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AUTONOMOUS UAV PATH PLANNING FOR WILDFIRE DATA COLLECTION 

 

by 

 

JOHN BENT 

Under the Direction of Xiaolin Hu, PhD 

 

ABSTRACT 

Teams of unmanned aerial vehicles (UAVs) can be employed in the real-time collection 

of data for dynamic data-driven simulations of wildfires to provide more accurate simulation 

predictions. The goal of this thesis was to identify and simulate path planning algorithms and 

inter-UAV negotiation protocols that best govern and divide responsibility among a team of 

autonomous UAVs continuously observing the perimeter of a wildfire containing sections of 

varying importance – ranging from low-value to high-value target areas. Several benchmark 

algorithms were implemented as well to measure the effectiveness of the new algorithms. The 

performance of each algorithm was measured by simulating a team with varying number of 

UAVs moving around the perimeter of multiple wildfires under differing conditions. The newly 

developed path planning and negotiation algorithms were found to increase the effectiveness of 

the team over the case of the benchmark algorithms. The increase in efficiency can be attributed 

to the UAVs’ more selective choice of destination and the equal division of responsibility 

between UAVs. 

INDEX WORDS: UAV, Drone, Autonomous path planning, Continuous perimeter sweeping, 

Wildfire, Dynamic data-driven simulation  
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1 MOTIVATION  

 The frequency and duration of wildfires in the United States underwent a sharp increase 

in the mid-1980’s due to changes in the climate, such as warmer temperatures and lower levels 

of precipitation [1]. While the frequency and duration of wildfires have remained at this 

increased level, the total area of destruction has maintained an upward trend for the past three 

decades [2]. The annual growth in wildfire-burned area suggests that the current efforts to 

prevent and suppress wildfires are not keeping pace with the growing threat. 

1.1 Wildfire Simulations 

 Simulation of wildfires is a burgeoning area of research with the goal of predicting 

wildfire behavior across time and space. These simulations can be used proactively in 

understanding the causes and the dynamics of wildfires so that forest managers can take steps to 

lessen the potential damage from wildfires or prevent them altogether. Simulations can also aid 

in constructing strategies for suppression of an active wildfire. Firefighting managers are often 

faced with short timeframes in which to make decisions about the deployment of limited 

firefighting resources to a dynamically changing fire. Wildfire simulations offer probabilistic 

guidance to inform the experienced firefighting manager’s intuition [3]. 

 The wildfire simulation is a valuable tool in active fire scenarios because of the high 

degree of uncertainty surrounding wildfire behavior; however, this uncertainty also limits the 

accuracy of the simulations, which are based on best estimations of stochastic factors like wind 

and precipitation and are only approximations of the real behavior of the fire. Wildfires have 

been known to create their own weather conditions and exhibit dynamic behaviors like fire 

whirls, which are vortexes of hot air that can transport burning material well beyond the fire 

front and over manmade clearings or roads [4]. Therefore, as the simulation progresses further 
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into the future, the predicted state of the wildfire in the simulation will deviate further from the 

actual state of the wildfire. 

1.2 Dynamic Data Driven Simulation 

 In [5], Hu presents dynamic data driven simulation as a new simulation paradigm that 

offers a solution to the problem of a simulation’s deviation from the real system. Dynamic data 

driven simulations rely on the idea of data assimilation, or the incorporation of observed data 

from the real system into a running simulation model, coupling the simulation system with the 

real system. The assimilation of real-time data into a wildfire simulation improves the results of 

the simulation by providing a more accurate starting state of the fire.  

The benefit derived from data assimilation is dependent not only on the observed data 

itself, but also on information about the observations, or the metadata, which can include the 

location, time and frequency of the observations. The values of these attributes are of critical 

importance to the quality of a dynamic data driven simulation and should be optimized to gain 

the greatest amount of information from the real system. In other words, there are certain 

observations that are more valuable than others. With limited resources for data collection, a 

methodology should be in place to best utilize those resources by seeking out the highest-value 

data.  

In the case of wildfire systems, particular areas of the fire behave with more uncertainty 

than others, and that uncertainty is correlated with the rate of spread in that part of the fire. For 

example, the fire front, where the fire is spreading fastest, typically downwind, can develop 

spotting when a fire whirl picks up burning material and sends it thousands of meters beyond the 

fire front, igniting a new, smaller fire. This type of behavior and the high rate of spread itself 

lead to higher uncertainty in the location or state of the fire front. The rear of the fire is usually 
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spreading the slowest because wind is blowing from the unburned area towards the burning or 

already-burned area; thus, the certainty of the fire’s behavior here is comparatively high because 

it is evolving slower than on the front. The implication of varied uncertainty is that a simulated 

wildfire, which is attempting to model this real system, is more likely to deviate in the areas with 

higher rates of spread; therefore, observations for data assimilation should be concentrated in 

those areas with higher rates of spread, and the frequency of said observations should be directly 

proportional to the rate of spread. The long-term goal of this research is to formalize a data 

collection methodology for dynamic data driven simulations so that simulation designers can 

quickly realize a data collection technique for a new system. 

1.3 Unmanned Aerial Vehicles 

Some methods of data collection are better suited for wildfire simulation than others due 

to the non-stationary, dynamic nature of the wildfire system. One of the simplest approaches 

would be to place temperature sensors on the ground surrounding the active wildfire. The sensors 

would transmit temperature readings to a host for data assimilation into a running simulation. 

Ground sensors are relatively inexpensive and can be distributed widely for simultaneous 

measurements at many parts of the fire. The biggest downside to this method is that it suffers 

from the same uncertainty that the simulation does; the strategy for deployment of ground 

sensors would need to consider where the areas of highest rate of spread would be and deploy the 

greatest concentration of sensors in that area. However, the behavior of the fire at that future 

state cannot be known at the time the sensors are deployed, and the repositioning of ground 

sensors in an active wildfire environment would be both time consuming and dangerous. 

Another approach is the use of manned aerial vehicles to optically observe the fire from 

the sky. A pilot or pilots would navigate aircraft equipped with visual or infrared sensors over 
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the fire. A team of pilots would be able to communicate and effectively share the responsibility 

for observing the fire. The main benefit of manned aircraft over ground sensors is the ability of a 

pilot to change course as needed to observe sections of the wildfire with a frequency appropriate 

to their importance. The obvious downside is that piloted aircraft are expensive to operate and 

carry the added risk of loss of human life. 

There is a wide disparity in the strengths and weaknesses of ground sensors and manned 

aerial vehicles as methods for wildfire data collection. Recently, unmanned aerial vehicle (UAV) 

technology has matured to a point that makes it an ideal choice for wildfire data collection. 

UAVs combine the best qualities of ground sensors and manned aircraft while providing 

additional benefits. Most models of UAVs are now inexpensive enough that the cost of purchase 

and operation of a team of UAVs is less than leasing a piloted aircraft for a dangerous mission. A 

single UAV is still more expensive than a single ground sensor, but it is affordable enough to 

purchase and operate a team; UAVs are also able to move continuously, giving an obvious 

advantage over the ground sensor. UAVs can stay in the air for up to 30 hours and do not need 

the levels of visibility that a pilot would need, allowing them to continue through smoky 

conditions at any time of day or night. Finally, UAVs would eliminate the risk to human life that 

both ground sensor deployment and manually operated aircraft entail [6]. 

One important characteristic of UAVs is that they can be programmed to autonomously 

carry out a mission, either as an individual or by communicating with a team of multiple UAVs. 

This can potentially be another advantage over piloted aircraft, although the algorithms guiding 

the UAV(s) would need to outperform the pilot or team of pilots, in terms of the quality of data 

collection. The goal of this thesis is to develop the algorithms that will guide an autonomous 
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team of multiple UAVs in collecting data from a wildfire with the purpose of assimilating the 

most valuable data into a dynamic data driven wildfire simulation. 

 

1.4 Path Planning 

As mentioned in section 1.2, observation of a section of a wildfire with a higher rate of 

spread is more valuable than an observation of a section with a slow rate of spread, and those 

sections that are spreading faster should be observed at a higher frequency than those spreading 

slowly. This is the guiding principle in developing a path planning algorithm for a UAV. The 

optimal route is the one that allows the UAV to observe the most valuable data in the least 

amount of time. The value, or importance, of a section of wildfire is determined by its rate of 

spread and the time since that section was last observed, with sections having been observed 

most recently being less important than sections that have gone unobserved for a longer interval. 

The time since the last observation must be included in determining importance so that the UAV 

will observe sections with low rates of spread, albeit with a lower frequency than those with high 

rates of spread. Without considering this time interval, the UAV would only deem the section 

with the highest rate of spread an appropriate target, never observing other slower moving 

sections. Because the time interval is involved in calculating the importance of a section of fire, 

the optimal route can also be defined as the route that minimizes the total importance of all 

sections of the fire. 

1.5 Negotiation 

When more than one UAV is involved in the observation of the wildfire, the data 

collection process can be further optimized by strategically dividing responsibility for observing 

regions of the fire. A naïve approach would be to divide the wildfire into equal sections for each 

UAV to observe, however, this method neglects to consider the varying importance of different 
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sections of the fire and is not able to handle a dynamically changing system. An equally divided 

fire would assign regions with widely varying importance to the UAVs, so the region with the 

higher importance is being observed just as frequently as the region with lower importance. A 

more effective approach would be to divide the wildfire into regions of size inversely 

proportional to their importance. This way, each UAV would be responsible for observing 

regions with equal, or at least similar, levels of importance, which is in accordance with the goals 

of effective data assimilation. 

Because the wildfire is dynamically changing, the region for which each UAV is 

responsible may grow or shrink in size and importance over time. It is important that any arising 

disparities in the responsibility between UAVs be flattened out. This can be achieved by 

implementing a negotiation protocol, wherein the UAVs periodically initiate a communication 

process with the goal of finding out how important their respective regions are and negotiating 

the transfer of subregions between UAVs with imbalanced responsibilities in an effort to 

maintain a fair and more effective data observation load among the team members. 

1.6 Objective 

The overarching objective of this thesis is to develop a data collection strategy using 

UAVs for efficiently collecting the highest value data from a wildfire in an effort to maximize 

the accuracy of dynamic data driven wildfire simulations. The broader objective is broken down 

into two distinct but interrelated tasks: developing the most effective path planning algorithm for 

a UAV observing a wildfire and developing the most effective negotiation algorithm for a team 

of UAVs observing a wildfire. 

The algorithms are implemented using the DEVSJAVA simulation environment with an 

agent-based UAV model integrated into the DEVS-FIRE wildfire simulation developed by Hu. 
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The distinction should be made that the simulations developed for this thesis are not dynamic 

data driven simulations, but rather discrete event simulations that model the behavior of UAVs 

gathering data around an active wildfire for assimilation into a hypothetical dynamic data driven 

simulation. 

The UAV teams are simulated using different combinations of path planning and 

negotiation strategies around a variety of wildfires. The resulting importance values for each 

scenario are collected and analyzed to better understand the UAV team’s behavior and to 

determine how well the algorithms performed under certain conditions.  

1.7 Organization of Thesis 

The rest of this paper is organized as follows. Section 2 provides some background to this 

research, including studies that inspired the initial algorithms and the preliminary 

implementation using the NetLogo simulation environment. Section 3 gives a formal definition 

of the problem. A cost function is defined to put the problem in a mathematical context. The path 

planning and negotiation algorithms are detailed in section 4. Section 5 lays out the simulated 

experiments and gives an analysis of the results individually. Section 6 draws conclusions from 

the study as a whole and mentions future work that would be valuable should the research 

continue. 

2 BACKGROUND 

2.1 Related work 

The path planning algorithms developed for this thesis are inspired by the work of 

Ahmadi et. al. [7], who developed the idea of continuous area sweeping tasks, in which a single 

autonomous robot performs routine surveillance of an area with subareas of varying degrees of 

importance. Rather than continuous area sweeping, this thesis focuses on continuous perimeter 
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sweeping. The work also introduces a cost function that guides the robot towards areas of higher 

importance more frequently, which is used as a model for the cost function in this thesis.  The 

problems are similar, but the transformation from a 2D problem into a 1D problem brings about 

some subtle differences. 

That research was continued by Ahmadi et. al. [8] to expand the single-robot case into a 

multi-robot system for continuous area sweeping. The multi-robot system employs the same path 

planning formulation as the single-robot system, but it also relies on a negotiation procedure to 

divide the area into subareas to become the responsibility of each individual robot and 

dynamically swap parts of those subareas between robots. The negotiation procedure in [8] 

involves simulating the robot system to calculate which robot will be able to reach a specific area 

first; the simulation results are the basis on which the negotiation of responsibility is performed. 

This high degree of precision for the negotiation procedure is unnecessary in the case of 

continuous perimeter sweeping, so, instead, a less computationally expensive method is 

developed for this study. 

2.2 NetLogo Simulation 

The path planning and negotiation algorithms developed for this thesis were originally 

implemented as an agent-based simulation model using the NetLogo simulation environment. 

This original implementation considered the problem of continuous area sweeping; that is, the 

UAV team was modeled to monitor a 2D area of the wildfire rather than the 1D problem of 

monitoring the edge or perimeter of the wildfire. The mathematical wildfire model was greatly 

simplified in the NetLogo implementation, but served as a suitable testbed for the algorithm 

development. The DEVSJAVA implementation detailed in this thesis was directly motivated by 
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the work done for the NetLogo simulation and began as a 1D projection of the 2D solution 

developed in NetLogo. 

 

Figure 2.1 Graphical display of NetLogo implementation 

2.3 Wildfire Model 

This thesis involves the design of an agent-based UAV simulation model implemented 

using DEVSJAVA that interacts with the DEVS-FIRE simulation environment created by 

Ntaimo and Hu [9] [10]. DEVS-FIRE is based on discrete event system specification (DEVS) 

and employs a cellular space model for wildfire spread. Data for terrain, fuel, and weather are 

incorporated into the cellular space; each cell in a 2D grid has its own attribute values that fit the 

observed conditions of the real system at that location. These attributes determine the maximum 

rate of spread in any given cell, and this value is used in calculating the importance of the cell 

for the UAV model. The cells in the grid are coupled together and, when a cell is ignited, 

Rothermel’s widely-used mathematical model for wildfire spread is used to calculate the fire 
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spread within that single cell. Once the fire spread in a cell reaches a certain threshold, it spreads 

beyond that cell, and one or more neighboring cells become ignited. 

A firefighting-agent model, which is intended to simulate an agent moving in a direction 

parallel to the perimeter of the fire, was developed in [9] and forms the basis for the 

implementation of UAV movement in this thesis. Specifically, the UAV model employs the 

same strategy for locating cells on the perimeter of the wildfire, although some minor 

improvements were made to this procedure. 

3 PROBLEM DEFINITION 

 As mentioned previously, the broad objective of this work is to define behavior in 

autonomous UAV teams that guides the UAVs to visit and collect data from a wildfire perimeter 

most effectively for assimilation into a dynamic data driven simulation. The most effective data 

collection technique can be stated as the routing and cooperative behavior of a UAV team that 

allows the UAVs to gather the most important data in the smallest amount of time and to do so in 

a continuous procedure that emphasizes data collection frequency as a function of the importance 

of that data. This description of effective behavior gives an intuitive understanding of the 

problem, but a more formal definition is needed to construct the algorithms that elicit this 

behavior. 

3.1 UAV region 

The UAV is responsible for visiting “sections” of the wildfire perimeter for which that 

UAV is responsible. In the DEVS-FIRE simulation environment these sections are best thought 

of as the cells in the 2D cellular space. Because the UAVs are only responsible for observing the 

wildfire perimeter, the cells that the UAVs are responsible for are those that are in a “burning” 

state and neighboring at least two cells in an “unburned” state; even though the wildfire 
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simulation may have some depth, or consist of a wide swath of “burning” cells, the UAVs should 

only visit those cells on the extreme perimeter of the wildfire. The perimeter forms a continuous 

2D path outlining the shape of the wildfire. Figure 3.1 shows a DEVS-FIRE simulation with red 

“burning” cells, black “ burned” cells, green “unburned” cells, and a perimeter of multi- colored 

“burning” cells that the UAVs are responsible for visiting. 

 

Figure 3.1 Graphical display of DEVSJAVA UAV simulation with 4 different-colored 

UAV regions depicted 

 

Each UAV in the team takes responsibility for a single contiguous “region” of cells from 

the perimeter (each region having a different color in Figure 3.1). The cells within each UAV’s 

region must only be neighboring other cells of that region, except for two cells - one at each of 

the opposing extremes of the region - which may also neighbor one cell from the neighboring 

UAV’s region. This definition of a UAV’s “region” has important implications in the negotiation 

procedure. UAVs are only allowed to negotiate with neighboring UAVs, or UAVs with regions 

that contain a cell neighboring a cell in that UAV’s region, and the negotiation only allows the 
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transfer of contiguous subregions beginning with that neighboring cell. This constraint ensures 

that each UAV’s region will remain intact as one contiguous chunk of cells after negotiation. 

3.2 Cell importance 

A cell’s “importance” value is proportional the fire’s rate of spread within that cell and 

the time since a UAV has last visited the cell. The rate of spread (ROS) is determined by 

multiple factors, including the amount of available fuel in the cell, the slope of the cell’s terrain, 

and the weather at the cell. ROS is an indicator of the uncertainty in the location of a section of 

wildfire; the location of a faster moving part of the fire is more likely to deviate from the 

prediction quicker than the slow moving parts. The uncertainty, and therefore ROS, are central in 

determining how frequently data should be collected from a particular area. The time since the 

cell was last visited is defined as the difference between the current simulation time and the time 

since a UAV entered, or “visited”, that cell. The UAVs move between cells in a discrete event 

fashion. When a UAV enters a cell it calculates the time until it will reach the center of the next 

cell and schedules an event at that time. After the scheduled time elapses the UAV enters the 

next cell, and this cell is considered to have been visited at that exact time. Likewise, the location 

of the UAV at that time is approximated as the center of this cell. Cells become more important 

the longer they are left unobserved because the likelihood that the real location of that part of the 

fire has deviated from the simulation’s prediction grows with each time step. 

While the importance value for a cell is proportional to the ROS and the time since last 

visit, the degree to which it is proportional is somewhat arbitrary and may be determined by the 

needs of the user. For this thesis, two definitions of importance will be used, each proportional to 

ROS and time since last visit, but by varying degrees. The first definition of importance is linear 

and equal to the product of ROS and time since last visit: 



13 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 𝑅𝑂𝑆 ∗ (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡) 

where ROS is rate of spread, tcurrent is the current simulation time, and tlast visit is the time at which 

the cell was last visited. This definition of importance will be referred to as “linear importance”. 

The second definition of importance is exponential. It is defined as follows: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡)1+𝑅𝑂𝑆 

The variables have the same definition as in the linear case. The addition of 1 to ROS in the 

exponent amplifies the effect of ROS.  

The definition of importance should reflect the simulation designer’s goal in data 

assimilation and does not necessarily need to be one of the two definitions above. These two 

definitions were chosen because they vary at two different rates for the same ROS. The linear 

importance varies linearly with the time since last visit and returns importance values directly 

proportional to ROS, so two cells with very different ROS values will not differ greatly in 

importance. The exponential definition of importance returns importance values with higher 

difference for the same two cells. It also varies exponentially with time, so a cell with a higher 

ROS becomes more important faster than a cell with a low ROS, as seen in Figure 3.2. The 

results of experiments using both definitions of importance are detailed in Section 5. 

One of the intended consequences of both definitions is that cells with higher ROS values 

will be visited more frequently than cells with low ROS values because those cells with high 

ROS values will grow in importance faster than low ROS cells. The other important consequence 

is that every cell will have an importance of zero at the exact moment a UAV visits the cell 

because tcurrent=tlast visit. The UAV is lowering the total importance of its region by visiting the 

cells, and this has implication on the path planning and negotiation algorithms. The designer of 

the data assimilation model should define the importance according to how much value is 



14 

derived from data in locations with high inherent uncertainty (ROS) and how quickly that value 

grows with time. 

 

Figure 3.2 Comparison of Linear Importance with Exponential Importance 

 

3.3 Cost Function 

The effectiveness or efficiency of the UAV team’s strategy is determined by how 

frequently the UAVs visit cells of varying importance. The quality of the data collected for 

assimilation is directly proportional to the importance of the cell from which the data is 

collected. Cells with higher importance should be visited first. The importance of a cell can also 

be thought of as the cost of not visiting that cell. As the importance of the cell grows with time, 

the cost of not visiting that cell also grows. So the goal of the UAV team is to maintain the 

lowest possible average cost – or average importance - over all the cells in the wildfire perimeter. 

Because the importance drops to zero when a UAV visits that cell, visiting the highest 

importance cell lowers the average importance more than visiting any other cell. This is the 

guiding principle in the design of the path planning and negotiation algorithms in the following 
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section. The following cost function is defined as the average importance value for the whole 

perimeter. 

𝐶𝑜𝑠𝑡 =  
∑ 𝑖𝑚𝑝𝑖

𝑖=𝑛
𝑖=1

𝑛
 

where n is the number of cells in the perimeter, i is the index of one cell in the perimeter, and 

impi is the importance value for cell i. 

 

4 SOLUTION AND ALGORITHMS 

 In the previous section, the cost function was defined as the average importance of the 

cells in the perimeter. The primary objective of the UAV team and each individual UAV is to 

maintain the lowest cost possible at each time step. The secondary objective is to maintain this 

low cost with the least amount of variation. A cost function that varies linearly is more desirable 

than one that fluctuates wildly over time. 

Each UAV in the team is responsible for visiting a one particular region of cells. The 

region is a contiguous segment of “burning” cells along the perimeter of the wildfire. As 

previously discussed, each cell has an importance value proportional to its ROS and the time 

since the UAV last visited the cell. The objective of the UAV team is to minimize the cost 

function over the entire perimeter, so the objective of the individual UAV can be construed as 

minimizing the cost function for its own region. Indeed, if all UAVs minimize the cost of their 

regions, then the cost of the perimeter, which is the average of the regions’ costs, should be 

minimized as well. It turns out that the team objective can be better accomplished by more than 

just individual action; cooperation between UAVs in the form of negotiation can create divisions 

of regions that are better suited for the individual efforts, which will be explained in subsection 

4.2. However, once the regions are divided most effectively, the best individual UAV strategy 
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should be the one that minimizes the cost function for the region. The path planning algorithms 

designed to achieve the minimum cost function are detailed in the following subsection. 

4.1 Path Planning Algorithms 

The individual UAV’s region can be imagined as a linked list of cells with varying 

importance, and the list of cells may change in length and value dynamically. The UAV is only 

allowed to move one cell in either direction at a time, and its location is constrained to the cells 

that make up the list. The UAV must choose one-dimensional route that has two parameters: 

direction (clockwise or counter-clockwise) and number of cells to traverse in that direction. The 

method for setting these parameters at a given time can affect the value of the region’s cost 

function at a future point in time. The following path planning algorithms were devised to 

minimize the cost function in a single UAV’s region. 

4.1.1 Back and forth 

The first path planning algorithm is the simplest. It is called the back and forth algorithm, 

and follows these steps: 

cw = true; 

for each cycle do 

 if cw and uav at last cell in region 

  cw = false; 

 else if cw=false and uav at first cell in region 

  cw = true; 

 set last visit time of current cell to the current time; 

 if cw 

  move UAV forward by one cell; 

 else if ccw 

  move UAV back by one cell; 

end for 
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The meaning of “each cycle” is at the next movement event scheduled for the UAV, 

when the UAV is considered to be at the next cell. The cw variable controls the direction of the 

UAV. If cw is true, then the UAV moves clockwise, or towards the end of the list of cells in the 

region; if cw is false, the UAV move counter-clockwise back towards the beginning of the list. 

The UAV traverses the cells in its region sequentially until it reaches the very first or last cell in 

the region, depending on which direction it is moving, at which point the UAV changes direction 

and repeats the process. 

This algorithm is naïve, but it is effective because the UAV following these steps will 

visit every cell in its region once during its traversal. The cell in the middle of the region is 

visited every t while the cells at the extreme ends of the region are visited every 2t, where t is the 

time it takes the UAV to traverse the region once. If all the cells in the region have the same 

ROS, then the back and forth algorithm performs just as well as any other path planning 

algorithm. However, if there is an uneven distribution of ROS values in the region, some parts of 

the region will grow in importance faster than the parts with lower ROS, and the back and forth 

algorithm will produce less than ideal results, especially if the cells near the ends of the region 

have the highest ROS. 

4.1.2 Highest Importance Target Dynamic 

The first attempt at improving the back and forth algorithm involves finding the cell with 

the highest importance in the region every time the UAV moves to a new cell and setting that 

cell as the target. 

currentCell = cell where UAV is currently located; 

for each cycle do 

 set last visit time of currentCell to the current time; 

 targetCell = cell with highest importance in region; 
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 cw = index of targetCell > index of currentCell; 

 if cw 

  currentCell = cell at index of currentCell + 1; 

 else if ccw 

  currentCell = cell at index of currentCell – 1; 

end for 

Each time the UAV reaches a new cell, the last visit time of the UAV’s current cell is set 

to the current time, and the highest importance cell in the region is set as the target cell. The 

UAV’s direction is set toward that target cell, and the it moves forward or backwards by one cell 

depending on which direction the target cell is located. 

The intention of this algorithm is that the UAV will always be moving towards the 

highest importance cell in an effort to minimize the cost function by visiting the highest 

importance cell as quickly as possible. Despite the intention, this algorithm may perform worse 

than the back and forth algorithm because it neglects the importance of the cells in between the 

UAV’s current cell and the target cell. It also updates the target cell each time the UAV moves to 

a new cell, regardless of whether the UAV has reached its initial target or not. This condition can 

potentially cause the UAV to get stuck in a loop of traversing a small subregion of cells if the 

two highest importance cells lie on either side of that subregion and grow in importance at 

varying rates. The UAV will keep changing direction when the cell in the opposite direction 

becomes the highest importance cell, traversing back over cells with low importance because it 

has just visited them. 

4.1.3 Highest Importance Target Static 

This algorithm is similar to the previous highest importance target dynamic algorithm, 

but instead of setting the target as the highest importance cell every time the UAV moves to a 

new cell, the target is only updated once the UAV has reached the original target. 
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currentCell = cell where UAV is currently located; 

targetCell = cell with highest importance in region; 

for each cycle do 

 set last visit time of currentCell to the current time; 

 if currentCell == targetCell 

  targetCell = cell with highest importance in region; 

  cw = index of targetCell > index of currentCell; 

 if cw 

  currentCell = cell at index of currentCell + 1; 

 else if ccw 

  currentCell = cell at index of currentCell – 1; 

end for 

This variation of the highest importance target algorithm relies on the assumption that the 

highest importance cells will be clustered together, and on its way to the highest importance 

target cell the UAV will visit other high importance cells. This scenario is more likely if the time 

since last visit plays a more important role in determining importance than does ROS. After the 

UAV reaches the initial target cell, it searches the region for the new highest importance cell, 

which is possibly beyond the old target cell continuing in the same direction, or it could be 

backwards beyond the cells the UAV has just traversed. The current cell should never be 

returned as the highest importance cell upon search for a new target cell because its importance 

value is always zero, and the other cells in the region will have non-zero importance as long as 

their ROS is non-zero. 

4.1.4 Predictive Planning 

The final path planning algorithm is the most computationally expensive but is expected 

to provide the most effective results. The predictive planning algorithm searches through all 

possible paths that do not involve any change of direction, other than the initial move, and 
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chooses the path with the highest cost function. The process will be elaborated shortly, but the 

strength in this algorithm is in its predicting the importance of each cell at a future time when the 

UAV would visit that cell, and adds that value to the cost function – instead of the current 

importance of the cell. For example, if the path being predicted contained three cells, the cost 

function would be: 

𝐶𝑜𝑠𝑡 = 

 
𝑅𝑂𝑆1(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡) +  𝑅𝑂𝑆2((𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1) − 𝑡𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡) + 𝑅𝑂𝑆3((𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 2) − 𝑡𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡)

3
 

where ROS1 is the ROS of the first cell in the sequence (the cell that the UAV would visit first), 

ROS2 is the ROS of the cell that the UAV would visit next, and so on. The addition of 

incremented integers to tcurrent at each sequential cell is a simplification of the actual time it 

would take the UAV to travel between cells, but it illustrates the point. The following 

pseudocode outlines the procedure: 

currentCell = cell where UAV is currently located; 

for each cycle do 

 set last visit time of currentCell to the current time; 

 highestValue = cost function of path from currentCell to targetCell; 

 for each cell ‘destination’ in region do 

  cost = predicted cost function of path from current cell to destination; 

  if cost > highestValue 

   targetCell = destination; 

   cw = index of targetCell > index of currentCell; 

   highestValue = cost; 

 end for 

 if cw 

  currentCell = cell at index of currentCell + 1; 

 else if ccw 
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  currentCell = cell at index of currentCell – 1; 

end for 

This predictive algorithm is another variation of the original highest importance target 

dynamic algorithm in that it calculates the best path every time the UAV reaches a new cell. It 

avoids the problem of continuously traversing back and forth over low importance cells by 

considering every possible path instead of only the direction of the highest importance cell. This 

rules out the traversal of recently visited cells as long as the cells ahead of the UAV have a 

higher average cost than the cells the UAV has just visited. The prediction of cells’ importance 

values at the time the UAV would visit them allows the UAV to consider the weight of cells with 

high inherent importance (high ROS) even if they were very recently visited and have a low 

current importance. 

4.2 Negotiation Algorithms 

In addition to individual UAV behavior, the cooperative behavior of the team can provide 

tremendous gains in efficiency. The perimeter of the fire is initially divided into regions of equal 

size and assigned to each UAV. Each UAV starts out responsible for the same number of cells, 

but the number of cells is not a good measure of responsibility when the cells have varying 

importance values. Two UAVs with regions of equal size may visit all of their cells with similar 

frequency, but the cells in the two regions may differ in ROS and require very different 

frequencies of observation. So, after the perimeter is divided into equal lengths among them, the 

UAVs must follow a negotiation procedure to more evenly spread the responsibility based on the 

cost function. 

4.2.1 Negotiate on Importance 

The most obvious method for negotiating the transfer of cells between UAVs is to 

redistribute the importance values so that they are most evenly spread between all UAVs. This 
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may result in some UAVs being responsible for a larger section of the wildfire than others, but 

the cost functions for each UAV’s region will be as similar as possible. The following 

pseudocode outlines the negotiation procedure based on importance: 

at each negotiation interval do 

 for each active UAV ‘uav’ do 

  for each other active UAV ‘other_uav’ do 

   if other_uav is a neighbor and other_uav’s region total importance 

     < uav’s region total importance 

    add other_uav to key of map ‘neighbors’; 

    add total importance of other_uav to value of map ‘neighbors’; 

  end for 

  determine offers based on size of ‘neighbors’; 

  for each ‘neighbor’ in map ‘neighbors’ do 

   chunk = empty list of cells; 

   cellToTransfer = uav’s cell that borders neighbor’s region; 

   while total importance of chunk <= offer to neighbor AND cellToTransfer 

    does not contain uav, uav’s next cell, or uav’s target cell 

    add cellToTransfer to chunk; 

    if total importance of chunk > offer to neighbor 

     remove cellToTransfer from chunk; 

     break out of while loop; 

    cellToTransfer = uav’s cell neighboring current cellToTransfer; 

   add chunk to neighbor’s region; 

   remove chunk from uav’s region; 

  end for 

 end for 

where the negotiation interval can be defined as any time interval. The shorter the interval, the 

more often the UAVs will negotiate and the more stable the distribution of cost will remain. The 

longer the negotiation interval, the more imbalanced the levels of responsibility between UAVs 
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can become. After the negotiation interval elapses, each UAV checks the total importance value 

of its neighbors and compares them with its own. If that UAV is currently responsible for a 

higher total importance than the neighbor, then that neighbor is added to the key of a map of 

neighbors (up to two), and the total importance of the neighbor’s region is added as the value for 

that key. 

 Based on the number of neighbors with lower importance levels, the UAV determines 

offers for transfer to its neighbor(s). If the UAV has two neighbors with lower importance, it 

uses the following algorithm to determine the two offers: 

neighbor1Importance = importance of the first ‘neighbor’ in neighbors 

neighbor2Importance = importance of the second ‘neighbor’ in neighbors 

delt1Imp = thisUAVimportance - neighbor1Importance; 

delt2Imp = thisUAVimportance - neighbor2Importance; 

scale; (for scaling importance difference to appropriate offer) 

if (delt1Imp < delt2Imp) 

{ 

 scale = delt1Imp / (2*delt1Imp + delt2Imp); 

} else { 

 scale = delt2Imp / (2*delt2Imp + delt1Imp); 

} 

offer1 = scale * delt1Imp; 

offer2 = scale * delt2Imp; 

where thisUAVimportance is the total importance of the UAV calculating the offers. The scale 

variable is determined by the following equation: 

𝑠𝑐𝑎𝑙𝑒 =
𝑖𝑚𝑝𝑢𝑎𝑣 − 𝑖𝑚𝑝ℎ𝑖𝑔ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

2 ∗ (𝑖𝑚𝑝𝑢𝑎𝑣 − 𝑖𝑚𝑝ℎ𝑖𝑔ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) +  (𝑖𝑚𝑝𝑢𝑎𝑣 − 𝑖𝑚𝑝𝑙𝑜𝑤 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)
 

where imphigh neighbor is the total importance value of the UAV’s neighbor with the highest total 

importance, and implow neighbor is the total importance value of the UAV’s neighbor with the 
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lowest total importance. When the differences between the UAV’s importance and its neighbors’ 

importance values are multiplied by scale, the two offers will bring the UAV’s importance down 

so that it is equal to the importance of the higher importance neighbor after the transfer, and the 

offers will be weighted by the respective differences in importance. 

 If the UAV has only one neighbor that is responsible for less importance than the UAV, 

then the UAV offers an amount that will make the two UAVs’ importance values equal after 

transfer. If the UV has no neighbors with less importance, then it simply makes no offers. 

 After the offers are determined, the UAV making the offers begins to add bordering cells 

to a chunk of cells that are to be transferred to the neighbor. The UAV continues adding cells to 

the chunk sequentially moving away from the border until the total importance of the chunk 

exceeds the value of the offer or the cell being added to the chunk contains either the UAV, the 

UAV’s next cell, or the UAV’s target cell. If the last cell added to the chunk brings its total 

importance over the value of the offer, the cell is removed from the chunk. Finally, the chunk is 

removed from the UAV’s region and added to the neighbor’s region. 

 This negotiation procedure attempts to redistribute the importance levels evenly amongst 

all UAVs; however, one iteration through this negotiation procedure is not guaranteed to 

completely even out the importance levels of all the regions. When one UAV ends up with more 

importance than all the other UAVs, it transfers as much as it can to its two neighbors without 

transferring so much that itself would become responsible for less than the neighbors. It then 

takes additional iterations of the negotiation procedure for that extra importance to propagate 

through the team to the other UAVs that do not neighbor the original UAV, but, with each 

iteration, any excess importance value eventually evens out like the ripples in a body of water. 

The algorithm may never fully converge; it may keep transferring a small remainder of 
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importance until the next big imbalance in importance occurs. In the extremely dynamic wildfire 

simulation, convergence of the negotiation algorithm is of little concern because there are 

constant fluctuations in the importance values. 

4.2.2 Negotiate on Center of Importance 

The negotiate on importance algorithm performs very well given its intention, but it is 

based solely on the total importance of the UAV regions and fails to consider the distribution of 

the individual cells’ importance values within the region. This algorithm was developed after 

testing all of the path planning algorithms, which all turn out to cause behavior nearly identical 

to the basic back and forth algorithm in most wildfires. As mentioned previously, the cell at the 

center of a region is visited every t time units, while the two cells at either end of the region are 

visited once every 2t time steps, given the UAV is following the basic back and forth path 

planning algorithm. 

This means that even with a path planning algorithm at work to keep the UAV visiting 

most important cells more frequently, the nature of the one-dimensional path most often causes 

the UAV to traverse the entire region back and forth completely, causing the cells nearest to the 

center of the region to visited most frequently. The cells further from the center are still visited 

with the same average frequency as those at the center (except for the two at the very ends), but 

the standard deviation becomes larger the further the cell is from the center of the region.  

Since the path planning algorithms have little effect on the frequency of visitation for 

higher importance cells, the negotiation procedure is modified to skew the range of each region 

so that the highest importance cells are located nearest the middle point of the region. The 

concept of center of gravity is adapted to calculate the “center of importance” of a region. 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  
∑ 𝑖𝑚𝑝𝑖 ∗ 𝑖𝑖=𝑛

𝑖=1

𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝
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 where impi is the importance of cell i in the region (i is the index of the cell within the region 

list) and totalImp is the total importance of the region. The negotiation on center of importance 

attempts to transfer cells not only to redistribute importance amongst the UAVs, but also to align 

each region’s center of importance as closely as possible with its center cell. 

This modified negotiation follows the same procedure as the negotiation on importance 

until its begins adding cells to the chunk to be transferred; the offers are calculated using the 

same scaling method. Once the negotiation algorithm determines the offers, depending on the 

number of neighbors with lower importance levels, it calls a “swap on center of importance” 

algorithm. The algorithm searches through every combination of offers (within the bounds of the 

original offers determined by total importance) and returns the offers that minimize the 

difference between the resulting region’s center of importance and the index of its center cell. 

The pseudocode for the algorithm follows: 

chunk1 = maximum chunk allowed by offer to neighbor1 

chunk2 = maximum chunk allowed by offer to neighbor2 

bestCoi = center of importance – index of center cell; 

optimalChunk1 = empty list; 

optimalChunk2 = empty list; 

if chunk1 is not empty 

 while chunk1 is not empty do 

  if chunk2 is not empty 

   while chunk2 is not empty do 

    cellsToRemove = empty list; 

    add all cells in chunk2 to cellToRemove; 

    if center of importance of (region minus cellsToRemove) – center  

     index of (region minus cellsToRemove) < bestCoi 

      add all cells in chunk1 to optimalChunk1; 

      add all cells in chunk2 to optimalChunk2; 
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      bestCoi = center of importance of (region minus  

       cellsToRemove) – center index of (region  

       minus cellsToRemove); 

    remove last element (cell) from chunk2; 

   remove last element from chunk1; 

  else if center of importance of (region minus chunk1) – center index of   

   (region minus chunk1) < bestCoi  

   add all cells in chunk1 to optimalChunk1; 

   add all cells in chunk2 to optimalChunk2; 

   bestCoi = center of importance of (region minus chunk1) – center index of 

    (region minus chunk1); 

  remove last element from chunk1; 

else if chunk2 is not empty 

 while chunk2 is not empty do 

  else if center of importance of (region minus chunk2) – center index of (region  

   minus chunk2) < bestCoi       

   add all cells in chunk1 to optimalChunk1; 

   add all cells in chunk2 to optimalChunk2; 

   bestCoi = center of importance of (region minus chunk2) – center index of 

    (region minus chunk2);     

  chunk2.remove(chunk2.size() - 1); 

for each cell ‘cellToRemove’ in optimalChunk1 do 

 remove cellToRemove from region; 

end for 

for each cell ‘cellToRemove’ in optimalChunk2 do 

 remove cellToRemove from region; 

end for 

add optimalChunk1 to neighbor1 region; 

add optimalChunk2 to neighbor2 region; 
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This algorithm is for the case when the UAV has two neighboring UAVs, neighbor1 and 

neighbor2, both with less total importance than the UAV. If the UAV only has one neighbor with 

less total importance, a similar procedure is followed to determine the one optimalChunk that 

will result in the region with the center of importance nearest to the center cell. If the UAV has 

no neighbors with lower importance, it will not transfer any cells. 

4.3 Benchmark Algorithms 

Two benchmark algorithms are implemented and tested for comparison with the 

efficiency of each combination of path planning and negotiation algorithms. The benchmark 

cases do not use any negotiation or advanced path planning algorithms. The first benchmark 

algorithm, the “circling” algorithm, involves the team of UAVs all travelling clockwise around 

the perimeter of the wildfire. The UAVs begin at points equidistant from each other, but because 

the wildfire dynamically grows in some sections faster than others, the distance between the 

UAVs will vary over time. 

The second benchmark algorithm, the “bumper” algorithm, deploys each UAV in the 

team at equidistant points along the perimeter with each UAV travelling in a direction opposite 

to its neighbor on the counter-clockwise side. After the UAVs begin moving, they will 

eventually run into their neighbors, at which point they change direction and continue until the 

other neighbor is encountered, change direction again, and repeat the process. Neither of the 

benchmarks consider frequency of visit or division of responsibility, and therefore provide a 

good base against which to compare the newly developed algorithms. 
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5 EXPERIMENTS AND RESULTS 

5.1 Experiments 

The path planning algorithms and negotiation algorithms described in the previous 

section are implemented as part of a UAV simulation model in DEVS-FIRE environment. Every 

combination of path planning algorithm, negotiation algorithm, and importance definition (linear 

or exponential) is tested with a varying number of UAVs (2-6) for a total of 80 simulations. The 

two benchmark algorithms are implemented using both exponential and linear importance and 

tested with a varying number of UAVs (2-6) for a total of 20 benchmark simulations. The UAVs 

travel with the same speed in all simulations and are modeled to be able to change direction 

instantly. The global cost function for the entire wildfire perimeter as well as the cost functions 

for the individual UAVs’ regions are collected every 20 time steps (20 seconds of simulation 

time). 

The purpose of simulating every possible combination of path planning and negotiation 

algorithm is to determine which combination minimizes the global cost function and which 

combination maintains a stable cost function. Each combination of algorithm is tested using both 

the linear and exponential definition of importance. Changing the definition of importance gives 

an idea of the behavior of the algorithms under different objectives for data assimilation. For 

each combination, the average and the standard deviation of the cost function are taken over 

time. The lower the average, the more efficient the data collection strategy. Likewise, the lower 

the standard deviation, the more stable the cost function, meaning the data collection strategy is 

collecting data from cells with appropriate frequency. 
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5.2 Linear Importance 

A total of 50 simulations, including 10 benchmark cases, were performed using linear 

importance. The average cost and standard deviation for each combination of algorithms and 

benchmarks are charted and compared. The results for each combination are shown in Table 5.1. 

Surprisingly, the benchmark cases performed better with a small number of UAVs; the advanced 

algorithms began showing better performance when 4 or more UAVs were used to monitor the 

wildfire. The likely reason for this is that the path planning and negotiation algorithms caused the 

UAVs to visit recently visited cells more often than the benchmark cases. The average cost and 

standard deviations were averaged over every number of UAVs, showing the Back and Forth 

algorithm using Negotiate on Importance performed best on average. The average values are 

shown in Figure 5.1. There is little difference in the performance of each combination using the 

linear definition of importance. This is to be expected as the linear definition assigns similar 

importance values to cells with varying ROS. 

Table 5.1 Highest performing algorithms for number of UAVs using linear importance 
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Figure 5.1 Efficiency of algorithm combinations using linear importance 

 

5.3 Exponential Importance 

Another 50 simulations were performed using the exponential definition of importance. 

The average cost and standard deviation for each combination of algorithms and benchmarks are 

charted and compared. The results for each combination are shown in Table 5.2. Again, the 

benchmark cases performed better with a small number of UAVs, while the advanced algorithms 

showed better performance with 4 or more UAVs. The average cost and standard deviations 

were averaged over every number of UAVs, shown in Figure 5.2. The High Importance Target 

Dynamic path planning algorithm had the best performance, and did so with the lowest standard 

deviation using the Negotiate on Center of Importance algorithm. The higher variance in 

performance is expected from using exponential importance because the disparity in the growth 

rates of importance for cells with varying ROS values is much greater than when using the linear 

definition. With the lower disparity from using linear importance, all the path planning 
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algorithms cause nearly the same behavior as the back and forth algorithm. This is not the case 

when using exponential importance; the higher disparity brings out the intended behavior of the 

path planning algorithms. 

 

Table 5.2 Highest performing algorithms for number of UAVs using linear importance 

 

 

 

Figure 5.2 Efficiency of algorithm combinations using exponential importance 
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5.4 Comparison Negotiation Procedures 

While the path planning algorithms achieved somewhat marginal improvements over the 

benchmarks, the addition of multiple UAVs using procedure negotiation clearly improved 

performance. Of the two negotiation procedures, the Negotiate on Center of Importance was 

expected to yield the lowest cost as wells as the lowest standard deviation. The results shown in 

Tables 5.1 and 5.2 contradict that expectation; however, looking at the average cost and standard 

deviation for every number of UAVs using the two negotiation procedures, it is clear the 

Negotiate on Center of Importance does outperform Negotiate on Importance on average. Table 

5.3 shows the comparison between the two negotiation procedures using linear importance, and 

Table 5.4 shows the comparison using exponential importance. With both definitions of 

importance, the Negotiate on Center of Importance algorithm produced lower average standard 

deviations. The Negotiate on COI algorithm reduced the average cost more when using 

exponential importance, while Negotiate on Importance reduced the average cost slightly more 

when using linear importance. 

 

Table 5.3Comparison of negotiation procedures using linear importance 

 

Table 5.4Comparison of negotiation procedures using exponential importance 
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5.5 Number of UAVs 

Each combination of path planning, negotiation algorithm, and importance definition is 

simulated for teams ranging from 1 to 6 UAVs. The results of the using the Back and Forth path 

planning algorithm in combination with the Negotiate on Importance algorithm are shown for 

each number of UAVs in Figure 5.3 (the sharp changes in cost are due to changes in the weather 

model). As expected, using additional UAVs to collect data reduces the cost function and its 

standard deviation. However, the important consequence of these results is that the amount the 

cost function is reduced with the addition of another UAV decreases as the number of UAVs 

increases. There is a tradeoff between greater efficiency of data collection and the cost of adding 

more UAVs to the team. Therefore, the user of this data assimilation method must make an 

optimization decision regarding the number of UAVs that can be purchased and operated within 

a budget against the added benefit of that number of UAVs. 

 

Figure 5.3 Efficiency of multiple-UAV teams 
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6 CONCLUSIONS 

The efficiency of data assimilation for dynamic data driven simulation of wildfires can be 

improved by utilizing a team of UAVs that are controlled by the path planning algorithms and 

negotiation algorithms developed in this thesis. The varying levels of importance of the data 

being collected is a central concept to the methodology of data assimilation, and the 

mathematical definition of importance chosen must reflect the goals of the simulation user. The 

algorithms developed herein are applicable to any definition of importance but respond 

differently to each one, and this is the most valuable feature of the data assimilation 

methodology. This thesis serves as a basis for data assimilation into any simulated system using 

a team of autonomous mobile robots. The path planning and negotiation algorithms can be easily 

adapted to any scenario in which the data of interest lies on a dynamic or static perimeter. 

6.1 Future Work 

There are some possible improvements that can be made to both the path planning and 

the negotiation algorithms. For instance, the predictive path planning algorithm recalculates the 

path with the highest cost function every time the UAV moves to a new cell. This algorithm can 

be modified to only recalculate the highest-valued path once the UAV completes the last 

computed path entirely. Another negotiation algorithm could be designed to consider the amount 

of time before each UAV would be able to visit a cell as the deciding factor on which UAV 

would be responsible. This algorithm is more closely related to the negotiation algorithm used in 

[8]. 

The path planning and negotiation algorithms should next be implemented using a UAV 

autopilot software, such as Paparazzi UAV, which provides a Hardware-in-the-Loop (HITL) 
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simulation environment for simulating the algorithms with real UAV hardware. Once the UAV 

team is successfully simulated using HITL approach, the UAVs can be deployed into a real 

system for testing. 

Beyond the wildfire system, the data assimilation methodology described in this thesis 

can be further formalized in a more general scope. Wider and finer definitions of importance 

should be tested and characterized. This will allow a data assimilation framework to be 

developed, giving dynamic data driven simulation a greater foothold in practice. 
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