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EXTENSIONS OF VIZING FANS AND VIZING’S THEOREM IN GRAPH EDGE

COLORING

by

XULI QI
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ABSTRACT

Graph edge coloring is a well established subject in the field of graph theory. It is

one of the basic combinatorial optimization problem: Color the edges of a graph G with

as few colors as possible such that each edge receives a color and adjacent edges receive

different colors. The minimum number of colors needed for such a coloring of G is called the

chromatic index, denoted by χ′(G). Let ∆(G) and µ(G) be maximum degree and maximum

multiplicity of G, respectively. Vizing and Gupta, independently, proved in the 1960s that



χ′(G) ≤ ∆(G) + µ(G), by using the Vizing fan as main tool. Vizing fans and Vizing’s

Theorem play an important role in graph edge coloring. In this dissertation, we introduce

two new generalizations of Vizing fans and obtain their structural properties for simple

graphs, and partly comfirm one conjecture on the precoloring extension of Vizing’s Theorem

for multigraphs.

INDEX WORDS: Edge coloring, Vizing fans, Vizing’s Theorem, Critical graph, Precolor-
ing extension.
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CHAPTER 1

INTRODUCTION

1.1 Basic concepts and notation

In this dissertation, we generally follow the book [30] of Stiebitz et al. for notation

and terminologies. Graphs in this dissertation are finite, undirected, and without loops, but

may have multiple edges. In particular, simple graphs are always graphs with maximum

multiplicity at most one and multigraphs are always graphs with maximum multiplicity at

least two. Let G = (V (G), E(G)) be a graph, where V (G) and E(G) are the vertex set and

the edge set of the graph G, respectively. Let ∆(G) and µ(G) be the maximum degree and

the maximum multiplicity of graph G, respectively. For a vertex set N ⊆ V (G), let G−N

be the graph obtained from G by deleting all the vertices in N and edges incident with

them. For an edge set F ⊆ E(G), let G − F be the graph obtained from G by deleting all

the edges in F but keeping their endvertices. If F = {e}, we simply write G− e. Similarly,

we let G + e be the graph obtained from G by adding the edge e to E(G). For disjoint

X, Y ⊆ V (G), EG(X, Y ) is the set of edges of G with one endvertex in X and the other in

Y . If X = {x} and Y = {y}, we simply write EG(x, y). For two disjoint subgraphs H1 and

H2 of G, we simply write EG(H1, H2) for EG(V (H1), V (H2)). For X ⊆ V (G), the edge set

∂G(X) := EG(X, V (G)\X) is called the boundary of X in G. For a subgraph H of G, we

simply write ∂G(H) for ∂G(V (H)). For u ∈ V (G), let dG(u) or d(u) denote the degree of

vertex u in G.

Let [k] := {1, . . . , k} be a palette of k available colors (whose elements are called colors).

A k-edge-coloring of G is a map ϕ that assigns to each edge e of G a color from the palette

[k] such that no two adjacent edges receive the same color (the coloring is also called proper

coloring). Denote by Ck(G) the set of all k-edge-colorings of G. The chromatic index χ′(G)

is the least integer k such that Ck(G) 6= ∅.
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An edge e of a graph G is called a k-critical edge if k = χ′(G − e) < χ′(G) = k + 1. A

graph G is called k-critical if χ′(H) < χ′(G) = k + 1 for each proper subgraph H of G. It is

easy to see that a connected graph G is k-critical if and only if every edge of G is k-critical.

Let G be a graph, v ∈ V (G) and ϕ ∈ Ck(G) for some positive integer k. We define

ϕ(v) = {ϕ(f) : f ∈ E(G) and f is incident with v} and ϕ(v) = [k] \ ϕ(v). We call ϕ(v) the

set of colors present at v and ϕ(v) the set of colors missing at v. For a vertex set X ⊆ V (G),

define ϕ(X) =
⋃
v∈X ϕ(v). A vertex set X ⊆ V (G) is called ϕ-elementary if ϕ(u)∩ϕ(v) = ∅

for every two distinct vertices u, v ∈ X. The set X is called ϕ-closed if each color on edges

from ∂G(X) is present at each vertex of X. Moreover, the set X is called strongly ϕ-closed

if X is ϕ-closed and colors on edges from ∂G(X) are pairwise distinct. For a subgraph H

of G, let ϕH or (ϕ)H be the edge coloring of G restricted on H. We say a subgraph H of

G is ϕ-elementary, ϕ-closed and strongly ϕ-closed, if V (H) is ϕ-elementary, ϕ-closed and

strongly ϕ-closed, respectively. Clearly, if H is ϕH-elementary then H is ϕ-elementary, but

the converse is not true as the edges in ∂G(H) are removed when we consider ϕH .

Let ϕ be a k-edge-coloring of G using the palette [k]. For a color α, let Eα := Eα,ϕ(G)

denote the set of edges assigned the color α, which is commonly referred to as a color class.

Given two distinct colors α, β, an (α, β)-chain is a component of the subgraph induced by

edges assigned color α or β, which is either an even cycle or a path. We call the operation

that swaps the colors α and β on an (α, β)-chain C the Kempe change on C and denote it by

ϕ/C. Clearly, the resulting coloring after a Kempe change is still a proper k-edge-coloring.

Furthermore, we say that a chain C has endvertices u and v if C is a path connecting vertices

u and v. For a vertex v of G, we denote by Pv(α, β, ϕ) or Pv(α, β) the unique (α, β)-chain

containing the vertex v. For two vertices u, v ∈ V (G), the two chains Pu(α, β, ϕ) and

Pv(α, β, ϕ) are either identical or disjoint. More generally, for an (α, β)-chain, if it is a path

and it contains two vertices a and b, we let P[a,b](α, β, ϕ) or P[a,b](α, β) be its subchain with

endvertices a and b. The operation of swapping colors α and β on the subchain P[a,b](α, β, ϕ)

is still called a Kempe change, but the resulting coloring may no longer be a proper edge

coloring.
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The (proper) r-vertex-coloring of a graph G is a mapping from V (G) to [r] such that

distinct adjacent vertices receive different values. The minimum integer r, denoted by χ(G),

such that G has a (proper) r-vertex-coloring is called the chromatic number of G. For a

graph G, the line graph of G, denoted by L(G), is the graph whose vertex set corresponds

to the edge set of G and in which two vertices are adjacent if the corresponding edges of G

have a common endvertex.

1.2 Research background and results

Graph theory originated from the famous Seven Bridge of Königsberg problem in 1700s.

Graph edge coloring is a well established and very active subject in the field of graph theory.

It has a rich theory, many applications and beautiful conjectures, and is studied not only by

mathematicians, but also by computer scientists.

It is one of the basic combinatorial optimization problem: Color the edges of a graph G

with as few colors as possible such that each edge receives a color and adjacent edges receive

different colors. The chromatic index χ′(G) is just minimum number of colors needed for such

a coloring of G. As proved by Holyer [24] in 1981 the determination of the chromatic index

is an NP-hard optimization problem, even when restricted to a simple cubic graph. Note

that maximum degree of G, is a natural lower bound of the chromatic index. Researchers

are interested in upper bounds for the chromatic index that can be efficiently realized by a

coloring algorithm.

Vizing [33, 34] and Gupta [22] independently in 1960s proved that ∆(G) ≤ χ′(G) ≤

∆(G) + µ(G) (that is commonly called Vizing’s Theorem), by introducing the Vizing fan as

main tool. By Vizing’s Theorem, for a simple graph G, we have χ′(G) = ∆(G) or ∆(G) + 1.

A simple graph G is of class one if χ′(G) = ∆(G), otherwise it is of class two.

In the study of edge colorings of graphs, critical graphs are of particular interest. On

the one hand, each graph G contains a critical graphs H with χ′(H) = χ′(G) as a subgraph.

On the other hand, critical graphs have more structural properties than arbitrary graphs.

Hence, by focusing on critical graphs, we can keep the relevant information and often gain
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a better understanding. The study of critical graphs was initiated by Vizing [35] in 1960s,

and he made a number of conjectures regarding structural properties of critical class two

graphs [36].

All known techniques in studying edge chromatic problems especially for critical graphs

are built on the elementary property of Vizing fans and its generalizations. Recently, Chen,

Jing, and Zang [14] proved the outstanding Goldberg-Seymour Conjecture [19, 28], which

gives a complete characterization of elementary set for any critical multigraph G with chro-

matic index at least ∆(G) + 2. However, characterizing elementary sets for critical simple

graphs is an interesting yet challenging problem in graph edge coloring.

In the Chapter 2 of this dissertation, we will focus on critical class two graphs, and

introduce two new generalizations of Vizing fans, called e-fan (Definition 2.1.2) and C-

e-fan (Definition 2.2.2), and obtain their elementary properties and new fan equations

(Theorem 2.1.3 and Theorem 2.2.3). Our results give a common generalization of several

recently developed new results on multi-fan, double fan, C-fan, Kierstead path with four

vertices and broom, which not only may imply or simplify proofs of previous results, but

also could be new useful tools on attacking chromatic problems and conjectures for critical

graphs.

Vizing’s Theorem plays an important role in graph edge coloring. Berge and Fournier [5]

strengthened the classical Vizing’s Theorem by showing that if M∗ is a maximal matching

of G, then χ′(G −M∗) ≤ ∆(G) + µ(G) − 1. There is a problem about the precoloring of

extension of Vizing’s Theorem: Using the palette [∆(G) + µ(G)], when can we extend a

precolored edge set F ⊆ E(G) to a proper edge coloring of G? The distance between two

edges e and f in G is the length of a shortest path connecting an endvertex of e and an

endvertex of f . A distance-t matching is a set of edges having pairwise distance at least t.

Albertson and Moore [2] conjectured that if G is a simple graph, any precolored distance-3

matching in G can be extended to a proper edge coloring of G using the palette [∆(G) + 1].

Edwards et al. [17] proposed a much more general and stronger conjecture: For any graph

G, using the palette [∆(G) + µ(G)], any precolored distance-2 matching can be extended to
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a proper edge coloring of G. Girão and Kang [18] verified the conjecture of Edwards et al.

for distance-9 matchings.

In the Chapter 3 of this dissertation, we will consider multigraph G with µ(G) ≥ 2, and

improve the required distance from 9 to 3 (Theorem 3.1.1), using the result of Goldberg-

Seymour Conjecture and properties of dense subgraphs. Our result not only greatly improves

the distance condition, but also offers more hope to solve this conjecture completely.

Actually, there was a famous vertex-precoloring extension problem. In 1997, Thomassen

[32] posed the following problem: Suppose that G is a planar graph and W ⊆ V (G) such

that the distance between any two vertices in W is at least 100. Can a (proper) 5-vertex-

coloring of W be extended to a (proper) 5-vertex-coloring of G? In 1998, Albertson [1]

provided a best possible solution to Thomassen’s problem, and he obtained as well as one

general result for graphs: If G is any graph with χ(G) = r and W ⊆ V (G) such that the

distance between any two vertices in W is at least 4, then any (r + 1)-vertex-coloring of

W can be extended to a (r + 1)-vertex-coloring of G. The obvious relationship betwween

edge-precoloring and vertex counterpart is the line graph. Every edge coloring of G is a

vertex coloring of L(G) and χ′(G) = χ(L(G)). Notice that if χ′(G) ≤ ∆(G) + µ(G) − 1,

then we can apply the result or proof idear of Albertson’s theorem on the edge-precoloring

extension problem. Hence we mainly consider the edge-precoloring extension problem under

the condition χ′(G) = ∆(G) + µ(G).

In the Chapter 4 of this dissertation, we will list some future work, such as extensions

of Vizing fans with diameter at least four and further confirming the conjecture of Edwards

et al., as well as some problems about total colorings for multigraphs.
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CHAPTER 2

GENERALIZATIONS OF VIZING FANS

In this chapter, we mainly introduce two new generalizations of Vizing fans. In Section

2.1, we define one new fan structure called e-fan based on the definition of Vizing fan and

multi-fan, and obtain its elementary property and new fan equation, i.e., Theorem 2.1.3.

In Section 2.2, we define another new fan structure called C-e-fan based on the definition

of C-fan, and obtain its elementary property and new fan equation, i.e., Theorem 2.2.3. In

Section 2.3 and Section 2.4, we respectively present the proofs of Theorem 2.1.3 and Theorem

2.2.3.

The main approachs of the two proofs are similar and roughly as follows. We first prove

the conclusions on the vertex set of some special subsequence (called linear sequence), then

generalize to any two such special subsequences and finally to the entire fan. Actually, a

Vizing fan is a special such subsequence, so one can also use our method to prove properties

of multi-fans.

2.1 Introduction

Our results in this chapter are on simple graphs, but we will mention some definitions

and results on multigraphs. Recently, Chen et al. [14] proved the outstanding Goldberg-

Seymour Conjecture [19,28] that if G is a k-critical multigraph with k ≥ ∆(G) + 1, then for

every edge e and every coloring ϕ ∈ Ck(G−e), V (G) is ϕ-elementary. Consequently, V (G) is

elementary for every k-edge-coloring of G− e. This result gives a complete characterization

for critical multigraphs G with chromatic index at least ∆(G) + 2. However, characterizing

elementary sets for k-critical graphs with k = ∆(G), in particular, ∆-critical simple graphs

(i.e., critical class two graphs with maximum degree ∆), is an interesting yet challenging

problem in graph edge coloring.
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Let G be a ∆-critical simple graph, e ∈ E(G) and ϕ ∈ C∆(G − e). We in general do

not know much about the largest ϕ-elementary sets except the following three outstanding

conjectures. Hilton’s overfull conjecture [15,16]: V (G) is ϕ-elementary if ∆(G) > |V (G)|/3;

Seymour’s exact conjecture [29]: V (G) is ϕ-elementary if G is a planar graph; and Hilton

and Zhao’s core conjecture [23]: V (G) is ϕ-elementary if the core G∆ has maximum degree at

most 2, where G∆, named the core of G, is the subgraph of G induced by all maximum degree

vertices. Cao et al. [11] recently confirmed Hilton and Zhao’s core conjecture. The other two

of these three conjectures are remaining wild open. Vizing [33,34] showed that the vertex set

of every Vizing fan is elementary. Almost all known techniques in studying edge chromatic

problems are built on the elementary properties of Vizing fans and its generalizations. In [30],

Stiebitz et al. gave a survey, up to that time, of the work in this direction. We will give a

common generalization of these results.

Definition 2.1.1 (Tashkinov Tree). Let G be a k-critical graph, e ∈ EG(x, y) and ϕ ∈

Ck(G − e) for some integer k ≥ 0. A sequence T = (x, e, y, e1, z1, . . . , ep, zp) of alternating

distinct vertices and distinct edges is called a Tashkinov tree if for each i ∈ [p], ei is incident

with zi and satisfies the following two conditions.

T1. The other endvertex of ei is in {x, y, z1, . . . , zi−1} for i ∈ [p].

T2. ϕ(e1) ∈ ϕ(x)∪ϕ(y) and ϕ(ei) ∈ ϕ(x)∪ϕ(y)∪ϕ(zh) for some h ∈ [i− 1] if 2 ≤ i ≤ p.

Tashkinov trees are given by Tashkinov in [31], where he proved that if G is a k-critical

multigraph with k ≥ ∆(G) + 1, e ∈ E(G) and ϕ ∈ Ck(G − e), then the vertex set of every

Tashkinov tree is ϕ-elementary. Clearly, each Tashkinov tree is indeed a tree. We in the

following notice that Vizing fans and some other well-studied subgraphs are special classes

of Tashkinov trees.

(1) If for every i we restrict in T1, each ei is incident with x and in T2 h = i− 1, then

T is a Vizing fan.

(2) If we only impose the above restriction to T1, then T is a multi-fan introduced by

Stiebitz et al. [30].
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(3) If we restrict in T1, e1 is incident with y and ei is incident with zi−1 for each i ≥ 2,

then T is a Kierstead path [25].

(4) If we restrict in T1, p ≥ 2 and each ei with i ≥ 2 is incident with z1, then T is a

broom defined in [12,13].

We notice that not every vertex set of Tashkinov tree is elementary. Let P ∗ be obtained

from the Petersen graph by deleting a vertex. It is not difficult to verify that P ∗ is a 3-

critical graph, but there exist an edge e and a coloring ϕ ∈ C3(P ∗ − e), such that the vertex

set of a Kierstead path with 4 vertices is not elementary. By imposing degree condition

min{d(y), d(z1)} ≤ ∆(G) − 1, Stiebitz and Kostachka [26] and Luo and Zhao [27] showed

that the vertex set of each Kierstead path (x, e, y, e1, z1, e2, z2) is elementary. The result has

been extended to brooms [12, 13]. We generalize these results to a much broader class of

Tashkinov trees in this chapter.

Definition 2.1.2 (e-fan). Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈

C∆(G − e). A Tashkinov tree F e = (x, e, y, e1, z1, . . . , ep, zp) is a simple e-fan if in T1 we

additionally require each ei is only incident with x or y, i.e., ei = xzi or ei = yzi for each

1 ≤ i ≤ p. Furthermore, in the above definition of simple e-fan if we relax the condition

that each zi is distinct by allowing it with possibility to be repeated one more time, say

zi = zj = z with i 6= j, i.e., edges xz and yz can appear in F e, then F e is called an e-fan.

Figure 2.1. An e-fan F e = (x, e, y, e1, z1, . . . , e6, z6).
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(See Figure 2.1 for a depiction that shows an e-fan F e = (x, e, y, e1, z1, . . . , e6, z6), where

a dashed line at a vertex represents a color missing at the vertex.) Clearly, a multi-fan is

an e-fan in simple graphs. Moreover, if Fx and Fy are two multi-fans centered at x and y,

respectively, then Fx ∪ Fy, named a double fan, is also an e-fan. The below Theorem 2.1.3

shows that the vertex set of every e-fan provided min{d(x), d(y)} ≤ ∆(G)− 1 is elementary,

which is one of the two main results of this chapter. We will give its proof in Section 2.4, in

which it is worth mentioning that we first prove the vertex set of some special subsequence

(will be called linear e-sequence) is elementary, then generalize to any two special subse-

quences and finally to the entire e-fan. Actually, a Vizing fan is such a special subsequence

centered at one vertex in a multi-fan, so one can also use our above method to prove the

vertex set of every multi-fan is elementary.

Theorem 2.1.3. Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈ C∆(G− e). If

min{d(x), d(y)} ≤ ∆(G)− 1, then V (F e) is ϕ-elementary for every e-fan F e. Furthermore,

if F e is maximal, i.e., there is no e-fan containing F e as a proper subsequence, then

d(x) + d(y)− 2∆ +
∑

z∈V (F e)\{x,y}

(2d(z) + eF e(x, z) + eF e(y, z)− 2∆) = 2,

where eF e(x, z) and eF e(y, z) taking value 0 or 1 are the number of edges between x and z

and between y and z in F e, respectively.

We notice that Theorem 2.1.3 immediately gives that all vertex sets of Vizing fans, multi-

fans, and double fans provided min{d(x), d(y)} ≤ ∆(G)− 1 are respectively elementary. We

also notice a few applications below.

Corollary 2.1.4. [26, 27] Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈

C∆(G−e). For any Kierstead path K = (x, e, y, e1, z1, e2, z2), if min{d(y), d(z1)} ≤ ∆(G)−1,

then V (K) is ϕ-elementary.

Proof. Let ϕ′ be obtained from ϕ ∈ C∆(G − e) by uncoloring e1 and coloring e with color

ϕ(e1). Since ϕ(e1) ∈ ϕ(x), ϕ′ is an edge ∆(G)-coloring of G − e1. Moreover, since ϕ′(e) ∈
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ϕ(z1) and ϕ′(e2) ∈ ϕ′(x)∪ϕ′(y), F e = (y, e1, z1, e, x, e2, z2) is an e-fan with respect to e1 and

ϕ′. By Theorem 2.1.3, V (F e) = V (K) is ϕ′-elementary, and so ϕ-elementary.

Using the same trick in the above proof, we get the following more general result.

Corollary 2.1.5. [12] Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈ C∆(G−e).

For any broom B = (x, e, y, e1, z1, . . . , ep, zp), if min{d(y), d(z1)} ≤ ∆(G)− 1, then V (B) is

ϕ-elementary.

2.2 Extensions of missing color sets

In this section we will consider some extensions of the missing color set at a vertex and

some more generally elementary properties and structures. Starting with Vizing’s classic

results [33, 34], missing colors have played a crucial role in revealing properties of critical

graphs. Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). Woodall [37, 38]

treated colors ϕ(yz) of edge yz as a missing color in ϕ(y) if d(z) is “small”. This technique

was used in [6, 7, 8, 9] in their work on Vizing’s average degree conjecture and hamiltonian

property of ∆-critical simple graphs. For a vertex v ∈ V (G), let

ϕsx(v) = {ϕ(vw) : w 6= x and d(w) ≤ 1

2
(∆(G)− d(x))}, and

Cϕ,x(v) = ϕ(v) ∪ ϕsx(v).

Similarly, we define ϕsy(v) and Cϕ,y(v). Since d(x) + d(w) ≥ ∆(G) + 2 for every neighbor

w of x [30], we have ϕsx(x) = ∅, i.e., Cϕ,x(x) = ϕ(x). Similarly, ϕsy(y) = ∅, i.e., Cϕ,y(y) =

ϕ(y). Incorporating this idea, Kostochka and Stiebitz [26] extended multi-fan as follows. A

sequence F c = (x, e, y, e1, z1, . . . , ep, zp) of alternating distinct vertices and distinct edges is

called a C-fan if for each ei with i ∈ [p], ei ∈ EG(x, zi) and there exists a h with 0 ≤ h ≤ i−1

such that ϕ(ei) ∈ Cϕ,x(zh), where z0 = y. The vertex set V (F c) is called ϕc-elementary if

Cϕ,x(zi) ∩ Cϕ,x(zj) = ∅ for every two distinct vertices zi, zj in V (F c), where 0 ≤ i < j ≤ p

and z0 ∈ {x, y}.
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Theorem 2.2.1. [26, 30] Let G be a ∆-critical graph, e ∈ E(G) and ϕ ∈ C∆(G− e). Then

V (F c) is ϕc-elementary for every C-fan F c.

Figure 2.2. A C-e-fan F ce = (x, e, y, e1, z1, . . . , e6, z6).

Definition 2.2.2 (C-e-fan). Let G be a ∆-critical simple graph, e = xy ∈ E(G) and

ϕ ∈ C∆(G − e). A C-e-fan at x and y is a sequence F ce = (x, e, y, e1, z1, . . . , ep, zp) of

alternating vertices and edges satisfying the following two conditions.

C1. The edges e, e1, . . . , ep are distinct with ei = xzi or ei = yzi for i ∈ [p].

C2. ϕ(e1) ∈ Cϕ,y(x)∪Cϕ,x(y) and ϕ(ei) ∈ Cϕ,y(x)∪Cϕ,x(y)∪Cϕ,w(eh)(zh) for some h ∈ [i−1]

if 2 ≤ i ≤ p, where w(eh) is the endvertex of eh in {x, y}.

(See Figure 2.2 for a depiction that shows a C-e-fan F ce = (x, e, y, e1, z1, . . . , e6, z6)

with d(u) ≤ 1
2
(∆(G) − d(x)) and d(v) ≤ 1

2
(∆(G) − d(y)) in a graph G, where a dashed

line at a vertex represents a color missing at the vertex.) Since each edge ei with i ∈ [p] is

incident with x or y, let w(ei) denote this vertex. Note that some vertices of z1, . . . , zp may

appear twice, say zi = zj = z with i 6= j, i.e., edges xz and yz appear in F ce. In C-e-fan

F ce, we define Cϕ(x) = Cϕ,y(x), Cϕ(y) = Cϕ,x(y), Cϕ(zi) = Cϕ,w(ei)(zi) for single zi, and

Cϕ(z) = Cϕ,w(ei)(zi) ∪ Cϕ,w(ej)(zj) for repeated zi and zj with zi = zj = z. The set V (F ce)

is called ϕce-elementary if Cϕ(u) ∩ Cϕ(v) = ∅ for every two distinct vertices u, v in V (F ce).

The below Theorem 2.2.3 is the other of the two main results of this chapter, whose proof
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will be given in Section 2.5 and has the similar main idea of Theorem 2.1.3 but much more

complicated.

Theorem 2.2.3. Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈ C∆(G−e). For

a C-e-fan F ce = (x, e, y, e1, z1, . . . , ep, zp), if max{d(x), d(y)} ≤ ∆(G) − 1 and the following

condition holds, then V (F ce) is ϕce-elementary.

C3. For any two distinct colors α, β with α ∈ ϕsw(ei)
(zi) and β ∈ ϕsw(ej)(zj) for 1 ≤ i < j ≤ p,

denote by u, v the two vertices, and e′ = ziu and e′′ = zjv the two edges such that ϕ(e′) = α

and ϕ(e′′) = β, then we have u 6= v.

Furthermore, if F ce is maximal, i.e., there is no C-e-fan containing F ce as a proper

subsequence, then the following equation holds.

|Cϕ(x)|+ |Cϕ(y)| =
∑

z∈V (F ce)\{x,y}

(eF ce(x, z) + eF ce(y, z)− 2|Cϕ(z)|),

where eF ce(x, z) and eF ce(y, z) taking value 0 or 1 are the number of edges between x and z

and between y and z in F ce, respectively.

2.3 Preliminary Lemmas

Lemma 2.3.1. [30] Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈ C∆(G− e).

And let F = (x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x, where y0 = y. Then the following

statements hold.

(a) V (F ) is ϕ-elementary.

(b) If α ∈ ϕ(x) and β ∈ ϕ(yi) for 0 ≤ i ≤ p, then Px(α, β, ϕ) = Pyi(α, β, ϕ).

The following lemma is a simple corollary of Lemma 2.3.1.

Lemma 2.3.2. [30] Let G be a ∆-critical simple graph. Then for any edge e = xy ∈ E(G)

and ϕ ∈ C∆(G− e), we have d(x) + d(y) ≥ ∆ + 2.
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Lemma 2.3.3. [26, 30] Let G be a ∆-critical simple graph, e = xy ∈ E(G) and ϕ ∈

C∆(G− e). And let F c = (x, e, y0, e1, y1, . . . , ep, yp) be a C-fan at x, where y0 = y. Then the

following statements hold.

(a) V (F c) is ϕc-elementary, i.e., Cϕ,x(x)∩Cϕ,x(yi) = ∅ for i = 0, 1, . . . , p, and Cϕ,x(yi)∩

Cϕ,x(yj) = ∅ for 0 ≤ i < j ≤ p.

(b) If α ∈ Cϕ,x(x) and β ∈ Cϕ,x(yi) for 0 ≤ i ≤ p, then Px(α, β, ϕ) = Pyi(α, β, ϕ).

In a ∆-critical simple graph G with e = xy ∈ E(G), a vertex u is called a small

vertex with respect to x (with respect to y, respectively) if d(u) ≤ ∆−d(x)
2

(d(u) ≤ ∆−d(y)
2

,

respectively). We list the following simple facts [26,30].

Lemma 2.3.4. In a ∆-critical simple graph G with e = xy ∈ E(G), for any small vertices

u, v with respect to x (with respect to y, respectively), we have |ϕ(x) ∩ ϕ(u) ∩ ϕ(v)| ≥ 1

(|ϕ(y) ∩ ϕ(u) ∩ ϕ(v)| ≥ 1, respectively). In particular, provided d(x) ≤ d(y), no matter u

and v are small vertices with respect to x or y, then we have |ϕ(x) ∩ ϕ(u) ∩ ϕ(v)| ≥ 1.

Furthermore, if d(x) ≤ ∆(G)− 1 and u is a small vertex with respect to x (d(y) ≤ ∆(G)− 1

and u is a small vertex with respect to y, respectively), then we have |ϕ(x) ∩ ϕ(u)| ≥ 2

(|ϕ(y) ∩ ϕ(u)| ≥ 2, respectively).

2.4 Proof of Theorem 2.1.3

In a simple e-fan F e = (x, e, y, e1, z1, . . . , ep, zp), a linear e-sequence is a subsequence

(x, e, y, el1 , zl1 , . . . , els , zls) with 1 ≤ l1 < l2 < · · · < ls ≤ p such that ϕ(el1) ∈ ϕ(x)∪ϕ(y) and

ϕ(eli) ∈ ϕ(zli−1
) for 2 ≤ i ≤ s. Specifically, a linear e-sequence is a x-generated e-sequence if

ϕ(el1) ∈ ϕ(x), or a y-generated e-sequence if ϕ(el1) ∈ ϕ(y).

Proof. In the e-fan F e = (x, e, y, e1, z1, . . . , ep, zp), if zi = zj with 1 ≤ i < j ≤ p, we

delete the edge ej and the vertex zj from F e. By the definition of e-fan, one can easily check

that the remaining sequence is still an e-fan. Repeat the above operation. Finally, we get a

simple e-fan F ′e with respect to the e-fan F e. Obviously, V (F e) = V (F ′e). Hence, we may

assume that the original e-fan F e is a simple e-fan. We show the following two claims.
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Claim 1: The vertex set of any linear e-sequence is elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ϕ such

that there exists a y-generated e-sequence Sy = (x, el0 , y, el1 , zl1 , . . . , els , zls) with el0 = e,

whose vertex set is not elementary with s as small as possible. Note that el1 = xzl1 . Let

ϕ(el1) = βl1 ∈ ϕ(y) and ϕ(eli) = βli ∈ ϕ(zli−1
) for 2 ≤ i ≤ s.

If s ≤ 1, then Sy is a Vizing fan at x, which has elementary vertex set by Lemma 2.3.1.

We assume s ≥ 2. By the minimality of s, V (Sy)\{zls} is elementary. Together with the

definition of y-generated e-sequence, we have that for any color γ1 ∈ ϕ(x), no edge in E(Sy)

is colored with γ1; for any color γ2, if γ2 ∈ ϕ(y) or γ2 ∈ ϕ(zli) for 1 ≤ i ≤ s−1, then only the

edge el1 or eli+1
in E(Sy) may be colored with γ2. We will use above facts about Sy without

explicit mention. The following observation will also be used very often.

I. For any two colors γ1 ∈ ϕ(x) and γ2 ∈ ϕ(zli) with 1 ≤ i ≤ s− 1, we have γ1 6= γ2 and

Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ).

Proof. Recall that V (Sy)\{zls} is elementary. We easily have γ1 6= γ2. Suppose

Px(γ1, γ2, ϕ) 6= Pzli (γ1, γ2, ϕ). For the path Pzli (γ1, γ2, ϕ), one endvertex is zli and the other

endvertex is some vertex z′ 6= x. Note that z′ /∈ {y, zl1 , . . . , zli−1
} and none of el1 , . . . , eli

is colored with γ1 or γ2. Hence, the coloring ϕ′ = ϕ/Pzli (γ1, γ2, ϕ) satisfies ϕ′(elj) = ϕ(elj)

for each j ∈ [i], ϕ′(x) = ϕ(x), ϕ′(y) = ϕ(y), ϕ′(zlj) = ϕ(zlj) for each j ∈ [i − 1] and

ϕ′(zli) = (ϕ(zli)\{γ2}) ∪ {γ1}. Consequently, the coloring ϕ′ results in a new y-generated

e-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ′(zli)∩ϕ′(x), contradicting the min-

imality of s. This completes the proof of the observation I.

Subclaim 1.1: We may assume that ϕ(zls) ∩ ϕ(x) 6= ∅.
Proof. Since V (Sy) is not elementary, and by the minimality of s, there exists a color

η ∈ ϕ(zls) ∩ ϕ({x, y, zl1 , . . . , zls−1}). If η ∈ ϕ(zls) ∩ ϕ(x), then we are done. Otherwise,

we have ϕ(zls) ∩ ϕ(x) = ∅ and η ∈ ϕ(zls) ∩ ϕ({y, zl1 , . . . , zls−1}), i.e., η ∈ ϕ(zls) ∩ ϕ(y) or

η ∈ ϕ(zls) ∩ ϕ({zl1 , . . . , zls−1}). By the definition of Sy, we have η 6= βls ∈ ϕ(zls−1). Let

α ∈ ϕ(x). Since ϕ(zls) ∩ ϕ(x) = ∅, we have α 6= η and α ∈ ϕ(zls). Note that if η ∈ ϕ(y),
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then Px(α, η, ϕ) = Py(α, η, ϕ) by Lemma 2.3.1 since Vizing fan (x, el0 , y). Also if η ∈ ϕ(zli),

then Px(α, η, ϕ) = Pzli (α, η, ϕ) for 1 ≤ i ≤ s− 1 by the observation I. Therefore, Px(α, η, ϕ)

and Pzls (α, η, ϕ) are disjoint. For the path P = Pzls (α, η, ϕ), one endvertex is zls and the

other endvertex z′ /∈ V (Sy), and we have Eϕ,α(P ) ∩ E(Sy) = ∅. Note that if η = βl1 ∈ ϕ(y),

then el1 is on Px(α, η, ϕ). To further discuss Eϕ,η(P )∩E(Sy), we consider the following two

cases.

If η = βli+1
and eli+1

is on P for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 2, then we have

Eϕ,η(P ) ∩ E(Sy) = {eli+1
}. Hence, the coloring ϕ1 = ϕ/P satisfies ϕ1(elj) = ϕ(elj) for

j 6= i, ϕ1(eli+1
) = α, ϕ1(x) = ϕ(x), ϕ1(y) = ϕ(y), ϕ1(zlj) = ϕ(zlj) for each j ∈ [s − 1]

and ϕ1(zls) = (ϕ(zls)\{η}) ∪ {α}. Consequently, the coloring ϕ1 results in a smaller x-

generated e-sequence (x, el0 , y, eli+1
, zli+1

, . . . , els , zls) with α ∈ ϕ1(zls) ∩ ϕ1(x), contradicting

the minimality of s.

If η ∈ ϕ(y), or η 6= βli+1
for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 1, or η = βli+1

and eli+1
is

not on P for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 2, then we have Eϕ,η(P ) ∩ E(Sy) = ∅. Hence, the

coloring ϕ1 = ϕ/P satisfies ϕ1(elj) = ϕ(elj) for each j ∈ [s], ϕ1(x) = ϕ(x), ϕ1(y) = ϕ(y),

ϕ1(zlj) = ϕ(zlj) for each j ∈ [s − 1] and ϕ1(zls) = (ϕ(zls)\{η}) ∪ {α}. Consequently, Sy is

still a y-generated e-sequence with α ∈ ϕ1(zls)∩ϕ1(x), as desired. This completes the proof

of Subclaim 1.1.

By the subclaim above, we assume that there exists a color η ∈ ϕ(zls)∩ϕ(x). To reach

contradictions, we consider the following two cases.

Case 1: els = xzls .

Note that ϕ(els) = βls ∈ ϕ(zls−1) and none of el1 , . . . , els−1 is colored with βls or η.

Recolor els with η to obtain a new coloring ϕ1. Thus S ′y = (x, el0 , y, el1 , zl1 , . . . , els−1 , zls−1) is

a new y-generated e-sequence under ϕ1 such that βls ∈ ϕ1(zls−1) ∩ ϕ1(x), contradicting the

minimality of s.

Case 2: els = yzls .

By the observation I, we have Px(η, βls , ϕ) = Pzls−1
(η, βls , ϕ). For the path P =

Pzls (η, βls , ϕ), one endvertex is zls and the other endvertex z′ /∈ V (Sy), and we have
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E(P ) ∩ E(Sy) = {els}. Let ϕ1 = ϕ/P . Hence (x, el0 , y, el1 , zl1 , . . . , els−1 , zls−1) is still a

y-generated e-sequence under ϕ1 whose vertex set is still elementary, and (y, el0 , x, els , zls)

is a Vizing fan at y under ϕ1 since ϕ1(els) = η ∈ ϕ1(x). Since min{d(x), d(y)} ≤ ∆ − 1,

there exists a missing color δ ∈ ϕ1(x) ∪ ϕ1(y) such that δ 6= η, βl1 . Suppose δ ∈ ϕ1(x).

We have Px(δ, βls , ϕ1) = Pzls (δ, βls , ϕ1) by Lemma 2.3.1, since otherwise, the coloring

ϕ′ = ϕ1/Pzls (δ, βls , ϕ1) results in δ ∈ ϕ′(zls) ∩ ϕ′(x), which is a contradiction. But we

have Px(δ, βls , ϕ1) = Pzls−1
(δ, βls , ϕ1) by the observation I, giving a contradiction. Simi-

larly, if δ ∈ ϕ1(y), then Py(δ, βls , ϕ1) = Pzls (δ, βls , ϕ1) by Lemma 2.3.1. But Py(δ, βls , ϕ1) =

Pzls−1
(δ, βls , ϕ1), also giving a contradiction. This completes the proof of Claim 1.

Claim 2: The union of vertex sets of any two linear e-sequences is elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ϕ

such that there exist two linear e-sequences S1 = (x, e, y, el1 , zl1 , . . . , els , zls) and S2 =

(x, e, y, el′1 , zl′1 , . . . , el′s , zl′t) whose vertex sets have common missing color with s + t as small

as possible, where s, t ≥ 1. Note that V (S1) and V (S2) are elementary by Claim 1. By

the minimality of s + t, we have zls 6= zl′t and there exists a color η ∈ ϕ(zls) ∩ ϕ(zl′t). Since

min{d(x), d(y)} ≤ ∆− 1, there exists a missing color δ ∈ ϕ(x)∪ϕ(y) such that δ is different

from the colors ϕ(el1) and ϕ(el′1) which are also in ϕ(x) ∪ ϕ(y). (ϕ(el1) and ϕ(el′1) could

be the same color.) Assume δ ∈ ϕ(z0), where z0 ∈ {x, y}. Then Pz0(δ, η, ϕ) = Pzls (δ, η, ϕ),

since otherwise, for the coloring ϕ′ = ϕ/Pzls (δ, η, ϕ), we have S1 is still a linear e-sequence

under ϕ′, but δ ∈ ϕ′(z0) ∩ ϕ′(zls), giving a contradiction to Claim 1. Similarly, we have

Pz0(δ, η, ϕ) = Pzl′t
(δ, η, ϕ). Hence z0, zls and zl′t are endvertices of one (δ, η)-chain, which is a

contradiction. This completes the proof of Claim 2.

Now we are ready to show that V (F e) is elementary. Suppose not. Note that {x, y}

is elementary and each linear e-sequence in F e contains vertices x and y. There exist one

color η and two distinct vertices zi and zj in V (F e) such that η ∈ ϕ(zi) ∩ ϕ(zj), where

0 ≤ i < j ≤ p and z0 ∈ {x, y}. By the definition of simple e-fan, there exist two linear

e-sequences (may not be disjoint) with zi and zj respectively as the last vertex, which is a

contradiction to Claim 1 for i = 0 or a contradiction to Claim 2 for 1 ≤ i ≤ p − 1. This
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proves that V (F e) is elementary.

Now we show the “furthermore” part. We assume that F e is maximal. Let the edge

set Γ = {e1, . . . , ep} and the color set Γ′ =
⋃
z∈V (F e) ϕ(z). Note that ϕ(x), ϕ(y) and ϕ(zi)

for each i ∈ [p] are disjoint since V (F e) is elementary. Let Γ∗ = {ϕ(e1), . . . , ϕ(ep)} be a

multiset. We have

p = |Γ| =
∑

z∈V (F e)\{x,y}

(eF e(x, z) + eF e(y, z)) = |Γ∗|. (1)

Now we calculate |Γ∗| in another way. By the definition of e-fan, ϕ(ei) ∈ Γ′ for each i ∈ [p].

By the maximality of F e, for any color α ∈ Γ′, α appears exactly once in Γ∗ if α ∈ ϕ(x)∪ϕ(y).

Otherwise, α appears exactly twice in Γ∗. Thus we have

|Γ∗| = |ϕ(x)|+ |ϕ(y)|+
∑

z∈V (F e)\{x,y}

2|ϕ(z)|. (2)

Combining equations (1) and (2), we prove that

d(x) + d(y)− 2∆ +
∑

z∈V (F e)\{x,y}

(2d(z) + eF e(x, z) + eF e(y, z)− 2∆) = 2

since ϕ(x) = ∆ − d(x) + 1, ϕ(y) = ∆ − d(y) + 1 and ϕ(z) = ∆ − d(z). The proof is now

finished.

2.5 Proof of Theorem 2.2.3

Note that when d(x) 6= d(y) the values of |Cϕ,w(ei)(zi)| and |Cϕ,w(ej)(zj)| may not be

equal for repeated vertices zi = zj with i 6= j in C-e-fan F ce. We define simple C-e-fan

if we further require that vertices x, y, z1, . . . , zp are distinct except the repeated vertices

zi = zj with 1 ≤ i < j ≤ p such that Cϕ,w(ei)(zi) ⊂ Cϕ,w(ej)(zj) in the definition of C-e-

fan. In a simple C-e-fan F ce = (x, e, y, e1, z1, . . . , ep, zp), a linear ce-sequence is a subsequence

(x, e, y, el1 , zl1 , . . . , els , zls) with 1 ≤ l1 < l2 < · · · < ls ≤ p such that ϕ(el1) ∈ Cϕ,y(x)∪Cϕ,x(y)
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and ϕ(eli) ∈ Cϕ,w(eli−1
)(zli−1

) for 2 ≤ i ≤ s. Specifically, a linear ce-sequence is a x-generated

ce-sequence if ϕ(el1) ∈ Cϕ,y(x), or a y-generated ce-sequence if ϕ(el1) ∈ Cϕ,x(y).

Proof. In the C-e-fan F ce = (x, e, y, e1, z1, . . . , ep, zp), if zi = zj with 1 ≤ i < j ≤ p

and Cϕ,w(ei)(zi) ⊇ Cϕ,w(ej)(zj), we delete the edge ej and the vertex zj from F ce. By the

definition of C-e-fan, one can easily check that the remaining sequence is still a C-e-fan.

Repeat the above operation. Finally, we get a simple C-e-fan F ′ce with respect to the C-e-

fan F ce. Obviously, V (F ce) = V (F ′ce) and the Cϕ(u) in F ce is the same as the Cϕ(u) in F ′ce

for each vertex u. Hence, we may assume that the original C-e-fan F ce is a simple C-e-fan.

We show the following two claims.

Claim 1: The vertex set of any linear ce-sequence is ϕce-elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ϕ such

that there exists a y-generated ce-sequence Sy = (x, el0 , y, el1 , zl1 , . . . , els , zls) with el0 = e,

whose vertex set is not ϕce-elementary with s as small as possible. Note that el1 = xzl1 . Let

ϕ(el1) = βl1 ∈ Cϕ,x(y) and ϕ(eli) = βli ∈ Cϕ,w(eli−1
)(zli−1

) for 2 ≤ i ≤ s. We consider the

following two cases of s.

First we consider the case s ≤ 1. It is easy to see that Sy is a C-fan at x. By the

statement (a) of Lemma 2.3.3, we have Cϕ,x(x) ∩ Cϕ,x(y) = ∅, Cϕ,x(x) ∩ Cϕ,x(zl1) = ∅ and

Cϕ,x(y) ∩ Cϕ,x(zl1) = ∅. Recall that Cϕ,x(x) = ϕ(x). Since we suppose that Claim 1 is false,

there are four subcases left to consider.

If there exists η ∈ ϕsy(x) ∩ ϕ(y), then it contradicts Lemma 2.3.3 since C-fan (y, el0 , x)

at y. If there exists η ∈ ϕsy(x) ∩ ϕsx(y), then there is an edge e′ = xu such that u 6= y,

ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = yv such that v 6= x, ϕ(e′′) = η and

d(v) ≤ ∆−d(x)
2

. Obviously, u 6= v. Recall that max{d(x), d(y)} ≤ ∆ − 1. It follows from

Lemma 2.3.4 that there are two colors δ1 ∈ ϕ(x) ∩ ϕ(v) and δ2 ∈ ϕ(y) ∩ ϕ(u) with δ2 6= βl1 .

We have δ1 6= δ2 and Px(δ1, δ2, ϕ) = Py(δ1, δ2, ϕ) by Lemma 2.3.1 since Vizing fan (x, el0 , y).

Apply Kempe changes on Pu(δ1, δ2, ϕ) and Pv(δ1, δ2, ϕ) to get a new coloring ϕ1 such that

δ1 ∈ ϕ1(x)∩ ϕ1(u) and δ2 ∈ ϕ1(y)∩ ϕ1(v). Recolor the edge e′ with δ1 and the edge e′′ with

δ2 to get a new coloring ϕ2 such that η ∈ ϕ2(x)∩ ϕ2(y). Now by coloring the edge e with η,
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we color the entire graph G with ∆ colors, which contradicts the fact that χ′(G) = ∆ + 1.

If there exists η ∈ ϕsy(x)∩ϕ(zl1), then there is an edge e′ = xu such that u 6= y, ϕ(e′) = η

and d(u) ≤ ∆−d(y)
2

. Since max{d(x), d(y)} ≤ ∆− 1, it follows from Lemma 2.3.4 that there

is a color δ ∈ ϕ(y)∩ϕ(u) with δ 6= βl1 . We have x ∈ Py(η, δ, ϕ) = Pu(η, δ, ϕ) by Lemma 2.3.3

since C-fan (y, el0 , x) at y. Recall that Sy = (x, el0 , y, el1 , zl1) is a C-fan at x. The coloring

ϕ1 = ϕ/Pzl1 (η, δ, ϕ) results in δ ∈ ϕ1(zl1) ∩ ϕ1(y), which contradicts Lemma 2.3.3 because

Sy is still a C-fan at x under ϕ1.

If there exists η ∈ ϕsy(x) ∩ ϕsx(zl1), then there is an edge e′ = xu such that u 6= y,

ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = zl1v such that v 6= x, ϕ(e′′) = η

and d(v) ≤ ∆−d(x)
2

. Obviously, u 6= v, and we have v 6= y by Lemma 2.3.2. By Lemma

2.3.4, there are two colors δ1 ∈ ϕ(x) ∩ ϕ(v) and δ2 ∈ ϕ(y) ∩ ϕ(u) with δ2 6= βl1 . We have

Px(δ1, δ2, ϕ) = Py(δ1, δ2, ϕ) by Lemma 2.3.1 since Vizing fan (x, el0 , y). Apply Kempe changes

on Pu(δ1, δ2, ϕ) and Pv(δ1, δ2, ϕ) to get a new coloring ϕ1 such that δ1 ∈ ϕ1(x) ∩ ϕ1(u) and

δ2 ∈ ϕ1(y) ∩ ϕ1(v). Note that Sy = (x, el0 , y, el1 , zl1) is still a C-fan at x under ϕ1. Recolor

the edge e′ with δ1 to get a new coloring ϕ2. Thus η ∈ ϕ2(x) ∩ Cϕ2,x(zl1), which contradicts

Lemma 2.3.3 because Sy is still a C-fan at x under ϕ2. This completes the proof of Claim 1

for s ≤ 1.

Now we consider the case s ≥ 2. By the minimality of s, V (Sy\{els , zls}) is ϕce-

elementary. Together with the definition of y-generated ce-sequence, we have that for any

color γ1 ∈ Cϕ,y(x), no edge in E(Sy) is colored with γ1; for any color γ2, if γ2 ∈ Cϕ,x(y) or

γ2 ∈ Cϕ,w(eli )
(zli) with 1 ≤ i ≤ s− 1, where zli is not a repeated vertex, then only the edge

el1 or eli+1
in E(Sy) may be colored with γ2; for any color γ3 ∈ Cϕ(z), where z is a repeated

vertex with z = zli = zlj and 1 ≤ i < j ≤ s− 1, only the edge eli+1
or elj+1

in E(Sy) may be

colored with γ3. We will use above facts about Sy without explicit mention. The following

observation will also be used very often.

II. For any color γ1 with γ1 ∈ ϕ(x) ∪ ϕ(y) and γ1 6= βl1 , if color γ2 ∈ ϕ(zli) with

1 ≤ i ≤ s−1, then we have γ1 6= γ2 and Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) or Py(γ1, γ2, ϕ) =

Pzli (γ1, γ2, ϕ); if γ2 ∈ ϕsw(eli )
(zli) with 1 ≤ i ≤ s − 1, denote by u the vertex and
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e′ = zliu the edge such that ϕ(e′) = γ2, and further provide γ1 ∈ ϕ(u), then we have

zli ∈ Px(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ) or zli ∈ Py(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ).

Proof. We first assume γ1 ∈ ϕ(x). Recall that V (Sy\{els , zls}) is ϕce-elementary. We

easily have γ1 6= γ2 and γ2 ∈ ϕ(x). Suppose Px(γ1, γ2, ϕ) 6= Pzli (γ1, γ2, ϕ) (Px(γ1, γ2, ϕ) 6=

Pu(γ1, γ2, ϕ), respectively). For the path Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively), one end-

vertex is zli (u, respectively) and the other endvertex is some vertex z′ 6= x. Note that

z′ /∈ {y, zl1 , . . . , zli−1
} and none of el1 , . . . , eli is colored with γ1. Since zli may be a repeated

vertex in Sy, we consider the following two cases. If zli is not a repeated vertex or zli is a

repeated vertex with zli = zlk and 1 ≤ i < k ≤ s− 1, then none of el1 , . . . , eli is colored with

γ2. Hence, the coloring ϕ1 = ϕ/Pzli (γ1, γ2, ϕ) (ϕ1 = ϕ/Pu(γ1, γ2, ϕ), respectively) results in

a new y-generated ce-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ1(zli) ∩ ϕ1(x)

(γ1 ∈ Cϕ1,w(eli )
(zli) ∩ ϕ1(x), respectively), contradicting the minimality of s.

If zli is a repeated vertex with zlk = zli and 1 ≤ k < i ≤ s − 1, then only the edge

elk+1
of el1 , . . . , eli may be colored with γ2. We claim that elk+1

is not on Pzli (γ1, γ2, ϕ)

(Pu(γ1, γ2, ϕ), respectively). If ϕ(elk+1
) 6= γ2, then we are done. If ϕ(elk+1

) = γ2 and

elk+1
= xzlk+1

, then elk+1
is on Px(γ1, γ2, ϕ), and we are also done. If ϕ(elk+1

) = γ2,

elk+1
= yzlk+1

and elk+1
is on Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively), then the col-

oring ϕ′ = ϕ/Pzli (γ1, γ2, ϕ) (ϕ′ = ϕ/Pu(γ1, γ2, ϕ), respectively) results in a smaller x-

generated ce-sequence (x, el0 , y, elk+1
, zlk+1

, . . . , eli , zli) since ϕ′(elk+1
) = γ1 ∈ ϕ′(x) such that

γ1 ∈ ϕ′(zli) ∩ ϕ′(x) (γ1 ∈ Cϕ′,w(eli )
(zli) ∩ ϕ′(x), respectively), contradicting the minimal-

ity of s. Now we have that elk+1
is not on Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively). Let

the coloring ϕ1 = ϕ/Pzli (γ1, γ2, ϕ) (ϕ1 = ϕ/Pu(γ1, γ2, ϕ), respectively), which results in

a new y-generated ce-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ1(zli) ∩ ϕ1(x)

(γ1 ∈ Cϕ1,w(eli )
(zli) ∩ ϕ1(x), respectively), also contradicting the minimality of s. This com-

pletes the proof of Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) (Px(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ), respectively).

Similarly, we have Py(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) (Py(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ), respectively)

for γ1 ∈ ϕ(y) and γ1 6= βl1 .

By the minimality of s, we have that either zls is not a repeated vertex or zls is a
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repeated vertex with zlk = zls and Cϕ,w(elk )(zlk) ⊂ Cϕ,w(els )(zls), where 1 ≤ k < s. By the

minimality of s again, there exists a color η ∈ Cϕ,w(els )(zls)∩(Cϕ,y(x)∪Cϕ,x(y)∪Cϕ,w(eli )
(zli))

with 1 ≤ i ≤ s − 1. And if zls is a repeated vertex with zlk = zls and 1 ≤ k < s, then we

have η ∈ Cϕ,w(els )(zls)\Cϕ,w(elk )(zlk) = ϕsw(els )(zls)\ϕsw(elk )(zlk). Let α ∈ ϕ(x).

Subclaim 1.1: We may assume that Cϕ,w(els )(zls) ∩ ϕ(x) 6= ∅.
Proof. In order to prove the above subclaim, we consider the following three cases.

Case 1. η ∈ Cϕ,w(els )(zls) ∩ Cϕ,y(x).

If η ∈ Cϕ,w(els )(zls) ∩ ϕ(x), then we are done. Otherwise, first suppose η ∈ ϕ(zls) ∩

ϕsy(x), then there is an edge e′ = xu such that u 6= y, ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

. It

follows from Lemma 2.3.4 that there is a color δ ∈ ϕ(y) ∩ ϕ(u) with δ 6= βl1 . We have

x ∈ Py(η, δ, ϕ) = Pu(η, δ, ϕ) by Lemma 2.3.3 since C-fan (y, el0 , x) at y. The coloring

ϕ1 = ϕ/Pzls (η, δ, ϕ) results in δ ∈ ϕ1(zls) and Sy is still a y-generated ce-sequence under

ϕ1. We have Px(α, δ, ϕ1) = Py(α, δ, ϕ1) by Lemma 2.3.1 since Vizing fan (x, el0 , y) under ϕ1.

Then the coloring ϕ2 = ϕ1/Pzls (α, δ, ϕ1) results in α ∈ ϕ2(zls) ∩ ϕ2(x), which is as desired

because Sy is still a y-generated ce-sequence under ϕ2 and Cϕ2,w(els )(zls) ∩ ϕ2(x) 6= ∅.

Now suppose η ∈ ϕsw(els )(zls) ∩ ϕsy(x). Thus there is an edge e′ = xu such that u 6= y,

ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = zlsv such that v 6= w(els), ϕ(e′′) = η

and d(v) ≤ ∆−d(w(els ))

2
. Obviously, u 6= v. We consider the following two subcases. If

d(x) ≤ d(y), then by Lemma 2.3.4, there is a color δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). Recolor the

edge e′ with δ to get a new coloring ϕ1 such that η ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x). Then we are

done because Sy is still a y-generated ce-sequence under ϕ1 and Cϕ1,w(els )(zls) ∩ ϕ1(x) 6= ∅.

If d(x) > d(y), then by Lemma 2.3.4, there is a color δ ∈ ϕ(y) ∩ ϕ(u) ∩ ϕ(v). We have

Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma 2.3.1 since Vizing fan (x, el0 , y). Note that el1 is on

Px(α, δ, ϕ) if δ = βl1 . Apply Kempe changes on Pu(α, δ, ϕ) and Pv(α, δ, ϕ) to get a new

coloring ϕ2 such that α ∈ ϕ2(x) ∩ ϕ2(u) ∩ ϕ2(v). Since Sy is still a y-generated ce-sequence

under ϕ2, we are in the previous subcase in this paragraph with α in place of δ.

Case 2: η ∈ Cϕ,w(els )(zls) ∩ Cϕ,x(y).

If η ∈ ϕ(zls)∩ϕ(y), then we have Px(α, η, ϕ) = Py(α, η, ϕ) by Lemma 2.3.1 since Vizing
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fan (x, el0 , y). Note that el1 is on Px(α, η, ϕ) if η = βl1 . Then the coloring ϕ1 = ϕ/Pzls (α, η, ϕ)

results in α ∈ ϕ1(zls) ∩ ϕ1(x), as desired because Sy is still a y-generated ce-sequence under

ϕ1 and Cϕ1,w(els )(zls) ∩ ϕ1(x) 6= ∅.

If η ∈ ϕ(zls) ∩ ϕsx(y), then there is an edge e′ = yu such that u 6= x, ϕ(e′) = η and

d(u) ≤ ∆−d(x)
2

. By Lemma 2.3.4, there is a color δ ∈ ϕ(x)∩ ϕ(u). We have y ∈ Px(η, δ, ϕ) =

Pu(η, δ, ϕ) by Lemma 2.3.3 since C-fan (x, el0 , y, el1 , zl1) at x. Note that el1 is on Px(η, δ, ϕ)

if η = βl1 . Then the coloring ϕ1 = ϕ/Pzls (η, δ, ϕ) results in δ ∈ ϕ1(zls) ∩ ϕ1(x), as desired.

If η ∈ ϕsw(els )(zls)∩ ϕ(y), then there is an edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η

and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 2.3.4 that there is a color δ ∈ ϕ(w(els))∩ϕ(u)

with δ 6= η. We consider the following two subcases. If w(els) = x, then we have Px(η, δ, ϕ) =

Py(η, δ, ϕ) by Lemma 2.3.1 since Vizing fan (x, el0 , y). Note that el1 is on Px(η, δ, ϕ) if

η = βl1 . Then the coloring ϕ1 = ϕ/Pu(η, δ, ϕ) results in δ ∈ (ϕ1)sx(zls) ∩ ϕ1(x), as desired.

If w(els) = y, then we have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma 2.3.1. Note that el1 is on

Px(α, δ, ϕ) if δ = βl1 . Then the coloring ϕ2 = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ2(u). We have

Px(α, η, ϕ2) = Py(α, η, ϕ2) by Lemma 2.3.1 since Vizing fan (x, el0 , y) under ϕ2. Then the

coloring ϕ3 = ϕ2/Pu(α, η, ϕ2) results in α ∈ (ϕ3)sy(zls) ∩ ϕ3(x), as desired.

If η ∈ ϕsw(els )(zls) ∩ ϕsx(y), then there is an edge e′ = yu such that u 6= x, ϕ(e′) = η

and d(u) ≤ ∆−d(x)
2

, and there is an edge e′′ = zlsv such that v 6= w(els), ϕ(e′′) = η and

d(v) ≤ ∆−d(w(els ))

2
. Obviously, u 6= v. We consider the following two subcases. If d(x) ≤ d(y),

then by Lemma 2.3.4, there is a color δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). We have y ∈ Px(η, δ, ϕ) =

Pu(η, δ, ϕ) by Lemma 2.3.3 since C-fan (x, el0 , y, el1 , zl1) at x. Note that el1 is on Px(η, δ, ϕ)

if η = βl1 . Then the coloring ϕ1 = ϕ/Pv(η, δ, ϕ) results in δ ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x), as

desired. If d(x) > d(y), then by Lemma 2.3.4, there is a color δ ∈ ϕ(y) ∩ ϕ(u) ∩ ϕ(v). We

have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma 2.3.1. Note that el1 is on Px(α, δ, ϕ) if δ = βl1 .

Apply Kempe changes on Pu(α, δ, ϕ) and Pv(α, δ, ϕ) to get a new coloring ϕ2 such that

α ∈ ϕ2(x)∩ ϕ2(u)∩ ϕ2(v). Thus we are in the previous subcase in this paragraph with α in

place of δ.

Case 3: η ∈ Cϕ,w(els )(zls) ∩ Cϕ,w(eli )
(zli) for 1 ≤ i ≤ s− 1.
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By the minimality of s, we have zls 6= zli . If η ∈ ϕ(zls) ∩ ϕ(zli), then Px(α, η, ϕ) =

Pzli (α, η, ϕ) by the observation II. For the path P = Pzls (α, η, ϕ), one endvertex is zls , the

other endvertex is z′ /∈ V (Sy) and Eϕ,α(P ) ∩ E(Sy) = ∅. In order to apply a Kempe change

on P , we should discuss the following Eϕ,η(P ) ∩ E(Sy). Let zli = zlj with 1 ≤ i 6= j ≤ s− 1

if zli is a repeated vertex in Sy. Note that only one of eli+1
, elj+1

may be colored with η. We

consider the following two subcases. If η = βli+1
and eli+1

is on P (or η = βlj+1
and elj+1

is

on P by symmetry), then Eϕ,η(P ) ∩E(Sy) = {eli+1
} and the coloring ϕ1 = ϕ/P results in a

smaller x-generated ce-sequence (x, el0 , y, eli+1
, zli+1

, . . . , els , zls) since ϕ1(eli+1
) = α ∈ ϕ1(x)

such that α ∈ ϕ1(zls) ∩ ϕ1(x), contradicting the minimality of s. If η 6= βli+1
, βlj+1

, or

η = βli+1
and eli+1

is not on P , then Eϕ,η(P )∩E(Sy) = ∅ and the coloring ϕ1 = ϕ/P results

in α ∈ ϕ1(zls) ∩ ϕ1(x), as desired because Sy is still a y-generated ce-sequence under ϕ1.

If η ∈ ϕsw(els )(zls)∩ϕ(zli), then there is an edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η

and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 2.3.4 that there is a color δ ∈ ϕ(w(els))∩ϕ(u)

and δ 6= βl1 . We claim that we may assume ϕ(x) ∩ ϕ(u) 6= ∅. If w(els) = x, then we are

done. Otherwise, consider the case w(els) = y. We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma

2.3.1. Then the coloring ϕ′ = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ′(x) ∩ ϕ′(u), as desired. Now let

γ ∈ ϕ(x) ∩ ϕ(u). By the observation II, we have Px(γ, η, ϕ) = Pzli (γ, η, ϕ). By the similar

proof of the first subcase of Case 3 (i.e., the case η ∈ ϕ(zls) ∩ ϕ(zli)) with Pu(γ, η, ϕ) in

place of P and γ in place of α, we can obtain the coloring ϕ1 = ϕ/Pu(γ, η, ϕ) such that

γ ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x), as desired.

If η ∈ ϕ(zls)∩ϕsw(eli )
(zli), then there is an edge e′ = zliu such that u 6= w(eli), ϕ(e′) = η

and d(u) ≤ ∆−d(w(eli ))

2
. It follows from Lemma 2.3.4 that there is a color δ ∈ ϕ(w(eli))∩ϕ(u)

with δ 6= βl1 . We claim that we may assume ϕ(x) ∩ ϕ(u) 6= ∅. If w(eli) = x, then we

are done. Otherwise, consider the case w(eli) = y. We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by

Lemma 2.3.1. Then the coloring ϕ′ = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ′(x) ∩ ϕ′(u), as desired.

Now let γ ∈ ϕ(x) ∩ ϕ(u). By the observation II, we have Px(γ, η, ϕ) = Pu(γ, η, ϕ). By the

similar proof of the first subcase of Case 3 with γ in place of α, we can obtain the coloring

ϕ1 = ϕ/Pzls (γ, η, ϕ) such that γ ∈ ϕ(zls) ∩ ϕ1(x), as desired.
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If η ∈ ϕsw(els )(zls) ∩ ϕsw(eli )
(zli), then there is an edge e′ = zlsu such that u 6= w(els),

ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zliv such that v 6= w(eli),

ϕ(e′′) = η and d(v) ≤ ∆−d(w(eli ))

2
. Obviously, u 6= v. We claim that we may assume

ϕ(x)∩ϕ(u)∩ϕ(v) 6= ∅. If d(x) ≤ d(y), then it follows from Lemma 2.3.4 that there is a color

δ ∈ ϕ(x)∩ϕ(u)∩ϕ(v), and so we are done. If d(x) > d(y), then it follows from Lemma 2.3.4

that there is a color δ ∈ ϕ(y) ∩ ϕ(u) ∩ ϕ(v). We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma

2.3.1. Apply Kempe changes on Pu(α, δ, ϕ) and Pv(α, δ, ϕ), and get a new coloring ϕ′ such

that α ∈ ϕ′(x)∩ϕ′(u)∩ϕ′(v), as desired. Now let γ ∈ ϕ(x)∩ϕ(u)∩ϕ(v). By the observation

II, we have Px(γ, η, ϕ) = Pu(γ, η, ϕ). By the similar proof of the first subcase of Case 3 with

Pu(γ, η, ϕ) in place of P and γ in place of α, we can obtain the coloring ϕ1 = ϕ/Pu(γ, η, ϕ)

such that γ ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x), as desired.

Combining the above Cases 1, 2 and 3, we complete the proof of Subclaim 1.1.

Thus we assume that there exists a color η ∈ Cϕ,w(els )(zls) ∩ ϕ(x). We consider the

following two cases.

Case 1: η ∈ ϕ(zls) ∩ ϕ(x).

Suppose w(els) = x. Recolor the edge els with η to get a new coloring ϕ1. Thus βls ∈ ϕ1(x)∩

Cϕ1,w(els−1
)(zls−1), which contradicts the minimality of s. So we assume w(els) = y. Since

d(y) ≤ ∆− 1, there exists a missing color γ with γ 6= βl1 . We have Px(η, γ, ϕ) = Py(η, γ, ϕ)

by Lemma 2.3.1. Let ϕ2 = ϕ/Pzls (η, γ, ϕ), and we have γ ∈ ϕ2(y)∩ϕ2(zls). Recolor the edge

els with γ to get a new coloring ϕ3. Thus βls ∈ ϕ3(y) ∩ Cϕ3,w(els−1
)(zls−1), also contradicting

the minimality of s.

Case 2: η ∈ ϕsw(els )(zls) ∩ ϕ(x).

Suppose βls ∈ ϕ(zls−1). Since η ∈ ϕsw(els )(zls), there is an edge e′ = zlsu such that u 6=

w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 2.3.4 that there is a color

δ ∈ ϕ(w(els)) ∩ ϕ(u) with δ 6= η, βl1 . By the observation II, we have Pw(els )(δ, βls , ϕ) =

Pzls−1
(δ, βls , ϕ). Note that els is on Pw(els )(δ, βls , ϕ). Let ϕ1 = ϕ/Pu(δ, βls , ϕ). Hence Sy

is still a y-generated sequence under ϕ1 with βls ∈ ϕ1(u). We claim that we may assume

η ∈ ϕ1(w(els)). If w(els) = x, we are done. Otherwise, w(els) = y. We have Px(η, δ, ϕ1) =
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Py(η, δ, ϕ1) by Lemma 2.3.1. Recall δ 6= βl1 . The coloring ϕ′ = ϕ1/Px(η, δ, ϕ) results

in η ∈ ϕ′(y), as desired. Now we assume η ∈ ϕ1(w(els)). We have Pw(els )(η, βls , ϕ1) =

Pu(η, βls , ϕ1) = w(els)zlsu. Then the coloring ϕ2 = ϕ1/Pw(els )(η, βls , ϕ1) results in βls ∈

ϕ2(w(els)) ∩ ϕ2(zls−1), contradicting the minimality of s.

Now we suppose βls ∈ ϕsw(els−1
)(zls−1). In this case, there is an edge e′ = zlsu such that

u 6= w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zls−1v such that v 6=

w(els−1), ϕ(e′′) = βls and d(v) ≤ ∆−d(w(els−1
))

2
. By the condition C3 in Section 2, we have u 6=

v. It follows from Lemma 2.3.4 that there is a color δ ∈ (ϕ(w(els))∪ϕ(w(els−1)))∩ϕ(u)∩ϕ(v).

We first claim that we may assume that δ ∈ ϕ(w(els)) and δ 6= βl1 . Suppose δ ∈ ϕ(w(els)) but

δ = βl1 . Thus w(els) = y. Recall that max{d(x), d(y)} ≤ ∆− 1. Hence there exist γ1 ∈ ϕ(x)

with γ1 6= η and γ2 ∈ ϕ(y) with γ2 6= δ = βl1 . By Lemma 2.3.1, we have Px(γ1, δ, ϕ) =

Py(γ1, δ, ϕ) and Px(γ1, γ2, ϕ) = Py(γ1, γ2, ϕ). Apply Kempe changes on Pu(γ1, δ, ϕ) and

Pv(γ1, δ, ϕ) to get a new coloring ϕ′. And then apply Kempe changes on Pu(γ1, γ2, ϕ
′) and

Pv(γ1, γ2, ϕ
′) to get a new coloring ϕ′′. Consequently, we have γ2 ∈ ϕ′′(u)∩ϕ′′(v), as desired

because γ2 is the desired color instead of δ. Now suppose δ /∈ ϕ(w(els)). Thus we have

w(els) 6= w(els−1) and δ ∈ ϕ(w(els−1)). Since max{d(x), d(y)} ≤ ∆−1, there exists a missing

color γ ∈ ϕ(w(els)) such that γ 6= δ, βl1 . We have Px(γ, δ, ϕ) = Py(γ, δ, ϕ) by Lemma

2.3.1. Apply Kempe changes on Pu(γ, δ, ϕ) and Pv(γ, δ, ϕ) to get a new coloring ϕ′′′. Thus

γ ∈ ϕ′′′(w(els)) ∩ ϕ′′′(u) ∩ ϕ′′′(v), as desired because γ is the desired color instead of δ. Now

we assume that δ ∈ ϕ(w(els)) and δ 6= βl1 . Then Pw(els )(δ, βls , ϕ) = Pv(δ, βls , ϕ) by the

observation II. Note that els is on Pw(els )(δ, βls , ϕ). Let the coloring ϕ1 = ϕ/Pu(δ, βls , ϕ).

Hence Sy is still a y-generated ce-sequence under ϕ1 with βls ∈ ϕ1(u).

Next we show that we may assume η ∈ ϕ1(w(els)). If w(els) = x, we are done. Oth-

erwise, w(els) = y. We have Px(η, δ, ϕ1) = Py(η, δ, ϕ1) by Lemma 2.3.1. The coloring

ϕ′1 = ϕ1/Px(η, δ, ϕ) results in η ∈ ϕ′1(y), as desired. Now note that Pw(els )(η, βls , ϕ1) =

Pu(η, βls , ϕ1) = w(els)zlsu. Then the coloring ϕ2 = ϕ1/Pw(els )(η, βls , ϕ1) results in βls ∈

ϕ2(w(els)) ∩ (ϕ2)sw(els−1
)(zls−1), contradicting the minimality of s. This completes the proof

of Case 2.
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Combining the above Cases 1 and 2, we complete the proof of Claim 1 for s ≥ 2.

Together with the proof of Claim 1 for s ≤ 1, we prove Claim 1.

Claim 2: The union of vertex sets of any two linear ce-sequences is ϕce-elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ϕ

such that there exist two linear ce-sequences S1 = (x, e, y, el1 , zl1 , . . . , els , zls) and S2 =

(x, e, y, el′1 , zl′1 , . . . , el′t , zl′t) whose union of vertex sets is not ϕce-elementary with s + t as

small as possible, where s, t ≥ 1. Note that V (S1) and V (S2) are ϕce-elementary by Claim 1.

By the minimality of s+ t, zls 6= zl′t and there exists a color η ∈ Cϕ,w(els )(zls) ∩Cϕ,w(el′t
)(zl′t).

We consider the following three cases. If η ∈ ϕ(zls)∩ϕ(zl′t), then zls and zl′t are respectively

not repeated vertices in S1 and S2 since the minimality of s+ t. By the same proof of Claim

2 in Theorem 2.1.3, we can obtain three endvertices on one Kempe chain, which gives a

contradiction.

If η ∈ ϕsw(els )(zls) ∩ ϕ(zl′t) (or η ∈ ϕ(zls) ∩ ϕsw(el′t
)(zl′t) by symmetry), then there is an

edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
. It follows from

Lemma 2.3.4 that there is a color δ ∈ ϕ(w(els)) ∩ ϕ(u). By the definition of linear ce-

sequence in C-e-fan and the minimality of s + t, zls may be a repeated vertex in S1, while

zl′t is not a repeated vertex in S2. Note that ϕ(el1) and ϕ(el′1) are in Cϕ,y(x) ∪ Cϕ,x(y).

(ϕ(el1) and ϕ(el′1) could be the same color.) We consider the following two subcases. If

δ /∈ {ϕ(el1), ϕ(el′1)}, then we have Pw(els )(δ, η, ϕ) = Pu(δ, η, ϕ) by the observation II since

S1 is ϕce-elementary. Similarly, we have Pw(els )(δ, η, ϕ) = Pzl′t
(δ, η, ϕ) by the observation II

since S2 is ϕce-elementary. Thus w(els), zl′t and u are three endvertices of Pw(els )(δ, η, ϕ),

which gives a contradiction. Now we consider the remaining case δ ∈ {ϕ(el1), ϕ(el′1)}. Let

w′(els) ∈ {x, y}\{w(els)}. Recall that max{d(x), d(y)} ≤ ∆ − 1. Hence we can choose a

color γ ∈ ϕ(w′(els)) with γ /∈ {ϕ(el1), ϕ(el′1)}. We have Px(δ, γ, ϕ) = Py(δ, γ, ϕ) by Lemma

2.3.1. Apply a Kempe change on Pu(δ, γ, ϕ) to get a new coloring ϕ1. Thus γ ∈ ϕ1(w′(els))∩

ϕ1(u). Similarly as the subcase above (when δ /∈ {ϕ(el1), ϕ(el′1)}), we have Pw′(els )(γ, η, ϕ1) =

Pzl′t
(γ, η, ϕ1) and Pw′(els )(γ, η, ϕ1) = Pu(γ, η, ϕ1). Thus w′(els), zl′t and u are three endvertices

of Pw′(els )(δ, η, ϕ1), which also gives a contradiction.
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If η ∈ ϕsw(els )(zls) ∩ ϕsw(el′t
)(zl′t), then there is an edge e′ = zlsu such that u 6= w(els),

ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zl′tv such that v 6= w(el′t),

ϕ(e′′) = η and d(v) ≤
∆−d(w(el′t

))

2
. Obviously, u 6= v, and zls and zl′t may be repeated vertices

respectively in S1 and S2. Without loss of generality, we suppose that d(x) ≤ d(y). It

follows from Lemma 2.3.4 that there is a color δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). We consider the

following two subcases. If δ /∈ {ϕ(el1), ϕ(el′1)}, then we have Px(δ, η, ϕ) = Pu(δ, η, ϕ) by

the observation II. Similarly, we have Px(δ, η, ϕ) = Pv(δ, η, ϕ). Thus x, u and v are three

endvertices on one (δ, η)-chain, which is a contradiction. Now we consider the remaining

case δ ∈ {ϕ(el1), ϕ(el′1)}. Recall that max{d(x), d(y)} ≤ ∆ − 1. Hence we can choose a

color γ ∈ ϕ(y) with γ /∈ {ϕ(el1), ϕ(el′1)}. We have Px(δ, γ, ϕ) = Py(δ, γ, ϕ) by Lemma 2.3.1.

Apply Kempe changes on Pu(δ, γ, ϕ) and Pv(δ, γ, ϕ) to get a new coloring ϕ1. Thus we have

γ ∈ ϕ1(y) ∩ ϕ1(u) ∩ ϕ1(v). Thus we are back to the previous subcase with y in place of x

and γ in place of δ. This completes the proof of Claim 2.

Now we are ready to show that V (F ce) is ϕce-elementary. Suppose not. Note that {x, y}

is ϕce-elementary and each linear ce-sequence in F ce contains vertices x and y. There exist

one color η and two distinct vertices zi and zj such that η ∈ Cϕ,w(ei)(zi)∩Cϕ,w(ej)(zj), where

0 ≤ i < j ≤ p and z0 ∈ {x, y}. By the definition of simple C-e-fan, there exist two linear

ce-sequences with zi and zj respectively as the last vertex, which is a contradiction to Claim

1 for i = 0 or a contradiction to Claim 2 for 1 ≤ i ≤ p − 1. This proves that V (F ce) is

ϕce-elementary.

Now we show the “furthermore” part. We assume that F ce is maximal. Let the edge

set Γ = {e1, . . . , ep} and the color set Γ′ =
⋃
z∈V (F ce) Cϕ(z). Note that Cϕ(x), Cϕ(y) and

Cϕ(z), where z ∈ V (F ce)\{x, y}, are disjoint since V (F ce) is ϕce-elementary. We have

p = |Γ| =
∑

z∈V (F ce)\{x,y}

(eF ce(x, z) + eF ce(y, z)) = |Γ∗|. (3)

Now we calculate |Γ∗| in another way. By the definition of C-e-fan, ϕ(ei) ∈ Γ′ for each i ∈ [p].

By the maximality of F ce, for any α ∈ Γ′, α appears exactly once in Γ∗ if α ∈ Cϕ(x)∪Cϕ(y).
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Otherwise, α appears exactly twice in Γ∗. Thus we have

|Γ∗| = |Cϕ(x)|+ |Cϕ(y)|+
∑

z∈V (F ce)\{x,y}

2|Cϕ(z)|. (4)

Combining equations (3) and (4), we prove that

|Cϕ(x)|+ |Cϕ(y)| =
∑

z∈V (F ce)\{x,y}

(eF ce(x, z) + eF ce(y, z)− 2|Cϕ(z)|).

The proof is now finished.
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CHAPTER 3

PRECOLORING EXTENSION OF VIZING’S THEOREM

In this chapter, we focus on one conjecture of Edwards et al. about precoloring exten-

sion of Vizing’s Theorem, and partly comfirm it for multigraphs with distance-3 matching,

i.e., Theorem 3.1.1. In Section 3.2, we introduce some new structural properties of dense

subgraphs. In Section 3.3, we define a general multi-fan and obtain some generalizations of

Vizing’s Theorem. In Section 3.4, we present the proof of Theorem 3.1.1.

The proof is based on the assumption of Goldberg-Seymour Conjecture and relies on

dense subgraphs and refinements of multi-fans as tools. Its main strategy is roughly as

follows. We first define a feasible tripe containing some matching and coloring, which can

achieve our result easily, then we fix one initial prefeasible tripe and modify it step by step

into a desired feasible tripe by some recoloring technologies.

3.1 Introduction

Recall that the distance between two edges e and f in G is the length of a shortest

path connecting an endvertex of e and an endvertex of f , and a distance-t matching is a

set of edges having pairwise distance at least t. Following this definition, a matching is a

distance-1 matching and an induced matching is a distance-2 matching. For a matching M ,

we use V (M) to denote the set of vertices saturated by M .

In the 1960s, Vizing [33,34] and, independently, Gupta [22] proved that ∆(G) ≤ χ′(G) ≤

∆(G)+µ(G), which is commonly called Vizing’s Theorem. Using the palette [∆(G)+µ(G)],

when can we extend a precoloring on a given edge set F ⊆ E(G) to a proper edge coloring

of G? Albertson and Moore [2] conjectured that if G is a simple graph, using the palette

[∆(G) + 1], any precoloring on a distance-3 matching can be extended to a proper edge

coloring of G. Edwards et al. [17] proposed a stronger conjecture: For any graph G, using
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the palette [∆(G) + µ(G)], any precoloring on a distance-2 matching can be extended to a

proper edge coloring of G. Girão and Kang [18] verified the conjecture of Edwards et al.

for distance-9 matchings. In this chapter, we improve the required distance from 9 to 3 for

multigraphs with the maximum multiplicity at least 2 as follows.

Theorem 3.1.1. Let G be a multigraph and M be a distance-3 matching of G. If µ(G) ≥ 2

and M is arbitrarily precolored from the palette [∆(G) + µ(G)], then there is a proper edge

coloring of G using colors from [∆(G) + µ(G)] that agrees with the precoloring on M .

The density of a graph G, denoted Γ(G), is defined as

Γ(G) = max

{
2|E(H)|
|V (H)| − 1

: H ⊆ G, |V (H)| ≥ 3 and |V (H)| is odd

}

if |V (G)| ≥ 3 and Γ(G) = 0 otherwise. Note that for any X ⊆ V (G) with odd |X| ≥ 3,

we have χ′(G[X]) ≥ 2|E(G[X])|
|X|−1

, where G[X] is the subgraph of G induced by X. Therefore,

χ′(G) ≥ dΓ(G)e. So, besides the maximum degree, the density provides another lower

bound on the chromatic index of a graph. In the 1970s, Goldberg [19] and Seymour [28]

independently conjectured that actually χ′(G) = dΓ(G)e provided χ′(G) ≥ ∆(G) + 2. The

conjecture was commonly referred to as one of the most challenging problems in graph

chromatic theory [30]. Chen et al. gave a proof of the Goldberg-Seymour Conjecture recently

[14]. We assume that the Goldberg-Seymour Conjecture is true in this chapter.

3.2 Dense subgraphs

Throughout the rest of this chapter, we reserve the notation ∆ and µ for the maximum

degree and the maximum multiplicity of the graph G, respectively. A subgraph H of G is

k-dense if |V (H)| is odd and |E(H)| = (|V (H)|− 1)k/2. Moreover, H is a maximal k-dense

subgraph if there does not exist a k-dense subgraph H ′ containing H as a proper subgraph.

Lemma 3.2.1. [10] Given a graph G, if χ′(G) = k ≥ ∆(G) + 1, then distinct maximal

k-dense subgraphs of G are pairwise vertex-disjoint.
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Lemma 3.2.2. Let G be a graph with χ′(G) = k and H be a k-dense subgraph of G. Then

H is an induced subgraph of G with χ′(H) = Γ(H) = k. Furthermore, for any coloring

ϕ ∈ Ck(G), H is ϕH-elementary and strongly ϕ-closed.

Proof. Since H is k-dense, by the definition, |E(H)| = |V (H)|−1
2

k. Thus k ≤ Γ(H) ≤

χ′(H) ≤ χ′(G) = k implying χ′(H) = Γ(H) = k. Thus H is an induced subgraph of G, since

otherwise there exists a subgraph H ′ of G with V (H ′) = V (H) such that χ′(H ′) ≥ Γ(H ′) > k,

a contradiction to χ′(H ′) ≤ χ′(G) = k. Since H has an odd order, the size of a maximum

matching in H has size at most (|V (H)| − 1)/2. Therefore, under any k-edge-coloring ϕ of

G, each color class in H is a matching of size exactly (|V (H)| − 1)/2. Thus every color in

[k] is missing at exactly one vertex of H or it appears exactly once in ∂G(H). Consequently,

H is ϕH-elementary and strongly ϕ-closed.

For e ∈ E(G), let V (e) denote the set of the two endvertices of e. The following lemma

is a consequent of the Goldberg-Seymour Conjecture.

Lemma 3.2.3. Let G be a multigraph and e ∈ E(G). If e is a k-critical edge of G and

k ≥ ∆(G) + 1, then G − e has a k-dense subgraph H containing V (e) such that e is also a

k-critical edge of H + e.

Proof. Clearly, χ′(G) = k+1 and χ′(G−e) = k. By the assumption of the Goldberg-

Seymour Conjecture, χ′(G) = dΓ(G)e = k + 1. So, there exists a subgraph H∗ of odd order

containing e such that |E(H∗)| > (|V (H∗)|−1)k/2. On the other hand, we have 2|E(H∗−e)|
|V (H∗−e)|−1

≤

dΓ(H∗−e)e ≤ χ′(H∗−e) ≤ χ′(G−e) = k, which in turn gives |E(H∗−e)| ≤ (|V (H∗)|−1)k/2.

Thus |E(H∗− e)| = (|V (H∗)| − 1)k/2. Then k ≤ dΓ(H∗− e)e ≤ χ′(H∗− e) ≤ χ′(G− e) = k

and k + 1 ≤ dΓ(H∗)e ≤ χ′(H∗) ≤ χ′(G) = k + 1, which implies that k = χ′(H∗ − e) <

χ′(H∗) = k + 1. Thus H := H∗ − e is a k-dense subgraph containing V (e), and e is also a

k-critical edge of H + e.

The diameter of a graph G, denoted diam(G), is the greatest distance between any pair

of vertices in V (G).
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Lemma 3.2.4. Let G be a multigraph with χ′(G) = k + 1 ≥ ∆(G) + 2 and e be a k-critical

edge of G. We have the following statements.

(a) G − e has a unique maximal k-dense subgraph H containing V (e), and e is also a

k-critical edge of H + e.

(b) For any ϕ ∈ Ck(G− e), H is ϕH-elementary and strongly ϕ-closed.

(c) If χ′(G) = ∆(G)+µ(G), then ∆(H+e) = ∆(G), µ(H+e) = µ(G) and diam(H+e) ≤

diam(H) ≤ 2.

Proof. By Lemma 3.2.3, G− e contains a k-dense subgraph H containing V (e) and e

is also a k-critical edge of H+e. We may assume that H is a maximal k-dense subgraph, and

the uniqueness of H is a direct consequence of Lemma 3.2.1. This proves (a). By applying

Lemma 3.2.2 on G− e, we immediately have statement (b).

For (c), by (a) and Vizing’s Theorem, ∆(G) +µ(G) = χ′(G) = χ′(H + e) ≤ ∆(H + e) +

µ(H + e) ≤ ∆(G) + µ(G) implying that ∆(H + e) = ∆(G) = ∆ and µ(H + e) = µ(G) = µ.

For any ϕ ∈ Ck(G− e), H is ϕH-elementary by (b). For any x ∈ V (H), with respect to ϕH ,

all the colors missing at other vertices of H present at x. Note that k = ∆ + µ − 1. For

each vertex v ∈ V (H), we have that |ϕH(v)| = k − dH(v) ≥ k −∆ = µ− 1 if v /∈ V (e), and

|ϕH(v)| = k − dH(v) + 1 ≥ k −∆ + 1 ≥ (µ − 1) + 1 if v ∈ V (e). Denote |V (H)| by n. We

then have dH(x) ≥ |
⋃
v∈V (H),v 6=x ϕH(v)| ≥ (k −∆)(n− 1) + 1 = (µ− 1)(n− 1) + 1.

Since µ(H) ≤ µ(G) = µ, we get |NH(x)| ≥ dH(x)
µ
≥ (µ−1)(n−1)+1

µ
, where NH(x) is the

neighbor set of x in H. Since µ ≥ 2, we have (µ−1)(n−1)+1
µ

≥ n
2
. Hence, every vertex in H

is adjacent to at least half vertices in H. Consequently, every two vertices of H share a

common neighbor, which in turn gives diam(H) ≤ 2. This proves (c).

An i-edge is an edge colored with the color i. The following technical lemma will be

used several times in our proof.

Lemma 3.2.5. Let G be a graph with χ′(G) = k and H be a k-dense subgraph of G. Let

ψ and ϕ respectively be k-edge-colorings of H and G − E(H) such that colors on edges in

∂G(H) are pairwise distinct under ϕ. The following two statements hold.
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(a) If k ≥ ∆(G), then by renaming color classes of ψ on E(H), we can obtain a (proper)

k-edge-coloring of G by combining ϕ and the modified coloring based on ψ.

(b) For any fixed color i ∈ [k], if k ≥ ∆(G) + 1, then by renaming other color classes

of ψ on E(H) we can obtain a coloring of G such that all color classes are matchings except

the i-edges. The only exception is as follows: exactly one i-edge from E(H) and exactly one

i-edge from ∂G(H) share an endvertex.

Proof. Since χ′(G) = k andH is k-dense, χ′(H) = k andH is ψ-elementary by Lemma

3.2.2. This following fact will be used to combine an edge coloring of H and an edge coloring

of G−E(H) into an edge coloring of G: for any distinct u, v ∈ V (H), ψ(u)∩ ψ(v) = ∅, and

no two colors on edges in ∂G(H) under ϕ are the same.

For (a), we have |ψ(v)| = k − dH(v) ≥ ∆(G) − dH(v) ≥ dG−E(H)(v) = |ϕ(v)| for each

v ∈ V (H). So, by renaming color classes of ψ on E(H), we may assume that ϕ(v) ⊆ ψ(v)

for each v ∈ V (H). The combination of ϕ and the modified coloring based on ψ gives a

desired proper edge coloring of G.

For (b), under the condition k ≥ ∆(G) + 1, we have |ψ(v)| = k − dH(v) ≥ ∆(G) + 1−

dH(v) ≥ dG−E(H)(v) + 1 = |ϕ(v)|+ 1 for each v ∈ V (H). So |ψ(v)\{i}| ≥ |ϕ(v)\{i}|. Notice

that when i ∈ ψ(v)∩ϕ(v), we need |ψ(v)|−1 ≥ |ϕ(v)| to ensure the inequality above, where

the condition k ≥ ∆(G) + 1 is applied. By renaming color classes of ψ on E(H) except the

i-edges (keeping all i-edges unchanged and other color classes not renamed by i), we may

assume that ϕ(v)\{i} ⊆ ψ(v) for each v ∈ V (H). Again, the combination of ϕ and the

modified coloring based on ψ gives a desired coloring of G. The only case that the set of

i-edges is not a matching is when exactly one i-edge from E(H) and exactly one i-edge from

∂G(H) share an endvertex, since colors on edges in ∂G(H) are pairwise distinct under ϕ.

3.3 Refinements of multi-fans and some consequences

Let G be a graph with an edge e ∈ EG(x, y), and ϕ be a proper edge coloring of G or

G − e. A sequence F = (x, e0, y0, e1, y1, . . . , ep, yp) with integer p ≥ 0 consisting of vertices

and distinct edges is called a (general) multi-fan at x with respect to e and ϕ if e0 = e,
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y0 = y, for each i ∈ [p], ei ∈ EG(x, yi) and there is a vertex yj with 0 ≤ j ≤ i− 1 such that

ϕ(ei) ∈ ϕ(yj). Notice that the definition of a (general) multi-fan in this chapter is slightly

general than the one in Chapter 2 since the edge e may be colored in G. We say a multi-fan

F is maximal if there is no multi-fan containing F as a proper subsequence. Similarly, we say

a multi-fan F is maximal without any i-edge if F does not contain any i-edge and there is no

multi-fan without any i-edge containing F as a proper subsequence. The set of vertices and

edges contained in F are denoted by V (F ) and E(F ), respectively. Let eG(x, y) = |EG(x, y)|

for x, y ∈ V (G). Note that a multi-fan may have repeated vertices. By eF (x, yi) for some

yi ∈ V (F ) we mean the number of edges joining x and yi in F .

Let s ≥ 0 be an integer. A linear sequence S = (y0, e1, y1, . . . , es, ys) at x from y0 to ys in

G is a sequence consisting of distinct vertices and distinct edges such that ei ∈ EG(x, yi) for

i ∈ [s] and ϕ(ei) ∈ ϕ(yi−1) for i ∈ [s]. Clearly for any yj ∈ V (F ), the multi-fan F contains a

linear sequence at x from y0 to yj (take a shortest sequence (y0, e1, y1, . . . , ej, yj) of vertices

and edges with the property that ei ∈ EG(x, yi) ∩ E(F ) for i ∈ [j] and ϕ(ei) ∈ ϕ(yi−1) for

i ∈ [j]). The following local edge recoloring operation will be used in our proof. A shifting

from yi to yj in the linear sequence S is an operation that replaces the current color of et by

the color of et+1 for each i ≤ t ≤ j − 1 with 1 ≤ i < j ≤ s. Note that the shifting does not

change the color of ej, where ej joins x and yj, so the resulting coloring after a shifting is not

a proper coloring. In our proof we will uncolor or recolor the edge ej to make the resulting

coloring proper. We also denote by V (S) and E(S) the set of vertices and the set of edges

contained in the linear sequence S, respectively.

The following lemma is a genelization of Lemma 2.3.1 for graphs with at least one

critical edge.

Lemma 3.3.1. [20,30] Let G be a graph, e ∈ EG(x, y) be a k-critical edge and ϕ ∈ Ck(G−e)

with k ≥ ∆(G). Let F = (x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x with respect to e and

ϕ, where y0 = y. Then the following statements hold.

(a) V (F ) is ϕ-elementary, and each edge in E(F ) is a k-critical edge of G.

(b) If α ∈ ϕ(x) and β ∈ ϕ(yi) for 0 ≤ i ≤ p, then Px(α, β) = Pyi(α, β).
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(c) If F is a maximal multi-fan at x with respect to e and ϕ, then x is adjacent in G to at

least χ′(G)−dG(y)−eG(x, y)+1 vertices z in V (F )\{x, y} such that dG(z)+eG(x, z) = χ′(G).

A ∆-vertex in G is a vertex with degree exactly ∆ in G. A ∆-neighbor of a vertex v in

G is a neighbor of v that is a ∆-vertex in G.

Lemma 3.3.2. Let G be a multigraph with maximum degree ∆ and maximum multiplicity

µ ≥ 2. Let e ∈ EG(x, y) and k = ∆ + µ− 1.

Assume that χ′(G) = k+1, e is k-critical and ϕ ∈ Ck(G−e). Let F = (x, e, y0, e1, y1, . . . ,

ep, yp) be a multi-fan at x with respect to e and ϕ, where y0 = y. Then the following

statements hold.

(a) If F is maximal, then x is adjacent in G to at least ∆ + µ − dG(y) − eG(x, y) + 1

vertices z in V (F )\{x, y} such that dG(z) = ∆ and eG(x, z) = µ.

(b) If F is maximal, dG(y) = ∆ and x has only one ∆-neighbor z′ in G from

V (F )\{x, y}, then eF (x, z) = eG(x, z) = µ for all z ∈ V (F )\{x} and dG(z) = ∆ − 1

for all z ∈ V (F )\{x, y, z′}.

(c) For i ∈ [k] and i /∈ ϕ(y), if F is maximal without any i-edge, then F not containing

any ∆-vertex of G from V (F )\{x, y} implies that dG(y) = ∆, and there exists a vertex

z∗ ∈ V (F )\{x, y} with i ∈ ϕ(z∗) such that dG(z∗) = ∆− 1.

Assume that χ′(G) = k, ϕ ∈ Ck(G) and V (G) is ϕ-elementary. Then the following

statement holds.

(d) If a multi-fan F ′ is maximal at x with respect to e and ϕ in G, then x having no

∆-neighbor in G from V (F ′) implies that dG(z) = ∆ − 1 for all z ∈ V (F ′)\{x} and every

edge in F ′ is colored by a missing color at some vertex in V (F ′). Furthermore, for i ∈ [k] and

ϕ(e) /∈ ϕ(V (F ′)), if F ′ is maximal without any i-edge, then F ′ not containing any ∆-vertex

in G from V (F ′)\{x} implies that there exists a vertex z∗ ∈ V (F ′)\{x} with i ∈ ϕ(z∗) such

that dG(z∗) = ∆− 1.

Proof. For statements (a), (b) and (c), V (F ) is ϕ-elementary by Lemma 3.3.1(a).

Statement (a) holds easily by Lemma 3.3.1(c). Assume that there are q distinct vertices in

V (F )\{x}.
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For (b), we have

qµ ≥
∑

z∈V (F )\{x}

eG(x, z) ≥
∑

z∈V (F )\{x}

eF (x, z) = 1 +
∑

z∈V (F )\{x}

|ϕ(z)|

≥ 1 + (k −∆ + 1) + (k −∆) + (q − 2)(k −∆ + 1) = q(k −∆ + 1) = qµ,

as |ϕ(y)| = k − ∆ + 1, |ϕ(z′)| = k − ∆ and |ϕ(z)| ≥ k − ∆ + 1 for z ∈ V (F )\{x, y, z′}.

Therefore, eF (x, z) = eG(x, z) = µ for each z ∈ V (F )\{x} and dG(z) = ∆ − 1 for each

z ∈ V (F )\{x, y, z′}. This proves (b).

Now for (c), we must have that there exists a vertex z∗ ∈ V (F )\{x, y} with i ∈ ϕ(z∗),

since otherwise by (a), x has at least one ∆-neighbor in G from V (F )\{x, y}, a contradiction.

Since V (F ) is ϕ-elementary, x must be incident with an i-edge. Since now there is no i-edge

in F and i ∈ ϕ(z∗), we have

qµ ≥
∑

z∈V (F )\{x}

eG(x, z) ≥
∑

z∈V (F )\{x}

eF (x, z) = 1 + (|ϕ(z∗)| − 1) +
∑

z∈V (F )\{x,z∗}

|ϕ(z)|

≥ 1 + k −∆ + (q − 1)(k −∆ + 1) = q(k −∆ + 1) = qµ.

Therefore, dG(y) = ∆ and dG(z) = ∆− 1 for each z ∈ V (F )\{x, y}. This proves (c).

Statement (d) follows from similar calculations as in the proof of (b) and (c).

Let G be a graph with maximum degree ∆ and maximum multiplicity µ. Berge and

Fournier [5] strengthened the classical Vizing’s Theorem by showing that if M∗ is a maximal

matching of G, then χ′(G −M∗) ≤ ∆ + µ − 1. An edge e ∈ EG(x, y) is fully G-saturated

if dG(x) = dG(y) = ∆ and eG(x, y) = µ. For every graph G with χ′(G) = ∆ + µ, observe

that G contains a (∆ + µ− 1)-critical subgraph H with χ′(H) = ∆ + µ and ∆(H) = ∆ by

Lemma 3.2.4(c), and G contains at least two fully G-saturated edges by Lemma 3.3.2(a).

Stiebitz et al.[Page 41 Statement (a), [30]] obtained the following generalization of Viz-

ing’s Theorem with an elegant short proof: Let G be a graph and let k ≥ ∆ + µ be an

integer. Then there is a k-edge-coloring ϕ of G such that every edge e with ϕ(e) = k is fully

G-saturated. We observe that their proof actually gives a slightly stronger result which also
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generalizes the Berge-Fournier theorem as follows.

Lemma 3.3.3. Let G be a graph, and M and M ′ be two vertex-disjoint matchings of G.

If every edge of M ′ is fully G-saturated and M ′ is maximal subject to this property, then

χ′(G− (M ∪M ′)) ≤ ∆(G) + µ(G)− 1.

Proof. Let G′ = G− (M ∪M ′). Note that every vertex v ∈ V (M ∪M ′) has dG′(v) ≤

∆− 1. By the maximality of M ′, G− V (M ∪M ′) contains no fully G-saturated edges. So,

G′ does not have a fully G-saturated edge. By the observation of graphs with chromatic

index ∆ + µ and Lemma 3.3.2(a), χ′(G′) ≤ ∆ + µ − 1, since otherwise ∆(G′) = ∆ and

there exist at least two fully G-saturated edges in one multi-fan centered at a ∆-vertex, a

contradiction.

Lemma 3.3.3 has the following consequence.

Corollary 3.3.4. Let G be a graph. If M is a matching such that every edge in M is fully

G-saturated and M is maximal subject to this property, then χ′(G−M) ≤ ∆(G) +µ(G)− 1.

We strengthen Lemma 3.3.3 for multigraphs G with µ(G) ≥ 2 as follows.

Lemma 3.3.5. For a fixed matching M of a graph G, if µ(G) ≥ 2 and χ′(G − M) =

∆(G) +µ(G), then there exists a matching M∗ of G−V (M) such that χ′(G− (M ∪M∗)) =

∆(G) +µ(G)− 1 =: k and every edge e ∈M∗ is k-critical and fully G-saturated in the graph

He+ e, where He is the unique maximal k-dense subgraph of G− (M ∪M∗) containing V (e).

Proof. Let M∗ be a matching of G−V (M) consisting of fully G-saturated edges. We

further choose M∗ such that M∗ is maximal. By Lemma 3.3.3, χ′(G − (M ∪M∗)) = k. If

there exists e ∈ M∗ such that χ′(G − (M ∪M∗\{e})) = k, we remove e out of M∗. Thus

we may assume that for each e ∈ M∗, χ′(G − (M ∪ M∗\{e})) = k + 1, i.e., each e is a

k-critical edge of G − (M ∪M∗\{e}). By Lemma 3.2.4(a), there exists a unique maximal

k-dense subgraph He of G − (M ∪M∗) such that V (e) ⊆ V (He) and e is also a k-critical

edge of He + e. Notice that ∆(He + e) = ∆ and µ(He + e) = µ by Lemma 3.2.4(c). It is now

only left to show that each e ∈M∗ is full G-saturated in the graph He + e. Suppose on the

contrary that there exists e ∈M∗ such that e is not fully G-saturated in He + e.
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Since e is a k-critical edge of G − (M ∪M∗\{e}), we let ϕ ∈ Ck(G − (M ∪M∗)). By

Lemma 3.2.2, He is ϕHe-elementary and strongly ϕ-closed. Let V (e) = {x, y} and Fx be a

maximum multi-fan at x with respect to e and ϕHe . By Lemma 3.3.2(a), x has a ∆-neighbor,

say x1, in He from V (Fx)\{x, y}. By Lemma 3.3.1(a), the edge exx1 ∈ EG(x, x1) in Fx is

also a k-critical edge of He + e. By Lemma 3.3.2(a) again, in a maximum multi-fan at x1

there exists a fully G-saturated edge e′. Let M ′ = (M∗\{e}) ∪ {e′}. Since every vertex of

V (M ∪M∗) has degree less than ∆ in G− (M ∪M∗), it follows that M ∪M ′ is a matching

of G. Let He′ = He + e − e′. Clearly, He′ is also k-dense. Applying Lemma 3.3.1(a), we

see that e′ is also a k-critical edge of He + e. Thus χ′(He′) = k and He′ is also an induced

subgraph of G− (M ∪M ′) by Lemma 3.2.2. Moreover, He′ is a maximal k-dense subgraph of

G− (M ∪M ′), since otherwise there exists a k-dense subgraph H ′ containing He′ as a proper

subgraph which implies that the k-dense subgraph H ′ + e′ − e is also a k-dense subgraph

containing He as a proper subgraph in G − (M ∪M∗), a contradiction to the maximality

of He. As He is strongly ϕ-closed, colors on edges of ∂G−(M∪M ′)(He′) = ∂G−(M∪M∗)(He) are

pairwise distinct. Applying Lemma 3.2.5(a) on any k-edge-coloring of He′ and the k-edge-

coloring of G− (M ∪M ′ ∪ E(He′)), we have χ′(G− (M ∪M ′)) = k. In order to claim that

we can replace e by e′ in M∗, and so repeat the same process for every edge f of M∗ that

is not fully G-saturated in Hf + f (Hf is the maximal k-dense subgraph of G − (M ∪M∗)

with V (f) ⊆ V (Hf ), we discuss that this replacement will not affect the properties of other

edges in M∗ as follows.

By Lemmas 3.2.1 and 3.2.2, maximal k-dense subgraphs of G− (M ∪M∗) are induced

and vertex-disjoint. Thus for any f ∈ M∗\{e}, either V (Hf ) ∩ V (He) = ∅ or Hf = He. If

V (Hf )∩V (He) = ∅, then Hf is still the induced maximal k-dense subgraph of G− (M ∪M ′)

containing V (f) and f is k-critical in Hf +f . If Hf = He, then as He′ is an induced maximal

k-dense subgraph of G− (M ∪M ′) with V (He) = V (He′), it follows that Hf + e− e′ = He′

is the maximal k-dense subgraph of G − (M ∪M ′) containing V (f) and f is k-critical in

Hf + e− e′+ f by Lemma 3.2.4(a). As V (f)∩ V (e) = ∅ and V (f)∩ V (e′) = ∅, the property

that whether or not f is fully G-saturated in Hf + f is not changed after replacing e by e′ in
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M∗. Therefore, by repeating the replacement process as for the edge e above for every edge

f of M∗ that is not fully G-saturated in Hf + f , we may assume that each edge e ∈ M∗ is

fully G-saturated in He + e. The proof is completed.

3.4 Proof of Theorem 3.1.1

Proof. Let k = ∆ + µ − 1 and Φ : M → [∆ + µ] be a given precoloring on M . Note

that χ′(G−M) ≤ k+ 1 by Vizing’s Theorem. The conclusion of Theorem 3.1.1 holds easily

if χ′(G −M) ≤ k with the reason as follows. For any k-edge-coloring ψ of G −M , if there

exists e ∈ E(G −M) such that e is adjacent in G to an edge f ∈ M and ψ(e) = Φ(f), we

recolor each such e with the color ∆ + µ and get a new coloring ψ′ of G−M . Under ψ′, the

edges colored by ∆ + µ form a matching in G since M is a distance-3 matching. Thus the

combination of Φ and ψ′ is a (k + 1)-edge-coloring of G. Therefore, in the remainder of the

proof, we assume χ′(G−M) = k + 1.

Let M∆+µ be the set of edges precolored with ∆ + µ in M under Φ. For any matching

M∗ ⊆ G−V (M) and any (k+1)-edge-coloring or k-edge-coloring ϕ of G−(M ∪M∗), denote

the ∆ + µ color class of ϕ by Eϕ
M∗ . In particular, Eϕ

M∗ = ∅ if ϕ is a k-edge-coloring. We

introduce the following notation. For f ∈ EG(u, v)∩M , if there exists f1 ∈ E(G−(M∪M∗))

such that V (f1)∩V (f) = {u} and ϕ(f1) = Φ(f), we call f T1-improper (Type 1 improper)

at u if V (f1)∩V (M∗) = ∅, and T2-improper (Type 2 improper) at u if V (f1)∩V (M∗) 6= ∅.

If f is T1-improper or T2-improper at u, we say that f is improper at u. Define

E1(M∗, ϕ) = {f1 ∈ E(G− (M ∪M∗)) : f1 is adjacent in G to a T1-improper edge},

E2(M∗, ϕ) = {f1 ∈ E(G− (M ∪M∗)) : f1 is adjacent in G to a T2-improper edge}.

Observe that E1(M∗, ϕ) ∪ E2(M∗, ϕ) is a matching since M is a distance-3 matching in G.

We call the triple (M∗, Eϕ
M∗ , ϕ) prefeasible if the following conditions are satisfied:

(a) M∆+µ ∪M∗ ∪ Eϕ
M∗ is a matching;
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(b) each e ∈ M∗ such that e is adjacent in G to an edge of E2(M∗, ϕ), e is k-critical

and fully G-saturated in the graph He + e, where He is the unique maximal k-dense

subgraph of G− (M ∪M∗) containing V (e);

(c) the colors on edges of ∂G−(M∪M∗)(He) are all distinct under ϕ.

Let (M∗, Eϕ
M∗ , ϕ) be a prefeasible triple. Since M ∪ M∗ is a matching in G, if

(M∗, Eϕ
M∗ , ϕ) also satisfies Condition (d): |E1(M∗, ϕ)| = |E2(M∗, ϕ)| = 0, then by assigning

the color ∆ + µ to all edges of M∗, we obtain a (proper) (k + 1)-edge-coloring of G, where

the (k + 1)-edge-coloring is the combination of the precoloring Φ on M , the coloring using

the color ∆ + µ on M∗, and the coloring ϕ of G − (M ∪M∗). Thus we define a feasible

triple (M∗, Eϕ
M∗ , ϕ) as one that satisfies Conditions (a)-(d).

The rest of the proof is devoted to showing the existence of a feasible triple (M∗, Eϕ
M∗ , ϕ)

of G. Our main strategy is to first fix a particular prefeasible triple (M∗
0 , E

ϕ0

M∗0
, ϕ0), then

modify it step by step into a feasible triple (M∗, Eϕ
M∗ , ϕ). In particular, we will choose M∗

0

and ϕ0 such that Eϕ0

M∗0
= ∅. At the end, when we modify ϕ0 into ϕ, we will ensure that the

∆ + µ color class of G is M∆+µ ∪M∗ ∪ E1(M∗
0 , ϕ0) ∪ E2(M∗

0 , ϕ0). The process is first to

modify M∗
0 and ϕ0 at the same time to deduce the number of T2-improper edges.

By Lemma 3.3.5, there exists a matching M∗
0 of G−V (M) such that χ′(G−(M∪M∗

0 )) =

k and each edge e ∈M∗
0 is k-critical and fully G-saturated in He + e, where He is the unique

maximal k-dense subgraph of G−(M∪M∗
0 ) containing V (e). By Lemmas 3.2.1 and 3.2.2, He

is induced in G− (M ∪M∗
0 ) with χ′(He) = k, and He and He′ are either identical or vertex-

disjoint for any e′ ∈ M∗
0 \ {e}. Moreover, by Lemma 3.2.4, diam(He + e) ≤ diam(He) ≤ 2,

and He is (ϕ0)He-elementary and strongly ϕ0-closed in G−(M ∪M∗
0 ). As χ′(G−M) = k+1,

we have |M∗
0 | ≥ 1. Let ϕ0 be a k-edge-coloring of G− (M ∪M∗

0 ). Thus Eϕ0

M∗0
= ∅. Obviously,

the triple (M∗
0 , ∅, ϕ0) is prefeasible, which we take as our initial triple.

For (M∗
0 , ∅, ϕ0), if |E1(M∗

0 , ϕ0)| = |E2(M∗
0 , ϕ0)| = 0, then we are done. If |E1(M∗

0 , ϕ0)| ≥

1 and |E2(M∗
0 , ϕ0)| = 0, then we recolor each edge in E1(M∗

0 , ϕ0) with the color ∆ + µ to

produce a (k + 1)-edge-coloring ϕ1 of G− (M ∪M∗
0 ), since E1(M∗

0 , ϕ0) is a matching. Then
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as |E1(M∗
0 , ϕ1)| = |E2(M∗

0 , ϕ1)| = 0 and M∆+µ∪M∗
0 ∪E

ϕ1

M∗0
is a matching, it follows that the

new triple (M∗
0 , E1(M∗

0 , ϕ0), ϕ1) is feasible. Then we are also done.

Therefore, we assume that |E1(M∗
0 , ϕ0)| ≥ 0 and |E2(M∗

0 , ϕ0)| ≥ 1. Recall that for each

e ∈ M∗
0 , e is fully G-saturated in He + e. Thus we have the following observation: for an

edge fuv ∈ M with V (fuv) = {u, v}, if {u, v} ∩ V (He) = ∅ for any e ∈ M∗
0 , then fuv cannot

be a T2-improper edge.

Since |E2(M∗
0 , ϕ0)| ≥ 1, we consider one T2-improper edge in M , say fuv with V (fuv) =

{u, v}. Suppose that fuv is T2-improper at u and Φ(fuv) = i ∈ [k] (as ϕ0 is a k-edge-coloring,

i 6= k + 1 = ∆ + µ). Then there exist exy ∈ EG(x, y)∩M∗
0 and a maximal k-dense subgraph

H of G − (M ∪M∗
0 ) such that V (exy) ⊆ V (H) and fuv and exy are both adjacent in G to

an i-edge eyu ∈ EH(y, u). Since M is a distance-3 matching and diam(H) ≤ 2, we have

V (H) ∩ V (M \ {fuv}) = ∅. We will modify ϕ0 into a new coloring such that fuv is not

T2-improper at u under this new coloring and that no other edge of M∗
0 is changed into a

new T2-improper edge. We consider the three cases below regarding the location of fuv with

respect to H.

Case 1: fuv is not improper at v, or fuv is T1-improper at v but v /∈ V (H).

Let Fx be a maximal multi-fan at x with respect to exy and (ϕ0)H in H + exy. There

exist at least one ∆-vertex in V (Fx) \ {x, y} by Lemma 3.3.2(a) and a linear sequence at x

from y to this ∆-vertex in Fx. We consider two subcases as follows.

Figure 3.1. Operations I, II and III in Case 1.
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Subcase 1.1: V (Fx) \ {x, y} has a ∆-vertex x1 and there is a linear sequence S at x

from y to x1 such that S contains no i-edge or S contains no vertex w such that w is incident

with an i-edge of ∂G−(M∪M∗0 )(H).

Let S = (y, exy′ , y
′, . . . , exx1 , x1) be the linear sequence (where y′ = x1 is possible). We

apply Operation I as follows: apply a shifting in S from y to x1, color exy with ϕ0(exy′),

uncolor exx1 , and replace exy by exx1 in M∗
0 . (See Figure 3.1(a), where the edge of the dashed

line represents the uncolored edge.) Since x1 is not incident with any edge in M ∪ M∗
0 ,

M∗
1 := (M∗

0\{exy})∪{exx1} is a matching. Denote H1 := H+exy−exx1 . Let ψ be the k-edge

coloring of H1 after Operation I. Note that for any vertex z ∈ V (H1) that is incident with

an edge of ∂G−(M∪M∗1 )(H1), if ψ(z) 6= (ϕ0)H(z), then z ∈ V (S). By the condition of Subcase

1.1 and Operation I, there is no such vertex w such that w is incident with both an i-edge

of E(S) and an i-edge of ∂G−(M∪M∗1 )(H1). Thus we can rename some color classes of ψ but

keep the color i unchanged to match all colors on edges of ∂G−(M∪M∗1 )(H1). In this way we

obtain a (proper) k-edge-coloring ϕ1 of G− (M ∪M∗
1 ) by Lemma 3.2.5(b).

We claim that (M∗
1 , ∅, ϕ1) is a prefeasible triple. As M∆+µ ∪ M∗

1 is a matching, we

verify that M∗
1 and ϕ1 satisfy the corresponding conditions. Clearly H1 is k-dense with

V (H1) = V (H) and ∂G−(M∪M∗1 )(H1) = ∂G−(M∪M∗0 )(H) and χ′(H1) = χ′(H) = k, and exx1

is k-critical and fully G-saturated in H1 + exx1 . Furthermore, as distinct maximal k-dense

subgraphs are vertex-disjoint we know that each edge e ∈ M∗
1 \ {exx1} is still contained in

a k-dense subgraph of G − (M ∪M∗
1 ) such that e is k-critical and fully G-saturated in the

graph He + e if e is adjacent in G to an edge of E2(M∗
1 , ϕ1), where He is the unique maximal

k-dense subgraph of G − (M ∪M∗
0 ) containing V (e) if He and H1 are vertex-disjoint, and

He = H1 otherwise. Since ϕ1 is a k-edge-coloring of G− (M ∪M∗
1 ), He is strongly ϕ1-closed

for each e ∈M∗
1 . Therefore, (M∗

1 , ∅, ϕ1) is a prefeasible triple.

Next, we claim that |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1. Note that under ϕ1, we still

have ϕ1(eyu) = i. Since exy, eyu ∈ E(H1), exx1 ∈ M∗
1 and exx1 is not adjacent to eyu in

G − (M ∪ M∗
1 ), we see that now fuv is no longer T2-improper at u but T1-improper at

u with respect to M∗
1 and ϕ1. For any edge f ∈ M \ {fuv}, since both x and x1 are ∆-
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vertices of H + exy and V (H1) ∩ V (M \ {fuv}) = ∅, we see that the distance between f

and exx1 in G − (M ∪ M∗
1 ) is at least 2. Thus the property of f being T1-improper or

T2-improper is not changed under M∗
1 and ϕ1. Thus the new triple (M∗

1 , ∅, ϕ1) is prefeasible

with |E1(M∗
1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1 and |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1, and so we can

consider (M∗
1 , ∅, ϕ1) instead.

Subcase 1.2: For any ∆-vertex in V (Fx) \ {x, y}, any linear sequence from y to this

∆-vertex contains both an i-edge hi and a vertex w such that w is incident with an i-edge h

of ∂G−(M∪M∗0 )(H).

Let F ⊆ Fx be the maximal multi-fan at x without any i-edge with respect to exy and

(ϕ0)H . By the condition of Subcase 1.2, F does not contain any ∆-vertex from V (F )\{x, y}

in H. By Lemma 3.3.2(c), there exists a vertex z∗ ∈ V (F )\{x, y} with i ∈ (ϕ0)H(z∗) and

dH(z∗) = ∆ − 1. Since V (Fx) is (ϕ0)H-elementary by Lemma 3.3.1(a) and every color on

edges of ∂G−(M∪M∗0 )(H) under ϕ0 is a missing color at some vertex of H under (ϕ0)H , it

follows that z∗ = w, i.e., dH(w) = ∆ − 1 and dG−(M∪M∗0 )(w) = ∆. Thus the i-edge h is the

only edge incident with w from ∂G−(M∪M∗0 )(H), and w is not adjacent in G to any edge from

M ∪M∗
0 . Let S = (y, exy′ , y

′, . . . , exx1 , x1) be a linear sequence at x from y to x1. Notice that

w is in S by the condition of Subcase 1.2. We consider the following two subcases according

whether the boundary i-edge h belongs to E1(M∗
0 , ϕ0).

Subcase 1.2.1: h /∈ E1(M∗
0 , ϕ0), i.e., h is not adjacent in G to any precolored i-edge

in M .

Let exw ∈ EH(x,w) be an edge in S. We apply Operation II as follows: apply a

shifting in S from y to w, color exy with ϕ0(exy′), uncolor exw, and replace exy by exw in M∗
0 .

(See Figure 3.1(b), where the edge of the dashed line represents the uncolored edge.) Since

dG−(M∪M∗0 )(w) = ∆, M∗
1 := (M∗

0\{exy})∪ {exw} is a matching. Denote H1 := H + exy − exw.

Let ψ be the k-edge coloring of H1 after Operation II. Note that for any vertex z ∈ V (H1)

that is incident with an edge of ∂G−(M∪M∗1 )(H1), if ψ(z) 6= (ϕ0)H(z), then z is contained in

the subsequence of S from y to w. Since h is the only i-edge of ∂G−(M∪M∗1 )(H1), there is no

such vertex w such that w is incident with both an i-edge contained in the subsequence of S
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from y to w and an i-edge of ∂G−(M∪M∗1 )(H1) after Operation II. Thus we can rename some

color classes of ψ but keep the color i unchanged to match all colors on boundary edges of

∂G−(M∪M∗1 )(H1). In this way we obtain a (proper) k-edge-coloring ϕ1 of G − (M ∪M∗
1 ) by

Lemma 3.2.5(b).

By the similar argument in the proof of Subcase 1.1, it can be verified that (M∗
1 , ∅, ϕ1)

is prefeasible, and that fuv is no longer T2-improper at u but T1-improper at u with respect

to M∗
1 and ϕ1. For any edge f ∈M \{fuv}, we see that the distance between f and exw is at

least 2 or just 1 when h is adjacent in G to f with Φ(f) 6= i. Thus the property of f being T1-

improper or T2-improper is not changed under M∗
1 and ϕ1. Thus the new triple (M∗

1 , ∅, ϕ1)

is prefeasible with |E1(M∗
1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1 and |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1,

and so we can consider (M∗
1 , ∅, ϕ1) instead.

Subcase 1.2.2: h ∈ E1(M∗
0 , ϕ0), i.e., h is adjacent in G to some precolored i-edge fi

in M .

We apply Operation III as follows: recolor the i-edge h with the color ∆ + µ, apply a

shifting in S from y to x1, color exy with ϕ0(exy′), uncolor exx1 , and replace exy by exx1 in

M∗
0 . (See Figure 3.1(c), where the edge of the dashed line represents the uncolored edge.) By

the same argument as in the proof of Subcase 1.1, we know that M∗
1 := (M∗

0\{exy})∪{exx1}

is a matching. Denote H1 := H + exy − exx1 . Let ψ be the k-edge coloring of H1 after

Operation III. Note that there is no i-edge in ∂G−(M∪M∗1 )(H1) after Operation III. By the

similar argument as in the proof of Subcase 1.1, we can rename some color classes of ψ but

keep the color i unchanged to match all colors on edges of ∂G−(M∪M∗1 )(H1). In this way we

obtain a (proper) (k + 1)-edge-coloring ϕ1 of G− (M ∪M∗
1 ) by Lemma 3.2.5(b).

We claim that (M∗
1 , ∅, ϕ1) is a prefeasible triple. As M ∪ M∗

1 is a matching and h

is adjacent to fi and Φ(fi) = i ∈ [k], it follows that h is not adjacent to any edge from

M∆+µ ∪M∗
1 , which implies that M∆+µ ∪M∗

1 ∪ {h} is a matching. By the same argument as

in the proof of Subcase 1.1, we know that exx1 is k-critical and fully G-saturated in H1 +exx1 ,

and each edge e ∈M∗
1 \{exx1} is still contained in a k-dense subgraph of G− (M ∪M∗

1 ) such

that e is k-critical and fully G-saturated in the graph He+e if e is adjacent in G to an edge of
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E2(M∗
1 , ϕ1), where He is the unique maximal k-dense subgraph of G− (M ∪M∗

0 ) containing

V (e) if He and H1 are vertex-disjoint, and He = H1 otherwise. If the color ∆ +µ is not used

on edges of ∂G−(M∪M∗1 )(He), then colors on edges of ∂G−(M∪M∗1 )(He) are all distinct by the

fact that He is strongly ϕ1-closed. If the color ∆+µ is used on edges of ∂G−(M∪M∗1 )(He), then

it was used on exactly one edge of ∂G−(M∪M∗1 )(He). This, together with the fact that He is

(ϕ1)He-elementary, implies that colors on edges of ∂G−(M∪M∗1 )(He) are all distinct. Therefore,

(M∗
1 , ∅, ϕ1) is a prefeasible triple.

By the same argument as in the proof of Subcase 1.1, we know that now fuv is no

longer T2-improper at u but T1-improper at u with respect to M∗
1 and ϕ1, and that for

any edge f ∈ M \ {fuv}, the distance between f and exx1 in G − (M ∪M∗
1 ) is at least 2.

Except the i-edge fi of M that is adjacent in G to h, the property of f being T1-improper

or T2-improper is not changed under M∗
1 and ϕ1. The edge fi is originally T1-improper at

wi, and now is no longer improper at wi with respect to ϕ1, where we assume h ∈ EG(w,wi).

Thus |E1(M∗
1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1 − 1 and |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1, and so we

can consider (M∗
1 , {h}, ϕ1) instead. Note that assigning the color ∆ + µ to h will not affect

the modification of ϕ0 into ϕ and M∗
0 into M∗, since h ∈ E1(M∗

0 , ϕ0) and we will assign the

color ∆ + µ to all edges in E1(M∗
0 , ϕ0) in the final process.

Case 2: fuv is T2-improper at v with v ∈ V (H ′) for a maximal k-dense subgraph H ′ other

than H.

For this case, we apply the same operations as we did in Case 1 first with respect to the

vertex u in H and then with respect to the vertex v in H ′. Recall that V (H)∩V (H ′) = ∅ and

E1(M∗
0 , ϕ0) is a matching. By Case 1, the operations applied within G[V (H)] or G[V (H)]+hu

do not affect the operations applied within G[V (H ′)] or G[V (H ′)] +hv, where hu and hv are

the two possible i-edges with hu ∈ ∂G−(M∪M∗0 )(H) ∩ E1(M∗
0 , ϕ0) and hv ∈ ∂G−(M∪M∗0 )(H

′) ∩

E1(M∗
0 , ϕ0). Furthermore, if hu and hv exist at the same time, then V (hu) ∩ V (hv) = ∅ and

there is no maximal k-dense subgraph H ′′ other than H and H ′ such that V (H ′′)∩V (hu) 6= ∅

and V (H ′′) ∩ V (hv) 6= ∅. Denote the matching resulting from M∗
0 by M∗

1 , and the coloring

resulting from ϕ0 by ϕ1. By Case 1, Eϕ1

M∗1
⊆ {hu, hv}, M∆+µ∪M∗

1∪{hu, hv} is a matching, and
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(M∗
1 , E

ϕ1

M∗1
, ϕ1) also satisfies Conditions (b) and (c). Thus (M∗

1 , E
ϕ1

M∗1
, ϕ1) is a prefeasible triple.

With respect to M∗
1 and ϕ1, fuv is no longer T2-improper but is T1-improper at both u and

v. Furthermore, we have |E1(M∗
1 , ϕ1)| ≥ |E1(M∗

0 , ϕ0)| and |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 2.

Thus we can consider (M∗
1 , E

ϕ1

M∗1
, ϕ1) instead.

Case 3: fuv is T1-improper or T2-improper at v with v ∈ V (H).

Assume first that dH(b) < ∆. Let ebv ∈ EH(b, v) with ϕ0(ebv) = i. If fuv is T1-improper

at v, then we apply the same operations with respect to u as we did in Case 1. Denote

the new matching resulting from M∗
0 by M∗

1 , and the new coloring resulting from ϕ0 by ϕ1.

Then the vertex b is not incident in G with any edge of M∗
1 by Operations I-III in Case 1.

Thus fuv is no longer T2-improper at u but T1-improper at u with respect to M∗
1 and ϕ1.

Furthermore, we have |E1(M∗
1 , ϕ1)| ≥ |E1(M∗

0 , ϕ0)| and |E2(M∗
1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1.

Thus we can consider (M∗
1 , E

ϕ1

M∗1
, ϕ1) instead.

If fuv is T2-improper at v, let eab ∈ M∗
0 with V (eab) = {a, b}. We apply the same

operations with respect to u as we did in Case 1. Denote the resulting matching by M∗
1 , and

the resulting coloring by ϕ1. With respect to M∗
1 and ϕ1, the edge fuv is still T2-improper

at v as dH(a) < ∆ and dH(b) < ∆. By Case 1, now fuv is no longer T2-improper at u but

T1-improper at u with respect to the prefeasible triple (M∗
1 , E

ϕ1

M∗1
, ϕ1), where Eϕ1

M∗1
= ∅ or {h}

with some vertex w and its incident i-edge h ∈ ∂G−(M∪M∗0 )(H) ∩ E1(M∗
0 , ϕ0). Denote by H1

the new k-dense subgraph after the operations with respect to u in H + exy. In particular,

the situation under (M∗
1 , ∅, ϕ1) is actually the same as the case dH(b) = ∆ in the previous

paragraph since now dH1(y) = ∆.

Thus we consider only the case that fuv is T2-improper at v, T1-improper at u and

dH1(y) = ∆. Consider a maximal multi-fan Fa at a with respect to eab and (ϕ1)H1 in

H1 + eab. Clearly we can apply the same operations in Case 1 for v so that fuv is no longer

T2-improper at v with respect to the resulting matching M∗
2 and coloring ϕ2, unless these

operations would have to put one edge eay ∈ EH1(a, y) into M∗
2 . Then fuv would become

T2-improper at u again with respect to M∗
2 and ϕ2. The only operations that have to uncolor

an edge of H1 incident with y are Operations I and III. Therefore, we make the following



47

two assumptions on Fa in the rest of our proof.

(1) y is the only ∆-vertex in V (Fa)\{a, b}.

(2) If a linear sequence in Fa at a from b to y contains a vertex w′ such that dH1(w
′) = ∆−1

and w′ is incident with an i-edge h′ ∈ ∂G−(M∪M∗1 )(H1), then h′ ∈ E1(M∗
1 , ϕ1).

Figure 3.2. Operation in Subcase 3.1.

Let Fb be a maximal multi-fan at b with respect to eab and (ϕ1)H1 in H1 + eab. We

consider the following three subcases.

Subcase 3.1: Fb contains a linear sequence S at b from a to y such that S does not

contain any i-edge.

Let S = (a, eba′ , a
′, . . . , eby, y) be the linear sequence (where a′ = y is possible). We apply

a shifting in S from a to y, color eab with ϕ1(eba′), uncolor eby. (See Figure 3.2(a)-(b), where

the edges of the dashed line represent uncolored edges.) Note that M∗
2 := (M∗

1 \{eab})∪{eby}

is a matching, and H2 := H1 + eab − eby is a k-dense subgraph of G− (M ∪M∗
2 ). As S does

not contain any i-edge, by Lemma 3.2.5(b), we obtain a k-edge-coloring ϕ2 of G− (M ∪M∗
2 ).

Note that fuv is T2-improper at both u and v with respect to M∗
2 and ϕ2. However, we have

Φ(fuv) = i, ϕ2(ebv) = ϕ2(eyu) = i, and eby ∈ M∗
2 (bvuyb is a cycle with length 4 in G). By

assigning the color i to eby and recoloring ebv and eyu with the color ∆ + µ, we obtain a new

matching M∗
3 := M∗

2\{eby} = M∗
1\{eab} of G − V (M) and a new (k + 1)-edge-coloring ϕ3

of G − (M ∪M∗
3 ). (See Figure 3.2(c).) The edge fuv is now not improper at neither of its

endvertices. Note that Eϕ3

M∗3
= {ebv, eyu} if Eϕ1

M∗1
= ∅ and Eϕ3

M∗3
= {h, ebv, eyu} if Eϕ1

M∗1
= {h}.
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Since Eϕ3

M∗3
⊆ (E1(M∗

0 , ϕ0)∪E2(M∗
0 , ϕ0)) is a matching, and those edges in Eϕ3

M∗3
do not share

any endvertex with edges in M∆+µ ∪M∗
3 , it follows that M∆+µ ∪M∗

3 ∪ E
ϕ3

M∗3
is a matching.

Note that V (H2) ∩ V (M \ {fuv}) = ∅. For each e ∈ M∗
3 such that e is adjacent in G to

an edge of E2(M∗
3 , ϕ3), e is still k-critical and fully G-saturated in the graph He + e, where

He is still the unique maximal k-dense subgraph of G− (M ∪M∗
0 ) containing V (e) and He

is also strongly ϕ3-closed. Thus the new triple (M∗
3 , E

ϕ3

M∗3
, ϕ3) is prefeasible. Furthermore,

|E1(M∗
3 , ϕ3)| = |E1(M∗

1 , ϕ1)| − 1 ≥ |E1(M∗
0 , ϕ0)| − 1 and |E2(M∗

3 , ϕ3)| = |E2(M∗
1 , ϕ1)| − 1 =

|E2(M∗
0 , ϕ0)| − 2. Thus we can consider (M∗

3 , E
ϕ3

M∗3
, ϕ3) instead.

Subcase 3.2: Fb contains a vertex w′′ with dH1(w
′′) = ∆− 1 and i ∈ (ϕ1)H1

(w′′).

The i-edge ebv is in Fb by the maximality of Fb. Let S = (a, eba′ , a
′, . . . , ebw′′ , w

′′, ebv, v)

be a linear sequence at b from a to v in Fb (where a = a′ and a′ = w′′ are possible).

Since i ∈ (ϕ1)H1
(w′′), we have that either i ∈ ϕ1(w′′) or w′′ is incident with an i-edge

h′′ ∈ ∂G−(M∪M∗1 )(H1).

Assume first that i ∈ ϕ1(w′′) or w′′ is incident with an i-edge h′′ ∈ ∂G−(M∪M∗1 )(H1) such

that h′′ ∈ E1(M∗
1 , ϕ1). We apply a shifting in S from a to v, color eab with ϕ1(eba′), and

uncolor ebv. Note that ebw′′ was recolored by the color i in the shifting operation. We then

recolor the i-edge h′′ with the color ∆ + µ if h′′ exists, and rename some color classes of

H2 := H1 + eab− ebv but keep the color i unchanged without producing any improper i-edge

by Lemma 3.2.5(b). Finally we assign the color ∆+µ to ebv. Note that h 6= h′′ since ϕ1(h) =

∆+µ 6= i = ϕ1(h′′), and h and h′′ cannot both exist in ∂G−(M∪M∗0 )(H) = ∂G−(M∪M∗1 )(H1) since

otherwise ϕ0(h) = ϕ0(h′′) = i contradicting that H is strongly ϕ0-closed. Now we obtain

a new matching M∗
2 := M∗

1\{eab} of G − V (M) and a new (proper) (k + 1)-edge-coloring

ϕ2 of G− (M ∪M∗
2 ) such that fuv is no longer T2-improper at v or even T1-improper at v

with respect to a new triple (M∗
2 , E

ϕ2

M∗2
, ϕ2), where Eϕ2

M∗2
= {ebv} if Eϕ1

M∗1
= ∅ but h′′ does not

exist, Eϕ2

M∗2
= {ebv, h′′} if Eϕ1

M∗1
= ∅ and h′′ exists, and Eϕ2

M∗2
= {ebv, h} if Eϕ1

M∗1
= {h}. Since

Eϕ2

M∗2
⊆ (E1(M∗

0 , ϕ0) ∪ E2(M∗
0 , ϕ0)) is a matching, and those edges in Eϕ2

M∗2
do not share any

endvertex with edges in M∆+µ ∪M∗
2 , it follows that M∆+µ ∪M∗

2 ∪E
ϕ2

M∗2
is a matching. Note

that V (H2) ∩ V (M \ {fuv}) = ∅. By the similar argument as in the proof of Subcase 3.1,
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the new triple (M∗
2 , E

ϕ2

M∗2
, ϕ2) is prefeasible. Furthermore, |E1(M∗

2 , ϕ2)| ≥ |E1(M∗
0 , ϕ0)| and

|E2(M∗
2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗
2 , E

ϕ2

M∗2
, ϕ2) instead.

Now we may assume that the i-edge h′′ 6∈ E1(M∗
1 , ϕ1). Since h and h′′ cannot both exist,

we have Eϕ1

M∗1
= ∅. Note that the vertex w′′ /∈ V (Fa) by Assumption (2) prior to Subcase

3.1. Moreover, w′′ is not incident with any edge in M ∪M∗
1 and w′′ is only incident with

the i-edge h′′ in ∂G−(M∪M∗1 )(H1). Since dG−(M∪M∗1 )(w
′′) = ∆ and ϕ1 is a k-edge-coloring of

G − (M ∪M∗
1 ) with k ≥ ∆ + 1, there exists a color α ∈ ϕ1(w′′) with α 6= i. Since V (H1)

is (ϕ1)H1-elementary, there exists an α-edge e1 incident with the vertex a. Thus we can

define a maximal multi-fan at a, denoted by F ′a, with respect to e1 and (ϕ1)H1 in H1 + e1.

(Notice that e1 is colored by the color α in F ′a.) Moreover, V (F ′a) is (ϕ1)H1-elementary since

V (H1) is (ϕ1)H1-elementary. By Lemma 3.3.2(b) and Assumption (1) prior to Subcase 3.1,

we have eFa(a, b′) = eH1+eab(a, b
′) = µ for any vertex b′ in V (Fa)\{a}. Therefore, V (F ′a)\{a}

and V (Fa)\{a} are disjoint, since otherwise we have V (F ′a) ⊆ V (Fa) and α ∈ (ϕ1)H1
(b′) for

some b′ ∈ V (Fa) implying b′ = w′′ ∈ V (Fa), a contradiction. Note that if w′′ /∈ V (F ′a), then

V (F ′a)\{a} must contain a ∆-vertex in H1, since otherwise Lemma 3.3.2(d) and the fact

(ϕ1)H1(e1) = α ∈ ϕ1(w′′) imply that w′′ ∈ V (F ′a), a contradiction. Thus F ′a contains a linear

sequence S ′ = (b1, e2, b2, . . . , et, bt) at a, where b1 ∈ V (e1), bt (with t ≥ 1) is a ∆-vertex if

w′′ /∈ V (F ′a), and bt is w′′ if w′′ ∈ V (F ′a). Notice that bt is not incident with any edge in

M ∪M∗
1 by our choice of bt. Moreover, bt 6= y since V (F ′a)\{a} and V (Fa)\{a} are disjoint.

Let β (β 6= i) be a color in ϕ1(b). By Lemma 3.3.1(b), we have Pb(β, α) = Pw′′(β, α). We

then consider the following two subcases according the set (V (S ′)\{a}) ∩ (V (S)\{a}).

We first assume that (V (S ′)\{a})∩(V (S)\{a}) ⊆ {bt}. If e1 /∈ Pb(β, α), then we apply a

Kempe change on P[b,w′′](β, α), uncolor e1 and color eab with α. If e1 ∈ Pb(β, α) and Pb(β, α)

meets b1 before a, then we apply a Kempe change on P[b,b1](β, α), uncolor e1 and color eab

with α. If e1 ∈ Pb(β, α) and Pw′′(β, α) meets b1 before a, then we uncolor e1, apply a Kempe

change on P[w′′,b1](β, α), apply a shifting in S from a to w′′, color eab with ϕ1(eba′), and recolor

ebw′′ with β. In all three cases above, eab is colored with a color in [k] and e1 is uncolored.

Finally we apply a shifting in S ′ from b1 to bt, color e1 with ϕ1(e2), and uncolor et. Notice
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that the above shifting in S ′ does nothing if t = 1. Denote H2 := H1 + eab − et. Since H2 is

also k-dense and χ′(H2) = k, we can rename some color classes of E(H2) but keep the color

i unchanged to match all colors on boundary edges without producing any improper i-edge

by Lemma 3.2.5(b). Now we obtain a new matching M∗
2 := (M∗

1\{eab}) ∪ {et} and a new

(proper) k-edge-coloring ϕ2 of G − (M ∪M∗
2 ) such that fuv is no longer T2-improper at v

but T1-improper at v with respect to the new prefeasible triple (M∗
2 , ∅, ϕ2). Furthermore,

|E1(M∗
2 , ϕ2)| = |E1(M∗

0 , ϕ0)|+ 2 and |E2(M∗
2 , ϕ2)| = |E2(M∗

0 , ϕ0)|− 2. Thus we can consider

(M∗
2 , ∅, ϕ2) instead.

Figure 3.3. One possible operation for bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S)\{a}) in Subcase 3.2,

where b1 = bj = a∗ = a′.

Then we assume that there exists bj = a∗ ∈ (V (S ′)\{a})∩(V (S)\{a}) for some j ∈ [t−1]
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and a∗ ∈ V (S). (See Figure 3.3 for a depiction when b1 = bj = a∗ = a′, where the edges

of the dashed line represent uncolored edges). In this case we assume a∗ is the closest

vertex to the vertex a along S. Note that bj 6= b as V (F ′a)\{a} and V (Fa)\{a} are disjoint.

Let αj = ϕ1(ej+1) ∈ (ϕ1)H1
(bj). By Lemma 3.3.1(b), we have Pb(β, αj) = Pbj(β, αj). If

ej+1 /∈ Pb(β, αj), then we apply a Kempe change on P[b,bj ](β, αj), uncolor ej+1 and color eab

with αj. If ej+1 ∈ Pb(β, αj) and Pb(β, αj) meets bj+1 before a, then we apply a Kempe change

on P[b,bj+1](β, αj), uncolor ej+1 and color eab with αj. If ej+1 ∈ Pb(β, αj) and Pbj(β, αj) meets

bj+1 before a, then we uncolor ej+1, apply a Kempe change on P[bi,bj+1](β, αj), apply a shifting

in S from a to bj (i.e., a∗), color eab with ϕ1(eba′), and recolor the edge ebbj ∈ EH1(b, bj) with

β. (See Figure 3.3(a)-(c).) In all three cases above, eab is colored with a color in [k] and ej+1

is uncolored. Finally we apply a shifting in S ′ from bj+1 to bt, color ej+1 with ϕ1(ej+2), and

uncolor et. (See Figure 3.3(d).) Notice that the above shifting in S ′ does nothing if bj+1 = bt.

Denote H2 := H1 + eab − et. Since H2 is also k-dense and χ′(H2) = k, we can rename some

color classes of E(H2) but keep the color i unchanged to match all colors on boundary

edges without producing any improper i-edge by Lemma 3.2.5(b). Now we obtain a new

matching M∗
2 := (M∗

1\{eab}) ∪ {et} of G− V (M) and a new (proper) k-edge-coloring ϕ2 of

G−(M ∪M∗
2 ) such that fuv is no longer T2-improper at v but T1-improper at v with respect

to the new prefeasible triple (M∗
2 , ∅, ϕ2). Furthermore, |E1(M∗

2 , ϕ2)| = |E1(M∗
0 , ϕ0)|+ 2 and

E2(M∗
2 , ϕ2) = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗
2 , ∅, ϕ2) instead.

Subcase 3.3: Fb does not contain a linear sequence at b from a to y without i-edge,

and Fb does not contain a vertex w′′ with dH1(w
′′) = ∆− 1 and i ∈ (ϕ1)H1

(w′′).

We claim that Fb contains a linear sequence S∗ at b from a to a ∆-vertex y∗ such that

y∗ 6= y and there is no i-edge in S∗. By Lemma 3.3.2(a), the multi-fan Fb contains at least

one ∆-vertex in H1. Now if Fb does not contain any linear sequence without i-edges from a

to any ∆-vertex in H1, then by Lemma 3.3.2(c), the multi-fan Fb contains a vertex w′′ with

dH1(w
′′) = ∆ − 1 and i ∈ (ϕ1)H1

(w′′), contradicting the condition of Subcase 3.3. So Fb

contains a linear sequence S∗ from a to a vertex y∗ such that dH1(y
∗) = ∆ and there is no

i-edge in S∗. Note that y∗ 6= y, since otherwise we also have a contradiction to the condition
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of Subcase 3.3. Thus the claim is proved.

Assume that S∗ = (a, eba′ , a
′, . . . , eby∗ , y

∗) at b from a to y∗ (where a′ = y∗ is possible),

and S∗ contains no i-edge. Let θ ∈ ϕ1(y∗).

Subcase 3.3.1: θ = i.

Since S∗ contains no i-edge, we apply a shifting in S∗ from a to y∗, color eab with

ϕ1(eba′), uncolor eby∗ , and rename some color classes of E(H1 + eab− eby∗) but keep the color

i unchanged to match all colors on boundary edges without producing any improper i-edge

by Lemma 3.2.5(b). By coloring eby∗ with i and recoloring ebv from i to ∆ + µ, we obtain a

new matching M∗
2 := M∗

1\{eab} of G−V (M) and a new (proper) (k+ 1)-edge-coloring ϕ2 of

G−(M∪M∗
2 ). Then fuv is no longer T2-improper at v or even T1-improper at v with respect

to the new prefeasible triple (M∗
2 , E

ϕ2

M∗2
, ϕ2) with Eϕ2

M∗2
= {ebv} if Eϕ1

M∗1
= ∅, and Eϕ2

M∗2
= {ebv, h}

if Eϕ1

M∗1
= {h} (when y∗ ∈ V (Fx)∩ V (Fb)). Furthermore, Eϕ2

M∗2
⊆ (E1(M∗

0 , ϕ0)∪E2(M∗
0 , ϕ0)),

|E1(M∗
2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and |E2(M∗
2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider

(M∗
2 , E

ϕ2

M∗2
, ϕ2) instead.

Subcase 3.3.2: θ 6= i.

Since V (H1) is (ϕ1)H1-elementary, there exists a θ-edge e1 incident with the vertex

a. Thus by the similar argument as in the proof of Subcase 3.2, we define a maximal

multi-fan at a, denoted by F ′a, with respect to e1 and (ϕ1)H1 in H1 + e1, and we have

eFa(a, b′) = eH1+eab(a, b
′) = µ for any vertex b′ in V (Fa)\{a}. Therefore, V (F ′a)\{a} and

V (Fa)\{a} are disjoint, since otherwise we have V (F ′a) ⊆ V (Fa) and ϕ1(e1) = θ ∈ (ϕ1)H1
(b′)

for some b′ ∈ V (Fa) implying y∗ = b′ ∈ V (Fa), which contradicts Assumption (1). Note

that V (F ′a)\{a} must contain a ∆-vertex in H1, since otherwise Lemma 3.3.2(d) and the

fact (ϕ1)H1(e1) = θ ∈ ϕ1(y∗) imply that y∗ ∈ V (F ′a), which contradicts dH1(y
∗) = ∆. If F ′a

contains a vertex of V (H1) that is incident with an i-edge of ∂G−(M∪M∗1 )(H1) in G−(M∪M∗
1 ),

then we denote the vertex by w∗ and the i-edge by h∗. If F ′a does not contain any linear

sequence to a ∆-vertex in H1 without i-edge and boundary vertex w∗, then by Lemma

3.3.2(d), the multi-fan F ′a contains a vertex z∗ with i ∈ (ϕ1)H1
(z∗) and dH(z∗) = ∆ − 1.

Since H1 is (ϕ1)H1-elementary, we have z∗ = w∗ and dH1(w
∗) = ∆ − 1. Thus F ′a contains a
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linear sequence S ′ = (b1, e2, b2, . . . , et, bt) at a, where b1 ∈ V (e1), bt (with t ≥ 1) is w∗ if there

exists w∗ with dH1(w
∗) = ∆− 1 such that h∗ ∈ ∂G−(M∪M∗1 )(H1) but h∗ /∈ E1(M∗

0 , ϕ0), and bt

is a ∆-vertex in H1 otherwise. Notice that bt is not incident with any edge in M ∪M∗
1 by

our choice of bt. Moreover, if bt = w∗ as defined above, then bt = w∗ is not a vertex in V (Fb)

by the condition of Subcase 3.3. And bt 6= y since V (F ′a)\{a} and V (Fa)\{a} are disjoint.

Let β (β 6= i) be a color in ϕ1(b). By Lemma 3.3.1(b), we have Pb(β, θ) = Py∗(β, θ). We

then consider the following two subcases according the set (V (S ′)\{a}) ∩ (V (S∗)\{a}).

We first assume that (V (S ′)\{a})∩ (V (S∗)\{a}) ⊆ {bt}. If e1 /∈ Pb(β, θ), then we apply

a Kempe change on P[b,y∗](β, θ), uncolor e1 and color eab with θ. If e1 ∈ Pb(β, θ) and Pb(β, θ)

meets b1 before a, then we apply a Kempe change on P[b,b1](β, θ), uncolor e1 and color eab

with θ. If e1 ∈ Pb(β, θ) and Py∗(β, θ) meets b1 before a, then we uncolor e1, apply a Kempe

change on P[y∗,b1](β, θ), apply a shifting in S∗ from a to y∗, color eab with ϕ1(eba′), and recolor

eby∗ with β. In all three cases above, eab is colored with a color in [k] and e1 is uncolored.

Then we apply a shifting in S ′ from b1 to bt, color e1 with ϕ1(e2), and uncolor et. Denote

H2 := H1+eab−et. Since H2 is also k-dense and χ′(H2) = k, we can rename some color classes

of E(H2) but keep the color i unchanged to match colors on boundary edges except i-edges by

Lemma 3.2.5(b). Finally recolor h∗ with the color ∆+µ if h∗ ∈ ∂G−(M∪M∗0 )(H)∩E1(M∗
0 , ϕ0).

Now we obtain a new matching M∗
2 := (M∗

1\{eab}) ∪ {et} of G− V (M) and a new (proper)

(k + 1)-edge-coloring ϕ2 of G − (M ∪ M∗
2 ) such that fuv is no longer T2-improper at v

but T1-improper at v with respect to the new prefeasible triple (M∗
2 , E

ϕ2

M∗2
, ϕ2), where ∅

or {h} or {h∗} = Eϕ2

M∗2
⊆ E1(M∗

0 , ϕ0). Furthermore, |E1(M∗
2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and

|E2(M∗
2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗
2 , E

ϕ2

M∗2
, ϕ2) instead.

Then we assume that there exists bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S∗)\{a}) for some

j ∈ [t − 1] and a∗ ∈ V (S∗). (See Figure 3.4 for a depiction when b1 = bj = a∗ = a′,

where the edges of the dashed line represent uncolored edges.) In this case we assume a∗

is the closest vertex to a along S∗. Note that bj 6= b as V (F ′a)\{a} and V (Fa)\{a} are

disjoint. Let θj = ϕ1(ej+1) ∈ (ϕ1)H1
(bj). By Lemma 3.3.1(b), Pb(β, θj) = Pbj(β, θj). If

ej+1 /∈ Pb(β, θj), then we apply a Kempe change on P[b,bj ](β, θj), uncolor ej+1 and color eab
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Figure 3.4. One possible operation for bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S)\{a}) in Subcase 3.3,

where b1 = bj = a∗ = a′.

with θj. If ej+1 ∈ Pb(β, θj) and Pb(β, θj) meets bj+1 before a, then we apply a Kempe change

on P[b,bj+1](β, θj), uncolor ej+1 and color eab with θj. If ej+1 ∈ Pb(β, θj) and Pbj(β, θj) meets

bj+1 before a, then we uncolor ej+1, apply a Kempe change on P[bj ,bj+1](β, θj), apply a shifting

in S∗ from a to bj (i.e., a∗), color eab with ϕ1(eba′), and recolor the edge ebbj ∈ EH1(b, bj) with

β. (See Figure 3.4(a)-(c).) In all three cases above, eab is colored with a color in [k] and ej+1

is uncolored. Denote H2 := H1 +eab−et. Then we apply a shifting in S ′ from bj+1 to bt, color

ej+1 with ϕ1(ej+2), and uncolor the edge et, and rename some color classes of E(H2) but

keep the color i unchanged to match all colors on boundary edges except i-edges by Lemma

3.2.5(b). Finally recolor h∗ with ∆ + µ if h∗ ∈ ∂G−(M∪M∗0 )(H) ∩ E1(M∗
0 , ϕ0). (See Figure
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3.4(d).) Now we obtain a new matching M∗
2 = (M∗

1\{eab}) ∪ {et} of G − V (M) and a new

(proper) (k + 1)-edge-coloring ϕ2 of G− (M ∪M∗
2 ) such that fuv is no longer T2-improper

at v but T1-improper at v with respect to the new prefeasible triple (M∗
2 , E

ϕ2

M∗2
, ϕ2), where

∅ or {h} or {h∗} = Eϕ2

M∗2
⊆ E1(M∗

0 , ϕ0). Furthermore, |E1(M∗
2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and

|E2(M∗
2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗
2 , E

ϕ2

M∗2
, ϕ2) instead. The proof is

now finished.
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CHAPTER 4

FUTURE WORK

Vizing fans and Vizing’s Theorem have played a crucial role in revealing properties of

graphs and soloving problems and conjectures in graph edge coloring. Our main results in

this dissertation are new extensions of Vizing fans and Vizing’s Theorem, which not only

have valuable theoretical significance, but also could be usefull on attacking graph chromatic

problems and conjectures.

Based on our results in this dissertation , we will continue the following related work.

(1) We will continue to consider other general extensions of Vizing fans with diameter

at least four.

(2) We will continue to consider the conjecture of Edwards et al. with precol-

ored distance-3 matchings for simple graphs, and precolored distance-2 matchings for

(multi)graphs.

(3) Besides the above two topics, we will consider some related problems about total

coloring for multigraphs.

A k-total-coloring is an assignment of k colors to the vertices and edges of a graph

G such that no two adjacent or incident elements of V (G) ∪ E(G) receive the same color.

The total chromatic number, denoted by χ′′(G), is the minimum integer k such that G

admits a k-total-coloring. Behzad (1965) in his Ph.D. dissertation [3] conjectured that

χ′′(G) ≤ ∆(G) + 2 if G is simple. This conjecture is known as the total coloring conjecture.

Clearly, χ′′(G) ≥ ∆(G) + 1. So in other words, the total coloring conjecture is equivalent to

saying that χ′′(G) = ∆(G) + 1 or ∆(G) + 2. More generally, Vizing [36] in 1968 conjectured

that χ′′(G) ≤ ∆(G) + µ(G) + 1. Goldberg [21] in 1984 proposed the following conjecture,

which gives a further strengthening when χ′(G) ≥ ∆(G) + 3, if χ′(G) ≥ ∆(G) + 3, then

χ′′(G) = χ′(G). In the survey paper entitled “Unsolved graph colouring problems” in [4],
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Jensen and Toft asked, as analogue of the Goldberg-Seymour Conjecture, whether every

graph satisfies χ′′(G) ≤ max{∆(G) + 2, dΓ(G)e}.

There are many fascinating problems and conjectures in graph coloring and other fields

of graph theory. I will keep moving forward on the road of my research work with my

gratitude to my teachers, my family and friends.
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