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Counting Generating Sets in Frobenius Skew Polynomial Rings

by

ALAN DILLS

Under the Direction of Florian Enescu, PhD

ABSTRACT

This dissertation takes a close look into a Frobenius skew polynomial ring where some of

typical invariants from noncommutative algebra do not provide any useful information about

the ring. Yoshino provides some nice results for a general Frobenius skew polynomial ring

in [9], however, there is still significant potential to study and identify more aspects of these

rings. Here, we apply standard techniques from noncommutative algebra taking a finitely-

generated subspace and attempt to count the number of generators needed for powers of the

subspace. We find that in certain cases where the base ring is the commutative polynomial



ring or a semigroup ring, that a nonhomogeneous recurrence develops in the counting and

an invariant arises naturally when solving this recurrence. We define this invariant as the

Gk-base and show examples where it arises.

INDEX WORDS: Noncommutative algebra, Skew Polynomial Rings, Frobenius Skew
Polynomial Rings, Gelfand-Kirillov Dimension, Growth of an Algebra
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

In this paper, we look closely at a skew polynomial ring that is defined by the Frobenius

endomorphism, called a Frobenius skew polynomial rings. There is a lot in the commutative

algebra literature studying the combination of rings of positive characteristic and the Frobe-

nius endomorphism since this ring appears naturally. However, there has not been much

investigation into the basic characteristics of the ring itself. Most study has been applied to

taking the Frobenius endomorphism and applying it to different structures of the ring. So

here we look to understand the interplay between the elements of the ring and the Frobenius

endomorphism.

The initial idea was to study a well-developed invariant related to noncommutative al-

gebras called the Gelfand-Kirillov dimension. It turns out that the examples of Frobenius

skew polynomial rings studied in this paper have an infinite Gelfand-Kirillov dimension, and

thus, other avenues were needed to gain useful information about the ring. There is another

invariant closely related to the Gelfand-Kirillov dimension called the superdimension, but

for the Frobenius skew polynomial rings studied here the superdimension is 1 and again this

is not a meaningful value related to the rings.

However, the structure used to determine the Gelfand-Kirillov dimension produced an-

other invariant that we refer to as the GK-base in this paper, that seems to provide an

interesting invariant for the ring. It comes from counting the number of generators from

various powers a K-subspace. So this value is closely associated to number of generators of

these K-subspaces, yet it is still not clear what the value indicates. Another difficulty that is

not resolved in this paper comes with the fact that the GK-base defined in Chapter 2 might

depend on the choice of the K-subspace chosen for the Frobenius skew polynomial ring.
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In Section 1.2 we provide the basic definitions and results related to a general skew

polynomial ring. Once the definitions are established for a general skew polynomial ring,

we transition to a focus on a Frobenius skew polynomial ring. In [9], Yoshino provides the

necessary conditions on a ring R such that the Frobenius skew polynomial ring over R is left

or right Noetherian. We present some of his results in Section 1.2, as well as provide a proof

that the definition Yoshino uses for a Frobenius skew polynomial ring is indeed the same as

our definition in this paper.

In Section 1.3, we provide the general structure used to determine the Gelfand-Kirillov

dimension of a noncommutative algebra following the standard approach presented in [5].

In this process, we show that the Gelfand-Kirillov dimension agrees with the classic Krull

dimension when the algebra is commutative. We also provide some basic definitions and

results related to the superdimension, which is studied in more detail in [1].

Chapter 2 begins by taking a general Frobenius skew polynomial ring and applying the

methods described in Section 1.3 related to the Gelfand-Kirillov dimension. It is here that

we see that the Gelfand-Kirillov dimension is infinite while the superdimension is one. Thus,

we define a new invariant that appears in the process of computing the Gelfand-Kirillov

dimension refered to as the GK-base. Section 2.2 then moves to compute this invariant for

the Frobenius skew polynomial ring when the base ring is a commutative polynomial ring,

while section 2.3 takes the underlying ring to be the semigroup ring K[t2, t3].

1.2 Skew Polynomial Rings

It is standard to define a polynomial ring in a modern algebra course by adjoining an

indeterminate, x, to a commutative ring, R. This gives the ring R[x] the structure of a free

R-module with basis 1, x, x2, x3, · · · . Here, the multiplication with elements from R and the

indeterminate x is commutative. Hence, rx = xr for all r ∈ R.
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In this section, we define a skew polynomial ring. The construction given here follows

the standard approach given in both [4] and [7]. A skew polynomial has a similar structure

as the standard polynomial ring, but the elements from the base ring are not assumed to

commute with the indeterminate. In particular, let R be a ring and f an indeterminate that

does not commute with the elements of R. We construct a ring S =
∑

iRf
i where elements

of R act as left coefficients on powers of f and S is a free left R-module with basis 1, f, f 2, · · · .

The addition in S is the same as the standard polynomial ring. We define multiplication

in S so that all elements of S can be written as
∑n

i=0 rif
i where ri ∈ R for all i, as in the

standard polynomial ring. However, since f is not assumed to commute with elements of R,

we need to determine the multiplication fr for r ∈ R.

Recall that in the standard polynomial ring R[x], we have deg(g(x)h(x)) 6 deg(g(x))+

deg(h(x)). To achieve a similar relation in S, we first define degrees in S. For all s ∈ S, we

have s =
∑n

i=0 rif
i, where ri ∈ R for all i. We define deg(s) = j where rj 6= 0 and j > i for

all i such that ri 6= 0. Now consider the product fr for any r ∈ R. To maintain the degree

relation we want deg(fr) 6deg(f)deg(r), but deg(f) = 1 and deg(r) = 0, so deg(fr) 6 1.

From this, we see that the product fr needs to be linear for every r ∈ R. Hence, we should

have fr ∈ Rf + R and fr = σ(r)f + δ(r) ∈ Rf + R for all r ∈ R where σ and δ are maps

from R to R.

We can conclude that the maps σ and δ need to have certain properties in order for the

multiplication in S to satisfy the ring axioms. In fact, σ must be a ring endomorphism of

R and δ must be a σ-derivation. Before demonstrating why this is the case, we first remind

the reader of the definition of a σ-derivation.

Definition 1.2.1. Let R be a ring and σ an endomorphism. A σ-derivation of R is an

additive map δ : R → R such that δ(rs) = σ(r)δ(s) + δ(r)s for any r, s ∈ R. If σ is the

identity map on R, then δ is just referred to as a derivation.
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We now consider the distributive and associative properties to show the implications of

certain ring axioms on σ and δ.

If f ∗ (r + s) = σ(r + s)f + δ(r + s)

and f ∗ r + f ∗ s = (σ(r) + σ(s)) ∗ f + δ(r) + δ(s)

Then combining these two equations, we obtain

σ(r + s) ∗ f + δ(r + s) = (σ(r) + σ(s)) ∗ f + δ(r) + δ(s)

=⇒ σ(r + s) = σ(r) + σ(s) and δ(r + s) = δ(r) + δ(s)

Hence, σ and δ are endomorphisms of the underlying additive group of R.

f ∗ (rs) = σ(rs) ∗ f + δ(rs)

and (f ∗ r)s = (σ(r) ∗ f + δ(r))s

= σ(r) ∗ f ∗ s+ δ(r)s

= σ(r)(σ(s) ∗ f + δ(s)) + δ(r)s

= σ(r)σ(s) ∗ f + σ(r)δ(s) + δ(r)s

Hence we have σ(rs) = σ(r)σ(s) and δ(rs) = σ(r)δ(s) + δ(r)s.

Finally, we see that f ∗ 1R = σ(1R) ∗ f + δ(1R) which implies σ(1R) = 1R and δ(1R) = 0.

Now assume that we are given a ring R, ring endomorphism σ, and a σ-derivation δ.

We will now show that there exists a well-defined skew polynomial ring S, that is a free

left R-module with the multiplication fr = σ(r)f + δ(r). To do this, we will follow the

construction given by Goodearl and Warfield in [4] to avoid the tedious calculation required

to check the ring axioms individually. This relies on constructing S =
∑

iRf
i as a subring

of the endomorphism ring EndZR[x], where R[x] is the standard polynomial ring. We first

provide a lemma to show that σ and δ as described above can be extended to R[x].
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Lemma 1.2.2. Let R be a ring, σ an endomorphism of R, and δ a σ-derivation of R. Then

σ can be extended to a ring endomorphism of R[x] and δ can be extended to a σ-derivation

over R[x].

Proof. We first extend σ and δ to map R[x] to R[x] by σ(rxi) = σ(r)xi and δ(rxi) = δ(r)xi for

all r ∈ R and i = 0, 1, 2, · · · . We now show that σ is a ring endomorphism of R[x] by showing

that multiplication is preserved by σ, and that δ meets the definition of a σ-derivation over

R[x]. Let f(x), g(x) ∈ R[x] with f(x) =
∑n

i=0 rix
i and g(x) =

∑m
j=0 rjx

j.

σ(f(x)g(x)) = σ
( n∑
i=0

rix
i

m∑
j=0

rjx
j
)

= σ
( n∑
i=0

m∑
j=0

rirjx
i+j
)

=
n∑
i=0

m∑
j=0

σ(rirjx
i+j)

=
n∑
i=0

m∑
j=0

σ(rirj)x
i+j

=
n∑
i=0

m∑
j=0

σ(ri)σ(rj)x
i+j

=
n∑
i=0

σ(ri)x
i

m∑
j=0

σ(rj)x
j

= σ(f(x))σ(g(x))



6

δ(f(x)g(x)) = δ
( n∑
i=0

rix
i

m∑
j=0

rjx
j
)

= δ
( n∑
i=0

m∑
j=0

rirjx
i+j
)

=
n∑
i=0

m∑
j=0

δ(rirjx
i+j)

=
n∑
i=0

m∑
j=0

δ(rirj)x
i+j

=
n∑
i=0

m∑
j=0

(σ(ri)δ(rj) + δ(ri)rj)x
i+j

=
n∑
i=0

m∑
j=0

σ(ri)δ(rj)x
i+j + δ(ri)rjx

i+j

=
n∑
i=0

m∑
j=0

σ(ri)x
iδ(rj)x

j + δ(ri)x
irjx

j

=
n∑
i=0

m∑
j=0

σ(rix
i)δ(rjx

j) + rjx
jδ(rix

i)

= σ(f(x))δ(g(x)) + δ(f(x))g(x)

Thus, σ is a ring endomorphism and δ is a σ-derivation over R[x].

The next proposition follows Proposition 1.10 from [4]. We provide the result with the

proof as reference for the reader and adjustments to match the desired notations and details

for this paper.

Proposition 1.2.3. Let R be a ring, σ an endomorphism of R, and δ a σ-derivation of R.

Then there exists a ring S, containing R as a subring, such that S is a free left R-module

with a basis of the form 1, f, f 2, · · · and fr = σ(r)f + δ(r) for all r ∈ R.

Proof. Let E =EndZ(R[x]) where x is an indeterminate. We can view R as a subring of this

endomorphism ring by associating R with the image of the injective map ϕ : R→ E defined

by sending r → ϕr for all r ∈ R where ϕr : f(x)→ r ∗ f(x).
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Now we extend σ and δ to E as in Lemma 1.2.2 and define f such that f(g) = σ(g)x+

δ(g) for all g ∈ R[x]. We can see that f ∈ E since for all g(x), h(x) ∈ R[x],

f(g(x) + h(x)) = σ(g(x) + h(x)) + δ(g(x) + h(x))

= σ(g(x)) + σ(h(x)) + δ(g(x)) + δ(h(x))

= f(g(x)) + f(h(x))

Also, for all z ∈ Z and g(x) ∈ R[x],

f(zg(x)) = σ(zg(x)) + δ(zg(x))

= zσ(g(x)) + zδ(g(x))

= zf(g(x)

It will be shown that S =
∑∞

i=0Rf
i is a subring of E.

We first show that f iR ⊆ Rf i + Rf i−1 + · · ·+ Rf + R by induction on i. For i = 1, notice

that for any r ∈ R and g ∈ R[x] we have

(f◦ϕr)(g) = f(ϕr(g)) = f(rg) = σ(rg)x+δ(rg) = σ(r)σ(g)x+σ(r)δ(f)+δ(r)f = σ(r)f(g)+δ(r)g

Hence, fr = σ(r)f + δ(r) for all r ∈ R, and fR ⊆ Rf + R. Now assume fkR ⊆ Rfk +

Rfk−1 + · · ·+Rf +R for some k > 1 and consider fk+1R. We have

fk+1R = f(fkR) ⊆ fRfk + fRfk−1 + · · ·+ fRf + fR
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Applying fR ⊆ Rf +R, we have

fk+1R ⊆ (Rf +R)fk + (Rf +R)fk−1 + · · ·+ (Rf +R)f +Rf +R

= Rfk+1 +Rfk +Rfk + · · ·+Rf 2 +Rf 2 +Rf +R

= Rfk+1 +Rfk +Rfk−1 + · · ·+Rf +R

Thus, f iR ⊆ Rf i +Rf i−1 + · · ·+Rf +R for all i ∈ {0, 1, 2, . . . }.

As a consequence, (f iR)(f jR) ⊆ Rf i+j +Rf i+j−1 + · · ·+Rf +R for all i, j ∈ {0, 1, 2, . . . },

which shows that S is closed under multiplication, and hence, S is a subring of EndZ(R[x]).

We can also see that, by definition, S is generated by 1, f, f 2, · · · .

Now if 1, f, f 2, · · · are all linearly independent over R, then S is a free left R-module

with basis 1, f, f 2, · · · as desired. Now take s ∈ S. Then s = r0 + r1f + · · · + rnf
n with

ri ∈ R for all i. We have that s = 0 if and only if s(g(x)) = 0 for all g(x) ∈ R[x].

Notice that by the definition of f , we have f(x) = σ(x)x + δ(x) and with σ(1) = 1 and

δ(1) = 0 this gives f(x) = x2. It can be seen by induction that f i(x) = xi+1. Now

s(x) = r0 + r1f(x) + · · · + rnf
n(x) = ro + r1x

2 + · · · + rnx
n. Since 1, x, x2, · · · are linearly

independent over R, we must have r0, r1, · · · , rn = 0. This shows that s = 0 if and only if

r0, r1, · · · , rn = 0, and hence, 1, f, f 2, · · · are linearly independent over R and S is a free left

R-module.

The next proposition is given as an exercise in [4]. We provide it as a proposition here

with proof as it will be useful to show that two different formulations of a particular skew

polynomial ring are isomorphic.

Proposition 1.2.4. Let R be a ring, σ a ring endomorphism, and δ a σ-derivation. Let S1

and S2 be ring extensions of R such that each Si is a free left R-module with basis elements

1, fi, f
2
i , · · · and fir = σ(r)fi + δ(r) for all r ∈ R. Then there exists an isomorphism

Φ : S1 → S2 such that Φ(f1) = f2.
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Proof. We first define the map Φ : S1 → S2 by Φ(r) = r for all r ∈ R and Φ(f1) = f2. Then

for any s ∈ S1 we have s =
∑n

i=0 rif
i
1 and

Φ(s) = Φ
( n∑
i=0

rif
i
1

)
=

n∑
i=0

Φ(ri)Φ(f1)i =
n∑
i=0

rif
i
2

We now show by induction that f i1r =
∑i

k=0 αk(r)f
k
1 for all i ∈ N and r ∈ R, where

αk,i : R→ R determined by compositions of σ and δ for all k, i. For i = 1 we have

f1r = σ(r)f1 + δ(r)

Taking α0,1 to be δ and α0,1 to be σ, the result holds. Now assume true for i > 1 and consider

i+ 1. We have

f i+1
1 r = f1f

i
1r

= f1

( i∑
k=0

αk,i(r)f
k
1

)
by induction hypothesis

=
i∑

k=0

f1αk,i(r)f
k
1

=
i∑

k=0

(
σ(αk,i(r))f

k+1
1 + δ(αk,i(r)f

k
1

)
=

i+1∑
k=0

αk,i+1(r)fk1 by a relabeling to αk,i+1

Notice that we obtain a similar expression in S2 for f i2r =
∑i

k=0 αk,i(r)f
i
2 where the maps

αk,i are the same as in the expression for f i1r since σ and δ are the same maps R→ R in S1

and S2.
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Now consider Φ(rif
i
1rjf

j
1 ).

Φ(rif
i
1rjf

j
1 ) = Φ

(
ri

(
i∑

k=0

αk,i(rj)f
i
1

)
f j1

)

= Φ

(
i∑

k=0

riαk,i(rj)f
i+j
1

)

=
i∑

k=0

riαk,i(rj)f
i+j
2

= rif
i
2rjf

j
2

= Φ(rif
i)Φ(rjf

j)

Hence, Φ is a ring homomorphism. To see that Φ is an isomorphism, consider ker(Φ) = {s ∈

S1|Φ(s) = 0}. Let s ∈ S1 such that Φ(s) = 0. Since s ∈ S1, we have s =
∑n

i=0 rif
i
1 where

n ∈ Z>0 and ri ∈ R for all i. Then

Φ(s) = Φ

(
n∑
i=0

rif
i
1

)
=

n∑
i=0

rif
i
2 = 0

Since S2 is a free left R-module with basis elements 1, f2, f
2
2 , · · · , we have ri = 0 for all i,

and hence, s = 0. Thus, ker(Φ) = 0 and Φ is an isomorphism.

We now give an example that shows that a skew polynomial ring will not generally be

left or right Noetherian even when the base ring is Noetherian. This particular example

was motivated by exercises written by A. Hubery created for lectures given by W. Crawley-

Boevey at Bielefeld University. These exercises can be found at https://www.math.uni-

bielefeld.de/ hubery/pdf-files/non-comm-alg-1/exercises6.pdf.

Example 1.2.5. Let R = K[x] be a polynomial ring over a field K, and let σ be the

K-algebra endomorphism of R sending x 7→ x2 and consider the skew polynomial ring

S = R[f ;σ].
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Proposition 1.2.6. S in example 1.2.5 is not left Noetherian.

Proof. Let In be the left ideal generated by x, xf, . . . , xfn. Consider xfn+1.We want to show

that xfn+1 /∈ In to see that we can obtain an ascending chain of left ideals I ( I2 ( I3 ( . . . ,

and hence, that S is not left Noetherian. Assume that xfn+1 ∈ In. Then we have xfn+1 =∑n
i=0 sixf

i where si ∈ S for all i. First, we show that xfn+1 does not appear in any of the

terms in the sum. Since S is a free left R-module, we have that si =
∑m

j=0 rjf
j where rj ∈ R

for all j. Now for any i ∈ {0, 1, 2, . . . , n} we have

sixf
i =

(
m∑
j=0

rjf
j

)
xf i =

m∑
j=0

(rjf
jxf i) =

m∑
j=0

rjx
2jf i+j

Considering the degree on x, we have j = 0 and r0 = 1. However, this gives xf i where

i ∈ {0, 1, 2, . . . , n}, a contradiction. Thus, xfn+1 does not appear in any sixf
i.

Since xfn+1 does not appear in any term of the sum, we have two distinct representations

for the same element as an R-linear combination of powers of f , all different from fn+1, but

this is impossible since S is a free left R-module with basis 1, f, f 2, · · · . Thus, xfn+1 /∈ In

and the chain of ideals, I ( I2 ( I3 ( . . . is strictly ascending.

Lemma 1.2.7. Let R = K[x1, x2, · · · , xn] be the polynomial ring over a field K in inde-

terminates x1, x2, · · · , xn, σ be any ring endomorphism of R, and S = R[f, σ] the skew

polynomial ring. Then the terms xαif j are linearly independent over K for all i, j ∈ Z>0

where xαi = xa11 , x
a2
2 , · · · , xann .

Proof. First, we have that the f j are linearly independent over R since S is a free left R-

module with basis 1, f, f 2, · · · . Now consider a sum of the form
∑n

m=0 kim,jmx
αimf jm = 0

where n, im, jm ∈ Z>0 and kim,jm ∈ K. Notice that kim,jmx
αim ∈ R for all m and let

rjm =
∑

im
kim,jmx

αim . Hence, we have
∑n

m=0 kim,jmx
αimf jm =

∑n
m=0 rjmf

jm = 0 for rjm ∈ R.

Since the f i are linearly independent over R, we have rjm = 0 for all jm. This shows that∑
im
kim,jmx

αim = 0 for all im. Since 1, x, x2, · · · are linearly independent over k, we have

kim,jm = 0 for all im, jm. Thus, the terms xαif j are linearly independent over K.
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Proposition 1.2.8. S in example 1.2.5 is not right Noetherian.

Proof. Let Jn be the right ideal generated by xnfn. WTS that Jn has a K-basis xif j where

i ≡ n (mod 2n) and j > n. Take g ∈ Jn. Then g = xnfns for some s ∈ S. Now

s = Σrmf
m where rm ∈ R and we have g = xnfn(Σrmf

m). Now consider one term of this

expression, say xnfnrmf
m. Since rm ∈ R we have rm = Σclx

l where cl ∈ K for all l. Then

xnfnrmf
m = xnfn(Σclx

l)fm. Notice that

xnfnclx
lfm = clx

nfnxlfm = clx
nx2nlfnfm = clx

2nl+nfn+m

for all l,m, n ∈ N. We have 2nl + n ≡ n (mod 2n) and n + m > n. Thus, g is a linear

combination of terms of the form clx
if j where cl ∈ K for all l, i ≡ n (mod 2n) and j > n.

The lemma above shows that the terms xif j are linearly independent over K, and thus, the

xif j form a K-basis of Jn. Denote the K-basis for Jn by Xn for all n.

Now consider the right ideal J =
∑

n>1 Jn. Then the set
⋃
n>1Xn forms a K-basis for

J , since xif j are linearly independent over k for all i, j ∈ Z>0 by the Lemma 1.2.7 and every

element in J is a sum of elements from some of the Ji which are K-linear combinations of

xif j for some i, j as above.

If S is right Noetherian, then J is finitely generated. Suppose J is finitely generated by

generators a1, a2, . . . , an where ai ∈ J for all i. Then each ai is a finite sum of elements from

some of the Ji, which are K-linear combinations of elements of the form xif j as described

above. Hence, we can write a finite generating set as elements of the form xif j. Notice that

each of these elements comes from a set Xi. Let Xn be the set containing a generator where

n > m for all m with Xm containing a generator.
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Now consider x2n+1
f 2n+1

. Since x2n+1
f 2n+1 ∈ J , x2n+1

f 2n+1
is a K-linear combination

of elements from the Xi containing the generators of J . Since the xif j are K-linearly

independent, x2n+1
f 2n+1

must be a generator and in one of the sets Xm where m 6 n. We

have 2n+1 ≡ 0 (mod 2m) for all 1 6 m 6 n. However, all elements in the Xm are of the form

xif j where i ≡ m (mod 2m) for all 1 6 m 6 n, and i 6≡ 0 (mod 2m) for any 1 6 m 6 n, a

contradiction. Thus, J is not finitely generated and S is not right Noetherian.

Corollary 1.2.9. Let R = K[x] where K is a field and char(K) = 2. Then the skew

polynomial ring R[f ;σ] where σ : r 7→ r2 for all r ∈ R is neither left nor right Noetherian.

Now that we have shown the existence and uniqueness of a skew polynomial ring over

a ring R given an endomorphism σ and σ-derivation δ, we will focus on a skew polynomial

ring where δ = 0 and σ is the Frobenius endomorphism.

Definition 1.2.10. Let R be a commutative Noetherian ring of characteristic p > 0. The

skew polynomial ring R[f ;F, δ] where F is the Frobenius endomorphism F : R → R by

F (r) = rp for all r ∈ R and δ = 0 is called the Frobenius skew polynomial ring over R,

and is denoted R[f ;F ].

We will present results given by Yoshino in [9] that give conditions on the base ring so

that the Frobenius skew polynomial ring is left or right Noetherian. In this paper, Yoshino

defines a Frobenius skew polynomial ring as the residue ring of R〈f〉 by the two-sided ideal

〈rpf − fr | r ∈ R〉, where R〈f〉 is the free algebra generated by f . We first show that this

agrees with our definition of a Frobenius skew polynomial ring.

Lemma 1.2.11. Let R be a commutative Noetherian ring of characteristic p > 0, with p

prime. If S = R〈f〉
〈rpf−fr | r∈R〉 is the residue ring of the free algebra R〈f〉 and the two-sided

ideal 〈rpf − fr|r ∈ R〉, then S is a free left R-module with basis 1, f, f 2, · · · .

Proof. Let x ∈ R〈f〉. Then x is a finite sum of products from elements of R and powers of

f . Then we can write x as
∑n

i=0 rif
i by applying the relation fr = rpf in the residue ring.

Also, since R〈f〉 if the free algebra generated by f , we have that 1, f, f 2, · · · are linearly
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independent over R in R〈f〉. Now viewing S as a left R-module, we want to show that the

elements 1, f, f 2, · · · form a basis of S. To see that 1, f, f 2, · · · are R-linearly independent

in S, we consider an element
∑n

i=0 rif
i = 0 ∈ S. We know that

∑n
i=0 rif

i = 0 ∈ S implies

that
∑n

i=0 rif
i ∈ 〈rpf − fr | r ∈ R〉. We show that this implies ri = 0 for all i, and hence,

1, f, f 2, · · · are linearly independent over S.

Assume
∑n

i=0 rif
i ∈ 〈rpf − fr | r ∈ R〉. Then

∑n
i=0 rif

i =
∑m

j=0 sj(r
p
jf − frj)tj where

rj ∈ R and sj, tj ∈ R〈f〉 for all j. We have

m∑
j=0

sj(r
p
jf − frj)tj =

m∑
j=0

sjr
p
jftj −

m∑
j=0

sjfrjtj

We can conclude that any term where sj, tj ∈ S\R must cancel since there is no term on the

left-hand side with elements to the right of f . After cancellation, we have

m∑
j=0

sjr
p
jftj −

m′∑
j=0

sjfrjtj

where sj, tj ∈ R for all j. Notice that the degree of f in this sum is at most 1. Hence, in∑n
i=0 rif

i, we have ri = 0 for all i 6= 1. So we have rf =
∑m

j=0 sjr
p
jftj −

∑m′

j=0 sjfrjtj. It

follows that all tj remaining must be 1, which in turn, implies that rj = 1 for the remaining

j. Hence, the entire right hand side is zero since we began with rpjf − frj. Thus, ri = 0 and

we have shown that 1, f, f 2, · · · are linearly independent over S. This shows that S is a free

left R-module with basis 1, f, f 2, · · ·

Proposition 1.2.12. Let R be a commutative Noetherian Ring of characteristic p > 0, and

let S1 = R[f1;F ] be the Frobenius skew polynomial ring over R with indeterminate f1. Then

let S2 = R〈f2〉
〈rpf2−f2r | r∈R〉 , where R〈f2〉 is the free algebra over R generated by the indeterminate

f2. Then S1
∼= S2.

Proof. By definition, S1 is a free left R-module with basis 1, f1, f
2
1 , and by Lemma 1.2.11, S2

is also a free left R-module with basis 1, f2, f
2
2 , · · · . Hence, we can apply Proposition 1.2.4
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with F the Frobenius endomorphism and the F -derivation, δ = 0 because fir = rpfi

for all r ∈ R and i ∈ {1, 2}. Thus, there exists an isomorphism Φ : S1 → S2 such that

Φ(f1) = f2 and we have S1
∼= S2.

We will now present the results from [9] showing when a Frobenius skew polynomial

ring is left Noetherian. The presentation of these results consists of adjustments to notations

to match the objects in this paper and added details. Otherwise, they follow closely to the

presentation in [9]. Thus, references will also be made so that the results can be found in

Yoshino’s paper.

Lemma 1.2.13. (1.4 in [9]) Let R be a commutative Noetherian ring with characteristic

p > 0. Then

1. If R is a field, then R[f ;F ] is left Noetherian.

2. If R[f ;F ] is left Noetherian, then any ideal I of R satisfies Ip = I.

Proof. (1) Let R be a field and let I be a left ideal of S = R[σ;F ]. To show that S is left

Noetherian, we will show that every left ideal of S is in fact principal. Consider an element

a0 ∈ I. Then a0 =
∑n

i=0 rif
i where ri ∈ R for all i. Choose a0 such that n is minimal among

elements in I with rn 6= 0. We can assume without loss of generality that rn = 1 since R is a

field. We want to show that I = Sa0, where Sa0 is the left ideal generated by a0. It is clear

that Sa0 ⊆ I since a0 ∈ I, so it is enough to show that I ⊆ Sa0. Now take an arbitrary

element a ∈ I such that a =
∑m

i=0 sif
i where si ∈ R for all i. We will show by induction

that a ∈ Sa0. Since a0 is chosen to be minimal, we have m > n. Assume that m = n. Then

since a− sna0 ∈ I and has degree less than n, we must have that a− sna0 = 0 ∈ I. Hence,

since sna0 ∈ Sa0, we have a ∈ Sa0.

Now assume that m > n and that the result holds for all k such that n 6 k < m. Then

a − smf
m−na0 ∈ I has degree less than m. By the induction hypothesis, we have a −

smf
m−na0 ∈ Sa0. Since smf

m−na0 ∈ Sa0, it follows that a ∈ Sa0. Hence, I ⊆ Sa0 and

I = Sa0. Thus, S is left Noetherian.
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(2) Let I be an ideal of R. Then IS is a left ideal of S. To see this, notice that rIS ∈ IS

for all r ∈ R. So it remains to show that fIS ⊂ IS. By the multiplication in S, we have

fI = Ipf . So fIS = IpfS ⊂ IS, and IS is a left ideal of S. Then IS can be viewed as a left

S-module generated by the elements {rf i|r ∈ I, i ∈ Z>0}. Let Jn = S{rf i|r ∈ I, 0 6 i 6 n}

and consider the left ideal J = ∪∞i=0Jn. By assumption, S is left Noetherian, and hence,

J is finitely generated. Hence, there exists a k such that we can write rfk+1 as an linear

combination of terms in degree lower than k + 1. This gives an equality

rfk+1 = a0r0 + a1r1f + · · ·+ akrkf
k

for some aj ∈ S and some ri ∈ I. Since aj ∈ S, we can write each as
∑mj

ij=0 sijf
ij where

sij ∈ R for all ij. Substituting these relations into the equation gives:

rfk+1 = a0r0 + a1r1f + · · ·+ akrkf
k

=
( m0∑
i0=0

si0f
i0
)
r0 +

( m1∑
i1=0

si1f
i1
)
r1f + · · ·+

( mk∑
ik=0

sikf
ik
)
rkf

k

=

m0∑
i0=0

si0r
pi0
0 f i0 +

m1∑
i1=0

si1r
pi1
1 f i1+1 + · · ·+

mk∑
ik=0

sikr
pik
k f ik+k

Now by collecting all terms with degree k + 1 on f from the right had side, we get that r

is equal to the sum of elements of the form sijr
pij

j . Since r ∈ R we have sij ∈ R for all ij.

Hence, r ∈ Ip and I ⊂ Ip. It is clear that Ip ⊂ I, and we have I = Ip.
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Theorem 1.2.14. (1.3 in [9]) S = R[f ;F ] is left Noetherian if and only if R is a direct

product of a finite number of fields.

Proof. Suppose that R = K1 ×K2 × · · · ×Kn with Ki a field for all i. Then for every s ∈ S

we have s =
∑k

i=0(r1i, r2i, . . . , rni)f
i. It follows that

S ∼= K1[f ;F ]×K2[f ;F ]× · · · ×Kn[f ;F ]

by the map ϕ : S → K1[f ;F ]×K2[f ;F ]× · · · ×Kn[f ;F ] by

ϕ(s) =

(
k∑
i=0

r1if
i,

k∑
i=0

r2if
i, . . . ,

k∑
i=0

rnif
i

)

By Lemma 1.2.13, each term on the right-hand side is a left Noetherian ring, and by the

isomorphism, we have S is left Noetherian.

Now assume that S is left Noetherian. Then by Lemma 1.2.13, for any maximal ideal

m of R we have mp = m. Hence, by Nakayama’s Lemma mRm = (0), and Rm is a field.

This shows that R is Artinian. Now consider Jac(R), the Jacobson radical of R. Since

R is Artinian, we know that Jac(R) is nilpotent, say Jac(R)n = 0. We also have that

Jac(R)p =Jac(R) by Lemma 1.2.13. The only way this is possible is to have Jac(R) = 0.

Hence, we have R
Jac(R)

is semisimple since R is Artinian, and it follows that R is semisimple

because Jac(R) is trivial. Since R is commutative and semisimple, we have that R is the

finite product of fields.

Before providing the necessary conditions for a Frobenius skew polynomial ring to be

right Noetherian, we give a result that shows when a general skew polynomial ring is right

Noetherian if the base ring is right Noetherian. The following lemma associates an ideal I

in S with an ideal in R by taking the leading coefficients from the elements in I of a certain

degree, and will be useful in proving Proposition 1.2.16.
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Lemma 1.2.15. Let R be a right Noetherian ring, S = R[f ;σ, δ] be a skew polynomial ring

with σ an automorphism and δ a σ-derivation, and I, I ′ be nonzero right ideals of S. If Ik

is the set of leading coefficients from elements in I with degree at most k, then

1. Ik is a right ideal of R for all k > 0.

2. If I ⊆ I ′ and Ik = I ′k for all k > 0, then I = I ′.

Proof. 1) Let I be an ideal of S and Ik be the set of all leading coefficients in I with degree

at most k. Since I is an ideal, we have 0 ∈ I and it follows that 0 ∈ Ik. Now for any

r1m , r2n ∈ Ik with 0 6 m,n 6 k, there exists elements of the form s1 =
∑m

i=0 r1if
j and

s2 =
∑m

j=0 r2jf
j in I. Notice that if r1m + r2n = 0 then r1m + r2n ∈ Ik. So now assume

that r1m + r2n 6= 0. If m 6 n, then s1f
n−m + s2 is in I and has degree n 6 k and leading

coefficient r1m + r2n . Hence, r1m + r2n ∈ Ik. Similarly we get r1m + r2n in Ik when m > n by

considering the element s1 + s2f
m−n. So we have r + s ∈ Ik for all r, s ∈ Ik.

Now let r ∈ R such that r1mr 6= 0 for r1m ∈ Ik. We want to show that r1mr ∈ Ik. Since I is an

ideal and σ is an automorphism, we have s1σ
−m(r) ∈ I. The leading term is r1mf

mσ−m(r).

By the multiplication in S, we have r1mf
mr = r1mσ

m(σ−m(r))fm+ terms in lower degree.

Hence, the leading coefficient is r1mσ
m(σ−m(r)) = r1mr and it follows that r1mr ∈ Ik. Thus,

Ik is a right ideal of R for all k > 0.

2) Let I, I ′ be right ideals of S such that I ⊆ I ′ and Ik = I ′k for all k > 0. Assume I ( I ′

and choose an element s′ =
∑m

i=0 rif
i ∈ I ′ such that m is minimal among all s /∈ I. Then

rm ∈ I ′m. Since Im = I ′m we must have rm ∈ Im. Hence, there exist a skew polynomial in

I, say s′, such that the leading coefficient is rm. Let s = rmf
k +

∑k−1
j=0 rjf

j where k 6 m.

It follows that rmf
k ∈ I since

∑k−1
j=0 rjf

j ∈ I because it has degree less than m and m

was chosen to be minimal. However, this implies rmf
k(fm−k) + (s − rmf

m) = s ∈ I, a

contradiction. Thus, I = I ′.

Proposition 1.2.16 can be found in Theorem 2.9 part IV in [7].
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Proposition 1.2.16. Let S = R[f ;σ, δ] be the skew polynomial ring over R with indetermi-

nate f . If R is right Noetherian and σ is an automorphism, then S is right Noetherian.

Proof. First, assume that R is right Noetherian and that σ is an automorphism. Consider a

chain of right ideals in S,

I0 ⊆ I1 ⊆ I2 ⊆ · · · .

Let Ii,n be the right ideal of R consisting of the leading coefficients of elements in Ii of degree

at most n. Then we have the following array of chains of ideals in R.

I0,0 ⊆ I1,0 ⊆ I2,0 ⊆ · · ·

I0,1 ⊆ I1,1 ⊆ I2,1 ⊆ · · ·

I0,2 ⊆ I1,2 ⊆ I2,2 ⊆ · · ·
...

...
. . .

We claim that Ii,m ⊆ Ij,n for any i 6 j and m 6 n. To see this, first consider Ii,m and Ij,m

for some n and i 6 j. By definition, Ii ⊆ Ij, and hence, any element of degree at most m

that is contained in Ii is also contained in Ij. It follows that Ii,m ⊆ Ij,m. Also, we have

Ij,m ⊆ Ij,n for any j and m 6 n since Ij,m contains all coefficients at most m, which includes

those of degree at most n. Thus, Ii,m ⊆ Ij,m ⊆ Ij,n and Ii,m ⊆ Ij,n for all i 6 j and m 6 n.

Based on this claim, we can construct the following ascending chain of right ideals in R

corresponding to the diagonal of the array above.

I0,0 ⊆ I1,1 ⊆ I2,2 ⊆ · · ·
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Now since R is right Noetherian, there exists a j such that this chain stabilizes at Ij,j,

and hence, all ascending chains below the diagonal will stabilize at Ij,j as well. Also, each

row of this array above the diagonal must stabilize since R is right Noetherian. That is, each

chain of the form

I0,n ⊆ I1,n ⊆ I2,n ⊆ · · ·

will stabilize, say at kn, for all 0 6 n 6 j − 1. Let m = max{k0, k1, · · · , kn−1, j}. Then we

have Ii,n = Im,n for all i > m and n > 0. Thus by Lemma 1.2.15, we have Ii = Im for all

i > m and the chain

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

stabilizes in S and S is right Noetherian.

Corollary 1.2.17. Let R be a perfect field. Then the Frobenius skew polynomial ring, S =

R[f ;σ], is right Noetherian.

Proof. Let R be a perfect field. Then R is right Noetherian and σ, the Frobenius endomor-

phism, is an automorphism. Thus, S is right Noetherian by Proposition 1.2.16.

The following lemma is well known and even given as Exercise 13.35 in [8]. We provide

it as a lemma here with proof as it will be useful in the proof of Proposition 1.2.20. The first

implication comes as an immediate result from the more general result for skew polynomial

rings. The other implications will be useful in refining the requirements for the base ring R

of a Frobenius skew polynomial ring, and provide necessary and sufficient conditions for a

Frobenius skew polynomial ring to be right Noetherian.

Lemma 1.2.18. Let R be a subring of the commutative ring S, and suppose that S is integral

over R. Then if r ∈ R is a unit in S, then

1. If r ∈ R is a unit in S, then r is a unit in R

2. Jac(R) = Jac(S) ∩R
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Proof. 1) Let r ∈ R be a unit in S. Then there exists s ∈ S such that rs = 1 in S. Since S

is integral over R, we have sn + rn−1s
n−1 + · · ·+ r0 = 0 for ri ∈ R and n ∈ N. Hence,

sn = −rn−1s
n−1− · · · − r0. Multiplying by rn−1 gives s = −rn−1− rn−2r− · · · − r0r

n−1 ∈ R.

So s ∈ R and it follows that r is a unit in R.

2) To see that Jac(R) ⊇ Jac(S)∩R, let r ∈ Jac(S)∩R. Then r ∈ R and 1− rs is a unit for

all s ∈ S. Since R ⊆ S, we have 1− rri is a unit in S for all ri ∈ R. By part 1, this shows

that 1− rri is a unit in R for all ri ∈ R and r ∈ Jac(R).

We now apply the Lying over property of integral extensions to demonstrate the reverse

inclusion. For every maximal ideal mi of R, there exists a prime ideal Pi in S such that

mi = Pi ∩R. Let Ω = {m′|m′ ∈ Max(R) and m′ = ni ∩R for ni ∈ Max(S)}. Then

Jac(R) =
⋂

m∈Max(R)

m ⊆
⋂
m′∈Ω

m′ =
⋂

ni∈Max(S)

(ni ∩R) =

 ⋂
ni∈Max(S)

ni

 ∩R = Jac(S) ∩R

Lemma 1.2.19. Let A and B be domains such that ϕ : A ↪→ B is a faithfully-flat extension

and Q(A) = Q(B). Then A = B.

Proof. Consider the short exact sequence 0→ A→ B → B/Im(ϕ)→ 0. Since this extension

is flat, we maintain an exact sequence after tensoring with Q(A). Hence, we have

0 → Q(A)⊗ A → Q(A)⊗ B → Q(A)⊗ B/Im(ϕ) → 0. Then Q(A)⊗ A ∼= Q(A), and since

Q(A) = Q(B), we haveQ(A)⊗B = Q(B)⊗B ∼= Q(B). Hence the mapQ(A)⊗A→ Q(A)⊗B

is the identity. Thus, the sequence 0 → Q(A) ⊗ A → Q(A) ⊗ B → 0 is exact, and since

A ↪→ B is faithfully-flat, we have 0→ A→ B → 0 is exact and A = B.

We will now present the results of Yoshino that show when a Frobenius skew polynomial

ring is right Noetherian.
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Proposition 1.2.20. (1.5 in [9]) Suppose that R is a local domain. Then the following

conditions are equivalent.

1. S = R[f ;F ] is right Noetherian.

2. R is a perfect field.

3. R is contained in Q(Rp), the field of quotients of Rp.

Proof. 2)⇒ 1) Done by Corollary 1.2.17.

1) ⇒ 3) Assume that S is right Noetherian and that R 6⊂ Q(Rp) and take an element

r ∈ R such that r /∈ Q(Rp). Let J be the ideal of S generated by elements of the form

rp
i
f i+1 where i ∈ N. Assume that J is finitely generated as a right S-module. Then there

exists an n such that

rp
n

fn+1 = rfg0 + rpf 2g1 + · · ·+ rp
n−1

fngn−1

for some gi ∈ S. Now the right hand side can be rearranged as a linear combination

of elements from R on the left and powers of f . After rearranging, we can consider the

coefficient from R on fn+1 on each side to get the following equality:

rp
n

= rrp0 + rprp
2

1 + · · ·+ rp
n−1

rp
n

n−1

Since r 6= 0, there exists an 0 6 i 6 n − 1 such that ri 6= 0. Hence the term rp
i
rp

i+1

i 6= 0.

Now assume that i is the smallest integer with ri 6= 0. Then we have

rp
n

= rp
i

rp
i+1

i + rp
i+1

rp
i+2

i+1 + · · ·+ rp
n−1

rp
n

n−1
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Since R is a domain we can take the pi-th root, which yields

rp
n−i

= rrpi + rprp
2

i+1 + · · ·+ rp
n−i−1

rp
n−i

n−1

rrpi = rp
n−i − rprp

2

i+1 − · · · − rp
n−i−1

rp
n−i

n−1

r =
rp

n−i − rprp
2

i+1 − · · · − rp
n−i−1

rp
n−i

n−1

rpi

However, since rp
n−i − rprp

2

i+1 − · · · − rp
n−i−1

rp
n−i

n−1 and rpi are elements in Rp, this shows that

r ∈ Q(Rp), contradicting the choice of r. Thus, R ⊆ Q(Rp).

3) ⇒ 2) Assume that R is contained in Q(Rp).It is enough to show that R is a field,

because if R is a field, then R = Q(R) and we have

Rp ⊆ R =⇒ Q(Rp) ⊆ Q(R) and R ⊆ Q(Rp) ⊆ Q(R) =⇒ Q(Rp) = Q(R) =⇒ R = Rp

Thus, R is a perfect field.

Since R is assumed to be a local domain, it is enough to show that R is Artinian to show

that R is a field. Assume that R is not Artinian. Then there exists a height one prime ideal,

P , in R. Let R′ denote the localization RP .Then we have

R′ ⊆ Q(R′) = Q(R) = Q(Rp) = Q(R′p)

Now let R be the integral closure of R′ in Q(R′). We can apply the Krull-Akizuki (Theorem

11.13 in [3]) to conclude that R′ is Noetherian. Now let Jac(R) be the Jacobson radical of

R. By Lemma 1.2.18, we have that Jac(R) ∩ R′ = Jac(R′) and since R′ is local, Jac(R′) is

just the maximal ideal of R′. Hence, Jac(R) 6= 0. Also, since R is an integrally closed local

domain of dimension 1, we have that R is regular, and hence, the Frobenius map on R is

flat by the Kunz Theorem (see [6]). We also have that the extension R
p
↪→ R is faithfully

flat. This is because if we have R = mR for a maximal ideal m ∈ Rp
, we would have R = 0

by Nakayama, a contradicton.
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By applying Lemma 1.2.19 and the equalities

Q(R
p
) = Q(R′p) = Q(R′) = Q(R), we can conclude that R

p
= R. But it follows that

J [p] = J . Then since J [p] ⊆ Jp ⊆ J we have Jp = J . By Nakayama, this implies J = 0, a

contradiction. Thus, R is Artinian.

Theorem 1.2.21. (1.3 in [9]) S = R[f ;F ] is right Noetherian if and only if R is Artinian

and R/m is a perfect field for each maximal ideal m of R.

Proof. Suppose that S is right Noetherian. Then let P be a prime ideal of R. We have

the natural surjective homomorphism ϕ : R → R/P that can be extended to a surjective

homomorphism ϕ : S → R/P [f ;F ] where ϕ(r) = r + P and ϕ(f) = f . Hence, R/P [f ;F ] is

right Noetherian as well and by Proposition 1.2.20, we have R/P is a perfect field. Since P

is an arbitrary prime, we have R/P is a perfect field for any P , showing that R is Artinian.

It also follows that R/m is a perfect field for all maximal ideals m.

Now suppose that R is Artinian and each residue field is perfect. Then R
Jac(R)

∼= R
m1
× R

m2
×

· · · × R
mn

, where mi are the maximal ideals of R and Jac(R) is the Jacobson radical of R. By

assumption, R
mi

is a perfect field for all i. Then R
Jac(R)

[f ;σ] ∼= R
m1

[f ;σ]× R
m2

[f ;σ]×· · ·× R
mn

[f ;σ]

and each R
mi

[f ;σ] is right Noetherian. Hence, R
Jac(R)

[f ;σ] is right Noetherian.

1.3 Growth of Algebras

In this section, we will introduce the notion of the growth of an algebra and provide

some of the basic definitions and results. The growth will then be used to define the concept

of the Gelfand-Kirillov dimension. We introduce these ideas here because they will provide

the setup used for the examples in Chapter 2. This will all be based on an algebra over a

field, where the algebra is not necessarily commutative. We first provide the definition of a

K-algebra in the noncommutative setting as a reminder to the reader.

Definition 1.3.1. Let k be a field and A a ring. Then A is said to be a K-algebra when

equipped with a ring homomorphism ϕ : K → Z(A), where

Z(A) = {a ∈ A | as = sa for all s ∈ A} is the center of A.
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The construction developed here follows the standard setup for the growth of an algebra

given in [5]. Let K be a field and A be a finitely generated K-algebra with 1A, generated as an

algebra by a1, a2, · · · , ah ∈ A. We take V to be a finite dimensional generating subspace of A,

that is the K-subspace spanned by a1, · · · , ah. Now in this construction, we have V 0 = K and

then for any m ∈ N we have V m is the K-vector subspace spanned by products of m elements

from {a1, a2, · · · , ah}. By defining the following sum V d+V k = {v+v′ | v ∈ V d and v′ ∈ V k}

we can now establish a decomposition of A using V c.

Let An =
n∑
i=0

V i then A =
∞⋃
n=0

An.

This notion of the growth of an algebra is determined by such a finite dimensional gen-

erating subspace, V , and computing then dimension of An over K. However, this dimension

is dependent on the choice of V . We denote dimK(An) by dV (n). To avoid this dependence,

and define the growth for an algebra, we can define an equivalence relation on dV (n). It

will then be shown that the dimension of An over K for any finite dimensional generating

subspace will belong to the same equivalence class.

Definition 1.3.2. Let Φ be the set of all functions ϕ : N → R in which there exists an

n0 ∈ N such that ϕ(n) 6 ϕ(n+ 1) ∈ R for all n > n0 and ϕ ∈ Φ. Then for any ϕ, γ ∈ Φ we

say ϕ 6∗ γ if and only if there exist a, b ∈ N such that

ϕ(n) 6 aγ(bn)

for all but finitely many n ∈ N.

Then we define the equivalence relation ∼ by ϕ ∼ γ if and only if ϕ 6∗ γ and γ 6∗ ϕ. We

denote the equivalence class for any element ϕ ∈ Φ by G(ϕ) ∈ Φ/ ∼. This equivalence class

is called the growth of ϕ. Now we can induce a partial order given by 6∗ on the set Φ/ ∼,

and will denoted this partial order by 6.
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Proposition 1.3.3. Let ∼ be the relation given in definition 1.3.5. Then ∼ is an equivalence

relation.

Proof. It is clear that ∼ is reflexive since ϕ(n) 6 ϕ(n) for all ϕ ∈ Φ and n ∈ N.

Let ϕ, γ ∈ Φ such that ϕ ∼ γ. Then there exists a, b, α, β ∈ N such that ϕ(n) 6 aγ(bn) and

γ(n) 6 αϕ(βn) for all but finitely many n ∈ N. Hence, by definition we have that if ϕ ∼ γ,

then γ ∼ ϕ and ∼ is symmetric.

Now to see that ∼ is transitive, let ϕ, γ, τ ∈ Φ such that ϕ ∼ γ and γ ∼ τ . Then there exists

a, b, α, β, c, d, e, f ∈ N such that ϕ(n) 6 aγ(bn), γ 6 αϕ(βn), γ(n) 6 cτ(dn), τ(n) 6 eγ(fn)

for almost all n. Hence, ϕ 6 acτ(bdn) for almost all n, and τ(n 6 αeϕ(βfn) for almost all

n. Thus, ϕ ∼ τ .

We now prove a lemma that shows that the growth of an algebra is independent of the

choice of the finite dimensional generating subspace by showing that any finite dimensional

generating subspace of A belongs to the same equivalence class. This will allow us to define

the growth of a K-algebra for an arbitrary finite dimensional generating subspace. This can

be found as Lemma 1.1 in [5].

Lemma 1.3.4. Let A be a finitely generated K-algebra for a field K with finite dimensional

generating subspaces V and W . If dV (n) and dW (n) denote the dimensions of
∑n

i=0 V
i and∑n

i=0W
i over k, respectively, then G(dV ) = G(dW ).

Proof. Since V and W are finite dimensional subspaces, we have the following equality:

A =
∞⋃
n=0

( n∑
i=0

Vi

)
=
∞⋃
n=0

( n∑
i=0

Wi

)

Hence, there exist s, t ∈ N such that W ⊆
∑s

i=0 V
i and V ⊆

∑t
i=0 W

i. From here we can see

that dV (n) 6 dW (tn) and dW (n) 6 dV (sn) for all n ∈ N and it follows that dV ∼ dW .

Definition 1.3.5. Let A be a finitely-generated K-algebra and V be a finite dimensional

generating subspace of A. Then the growth of A is defined to be the growth of dV (n) and

is denoted by G(A).
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If f, g are two polynomials then f ∼ g if and only if deg(f)=deg(g). For any function p

where p : n→ nd for some real number d > 0, the growth of the function is denoted by Pd.

A finitely-generated k-algebra, A is said to have polynomial growth if G(A) = Pd for some

d ∈ N.

Likewise, for any function qε : n → en
ε

we denote the growth of qε by Eε. A finitely

generated K-algebra is said to have exponential growth if G(A) = E1.

We now provide a proposition that shows that a finitely generated K-algebra will have

growth between P1 and E1 (Proposition 1.4 in [5]).

Proposition 1.3.6. If A is a finitely generated K-algebra that is not finite dimensional,

then P1 6 G(A) 6 E1.

Proof. Let V be a finite dimensional generating subspace of A such that 1 ∈ V . Then we

have that
∑n

i=0 V
i = V n for all n ∈ N. Hence, dV (n) = dimK(V n) for all n ∈ N. Since

we have dimK(V n) 6 dimK(V ⊗ V ⊗ · · · ⊗ V ) where there are n terms in the product, and

dimK(V ⊗ V ⊗ · · · ⊗ V ) = (dimK(V ))n, it follows that G(dV ) 6 G((dimK(V )n) = E1. Hence,

we have G(A) 6 E1.

Now since A is not finite dimensional, V n 6= A for all n ∈ N. It follows that the sequence

K ⊆ V ⊆ V 2 ⊆ · · · is strictly increasing. Otherwise, we would have V n = V n+1 for some

n ∈ N and V n+1 = A, a contradiction. From this we can see that dV (n) > n for all n ∈ N,

and thus, G(A) > G(n) = P1.

Example 1.3.7. Let A = K〈x1, x2, · · · , xm〉 be the free K-algebra on m generators. Then

take V = Kx1 + Kx2 + · · · + Kxm as a finite dimensional generating subspace of A. Let

An = V 0 + V + V 2 + · · ·+ V n so that we have A = ∪∞i=0An.

dV (n) = dimK(An) = 1 +m+m2 + · · ·+mn and G(A) = E1
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The following two lemmas will be used to show that the commutative polynomial ring

over a field has polynomial growth. We have separated Lemma 1.5 from [5] for presentation

purposes. We illustrate parts a and b from that lemma here.

Lemma 1.3.8. Let f be a polynomial of degree d in Q[x] where Q is the field of rational

numbers. Then there exist ai ∈ Q for i ∈ {0, 1, 2, · · · , d} such that

f(n) = ad

(
n

d

)
+ ad−1

(
n

d− 1

)
+ · · ·+ a1

(
n

1

)
+ a0

for all n ∈ N.

Proof. We proceed by induction on d. If d = 0, then f is constant in Q and f = a0 for some

a0 ∈ Q.

Now assume the result holds for all degrees i such that 0 6 i 6 d− 1. Consider f(n) ∈ Q[x]

of degree d. We have that

(
n

d

)
=

n!

(n− d)!d!

=
n(n− 1) · · · (n− (d− 1))

d!

Since the numerator has d terms, this is a polynomial in n of degree d with leading coefficient

1
d!

. Let αd ∈ Q be the leading coefficient of f . Then f(n)−αdd!
(
n
d

)
is a polynomial of degree

d−1. By the induction hypothesis, it follows that f(n)−αdd!
(
n
d

)
= ad−1

(
n
d−1

)
+· · ·+a1

(
n
1

)
+a0

for some ai ∈ Q. Hence, f(n) = αdd!
(
n
d

)
+ ad−1

(
n
d−1

)
+ · · ·+ a1

(
n
1

)
+ a0. Since αdd! ∈ Q, this

completes the proof.

The next lemma will be useful in Proposition 1.3.10.
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Lemma 1.3.9. Let a, b ∈ N such that a > b. Then
(
a+1
b

)
−
(
a
b

)
=
(
a
b−1

)
.

Proof. We have the following:

(
a+ 1

b

)
−
(
a

b

)
=

(a+ 1)!

(a+ 1− b)!b!
− a!

(a− b)!b!

=
(a+ 1)(a) · · · (a+ 2− b)

b!
− a(a− 1) · · · (a+ 1− b)

b!

=
(a+ 1− (a+ 1− b))[a(a− 1) · · · (a+ 2− b)]

b!

=
a(a− 1) · · · (a+ 2− b)

(b− 1)!

=
a(a− 1) · · · (a+ 2− b)(a+ 1− b)!

(b− 1)!(a+ 1− b)!

=
a!

(a− (b− 1))!(b− 1)!

=

(
a

b− 1

)

Proposition 1.3.10. Let f : N→ Q. Then the following are equivalent:

1. There exist ai ∈ Q for i ∈ {0, 1, 2, · · · , d} and m ∈ Z>0 such that for all n > m

f(n) = ad

(
n

d

)
+ ad−1

(
n

d− 1

)
+ · · ·+ a1

(
n

1

)
+ a0

2. There exist ai ∈ Q for i ∈ {1, 2, · · · , d} and and m ∈ Z>0 such that for all n > m such

that

f(n+ 1)− f(n) = ad

(
n

d− 1

)
+ · · ·+ a2

(
n

1

)
+ a1
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Proof. 1)⇒ 2) Let f(n) = ad
(
n
d

)
+ ad−1

(
n
d−1

)
+ · · ·+ a1

(
n
1

)
+ a0. Then

f(n+ 1) = ad
(
n+1
d

)
+ ad−1

(
n+1
d−1

)
+ · · ·+ a1

(
n+1

1

)
+ a0. We now compute f(n+ 1)− f(n):

f(n+ 1)− f(n) =ad

(
n+ 1

d

)
+ · · ·+ a1

(
n+ 1

1

)
+ a0 −

(
ad

(
n

d

)
+ · · ·+ a1

(
n

1

)
+ a0

)

=ad

((
n+ 1

d

)
−
(
n

d

))
+ ad−1

((
n+ 1

d− 1

)
−
(

n

d− 1

))

+ · · ·+ a1

((
n+ 1

1

)
−
(
n

1

))

Now by applying Lemma 1.3.8 to each of the differences, we obtain:

f(n+ 1)− f(n) = ad

(
n

d− 1

)
+ · · ·+ a2

(
n

1

)
+ a1

2) ⇒ 1) Assume f(n + 1) − f(n) = ad
(
n
d−1

)
+ · · · + a2

(
n
1

)
+ a1 for every n > m. Then by

applying the identity from Lemma 1.3.9, and then reversing the steps from the first part of

the proof, we obtain:

f(n+ 1)− f(n) = ad

(
n+ 1

d

)
+ · · ·+ a1

(
n+ 1

1

)
+ a0 −

(
ad

(
n

d

)
+ · · ·+ a1

(
n

1

)
+ a0

)

Hence, f(n) = ad
(
n
d

)
+ ad−1

(
n
d−1

)
+ · · ·+ a1

(
n
1

)
+ a0.

Corollary 1.3.11. Let K be a field and A = K[x1, · · · , xd] be the polynomial algebra over

K. Then G(A) = Pd.

Proof. Since A is a finitely generated K-algebra we can choose any finite dimensional gen-

erating subspace of A by Lemma 1.3.4. Let V = 〈x1, x2, · · · , xd〉, be a finite dimensional

generating subspace of A. To compute dimK(V n+1), we just have to determine the number

of monomials of total degree d that can be formed by x1.x2, · · · , xd.



31

Hence, dimK(V n+1) =
(
n+d
d−1

)
, which is a polynomial in n of degree d − 1. Notice that

dimK(V n+1) = dV (n + 1)− dv(n). Hence by Proposition 1.3.10, dV (n) is a polynomial in n

of degree d. Thus, G(A) = Pd.

We now define the invariants known as the Gelfand-Kirillov dimension and the Gelfand-

Kirillov superdimension. The Gelfand-Kirillov dimension is useful for K-algebras whose

growth is polynomial. The superdimension is useful for an algebra with exponential growth.

The definitions are given in [1] and [5].

Definition 1.3.12. Let A be a K-algebra. The Gelfand-Kirillov dimension of A is

defined by

GKdim(A) = supV lim
log dV (n)

log n

where the supremum is taken over all finite dimensional generating subspaces V of A, and

lim denotes the limit superior.

In a similar way, the Gelfand-Kirillov superdimension of A is defined by

GKsdim(A) = supV lim
log log dV (n)

log n

where the supremum is taken over all finite dimensional generating subspaces V of A.

The next lemma will provide some connections between the limit superior as given in

the definition of the Gelfand-Kirillov dimension and the equivalence classes determined by

the growth in Definition 1.3.5. This lemma is a combination of Lemma 2.1 in [5] and Lemma

1.5 in [1].
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Lemma 1.3.13. Let Φ be the set of all functions ϕ : N→ R in which there exists an n0 ∈ N

such that ϕ(n) 6 ϕ(n+ 1) ∈ R for all n > n0 and let f, g ∈ Φ. Then

1. lim
logf(n)

log n
= inf{ρ ∈ R|f(n) 6 nρ for almost all n}

= inf{ρ ∈ R|G(f) 6 Pρ}

2. lim
log logf(n)

log n
= inf{ε ∈ R|f(n) 6 en

ε

for almost all n}

= inf{ε ∈ R|G(f) 6 Eε}

3. If G(f) = G(g), then lim log f(n)
log n

= lim log g(n)
log n

and lim loglogf(n)
log n

= lim loglog g(n)
log n

Proof. 1. Let r = lim log f(n)
log n

, s = inf{ρ ∈ R|f(n) 6 nρ for almost all n}, and

t = inf{ρ ∈ R|G(f) 6 Pρ}. If we have that f(n) 6 nρ for almost all n, then G(f) 6 Pρ and

{ρ ∈ R|f(n) 6 nρ for almost all n} ⊆ {ρ ∈ R|G(f) 6 Pρ}. This shows that t 6 s. For any

ε > 0, we have log f(n)
log n

6 r + ε for almost all n. It follows that f(n) 6 nr+ε for almost all n.

Hence, s 6 inf{r + ε|ε > 0} = r.

Now assume that r > t. Let ε = r−t
3

. Then G(f) 6 Pt+ε, and f(n) 6 (mn)t+ε for some

m ∈ N and for almost all n. Take n sufficiently large so that mt+ε 6 nε, then f(n) 6 nt+2ε

for almost all n. This contradicts the fact that there are infinitely many values of log f(n)
log n

that are greater than log f(n)
log n

− ε = r − ε = t + 2ε. Hence, r = t and by t 6 s 6 r, we have

t = s = r.

2. Now let r, s, t be the values shown in 2. in the respective order. If f(n) 6 en
ε

for almost all

n, then G(f) 6 Eε, and we can conclude t 6 s since {ε ∈ R|f(n) 6 en
ε} ⊆ {ε ∈ R|G(f) 6 Eε}.

Now for any ε > 0, we have log logf(n)
log n

6 r + ε. Then f(n) 6 en
r+ε

for almost all n. Hence,

s 6 inf{r + ε|ε > 0} = r. Hence, we have t 6 s 6 r.

3. This follows directly from 1. and 2.

We recall that by Lemma 1.3.4, if A is finitely generated as a K-algebra, then any finite

dimensional generating subspace will have the same growth, and the definitions above can be

simplified. Thus, we have GKdim(A) = lim log dV (n)
log n

and GKsdim(A) = lim log log dV (n)
log n

when

A is a finitely generated K-algebra.
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Proposition 1.3.14. Let K be a field and A = K[x1, · · · , xd] be the polynomial algebra over

K. Then GKdim(A) = d.

Proof. Since A is finitely generated as a K-algebra, we have GKdim(A) = lim log dV (n)
log n

.

By Corollary 1.3.11, G(A) = Pd, and by part 1 of Lemma 1.3.13 we have lim log dV (n)
log n

=

inf {ρ | G(dV (n)) 6 Pρ} = d. Thus, GKdim(A) = d.

The next results are provided to show some basic results concerning the Gelfand-Kirillov

dimension. The results will also be used to show that the Gelfand-Kirillov dimension agrees

with the standard Krull dimension in the commutative setting. The next lemma can be

found as Lemma 3.1 in [5].

Lemma 1.3.15. Let K be a field and A be a K-algebra. If B is a subalgebra of A, then

GKdim(B) 6GKdim(A).

Proof. By definition, GKdim(A) = supV lim
log dV (n)

log n
, where the supremum is taken over

all finite dimensional generating subspaces. Now since B is a subalgebra of A, any finite

dimensional generating subspace of B will be contained in a finite dimensional generating

subspace of A. Hence, for every finite dimensional generating subspace V ′ of B, there

exists a finite dimensional generating subspace V of A, such that V ′ is contained in V , and

dV ′(n) 6 dV (n). Thus, GKdim(B) 6GKdim(A).

The next proposition shows when equality is achieved in Lemma 1.3.15. The next

proposition is given in Lemma 4.3 in [5].

Proposition 1.3.16. Let K be a field and A a commutative K-algebra. If B is a subalgebra

such that A is finitely generated as a B-module, then GKdim(A) =GKdim(B).

Proof. We have that GKdim(B) 6GKdim(A) by Lemma 1.3.15. So it is enough to show

GKdim(B) >GKdim(A). Say A is generated as a B-module by a1, a2, · · · , ah. Let V be a

finite dimensional subspace of A with spanning set v1, v2, · · · , vs. Without loss of generality,

we can assume that a1, a2, · · · , ah are contained in the spanning set for V . Then every

element in the spanning set for V can be expressed as a linear combination of elements from
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B and elements from {a1, a2, · · · , ah}. That is, vi =
∑h

k=1 akbik for all 1 6 i 6 s, and hence,

vivj =
∑h

k=1 akbijk for all 1 6 i, j 6 s, where bik, bijk ∈ B. We can now take W to be the

finite dimensional subspace of B that is spanned by all the bik and bijk. We immediately

have that V ⊆ a1W + · · · + ahW and V 2 ⊆ a1W + · · · + ahW . We want to show that

V n ⊆ a1W
2n−1 + · · · + ahW

2n−1 by induction on n. The case for n = 1 is done. Assume

true for any k such that 1 6 k 6 n and consider V n+1. We have V n+1 = V V n and by the

induction hypothesis,

V V n ⊆ V
(
a1W

2n−1 + · · ·+ ahW
2n−1

)
⊆
(
a1W + · · ·+ ahW

)(
a1W

2n−1 + · · ·+ ahW
2n−1

)
⊆ a1W

2n11 + · · ·+ ahW
2n+1

Hence, V n ⊆ a1W
2n−1 + · · · + ahW

2n−1 for any n ∈ Z, such that n > 1. It follows that

dV (n) 6 m · dW (2n− 1). Since V was taken to be any finite dimensional subspace of A, we

have GKdim(A) 6 GKdim(B). Thus, GKdim(A) = GKdim(B).

Now we have all of the necessary pieces to demonstrate that the classical Krull dimension

agrees with the Gelfand-Kirillov dimension in the commutative case. This is Theorem 4.5 in

[5].

Theorem 1.3.17. Let K be a field and let A be a commutative finitely generated K-algebra.

Then GKdim(A) =dim(A), where dim(A) is the classical Krull dimension of A.

Proof. By the Noether Normalization Theorem, we have that A is finitely generated as a

B-module where B = K[x1, x2, · · · , xn] is a polynomial algebra over K and dim(A) = r.

By Proposition 1.3.14, GKdim(B) = r and by Proposition 1.3.16, GKdim(A) =GKdim(B).

Thus, GKdim(A) =dim(A).

We end this section by stating without proof, an interesting theorem concerning possible

values of the Gelfand-Kirillov dimension. This result and its proof can be found in Theorem

2.5 in [5].
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Theorem 1.3.18. No algebra has Gelfand-Kirillov dimension between 1 and 2.

1.4 General Recurrence Results

The method used for the main results of this paper require working with nonhomoge-

neous linear recurrences. In particular, we will need to be able to take the sum of many

nonhomogeneous linear recurrences, and say something about this sum. In this section, we

show that the sum of many nonhomogeneous linear recurrences is also a nonhomogeneous

linear recurrence of the same form. Then we provide the standard process of finding a general

solution for a nonhomogeneous linear recurrence along with a few well-known results about

polynomials since the general solutions are dependent on roots of a characteristic polynomial.

Proposition 1.4.1. Let an = β1an−1 + β2an−2 + · · · + βlan−l + T (n) be a nonhomogeneous

linear recurrence with βi ∈ Z>0 for all i and T (n) a function of n. If sn =
∑n

i=0 ai, then

sn = β1sn−1 + β2sn−2 + · · · + βlsn−l + T̃ (n), where T̃ (n) =
∑n

i=0 T (i) − B where B is a

constant.

Proof. Let an = β1an−1 + β2an−2 + · · · + βlan−l + T (n) and sn =
∑n

i=0 ai. We can expand

the sum for sn and regroup the terms in the following way:

sn =β1(an−1 + an−3 + · · ·+ al−1)

+β2(an−2 + an−3 + · · ·+ al−2)

...

+βl−1(an−(l−1) + an−l + · · ·+ a1)

+βl(an−l + an−(l+1) + · · ·+ a0)

+
l−1∑
i=0

ai

+
n∑
i=0

T (i)
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Then for each βi with 1 6 i 6 l−1 we can add the term βi(a0+a1+· · ·+al−(i+1)) to com-

plete the sum. Let
∑l−1

i=1

(
βi(a0 + a1 + · · ·+ al−(i+1))

)
−
∑l−1

i=0 ai = B. Since a0, a1, · · · , al−1

are the initial conditions, this is a constant. So now consider sn +B −B to obtain

sn = β1

n−1∑
i=0

ai + β2

n−2∑
i=0

ai + · · ·+ βl

n−l∑
i=0

ai +
n∑
i=0

T (i)−B

Let T̃ (n) =
∑n

i=0 T (i)−B we can substitute into the equation to get

sn = β1sn−1 + β2sn−2 + · · ·+ βlsn−l + T̃ (n).

Once we can determine the form of the sum of nonhomogeneous linear recurrences

using Proposition 1.4.1, we will then need to apply methods to find a general solution for the

recurrence. To do this, we will follow the standard technique for finding a general solution for

a nonhomogeneous linear recurrence. First, we take the associated homogeneous recurrence

and find a general solution. The form for the general solution of a homogeneous recurrence

is well-known. We provide this as a Theorem as stated in Theorem 7.2.2 in [2] for reference.

Theorem 1.4.2. Let q be a nonzero number. Then hn = qn is a solution of the linear

homogeneous recurrence relation

hn − a1hn−1 − a2hn−2 − · · · − akhn−k = 0 for ak 6= 0, n > k

with constant coefficients if and only if q is a root of the characteristic polynomial equation

xk − a1x
k−1 − · · · − ak = 0



37

1. If the roots q1, · · · , qk for the characteristic polynomial are all simple, then

hn = c1q
n
1 + c2q

n
2 + · · ·+ ckq

n
k (1.1)

is the general solution of the linear homogeneous recurrence relation.

2. If the distinct roots of the characteristic polynomial are q1, · · · , qt for some t 6 k are

not all simple, then for a root qi with multiplicity si, the part of the general solution

corresponding to qi is

h(i)
n = c1q

n
i + c2nq

n
i + · · ·+ csin

si−1qni

and the general solution of the recurrence relation is

hn = h(1)
n + · · ·+ h(t)

n

Notice that by Theorem 1.4.2, the general solution for the associated homogeneous

component of the recurrence with be determined by roots of the characteristic polynomial.

We now provide two well known polynomial results with proof that will be useful for the

characteristic polynomials of the examples in Chapter 2.

Theorem 1.4.3. [Cauchy] Let f(x) = xn − a1x
n−1 − · · · − an−1x− an, where ai ∈ R>0, for

all i ∈ {1, 2, · · · , n} and at least one is nonzero. Then f(x) has exactly one positive root λ

that is simple, and such that the absolute value of all remaining roots is less than or equal to

λ.

Proof. We first define the following function:

F (x) = −f(x)

xn
= −1 +

a1

x
+
a2

x2
+ · · ·+ an

xn

Notice that by defining F in this way, any nonzero root of F (x) is also a root of f(x).

Also, F (x) is monotone decreasing on the interval (0,∞) with limx→0 F (x) = ∞ and
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limx→∞ F (x) = −1. Hence, F (x) has only one positive root, and it follows that any positive

root of F (x) is also a positive root of f(x). Thus, f(x) has a unique positive root. We denote

this root by λ.

Now assume that λ is a multiple root. This is only the case when f(λ) = 0 =⇒ f ′(λ) = 0.

We first consider F ′(x). We have F ′(x) = −f ′(x)
xn
− f(x)

xn+1 , and F ′(λ) = f ′(λ)
λn

= − a1
λ2
−· · ·− nan

λn+1 .

Now since not all ai are zero and every nonzero term is less than zero, it follows that

F ′(λ) < 0. Hence, λ is a simple root.

It now needs to be shown that |λi| 6 λ where λi is any other root of f(x). Assume |λi| > λ.

We know that F (x) is monotone decreasing on (0,∞), and hence, F (|λi|) < F (λ) = 0.

Hence, F (|λi|) = −f(|λi|)
|λi|n and we can deduce that f(|λi|) > 0. Now we have

|λi|n > a1|λi|n−1 + a2|λi|n−2 + · · ·+ an

Since λi is a root of f(x), we also have

λni = a1λ
n−1
i + a2λ

n−2
i + · · ·+ an

By applying the triangle inequality, this becomes

|λi|n 6 a1|λi|n−1 + a2|λi|n−2 + · · ·+ an

However, this contradicts the first inequality. Thus, it follows that |λi| < λ, and since λi was

taken to be any root of f(x), this holds for all other roots.

Theorem 1.4.4. [Ostrovsky] Let f(x) = xn− a1x
n−1− · · ·− an−1x− an, where ai ∈ R>0 for

all i ∈ {1, 2, · · · , n}, and at least one nonzero. If the greatest common divisor of the indices

of the negative coefficients equals 1, then f has a unique positive root λ, that is simple and

such that the absolute value of all other roots of f(x) is strictly less than λ.

Proof. By Theorem 1.4.3, we know that f(x) has a unique simple positive root, say λ. We

also have that |λi| 6 λ for any root λi of f(x). Now assume that ak1 , ak2 , · · · , aks are the
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nonzero coefficients of f(x). By assumption, we have that gcd(k1, k2, · · · , ks = 1), and hence,

there exist α1, α2, · · · , αs ∈ Z such that α1k1 + α2k2 + · · ·+ αsks = 1. We define F (x) as in

Theorem 1.4.3. Let λi be any root of F (x) different than λ.We know by definition of F (x),

that λ is also a root of f(x). Denote |λi| by q. Then

F (λi) = −1 +
ak1
λi

+ · · ·+ aks
λksi

= 0

Then by application of the triangle inequality we obtain the following:

1 =
ak1
λi

+ · · ·+ aks
λksi

6 |ak1
λi
|+ · · ·+ |aks

λksi
|

=
ak1
q

+ · · ·+ aks
qks

So we have that 1 6
ak1
q

+ · · · + aks
qks

and can conclude that F (q) > 0. To have F (q) = 0 we

must have 1 =
ak1
q

+ · · ·+ aks
qks

, which requires the triangle inequality to be an equality. If the

triangle inequality is an equality, then we can find values bj > 0 such that
akj

λ
kj
i

= bi
ak1

λ
k1
i

for all

j ∈ {2, · · · ,m}. Then 1 =
ak1
λi

+ · · · + aks
λksi

=
ak1

λ
k1
i

(1 + t1 + · · · + tm). Hence,
akj

λ
kj
i

> 0 and it

follows that λ
kj
i > 0 for all j. Now

(ak1
λk1i

)α1

· · ·
(aks
λksi

)αs
> 0

Now since α1k1 + α2k2 + · · ·+ αsks = 1 we get

0 <
(ak1
λk1i

)α1

· · ·
(aks
λksi

)αs
=
aα1
k1
· · · aαmkm
λi

However, aj > 0 for all j, and this implies λi > 0. This contradicts the fact that λ is the

unique positive root of F (x). Hence, F (q) > 0. Now since F (x) is monotone decreasing on
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(0,∞) and q > 0, F (λ) = 0 < F (q) implies that λ > q. Thus, λ > q = λi and since λi

was taken as any other root of F (x), this holds for all roots of F (x), and in turn all roots of

f(x).

Once a general solution is found for the associated homogeneous recurrence, we then

find a particular solution for the nonhomogeneous recurrence using the initial conditions

and guessing a function of the same type as the nonhomogeneous part of the recurrence.

For instance, if the nonhomogeneous component of the recurrence is polynomial, the guess

for the particular solution should be polynomial. Then the general solution and particular

solution are combined to determine the constants of the general solution that satisfy the

particular solution.
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CHAPTER 2

MAIN RESULTS

2.1 Growth Recurrence for a Commutative Ring

In this chapter, we let R be a finitely generated K-algebra where K = Fp with p

prime, and hence, kp = k for all k ∈ K. Say R is generated as a K-algebra by the set

U = {r1, r2, · · · , rm} of elements from R. We consider A = R[f ;F ], the Frobenius skew

polynomial ring over R which is a finitely generated K-algebra generated by the set U ∪{f}.

We now follow the structure used for the growth of the algebra and the Gelfand-Kirillov

dimension. Let V be the K-subsapce spanned by the set U ∪ {f}. This makes V a finite

dimensional generating subspace of A such that every element of V is a K-linear combination

of elements from the set U ∪ {f}. We let V 0 = K and V i be the K-subspace spanned by

products of i elements from U ∪ {f}. Then we have An =
∑n

i=0 V
i and A = ∪∞i=0An.

To emphasize the algebra generators chosen for R, we will denote the growth function by

dU,F (n).

In the following sections, we will look at examples for R where A has a direct sum

decomposition by a suitable subspace of V i, denoted Wi. We will be able to develop a

nonhomogeneous linear recurrence that gives the number of generators for each Wi, which is

to say a recurrence for dimK(Wi). Since the Wi form a direct sum decomposition of A, we

can compute dU,F (n) by taking the sum of the recurrences for dimK(Wi) where i goes from

0 to n. By Proposition 1.4.1, we can translate the sum of these recurrences to a recurrence

for dU,F (n) =dimK(An).

For the remainder of this section, we assume that there exists a, possibly nonhomoge-

neous, linear recurrence sn for dU,F (n) and provide some general results and definitions that

arise naturally when such a recurrence exists.
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Definition 2.1.1. Let dU,F (n) =dimK(An) and assume there exists a recurrence, sn, such

that

dU,F (n) = sn = β1sn−1 + β2sn−2 + · · ·+ βlsn−l + T̃ (n)

We will refer to this recurrence as the growth recurrence of R with respect to U and F .

Also, the associated homogeneous recurrence for sn is β0sn−1 +β1sn−2 + · · ·+βl−1sn−l, which

will be called the homogeneous growth recurrence of R with respect to U and F .

Now considering the homogeneous growth recurrence of R with respect to U and F

along with Theorem 1.4.2, we can determine the characteristic polynomial equation.

Definition 2.1.2. Let sn be the homogeneous growth recurrence of R with respect to U

and F . The the characteristic polynomial equation for sn is xl − β1x
l−1 − · · · − βl = 0. We

will call this characteristic polynomial equation the growth equation of R with respect to

U and F .

By Theorem 1.4.2 we can determine the general solution for the homogeneous growth

recurrence by finding the roots of the growth equation. Notice that this solution determined

by the roots of the homogeneous growth recurrence has exponential form. We can make a

few conclusions from this. First, if the nonhomogeneous portion of the growth recurrence

is polynomial or constant, then as n goes to infinity, dU,F (n) will be determined by the

exponential general solution of the homogeneous growth recurrence. This also shows that

the growth of A is exponential and GKdim(A) is infinite. We provide these conclusions in a

proposition.

Proposition 2.1.3. Let R be a finitely generated K-algebra, and A = R[f ;F ] the Frobenius

skew polynomial ring over R. If the growth recurrence of R with respect to U and F exists

and is of the form sn = β1sn−1 + β2sn−2 + · · ·+ βlsn−l + T̃ (n) such that the gcd(βi) = 1 and

T̃ (n) is polynomial or constant, then G(A) = E1 and GKdim(A) =∞ while GKsdim(A) = 1.
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Proof. First, since the growth recurrence of R with respect to U and F is of the form

sn = β1sn−1 +β2sn−2 + · · ·+βlsn−l+ T̃ (n), we have the growth equation of R as xl−β1x
l−1−

· · · − βl = 0. Since the gcd(βi) = 1, Theorem 1.4.4 guarantees that the growth equation of

R has a unique positive root, λp, such that λp is larger than the absolute value of all other

roots.

Now using Theorem 1.4.2, we can conclude that the general solution of the homogeneous

growth recurrence ofR is of the form cpλ
n
p+
∑
ci(λi)

n where the sum includes all other roots of

the growth equation and ci are constants. Then since the nonhomogeneous part of the growth

recurrence is polynomial or constant, the particular solution will be polynomial or constant.

Hence, we get that the combination of the particular solution and general solution has the

form cpλ
n
p +

∑
ci(λi)

n + g(n) where g(n) is the particular solution of the nonhomogeneous

component of the growth recurrence, which has the same form as T̃ (n). Thus, G(A) = E1

and it follows by Lemma 1.3.13 that GKdim(A) =∞ while GKsdim(A) = 1.

Thus, the Gelfand-Kirillov dimension and superdimension do not provide any useful

information about the ring and we need a more refined value to consider for A that comes

particularly from dU,F (n). We choose to isolate the unique positive root of the growth

equation for this refined value as it is the determining value for the solution of the growth

recurrence.

Definition 2.1.4. We define the Gelfand-Kirillov base of R with respect to U , denoted

GKbaseU,F (R), to be GKbaseU,F (R) =inf{λ ∈ R>0 | dU,F (n) = O(λn)} taken over all n.
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2.2 Growth Recurrence for a Polynomial Ring

We now focus on the Frobenius skew polynomial ring A = R[f ;F ] where R =

K[x1, x2, · · · , xm] is a commutative polynomial ring over a field, K = Fp, with p prime.

We choose U to be the set {x1, x2, · · · , xm} which generate R as a K-algebra and V to be

the finite dimensional K-subspace to be the subspace spanned by the set U ∪ {f}. To be

able to apply the results from Section 1.3, we must first show that a recurrence exists for

dU,F (n).

As described before, V i is the K-subspace spanned by elements that are products of i

elements from x1, x2, · · · , xm, f . We ultimately want to be able to count how many unique

generators there are for a given value of i. To do this, we must first understand these

generators better and develop a unique representation.

2.2.1 Skew Monomials

Here we look specifically at the elements that generate the K-subspaces V i and develop

a unique representation for these elements.

Definition 2.2.1. We refer to an element z ∈ A as a skew monomial when z is a product

of variables from {x1, x2, · · · , xm, f}. Note that elements that are products of variables from

{x1, x2, · · · , xm} are also considered skew monomials when viewed as elements of A.

We would like to define a notion of degree for a skew monomial that associates the skew

monomial as a generator for a particular subspace V i. Since V i is generated by skew mono-

mials that are products of i elements from x1, x2, · · · , xm, f , a potential way to define degree

is by taking the sum of the exponents of the elements x1, x2, · · · , xm, f that appear in the

product. However, this is not a well-defined value since the multiplication in A can produce

multiple representations for a skew monomial that could associate the skew monomial to

multiple subspaces.
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For instance, the sum of powers for the skew monomial x1x
p
2f is p+2. We can then give

another representation of this element by applying the ring multiplication. Hence, x1x
p
2f

becomes x1fx2 and now the sum of powers is 3. Thus, to provide a notion of degree for

a skew monomial, we need to determine a unique representation. There could be many

possibilities for the choice of this unique representation. For instance, we could take the

representation with the largest possible sum of powers or the representation with smallest

possible sum of powers. In this paper, we choose to define a notion of degree by using the

representation with the lowest possible sum of powers. This decision essentially views the

skew monomial in the representation with any f in the product appearing as far to the left

as possible. For example, xpi f has the largest possible sum of powers for this skew monomial.

When we apply the ring multiplication, the f moves to the left and the sum of powers drops

giving fxi. The motivation for this choice comes from methods used in counting the skew

monomials. We describe this representation in a definition.

Definition 2.2.2. A skew monomial z ∈ A is in irreducible form when no xji with j > p

appears to the left of an f . Equivalently, a skew monomial is in irreducible form when it is

written as a product with the fewest possible elements from x1, x2, · · · , xm, f .

Example 2.2.3. Let R = K[x1, x2, x3] where K is a field of characteristic p = 3, and let

A = R[f ;F ]. Consider the skew monomial x3
1x

2
2fx

3
3. Since x1 has a power greater than

the characteristic of K and appears to the left of f in the product, this skew monomial is

not in irreducible form. Note that the sum of the powers in this representation is 9. We

now convert this to irreducible form. We have x3
1x

2
2fx

3
3 = x2

2x
3
1fx

3
3 and then by making the

substitution x3
1f = fx1, this becomes x2

2x
3
1fx

3
3 = x2

2fx1x
3
3. This is now in irreducible form

since there are no other substitutions that can be made. In other words, there is no xi with

power at least 3 to the left of f . Now the sum of the powers is 7. Since the irreducible form

is unique, we can now use the sum of the powers appearing in the irreducible form to define

the notion of degree for a skew monomial.
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Definition 2.2.4. We define the degree of a skew monomial to be the sum of the powers of

x1, x2, · · · , xm, f when the skew monomial is written in irreducible form. For the remainder

of the section, when the degree of a skew monomial is referred to, it is assumed that the

skew monomial is written in irreducible form.

Example 2.2.5. Let A be as in Example 2.2.3. The skew monomial x3
1x

2
2fx

3
3 = x2

2fx1x
3
3

has degree 7.

We can now determine a more refined K-subspace than V i that is spanned only by

skew monomials that are in irreducible form. This will allow us to determine a direct sum

decomposition of A.

2.2.2 Direct sum decomposition for the Growth Recurrence

We can now view the K-subspaces, V i, as the subspaces spanned by skew monomials

that are products of i elements. However, these are not necessarily skew monomials of degree

i since the definition of V i does not require the skew monomials to be in irreducible form.

There are a few key aspects to notice here. First, the construction given here is not a

graded object. Confusion could arise after the discussion of degrees of the skew monomials

that could lead to the expectation of a graded object. However, due to the multiplication in

A, this is not the case.

Second, the K-subspaces V i do not for a direct sum decomposition of An because V i∩V j

is not necessarily trivial. For example, xpf = fp appears in V p+1 and V 2. If we hope to be

able to determine dU,F (n) by a counting technique applied to the generating skew monomials,

we must determine a more suitable K-subspace related to V i that avoids this issue. This is

the motivation for the next definition.

Definition 2.2.6. Let A be defined as above. We define the set Wi to be the K-subspace

spanned by irreducible skew monomials of degree i. Hence, Wi is spanned by the subset of

generators for V i that are in irreducible form.
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Proposition 2.2.7. Let R = K[x1, x2, · · · , xm] and A = R[f ;F ] be the Frobenius skew

polynomial ring over R. If Wi is the K-subspace spanned by skew monomials from A in

irreducible form of degree i, then An =
⊕n

i=0Wi and the decomposition of An given by

An =
⊕n

i=0Wi is a direct sum decomposition.

Proof. By definition, every element in An is the sum of elements from the subspaces V i

where 0 6 i 6 n. Also, every generating element from V i can be written in irreducible form,

and hence every generating element of V i is in some Wj where j 6 i. Hence, V j ⊂
∑n

i=0Wi

for all 0 6 j 6 n. It follows that
∑n

i=0 V
i =

∑n
i=0Wi, and hence, An =

∑n
i=0Wi.

Now to show that this is a direct sum decomposition, we only need to show that

Wi ∩
∑

j 6=iWj = 0 for all 0 6 i, j 6 n. This follows immediately from the definition of

Wi since each subspace is spanned by skew monomials in irreducible form of degree i and

elements in
∑

j 6=iWj are linear combinations of skew monomials in irreducible form of degree

different than i and coefficients from K. Thus, let z 6= 0 ∈ Wi. Then z is a linear combination

of degree i skew monomials and coefficients from K. Then z is not in
∑

j 6=iWj. Likewise,

let z′ ∈
∑

j 6=iWj, then z′ is a linear combination of skew monomials in irreducible form of

degree different than i with coefficients from K, and hence, is not in Wi.

Now let us consider the function dU,F (n) =dimK(An). Since the decomposition of An for

any n by
⊕n

i=0Wi is a direct sum decomposition, we can compute dU,F (n) by the following

sum:

dU,F (n) = dimK

(
n∑
i=0

V i

)
=

n∑
i=0

dimK(Wi)

Hence, to compute dU,F (n) we must first develop a method to compute dimK(Wi) for

any 0 6 i 6 n. This can be done by counting the skew monomials in irreducible form of

degree i for any i 6 n. We can then compute dU,F (n) by taking the sum of dimK(V i) for all

0 6 i 6 n. This is the focus of the next section.
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2.2.3 Computing the Growth Recurrence

We now take the direct sum decomposition constructed in Section 2.2.2 and use it find

a recurrence for dU,F (n). By Proposition 1.4.1, we can do this by first finding a recurrence

for dimK(Wi) for all i. By Proposition 2.2.7, we can determine dimK(Wi) by determining

the number of generators for Wi.

Remark 2.2.8. A key observation is that any skew monomial in irreducible form containing

f in the product must lead with a skew monomial in variables from {x1, x2, · · · , xm} with an

exponent vector from the set {(a1, a2, . . . , am)|ai ∈ {0, 1, 2, . . . , p− 1}}. This is the set of m-

tuples whose entries are restricted to elements of the set {0, 1, 2, · · · , p− 1}. The cardinality

of this set will allow us to count the skew monomials in irreducible form containing an f for

any degree d. Hence, it is necessary to define this set and develop notations to represent the

components needed for the calculation.

Definition 2.2.9. We define the set

X = {(a1, a2, · · · , am) | ai ∈ Z and 0 6 ai 6 p− 1 for all i}

to be the set of all m-tuples with entries from the set {0, 1, 2, · · · , p − 1}. Let a ∈ X such

that a = (a1, a2, · · · , am). We denote the sum of the entries of a by |a| =
∑m

i=1 ai. Further,

we define Xj with 0 6 j 6 m(p− 1) to be the subset of X whose elements are partitions of

the natural number j. That is,

Xj = {a ∈ X | |a| = j}

Finally, we denote the cardinality of Xj by βj.

Lemma 2.2.10. Let the set X and subsets Xj be as in Definition 2.2.9. Then

1. Xi ∩Xj = ∅ for all i 6= j

2. X =
⋃m(p−1)
j=0 Xj
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Proof. (1) This follows immediately from the definition.

(2) Since each Xj is a subset of X, it follows that X ⊇ ∪m(p−1)
j=0 Xj. Now let a ∈ X. We have

that 0 6 |a| 6 m(p−1), and hence, a ∈ Xj for some 0 6 j 6 m(p−1). Thus, X ⊆ ∪m(p−1)
j=0 Xj

and we have equality.

Example 2.2.11. Let m = 2 and p = 3. Then X is the set of all pairs (a1, a2) where

a1, a2 ∈ {0, 1, 2}. Now consider X2. This is the subset of X containing all pairs (a1, a2) such

that a1 + a2 = 2. Hence, Xj = {(1, 1), (0, 2), (2, 0)}. Then it follows that β2 = |X2| = 3.

We define the set X in this way because the exponent vectors given by the product of

variables in {x1, x2, · · · , xm} that appear at the beginning of a skew polynomial containing

an f in the product will come from this set when the skew monomial is written in irreducible

form. We cannot have a value greater than p− 1 because the skew monomial will no longer

be in irreducible form. Then by defining the subsets Xj of X, we partition X into disjoint

subsets. That is, X = ∪m(p−1)
i=0 Xi. We now give a definition that relates these sets to the

skew monomials that we will count.

Definition 2.2.12. The following definitions and notations provide the building blocks to

determine dimK(Wd).

• We will now denote dimK(Wd) by Cd. Hence, Cd is equal to the number of skew

monomials of degree d.

• We denote the skew monomial xa11 x
a2
2 · . . . · xamm by xa where a ∈ X.

• Let z be a skew monomial of degree d written in irreducible form. We can view z in

the form xafz′ where z′ is a skew monomial of degree d− (|a|+ 1), also in irreducible

form . We refer to xa as the leading product of z and a as the leading exponent

vector of z.

• Let ca,d denote the number of skew monomials of degree d of the form xaf · z′.
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The next proposition shows how the values of ca,d provide the building blocks to develop

a recurrence to count the skew monomials of degree d. However, before giving the general

result, we provide an example to help present the intuition.

Example 2.2.13. Let R = K[x1, x2] where K is a field of characteristic p = 5, and A =

R[f ;F ] the Frobenius skew polynomial ring over R. Let a = (1, 4) and consider ca,10. Then

every skew monomial counted in ca,10 is of the form x1x
4
2fz where z is a skew monomial in

irreducible form of degree 10−(1+4+1) = 4. Since we are only counting skew monomials in

irreducible form, z must also be irreducible. Hence, z is counted in C4. Now we can attach

x1x
4
2f to any skew monomial counted in C4, and the resulting skew monomial will still be in

irreducible form, and hence, is counted in ca,10. Thus, ca,10 = C4.

The conclusion of the example above holds in general and is shown in the next propo-

sition. This result will be useful in developing a recurrence to compute Cd. Note that we

are only counting skew monomials that contain an f in the product with the values ca,d.

The skew monomials that do not contain an f are counted in the same manner as counting

monomials of degree d in R.

Proposition 2.2.14. Let Cd =dimK(Wd) and ca,d be defined as in 2.2.12. Then we have

1. Cd =
∑

a∈X ca,d +
(
m+d−1

d

)
,where the sum is taken over |X| = pm terms

2. For all a ∈ X, ca,d = Cd−(|a|+1).

Proof. 1) First, recall that all monomials z ∈ R of degree d are in irreducible form in V d

in x1, x2, . . . , xm, and hence are part of the spanning set for Wd. The number of skew

monomials of this form is given by
(
m+d−1

d

)
. By definition, each ca,d, counts skew monomials

in irreducible form of degree d. Thus, we have Cd >
∑

a∈X ca,d +
(
m+d−1

d

)
.

Now assume that Cd >
∑

a∈X ca,d +
(
m+d−1

d

)
. Then there exists a skew monomial in

irreducible form, z ∈ V d counted in Cd, but not counted in
∑

a∈X ca,d +
(
m+d−1

d

)
. It follows

that z = xaf · z′ where a /∈ X and z′ is an skew monomial in irreducible form of degree

d−deg(xaf). Since a /∈ X, we have xji for some i ∈ {1, 2, . . . ,m} and j > p appearing in xa.
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Thus, z is not in irreducible form, contradicting the assumption that z is counted in Cd and

it follows that Cd =
∑

a∈X ca,d +
(
m+d−1

d

)
.

2) Let z be an skew monomial in irreducible form counted in ca,d. Then z = xa · fz′

where deg(z′) = d − (|a| + 1)). Thus, every skew monomial counted in ca,d comes from a

skew monomial counted in Cd−(|a|+1) and ca,d 6 Cd−(|a|+1).

Now let z be an skew monomial counted in Cd−(|a|+1). Then deg(z) = d− (|a|+ 1) and

deg(f · z) = d − |a|. We can now multiply fz by xa and the skew monomial will remain

in irreducible form. Now deg(xa · fz) = d. This implies that xa · fz is counted in ca,d and

ca,d > Cd−(
∑m
i=1 ai+1). Thus, ca,d = Cd−(|a|+1).

Corollary 2.2.15. Let Cd =dimK(Wd) and ca,d be defined as above. Then we have

Cd =
∑
a∈X

Cd−(|a|+1) +

(
m+ d− 1

d

)

. where the sum is taken over all a ∈ X.

Corollary 2.2.15 shows how we can construct a recurrence for Cd by using terms Ci where

i < d. Notice that the sum is taken over all elements of X, but the Ci that appear in the

recurrence are determined by the sum of the components of each a ∈ X. Hence, we can have

multiple elements a that produce the same Ci in the recurrence. For example, consider ca,d

and ca′,d where a = (1, 4) and a′ = (4, 1). Then by Proposition 2.2.14, ca,d = Cd−6 = ca′,d. It

follows that Cd−6 would have a coefficient of at least two in the recurrence. The set Xj gives

all of the possible leading exponent vectors that will sum to j, and hence, the cardinality βj

of this set will determine the coefficient of Cd−(j+1). Thus, we can refine this sum by using

the partitions of X created by the set Xj and the cardinality βj of Xj. The next theorem

makes this refinement and provides the recurrence relation for Cd.

Theorem 2.2.16. Let Cd =dimK(Wd). Then

Cd =

m(p−1)+1∑
i=1

βi−1Cd−i +

(
m+ d− 1

d

)
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Proof. By Corollary 2.2.15, we have Cd =
∑

a∈X Cd−(|a|+1) +
(
m+d−1

d

)
, where the sum is taken

over all a ∈ X and |a| denotes the sum of the components of the element a ∈ X. Hence, the

sum
∑

a∈X Cd−(|a|+1) has |X| = pm terms. Let j < d and consider an element a′ ∈ Xj. Then

|a′| = j and the term ca′,d in the recurrence for Cd can be written as Cd−(j+1) by Proposition

2.2.14. Hence, for every a ∈ Xj we get Cd−(j+1) in the recurrence and the coefficient of

Cd−(j+1) is |Xj| = βj. Now since X = ∪m(p−1)
i=0 Xi, we have

∑m(p−1)
i=0 βj = |X| = pm. It

follows that the values 0, 1, · · · ,m(p − 1) determine every term of the recurrence. That is

the terms of the recurrence are Cd−(i+1) for all i ∈ {0, 1, 2, · · · ,m(p− 1)}, and the coefficient

for each term is βi. Thus,
∑

a∈X Cd−(|a|+1) =
∑m(p−1)

i=0 βiCd−(i+1) =
∑m(p−1)+1

i=1 βi−1Cd−i, and

the result holds.

Corollary 2.2.17. Let R = Fp[x1, x2, · · · , xm], and let A = R[f ;F ] be the Frobenius skew

polynomial ring of R. If we take the set U = {x1, x2, · · · , xm} as the algebra generating set

of R and V as the K-subspace of A spanned by the set U ∪ {f}, then the growth recurrence

of R with respect to U and F is

dU,F (n) =

m(p−1)+1∑
i=1

βi−1dU,F (n− i) + T̃ (n), where

T̃ (n) =
∑n

i=0

(
m+i−1

i

)
−
[∑m(p−1)

i=1 (βi−1(dU,F (0) + · · ·+ dU,F (m(p− 1)− i))−
∑m(p−1)

i=1 dU,F (i)
]
.

Proof. By Proposition 2.2.7, we have that dU,F (n) =
∑n

i=0dimK(Wi). Thus, we can apply

Proposition 1.4.1 to the recurrence in Theorem 2.2.16 and the result follows.

In the next section, the focus will be on finding the growth equation for dU,F (n) and

using it to determine the GKbaseU,F (R).

2.2.4 Computing the GK base

To determine the GKbaseU,F (R) we first need to gain some information about the βi

that appear in the recurrence. The following proposition shows that there is a nice symmetry

with the coefficients βi.
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Proposition 2.2.18. If βi = |Xi|, then βi = βm(p−1)−i for all 0 6 i 6 m
2

(p − 1). Further,

we have β0 = 1 = βm(p−1)

Proof. Let φ : Xi → Xm(p−1)−i for 0 6 i 6 m
2

(p− 1) be defined by

φ((a1, a2, . . . , am)) = (p− 1− a1, p− 1− a2, . . . , p− 1− am) ∀(a1, a2, . . . , am) ∈ Xi.

Note that (p− 1− a1, p− 1− a2, . . . , p− 1− am) ∈ Xm(p−1)−i since

m∑
1

p− 1− ai = m(p− 1)−
m∑
1

ai = m(p− 1)− i

Also, if φ((a1, a2, . . . , am)) = φ((a′1, a
′
2, . . . , a

′
m)) we have, p−1−aj = p−1−a′j and it follows

that aj = a′j ∀j ∈ {1, 2, . . . ,m}. Hence, (a1, a2, . . . , am) = (a′1, a
′
2, . . . , a

′
m), and φ is injective.

To show that φ is surjective and thus a bijection, let (b1, b2, . . . , bm) ∈ Xm(p−1)−i

Then
∑m

j=1 bj = m(p − 1) − i. Now since bj ∈ B ∀j we have that bj = p − 1 − aj for some

aj ∈ B. It follows that
∑m

j=1 bj =
∑m

j=1 p− 1−aj = m(p− 1)−
∑m

j=1 aj combining this with

the fact that
∑m

j=1 bj = m(p− 1)− i we get m(p− 1)−
∑m

j=1 aj = m(p− 1)− i, and hence,∑m
j=1 aj = i. Thus, (a1, a2, . . . , am) ∈ Xi and φ is surjective. Since φ is a bijection we have

|Xi| = |Xm(p−1)−i| and βi = βm(p−1)−i. Note: for p = 2 we take the ceiling of m
2

.

For the last part, it is clear that β0 = 1 since the only element in X0 is the m-tuple consisting

of all zeros. The fact that βm(p−1) = 1 follows from part 1, and can also be realized since the

largest possible entry for an element in Xm(p−1) is p− 1, then the only way to have a sum of

m(p− 1) is for every entry to be p− 1.

Now before proceeding to the general solution, we provide a concrete example to illus-

trate the process.

Example 2.2.19. Let R = F2[x1, x2], U = {x1, x2} the chosen set of K-algebra generators

of R, and let A = R[f ;F ] be the skew polynomial ring over R. Then we can apply Corollary

2.2.17 to obtain the recurrence for dU,F (n).

dU,F (n) = β0dU,F (n− 1) + β1dU,F (n− 2) + β2dU,F (n− 3) + T̃ (n)
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where T̃ (n) =
∑n

i=0 i + 1 − β0(dU,F (1) + dU,F (0)) − β1dU,F (0) − dU,F (1) − dU,F (2). We now

compute the values for each βj by using the following sets:

• X = {(a1, a2) | ai ∈ {0, 1} for all i}

• Xj = {(a1, a2) ∈ B | a1 + a2 = j} for 0 6 j 6 2

• βj = |Xj|

Then we can compute the values for each beta. We have β0 = 1 since the only

way to have a sum of 0 is if the exponents of x1 and x2 are both zero, β1 = 2 by (0, 1)

and (1, 0), and β2 = 1. We can also compute the nonhomogeneous term by using ini-

tial conditions. We have dimK(W0) = 1 and hence dU,F (0) = 1. Then dimK(W1) = 3

and dU,F (1) =dimK(W0)+dimK(W1) = 4. Finally, dimK(W2) = 8 and it follows that

dU,F (2) = 13. We also have that
∑n

i=0 i + 1 = 1
2
(n2 + 3n + 2). By making all of these

substitutions, the growth recurrence of R becomes

dU,F (n) = dU,F (n− 1) + 2dU,F (n− 2) + dU,F (n− 3) +
1

2
n2 +

3

2
n− 23

We first consider the homogeneous growth recurrence of R,

dU,F (n− 1) + 2dU,F (n− 2) + dU,F (n− 3)

and obtain the growth equation for R to be

x3 − x2 − 2x− 1 = 0

Using SAGE, we get the solutions x = 2.1479,−0.57395 − 0.36899i,−0.57395 + 0.36899i.
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Since each root is simple, the general solution of the associated homogeneous recurrence is

dU,F (n) = c1(2.1479)n + c2(−.57395− 0.36899i)n + c3(−.57395 + 0.36899i)n

Putting this particular solution together with the general solution from before, we obtain

dU,F (n) = c1(2.1479)d + c2(−.57395− 0.36899i)d + c3(−.57395 + 0.36899i)d + an2 + bn+ c

Where the coefficients a, b, c are determined by the particular solution of the growth

recurrence and the coefficients ci are determined by the initial conditions of dU,F (n). However,

we are only concerned with determining the Gelfand-Kirillov base of R and for that we need

to consider inf{λ ∈ R>0 | dU,F (n) = O(λn)} taken over all n. Since the general solution

of the homogeneous growth recurrence is exponential with largest base 2.1479, we have

GKbaseU,F (R) = 2.1479.

We now apply the same procedure to show the existence of the GKbaseU,F (R) for the

case when R is polynomial ring K[x1, x2, · · · , xm] where K is a field of characteristic p and

A = R[f ;F ]. First, we find the general solution for the homogeneous growth recurrence.

By Theorem 1.4.2, we can find a general solution to the homogeneous growth recurrence

of V by determining the characteristic equation and finding the roots of this equation.

Proposition 2.2.20. Let R = Fp[x1, x2, · · · , xm] , and let A = R[f ;F ] be the Frobenius

skew polynomial ring of R. If U = {x1, x2, · · · , xm}, then the growth equation of R with

respect to U and F is

xm(p−1)+1 − xm(p−1) − β1x
m(p−1)−1 − · · · − βm(p−1)−1x− 1 = 0

Further, this growth equation has a unique positive root whose value is larger than the absolute

value for any other root.
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Proof. We can determine the growth equation by applying Theorem 1.4.2 to the homoge-

neous recurrence from the growth recurrence described in Corollary 2.2.17.

Then we know the growth equation has a unique positive root by Theorem 1.4.3 and Theorem

1.4.4.

We will denote this unique positive root of the growth equation by λ1. By Theorem

1.4.2, the term corresponding to λ1 in the general solution for the homogeneous recurrence

of dU,F (n) is of the form c1λ
d
1.

Let λ2, λ3, · · · , λm(p−1)+1 be the remaining roots of the growth equation of V . If all of

these roots are simple, then the general solution of the homogeneous growth recurrence of

R is

c1λ
d
1 + c2λ

d
2 + · · ·+ cm(p−1)+1λ

d
m(p−1)+1

for some constants ci.

Otherwise, we have the general solution to the homogeneous growth recurrence of R as

d
(i)
V =

∑si
j=0 ci,jd

jλdi , where si is the multiplicity of λi and the ci,j are constants, where d
(i)
V

corresponds to the root λi for all 1 < i 6 m(p− 1) + 1. Hence, the general solution becomes

c1λ
d
1 +

m(p−1)+1∑
i=2

d
(i)
V

Now to find a particular solution for the nonhomogeneous recurrence we consider the

nonhomogeneous term

T̃ (n) =
n∑
i=0

(
m+ i− 1

i

)
−

m(p−1)∑
i=1

(βi−1(dU,F (0) + · · ·+ dU,F (m(p− 1)− i))−
m(p−1)∑
i=1

dU,F (i)





57

To determine a suitable form for the particular solution, we need to determine a function

to match this combination. Since

(
m+ d− 1

d

)
=

(d+m− 1)(d+m− 2) · · · (d+ 1)(d)!

(m− 1)!d!

=
1

(m− 1)!
(m+ d− 1)(m+ d− 2) · · · (d+ 1)

We have
n∑
i=0

(
m+ i− 1

i

)
=

n∑
i=0

1

(m− 1)!
(m+ i− 1)(m+ i− 2) · · · (i+ 1)

Hence, we have a polynomial in n of degree m and the particular solution will have the form

c1λ
n
1 + c2λ

n
2 + · · ·+ cm(p−1)+1λ

n
m(p−1)+1 +

m∑
i=0

ain
i

Theorem 2.2.21. Let R = Fp[x1, x2, · · · , xm] and let A = R[f ;F ] be the Frobenius skew

polynomial ring of R. If U = {x1, x2, · · · , xm}, then GKbaseU,F (R) = λ1 where λ1 is the

unique positive root of the growth equation of R with respect to U and F .

Proof. This follows immediately from the growth equation of R having the form

c1λ
n
1 + c2λ

n
2 + · · ·+ cm(p−1)+1λ

n
m(p−1)+1 +

m∑
i=0

ain
i

where λ1 is larger than the absolute value of all other λi.
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Example 2.2.22. In this example, we provide the computation of the Gelfand-Kirillov base

for the case when m = 1. Let R = Fp[x] and A = R[f ;F ] be the Frobenius skew polynomial

ring over R. We choose U = {x} as the K-algebra generating set of R. Hence, V is the

K-subspace of A spanned by U ∪ {f}. Then the growth recurrence of R with respect to U

and F is

dU,F (n) =

p∑
i=1

βi−1dU,F (n− i) + T̃ (n)

First notice that T̃ (n) is a linear function since

T̃ (n) =
n∑
i=0

(
i

i

)
−

(p−1)∑
i=1

(βi−1(dU,f (0) + · · ·+ dU,f ((p− 1)− i))−
(p−1)∑
i=1

dU,f (i)

 = n−B

where B =
∑(p−1)

i=1 (βi−1(dU,f (0) + · · ·+ dU,f ((p− 1)− i))−
∑(p−1)

i=1 dU,f (i) is a constant since

the dU,f (i) are initial conditions for 0 6 i 6 p − 1. We can also determine that βi = 1 for

all 0 6 i 6 p− 1 since X is the set {0, 1, · · · , p− 1}. Hence, the growth equation of R with

respect to U and F is

xp − xp−1 − · · · − x− 1 = 0

Proposition 2.2.23. Let R = Fp[x], with p prime, U = {x}, and A = R[f ;F ] be the

Frobenius skew polynomial Ring over R. If λ1 is the unique positive root of the growth

equation of R with respect to U and F , then GKbaseU,F (R) = λ1.

Proof. We know that the growth equation has a unique positive root, λ1, with absolute value

greater that the absolute value of all the other roots. Hence, the term c1λ
n
1 will dominate

the terms of the general solution. Also, the particular solution to the nonhomogeneous

portion of the growth recurrence is linear, which will also be dominated by c1λ
n
1 . Thus,

GKbaseU,F (R) = λ1.
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The last few results for this example provide bounds for λ1.

Proposition 2.2.24. Let f(x) denote the polynomial the defines the growth equation of R

with respect to U and F , and λ1 denote the unique positive root of f(x) where char(K) = p.

Then 2− 1
p
< λ1 < 2 for all p.

Proof. Let

F (x) = −f(x)

xp
= −1 +

1

x
+

1

x2
+ · · ·+ 1

xp−1
+

1

xp

Then any root of F (x) is also a root of f(x). Also, for any x > 0 we have that F (x) > 0

implies that f(x) < 0, and F (x) < 0 implies that f(x) > 0. It is clear that for x > 0, F (x)

is monotone decreasing and F (x) goes to −1 as x goes to ∞. Now consider F
(

2− 1
p

)
.

F

(
2− 1

p

)
=
−f(2− 1

p
)

(2− 1
p
)p

= −1 +
1

2− 1
p

+
1

(2− 1
p
)2

+ · · ·+ 1

(2− 1
p
)p−1

+
1

(2− 1
p
)p

= −1 +

p∑
i=1

(
2− 1

p

)−i
= −1 +

(1− (2− 1
p
)−p)p

p− 1

= −1 +
(1− (2− 1

p
)−p)p

(1− 1
p
)p

Now since (2− 1
p
)p > p for all p, we have (2− 1

p
)−p < 1

p
. Hence,

(1− (2− 1
p
)−p)p

p− 1
> 1 and − 1 +

(1− (2− 1
p
)−p)p

p− 1
> 0

Thus, F
(

2− 1
p

)
> 0 and it follows that f

(
2− 1

p

)
< 0. Now considering F (2) we have

F (2) = −1 +
1

2
+

1

4
+ · · ·+ 1

2p−1
+

1

2p
< 0
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It then follows that f(2) > 0 for all p. Hence, we can conclude that f
(

2− 1
p

)
< 0 and

f(2) > 0. The intermediate value theorem guarantees a root between 2− 1
p

and 2. Since λ1

is the unique positive root, we can conclude that 2− 1
p
< λ1 < 2 for all p.

Example 2.2.25. In this example, let R = Fp[x1, x2], p prime and let U = {x1, x2}. Let

A = R[f ;F ] be the Frobenius skew polynomial ring over R and V be the finite dimensional

K-subspace of A spanned by U ∪ {f}. Then the growth recurrence of R with respect to U

and F is

dU,F (n) =

2(p−1)+1∑
i=1

βi−1dU,F (n− i) + T̃ (n)

We first consider T̃ (n). LetB =
[∑2(p−1)

i=1 (βi−1(dV (0) + · · ·+ dV (2(p− 1)− i))−
∑2(p−1)

i=1 dV (i)
]

which is some constant. Then

T̃ (n) =
n∑
i=0

(
i+ 1

i

)
−B

=
n∑
i=0

(i+ 1)−B

=
(n+ 1)(n+ 2)

2
−B

Hence, the nonhomogeneous component of the growth recurrence of R has polynomial form

of degree two. We now look at the homogeneous growth recurrence of R with respect to U

and F .

The next lemma gives the coefficients, βi, for the homogeneous growth recurrence of R

with respect to U and F for any p when m = 2.

Lemma 2.2.26. Let A be the Frobenius skew polynomial ring over the ring Fp[x1, x2] and

U be defined as above. Then the coefficients, βi with 0 6 i 6 2(p− 1), for the homogeneous

growth recurrence of R with respect to U and F have the following equalities

1. βi = i+ 1 for all 0 6 i 6 p− 1

2. βj = 2p− (i+ 1) for all p 6 i 6 2(p− 1)
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Proof. First, since the homogeneous growth recurrence of R with respect to U and F is

dU,F (n) =
∑2(p−1)+1

i=1 βi−1dU,F (n − i), we have the coefficients βi for all 0 6 i 6 2(p − 1).

Now we have βi = |Xi| where Xi is the set of ordered pairs whose entries are from the set

{0, 1, 2, · · · , p−1} and whose sum is i. To show 1), consider βi for some 0 6 i 6 p−1. Since

i is less than p − 1, we have 0, 1, 2, · · · , i ∈ {0, 1, · · · , p − 1}. Then for an odd i, there are

i+1
2

pairs that add to i and we have 2 ∗ i+1
2

order pairs. For an even i, there are i
2

pairs that

add to i with distinct entries and one pair whose entries are i
2
. Hence, there are 2 ∗ i

2
+ 1

ordered pairs whose components sum to i. Thus, βi = i+ 1 for all 0 6 i 6 p− 1.

We can prove 2) by applying Proposition 2.2.18 to the values obtained in 1).

Now we can substitute these values for βi in the homogeneous growth recurrence on V

to determine the growth equation. Hence, the growth equation of R is

x2(p−1)+1 − x2(p−1) − 2x2(p−1)−1 − · · · − pxp−1 − (p− 1)xp−2 − · · · − 2x− 1 = 0

Proposition 2.2.27. Let R = Fp[x1, x2], p prime and U = {x1, x2}. Let A = R[f ;F ] be

the Frobenius skew polynomial ring over R and V be the finite dimensional K-subspace of A

spanned by U ∪{f}. If λ1 is the unique positive root of the growth equation of R with respect

to U and F , then GKbaseU,F (R) = λ1.

Proof. We know that the growth equation has a unique positive root, λ1, with absolute value

greater that the absolute value of all the other roots. Hence, the term c1λ
n
1 will dominate the

terms of the general solution. Also, the particular solution to the nonhomogeneous portion

of the growth recurrence is polynomial of degree two, which will also be dominated by c1λ
n
1 .

Thus, we can conclude that GKbaseU,F (R) = λ1.

Let λ1 be the determining root for the growth equation of R. We will now show that

λ1 is bounded by 2 and 3+
√

5
2

.
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Proposition 2.2.28. Let λ1 be the determining root for the growth equation of R with respect

to U and F , where char(K) = p. Then we have

2 < λ1 <
3 +
√

5

2

Proof. Let f(x) be the growth polynomial of V and consider the following polynomial

F (x) =
−f(x)

x2p−1

= −1 +
1

x
+

2

x2
+ · · ·+ p

xp
+
p− 1

xp+1
+ · · ·+ 2

x2p−2
+

1

x2p−1

= −1 +

p∑
i=1

i

xi
+

2p−1∑
p+1

2p− i
xi

We now use the following equalities to substitute into F (x) for any x > 1:

p∑
i=1

i

xi
=
x−p(xp+1 − x(p+ 1) + p)

(x− 1)2
and

2p−1∑
p+1

2p− i
xi

=
x−2p(pxp+1 − xp+1 − pxp + x)

(x− 1)2

Hence,
p∑
i=1

i

xi
+

2p−1∑
p+1

2p− i
xi

=
(xp − 1)2

x2p−1(x− 1)2

and

F (x) = −1 +
(xp − 1)2

x2p−1(x− 1)2

Now any root of F (x) is also a root of f(x). Also, for x > 0 we have, F (x) > 0 =⇒ f(x) < 0

and F (x) < 0 =⇒ f(x) > 0. Combining the fact that f(x) is of odd degree ∀p, and that

λ1 is the largest root of f(x), we know that λ1 > x ∀x such that f(x) < 0 and λ1 < x ∀x

such that f(x) > 0.

To show λ1 > 2, consider

F (2) = −1 +
(2p − 1)2

22p−1(2− 1)2
= −1 +

(2p − 1)2

22p−1
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Now since (2p−1)2

22p−1 = 2
(

2p−1
2p

)2
= 2

(
1− 1

2p

)2
, this expression is monotone increasing for all

p > 0. Also, when p = 2 we have (2p−1)2

22p−1 = 9
8
> 1, and hence, (2p−1)2

22p−1 > 1 for all p. Thus,

F (2) > 0 which implies that f (2) < 0, and hence, λ1 > 2.

We now consider F
(

3+
√

5
2

)
. First, notice that we have the following relationship for

3+
√

5
2

that will be applied in the computation:

(
3 +
√

5

2
− 1

)2

=
3 +
√

5

2

F

(
3 +
√

5

2

)
= −1 +

((
3+
√

5
2

)p
− 1
)2

(
3+
√

5
2

)2p−1 ((
3+
√

5
2

)
− 1
)2

= −1 +

((
3+
√

5
2

)p
− 1
)2

(
3+
√

5
2

)2p−1 (
3+
√

5
2

)
= −1 +

((
3+
√

5
2

)p
− 1
)2

(
3+
√

5
2

)2p

= −1 +

(
3+
√

5
2

)2p

−
(

2
(

3+
√

5
2

)p
− 1
)

(
3+
√

5
2

)2p

Since 2
(

3+
√

5
2

)p
− 1 > 0 for all p, we have

F

(
3 +
√

5

2

)
= −1 +

(
3+
√

5
2

)2p

−
(

2
(

3+
√

5
2

)p
− 1
)

(
3+
√

5
2

)2p < 0

Thus, we have F
(

3+
√

5
2

)
< 0 which implies f

(
3+
√

5
2

)
> 0. It follows by the Intermediate

Value Theorem that there exists a root of f(x) between 2 and 3+
√

5
2

. Since λ1 is the unique

positive root of f(x), we conclude that 2 < λ1 <
3+
√

5
2

.
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2.3 Growth Recurrence for a Numerical Semigroup Ring

We conclude this chapter by applying this method of determining a recurrence for

dU,F (n) to find GKbaseU,F (R) where R is a particular numerical semigroup ring. For this

example, let R = Fp[t2, t3], p prime and U = {t2, t3}, which is a set of K-algebra generators

of R. Let A = R[f ;F ] be the Frobenius skew polynomial ring over R and V be the finite

dimensional K-subspace of A spanned by U ∪ {f}. Then V 0 = K and V i for i > 0 is the

subspace spanned by skew monomials given by the product of i terms from the elements

t2, t3, f . We define An =
∑n

i=0 V
i and consider the function dU,F (n) =dimK(An).

2.3.1 Irreducible Skew Monomials

We will now determine a suitable definition for a minimal representation for skew mono-

mials in K[t2, t3]. This is again necessary since the V i are not disjoint, and it would not be

possible to determine a recurrence for the V i such that the sum would give dU,F (n). The

method will be similar to what was done for the Frobenius skew polynomial ring over the

commutative polynomial ring. However, more care has to be taken when considering what

skew monomials are considered in irreducible form. We first give a definition for a skew

monomial to be in irreducible form and provide necessary characterizations. Then we can

define subspaces of the V i spanned by these skew monomials in irreducible form.

Definition 2.3.1. Let A = R[f ;F ] where R = K[t2, t3]. An element z ∈ A is called a skew

monomial if and only if z is the product of the elements t2, t3, f . A skew monomial z ∈ A

is said to be in irreducible form if and only if z is written as the product of the fewest

possible elements from t2, t3, f .
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This is a broad definition and there are a few possibilities that need to be addressed.

Skew monomials in A can be written in multiple representations due to the multiplication rule

in A as well as by using different powers of t2 and t3. Consider the case when R = K[t2, t3]

where the characteristic of K is p. Then the skew monomial t2pf = (t2)pf = ft2. The

representation of this skew monomial (t2)pf is the product of p+ 1 elements from t2, t3 and

the representation ft2 is the product of 2 elements. Hence, ft2 is the irreducible form of the

skew monomial (t2)pf .

Now let p = 7 and consider a skew monomial in A of the form t8f = (t2)4f = t2(t3)2f .

Again, we have three representations of the same skew monomial. The representation (t2)4f

is the product of 5 elements from A and the representation t2(t3)2f is the product of 4

elements from A. Since p = 7, we cannot reduce the skew monomial any further using the

multiplication rule of the ring. To see this, consider t8f = tt7f = tft, however, t is not an

element of the ring and this is not a valid representation. Thus, t2(t3)2f is the irreducible

form of t8f . We will first focus on when a skew monomial is in irreducible form regarding

the powers of t, and then address when a skew monomial is in irreducible form by the

multiplication rule of A.

Lemma 2.3.2. Let A = R[f ;F ] where R = K[t2, t3]. Then products of the form (t2)i(t3)j

are irreducible if and only if i ∈ {0, 1, 2}. Further, the only skew monomials of the form

(t2)i(t3)j such that i+ j = d that are irreducible are t3d, t3d−1, t3d−2.

Proof. We first prove that if (t2)i(t3)j is in irreducible form, then i ∈ {0, 1, 2}. To do

this, assume that i > 3. Then we have (t2)i(t3)j = (t2)i−3(t2)3(t3)j = (t2)i−3(t3)2(t3)j =

(t2)i−3(t3)j+2. The representation (t2)i(t3)j is a product of i+ j terms and the representation

(t2)i−3(t3)j+2 is the product of i− 3 + j + 2 = i+ j − 1 terms. Hence, (t2)i(t3)j is reducible.

Now assume that i ∈ {0, 1, 2} and consider (t2)i(t3)j. We can prove this skew monomial is in

irreducible form by considering each of the cases. If i = 0, then (t2)0(t3)j = (t3)j. If j = 1,

then (t3)j is the unique representation of the skew monomial. Assume that j > 2. We have

(t3)j = (t3)j−2(t3)2 = (t3)j−2(t2)3, but this representation is the product of j − 2 + 3 = j + 1

elements. It follows that for each time we replace (t3)2 with (t2)3, the number of elements in
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the product increases by 1. Hence, (t3)j is the irreducible form. Likewise for i = 1 or i = 2,

it is not possible to write (t2)i as (t3) to some power less than i, and hence, any substitution

would increase the number of elements in the product. Thus, (t2)i(t3)j is in irreducible form

when i ∈ {0, 1, 2}.

To prove the last assertion, we consider a skew monomial (t2)i(t3)j in irreducible form such

that i + j = d. By the first part of the proof, we have that i ∈ {0, 1, 2}. Hence, the

only possibilities are (t2)0(t3)d = t3d, (t2)1(t3)d−1 = t2+3(d−1) = t3d−1, and (t2)2(t3)d−2 =

t4+3(d−2) = t3d−2.

Lemma 2.3.2 gives a characterization of irreducible form for skew monomials that are

products of t2 and t3. We now move to provide a characterization of irreducible form for

skew monomials that are products of t2, t3 and f . We get separate characterizations for skew

monomials involving an f in the product since the multiplication rule of A can only be applied

with f . Hence there are pairs i, j such that (t2)i(t3)j is in irreducible form but (t2)i(t3)jf

is reducible. For instance, consider the pair (1, p). Then by Lemma 2.3.2, (t2)(t3)p is in

irreducible form. However, (t2)(t3)pf has irreducible form t2ft3. In the next proposition, we

address skew monomials of this form and a characterization for when they are in irreducible

form.

Proposition 2.3.3. Let A = R[f ;F ] where R = K[t2, t3]. Then products of the form

(t2)i(t3)jf are irreducible if and only if i ∈ {0, 1, 2}, 2i+ 3j 6 2p+ 1, and 2i+ 3j 6= 2p.

Proof. We first prove that if a product of the form (t2)i(t3)jf is in irreducible form, then

i ∈ {0, 1, 2}, 2i+3j 6 2p+1, and 2i+3j 6= 2p. We know by Lemma 2.7.2, that if i /∈ {0, 1, 2}

then (t2)i(t3)jf is reducible. Now assume that 2i+3j = 2p. Then (t2)i(t3)jf = t2pf = ft2 and

the product is reducible. Otherwise, assume that 2i+ 3j > 2p+ 2. Then 2i+ 3j = 2p+ 2 +k

for some k > 0. If k is even, then k = 2m for some m and we have (t2)i(t3)jf = t2p+2+2mf =

(t2)m+1(t2)pf = (t2)2(m+1)ft2 and the product is reducible. Now if k is odd, then k = 2m+ 1

for some m and we have (t2)i(t3)jf = t2p+2+2m+1f = (t2)mt3(t2)pf = (t2)mt3ft2 and the

product is reducible.
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For the other implication, assume that i ∈ {0, 1, 2}, 2i + 3j 6 2p + 1, and 2i + 3j 6= 2p.

By Lemma 2.3.2, the product (t2)i(t3)j is in irreducible form. Hence, any reduction must

come by the multiplication rule of A. First assume that 2i + 3j = 2p + 1 and consider

(t2)i(t3)jf = t2p+1f = t(t2)pf = tft2. However, t is not an element of A and this is not

a valid representation. We now claim that 2p is the minimum power of t such that the

multiplication rule for A is possible. First, t2pf = ft2 and is reducible. Now if we have tmf

for some m < p, then it is clear that tmf is in irreducible form. Let p 6 m 6 2p. Then

m = p+ k for some k. Hence, tmf = tkft but t is not an element of A and this is again not

a valid representation. Thus, 2p is the minimum power of t such that tmf is reducible. It

follows from this that if 2i+ 3j 6 2p− 1, then (t2)i(t3)jf is in irreducible form.

Corollary 2.3.4. Let (t2)i(t3)jf be a skew monomial in irreducible form. Then we have the

following inequalities for j.

1. If i = 0, then 0 6 j 6
⌊

2p+1
3

⌋
.

2. If i = 1, then 0 6 j 6
⌊

2p−1
3

⌋
.

3. If i = 2, then 0 6 j 6
⌊

2p−3
3

⌋
.

Proof. By Proposition 2.3.3, we have that 2i + 3j 6= 2p and 2i + 3j 6 2p + 1. We will use

these relations to analyze each case. We already know that j 6 p − 1, so it is necessary to

first show that each of the characterizations are less than or equal to p−1. It suffices to show

that b2p+1
3
c 6 p− 1 since it is the largest value in the claim. First, notice that 2p+1

3
6 p− 1

for all p > 4. Since b2p+1
3
c 6 2p+1

3
, we have that b2p+1

3
c 6 p − 1 for all p > 4 and we only

need to check p = 3 and p = 2. This follows by evaluating b2p+1
3
c at these values. We get

b2p+1
3
c = p− 1 for both p = 2 and p = 3. Hence, the claim holds for all p.

To show 1), we consider the inequality 2i+ 3j 6 2p+ 1 with i = 0. Then we have j 6 2p+1
3

.

Since 2p+1
3

is not necessarily an integer, we get j 6 b2p+1
3
c.

For 2), we have 2 + 3j 6 2p + 1 and it follows that j 6 2p−1
3

and hence, j 6 b2p−1
3
c. The

result for 3) follows in the same way.



68

Proposition 2.3.3 and Corollary 2.3.4 give a characterization for skew monomials of the

form (t2)i(t3)jf that are in irreducible form. However, to be able to define a recurrence, we

need to know when a product of irreducible skew monomials remains in irreducible form.

First, we give a definition of a leading product for any skew monomial in irreducible form.

Then by separating the leading product from the skew monomial leaves a skew monomial

that is the product of fewer elements.

Definition 2.3.5. Let z ∈ A be a skew monomial in irreducible form that contains at least

one f in the product. Then z is written as the product of the fewest possible elements from

t2, t3, f . Then the leading product of z is (t2)i(t3)jf where z = (t2)i(t3)jf · product of

elements from t2, t3, f . We will denote the leading product of a skew monomial z by lead(z).

Notice that this definition is for skew monomials that contain an f in the product. If

we consider a similar definition of ”leading product” for a skew monomial that is only the

product of t2, t3, then the skew monomial is equal to its leading product and the definition

adds no valuable information. The purpose for defining the leading product up to the first

occurence of an f in the product of z is simply because this is where commutativity is not

applicable. Since K[t2, t3] is a commutative ring, we can order a product of t2 and t3 in any

way that we want. These powers of t2 and t3 can also be combined into some power of t. So

to maintain clarity on what elements are used in the product of z, we identify the leading

product by (t2)i(t3)jf and consider the ordered pairs (i, j) where i is the power on t2 and

j is the power on t3. The next proposition shows that every skew monomial in irreducible

form can be identified by the leading product and a skew monomial in irreducible form.

Proposition 2.3.6. Let z ∈ A be a skew monomial in irreducible form with at least one f

contained in the product. Then z can be written in the form z = (t2)i(t3)jfz′ where (t2)i(t3)jf

and z′ are skew monomials in irreducible form and (t2)i(t3)jf and z′ are uniquely determined

by z.

Proof. We first prove that there is only one pair (i, j) such that the leading product of z is

written in fewest terms. Let (t2)i(t3)j = tm. Then 2i + 3j = m for some m 6= 1. If l is the
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minimal possible value of i + j such that 2i + 3j = m, then we have a system of equations

with a unique solution. Thus, (i, j) are uniquely determined for the leading product of any

skew monomial in irreducible form.

Now we have z = (t2)i(t3)jf · z′ where z’ is a product of elements from t2, t3, f . It is

clear that z′ must be a skew monomial in irreducible form. Otherwise, z could be reduced

by writing z′ with fewer terms. To see that z′ is also uniquely determined by z, assume

z = (t2)i(t3)jfz′ = (t2)i(t3)jfz′′. It follows immediately that z′ = z′′ since A is a domain.

The last piece that is needed here is to show when the product of two skew monomials

in irreducible form is also in irreducible form. It is not always the case that the product of

skew monomials in irreducible form is still in irreducible form. For instance, let p = 5 and

consider the skew monomials t2t3f and t2f . Then the product is t2t3ft2f = t5ft2f = ft3f .

Hence, the irreducible form of the product in ft3f . The next proposition shows when we

can multiply a skew monomial in irreducible form by (t2)i(t3)jf and still have the product

in irreducible form. This gives the ability to count all skew monomials in irreducible form

by taking a skew monomial and multiplying by (t2)i(t3)jf on the left.

Proposition 2.3.7. Let z ∈ A be a skew monomial in irreducible form and (t2)i(t3)jf be

irreducible. If lead(z) = f , then (t2)i(t3)jfz is in irreducible form. Otherwise, (t2)i(t3)jfz is

in irreducible form if and only if 2i+ 3j 6= p and 2i+ 3j 6 p+ 1.

Proof. Let z ∈ A such that z is in irreducible form and lead(z) = f . Then z = f · z′

for some z′ ∈ A that is also in irreducible form. Now consider the product (t2)i(t3)jfz

where (t2)i(t3)jf is in irreducible form. Then 2i + 3j 6= 2p and 2i + 3j 6 2p + 1. Let

2i + 3j = 2p + 1− k for some k 6= 1. We have (t2)i(t3)jfz = t2p+1−kffz′ = tptp+1−kffz′. If

k = 0, then this becomes tptp+1ffz′ = tt2pffz′ = tft2fz′ but this is not an element of A

and hence the product (t2)i(t3)jfz is already in irreducible form. Now let k > 2. Then we

have tptp+1−kffz′ = tk
′
tpffz′ = tk

′
ftz′ where k′ = p+ 1− k < p. Again, this element is not

in A and (t2)i(t3)jfz is already in irreducible form.
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Now let z = tmz′ for some m > 2. We first show that if 2i+ 3j = p or 2i+ 3j > p+ 2,

then (t2)i(t3)jfz is reducible. Let 2i + 3j = p. Then (t2)i(t3)jfz = tpftmz′ = ftm+1z′.

Hence, (t2)i(t3)jfz is reducible since tm+1 is an element of A. Now let 2i + 3j > p + 2, say

2i+ 3j = p+ 2 + k for some k > 0. Then (t2)i(t3)jfz = t2+ktpftmz′ = t2+kftm+1z′ which is

an element of A for all k > 0 and (t2)i(t3)jfz is reducible.

Finally, we show that if 2i + 3j 6= p and 2i + 3j 6 p + 1, then (t2)i(t3)jfz is in irreducible

form. Let 2i + 3j = p + 1. Then (t2)i(t3)jfz = tp+1ftmz′ = tftm+1z′, but this is not an

element of A and the product (t2)i(t3)jfz is in irreducible form. Now let 2i+ 3j = p− 1− k

for some k > 0. Since p− 1− k < p, it is not possible to apply the multiplication rule of A

to commute tp−1−k with f . Thus, the product (t2)i(t3)jfz is in irreducible form.

2.3.2 Direct Sum Decomposition for the Growth Recurrence

Now that we have characterized skew monomials in irreducible form, we can define a

K-subspace of the V i that is spanned by only the skew monomials in irreducible form. Since

the irreducible form is unique, this will allow us to determine a direct sum decomposition of

An.

Definition 2.3.8. Let A = R[f ;F ] where R = Fp[t2, t3] and V i be the K-subspace spanned

by elements that are products of i elements from the set U ∪ {f}. We define the growth

subspace to be the K-subspace of V i spanned by all skew monomials in the spanning set

for V i that are in irreducible form. The growth subspace for V i will be denoted Wi.

Defining the growth subspace in this way will allow us to determine dU,F (n) by summing

up the cardinalities of the spanning sets of W0,W1, · · · ,Wn. This is not possible when only

considering the subspaces V i because different representations of skew monomials can be

counted in different subspaces. For instance, the skew monomial (t2)pf is in the spanning

set for V p+1 and V 2 since (t2)pf = ft2. The next proposition shows that the growth subspaces

Wi are disjoint, and will use that to show that they form a direct sum decomposition.
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Proposition 2.3.9. Let A = R[f ;F ] where R = Fp[t2, t3]. Then An =
∑n

i=0 V
i =

⊕n
i=0Wi

and dU,F (n) =
∑n

i=0 dimK(Wi).

Proof. First consider Wi and Wj for some i < j. The any skew monomial in the spanning

of Wj is the product of i elements in t2, t3, f and is in irreducible form. Hence, no skew

monomial in the spanning set of Wj can be written as the product of i elements and is not

in the spanning set of Wi. Thus, we have that Wi ∩
∑

j 6=iWj = 0 for all i, j ∈ Z>0.

By definition, Wi ⊆ V i for all i and it follows that
∑n

i=0 Wi ⊆
∑n

i=0 V
i for all n. Now let

z be a generator of V i for some i that does not appear in Wi. Then z is reducible and the

irreducible form of z is also contained in the spanning set of V j for some j < i. Then z is

either in Wj or it appears in V k for some k < j. This process must necessarily terminate

since V 1 = 〈t2, t3, f〉 = W1. Hence, every generator from V i will appear in
∑n

i=0Wi for all i.

Thus, An =
∑n

i=0 V
i =

⊕n
i=0 Wi and

∑n
i=0Wi is a direct sum decomposition of An. Then it

follows that dU,F (n) = dimK(An) = dimK (
∑n

i=0 V
i) =

∑n
i=0 dimK(Wi).

2.3.3 Describing dU,F (n)

Proposition 2.3.9 shows that we need to be able to describe dimK(Wi) for each 0 6 i 6 n

to be able to determine dU,F (n). In this section, we will develop a method to determine

a recurrence dimK(Wi). Before determining which Wj are necessary to do this, we first

introduce some definitions to ease the cumbersome terminology and notation and to give a

characteristic of skew monomials in the ring A = R[f ;F ] over R = Fp[t2, t3] similar to the

characteristic of degree when R was the commutative polynomial ring.

Definition 2.3.10. Let A = R[f ;F ] where R = Fp[t2, t3] and let Wi be the growth subspace

of V i where V is the finite dimensional generating subspace spanned by U ∪ {f}. Then we

have the following definitions and notations

• We will denote dimK(Wd) by Cd.

• Let z be a skew monomial in irreducible form that is the product of d elements from

t2, t3, f . Then d is the length of z. We denote the length of z by l(z).
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To understand what is meant by length here, consider the skew monomial t8f . As

shown previously, the irreducible form of t8f is t2(t3)2f . Hence, l(t8f) = 4. From this point

forward, anytime the length of a skew monomial is referred to, it will be assumed that the

skew monomial is in irreducible form.

Now using the terminology in Defintion 2.3.10, we can view Wd as the K-subspace

spanned by the skew monomials of length d. Hence, Cd =dimK(Wd) is equal to the number

of skew monomials of length d. By Proposition 2.3.6, every skew monomial of length d is

uniquely determined by the leading product and a skew monomial of length d− (i+ j + 1).

The next definition will provide a notation for all skew monomials of length d with

a common leading product. We can then determine which skew monomials of length d −

(i + j + 1) that the leading product can be multiplied to and remain in irreducible form to

determine the number of skew monomials with the leading product given by (i, j).

Definition 2.3.11. • Let W d denote the set of skew monomials that generate Wd.

That is, W d is the set of all skew monomials in irreducible form of length d. Since

Cd =dimK(Wd), we have Cd = |W d|.

• Let W i,j,d denote the subset of W d such that for every z ∈ W i,j,d, we have lead(z) =

(t2)i(t3)j)f .

• We will denote |W i,j,d| by ci,j,d. That is, ci,j,d counts the number of skew monomials in

irreducible form of length d with leading product (t2)i(t3)jf .

Proposition 2.3.12. Let X be the set of ordered pairs (i, j) such that (t2)i(t3)jf is in

irreducible form. Then Cd =
∑

(i,j)∈X ci,j,d + 3, where the sum is taken over all elements of

X.

Proof. By Lemma 2.3.2, there are exactly 3 skew monomials that are products of only t2

and t3 of length d that are in irreducible form. This accounts for the constant term. Hence,

all other skew monomials counted in Cd are uniquely determined by the leading product

and a skew monomial of length d − (i + j + 1). Since the sum is taken over all elements
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in X, and X represents the set of all possible pairs of (i, j) for a leading product, the sum∑
(i,j)∈X ci,j,d counts all of the skew monomials that are products with at least one f . Thus,

Cd =
∑

(i,j)∈X ci,j,d + 3.

Lemma 2.3.13. For any pair (i, j) such that (t2)i(t3)jf is in irreducible form and 2i+ 3j 6

p + 1 with 2i + 3j 6= p there is a one-to-one correspondence between W i,j,d and W d−(i+j+1).

Hence, ci,j,d = Cd−(i+j+1).

Proof. Let φ : W d−(i+j+1) → W i,j,d by φ(z) = (t2)i(t3)jfz for all z ∈ W d−(i+j+1). Since

2i+ 3j 6 p+ 1 and 2i+ 3j 6= p, we can apply Proposition 2.3.7 to see that (t2)i(t3)jfz is in

irreducible form for all z ∈ W d−(i+j+1), and hence, is unique. This shows that φ(z) ∈ W i,j,d

for all z ∈ W d−(i+j+1) and φ is well-defined. To see that φ is injective, notice that if

φ(z) = φ(z′) then (t2)i(t3)jfz = (t2)i(t3)jfz′. Since A is a domain we have z = z′.

We now show that φ is surjective. Let z ∈ W i,j,d. By Proposition 2.3.6, we can write z

uniquely as (t2)i(t3)jfz′ for some z′ such that l(z′) = d− (i+ j + 1). Hence, z′ ∈ W d−(i+j+1)

and since this writing is unique, we have that φ is surjective. Thus, φ is bijective and it

follows that ci,j,d = Cd−(i+j+1).

Lemma 2.3.14. For any pair (i, j) such that (t2)i(t3)jf is in irreducible form and 2i+3j = p

or 2i+3j > p+2 there is a one-to-one correspondence between W i,j,d and W d−(i+j+2). Hence,

ci,j,d = Cd−(i+j+2).

Proof. Let φ : W d−(i+j+2) → W i,j,d by φ(z) = (t2)i(t3)jf 2z for all z ∈ W d−(i+j+2). Since

2i+3j > p+2 or 2i+3j = p, we can apply Proposition 2.3.7 to see that (t2)i(t3)jf 2z is in ir-

reducible form for all z ∈ W d−(i+j+2), and hence, is unique. This shows that φ(z) ∈ W i,j,d for

all z ∈ W d−(i+j+2) and φ is well-defined. To see that φ is injective, notice that if φ(z) = φ(z′)

then (t2)i(t3)jf 2z = (t2)i(t3)jf 2z′. Since A is a domain we have z = z′.
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We now show that φ is surjective. Let z ∈ W i,j,d. By Proposition 2.3.6, we can write

z uniquely as (t2)i(t3)jfz′ for some z′ with lead(z′) = f such that l(z′) = d − (i + j + 2).

Since z′ is uniquely written as fz′′, the z′′ is unique for z. Hence, z′′ ∈ W d−(i+j+2) and since

this writing is unique, we have that φ is surjective. Thus, φ is bijective and it follows that

ci,j,d = Cd−(i+j+2).

By Lemma 2.3.13 and Lemma 2.3.14, we can now substitute values in for ci,j,d in the

equation from Proposition 2.3.12 to determine a recurrence for Cd. However, it is possible to

have pairs (i, j) and (i′, j′) where i+ j = i′+ j′, and hence, ci,j,d = ci′,j′,d. Then if ci,j,d = Cm,

we also have ci′,j′,d = Cm. Thus, certain Cm will appear multiple times in the recurrence,

and hence, have a coefficient different than one. We now define sets such that the cardinality

will determine coefficients in the recurrence.

Definition 2.3.15. Let X be the set of all ordered pairs (i, j) such that the skew monomial

(t2)i(t3)jf is in irreducible form. Then we take Xm to be the subset of X containing all pairs

(i, j) such that i+ j = m, 0 6 2i+3j 6 p+1 and 2i+3j 6= p. We will denote the cardinality

of Xm by βm.

Lemma 2.3.16. The largest possible m such that Xm is nonempty is

max

{⌊
p+ 1

3

⌋
, 1 +

⌊
p− 1

3

⌋
, 2 +

⌊
p− 3

3

⌋}

Proof. We have 2i+ 3j 6 p+ 1 for all (i, j) ∈ Xm and by Lemma 2.3.2, i ∈ {0, 1, 2}. Hence,

we only have the following pairs to consider:

i = 0 j =

⌊
p+ 1

3

⌋
i = 1 j =

⌊
p− 1

3

⌋
i = 2 j =

⌊
p− 3

3

⌋

Thus, the maximum sum is max{bp+1
3
c, 1 + bp−1

3
c, 2 + bp−3

3
c}.
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Proposition 2.3.17. Let m =max{bp+1
3
c, 1+bp−1

3
c, 2+bp−3

3
c} and consider some k 6 n. If∑

(i,j)∈Xk ci,j,d is the sum taken over all elements in Xk, then
∑

(i,j)∈Xk ci,j,d = βkCd−(i+j+1).

Proof. By Lemma 2.3.13, we have ci,j,d = Cd−(i+j+1) for all (i, j) ∈ Xk. Since βk denotes the

cardinality of Xk and no skew monomial counted in ci,j,d is counted in ci′j′,d for some i 6= i′

or j 6= j′, the result follows.

We now apply the same procedure to develop the portion of the recurrence for the skew

monomials with leading product such that 2i+ 3j = p or 2i+ 3j > p+ 2.

Definition 2.3.18. Let Xm be the subset of X containing all pairs (i, j) with i + j = m

such that 2i+ 3j = p or 2i+ 3j > p+ 2. Notice that this is equivalent to taking Xm as the

complement of Xm in X. We will denote the cardinality of Xm by βm.

Lemma 2.3.19. The largest possible q such that Xq is nonempty is

max

{⌊
2p+ 1

3

⌋
, 1 +

⌊
2p− 1

3

⌋
, 2 +

⌊
2p− 3

3

⌋}
Proof. By Corollary 2.3.4, we have the following largest possible pairs for i and j such that

(t2)i(t3)jf is in irreducible form:

i = 0 j =

⌊
2p+ 1

3

⌋
i = 1 j =

⌊
2p− 1

3

⌋
i = 2 j =

⌊
2p− 3

3

⌋

Hence, the maximum sum possible is the maximal value from b2p+1
3
c, 1 + b2p−1

3
c, and 2 +

b2p−3
3
c.

Proposition 2.3.20. Let q = max{b2p+1
3
c, 1 + b2p−1

3
c, 2 + b2p−3

3
c} and consider some k 6 n.

If
∑

(i,j)∈Xk
ci,j,d is the sum taken over all elements in Xk, then

∑
(i,j)∈Xk

ci,j,d = βkCd−(i+j+2).
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Proof. By Lemma 2.3.14, we have ci,j,d = Cd−(i+j+2) for all (i, j) ∈ Xk. Since βk denotes the

cardinality of Xk and no skew monomial counted in ci,j,d is counted in ci′j′,d for some i 6= i′

or j 6= j′, the result follows.

We are now ready to define the recurrence for Cd. The purpose for defining the sets Xk

and Xk is to provide a partition of X. This allows us to determine how many ci,j,d are equal

to Cd−(i+j+1) and how many are equal to Cd−(i+j+2).

Theorem 2.3.21. Let A = R[f ;F ] where R = Fp[t2, t3] and let Wd be the growth sub-

space of V d where V is the finite dimensional generating subspace spanned by U ∪ {f}. Let

Cd =dimK(Wd), then

Cd =
m∑
k=0

βkCd−(k+1) +

q∑
k=m′

βkCd−(k+2) + 3

where m = max{bp+1
3
c, 1 + bp−1

3
c, 2 + bp−3

3
c},m′ =the minimum possible sum of i + j such

that 2i+ 3j = p or 2i+ 3j > p+ 2, and q =max{b2p+1
3
c, 1 + b2p−1

3
c, 2 + b2p−3

3
c}

Proof. We first show a relation between the sets X,Xk, and Xk for some value k. By

definition, for any value k we have Xk ∩Xk = ∅. Further, we have

X =

q⋃
k=0

(
Xk ∪Xk

)
=

(
m⋃
k=0

Xk

)⋃(
q⋃

k=0

Xk

)

Now since this is a disjoint union, the carinality is the sum of each βk and βk. Hence, βk

will determine how many times Ck+1 is equal to some ci,j,d. Likewise, βk will determine how

many times Cd−(k+2) is equal to some ci,j,d. Thus, the values βk and βk will determine the

coefficients of the recurrence. Now we can take the equation in Proposition 2.3.12 and for

each (i, j) in Xm, we make the substitution ci,j,d = Cd−(i+j+1) and for each (i, j) in Xm we

make the substitution ci,j,d = Cd−(i+j+2). Then applying Propositions 2.3.17 and 2.3.20 we

get the coefficients.
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Corollary 2.3.22. The degree of the growth recurrence for R = Fp[t2, t3] is

max

{⌊
2p+ 1

3

⌋
, 1 +

⌊
2p− 1

3

⌋
, 2 +

⌊
2p− 3

3

⌋}
− 2

Proof. By Lemma 2.3.19, the maximum sum possible for i + j is q = max
{⌊

2p+1
3

⌋
, 1 +⌊

2p−1
3

⌋
, 2 +

⌊
2p−3

3

⌋}
. Then by Lemma 2.3.14, the ordered pair that produces this sum is in

correspondence to Cd−q−2. Hence, the recurrence includes the terms Cd−1, · · · , Cd−q−2 and

the degree of the recurrence is q − 2.

Corollary 2.3.23. Let A = R[f ;F ] where R = Fp[t2, t3] and let Wd be the growth subspace

of V d where V is the finite dimensional generating subspace spanned by U ∪ {f}. Then the

growth recurrence of R with respect to U and F is

dU,F (n) =
m∑
k=0

βkdU,F (n− (k + 1)) +

q∑
k=m′

βkdU,F (n− (k + 2)) + T̃ (n)

where T̃ (n) is a linear function, and the growth equation of R with respect to U and F is

xq+2 −
( m∑
k=0

βkx
(q+2)−(k+1) +

q∑
k=m′

βkx
(q+2)−(k+2)

)

Proof. We obtain the growth recurrence of R by applying Proposition 1.4.1 to the recurrence

in Theorem 2.3.21. Also, if we let B be the constant given in the nonhomogeneous portion

of the recurrence by Proposition 1.4.1, then T̃ (n) =
∑n

i=0 3−B = 3n−B and T̃ (n) is linear.

The growth equation is defined to be the characteristic equation determined by the

associated homogenous growth recurrence for R. The associated growth recurrence for R is∑m
k=0 βkCd−(k+1) +

∑q
k=m′ βkCd−(k+2) and the result follows by applying Theorem 1.4.2.

We know provide a result that shows the possible values for the βk. This will allow us

to apply Ostrovsky’s theorem to guarantee the existence of a unique positive root for the

growth equation of R with respect to U and f .
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Lemma 2.3.24. Let βk, βk denote the cardinalities of Xk and Xk respectively and

m =max{bp+1
3
c, 1 + bp−1

3
c, 2 + bp−3

3
c}. Then 0 6 βk, βk 6 3 for all 0 6 k 6 m. Further, we

have that β0 = 1, β1 = 2.

Proof. Let k be any value in {0, 1, 2, · · · ,m}. It is given by lemma 2.7.2 that i = 0, 1, 2 and

we have the following possible pairs from Xk: (0, k), (1, k − 1), and (2, k − 2). Since the

values for i are limited to these three values, these are the only possible options and βk 6 3.

The only pair (i, j) with a sum of 0 is (0, 0) and β0 = 1. Also, for any prime p, the skew

monomial (t2)0(t3)0f = f is in irreducible form. Thus, this holds for all p. We have two

pairs (i, j) wth a sum of 1, (1, 0) and (0, 1). Hence, β1 = 2. These pairs are associated to

the skew monomials t2f and t3f which are both in irreducible form for all p.

Corollary 2.3.25. The growth equation of R with respect to U and F has a unique positive

root, λ1, and GKbaseU,F (R) = λ1

Proof. We can apply Theorem 1.4.3 and Theorem 1.4.4 to the growth equation of V since

β0 = 1 and β1 = 2 by Lemma 2.3.24. Hence, the gcd of the negative coefficients is 1. Thus,

the growth equation has a unique positive root, say λ1 that is larger than the absolute value

of all other roots. Then by Theorem 1.4.2, the term c1λ
n
1 appears in the general solution for

the homogeneous recurrence of V and will dominate all other terms. Also, since T̃ (n) is a

linear function, the particular solution for the growth recurrence of V is linear and will be

dominated by the term c1λ
n
1 . Thus, we can conclude that GKbaseU,F (R) = λ1.

We now provide an example computation for a semigroup ring.

Example 2.3.26. Let R = F5[t2, t3] with U = {t2, t3}. Let A = R[f ;F ] be the Frobenius

skew polynomial ring over R with V the finite dimensional K-subspace of A spanned by

U ∪ {f}.
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Then by Theorem 2.3.21, we have the following growth recurrence for R with respect

to U and F :

Cd =
m∑
k=0

βkCd−(k+1) +

q∑
k=m′

βkCd−(k+2) + 3

where m = 2, q = 4 and m′ = 2. Thus,

Cd = β0Cd−1 + β1Cd−2 + β2Cd−3 + β2Cd−4 + β3Cd−5 + β4Cd−6

We can determine the values of the coefficients by considering the sets they correspond

to.

• (0, 0) ∈ X0 and β0 = 1

• (1, 0), (0, 1) ∈ X1 and β1 = 2

• (0, 2), (2, 0) ∈ X2 and β2 = 2

• (1, 1) ∈ X2 and β2 = 1

• (0, 3), (1, 2), (2, 1) ∈ X3 and β3 = 3

• (1, 3) ∈ X4 and β4 = 1

Now the growth recurrence becomes

Cd = Cd−1 + 2Cd−2 + 2Cd−3 + 1Cd−4 + 3Cd−5 + Cd−6

and the growth equation is

x6 − x5 − 2x4 − 2x3 − x2 − x− 1 = 0

We find the unique positive root using SAGE and obtain GKbaseU,F (R) = 2.34301.

We end with an interesting observation regarding the GKbase for early p values and

how the rings K[x], K[x1, x2] and K[t2, t3] relate.
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p K[x] K[t2, t3] K[x1, x2]

2 1.61803 1.92756 2.14790

3 1.83929 2.09431 2.46536

5 1.96595 2.34301 2.59832

Hence, based on this small data set, it appears that the GKbase for the semi group ring

falls between the GKbase for the polynomial ring in one variable and the polynomial ring

in two variables. This matches a general intuition since the GKbase is a value derived from

the growth recurrence which is counting generators from each ring.
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CHAPTER 3

CONCLUSIONS

3.1 Discussion and Questions

We have now defined a new invariant for the Frobenius skew polynomial rings presented

in this paper. It is clear that the invariant is closely related to the size of the generating

sets necessary for a power of a finitely generated finite dimension K-subspace. However, it

is not clear exactly what the GK base is determining. The combination of the fact that the

Gelfand-Kirillov dimension and superdimension provided no useful information about the

rings of interest in this paper and the fact that this GK base arose naturally in the process

provides hope that this invariant is a meaningful aspect of the ring. The results given in this

paper are enticing enough to give motivation to continue research in this area.

Now that it is established that this invariant defined as the GK-base exists in basic

cases, there are key questions that could be topics for future research. First, we find the

GK base by determining recurrences for subspaces determined by generating sets of the K-

algebra. This is shown for the commutative polynomial ring and a basic semigroup ring. It

is natural to then ask, for what rings is it possible to define a recurrence in this way?

Question 3.1.1. Do all commutative Noetherian rings which are K-algebras over finite field

K have a set of generators U that admit a nonhomogeneous linear recurrence for dU,F (n)?

The existence of a nonhomogeneous linear recurrence does not guarantee that the GK

base will exist as the nonhomogeneous could cause issues in the solution. So we provide a

follow up question.

Question 3.1.2. Is there a set of generators V of R such that the GK-base for the generating

set exists?
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Without a recurrence, it is not clear the GK base will arise naturally. The hope is

that conditions can be determined for the base ring R that will guarantee the existence of a

recurrence. Then the existence of a more general GK base can be investigated for the class

of rings where a recurrence is possible.

The next pressing question on the results provided in this paper relates to the subspace

V used for each of the examples. Throughout the paper, the results are dependent on the

choice of V .

Question 3.1.3. If there exist two sets of generators V and W for R such that the GK base

exists, does GKbaseV,F (R) =GKbaseW,F (R)?

It is not clear that the dependence can be removed. So the natural questions here are

can the dependence on V be removed, or what does the GK base illuminate if the dependence

on V cannot be removed?
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