {0, 1}n×n be the reachability matrix with n = |V| with

(R)sj =


1, j is reachable from source s,

0, otherwise.

Then we could estimate the infection probability by the following expression.

xi(t;S) = Er∼pi(r)[φ(χTSr)]

where r := R:i, pi(r) is the marginal distribution of column j of R induced by pR, and

φ(χTSR:i) indicates the node i could be infected by S or not.

The distribution pi(r) is unknown and could be estimated by using the frequency of node

i being infected by source node r ∈ S. However, this estimation method requires knowledge

of the original source node for every infection, which can be difficult or impossible to be

tracked in real-world applications, such as epidemic spreads.

In recent years, deep learning techniques have been employed to improve the scalabil-

ity of influence estimation on large networks. In particular, convolutional neural networks

13

(CNNs) [2] and attention mechanism are incorporated with both network structures and user

specific features to learn users’ latent feature representation in [84]. By piping represented

cascade graphs through a gated recurrent unit (GRU), the future incremental influence of

a cascade can be predicted [62]. RNNs and CNNs are also applied to capture the temporal

relationships on the user-generated contents networks (e.g., views, likes, comments, reposts)

and extract more powerful features in [107]. In methods based on graph structures, graph

neural networks (GNNs) [90] and graph convolution networks (GCNs) [106] are widely ap-

plied. In particular, two coupled GNNs are used to capture the interplay between node

activation states and the influence spread [9], while GCNs integrated with teleport proba-

bility from the domain of page rank in [61] enhanced the performance of method in [84].

However, these methods depend critically on the structure or content features of cascades

which is not available in many real-world applications.

2.3 Network inference

Inference of diffusion network structure is an important problem closely related to influ-

ence estimation. In particular, if the network structure and infections rates are unknown, one

often needs to first infer such information from a training dataset of sampled cascades, each

of which tracks a series of infection times and locations on the network. Existing methods

have been proposed to infer network connectivity [26, 36, 38, 65] and also the infection rates

between nodes [35, 37, 71]. Submodular optimization is applied to infer network connectiv-

ity [36,38,65] by considering the most probable [36] or all [38,65] directed trees supported by

each cascade. One of the early works that incorporate spatio-temporal factors into network

inference is introduced in [65]. Utilizing convex optimization, transmission functions [26], the

prior probability [71], and the transmission rate [35] over edges are inferred from cascades.

In addition to static networks, the infection rates are considered but also in the unobserved

dynamic network changing over time [37]. Besides cascades, other features of dynamical

processes on networks have been used to infer the diffusion network structures. To avoid

using predefined transmission models, the statistical difference of the infection time intervals

14

between nodes in the same cascade versus those not in any cascade was considered in [85].

A given time series of the epidemic prevalence, i.e., the average fraction of infected nodes

was applied to discover the underlying network. The recurrent cascading behavior is also

explained by integrating a feature vector describing the additional features [97]. A graph

signal processing (GSP) approach is developed to infer graph structure from dynamics on

networks [23,69].

2.4 Influence maximization

Influence maximization is an important but very challenging problem in real-world ap-

plications of diffusion networks, such as commercial advertising and epidemic controls. Influ-

ence maximization is shown to be an NP-hard problem under most of diffusion models [64]

(e.g., LT, IC, CIC). It was first formulated in [50] as a combinatorial optimization prob-

lem. It also proves that the influence function σ(·) is a non-negative monotone submodular

function under certain assumptions, thus a greedy hill-climbing algorithm [21,32,72] can be

applied to obtain a provable sub-optimal solution [39,50]. Specifically, we have

Theorem 2.4.1. [21,32,72] For a non-negative, monotone submodular function f , let S be a

set of size k obtained by selecting elements one at a time, each time choosing an element that

provides the largest marginal increase in the function value. Let S∗ be a set that maximizes

the value of f over all k-element sets. Then

f(S) ≥ (1− 1/e) · f(S∗),

in other words, S provides a (1− 1/e) approximation.

It is important to note that Theorem 2.4.1 holds under the assumption that the under-

lying function f can be evaluated exactly, but this is not the story on the influence function

σ(S). This requires an arbitrarily close approximation to σ(S) from the influence estimation

subroutine. The main components of the greedy framework are: starts from an empty set

S, gradually add one node i that maximizes the marginal gain σ(S ∪{i})−σ(S) to S. With

15

the influence σ(·) function in Theorem 2.2.1, Kempe et al.’s Greedy framework is general

and effective. But it has computation overhead due to its O(kmnr) time complexity over k

iterations and r graphs for σ(·) with m = |E|. There are two sources of inefficiency:

(S1) Spread estimation: the calculation of influence σ(·) dominated by O(mr).

(S2) Node selection: the basic greedy algorithm dominated by O(kn).

Many efforts are made to increase Greedy’s efficiency to tackle (S1) [11, 12, 13, 52] or (S2)

[40,58].

Leskovec et al. first proposed the lazy greedy procedure called CELF in [58] by ex-

ploiting submodularity for an efficient algorithm. Let ∆v(S) := σ(S ∪ {v}) − σ(S) be the

marginal increments by adding node v ∈ V − S. Clearly, each iteration of the standard

greedy aims to select a node with the maximum ∆v(S). The main idea of CELF is that the

value of ∆v(S) in the current iteration can not be bigger than in the previous iterations.

That is, we have

Proposition 2.4.2. Let Si be the selected node set in the ith iteration. For any iteration i

and node v ∈ V − Si, we have

∆v(Si+1) ≤ ∆v(Si).

Hence, in each iteration i, it is not necessary to calculate the marginal gain of all the

nodes which has been done as follows.

• Let R = {u1, u2, . . . , uk} be the set of top k nodes in the rank of marginal gain

∆u(Si−1) in the (i-1)-th iteration where k is a trainable hyper-parameter to balance

the accuracy and efficiency. Then we will only consider nodes in R.

• We iteratively calculate ∆u(Si) in order of R and it is broken in j-th iteration if

∆uj(Si) ≥ ∆uj+1
(Si−1).

• The node with the maximum marginal gain is selected.

16

CELF++ [40] further optimize CELF by exploiting submodularity with the idea: if the node

u is picked as a seed in the current iteration, then the marginal gain of with respect to u

does not need to be recomputed in the next iteration. Chen et al. optimizes CELF by a

linear scan [27] of the triggering graph instances to calculate reachability of set S for spread

estimation in [12].

CELF and CELF++ tackled (S2) by controlling O(n) part in the complexity. Another

way to tackle (S2) is to work on O(r). In [50], Kempe et al. suggested setting r = 10, 000

and proved

Theorem 2.4.3. When each estimation of expected spread has ε related error, Greedy returns

a (1− 1/e− ε′)-approximate solution for a certain ε′.

Tang et al. provided a formal relationship between ε and r [94] which paved a way to

control r.

Theorem 2.4.4. Greedy returns a (1− 1/e− ε)-approximate solution with at least 1− n−`

probability, if

r ≥ (8k2 + 2kε)n
(`+ 1) log n+ log k

ε2 ·OPT
.

where k is the budget size and OPT is the maximum number of infected nodes for any size-k

node set S.

Suppose OPT is known, then we can set r to be the smallest value satisfying Theo-

rem 2.4.4, then the complexity to Greedy is

O(k3`mn2ε−2 log n/OPT).

Some approximation ideas of OPT are shown in [93,94].

To avoid the limitation of Greedy, Borgs et al. proposed a completed different method

under IC model in [8] which is referred to Reverse Influence Sampling (RIS). It suns in two

steps

1. Generate a certain number of random RR sets on G.

17

2. Consider the maximum coverage (MK) problem [95] of selecting k nodes to cover the

maximum number of RR sets generated. A standard greedy algorithm [95] for MK

problem can be employed for a (1− 1/e)-approximate solution.

The number of random RR sets generated in the first step is controlled by a threshold-based

approach in [8] which terminal the generation process until the total number of nodes and

edges reaches a pre-defined threshold. This setting generates a sequence of correlated RR

sets.

Tang et al. [94] optimized RIS by adding one step to estimate the parameter θ to control

the number of generated RR sets.

0. Parameter Estimation. This phase computes a lower-bound of the maximum expected

spread (OPT) among all size-k node sets, and then uses the lower-bound to derive a

parameter θ.

More specifically, the choice of θ depends on the following theorem.

Theorem 2.4.5. [94] Given a θ that satisfies

θ ≥ (8 + 2ε)n ·
` log n+ log

(
n
k

)
+ log 2

OPT · ε2
.

The algorithm returns a (1− 1/e− ε)-approximate solution with at least 1− n−` probability.

Based on different strategies to approximate OPT, two algorithms are proposed which

are referred to TIM and TIM+ in [94]. Tang et al. further improve TIM and TIM+ by

the proposed method referred to as IMM [93] which derives a lower bound of OPT that

is asymptotically tight. Comparing to TIM, the main different is that IMM optimizes the

parameter estimation phase in TIM by a set of estimation techniques based on martingales

[99].

The research of influence maximization also gets benefits from the development on deep

learning tools. The deep reinforcement learning [48] is employed for the influence maximiza-

tion to avoid an evaluation of influence [68]. GCOMB [68] trains on a Graph Convolutional

18

Network (GCN) [106] using a novel probabilistic greedy mechanism to predict the quality of

a node, and utilizes a Q-learning [92] framework for efficiency through importance sampling.

The importance of nodes are evaluated by considering one-hop and two-hop spread benefit

measured on nodes in [46].

For instances without the information of network structure, the influence relationships

between nodes are representation learned from cascade date initiated by a single node to

derive a greedy solution in [77, 78]. CELFIE [78] utilizes Inf2Vec [31] to learn influence and

susceptibility embeddings based on the co-occurence in diffusion cascades. IMINFECTOR

[77] uses representations learned by an end-to-end linear model with activation function from

diffusion cascades to perform model-independent influence maximization.

More algorithms can be seen in [4, 64].

19

CHAPTER 3

NEURAL MEAN-FIELD (NMF) DYNAMICS APPLIED ON INFLUENCE

ESTIMATION AND NETWORK INFERENCE

In this research, a neural mean-field dynamics approach is proposed, which employs

the Mori-Zwanzig (MZ) formalism [15] to derive the node infection probabilities in both

discrete-time and continuous-time setting referred to as discrete NMF and continuous NMF

respectively. In the same models, the strength of interactions between nodes through edges

are inferred by placing them as trainable parameters in the NMF dynamics. This section is

organized as follows. First, we develop the proposed framework of neural mean-field dynamics

in section 3.1. Then, we propose the discrete and continuous NMF models and demonstrate

their performances on a variety of synthetic and real-world networks in section 3.2 and section

3.3, respectively.

3.1 Mean-field dynamics of diffusion

3.1.1 Notations

Throughout this paper, we use boldfaced lower (upper) letter to denote vector (matrix)

or vector-valued (matrix-valued) function, and (·)k (or (·)ij) for its kth component (or (i, j)-

th entry). All vectors are column vectors unless otherwise noted. We follow the Matlab

syntax and use [x;y] to denote the vector that stacks x and y vertically. We denote inner

product by x · y and component-wise multiplication by x � y. For ease of reference, more

notations are listed in Table 3.1.

3.1.2 Modelling diffusion by stochastic jump processes

We begin with the jump process formulation of network diffusion. Given a source set

χS , let Xi(t;χS) denote the infection status of the node i at time t which has value 1 if node

20

Table (3.1). Frequently used notations

Notations Description

G = (V , E) a network G with a node set V and an edge set E

n the number of nodes in V

(i, j) directed edge from node i to j

p(t;αij) diffusion distribution with parameters αij for edge (i, j)

A the transmission matrix with (A)ij = αij which measures the strength of impact

node i on j

t, T time t ∈ [0, T], T ∈ R+ in continuous case or t = 1, 2, · · · , T, T ∈ N in

discrete case.

f ′ derivative ′ with respect to t for a function f

∇xf gradient with respect to x for a function f

Pr(·) probability of an event

EX [·] expectation with respect to X

χS a 0-1 vector such that (χS)i = 1 if and only if node i is contained in the

source set S

xi(t;χS) the probability of node i being infected at time t given a source set S

x(t;χS) the infection probability function at time t given source set S

σ(t;S) the expected number of infected nodes at time t given a source set S

1n,1 the vector or matrix with entries all ones

0n,0 the vector or matrix with entries all zeros

21

i is infected by time t, and 0 otherwise. Then, {Xi(t;χS) : i ∈ [n]} is a set of n coupled

jump processes with the following properties.

Proposition 3.1.1. (i) For any time addition τ > 0, we have

Pr(Xi(t+ τ) = 1, Xi(t) = 0|H(t)) = E[Xi(t+ τ ;χS)−Xi(t;χS)|H(t)].

(ii) The infection probability of node i is the expectation of Xi(t;χS) conditioning on H(t):

xi(t;χS) = EH(t)[Xi(t;χS)|H(t)]. (3.1)

(iii) Let λ∗i (t) be the conditional intensity of Xi(t;χS) given history H(t) = {Xi(s;χS) :

s ≤ t, i ∈ [n]}, i.e.,

λ∗i (t) := lim
τ→0+

E[Xi(t+ τ ;χS)−Xi(t;χS)|H(t)]

τ
. (3.2)

Suppose the standard diffusion model is adopted, i.e., p(t; ·) is the exponential distri-

bution. Then we have

λ∗i (t) =
∑
j

αjiXj(t)(1−Xi(t)). (3.3)

Since the standard diffusion model is mostly widely used and it indicates that the

conditional intensity λ∗i (t) of a healthy node i is determined by the total infection rate of its

infected neighbors j as shown in (3.3). Henceforth, we will derive the mean-field dynamics

under the assumption that the diffusion model is standard. To this end, we adopt the

following notations (for notation simplicity we temporarily drop χS in this subsection as the

source set S is arbitrary but fixed):

xI(t) = EH(t)

[∏
i∈I Xi(t;χS)

∣∣H(t)
]
, yI(t) =

∏
i∈I xi(t), eI(t) = xI(t)− yI(t) (3.4)

for all I ⊂ [n] and |I| ≥ 2. Then we can derive the evolution of z := [x; e] as follows where

22

x(t) ∈ [0, 1]n is the resolved variable whose value is of interests and samples can be observed

in cascade data D, and e(t) = [· · · ; eI(t); . . .]
T ∈ R2n−n−1 is the unresolved variable.

Theorem 3.1.2. [47] The evolution of z(t) = [x(t); e(t)] follows the nonlinear differential

equation:

z′ = f̄(z), where f̄(z) = f̄(x, e) =

[
f(x;A)− (A�E)1; · · · , fI(x, e); · · ·

]
, (3.5)

with initial value z0 = [χS ; 0], E = [eij] ∈ Rn×n, and

f(x;A) = Ax− diag(x)Ax, (3.6)

fI(x, e) =
∑
i∈I

∑
j /∈I

αji(yI − yI∪{j} + eI − eI∪{j})−
∑
i∈I

yI\{i}
∑
j 6=i

αji(xj − yij − eij). (3.7)

Proof. Taking expectation EH(t)[·] on both sides of (3.3), we obtain

λi(t) :=EH(t)[λ
∗
i (t)] = EH(t)

[
αjiXj(t)(1−Xi(t))

∣∣H(t)
]

=
∑
j

αji(xj − xij) =
∑
j

αji(xj − yij − eij). (3.8)

On the other hand, there is

λi(t) dt = EH(t)[λ
∗
i (t)] dt = EH(t)[dXi(t)|H(t)] = dEH(t)[Xi(t)|H(t)] = dxi. (3.9)

Combining (3.8) and (3.9) yields

x′i =
dxi(t)

dt
=
∑
j

αji(xj − yij − eij) = (Ax)i − (diag(x)Ax)i −
∑
j

αjieij

for every i ∈ [n], which verifies the x part of (3.5). Similarly, we can obtain

x′I =
∑
i∈I

∑
j /∈I

αji(xI − xI∪{j}) =
∑
i∈I

∑
j /∈I

αji(yI + eI − yI∪{j} − eI∪{j}). (3.10)

23

Moreover, by taking derivative on both sides of xI(t) = yI(t) + eI(t), we obtain

x′I =
∑
i∈I

yI\{i}x
′
i + e′I =

∑
i∈I

yI\{i}
∑
j 6=i

αji(xj − xixj − eij) + e′I . (3.11)

Combining (3.10) and (3.11) yields the e part of (3.5).

It is clear that x0 = χS . For every I, at time t = 0, there is xI(0) =
∏

i∈I Xi(0) = 1 if

I ⊂ S and 0 otherwise; and the same for yI(0). Hence eI(0) = xI(0) − yI(0) = 0 for all I.

Hence z0 = [x0; e0] = [χS ; 0], which verifies the initial condition of (3.5).

It is important to note that the evolution (3.5) is derived under the standard diffusion

model assumption. However, it is approximately well for other distributions p(t; ·), as shown

in our empirical study. In any case, the dimension of z is 2n− 1, which grows exponentially

fast in n and hence renders the computation infeasible in practice. To overcome this issue,

we employ the Mori-Zwanzig formalism [15] to derive a reduced-order model of x that has

dimensionality n only.

3.1.3 Mori-Zwanzig memory closure

We employ the Mori-Zwanzig (MZ) formalism [15] that allows to introduce a generalized

Langevin equation (GLE) of the x part of the dynamics. The GLE of x is derived from the

original equation (3.5) describing the evolution of z = [x; e], while maintaining the effect of

the unresolved part e. This is particularly useful in our case, as we only need x for infection

probability and influence estimation.

Define the Liouville operator L such that L[g](z) := f̄(z) · ∇zg(z) for any real-valued

function g of z. Let etL be the Koopman operator associated with L such that etLg(z(0)) =

g(z(s)) where z(t) solves (3.5). Then L is known to satisfy the semi-group property for all

g, i.e., etLg(z) = g(etLz). Now consider the projection operator P as the truncation such

that (Pg)(z) = (Pg)(x, e) = g(x, 0) for any z = (x, e), and its orthogonal complement

as Q = I − P where I is the identity operator. The following theorem describes the exact

evolution of x(t).

24

Theorem 3.1.3. The evolution of x specified in (3.5) can also be described by the following

GLE:

x′ = f(x;A) +

∫ t

0

k(t− s,x(s)) ds, (3.12)

where f is given in (3.6), and k(t,x) := PLetQLQLx.

Proof. Consider the system (3.5) over a finite time horizon [0, T], which evolves on a smooth

manifold Γ ⊂ RN . For any real-valued phase (observable) space function g : Γ → R, the

nonlinear system (3.5) is equivalent to the linear partial differential equation, known as the

Liouville equation: 
∂tu(t, z) = L[u](t, z)

u(0, z) = g(z)

(3.13)

where the Liouville operator L[u] := f̄(z) · ∇zu. The equivalency is in the sense that the

solution of (3.13) satisfies u(t, z0) = g(z(t; z0)), where z(t; z0) is the solution to (3.5) with

initial value z0.

Denote etL the Koopman operator associated with L such that etLg(z0) = g(z(t)) where

z(t) is the solution of (3.5). Then etL satisfies the semi-group property, i.e.,

etLg(z) = g(etLz) (3.14)

for all g. On the right hand side of (3.14), z can be interpreted as z = ι(z) =

[ι1(z), . . . , ιN(z)] where ιj(z) = zj for all j.

Now consider the projection operator P as the truncation such that Pg(z) = Pg(x, e) =

g(x, 0) for any z = (x, e), and its orthogonal complement as Q = I − P where I is the

identity operator. Note that z′(t) = dz(t)
dt

= ∂
∂t
etLz0, and f̄(z(t)) = etLf(z0) = etLLz0 since

Lιj(z) = fj(z) for all z and j. Therefore (3.5) implies that

∂

∂t
etLz0 = etLLz0 = etLPLz0 + etLQLz0. (3.15)

25

Note that the first term on the right hand side of (3.15) is

etLPLz0 = PLetLz0 = PLz(t). (3.16)

For the second term in (3.15), we recall that the well-known Dyson’s identity for the Koop-

man operator L is given by

etL = etQL +

∫ t

0

esLPLe(t−s)QL ds. (3.17)

Applying (3.17) to QLz0 yields

etLQLz0 = etQLQLz0 +

∫ t

0

esLPLe(t−s)QLQLz0 ds

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLesLz0 ds (3.18)

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds.

Substituting (3.16) and (3.18) into (3.15), we obtain

∂

∂t
etLz0 = PLz(t) + etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds, (3.19)

where we used the fact that etLPLz0 = PLetLz0 = PLz(t). Denote φ(t, z) := etLQLz,

then we simplify (3.19) into

∂

∂t
etLz0 = PLz(t) + φ(t, z0) +

∫ t

0

k(t− s, z(s)) ds, (3.20)

where k(t, z) := PLφ(t, z) = PLetLQLz.

Now consider the evolution of φ(t, z), which is given by

∂tφ(t, z0) = QLφ(t, z0), (3.21)

26

with initial condition φ(0, z0) = QLz0 = Lz0 − PLz0 = f̄(x0, e0) − f̄(x0,0) = 0 since

e0 = 0. Applying P on both sides of (3.21) yields

∂tPφ(t, z0) = PQLφ(t, z0) = 0,

with initial Pφ(0, z0) = 0. This implies that Pφ(t, z0) = 0 for all t. Hence, applying P to

both sides of (3.19) yields

∂

∂t
Pz(t) =

∂

∂t
PetLz0 = PLz(t) +

∫ t

0

Pk(t− s, z(s)) ds. (3.22)

Restricting to the first n components, Pz(t) reduces to x(t) and Pk(t− s, z(s)) reduces to

k(t − s,x(s)). Recalling that PLz(t) = Pf̄(z(t)) = f̄(x(t),0) = f(x(t)) completes the

proof.

Note that, (3.12) is not an approximation—it is an exact representation of the x part of

the original problem (3.5). The equation (3.12) can be interpreted as a mean-field equation,

where the two terms on the right hand side are called the streaming term (corresponding to

the mean-field dynamics) and memory term, respectively. The mean-field dynamics provide

the main drift of the evolution, and the memory term in a convolution form is for vital

adjustment. This inspires us to approximate the memory term as a time convolution on x,

which naturally yields a delay differential equation, as shown in the next subsection.

3.1.4 Delay differential equation

To compute the evolution (3.12) of x, we consider an approximation of the Mori-Zwanzig

memory term by a neural net ε with time convolution of x as follows,

∫ t

0

k(t− s,x(s)) ds ≈ ε(x(t),h(t);η), (3.23)

where h(t) =
∫ t
0
K(t− s;w)x(s) ds. In (3.23), K(·;w) is a convolutional operator with pa-

rameter w, and ε(x,h;η) is a deep neural network with (x,h) as input and η as parameter.

27

Both w and η are to be trained by the cascade data D. Hence, (3.12) reduces to the delay

differential equation which involves a time integral h(t) of past x:

x′ = f̃(x,h;θ) := f(x;A) + ε(x,h;η). (3.24)

The initial condition of (3.24) with source set S is given by

x(0) = χS , h(0) = 0, and x(t) = h(t) = 0, ∀ t < 0. (3.25)

We call the system (3.24) with initial (3.25) the neural mean-field (NMF) dynamics.

The delay differential equation (3.24) is equivalent to a coupled system of (x,h) which

is shown in the following theorem.

Theorem 3.1.4. The delay differential equation (3.24) is equivalent to the following coupled

system:

x′ = f̃(x,h;A,η) = f(x;A) + ε(x,h;η) (3.26a)

h′ =
∫ t
0
K(t− s;w)f̃(x(s),h(s);A,η) ds (3.26b)

with initial condition (3.25). In particular, if K(t;w) =
∑L

l=1Ble
−Clt for some L ∈ N with

w = {(Bl,Cl)l : BlCl = ClBl, ∀ l ∈ [L]}, then (3.26) can be solved by a non-delay system

with h′ =
∑L

l=1(Blx−Clh).

Proof. From the definition of h(t) in (3.27), we obtain

h =

∫ t

0

K(t− s;w)x(s) ds =

∫ t

−∞
K(t− s;w)x(s) ds =

∫ ∞
0

K(s;w)x(t− s) ds (3.27)

where we used the fact that x(t) = 0 for t < 0. Taking derivative on both sides of (3.27)

28

yields

h′ =

∫ ∞
0

K(s;w)x′(t− s) ds =

∫ ∞
0

K(s;w)f̃(x(t− s),h(t− s);A,η) ds

=

∫ t

−∞
K(t− s;w)f̃(x(s),h(s);A,η) ds =

∫ t

0

K(t− s;w)f̃(x(s),h(s);A,η) ds

where we used the fact that x′(t) = f̃(x(t),h(t);A,η) = 0 for t < 0 in the last equality.

If K(t;w) =
∑

lBle
−Clt, then we can take derivative of (3.27) and obtain

h′(t) =
L∑
l=1

d

dt

(∫ t

−∞
Ble

−Cltx(s) ds
)

=
L∑
l=1

(
Blx(t)−

∫ t

−∞
BlCle

−Cltx(s) ds
)

=
L∑
l=1

(
Blx(t)−Cl

∫ t

−∞
Ble

−Cltx(s) ds
)

=
L∑
l=1

(Blx(t)−Clh(t)).

As shown in Theorem 3.1.4, NMF (3.24) reduces to a non-deday ODE system of (x,h)

with (3.26a) and h′ = Bx−Ch. There are two different ways to solve such a system, which

derives the two different models proposed in this thesis:

• Discrete NMF: solve the system by an Euler discretization over a grid of T time

steps.

• Continuous NMF: solve the system by a modified neural ODE (NODE) [10] for

any t ∈ [0, T].

More detail on the proposed models are shown in the following sections.

3.2 Discrete NMF algorithm

Based on Theorem 3.1.4, by finite difference in time with normalized step size 1 and

proper scaling of the network parameters θ, we could obtain the following discretization

system which derives the framework of discrete NMF model.

29

Theorem 3.2.1. The discretization of the system (3.26) reduces to a recurrent neural net-

work (RNN) with hidden layers (xt,ht) for t = 0, 1, . . . , T − 1:

xt+1 = xt + f(xt;A) + ε(xt,ht;η) (3.28a)

ht+1 = ht +
∑L

l=1(Blxt+1 −Clht) (3.28b)

where the input is given by x0 = χS and h0 = 0.

In this section, we will propose the discrete NMF model derived by Theorem 3.2.1 and

show its efficiencies and robustness by empirical study.

3.2.1 Formulation of discrete NMF model

In stead of the exponential kernel in Theorem 3.1.4, we consider a more general convo-

lution kernel K(·;w). One benefit of this change is that the convolution weight K on older

state x in (3.23) rapidly diminishes in practice, and hence the memory kernel K can be well

approximated with a truncated history of finite length τ > 0, or τ ∈ N after discretization.

Hence, we could substitute (3.28b) by

ht = Kwmt (3.29)

where Kw = [Kw
0 , . . . ,K

w
τ] and mt = [xt; . . . ;xt−τ]. Together with Theorem 3.2.1, we

could formulate a single evolution of mt for time t = 0, . . . , T − 1:

Definition 3.2.2 (Formulation of discrete NMF model). Let Js := [· · · , I, · · ·] ∈ Rn×(τ+1)n

has identity I as the (s+ 1)th block for s = 0, . . . , τ − 1. We define the evolution of mt as

mt+1 = g(mt;θ) (3.30)

where g(m;θ) := [J0m+ f̃(J0m,Kwm;θ);J0m; . . . ;Jτ−1m].

Note that Jsmt extracts the (s+1)th block xt−s of mt, which indicates the equivalence

of system (3.28) and (3.30).

30

3.2.2 Learning the parameters of discrete NMF

With the discrete NMF formed by Definition 3.2.2 with parameter θ = (A,η,w), we

get the infection probability function for each t ∈ [T] as output. Moreover, the support and

magnitude of A implies the network structure and strength of interaction between nodes,

respectively.

Loss function In order to train the network parameters θ = (A,η,w) of (3.30)

using cascade data D in a fully supervised setting, we apply the following cross entropy loss

function:

`(x, x̂) =
∑T

t=1 x̂t · logxt + (1− x̂t) · log(1− xt), (3.31)

where x̂ = {x̂t ∈ {0, 1}n : t ∈ [T]} which records the infection status of nodes in the

cascade data and the logarithm is taken componentwisely. Maximizing the log-likelihood of

x̂ for the dynamics xt = xt(θ) ∈ [0, 1]n induced by θ is equivalent to minimizing the loss

function `(x, x̂). We can add a regularization term r(θ) to (3.31) to impose prior knowledge

or constraint on θ. In particular, if E is known, we can enforce a constraint such that A

must be supported on E only. Otherwise, we can add ‖A‖1 or ‖A‖0 (the l1 or l0 norm of

the vectorized A) if E is expected to be sparse.

3.2.3 Revisiting optimal control theory

We will show that the parameters learning in discrete NMF can be reduced to an

optimal control problem. Before that, we revisit the optimal control problem and theory in

this subsection.

Background The problem of optimal control has been well studied in both continuous

and discrete cases in the past decades [5]. In particular, the discrete optimal control with

nonlinear difference equations and the associated maximum principle have been extensively

exploited. Recently, an optimal control viewpoint of deep learning has been proposed [63]—

the network parameters of a neural network play the role of control variable in a discretized

31

differential equation, and the training of these parameters for the network output to minimize

the loss function can be viewed as finding the optimal control to minimize the objective

function at the terminal state.

Overview of optimal control problem Consider an ordinary differential equation

(ODE) having the form


x′(t) = f(x(t),α(t)), t > 0,

x(0) = x0, otherwise.

(3.32)

We call a function α : [0,∞) → A a control since the system may behave quite differently

as the parameters α changing. Define the payoff function as

P [α(·)] :=

∫ T

0

r(x(t),α(t)) dt+ g(x(T)) (3.33)

where r and g are given running and terminal payoff, respectively. The goal of the problem

is to find an optimal control α∗ to maximize the payoff.

Example Let α(t) be the fraction of colony effort devoted to increase work force

which is constrained by 0 ≤ α(t) ≤ 1. Suppose the population of workers and queens change

according to the following systems, respectively.

 w′(t) = −µw(t) + bs(t)α(t)w(t)

w(0) = w0
and

 q′(t) = −νq(t) + c(1− α(t))s(t)w(t)

q(0) = q0

The problem to maximize the number of queens at time T could be modeled as one optimal

control problem as follows.

max
α

P (α(·)) := q(T)

s.t. x′(t) = [w′(t); q′(t)], x0 = [w0; q0],

32

In that case, the running payoff r = 0 and the terminal payoff g(x(T)) = q(T).

Maximum principle The following maximization principle is useful for characteriz-

ing an optimal control.

Theorem 3.2.3 (Pontryagin maximum principle (PMP)). [29] Assume α∗(·) is optimal for

the problem defined by (3.32) and (3.33). Let x∗(·) be the corresponding trajectory. Consider

the Hamiltonian function

H(x, p, a) = f(x, a) · p+ r(x, a).

Then there exists a function p∗ : [0, T]→ Rn such that

(i) (x∗)′(t) = ∇pH
(
x∗(t),p∗(t),α∗(t)

)
.

(ii) (p∗)′(t) = −∇xH
(
x∗(t),p∗(t),α∗(t)

)
.

(iii) H
(
x∗(t),p∗(t),α∗(t)

)
= maxαH

(
x∗(t),p∗(t), a

)
for t ∈ [0, T].

(iv) The mapping t 7→H
(
x∗(t),p∗(t),α∗(t)

)
is constant.

(v) The terminal condition p∗(T) = ∇g
(
x∗(T)

)
holds.

3.2.4 Optimal control of parameter training

Formulation as optimal control problem The optimal parameter θ can be ob-

tained by minimizing the loss function in (3.31) subject to the NMF dynamics (3.30). This

procedure can also be cast as an optimal control problem to find θ that steers mt to fit data

D through the NMF in (3.30):

min
θ

J (θ) := (1/K) ·
∑K

k=1 `(x
(k), x̂(k)) + r(θ) (3.34a)

s.t. m
(k)
t+1 = g(m

(k)
t ;θ), m

(k)
0 = [χSk ,0, . . . ,0], t ∈ [T]− 1, k ∈ [K], (3.34b)

where x
(k)
t = J0m

(k)
t for all t and k.

33

Modified Pontryagin’s Maximum Principle on total Hamiltonian The Pon-

tryagin’s Maximum Principle (PMP) provides an important optimality condition of the op-

timal control [5,63]. In standard optimal control, the control variable can be chosen freely in

the allowed set at any given time t, which is a key in the proof of PMP. However, the NMF

dynamics derived in (3.26) or (3.28) require a time invariant control θ throughout. This

is necessary since θ corresponds to the network parameter and needs to be shared across

different layers of the RNN, either from the linear kernel case with state [x;h] in (3.28) or

the general case with state m in (3.30). Therefore, we need to modify the original PMP and

the optimality condition for our NMF formulation. To this end, consider the Hamiltonian

function

H(m,p;θ) = p · g(m;θ)− 1
T
r(θ), (3.35)

and define the total Hamiltonian of the system (3.28) as
∑T−1

t=0 H(mt,pt+1;θ). Then we can

show that the optimal solution θ∗ is a time invariant control satisfying a modified PMP as

follows.

Theorem 3.2.4. Let x∗ be the optimally controlled state process by θ∗, then there exists a

co-state (adjoint) p∗ which satisfies the backward differential equation

m∗t+1 = g(m∗t ;θ
∗), m∗0 = [χSk ; 0; . . . ; 0], t = 0, . . . , T − 1, (3.36a)

p∗t = p∗t+1 · ∇mg(m∗t ;θ
∗), p∗T = −∇mT

`, t = T − 1, . . . , 0. (3.36b)

Moreover, the optimal θ∗ maximizes the total Hamiltonian: for any θ, there is

∑T−1
t=0 H(m∗t ,p

∗
t+1;θ

∗) ≥
∑T−1

t=0 H(m∗t ,p
∗
t+1;θ). (3.37)

In addition, for any given θ, there is

∇θJ (θ) = −
T−1∑
t=0

∂θH(mθ
t ,p

θ
t+1;θ),

34

where {mθ
t ,p

θ
t : 0 ≤ t ≤ T} are obtained by the forward and backward passes (3.36a)-(3.36b)

with θ.

Proof. We consider the augmented state ξ and nonlinear dynamics ḡ(·;θ) associated with

m and g(·;θ), defined as follows:

ξ0 =


m0

0

...

0


, ξ1 = ḡ(ξ0;θ) :=


g1(m0;θ)

g2(m0;θ)

...

gT (m0;θ)


=


m1

m2

...

mT


, (3.38)

where gt stands for the composition of g(·;θ) for t times.

Without overloading the notations, we reuse J and ` of the objective function (3.34a)

and loss function (3.31) of m respectively for the augmented state ξ. In addition, following

[63], we further simpify the notation by combining the K training data into a single variable

x̂ := [x̂(1), . . . , x̂(K)]; similar for the state variable x. In this case, the dynamics g is applied

to each column of x, and the loss function ` is to be interpreted as the average loss as in

(3.31). Furthermore, we temporarily assume the regularization r(θ) = 0 as it is simple to

append θ to the state ξ and merge r(θ) into the loss function `(ξ, ξ̂). Then the optimal

control problem (3.34) is rewritten as

min
θ

J (θ) := `(ξ, ξ̂) + r(θ) (3.39a)

s.t. ξ1 = ḡ(ξ0;θ), ξ0 = [m0; 0; . . . ; 0]. (3.39b)

Note that (3.39) is a one-step optimal control with ḡ(·;θ). Now by the discrete Pontryagin’s

Maximum Principle [5], for the state ξ∗ optimally controlled by θ∗, there exists a co-state

35

ψ∗, such that ξ∗ and ψ∗ satisfy the following forward and backward equations for θ = θ∗:

ξ∗1 = ḡ(ξ∗0;θ∗), ξ∗0 = [m0; 0; . . . ; 0], (3.40a)

ψ∗0 = ψ∗1 · ∇ξḡ(ξ∗1;θ∗), ψ∗1 = −∇ξ`(ξ∗1, ξ̂), (3.40b)

where

ξ∗1 = [m∗1; . . . ;m
∗
T] and ψ∗1 = [∂m1`(ξ

∗
1, ξ̂); . . . ; ∂mT

`(ξ∗1, ξ̂)] = [p∗1; . . . ;p
∗
T]. (3.41)

In addition, θ∗ maximizes the Hamiltonian H associated with (3.40):

H(ξ∗,ψ∗;θ∗) ≥ H(ξ∗,ψ∗;θ), ∀θ, where H(ξ,ψ;θ) := ψ1 · ḡ(ξ0;θ)− r(θ). (3.42)

Combining (3.41), (3.42), and the definition of H in (3.35) yields the maximization of total

Hamiltonian at the optimal control θ∗:

∑T−1
t=0 H(m∗t ,p

∗
t+1;θ

∗) ≥
∑T−1

t=0 H(m∗t ,p
∗
t+1;θ), ∀θ.

For any control θ and its state and co-state variables ξθ and ψθ following (3.40) with

θ (also corresponding to mθ
t and pθt for t = 0, . . . , T), we have

∇θJ (θ) = ∇ξ`(ξθ1 , ξ̂) · ∇θξθ1 +∇θr(θ)

= [∂m1`(ξ
θ
1 , ξ̂); . . . ; ∂mT

`(ξθ1 , ξ̂)] · [∂θg(mθ
0 ;θ); . . . ; ∂θg(mθ

T−1;θ)] +∇θr(θ)

= −
∑T

t=1

(
pθt · ∂θg(mθ

t ;θ) + 1
T
∇θr(θ)

)
= −

∑T
t=1 ∂θH(mθ

t ,p
θ
t+1;θ),

which completes the proof.

Theorem 3.2.4 implies that performing gradient descent to minimize J in (3.34a) with

back-propagation is equivalent to maximizing the total Hamiltonian in light of (3.37).

36

Proposed algorithm The numerical implementation of the proposed discrete NMF

is summarized in Algorithm 1.

Algorithm 1 Discrete neural mean-field (NMF) algorithm for network inference and influ-

ence estimation

Input: D = {Ck : k ∈ [K]} where Ck = {x̂(k)(t) ∈ {0, 1}n : t = 0, 1, . . . , T}.

Initialization: Parameter θ = (A,η,w).

for k = 1, . . . , MaxItrations do

Sample a mini-batch D̂ ⊂ D of cascades.

Compute {mt : t ∈ [T]} using (3.30) with θ and m0 = [χS ; 0] for each C ∈ D̂. (Forward

pass)

Compute ∇̂θJ =
∑
C∈D̂∇θ`(x, x̂) with ` in (3.31). (Backward pass)

Update parameter θ ← θ − τ∇̂θJ .

end for

Output: Network parameter θ.

Solution of Problem 1 With the trained discrete NMF model, we could fully solve

Problem 1:

• For influence estimation task, we can predict the influence {xt : t ∈ [T]} of any new

source set S by a forward pass of NMF dynamics (3.30) with input x0 = χS and the

learned parameters θ.

• For network inference task, the trained parameterA contained in θ = (A,η,w) is the

estimation of the transmission matrix which also reveals the edge E of the diffusion

network G = (V , E) by its support.

3.2.5 Implementation details

Environment All experiments are conducted on a Linux workstation with Intel i9

8-Core Turbo 5GHz CPU, 64GB of memory, and an Nvidia RTX 2080Ti GPU. All the

37

algorithms implemented in Python 3. All experiments are performed on the same machine.

Synthetic datasets Three types of network models [57] are used to generate syn-

thetic networks for mimicking the structure of real-world diffusion networks: hierarchical

(Hier) network [17], core-periphery (Core) network [59] and Random (Rand) network with

parameter matrices [0.9,0.1;0.1,0.9], [0.9,0.5;0.5,0.3], and [0.5,0.5;0.5,0.5], respectively. On

each network, we simulate the diffusion models with three type of distribution p(t; ·): ex-

ponential distribution (Exp), Rayleigh distribution (Ray), and general Weibull distribution

(Wbl). In particular, we draw the parameters αji from Unif[0.1,1] to simulate the heteroge-

neous interactions between nodes for exponential and Reyleigh distributions. We generate

both of the shape and scale parameters of Weibull distribution from Unif[1,10] randomly.

All networks and cascades are generated by SNAP [60]. There are some facts we need to

pay attentions:

• Our theoretical results in Section 3.1 are based on the standard diffusion models with

exponential distribution. However, we still conduct experiments on other distributions

to test the performance of NMF empirically.

• For a general Weibull distribution, its transmission likelihood is

f(tj|ti;λij, kij)


kij
λij

(
x
λij

)kij−1
e−((tj−ti)/λij)

kij

if tj > ti

0 otherwise

where kij > 0 is the shape parameter and λij > 0 is the scale parameter of the distri-

bution over the edge (i, j) ∈ E . Thus, kij and λij both contribute to the transmission

strength of the edge αij. However, there is no explicit relation of αij and kij, λij. So

the results of the experiment on network inference for Weibull distribution can not

be evaluated which will be ignored.

• For each edge (i, j) ∈ E , Exponential distribution is a Weibull distribution with

parameters λij = 1
αij

and kij = 1. Rayleigh distribution is also a special Weibull

38

distribution with parameters λij = 1√
2αij

and kij = 2.

Neural network on ε(x,h;η) In our NMF implementation on discrete and contin-

uous models, the neural mean field dynamic g(·;θ) derived from Theorem 3.1.4 is learned as

Algorithm 1, where ε(x,h;η) is always a three-layer fully connected network. Specifically,

the input layer size of ε is 2n, and both of the hidden and output layer sizes are n. We

use Exponential Linear Unit (ELU) as the activation function. The output is truncated into

[0, 1]. We use the `0-norm regularization approximated by log-sum introduced by [83].

Evaluation metrics To evaluate the performance on influence estimation, we cal-

culate the ground truth x∗ of node infection probability with given source set S in two

steps:

1. Generate 10,000 cascades start from the source set S.

2. For each node i and time t, estimate the ground truth of x∗i (t;χS) by the frequency

of cascades with node i infected by t.

With the ground truth node infection probability x∗, the Mean Absolute Error (MAE) of

influence (Inf) and infection probability (Prob) of the estimated x are defined by |1 · (x(t)−

x(t)∗)| and ‖x(t) − x(t)∗‖1/n for every t, respectively. For all the experiments related on

the influence estimation, we also use the scaled influence MAE |1 · (x(t) − x(t)∗)|/n as an

evaluation metric.

To evaluate the quality of E and A, we use four metrics: precision (Prc), recall (Rcl),

accuracy (Acc), and correlation (Cor), defined as follows,

Prc(E , E∗) = |E∩E∗|
|E∗| , Rcl(E , E∗) = |E∩E∗|

|E| ,

Acc(E , E∗) = 1− |E−E∗|
|E|+|E∗| , Cor(A,A∗) = |tr(A>A∗)|

‖A‖F ‖A∗‖F
,

where |E| counts the number of nonzero entries in E , and E∗ and A∗ are their true values,

respectively. In Acc, the edge set E is also interpreted as a matrix, and |E| counts the number

39

of nonzeros in E . In Cor, ‖A‖2F = tr(A>A) is the Frobenius norm of the matrix A. Prc is

the ratio of edges in E∗ that are recovered in E . Rcl is the ratio of correctly recovered edges

in E . Acc indicates the ratio of the number of common edges shared by E and E∗ against the

total number of edges in them. Cor measures similarity between A and A∗ by taking their

values into consideration. All metrics are bounded between [0, 1], and higher value indicates

better result. To allow some noises on the prediction results appearing in a small range, we

set the recovered adjacency matrix E to the binary indicator matrix A> ≥ ε, i.e., (E)i,j = 1

if (A)ji ≥ 0.01.

3.2.6 Comparison models

Discrete and continuous NMF models are both developed under the specific setting of

CIC model to solve the multi-task learning problem defined in Problem 1. To the best of

my knowledge, there is no any other methods could solve all the tasks in one model. Thus,

we compare our NMF models with the state-of-the-art approach for each task separately.

InfluLearner [24] It is a state-of-the-art method that can estimate individual node in-

fection probability directly from cascade data in the CIC setting as our method. InfluLearner

draws a set of random binary features from certain distribution for each node j indicating

the reachabilities of j by other nodes, and then uses a convex combination of random basis

function to parameterize the conditional infection probability of the node given a source set

over these binary vectors. To estimate the reachability distribution, InfluLearner calculates

the mean frequency of node j being influenced by a source node s, average over all cascades

in the training dataset with the source s.

It is worth noting that InfluLearner requires additionally the source identity for each

infection to estimate the coverage functions. That is, InfluLearner also needs to know the

original source node in the source set for each and every new infection occurred in the cascade

in the training data. This additional information is provided in our simulated data in favor

of InfluLearner. However, it is often unavailable in real-world applications such as epidemic

40

spreads. The proposed NMF methods do not have such restriction.

Moreover, to quantify estimation error, we compute the MAE of node infection proba-

bility and influence at tl = l for l = 1, . . . , 20, and average each over the 50 test source sets.

Since InfluLearner needs to learn the coverage function for a prescribed time t, we have to

run it for each of the 20 time points one by one. In contrast, the proposed discrete and

continuous NMF models are more advantageous since they can both directly estimate all of

needed infection probabilities by one run, which is more computationally efficient. In par-

ticular, continuous NMF model can estimate the entire evolution of infection probabilities

during [0, T].

NetRate [35] It is a state-of-the-art algorithm that uncovers the network structure

and transmission rates from cascade data. It is worth noting that NetRate requires the

knowledge of the specific diffusion model (e.g., Exp or Ray), so that the transmission like-

lihood function can be explicitly expressed. Moreover, NetRate can only estimate A of

diffusion networks, but not the influence. In contrast, NMF tackles both network inference

and influence extimation simultaneously. In terms of computation efficiency, we observed

that the implementation of NetRate provided in [35] runs very slowly for large networks.

Therefore, we only perform comparisons on networks of size n = 128 in this experiment.

3.2.7 Experiment results

Training and testing data We first test NMF on a set of synthetic networks that

mimic the structure of real-world diffusion network. For each type of network model, we

generate 5 networks consisting of 128 nodes and 512 edges. We generate training data

consists of K=10,000 cascades, which is formed by 10 sample cascades for each of 1,000

source sets (a source set is generated by randomly selecting 1 to 10 nodes from the network).

Extra 100 source sets are generated for testing.

Experiment setting Among the few existing methods capable of learning infection

probabilities of individual nodes directly from cascade data as ours, we adopt InfluLearner

41

[24] and a conditional LSTM (LSTM for short) [49] as baseline to compare. In our NMF

implementation, we use a standard LSTM architecture and 3 dense layers for the RNN ε

at each time t. Regularization terms using l1-norm of all parameters are added to the loss

function to promote their sparsity and robustness. Specifically, we use 0.001 to weight A

and 0.0001 to all other trainable parameters, respectively. The NMF networks are trained

and tested in TensorFlow [1] using Adam optimizer [53] with default parameters (lr=0.001,

β1=0.9, β2=0.999, ε=1e-8). The LSTM model is trained and tested in the same setting

as NMF except a fixed regularization weight 0.001 for all trainable parameters. We take

T = 20 and train NMF and LSTM in 15000 steps. InfluLearner is trained in Matlab, and

the number of features is set to 128. All experiments are performed on the same machine.

Comparison results on influence estimation To evaluate accuracy, we compute

the mean absolute error (MAE) of node infection probability and influence over the 100

source sets for each time t. The results are given in Figure 3.2, which shows the mean (center

line) and standard deviation (shade) of the three methods. NMF generally has lowest MAE,

except at some early stages where InfluLearner is better. Note that InfluLearner requires

and benefits from the knowledge of the original source node for each infection in the cascade

(provided in our training data), which is often unavailable in practice and not needed in our

method.

We also tested NMF on a real dataset [105] from Sina Weibo social platform consisting of

more that 1.78 million users and 308 million following relationships among them. Following

the setting in [24], we select the most popular tweet to generate diffusion cascades from the

past 1,000 tweets of each user. Then we recreate the cascades by only keeping nodes of the top

1,000 frequency in the pooled node set over all cascades. For testing, we uniformly generate

100 source sets of size 10 and use t = 1, 2, . . . , 10 as the time steps for observation. Finally, we

test 100 source sets and compare our model NMF with the InfluLearner and LSTM. The MAE

of all methods are shown in Figure 3.5a which shows that NMF significantly outperforms

LSTM and is similar to InfluLearner. However, unlike InfluLearner that requires re-training

42

for every t and is computationally expensive, NMF learns the evolution at all t in a single

sweep of training and is tens of time faster.

Comparison results on network structure inference For comparison, we test

NetRate [35] to the cascade data and learn A with Rayleigh distribution. Evaluation by

four metrics are shown in Table 3.2, which indicates that NMF outperforms NetRate in all

metrics. Note that NMF learns A along with the NMF dynamics for infection probability

estimation in its training, whereas NetRate can only learn the matrix A. We also show

Table (3.2). Performance of structure inference using NetRate and the proposed discrete

NMF on Random, Hierarchical, and Core-periphery networks with Rayleigh distribution

as the diffusion time model on edges. Quality of the learned edge set E and distribution

parameter A are measured by precision (Prc), recall (Rcl), accuracy (Acc), and correlation

(Cor).

Network Method Prc Rcl Acc Cor

Random
NetRate 0.481 0.399 0.434 0.465

NMF 0.858 0.954 0.903 0.950

Hierarchical
NetRate 0.659 0.429 0.519 0.464

NMF 0.826 0.978 0.893 0.938

Core-

periphery

NetRate 0.150 0.220 0.178 0.143

NMF 0.709 0.865 0.779 0.931

the visual appearance of A inferred by NMF in Figure 3.3. The ground truth A∗ and A

inferred by NetRate are also provided for comparison. As we can see, A inferred by NMF is

much more faithful to A∗ than that by NetRate. Note that NetRate requires knowledge

of specific diffusion model type (Rayleigh in this test) whereas NMF does not. This result

shows that NMF is versatile and robust when only cascade data are available.

43

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(a) Hier + Exp

2 4 6 8 101214161820
t

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(b) Hier + Ray

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(c) Hier + Wbl

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(d) Core + Exp

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE LSTM
InfluLearner
NMF

(e) Core + Ray

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(f) Core + Wbl

2 4 6 8 101214161820
t

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(g) Rand + Exp

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(h) Rand + Ray

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

LSTM
InfluLearner
NMF

(i) Rand + Wbl

Figure (3.1). MAE of node infection probability by LSTM, InfluLearner, and discrete NMF

on each of the 9 different combinations of Hierarchical (Hier), Core-periphery (Core) and

Random (Rand) networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffu-

sion models. Mean (centerline) and standard deviation (shade) over 100 tests are shown.

44

2 4 6 8 10 12 14 16 18 20
t

0

10

20

30

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(a) Hier + Exp

2 4 6 8 10 12 14 16 18 20
t

0

10

20

30

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(b) Hier + Ray

2 4 6 8 10 12 14 16 18 20
t

0

10

20

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(c) Hier + Wbl

2 4 6 8 101214161820
t

0

10

20

in
flu

en
ce

 M
AE LSTM

InfluLearner
NMF

(d) Core + Exp

2 4 6 8 10 12 14 16 18 20
t

0

10

20

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(e) Core + Ray

2 4 6 8 10 12 14 16 18 20
t

0

10

20

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(f) Core + Wbl

2 4 6 8 10 12 14 16 18 20
t

0

10

20

30

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(g) Rand + Exp

2 4 6 8 10 12 14 16 18 20
t

0

10

20

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(h) Rand + Ray

2 4 6 8 10 12 14 16 18 20
t

0

10

20

30

in
flu

en
ce

 M
AE

LSTM
InfluLearner
NMF

(i) Rand + Wbl

Figure (3.2). MAE of influence by LSTM, InfluLearner, and discrete NMF on each of the

9 different combinations of Hierarchical (Hier), Core-periphery (Core) and Random (Rand)

networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion models. Mean

(centerline) and standard deviation (shade) over 100 tests are shown.

45

(a) True (b) NetRate (c) NMF

Figure (3.3). Ground truth A∗ (left) and A inferred NetRate (middle) and discrete NMF

(right) under the same color scale using cascaded data from a Hierarchical network with

Rayleigh diffusion model.

Robustness and scalability We test the robustness of NMF for varying network

density |E|/n. The MAE of influence and infection probabilty by NMF on a hierarchical

network with n = 128 are shown in Figure 3.5c and 3.5b, respectively. NMF remains accurate

for denser networks, which can be notoriously difficult for other methods such as InfluLearner.

We test NMF on networks of increasing sizes up to n=2,048 with |E| = 2n for each n using

Hierarchical network and exponential diffusion model on cascade data containing 10,000

cascades. We also generate 100 extra cascades with 20%-validation and 80%-test. Figure

3.4 (a)–(b) shows the MAE of influence (Inf) and infection probability (Prob) estimated by

NMF versus time for varying n, which indicate that the error remains low for large networks.

We compare NMF to InfluLearner in terms of runtime for the influence estimation. For

InfluLearner, we draw 200 features. For NMF, the batch size of training cascade data is

set to 50 for the network with more than 2,048 nodes, and is 100 for smaller networks.

The training is terminated when the average MAE of infection probability on validation

data does not decrease for 20 epochs. Figure 3.4 (c) shows the comparison on runtime

(in seconds) of training as we increase the network size n in InfluLearner and NMF. Note

that the original implementation of InfluLearner [24] is in Matlab and the computational

46

time increases drastically in network density, whereas our method retains similar runtime

regardless of network density.

0 1 2 3 4 5 6 7 8 9 10
t

0.0

2.5

5.0

7.5

In
flu

en
ce

 M
AE 256

512
1024
2048

(a) Inf MAE vs t

0 1 2 3 4 5 6 7 8 9 10
t

0.000

0.005

0.010

0.015

pr
ob

ab
ilit

y
M

AE 256
512
1024
2048

(b) Prob MAE vs t

102 103

n

102

103

104

105

t

InfluLearner
NMF

(c) Runtime vs # nodes

Figure (3.4). (a)–(b) MAE of influence (Inf) and infection probability (Prob) estimated by

discrete NMF for Hierarchical networks with increasing network sizes from 256 to 2048. (c)

runtime (in seconds) for training versus network sizes in log-log scale.

1 2 3 4 5 6 7 8 9 10
t

25

50

in
flu

en
ce

 M
AE LSTM

InfluLearner
NMF

(a) Influ MAE vs t

2 3 4 5 6
density

2

4

in
flu

en
ce

 M
AE

NMF

(b) Influ MAE vs density

2 3 4 5 6
density

0.02

0.03

0.04

pr
ob

ab
ilit

y
M

AE

NMF

(c) Prob MAE vs density

Figure (3.5). (a) MAE of influence estimated by LSTM, InfluLearner on Weibo data; (b)–(c)

MAE of influence and infection probability of discrete NMF for different network densities.

3.3 Continuous NMF algorithm

Based on Theorem 3.1.4, the continuous-time hidden state after an ε change in time

can then be obtained.

47

Theorem 3.3.1. The transformation of the system (3.26) with an ε change in time reduces to

a continuous-depth residual neural network (ResNet) with hidden states formatted as x(t+ε):

xt+ε = xt +

∫ t+ε

t

f(x;A) + ε(x,h;η)ds (3.43a)

ht+ε = ht +

∫ t+ε

t

∑L
l=1(Blx−Clh)ds (3.43b)

with input x0 = χS and h0 = 0.

According to Theorem 3.3.1, by solving the system (3.43), we are able to solve Problem 1

by predicting the infection probability at arbitrary time t ∈ [0, T] as the output of (3.43a),

and uncovering the existence and strength of connection between edges by the trainable

matrix A in (3.43a), which inspires us for a continuous-time setting of NMF for Problem 1.

This setting enables the NMF model to estimate influence at any time t ∈ [0, T], and also

gives the possibility to use the most original cascade data which is not truncated by some

time points in the training. However, the continuous-time setting is also a double-edged

sword which leads to the following new challenges:

(C1) On loss function, how to design it for data in continuous-time setting which could

keep the most of information of the original cascade data D?

(C2) How to backward the continuous-depth neural network defined by (3.43)?

For (C1), we will introduce a specific loss function designed for the continuous-time NMF

in subsection 3.3.2 by the special temporal point pattern shown in cascades. To overcome

the challenge (C2), we employ the adjoint sensitivity method inspired by [10] to design the

continuous backpropagation. More details are shown in the following subsections.

3.3.1 ODE system for continuous NMF

First of all, it is necessary to introduce a singe ordinary differential equation (ODE)

system on m := [x;h] derived from (3.26) or (3.43). As shown in Theorem 3.1.4, mean-

48

field dynamics (3.24) reduces to a non-deday ODE system of (x,h) with (3.26a) and h′ =

Bx−Ch which implies one formulation of NNF in continuous-time setting as follows.

Definition 3.3.2 (Formulation of continuous NMF). Let m(t) = [x(t);h(t)] ∈ R2n. For

any t ∈ [0, T], we consider the follow system for continuous NMF:

m′(t) = g(m(t);θ), (3.44)

where g(m;θ) =

Ax− diag(x)Ax+ ε(x,h;η)

Bx−Ch

 .

In Definition 3.3.2, g(m;θ) is the NMF dynamics derived in (3.26) or (3.43) with pa-

rameter θ = (A,w,η) and w = (B,C). In particular, η stands for the network parameters

of the deep neural network ε that wraps the augmented state m to approximate the MZ

memory term (3.12).

In the following subsection, we establish a direction connection between mathematical

optimal control and NODE, and provide a rigorous proof that NODE exactly evaluates the

gradient of the target payoff function (likelihood function in our case) during optimization

from the optimal control point of view. Compared to [10], our proof is based on calculus of

variation which is more mathematically rigorous. Moreover, we show how to incorporate the

running payoff (or loss) function at scattered observation times through a rigorous derivation,

as needed in continuous-time NMF training.

3.3.2 Evolutionary point processes and loss function

In this subsection, we will introduce the loss function designed for continuous-time

cascade data. Given a sample cascade with time log τ̂ = {ti : i ∈ [n], 0 ≤ ti ≤ T or ti =∞}

from D, where [0, T] is the observation time window and ti is the time node i is infected.

Clearly, a cascade shows a temporal point pattern with the identities of infected nodes

as marks. It can be defined as an evolutionary point process [44] since the propagation

only depends on the preciously infected nodes. Recall from Section 3.1.2 that X(t) is the

49

jump stochastic process describing the infection state of the nodes and x(t) is the infection

probabilities. Therefore, x′(t) is essentially the (non-conditional) intensity of X(t). In other

words, X(t) is identical to a non-homogeneous Poisson process with intensity function x′(t)

for t almost everywhere. Due to the relation between the intensity function and the likelihood

function of a point process [44], the log-likelihood function of the process is given by

Theorem 3.3.3. Given a cascade (S, τ) with τ = {ti : i ∈ [n], 0 ≤ ti ≤ T or ti =∞} from

D on an observation interval [0, T], the log-likelihood function is given by

LL(x) =
∑

i∈[n] and ti∈τ∩(0,∞)

log x′i(ti)−
n∑
i=1

xi(T)

where x(t;χS) is the node infection probability function.

Proof. Suppose that Xi(t;χS) jumps from 0 to 1 for some node i and time t, i.e. ti = t.

Then let f(t, i|Ht−) be the conditional density function of (t, i) of the next jump given

the history Ht− = {Xi(s;χS) : s < t, i ∈ [n]} and F (t, i
∣∣Ht−) be its corresponding cu-

mulative distribution function. Denote f(t, ·|Ht−) :=
∑n

i=1 f(t, i|Ht−) and F (t, ·|Ht−) :=∑n
i=1 F (t, i|Ht−). Define the conditional intensity functions by λ∗(t, ·) =

f(t,·|Ht−)

1−F (t,·|Ht−)
and

λ∗(t, i) = λ∗(t, ·)f(i|t,Ht−). Thus, λ∗(t, i) =
f(t,i|Ht−)

1−F (t,·|Ht−)
. Assume that before t, the last

jump happens at time t∗ > 0. Then Ht− = Ht∗ . In particular, if Ht− = H0 = χS , then set

t∗ = 0. In both cases, we have

λ∗(t, ·) =
f(t, ·|Ht∗)

1− F (t, ·|Ht∗)
= − d

dt
log(1− F (t, ·|Ht∗)).

Thus,
∫ t
t∗
λ∗(s, ·)ds = − log(1 − F (t, ·|Ht∗)) since F (t∗, ·|Ht∗) = 0. Therefore, F (t, ·|Ht∗) =

1− exp
(
−
∫ t
t∗
λ∗(s, ·)ds

)
and so

f(t, ·|Ht∗) = λ∗(t, ·) exp

(
−
∫ t

t∗
λ∗(s, ·)ds

)
.

Without loss of generality, we may assume that ti ∈ (0,∞) when i ∈ [n0], and ti = 0 or

50

∞ otherwise. Moreover, assume t0 := 0 < t1 < t2 < · · · < tn0 . Then the likelihood function

is

L = f(t1, 1|Ht0)f(t2, 2|Ht1) · · · f(tn0 , n0|Htn0−1)(1− F (T, ·|Htn0
))

where the last term appears since there is no new node infected in the time interval (tn0 , T]

when tn0 < T .

Therefore, we get that

L =

 n0∏
i=1

f(ti, i|Hti−1
)

 f(T, ·|Htn0
)

λ∗(T, ·)

=

 n0∏
i=1

f(ti, ·|Hti−1
) · f(i|ti,Hti−1

)

 f(T, ·|Htn0
)

λ∗(T, ·)

=

 n0∏
i=1

f(i|ti,Hti−1
)λ∗(ti, ·) exp

(
−
∫ ti

ti−1

λ∗(s, ·)ds

) exp

(
−
∫ T

tn0

λ∗(s, ·)ds

)

=

 n0∏
i=1

λ∗(ti, i)

 exp

(
−
∫ T

0

λ∗(s, ·)ds

)

=

 n0∏
i=1

λ∗(ti, i)

 exp

−∫ T

0

n∑
i=1

λ∗(s, i)ds

.
Since this is an inhomogeneous Poisson process by the assumption, λ∗(ti, i) = λi(ti) = x′i(ti)

by the proof of Theorem 3.1.2. Thus,

L =

n0∏
i=1

x′i(ti) exp

− n∑
i=1

xi(T)


which establishes the log-likelihood we want to prove.

According to Theorem 3.3.3, the negative log-likelihood function of x′(t) given the

cascade C = (S, τ) can be easily obtained, and it is also the “loss function” ` we need to

51

minimize:

`(x; C) =
∑

i∈[n] and ti∈τ∩(0,∞)

(− log x′i(ti)) +
n∑
i=1

xi(T). (3.45)

It indicates that the loss is measured by the node states at the terminal time and take an

addition for time t ∈ [0, T] only if there is one node gets infected at that moment. To analysis

the running loss of the process, we rewrite the summation in (3.47) as an integration over

the continuous time interval [0, T] by employing the Dirac delta function δ(·):

Definition 3.3.4 (Loss function). Given a cascade (S, τ) with τ = {ti : i ∈ [n], 0 ≤ ti ≤

T or ti = ∞} from D on an observation interval [0, T], the negative log-likelihood function

of x′(t) is

`(x; C) =

∫ T

0

r(x(t),θ) dt+ 1>x(T), (3.46)

where the running loss function is defined by

r(x(t),θ) =
n∑
i=1

−δ(t− ti) log x′i(t) =
n∑
i=1

−δ(t− ti) log(f̃(x,h;θ))i, (3.47)

and δ(·) is the Dirac delta function.

The running loss takes into account the changes of x(t) at intermediate times during

[0, T]. We can further add regularization or incorporate prior information to (3.46). More

implemented suggestions are listed as follows.

• Control on support. If E is given, we know that A must be supported on E , which

serves as the constraint of A.

• Control on sparsity. If we know the network has low density (sparse edges), then

we can enforce a sparsity regularization such as ‖A‖1 (the l1 norm of the vectorized

A ∈ Rn2
).

• Learning of A. In general, A can be interpreted as the convolution to be learned

from a graph convolution network (GCN) [54, 101]. The support and magnitude of

52

A implies the network structure and strength of interaction between pairs of nodes,

respectively.

We will provide more details of our choice of regularization and its parameter setting in

subsection 3.3.6.

3.3.3 Optimal control formulation of parameter learning

In this subsection, we will formulate the problem to minimize the loss function in Defi-

nition 3.3.4 as an optimal control problem which enables us to get theoretical support from

the corresponding control theories.

To summarize, we give the following formulation on the control problem.

Definition 3.3.5 (Optimal control on θ for continuous NMF). The optimal parameter θ of

(3.24) can be obtained by minimizing the loss function in (3.46) for the given cascade C:

min
θ

`(θ; C) :=

∫ T

0

r(x(t),θ) dt+ 1>x(T), (3.48a)

s.t. m′(t) = g(m(t);θ), m(0) = [χSk ; 0], t ∈ [0, T], (3.48b)

where m(t) = [x(t);h(t)] ∈ R2n and

g(m;θ) =

Ax− diag(x)Ax+ ε(x,h;η)

Bx−Ch

 . (3.49)

This is the parameter training problem given one cascade C, and can be trivially ex-

tended to the case D which consists of K cascades. In what follows, we drop the notation C

for conciseness.

Remark 3.3.6. Solving such a system for the optimal parameter θ = (A,w,η) has been

cast as the so-called neural ODE (NODE) in [10]. Note that

• The so-called control variable θ is constant and time-invariant in NODE [10] as well

53

as in NMF. Therefore, it is considerably easier to handle than that in classical optimal

control θ.

Motivated by Remark 3.3.6, in subsection 3.3.4, we will revisit the neural ODE (NODE)

[10]. In subsection 3.3.5, we will develop an algorithm for solving θ in (3.48) inspired by

NODE, which is easy to implement. Moreover, we will derive a rigorous proof of the relation

between the gradient of the loss function and the solution of the augmented dynamics.

3.3.4 Revisiting neural ODE (NODE)

Consider a sequence of simple transformations to a hidden state

h(t+ 1) = h(t) + f(h(t),θ(t)). (3.50)

where t = 0, 1, · · · , T and h(t) is the state vector at time t. Then (3.50) is the Euler solution

at the discretized grid of n time steps with normalized size 1 on the ordinary differential

equation (ODE) system with dynamic

h′(t) = f(h(t),θ(t)) (3.51)

and initial value h0. In other word, we can see (3.50) as Euler discretization of a continuous

transformation [45,66,88]. In the view of limit over the finite number of layers, Neural ODE

parameterize the continuous dynamic of hidden units as form

h′(t) = f(h(t), t,θ),

which could be specified by a neural network. More specifically, the main ideas of NODE is

that

• In stead of iterative update the state vector to get h(T) like residual or recurrent

neural network, NODE first learns the ODE (3.51) by a neural network.

54

• Then solve the learned ODE model for h(T) by using an efficient and accurate ODE

solvers [28,55,87].

Since the dynamics are defined in continuous time, it does not require discretizing observa-

tion. Data could includes point process with temporal events happen at any time.

The main technical difficulty in training an NODE model is performing reverse-mode

differentiation (backpropagation) through one ODE solver. The normal backward pass works

for the NODE models, but it causes a high memory cost and bigger numerical error. To

overcome this challenge, [10] also proposed a reverse-mode automatic differentiation of ODE

solutions using the adjoint method [82]. The main theorem is that

Theorem 3.3.7. [10] Let x(t) follow the differential equation

x′(t) = f(x(t), t,θ),

where θ are the parameters and let the loss function be L(x(t)). If we define an adjoint state

a(t) = ∇xL(x(t)),

then it follows the differential equation

a′(t) = −a(t)∇xf(x, t,θ).

It leaves some rooms for us to improve:

• The proof of Theorem 3.3.7 is not based on the Pontryagin maximum principle (PMP)

or any control theory. It works on

a′(t) = lim
ε→0+

a(t+ ε)− a(t)

ε

by substituting a′(t) by

a(t) = a(t+ ε)
dx(t+ ε)

dx(t)

55

and employing the first order approximation of x(t+ ε):

x(t+ ε) =

∫ t+ε

t

f(x(t), t,θ) dt+ x(t) = x(t) + εf(x(t), t,θ) +O(ε2).

• By checking the maximum principle, we can tell the adjoint method developed for

NODE is only for an optimization problem on a loss function with independency on

intermediate time points.

• When the loss depends on intermediate states, the reverse-mode derivative of NODE

is broken into a sequence of separate solves over each consecutive pair of output times

[ti, ti+1]. And the adjoint is adjusted by adding ∇xL(x(ti)). However, the theory of

this part is missing.

In our research, we addressed all these issues for a completed theory system.

Many literature are inspired by the NODE framework on the continuous deep learning

[104] in the research of neural network architecture design [3,22,43,80,81,86] and generative

modeling [42,102].

3.3.5 Backpropagation in continuous NMF

As we can see, to find the optimal θ of (3.48), the key is to compute ∇θ`(θ) for any

θ. To this end, we recall that the Hamiltonian function associated with the control problem

(3.48) is

H(m(t),p(t);θ) = p(t) · g(m(t);θ) + r(m(t),θ), (3.52)

where p(t) ∈ R2n is the co-state variable (also known as the adjoint variable) associated with

m(t). Here, p(t) plays the role of Lagrange multiplier for the ODE constraint (3.48b).

Dynamics of co-state The standard optimal control theory states that the co-state

p(t) follows the ODE backward in time as follows:

56

Definition 3.3.8 (Backward ODE on co-state p(t)).


p′(t) = −∇mg(m(t);θ)p(t)−∇mr(m(t),θ), T ≥ t ≥ 0,

p(T) = [1; 0].

(3.53)

The terminal condition p(T) = [1; 0] has this simple form because the “terminal loss”

in (3.48) is given by [1; 0] ·m(T) = 1 · x(T).

Optimal theory To show that ∇θ` can be obtained by solving the ODE (3.48b)

forward in time and an augmented ODE backward in time, we prove the following theorem.

Theorem 3.3.9. The gradient ∇θ`(θ) of the loss function ` defined in (3.48) for any pa-

rameter θ and cascade data C is given by

∇θ`(θ) =

∫ T

0

(
∇θg(m(t);θ)p(t) +∇θr(m(t),θ)

)
dt. (3.54)

Moreover, if m∗ is the solution of (3.48b) using the optimal solution θ∗ to (3.48), and p∗ is

the co-state determined by (3.53) with m∗ and θ∗, then

∫ T

0

∇θH(m∗(t),p∗(t);θ) dt = 0.

Proof. Let ζ ∈ Rm and ε ≥ 0 be arbitrary. Consider the variation of any control θ given by

θε := θ + εζ and denote mε(t) the state process following (3.48b) with θε. Then we have

mε(t) = m(t) + εy(t) + o(ε), 0 ≤ t ≤ T,

where the first-order perturbation y(t) satisfies


y′(t) = ∇mg(m(t);θ)y(t) +∇θg(m(t);θ)ζ, 0 ≤ t ≤ T,

y(0) = 0.

57

Therefore, the directional derivative of ` defined in (3.48a) at θ along the direction ζ is

d

dε
`(θε)

∣∣∣
ε=0

=

∫ T

0

(
∇mr(mt,θ)y(t) +∇θr(m(t),θ)ζ

)
dt+ p(T)y(T). (3.55)

On the other hand, we have

(p · y)′ = p′ · y + p · y′ = −
(
∇mg(m(t);θ)p(t) +∇mr(m(t),θ)

)
· y

+ p ·
(
∇mg(m(t);θ)>y(t) +∇θg(m(t);θ)>ζ

)
= −∇mr(m(t),θ)>y(t) + p(t)>∇θg(m(t);θ)ζ.

Since y(0) = 0, we know

p(T) · y(T) =

∫ T

0

(
−∇mr(θ,m(t))>y(t) + p(t)>∇θg(m(t);θ)ζ

)
dt. (3.56)

Substituting (3.56) into (3.55) yields

d

dε
`(θε)

∣∣∣
ε=0

=

∫ T

0

(
∇θg(m(t);θ)>p(t) +∇θr(θ,m(t))

)
dt · ζ.

As ζ is arbitrary, we know that the gradient ∇θ`(θ) is as claimed in (3.54).

Note that the integrand in (3.54) is

(
∇θr(θ,m(t)) +∇θg(m(t);θ)>p(t)

)
= ∇θH(m(t),p(t);θ).

Hence, at the optimal θ∗ of `, we have

d

dε
`(θ∗ε)

∣∣∣
ε=0

=
(∫ T

0

∇θH(m∗(t),p∗(t);θ∗) dt
)
· ζ ≥ 0, (3.57)

for all ζ ∈ Rm, from which we readily deduce the identity regarding H at θ∗.

58

Backward ODE for the gradients The formula (3.54) in Theorem 3.3.9 suggests

that we can compute ∇θ` by tracking an auxiliary variable q that follows the following

backward differential equation and terminal condition.

Definition 3.3.10 (Backward ODE for ∇θ`).
q′(t) = −∇θg(m(t),θ)>p(t)−∇θr(θ,m(t)), T ≥ t ≥ 0,

q(T) = 0.

(3.58)

The gradients ∇θ` is the initial value of the solution on the system (3.58). That is,

∇θ`(θ) = q(T)−
∫ T

0

q′(t) dt = q(0).

Integration on running loss To solve the ODE system (3.58) for the gradients, we

need to clarify one implementation issue with running loss r: the second term of the dynamic

(3.58) could not be solved by any numerical ODE solver. Same issue appears for solving the

backward ODE dynamic (3.53).

Suppose that the infection times in the cascade C can be sorted 0 < t(1) < t(2) < · · · <

t(m) < t(m+1) := T . That is, there are m infections (excluding the infections at the source

nodes) during the cascade C. (Note that any two infection times coincide with probability 0

since the point process is simple.) For notation simplicity, suppose that at time t(i), the new

infected node is i.

Theorem 3.3.11. The integral of the running loss in (3.58) reduces to

∫ T

0

∇θr(θ,m) dt =
m∑
i=0

∇θ
(
− log gi(m(t(i));θ)

)
, (3.59)

where gi(m(t),θ) is the ith component of g(m(t),θ).

Proof. Let gi(m(t),θ) is the ith component of g(m(t),θ). Since gi(m(t),θ) is only defined

in [0, T], we could suppose that gi(m(t),θ) = 0 for any t /∈ [0, T]. By employing the property

59

of the Dirac delta function δ(·), we obtain that

∫ T

0

∇θr(θ,m) dt =

∫ T

i=0

∇θ
m∑
i=0

(
−δ(t− t(i)) log gi(m(t);θ)

)
dt

=
m∑
i=0

(
∇θ
∫ T

0

(
−δ(t− t(i)) log gi(m(t);θ)

)
dt

)

=
m∑
i=0

(
∇θ
∫ ∞
0

(
−δ(t− t(i)) log gi(m(t);θ)

)
dt

)
=

m∑
i=0

∇θ
(
− log gi(m(t(i));θ)

)
.

This completes the proof.

Similarly, we could also get the following theorem.

Theorem 3.3.12. The integral of the running loss in (3.53) reduces to

∫ T

0

∇mr(θ,m) dt =
m∑
i=0

∇m
(
− log gi(m(t(i));θ)

)
, (3.60)

where gi(m(t),θ) is the ith component of g(m(t),θ).

Calculation on the gradients Based on Theorem 3.3.11, we could compute q(0) by

solving the ODE (3.58) backward in each time interval as

q(t(i−1)) = q(t(i))−
∫ t(i−1)

t(i)
∇θg(m(t),θ)>p(t) dt−∇θ log gi−1(m(t(i−1));θ). (3.61)

which indicates the needs of the knowledge on the co-state p(t) and state m(t) along the

entire trajectory of (3.58). Fortunately, in a similar behavior on the backward ODE (3.53),

we have

p(t(i−1)) = p(t(i))−
∫ t(i−1)

t(i)
∇mg(m(t),θ)>p(t) dt−∇m log gi−1(m(t(i−1));θ). (3.62)

60

The ODE of m(t) remains the same as in (3.48b) since it does not involve the running loss

r. The computation of m could also be put in a similar backward process in time as (3.61)

and (3.62) starting from m(T) which can be calculated in a forward step as follows:

m(t(i−1)) = m(t(i))−
∫ t(i−1)

t(i)
g(m(t),θ) dt. (3.63)

To summarize, we can adopt the following approach to compute the gradients ∇θ`(θ)

for any given θ:

1. Solve the ODE (3.48b) of m(t) forward in time from 0 to T .

2. Solve the ODE system (3.48b), (3.53), and (3.58) of (m(t),p(t), q(t)) backward in

time from T to 0 by employing the backward propagation in (3.63), (3.62), and (3.61)

over the sequence of reversed time subintervals of [0, T]. In particular, the key points

for implementation are:

(1) For each reversed subinterval, the gradient parts in (3.62) and (3.61) can be

calculated by simply calling an auto gradient tool built in the most of plat-

forms.

(2) The remaining parts of (3.62) and (3.61), and (3.63) can be calculated by

calling an ODE solver.

(3) To avoid of calling ODE solver three times for (2), We can combine them as a

single call on a corresponding augmented dynamic system of (3.48b), (3.53),

and (3.58).

4. Finally, we obtain ∇θ`(θ) = q(0).

Proposed algorithm The complete training process is summarized in Algorithm 2,

where mini-batches of cascades are used to compute the stochastic gradient in searching

the (local) minimizer θ. We did not include the gradient of the regularization of θ, but its

computation is standard and can be easily added to ∇θ`(θ).

61

Algorithm 2 Continuous neural mean-field (NMF) dynamics

1: Input: D = {Ck = (Sk, τk) : k ∈ [K]}.

2: Initialization: Network architecture g(·;θ) and parameter θ = (A,η,w).

3: for k = 1, . . . ,MaxIterations do

4: Sample a mini-batch of cascades D̂ ⊂ D.

5: Compute m(t) in (3.48b) forward in time for each C ∈ D̂. (Forward pass)

6: Compute
∑
C∈D̂∇θ`(θ; C) using the BackwardMode below. (Backward pass)

7: Update parameter θ using ADAM with stochastic gradient
∑
C∈D̂∇θ`(θ; C).

8: end for

9: Output: Network parameter θ.

BackwardMode

10: Input: Cascade C = (S, τ) with τ : 0 = t(0) < t(1) < · · · < t(m+1) = T and m(T).

11: Terminal augmented state: [m(T);p(T); q(T)] = [m(T); [1; 0]; 0].

12: for i = m+ 1, . . . , 1 do

13: Solve the ODE below backward in time (t(i−1), t(i)]:


m′(t)

p′(t)

q′(t)

 =


g(m(t);θ)

−∇mg(m(t);θ)p(t)

−∇θg(m(t);θ)p(t)


with terminal condition [m(t(i));p(t(i)); q(t(i))].

14: p(t(i−1))← p(t(i−1))−∇m log gi−1(m(t(i−1));θ).

15: q(t(i−1))← q(t(i−1))−∇θ log gi−1(m(t(i−1));θ).

16: end for

17: Output: ∇θ`(θ; C)← q(0).

62

3.3.6 Experiment evaluation

In this subsection, we show that our approach is robust to the variation of the unknown

underlying diffusion models, and it also significantly outperforms existing approaches a series

of numerical experiments. The same basic setting in subsection 3.2.5 are employed here.

Training and testing synthetic data For each type of network, we randomly gen-

erate 5 networks of (n, d) = (128, 4) and another 5 networks of (n, d) = (1024, 4), where n is

the total number of nodes on the network and d is the average out-degree per node. For each

combination of network model and diffusion model, we randomly generate 900 source node

sets of size varying between 1 and 10, and simulate 10 diffusion cascades for each source set

for training. Thus the training data consists of K=9,000 cascades, all of which are truncated

into time window [0, T] with T = 20. We generate 100 additional source sets in a similar

way, and then split them as 50%-validation and 50%-test. This setting on validation and

test data will be used for all the experiments related to influence estimation.

Algorithm and parameter settings In the training of NMF, the batch size of cas-

cade data is set to 300 and the number of epochs is 50. The coefficients of the regularization

term on A and weight decay in Adam optimizer are set to (0.01,1) and (0.001,0) for network

of size 128 and 1024, respectively. We use Runge-Kutta 4th order (rk4) method with 40 time

steps to solve the ODEs numerically.

Comparison results on influence estimation We only compare the accuracy of

continuous NMF with InfluLearner. In the test, we set the number of random features for

InfluLearner to 200 as suggested in [24].

We show the numerical results of InfluLearner and NMF for influence estimation on the

three aforementioned synthetic diffusion networks (i.e., Hier, Core, and Rand) in Figure 3.6

and Figure 3.7. For each of these three networks, we simulate three types of diffusion times

(i.e., Exp, Ray, and Wbl). Therefore, we have 9 network/diffusion combinations in total. For

63

each of these 9 combinations, we show the scaled influence MAE (top) and probability MAE

(bottom) of InfluLearner and NMF on networks of size 128 and 1024 as explained above.

In each plot of Figure 3.6 and Figure 3.7, we show the mean (center line) and standard

deviation (shade) averaged over 5 instances. As we can observe in Figure 3.6 and Figure 3.7,

the error of NMF is much smaller than that of InfluLearner for almost all times, except at

some early stages and on Hierarchical network with Weibull distribution. This demonstrates

that NMF is a much more accurate method in influence estimation.

Comparison results on network structure inference We compared the estimated

E and A using NetRate and NMF using the four criteria mentioned above in Table 3.3

for three types of networks (Random, Hierarchical, and Core-periphery) and two diffusion

models (Exponential and Rayleigh). In all of these tests, NMF consistently outperforms

NetRate in all accuracy metrics. We also draw A inferred by NetRate and NMF for a

visual comparison in Figure 3.8. In Figure 3.8, we show the ground truth A∗ (left), the

matrix A inferred by NetRate (middle), and A learned by NMF (right). The values of αij

are indicated by the color—the darker the red is, the higher the value of αij—and the white

pixels represent where αij is zero. As we can see, A learned by NMF is much more faithful

to A∗ than that by NetRate. This result shows that NMF is very versatile and robust in

learning network structure from cascade data.

Since NetRate code [35] was implemented in MATLAB and is executed on CPU in

our experiment, the computation times of NetRate and NMF cannot be directly compared.

However, we notice that NetRate takes approximately 10+ hours on average to infer each

network structure A in Table 3.3, whereas NMF only requires about 300 seconds on average

to return both more accurate A and an influence estimation mechanism.

Scalability to network size and density In this test, we will demonstrate the

robustness of NMF in influence estimation when the network size n and density d vary. Recall

that d stands for the average out-degree per node. The larger and/or denser the network is,

the more challenging the estimation becomes. In all the experiments, we use training data

64

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(a) Core + Exp

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(b) Core + Ray

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(c) Core + Wbl

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(d) Rand + Exp

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(e) Rand + Ray

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(f) Rand + Wbl

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(g) Hier + Exp

2 4 6 8 10 12 14 16 18 20
t

0.000

0.025

0.050

0.075

0.100

pr
ob

ab
ilit

y
M

AE

InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(h) Hier + Ray

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y
M

AE
InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(i) Hier + Wbl

Figure (3.6). MAE of node infection probability (bottom) by InfluLearner [24] and continu-

ous NMF on each of the 9 different combinations of Core-periphery (Core), Random (Rand)

and Hierarchical (Hier) networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl)

diffusion models. Mean (centerline) and standard deviation (shade) over 50 test source sets

are shown. Each network has two configurations of (n, d): (128, 4) and (1024, 4), where n is

the number of nodes in the diffusion network, and d is the average out-degree per node.

65

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

0.4

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(a) Core + Exp

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

0.20

0.25

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(b) Core + Ray

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(c) Core + Wbl

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(d) Rand + Exp

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(e) Rand + Ray

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

0.20

0.25

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(f) Rand + Wbl

2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(g) Hier + Exp

2 4 6 8 10 12 14 16 18 20
t

0.00

0.02

0.04

0.06

0.08

0.10

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(h) Hier + Ray

2 4 6 8 10 12 14 16 18 20
t

0.00

0.05

0.10

0.15

sc
al

ed
 in

flu
en

ce
 M

AE InfluLearner 128
InfluLearner 1024
NMF 128
NMF 1024

(i) Hier + Wbl

Figure (3.7). MAE of scaled influence by InfluLearner [24] and continuous NMF on each

of the 9 different combinations of Core-periphery (Core), Random (Rand) and Hierarchical

(Hier) networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion models.

Mean (centerline) and standard deviation (shade) over 50 test source sets are shown. Each

network has two configurations of (n, d): (128, 4) and (1024, 4), where n is the number of

nodes in the diffusion network, and d is the average out-degree per node.

66

Table (3.3). Performance of network structure inference using NetRate [35] and the pro-

posed continuous NMF on Random, Hierarchical, and Core-periphery networks consisting of

128 nodes and 512 edges with Exponential and Rayleigh as diffusion distribution on edges.

Quality of the learned edge set E and distribution parameter A are measured by precision

(Prc), recall (Rcl), accuracy (Acc), and correlation (Cor). Larger value indicates higher

accuracy.

Diffusion Network Method Prc Rcl Acc Cor

Exponential

Random
NetRate 0.457 0.821 0.515 0.438

NMF 0.459 0.997 0.622 0.910

Hierarchical
NetRate 0.395 0.748 0.515 0.739

NMF 0.595 0.997 0.745 0.928

Core-

periphery

NetRate 0.277 0.611 0.264 0.264

NMF 0.292 0.997 0.450 0.839

Rayleigh

Random
NetRate 0.481 0.399 0.434 0.465

NMF 0.883 0.905 0.894 0.909

Hierarchical
NetRate 0.659 0.429 0.519 0.464

NMF 0.889 0.936 0.911 0.913

Core-

periphery

NetRate 0.150 0.220 0.178 0.143

NMF 0.649 0.820 0.724 0.820

67

(a) True (b) NetRate (c) NMF

Figure (3.8). Ground truth A∗ (left) and A inferred by NetRate (middle) and continuous

NMF (right) in same color scale using cascades from a Hierarchical network consisting of 128

nodes and 512 edges with exponential diffusion model. Darker pixel indicates larger value of

an entry of A.

0 2 4 6 8 10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y
M

AE

InfluLearner 4
InfluLearner 5
InfluLearner 6

NMF 4
NMF 5
NMF 6

(a) Probability MAE

0 2 4 6 8 10 12 14 16 18 20
t

0

20

40

in
flu

en
ce

 M
AE

InfluLearner 4
InfluLearner 5
InfluLearner 6

NMF 4
NMF 5
NMF 6

(b) Influence MAE

Figure (3.9). MAE of infection probability (a) and influence (b) obtained by InfluLearner [24]

and continuous NMF on Hierarchical networks of size n = 128 and increasing d from 4 to 6.

consisting of 9,000 cascades generated from Hierarchical network and exponential diffusion

model and set the batch size to 300.

Recall that we have showed in Figure 3.6 and Figure 3.7 that NMF consistently outper-

forms than InfluLearner when the network size is set to 128 and 1024. To show the scability

68

3 4 5 6
d

102

2 × 102

3 × 102
4 × 102

tra
in

 ti
m

e
(s

) NMF

(a) Train time vs d

102 103

n
101

102

tra
in

 ti
m

e
(s

) NMF

(b) Train time vs n

Figure (3.10). (a) Training time (in seconds) of continuous NMF versus density (average

out-degree per node) d. (b) Training time (in seconds) versus network size n.

of NMF, we further test NMF on increasing network size n from 128 to 2048 (with density

d = 4). To test the training time of NMF, we terminate the computation when the average

MAE of infection probability on validation data over 20 timepoints t` = ` (` = 1, 2, . . . , 20)

is below 0.07. Euler method with 40 steps is employed as the ODE solver and the learning

rate of the Adam optimizer is set to 0.0001 for network with 2048 nodes. The training time

of NMF is shown in Figure 3.10b, which demonstrate that NMF is scalable for large network

size n.

We also test the performance of NMF for varying network density d. We compare

the infection probability and influence MAE of InfluLearner and NMF for varying edge

density d set to 4, 5, and 6 on a Hierarchical network on exponential diffusion model with

128 nodes. Figure 3.9a and Figure 3.9b show that the MAE of infection probability and

influence estimation obtained by InfluLearner and NMF. These two plots show that NMF is

very robust when the density of the network increases by consistently generating estimates

of low MAE. Figure 3.10a shows the training time of NMF versus network density d while

n = 128 is fixed. In this plot, the computation time is recorded when the training MAE at

time th is below 0.04, where th is the time when on average half of the nodes on the network

are infected as indicated by the ground truth. Here, rk4 method with 40 steps is employed

69

as the ODE solver. Similarly, Figure 3.10b shows the training time versus network size n

while d = 4 is fixed. From Figures 3.10a and 3.10b, we can see that the computational cost

of NMF grows approximately quadratic in density d and linear in size n.

70

CHAPTER 4

INFLUENCE MAXIMIZATION WITH LEARNED CONTINUOUS NMF

The proposed neural mean-field dynamics also provide a new perspective for efficiently

solving the challenging influence maximization problem. In this chapter, we develop a highly

efficient algorithm for the very challenging influence maximization problem based on our

continuous-time NMF framework.

4.1 Optimal control formulation

In this section, we show how the proposed NMF can be used to tackle the important

but very challenging influence maximization problem stated as Problem 2.

4.1.1 On original influence maximization

Suppose we have trained a continuous NMF with parameters θ in Algorithm 2, such

that we can estimate x(t) for any t ∈ [0, T] and any given source node set χS . Then the goal

of influence maximization is to identify χS ∈ {0, 1}n such that its influence at the prescribed

time T (or any other prescribed t ∈ (0, T)) is maximized. Namely, our goal is to solve the

following optimization problem

Definition 4.1.1 (Optimal control on χS for influence maximization). The objective is to

find the optimal control χS for the following constrained optimization problem:

max
χS

σ(T ;χS) := 1>nx(T ;χS), (4.1a)

s.t. χS ∈ {0, 1}n, 1>nχS = n0, (4.1b)

where n0 ∈ N is the given budget size.

Note that x(T ;χS) is the first n components of m(T) computed by forward NMF

71

dynamics with initial value m(0) = [χS ; 0]. However, (4.1) is an NP-hard combinatorial

optimization problem [37].

4.1.2 On relaxed influence maximization

To overcome the computation complexity of (4.1), we propose to relax the binary-

valued decision vector χS to u ∈ [0, 1]n in the continuous hypercube [0, 1]n which reduces

the following formulation.

Definition 4.1.2 (Optimal control on u for relaxed influence maximization). The objective

is to find the optimal control u for the following constrained optimization problem:

min
u∈U

L(u) := R(u)− 1>nx(T ;u), (4.2a)

s.t. u ∈ U := {u ∈ [0, 1]n : 1>nu = n0}, (4.2b)

where n0 ∈ N is the given budget size and R(u) is a regularizer that encourages all compo-

nents of u to take values close to either 0 or 1.

Remark 4.1.3. In our experiments, we simply set R(u) =
∑n

i=1 ui(1− ui).

4.2 Projected gradient descent (PGD)

We can employ the projected gradient descent (PGD) method to solve the relaxed

influence maximization problem formulated in Definition 4.1.2 by updating u as follows.

ul+1 = ΠU(ul − γl∇uL(ul)) := arg min
u∈U

‖u− (ul − γl∇uL(ul))‖2, (4.3)

where l is the iteration counter of PGD, τl > 0 is the step size, and ΠU denotes the orthogonal

projection onto U . If ∇uL(ul) is known, then (4.3) is a standard quadratic program (QP)

and can be solved efficiently by off-the-shelf solvers. Hence, the only remaining question is

to solve ∇uL(ul) which will be discussed in the next section.

72

4.3 Gradients calculation for relaxed IM

In this section, we employ the standard optimal control theory to compute ∇uL(u)

for any given u. The following theorem states that this quantity can be computed very

efficiently using the proposed NMF dynamics.

Theorem 4.3.1. Let [m(t); s(t)] be the solution of the augmented NMF system:

m′(t)
s′(t)

 =

 g(m(t);θ)

∇xgx(m;θ)>s(t)

 (4.4)

with initial value [m(0); s(0)] = [[u; 0]; 1] forward in time [0, T], where gx is the first n

components of g. Then

∇uL(u) = ∇uR(u)− s(T).

Proof. Let v ∈ Rn be arbitrary and consider the variation uε := u + εv + o(ε) of u with

ε > 0. Let xε(t) be the x-part of the solution mε(t) to (3.48b) with initial [uε; 0]. Suppose

xε(t) = x(t) + εw(t) + o(ε) for all t ∈ [0, T] as ε→ 0, then w(t) solves


w′(t) = ∇xgx(m(t);θ)w(t), 0 ≤ t ≤ T,

w(0) = v.

(4.5)

Note that (4.5) is a linear ODE of w and thus has an analytic solution as follows:

w(T) = e
∫ T
0 ∇xgx(m(t);θ) dtv.

73

Next, we compute the directional derivative of L defined in (4.2) at u along direction v:

d

dε
L(uε)

∣∣∣
ε=0

=
d

dε

(
R(uε)− 1 · xε(t)

) ∣∣∣
ε=0

= ∇uR(u) · v − 1 ·w(T)

=
(
∇uR(u)− e

∫ T
0 ∇xgx(x(t);θ)> dt1

)
· v.

As v is arbitrary, we know the gradient ∇uL(u) is

∇uL(u) = ∇uR(u)− e
∫ T
0 ∇xgx(x(t);θ)> dt1. (4.6)

It is clear that the second term on the right hand side of (4.6) is s(T) solved from


s′(t) = ∇xgx(x(t);θ)>s(t), 0 ≤ t ≤ T,

s(0) = 1.

(4.7)

This completes the proof.

Theorem 4.3.1 implies that ∇uL(u) can be easily computed by solving NMF augmented

by an auxiliary variable s(t) forward in time [0, T] as in (4.4). Note that the computation

complexity of (4.4) is linear in the network size n and standard numerical ODE integrators

can quickly solve the ODE to high accuracy.

4.4 Proposed algorithm NMF-InfMax

We summarize the steps for solving (4.2) in Algorithm 3. Note that the output u may

not be binary, and thus we can set the largest n0 components of u to 1 and the rest to 0 as

the final source set selection.

74

Algorithm 3 Influence maximization via neural mean-field dynamics (NMF-InfMax)

1: Input: Trained NMF with g(·;θ) from Algorithm 2, budget n0 ∈ {1, . . . , n− 1}

2: Initialization: u ∈ U .

3: for l = 1, . . . ,MaxIterations do

4: Solve [m(T), s(T)] from (4.4) forward in time with initial [[u; 0]; 1]. (Forward pass)

5: Set û← u− γ∇uL(u) where ∇uL(u) = s(T).

6: Solve a QP: u← arg minu∈U ‖u− û‖2.

7: end for

8: Output: Source set selection u.

4.5 Experiment evaluation

This part of the experiment is dedicated to performance evaluation in influence maxi-

mization. Specifically, we use the trained NMF to find the optimal source set with limited

budget for maximal influence by following Algorithm 3 which is referred to as NMF-InfMax.

4.5.1 Comparison algorithms

For comparison purpose, we also test the following methods for influence maximization.

• IMINFECTOR [77]: IMINFECTOR represents the cascade data into two datasets

consisting of seed-cascade length pairs and seed-influenced node pairs to approximate

the influence spread and infection probability of each node by a regression model

and a probability classifier, respectively. The outputs are used to reduce the number

of candidate seeds and reformulate the computation of the influence spread in a

greedy solution to influence maximization. Like our method, IMINFECTOR only

uses cascade data as inputs, with embedding size 50 and sampling percentage 120,

trained for 50 epochs with a learning rate of 0.1. The reduction percentage P is set

to 100 to keep full information of cascades.

• IMM [93]: IMM is a reverse reachable (RR) sketch based method which applies the

75

standard greedy algorithm for maximum coverage to derive a budget size node set

that covers a large number of RR sets sampled from the given network. We consider

the case when IMM return (1 − 1/e − ε)-approximate solution with ε = 0.1 and

parameter ` = 1, following the experiments in [93].

• InfluMax [34,39]: InfluMax speed up the greedy influence maximization algorithm by

exploiting submodularity. We incorporate it with the influence estimation algorithm

ConTinEst [25]. For ContinEst, we draw 10,000 random samples, each of which has

5 random labels for each node.

Since IMM and InfluMax both require the knowledge of the transmission matrixA, we apply

NetRate method to learn A from cascade data first, then feed A to these two methods. We

remark that NetRate and IMINFECTOR are both in favor of training data consisting of

cascades with the source sets of size 1 (i.e., only one source node). In contrary, NMF-InfMax

does not have this restriction and thus is more flexible. However, for comparison purpose,

we only feed cascade data with single source node to all methods in this experiment.

4.5.2 Experiment setting

Diffusion network We again use three types of Kronecker graph models: Hierarchical

(Hier), Core-periphery (Core) and Random (Rand) networks, and simulate the diffusion

processes using exponential distribution with transmission rates randomly sampled from

Unif[0.1,1]. For each type of network model, we generate two networks of size n = 1, 024

with d = 2 and d = 4, respectively.

Parameters setting To train NMF, we set the batch size to 300 and the number of

epochs to 50. The coefficients of the regularization term on A is set to 0.001, and the rk4

method with 40 time steps is employed as the ODE solver. To train NMF-InfMax, we set

the step size to constant 0.01, and terminate PGD if either the iteration number reaches 500

or the computed influence does not change for 10 consecutive iterations.

76

Synthetic cascade data We sample 100 source nodes, and for each source node we

simulate 10 cascades. Hence we have a total of K=1,000 cascades for training. In Figure

4.2a, we show the accuracy of NMF-InfMax when the number of training cascades increases

from 1,000 to 5,000 for each fixed source set of size from 1 to 10. As we can observe, the

accuracy increases significantly when the number of cascades grows from 1,000 to 2,000 but

then improvements become insignificant. This suggests that 2,000 cascades is necessary to

obtain more accurate influence maximization results for NMF-InfMax. However, due to the

limited scalibilty of NetRate which performs extremely slowly when the number of cascades

is over 1,000 and average out-degree is over 4. We also tested IMINFECTOR with larger

training data set, but unlike our method, the accuracy of IMINFECTOR does not improve

over 1,000. Hence we still only feed 1,000 cascades to all the compared methods despite that

this choice is only in favor of three existing methods.

4.5.3 Comparison results

First of all, it is important to note that both InfluMax and IMM require the knowledge

of diffusion model given by the shape and scale parameters of edges for the computation

of NetRate and their own. Thus, they are more vulnerable to model mis-specification.

In this test, we assume they know the ground truth diffusion model, so they can attain

their highest accuracy. However, it is worth noting that the network inference by NetRate

can be very expensive computationally. For example, it took NetRate up to 160 hours to

infer the network structure from 1,000 cascades of a core-periphery network of n = 1, 024

and d = 4 in Figure 4.1c. In contrast, the computational cost of IMINFECTOR is very

low, but IMINFECTOR is more restrictive on data because it requires that the training

cascades contain the nodes to be selected. This may not be feasible in practice. Moreover,

the influence maximization results obtained by IMINFECTOR also appear to be worse than

that by NMF, as shown below.

The influence maximization results obtained by the aforementioned algorithms and

NMF are shown in Figure 4.1. As we can see, NMF-InfMax consistently returns more

77

influential source sets with all budget n0 for all varying network structure, density, and

budget.

1 2 3 4 5 6 7 8 9 10
source size

0

200

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

1 2 3 4 5 6 7 8 9 10
source size

0

200

400

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

1 2 3 4 5 6 7 8 9 10
source size

0

250

500

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

1 2 3 4 5 6 7 8 9 10
source size

0

500

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

(a) Hierarchical

1 2 3 4 5 6 7 8 9 10
source size

250

500

750

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

(b) Random

1 2 3 4 5 6 7 8 9 10
source size

400

600

800

in
flu

en
ce

InfluMax
IMM
IMINFECTOR
NMF-InfMax

(c) Core-periphery

Figure (4.1). Influence of the source sets selected by the compared methods on three different

types of networks: (a) Hierarchical, (b) Random, and (c) Core-periphery, with exponential

diffusion model at T = 10 and varying source sizes n0 from 1 to 10. Each network consists

of 1024 nodes and 2048 edges (top) or 4096 edges(bottoms).

4.5.4 Real data

We extract diffusion cascades from the MemeTracker dataset [56] which includes 300

million blog posts and articles collected from 5,000 active media sites between March 2011

and February 2012. Following [24], we select the group of cascades with the keyword ”apple

and jobs” and then split them as 60%-train and 40%-validation for the influence maximiza-

tion models. As the diffusion model of real-world cascade data is unknown, we only test

IMINFECTOR and NMF-InfMax. We follow the setting in [24] to compute the influence

of any selected source set: we uniformly sample one cascade from the data for each node in

78

1 2 3 4 5 6 7 8 9 10
source size

200

400

600
in

flu
en

ce
K=1000
K=2000
K=3000
K=5000

(a) Varying training set size

10 20 30 40 50 60
source size

50

100

150

in
flu

en
ce

IMINFECTOR
NMF-InfMax

(b) Influence vs n0

Figure (4.2). (a) Influence generated the source sets selected by NMF-InfMax trained using

increasing number of cascades on Hierarchical networks with 1,024 nodes and 4,096 edges.

(b) Influence generated by the source sets selected by IMINFECTOR and NMF-InfMax on

the MemeTracker dataset at T = 10 hours.

the set and take the union of all sampled cascades as the set of infected nodes. We repeat

this process for 1,000 times and take the average as the true influence of the selected set.

Figure 4.2b shows the result of influence maximization results. In Figure 4.2b, we set T = 10

and the source size n0 = 10, 20, · · · , 60, and plot the influence of the source sets selected

by IMINFECTOR and NMF-InfMax. As we can see, NMF-InfMax consistently selected

more influential combination of nodes that generate greater influence than those selected by

IMINFECTOR do.

79

CHAPTER 5

SUMMARY AND DISCUSSION

5.1 Summary

We propose a comprehensive framework applied neural mean-field (NMF) dynamics in

discrete and continuous setting for simultaneous influence estimation and network inference

directly from cascade data on diffusion network. Based on our continuous NMF framework,

we also develop a highly efficient algorithm for the influence maximization problem.

5.2 Future work

We expect that the proposed framework can be applied to many other optimization and

control problems arising from diffusion network applications, such as optimal campaigning,

propagation control, and source identification, which will also be investigated in our future

work.

5.2.1 Implementation for application

The proposed models are implemented in the worst case which suppose the cascades are

the only known information. However, in the applications, we could customize the models

to fit to different significant data setting. More specifically, if the knowledge of E and A are

allowed, then they can be integrated for further performance improvement.

For example, in the social network, the existence of followee-follower relations (edges)

is easy to be tracked, then we could employ the network adjacent matrix as support of A in

Algorithm 1 and Algorithm 2 for the corresponding problems.

On the other hand, while some node and edge attributes could be important to reflect the

interaction strength in our intuition, we can take these features into account. For example,

in the research on the citation dataset, the subject categories and abstract of papers (nodes)

80

strongly suggests on the co-citing connections (edge) of papers since a researcher should cite

papers on related topics. In this case, the paper features become very important on the

learning of A. As we mentioned, A can be interpreted as the convolution to be learned

from a graph convolution network (GCN) [54, 101]. Thus we could employ some graph

representation technique to embedding node features to the space of A which provide the

knowledge on A.

5.2.2 Dynamic diffusion network

The diffusion networks G = (V , E) discussed in this thesis are inherently static in the

following aspects:

(A1) The node set V does not change.

(A2) The Edge set E does not change.

(A3) suppose that the transmission rate αi,j is a constant function over time for any edge

(i, j) ∈ E .

(A4) Suppose that if a node is infected, then its status will not change. That is, an infected

node is never recovered.

However, diffusion networks in the real world keep evolving. For example, in a social net-

work, new users join, and new followee-follower relationship form at each seconds, which

continuously affects the network structure. In the dynamic network for Covid-19, some in-

fected people get recovered and some healthy people get fully vaccinated. Thus a recover

rate and varying infection strengths between persons should be considered. The statement

of one problem on dynamic diffusion network is

Problem 3. Consider a directed network G = (V(t), E(t), ω(t)) with node set V(t), edge

set E(t), and node weight mapping ω(t) which indicate the node recover rates. Given the

original node set V0 and edges set E0, some observed cascade data D, and a diffusion model

to describe the distribution p(t;αij(t)) of the time t of node i impact on j where αij(t) is the

transmission rate. The objective is that

81

• to find the solution of influence estimation and maximization problem, or

• for a new added node v at time t, to predict the infection status of v.

5.2.3 Context-aware problems

In the real world, context-aware influence maximization problems are also discussed

which consider the influence σ(S) related to some contextual features, such as topic, time

and location.

Problem 4 (Context-aware influence maximization). With the necessary given conditions,

the objective is to find S ⊆ V to maximize the number of infected node at time T with

property P such that |S| = n0.

Problem 5 (Extended context-aware influence maximization). Define Si = {v ∈ V :

v has property Pi} for i = 1, 2, · · · , k. With the necessary given conditions, the objective

is to find S ⊆ V to maximize the number of infected node at time T such that |Si| = ni for

i ∈ [k] where ni is the budget size of nodes with property Pi.

82

REFERENCES

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-

lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,

Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. Tensorflow: A system for large-scale machine learning, 2016.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convo-

lutional neural network. In 2017 International Conference on Engineering and Tech-

nology (ICET), pages 1–6. Ieee, 2017.

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[4] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. A survey on influence

maximization in a social network. Knowledge and Information Systems, 62(9):3417–

3455, 2020.

[5] Dimitri P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena

scientific Belmont, MA, 1995.

[6] Ágnes Bodó, Gyula Y Katona, and Péter L Simon. SIS epidemic propagation on

hypergraphs. Bulletin of mathematical biology, 78(4):713–735, 2016.

[7] Marián Boguná and Romualdo Pastor-Satorras. Epidemic spreading in correlated com-

plex networks. Physical Review E, 66(4):047104, 2002.

[8] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing

83

social influence in nearly optimal time. Proceedings of the Twenty-Fifth Annual ACM-

SIAM Symposium on Discrete Algorithms, Dec 2013.

[9] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Popularity

prediction on social platforms with coupled graph neural networks. In Proceedings of

the 13th International Conference on Web Search and Data Mining, WSDM ’20, pages

70–78, New York, NY, USA, 2020. Association for Computing Machinery.

[10] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural

ordinary differential equations. In S Bengio, H Wallach, H Larochelle, K Grauman,

N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information Processing

Systems 31, pages 6571–6583. Curran Associates, Inc., 2018.

[11] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent

viral marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 1029–1038,

2010.

[12] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social net-

works. In Proceedings of the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 199–208, 2009.

[13] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social net-

works under the linear threshold model. In 2010 IEEE international conference on

data mining, pages 88–97. IEEE, 2010.

[14] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi Cheng. Stat-

icgreedy: solving the scalability-accuracy dilemma in influence maximization. In Pro-

ceedings of the 22nd ACM international conference on Information & Knowledge Man-

agement, pages 509–518, 2013.

[15] Alexandre J. Chorin, Ole H. Hald, and Raz Kupferman. Optimal prediction and

84

the mori–zwanzig representation of irreversible processes. Proceedings of the National

Academy of Sciences, 97(7):2968–2973, 2000.

[16] Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, and Haomin Zhou. Influence prediction

for continuous-time information propagation on networks. Networks and Heterogenous

Media, 13(4):567–583, 2018.

[17] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and

the prediction of missing links in networks. Nature, 453(7191):98–101, May 2008.

[18] Edith Cohen. Size-estimation framework with applications to transitive closure and

reachability. Journal of Computer and System Sciences, 55(3):441–453, 1997.

[19] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F Werneck. Sketch-based

influence maximization and computation: Scaling up with guarantees. In Proceedings of

the 23rd ACM International Conference on Conference on Information and Knowledge

Management, pages 629–638, 2014.

[20] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Sketch-based

influence maximization and computation: Scaling up with guarantees. In Proceedings of

the 23rd ACM International Conference on Conference on Information and Knowledge

Management, CIKM ’14, pages 629–638, New York, NY, USA, 2014. Association for

Computing Machinery.

[21] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Exceptional pa-

per—location of bank accounts to optimize float: An analytic study of exact and

approximate algorithms. Management science, 23(8):789–810, 1977.

[22] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and

Shirley Ho. Lagrangian neural networks, 2020.

[23] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A signal

representation perspective. IEEE Signal Processing Magazine, 36(3):44–63, 2019.

85

[24] Nan Du, Yingyu Liang, Maria-Florina Balcan, and Le Song. Influence function learning

in information diffusion networks. In Proceedings of the 31st International Conference

on International Conference on Machine Learning - Volume 32, ICML’14, pages II–

2016–II–2024. JMLR.org, 2014.

[25] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scalable influence

estimation in continuous-time diffusion networks. In Advances in Neural Information

Processing Systems, pages 3147–3155, 2013.

[26] Nan Du, Le Song, Ming Yuan, and Alex J. Smola. Learning networks of heterogeneous

influence. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 25, pages 2780–2788. Curran As-

sociates, Inc., 2012.

[27] Ahmed A Elnaggar, Mahmoud Gadallah, Mostafa Abdel Aziem, and Hesham El-Deeb.

A survey of game tree searching methods. International Journal of Computer Appli-

cations, 1975:8887, 2014.

[28] Gerhard Wanner Ernst Hairer, Syvert P. Nørsett. Nonstiff problems. In Solving Or-

dinary Differential Equations I, volume 8 of Springer Series in Computational Mathe-

matics. Springer-Verlag Berlin Heidelberg, 1993.

[29] Lawrence C Evans. An introduction to mathematical optimal control theory. Lecture

notes available at http://math. berkeley. edu/˜ evans/control. course. pdf, 1983.

[30] Mehrdad Farajtabar, Xiaojing Ye, Sahar Harati, Le Song, and Hongyuan Zha. Multi-

stage campaigning in social networks. In Advances in Neural Information Processing

Systems, pages 4718–4726, 2016.

[31] Shanshan Feng, Gao Cong, Arijit Khan, Xiucheng Li, Yong Liu, and Yeow Meng Chee.

Inf2vec: Latent representation model for social influence embedding. In 2018 IEEE

34th International Conference on Data Engineering (ICDE), pages 941–952. IEEE,

2018.

86

[32] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of

approximations for maximizing submodular set functions—ii. In Polyhedral combina-

torics, pages 73–87. Springer, 1978.

[33] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A complex

systems look at the underlying process of word-of-mouth. Marketing letters, 12(3):211–

223, 2001.

[34] M Gomez Rodriguez and B Schölkopf. Influence maximization in continuous time

diffusion networks. In 29th International Conference on Machine Learning (ICML

2012), pages 1–8. International Machine Learning Society, 2012.

[35] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. Uncovering the

temporal dynamics of diffusion networks. In Proceedings of the 28th International

Conference on International Conference on Machine Learning, ICML’11, pages 561–

568, Madison, WI, USA, 2011. Omnipress.

[36] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks

of diffusion and influence. ACM Transactions on Knowledge Discovery from Data

(TKDD), 5(4):21, 2012.

[37] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Structure and

dynamics of information pathways in online media. CoRR, abs/1212.1464, 2012.

[38] Manuel Gomez-Rodriguez and Bernhard Schölkopf. Submodular inference of diffusion

networks from multiple trees. In ICML, 2012.

[39] Manuel Gomez-Rodriguez, Le Song, Nan Du, Hongyuan Zha, and Bernhard Schölkopf.

Influence estimation and maximization in continuous-time diffusion networks. ACM

Transactions on Information Systems (TOIS), 34(2):1–33, 2016.

[40] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++ optimizing the greedy al-

87

gorithm for influence maximization in social networks. In Proceedings of the 20th

international conference companion on World wide web, pages 47–48, 2011.

[41] Mark Granovetter. Threshold models of collective behavior. American Journal of

Sociology, 83(6):1420–1443, 1978.

[42] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David

Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible generative

models, 2018.

[43] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran

Associates, Inc., 2019.

[44] Jakob Gulddahl Rasmussen. Lecture Notes: Temporal Point Processes and the Con-

ditional Intensity Function. arXiv e-prints, page arXiv:1806.00221, June 2018.

[45] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse

Problems, 34(1):014004, Dec 2017.

[46] Qiang He, Xingwei Wang, Zhencheng Lei, Min Huang, Yuliang Cai, and Lianbo Ma.

Tifim: A two-stage iterative framework for influence maximization in social networks.

Applied Mathematics and Computation, 354:338–352, 2019.

[47] Shushan He, Hongyuan Zha, and Xiaojing Ye. Network diffusions via neural mean-field

dynamics. In Advances in Neural Information Processing Systems 33, 2020.

[48] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and

David Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9:1735–80, 12 1997.

88

[50] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[51] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for

social networks. In Automata, languages and programming, pages 1127–1138. Springer,

2005.

[52] Masahiro Kimura and Kazumi Saito. Tractable models for information diffusion in

social networks. In European Conference on Principles of Data Mining and Knowledge

Discovery, pages 259–271, 09 2006.

[53] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In-

ternational Conference on Learning Representations, Dec 2014.

[54] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-

Review.net, 2017.

[55] W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.

Zeit. Math. Phys., 46:435–53, 1901.

[56] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics

of the news cycle. In Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’09, pages 497–506, New York, NY,

USA, 2009. Association for Computing Machinery.

[57] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin

Ghahramani. Kronecker graphs: An approach to modeling networks. The Journal of

Machine Learning Research, 11:985–1042, 2010.

89

[58] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. Cost-effective outbreak detection in networks. In Pro-

ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’07, pages 420–429, New York, NY, USA, 2007. Association

for Computing Machinery.

[59] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Statis-

tical properties of community structure in large social and information networks. In

Proceedings of the 17th International Conference on World Wide Web, WWW ’08,

pages 695–704, New York, NY, USA, 2008. Association for Computing Machinery.

[60] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-

mining library. ACM Transactions on Intelligent Systems and Technology (TIST),

8(1):1, 2016.

[61] C. K. Leung, A. Cuzzocrea, J. J. Mai, D. Deng, and F. Jiang. Personalized deepinf:

Enhanced social influence prediction with deep learning and transfer learning. In 2019

IEEE International Conference on Big Data (Big Data), pages 2871–2880, 2019.

[62] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. Deepcas: An end-to-end pre-

dictor of information cascades. In Proceedings of the 26th international conference on

World Wide Web, pages 577–586, 2017.

[63] Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algo-

rithms for deep learning. The Journal of Machine Learning Research, 18(1):5998–6026,

2017.

[64] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on

social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering,

30(10):1852–1872, 2018.

[65] Yuxuan Liang, Zhongyuan Jiang, and Yu Zheng. Inferring traffic cascading patterns.

In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances

90

in Geographic Information Systems, SIGSPATIAL ’17, New York, NY, USA, 2017.

Association for Computing Machinery.

[66] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural

networks: Bridging deep architectures and numerical differential equations. In Jennifer

Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages

3276–3285. PMLR, 10–15 Jul 2018.

[67] Brendan Lucier, Joel Oren, and Yaron Singer. Influence at scale: Distributed compu-

tation of complex contagion in networks. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages

735–744, New York, NY, USA, 2015. Association for Computing Machinery.

[68] Sahil Manchanda, AKASH MITTAL, Anuj Dhawan, Sourav Medya, Sayan Ranu, and

Ambuj Singh. Gcomb: Learning budget-constrained combinatorial algorithms over

billion-sized graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

20000–20011. Curran Associates, Inc., 2020.

[69] Gonzalo Mateos, Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro. Con-

necting the dots: Identifying network structure via graph signal processing. IEEE

Signal Processing Magazine, 36(3):16–43, May 2019.

[70] Joel C Miller and Istvan Z Kiss. Epidemic spread in networks: Existing methods and

current challenges. Mathematical modelling of natural phenomena, 9(2):4, 2014.

[71] Seth A. Myers and Jure Leskovec. On the convexity of latent social network inference.

In Proceedings of the 23rd International Conference on Neural Information Processing

Systems - Volume 2, NIPS’10, pages 1741–1749, Red Hook, NY, USA, 2010. Curran

Associates Inc.

91

[72] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of ap-

proximations for maximizing submodular set functions—i. Mathematical programming,

14(1):265–294, 1978.

[73] Mark Newman. Networks: an introduction. Oxford University Press, 2010.

[74] Hung T. Nguyen, Tri P. Nguyen, Tam N. Vu, and Thang N. Dinh. Outward influence

and cascade size estimation in billion-scale networks. Proc. ACM Meas. Anal. Comput.

Syst., 1(1), June 2017.

[75] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Optimal sampling

algorithms for viral marketing in billion-scale networks. In Proceedings of the 2016

International Conference on Management of Data, SIGMOD ’16, pages 695–710, New

York, NY, USA, 2016. Association for Computing Machinery.

[76] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. Fast and

accurate influence maximization on large networks with pruned monte-carlo simula-

tions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,

2014.

[77] George Panagopoulos, Fragkiskos Malliaros, and M Vazirgiannis. Multi-task learning

for influence estimation and maximization. IEEE Transactions on Knowledge and Data

Engineering, pages 1–1, 2020.

[78] George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgianis. Influence

maximization using influence and susceptibility embeddings. Proceedings of the Inter-

national AAAI Conference on Web and Social Media, 14(1):511–521, May 2020.

[79] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro

Vespignani. Epidemic processes in complex networks. Reviews of modern physics,

87(3):925, 2015.

92

[80] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama,

and Jinkyoo Park. Graph neural ordinary differential equations, 2019.

[81] Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park.

Hypersolvers: Toward fast continuous-depth models, 2020.

[82] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press,

1987.

[83] Chen Qiao, Yan Shi, Yu-Xian Diao, Vince D. Calhoun, and Yu-Ping Wang. Log-sum

enhanced sparse deep neural network. Neurocomputing, 407:206–220, 2020.

[84] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deep-

inf: Social influence prediction with deep learning. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages

2110–2119, 2018.

[85] Yu Rong, Qiankun Zhu, and Hong Cheng. A model-free approach to infer the diffusion

network from event cascade. In Proceedings of the 25th ACM International on Confer-

ence on Information and Knowledge Management, CIKM ’16, pages 1653–1662, New

York, NY, USA, 2016. Association for Computing Machinery.

[86] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary dif-

ferential equations for irregularly-sampled time series. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[87] C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische

Annalen, 46:167–178, 1895.

[88] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential

equations, 2018.

93

[89] Faryad Darabi Sahneh and Caterina Scoglio. Epidemic spread in human networks. In

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE

Conference on, pages 3008–3013. IEEE, 2011.

[90] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. IEEE transactions on neural networks,

20(1):61–80, 2008.

[91] Thomas C Schelling. Micromotives and macrobehavior. WW Norton & Company,

2006.

[92] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[93] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear

time: A martingale approach. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pages 1539–1554. ACM, 2015.

[94] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-optimal

time complexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’14, pages 75–86, New

York, NY, USA, 2014. Association for Computing Machinery.

[95] V.V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2002.

[96] Maurice Vergeer, Liesbeth Hermans, and Steven Sams. Online social networks and

micro-blogging in political campaigning the exploration of a new campaign tool and a

new campaign style. Party Politics, 19(3):477–501, 2013.

[97] Liaoruo Wang, Stefano Ermon, and John E Hopcroft. Feature-enhanced probabilistic

models for diffusion network inference. In Machine Learning and Knowledge Discovery

in Databases, pages 499–514. Springer, 2012.

94

[98] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Chen Chen. Bring

order into the samples: A novel scalable method for influence maximization. IEEE

Transactions on Knowledge and Data Engineering, 29(2):243–256, 2016.

[99] David Williams. Probability with martingales. Cambridge university press, 1991.

[100] Jennifer Wortman. Viral marketing and the diffusion of trends on social networks.

Technical Reports (CIS), page 880, 2008.

[101] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.

Yu. A comprehensive survey on graph neural networks. IEEE Transactions on Neural

Networks and Learning Systems, pages 1–21, 2020.

[102] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath

Hariharan. Pointflow: 3d point cloud generation with continuous normalizing flows.

2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct 2019.

[103] Yaohua Zang, Gang Bao, Xiaojing Ye, Hongyuan Zha, and Haomin Zhou. A jump

stochastic differential equation approach for influence prediction on heterogenous net-

works. Communications in Mathematical Sciences, 18(8):2341–2359, 2020.

[104] Huaguang Zhang, Zhanshan Wang, and Derong Liu. A comprehensive review of sta-

bility analysis of continuous-time recurrent neural networks. IEEE Transactions on

Neural Networks and Learning Systems, 25(7):1229–1262, 2014.

[105] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. Social influence locality

for modeling retweeting behaviors. In Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence, IJCAI ’13, pages 2761–2767. AAAI Press,

2013.

[106] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional

networks: a comprehensive review. Computational Social Networks, 6:1–23, 2019.

95

[107] Yaochen Zhu, Jiayi Xie, and Zhenzhong Chen. Predicting the popularity of micro-

videos with multimodal variational encoder-decoder framework. arXiv preprint

arXiv:2003.12724, 2020.

	Network Inference, Influence Estimation and Maximization via Neural Mean-field Dynamics on Diffusion Network
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Diffusion model
	Cascade data
	Influence estimation and network inference
	Influence maximization
	Overview

	Background
	Diffusion models
	Triggering diffusion models
	Continuous-time Independent Cascade (CIC) model

	Influence estimation
	Network inference
	Influence maximization

	NEURAL MEAN-FIELD (NMF) DYNAMICS APPLIED ON INFLUENCE ESTIMATION AND NETWORK INFERENCE
	Mean-field dynamics of diffusion
	Notations
	Modelling diffusion by stochastic jump processes
	Mori-Zwanzig memory closure
	Delay differential equation

	Discrete NMF algorithm
	Formulation of discrete NMF model
	Learning the parameters of discrete NMF
	Revisiting optimal control theory
	Optimal control of parameter training
	Implementation details
	Comparison models
	Experiment results

	Continuous NMF algorithm
	ODE system for continuous NMF
	 Evolutionary point processes and loss function
	Optimal control formulation of parameter learning
	Revisiting neural ODE (NODE)
	Backpropagation in continuous NMF
	Experiment evaluation

	INFLUENCE MAXIMIZATION WITH LEARNED CONTINUOUS NMF
	Optimal control formulation
	On original influence maximization
	On relaxed influence maximization

	Projected gradient descent (PGD)
	Gradients calculation for relaxed IM
	Proposed algorithm NMF-InfMax
	Experiment evaluation
	Comparison algorithms
	Experiment setting
	Comparison results
	Real data

	SUMMARY AND DISCUSSION
	Summary
	Future work
	Implementation for application
	Dynamic diffusion network
	Context-aware problems

	References

