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ABSTRACT 

This thesis begins with a brief review about the role and importance of the small molecules 

containing fluorine atoms in medicine and imaging. Then, the first part of the thesis will discuss 

the synthesis, purification and characterization of pentamethine cyanine dyes. The structure 

identification of the final dyes is done by using 1H NMR, 13C NMR, 19F NMR, and mass 

spectrometry. The studies performed after full characterization were the determination of optical 

and physicochemical properties. After these properties were performed, the fluorophores were 

evaluated to be good candidates for in vivo testing. 

INDEX WORDS: near-infrared, preoperative medicine, fluorophore, intraoperative imaging, 

cyanine, fluorescence 
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1 REVIEW: THE ROLE OF SMALL MOLECULES CONTAINING FLUORINE 

ATOMS IN MEDICINE AND IMAGING 

1.1 Atomic Fluorine 

The growing importance of the fluorine atom incorporated into molecules in medicine is 

undeniable. During the past 20 years, publications, patents and medically viable fluorine-

containing compounds have been published at a rapid rate with three of the top ten and four of the 

top twenty blockbuster drugs containing fluorine somewhere on the molecule. These four drugs 

alone account for 16.7 billion dollars in income since 2011. 1 The utilization of the fluorine atom 

and its use as a functional group is very attractive in the medical field for many reasons. Firstly, 

the fluorine atom is the second smallest “functional group”. Its size falls between that of a 

hydrogen atom and a hydroxyl group. Accompanying that, the trifluoromethyl group is similar in 

size to a methyl, 2.107 Å vs. 1.715 Å,2 however, the trifluoromethyl group occupies more space 

than an isopropyl group in terms of single-bond rotational barriers.3,4 As shown in Figure 1 below, 

modeling studies performed reveal the relative sizes and electrostatic potentials of these groups on 

a stilbene ring. 

 

Figure 1. The relative sizes of stilbene and decafluorostilbene calculated using Spartan.5 
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Advantages accompanying the size of fluorine, it being the smallest halogen, allows for it and 

its “methyl” form to fit into smaller pockets of space in comparison to the other halogens and their 

corresponding groups. A second advantage is the atom’s electronegativity. Fluorine is the most 

electronegative atom with a value of 4.0 on the scale developed by Linus Pauling. This value 

translates into several key physical and chemical properties. The C-F bond is considered the 

strongest bond in organic chemistry due to the electronegativity difference between the two 

atoms.6 The electronegative nature of fluorine changes the dipole moment and direction of 

molecules as well as changing the pKa of the molecule. The consequences stemming from the 

addition of a fluorine atom’s size and electronegativity included on a pharmaceutical are drug 

distribution, drug receptor binding and potency. A third advantage of the fluorine atom regarding 

its use in medical and biomedical imaging applications is its ability to increase lipophilicity. The 

tuning of lipophilicity allows researchers to allow for the compounds to be absorbed and 

transported in vivo faster and more easily. This stems from the fact that the C-F bond is more 

hydrophobic than that of the C-H bond.7 The most important reason that fluorine is featured in 

about 25% of all pharmaceutical drugs on the market is metabolic oxidation and the role the 

fluorine atom plays into blocking sites from this process. These last two properties of a fluorinated 

compound determine how the body reacts to the compound in ways such as the clearance rate and 

route of the molecule as well as the toxicity of the molecule on living and tissue. 



3 

 

 

 

Figure 2. A flow diagram outlining the effects of adding fluorine on drug leading to final 

consequences. 

 

1.2 Common Reactions of Incorporating Fluorine to Small Molecules 

To synthesize drugs and pharmaceuticals containing the fluorine atom, and other fluorine 

containing functional groups, it is important to understand the reactions involving fluorine. Here, 

three reactions involving fluorine on saturated alkyl systems are described. The first reaction is 

one that is performed in industrial large scale settings and involves hydrogen fluoride (HF). This 

reaction uses it as a nucleophilic substitute for other halogens; this process is somewhat limited to 

allylic and benzylic halogens.8 Two examples of this reaction are shown in Figure 3, reactions 1 

and 2. Another reaction commonly used to incorporate fluorine is the basic Friedel-Crafts (FC) 
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alkylation. Hydrogen fluoride in this case acts as both the FC catalyst and the fluorinating agent 

itself to prepare trifluormethylated aromatic systems. The carbon tetrachloride reagent, in Figure 

3, equation 3 below, replaces a hydrogen on the benzene ring, followed by the substitution of 

fluorine for the three chlorine atoms. A third reaction that requires a Lewis acid catalyst is referred 

to as the Swarts reaction. This involves a metal fluoride species acting as the catalyst in removing 

a previous halide and substituting it with a fluorine atom after a four-member intermediate is 

formed.9 These three examples involve saturated alkyl or aromatic systems and examples are 

shown below.  

 

Figure 3. Examples of fluorination reactions involving alkanes or aromatic reactions.8,9 

 

Substitution or addition/elimination reactions can also occur on unsaturated alkyl chains at 

vinylic or allylic positions. A fluorine anion, usually stemming from some metal complex, acts as 

the nucleophile and attacks the alkene system. This reaction can occur directly at the point of 
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unsaturation as well as at allylic or vinylic positions. Examples of these reactions are shown in 

Figure 4 as well as a rearrangement reaction. These are just basic reactions involving fluorine, 

synthesis of several fluorine containing drugs are visualized later in this review. 

 

Figure 4. Examples of an addition (top), allylic substitution (middle), and nucleophilic 

substitution and rearrangement (bottom) reactions involving a fluoride ion.8,9 

  

With the emergence of fluorine incorporated into drugs and its apparent positive effects on 

the compounds, fluorinating reagents such as alkyl chains, heterocycles and fluorine-metal 

complexes are all commercially available and readily obtained for continuing syntheses.9  

 

1.3 Fluorine Role in Medicine 

As alluded to earlier, four compounds in the top 20 of the highest grossing pharmaceuticals 

feature fluorine: Lipitor, 1, Advair Diskus, 2, Crestor, 3, and Lexapro, 4.1 These drugs treat high 

cholesterol, asthma, high cholesterol, and depression and anxiety disorders respectively; it is 

obvious that these drugs are used by patients in every demographic and their functions effect 

millions of people worldwide. Shown in Figure 5 below, these compounds represent only a fraction 

X
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X

F
F

X
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F
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of new pharmaceuticals that contain at least one fluorine atom. In fact, in 2007 alone, 9 of the 19 

drugs approved by the FDA contained fluorine.10 As seen in Figure 5 outlining the structures of 

the four drugs, a parafluorophenyl group is present in three of the molecules and at least one 

fluorine atom exists on all four. In this sections, drugs and pharmaceuticals will be described and 

categorized in detail as outlined in Figure 2. Compounds that feature fluorine for each reason in 

the chart above will be explored for the research done and the process leading researchers to apply 

fluorine groups onto their lead compounds. 

 

Figure 5. The four most successful pharmaceutical drugs featuring fluorine.1 
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1.3.1 Metabolic Oxidation 

As previously mentioned, a large reason to incorporate the fluorine atom, especially on 

aromatic ring systems is to combat the effect of metabolic oxidation. This process occurs when 

drugs are taken into the body; this a natural reaction from the body on drugs when taken is to 

eliminate them as quickly as possible. The P450 monooxygenase protein accomplishes this by 

oxidizing CH bonds, generally at the para-position on a benzene ring featured in most drugs. The 

addition of an atom or group stops this pathway as the molecule may not fit into the active site of 

the monooxygenase.; the electron withdrawing nature of the fluorine atom deactivates other 

positions on the ring against this particular metabolic pathway as well.4 Slowing the P450 protein 

and its function allows for the drug to remain in the body longer, which in turn increases its potency 

and viability as a drug. Examples exist of compounds which have very quick bodily clearances, 

but when fluorine is incorporated, the rate at which the compound is cleared slows by as much as 

108-fold.3 And while the main function of the P450 protein is to speed up metabolism, this process 

can take a pharmaceutically active compound and turn it toxic.11 For many of the potential 

pharmaceutically viable compounds, clearance rate and clearance mechanism creates concerns 

when designing and synthesizing molecules for use in the body. Fluorine and chlorine can block 

this process from happening, but due to its minimal size and steric perturbation in active sites, 

fluorine is the preferred atom over chlorine. Many therapeutics highlighted in this introduction 

share this common theme: a parafluorophenyl group. The protection afforded by the halogen 

reduces the toxicity of the compound and can make these compounds useful in activation sites in 

proteins ect.4,12 The strategy of para-fluorination has been thoroughly investigated and has been 

frequently used in drug design.11  
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Aprepitant, 5,13 serves as an example of a para-fluorine atom serving the purpose of 

blocking oxidative metabolism and lowering oxidation potential elsewhere on the ring. This drug 

was approved by the FDA in 2003 for the purpose of preventing chemotherapy-induced nausea 

and vomiting. The 3,5-bis-(trifluoromethyl)phenyl group is a common feature with other NK1 

receptor antagonists and improves the penetration of the drug into the central nervous system.13 

The p-fluorophenyl group blocks the 4-position from oxidation as well as deactivating the 

remainder of the ring positions. 

 

Figure 6. The drug Aprepitant, 5, with a fluorine atom strategically blocking a potential 

metabolic oxidation site. The red circle highlights the sites blocked from metabolic oxidation.13 

 

Ezetimibe, 6,14 is another drug to combat cholesterol; the drug features a fluorinated phenyl 

ring to block other sites on the ring from metabolic oxidation as well. Figure 7 shows the structure 

of Ezetimibe and highlights the blocking of sites due to the fluorine atoms. The compound utilizes 

the fluorine atoms as this defense against aromatic hydroxylation as well as yielding a derivative 

that exhibited improved pharmacokinetic properties that also increases the activity of the drug 

significantly. Another benefit of the fluorine atoms is that they increase the polarity of the overall 
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molecule. More polar molecules are more susceptible glucuronidation, a process which generally 

inactivates drugs. However in the case of Ezetimibe, the glucuronidation actually improves the 

activity of the drug by recirculating the drug to the site of activation and increases the residence 

time in the area of interest. Therefore the use of fluorine, with its chemical properties, increases 

lipophilicity and polarity as well as blocking the oxidation sites, displays to researchers the 

advantages of using this atom, highlighted explicitly by the fact that once fluorine atoms were 

added to the drug, it displayed a 50-fold increase in activity over the parent atom.  

 

Figure 7. Ezetimibe, 6, uses the fluorine molecule to block the para-position from 

metabolic oxidation.14 

 

Synthetic Statins are a class of drugs that require 4-fluorophenyl groups as structural 

requirements for biological activity. Figure 8 shows Pitavastatin, 7, atorvastatin (lipitor), 1, and 

rosuvastatin (crestor), 3, as three examples of this synthetic class of drugs. These drugs all combat 

cholesterol problems by inhibiting the HMG-CoA reductase. All of these compounds feature a 

parafluorophenyl moiety as studies have shown that substitutions with this group greatly surpasses 

the potency of all other functional groups tested.15,16 
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Figure 8. Three compounds, 2, 3, and 7, in the statin class of compounds that feature and 

require a para-fluorophenyl group.15,16 

 

Rosuvastatin spawned from the idea of replacing complex and larger functional groups and 

heteroatoms with simpler, achiral alternatives. The addition of the pyrimidine ring compared to 

other synthetic statins, compare with Lipitor, 1, improved activity for inhibiting the targeted 

reductase. The fluorophenyl group on this molecule is a structural requirement as mentioned above 

as well as deactivating the ring against the P450 monooxygenase. Pitavastatin is the last statin-

type drug to enter the market and is completely synthetic. The cyclopropyl group, differing from 

rosuvastatin, translates to a high resistance to metabolism along with the 4-fluorophenyl group on 

the heterocycle.17 

1.3.2 Electronic Considerations 

While deactivating the drug against this metabolic process is possibly the most important 

consequence of adding fluorine to drugs, it remains only one of the reasons. Electronic 

considerations such as electronegativity, pKa modification and lipophilicity tailoring are also 

reasons that pharmaceutical chemists utilize fluorine as a functional group. Electronegativity has 
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several effects on a molecule including molecule and bond stability, overall dipole of a molecule 

and electrostatic interactions with receptor sites. A few drug examples detailed above utilized these 

properties in combination with blocking metabolic sites, however, below are examples of 

compounds that feature fluorine for these reasons alone. 

 An example not involving oxidation but instead that of functional group modification toward 

fluorine is Fulvestrant, 9. ICI 164,384, 8, the original derivative was developed for the treatment 

of breast cancer, specifically to combat negative side effects of the receptor modulator tamoxifen. 

Tamoxifen increased risk of the metastasis of associated tumors. The parent molecule did not 

display enough potency in vivo to represent viable clinical consideration, however after 

fluorination of the drug, the derivative, showed a 5-fold increase in intrinsic potency. The addition 

of terminal pentafluoroethyl group as opposed to ethyl end-chain increases the strength of the 

bonds and makes the compound more stable as well as increasing hydrogen bonding with the 

receptor, increasing metabolic stability during estrogen receptor (ER) binding.18  

 

Figure 9. The parent molecule (top, 8) and the FDA approved drug derivative, Fulvestrant 

(bottom, 9).18 
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Multiple drugs rely on fluorine to alter the lipophilicity of the compound in an attempt to 

increase drug uptake through a cell membrane. While fluorination of an aromatic or π-system 

increases the lipophilicity, fluorination and trifluoromethylation of an n-alkyl chain actually shows 

a decrease in lipophilicity. Vandetanib, 10, 19 a drug discovered to act as an antagonist of the 

vascular endothelial growth factor receptor (VEGFR) and is used as an oral kinase inhibitor for 

thyroid tumors, represents an example of a compound modified with fluorine to achieve the perfect 

lipophilicity level. Many derivatives of Vandetanib were tested to tailor the lipophilicity of the 

compound. Structure activity relationship tests showed that a halogen at the C-4’ position was 

preferred and that a fluorine was preferred at the C-2’ position. The fluorobromophenyl group was 

analyzed as a residue matching these two cases and shown that the fluorine atom is able to lead 

the fluorobromophenyl group deep into the protein's hydrophobic pocket, ultimately increasing the 

potency of the drug.19  

Compound 11, a specific derivative with 3 additional PEG groups added onto the chain, 

was tested, along with varying chain lengths for varying hydrophilicity. These compounds were 

being studied for amyloid beta plaque affinity in relation to combatting Alzheimer’s disease. 

Compound 11, also called AV-45, displayed good Aβ binding coupled with high blood brain 

barrier penetrations. A whole range of fluorine-ethylene glucol (FPEG) lengths were studied to 

find the greatest uptake depending on the logP (lipophilicity). The result shows only a minimal 

change in logP values when modifying the PEG length below n =5, however when the FPEG group 

was replaced with a hydroxyl group, there was a significant increase in lipophilicity as well as a 

decrease in potency.20  
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Figure 10. Vandetanib, 10, and AV-45 derivatives, 11, use the fluorine atom to tailor 

lipophilicity of the overall compounds or of certain parts of the compound.21 

 

Fluorine containing quinolones and pyrimidoquinolines have been shown to exhibit anti-

cancer properties.21 Many groups have shown that the fluorine atom and trifluoromethyl 

substituent play major roles in anticancer, antimicrobial and antituberculosis effectivity of these 

compounds.22,23 These base molecule can utilize a p-fluorophenyl group, however unlike the 

examples preceding, it its purpose is to serve as a hydrophobic group for pocket penetration as 

opposed to blocking metabolic oxidation. Examples of target pocket amino acids that attract the 

fluorine hydrophobic group include leucine and phenylalanine.21 More specific examples of 

quinoline-based compounds are shown in Figure 11. 
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Figure 11. Norfloxacin, 12, Delafloxacin, 13, Sparfloxicin, 14, and 5,8-difluoro-1-(4-

methoxybenzyl)-4-oxo-N-phenyl-1,4-dihydroquinioline-3-carboxaminde, 15.19-20 

 

These examples of fluorinated therapeutics represent only a fraction of compounds 

available as drugs. Due to the extraordinary properties exhibited by the fluorine atom, drug 

designers continue to incorporate this atom into future lead compounds. In the next section, the 

benefits of the sizes of fluoro- and fluorine-containing functional groups will be discussed.  

1.3.3 Size of Fluorine Atom Considerations 

As mentioned previously, the size of fluorine containing functional groups are very unique. 

Structurally, they take up more room than a hydrogen but less than a hydroxyl group and many 

examples show that the substitution from hydroxyl to fluorine in very beneficial. The size of the 

functional groups can attribute to driving a compound into its target pocket. Once the molecule is 

inside the pocket, electronic characteristics of the fluorine then determine the potency and 

effectiveness of the drug.  
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In Figure 12, nilotinib, 16,24 a derivative of imatinib, is shown. The addition of the 

trifluoromethyl group resulted in the compound being 30 times more potent than the mother 

compound. Once inside the pocket of the Bcr-Abl kinase, the trifluoromethyl group interacts with 

side chains such as histidine and isoleucine. When another derivative featuring a methyl as 

opposed to the trifluoromethyl was tested, it showed a five-fold decrease in activity. 

 

Figure 12. Nilotinib, 16, is a compound that inhibits a tyrosine kinase inhibitor in 

patients with chronic myelogenous leukemia.24 

 

A second compound that utilizes the size of fluorine is Lapatinib, 17.25 This compound is 

a human epidermal growth factor inhibitor and dual tyrosine kinase inhibitor for breast cancer and 

other solid tumors. Larger groups than the fluorophenyl and chlorophenyl groups yielded 

diminished the activity of the drugs. Other derivatives without the fluorine on the phenyl group 

also showed decreases in inhibition and hydroxyl and bromine groups, being larger than fluorine, 

exhibited reduced activity. This leads researchers to the conclusion that the fluorine is essential to 

fit into the binding pocket; x-ray crystallography also yielded the same conclusion; Figure 13 

shows Lapatinib, 17. 25 
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Figure 13. Lapatinib, 17, utilizes fluorine as an essential size requirement for potency. 25 

 

Thus far, this review has highlighted therapeutic agents and pharmaceuticals that feature 

fluorine. This special atom has become more and more important in drug development in recent 

decades and will continue to be an essential building block when designing and synthesizing drugs. 

The benefits and characteristics of fluorine, whether size considerations, electronic characteristics 

or blocking of metabolic sites susceptible to the P450 monooxygenase, are undeniable in medicinal 

chemistry. Another faction of medicinal chemistry that utilizes fluorine is that of imaging agents. 

Where the previous compounds were synthesized in fighting and inhibiting disease, the next 

section will focus on compounds that image and detect these diseases.  

1.4 Fluorine Incorporated into Imaging Agents 

Imaging in vivo is another sector of medicine that has become more popular in recent time 

to assist in the fight against many diseases. These fluorine incorporated probes can exist to 

illuminate several ranges of light waves. A few different classes of probes including coumarin, 

fluorescein/rhodamine, BODIPY, and cyanine dyes will be explored for their benefits and 

shortcomings contributing to biological imaging.  
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1.4.1 Coumarin 

The electromagnetic wave spectrum spans from high energy waves such as gamma rays to 

low energy waves such as radio waves. The visible light spectrum lies between the two extremes 

and usually is defined as having wavelengths of 400-600 nm. Dyes in this region are generally26 

used for surface imaging as they have more of a possibility of native tissue absorption in this 

range27 than NIR dyes which absorb light at higher wavelengths. Because of this, very few 

examples of probes for biological imaging exist in this range. More examples of dyes that 

fluorescence in the visible light wavelength range for purposes other than biological/medical exist 

including solar cell construction.  

One example that features a blue-light wavelength is the coumarin class. Coumarin 

fluorophores have been used for diagnosis and imaging of diseases such as cancer. Coumarin 

molecules are small and biocompatible, as well as having a relatively high light quantum yield 

compared to other fluorescent dye classes.28 One example of a fluorine-incorporated visible light 

coumarin probe was discovered by Weissleder29 and coworkers. The dye is shown below in Figure 

14 and can be seen to have two fluorine atoms on the coumarin moiety, compounds 18 and 19. 

The fluorophores with the fluorine substituents, in comparison to the other molecules presented 

shows a very comparable extinction coefficient, 19,000 to 16,000, while having a higher quantum 

yield, 49% to 41%.29 The dyes effectively labeled the biological targets as well as featuring optical 

flexibility and fast reactivity with the targets.29  
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Figure 14. Two Coumarin dyes, 18 and 19, featuring fluorine atoms that fluoresce at 

around 450 nm.29 

 

1.4.2 Fluorescein/Rhodamine  

Fluorescein and rhodamine dyes consist of two important groups: the xanthene moiety which 

acts as the fluorophore and the benzene moiety which provides the photoinduced electron transfer 

(PeT). This PeT is a known mechanism in which the chromophore’s fluorescence is quenched with 

the electron transfer from this benzene donor to the xanthene acceptor.30,31 The mother compound 

of fluorescein has a carboxyl group at the 2 position of the benzene moiety and until recently, it 

was believed that this donor group was essential to the molecule; this is based on results replacing 

the COO- group with a hydrogen, reducing the quantum yield value by over 60%.32 These two 

xanthene based dyes are seen as a highly tunable, therefore highly relied on, biological marker for 

DNA and proteins. These dyes do have some flaws including being very pH dependent due to the 

compounds being able to exist from neutral to dianionic as well as photobleaching. Another 

shortcoming stems from the wavelengths that these dyes absorb and fluoresce. Under 600 nm, 

where these xanthene dyes fluoresce, there is high interference from tissue autofluoresence. 

However, due to the high quantum yield and tunability, the dyes are still used as biological 

markers. 
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One research group, while synthesizing a host of fluorescein derivatives found some very 

interesting characteristics in the derivatives featuring fluorine. While exhibiting slightly less molar 

absorbtivity in comparison to the parent compound, the quantum yield values of select fluorinated 

xanthenes increased to nearly 100%. Another exciting fluorine-induced feature combats slightly 

one of the drawbacks of the class of compounds as a whole, photobleaching. The bleaching value 

reduced from 17 (fluorescence percentage loss after 33 minutes) to as little as 4. It is hypothesized 

that this phenomenon likely stems from the triplet state lifetime of the molecule. The fluorine 

molecules, at the 2’ and 7’ position, as shown in compounds 21-23, shorten the triplet lifetime so 

that the reaction chance with its quencher is decreased.33 A few of the compounds presented are 

shown below. Although these compounds were not tested in vivo, this study showed great promise 

of these compounds for use in bioconjugation in the future.  

 

Figure 15. Fluorescein, 20, and fluorine containing derivatives, 21-23 showing decreased 

photobleaching and comparable quantum yield.33 
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Rhodamine dyes, while having similar benefits and uses in molecular imaging, have similar 

shortcomings. The basic structure of rhodamine differs only in the two amine groups instead of 

the carbonyl and hydroxyl groups on the xanthene. Again, this shows a drawback to the compounds 

as they can exist as neutral, zwitterionic, cationic or dicationic, making the use of the dyes specific 

to a certain pH range. Similarly to the fluorescein dyes, researchers discovered increased quantum 

yield with fluorinated rhodamine dyes along with prolonged photostability and decreased 

photobleaching of the dyes. One particular research group, synthesizing and studying the dyes 

featured in Figure 16, found that their fluorine-incorporated rhodamines, 24-27,34 showed promise 

for stimulated emission depletion (STED) nanoscopy experiments, elucidating protein structures.  

 

Figure 16. Several rhodamine derivatives featuring fluorine and trifluoroethyl groups, 

compounds 24-27.34 

 

1.4.3 BODIPY  

The near infrared region of light on the electromagnetic spectrum lies at about 700-1000 nm. 

This region and its use in biomedical imaging presents a very unique range of compounds that can 
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be used and avoids several potential problems concerning body imaging. Body tissue inherently 

fluoresces light, called autofluoresence, at around 450-500 nm. Should the imaging agents 

fluoresce in this region, there would be a high background signal interface due to the 

autofluoresence. Thus, the use of a NIR filter essentially eliminates tissues from autofluoresence 

altogether.35 This makes higher wavelength fluorescing molecules superior in terms of background 

to noise ratios and molecular brightness. The high end of the range exists around 1000nm due to 

water overtones that begin in this region. NIR light also has the ability to penetrate tissue for 

several centimeters.36 This is due to the lower tissue absorbance and reduced scattering. 

Many different classes of NIR fluorophores contain fluorine atoms. One of the most 

common types is the boron-dipyrromethine (BODIPY) dyes. Figure 17 shows the core structure 

of the BODIPY dye 28; it is seen to have two fluorine atoms in the core structure with a host of 

possible alteration sites.  

 

Figure 17. The general structure of a BODIPY dye, 28.37 

 

Although all BODIPY dyes feature fluorine off of its core boron, very few BODIPY dyes 

further incorporate fluorine into the design. Figure 18 gives two examples, compounds 29, 30, of 

continuing to add fluorine to the core structure, but the dyes were not tested for in vivo imaging 

purposes.  
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Figure 18. Two examples of BODIPY dyes 29 and 30 featuring fluorine or 

trifluoromethyl groups outside of the basic structure. 37 

 

1.4.4 Near-Infrared (NIR) 

One class of NIR fluorophores that has yet to feature many lead compounds highlighting 

the fluorine atom for biological activity is the carbocyanine dye family. This family of dyes is 

often utilized in biomedical imaging as they have several benefits. One such benefit pertains to the 

non-toxic nature of the compounds to humans, making them great candidates for imaging in the 

human body. Indocyanine green, a dye currently FDA approved and used for medical imaging, 

remains one of the least toxic agents ever to be administered to humans.35 These organic 

fluorophores also do not suffer from aggregation issues as intensely as other classes of dyes exhibit. 

Thirdly, researchers can easily tailor the wavelengths of carbocyanine: for each double bond added 

between the indole end units contributes to a wavelength increase of around 80-100 nm. This does 

increase hydrophobicity, however, these dyes also have the benefit of having many different sites 

of modulation. This hydrophobicity increase caused by a longer carbon chain can be potentially 

combatted by adding a sulfonate group or another hydrophilic functional group to any of these 

sites. The basic cyanine structure is shown below in figure 19.  
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Figure 19. The general structure of the cyanine dye class.35 

 

Cyanine dyes derive their names from the number of n-alternating double and single 

bonded carbons connecting the two heterocycles. For example, compounds with n = 1, 2, 3 would 

be named as trimethine, pentamethine and heptamethine respectively. The number of carbons not 

only correspond to wavelength, but also play a part in biodistribution in the body.  

 

Scheme 1. A standard route taken to make cyanine dyes with longer chain lengths. 

 

Scheme 1 shows a general route taken to synthesize these compounds. The quaternary 

heterocyclic amine allows the hydrogen atoms on the corresponding methyl group to be acidic.  

Deprotonation at this position can facilitate the formation of a reactive methylene group which, 

after the regeneration of the ammonium center, attacks the electrophilic position of the dianil 

compound which forms a half reacted intermediate.  A second addition of the indolenine salt end 

unit affords the final compound. 

Very few examples of carbocyanine dyes featuring the fluorine atom exist in literature. 

Four examples incorporating the fluorine atom on the dye molecules are dyes that selectively binds 

to G-quadruplex DNA, 31,38 compounds that target the thyroid and parathyroid glands, 32,7 a dye 



24 

 

 

which features a polyfluorinated bridge but no biological use, 33, 39 and a squarine cyanine dye 

used for labeling oligonucleotides, 34. 40 The G-quadruplex DNA binding dyes, when comparing 

the fluorine substituent to the hydrogen substituent, showed a high increase in the thermal stability 

of the telomeric quadruplex. For the endocrine targeting cyanines, the uptake of the fluorinated 

molecules more than doubled that of any other substituent studied in the article, including other 

halogens and electron donating groups. The fluorinated compounds were still observed in vivo 

after 4 hours showing a slow renal clearance rate. The fluorinated squarine dyes studied showed 

similar absorbance and fluorescence maxima in comparison to the hydrogen compliments, 

however they exhibited higher quantum yield values. The promising nature of these compounds 

for intraoperative imaging has lead researchers to begin exploring these dyes as dual-modal 

molecules.  

 

Figure 20. Representative carbocyanine dyes featuring the fluorine atom, 31-34.7,38-40 
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1.5 Imaging Techniques for Early Disease Detection 

Due to the increased success rate of both surgery and chemotherapy during the early stages 

of tumor development, a need for enhanced detection methods has emerged. Visualization of 

diseased tissues grants doctors and surgeons insight to the answers of important questions such as: 

where is the diseased tissue, how big is the diseased mass, and what is the best course of action to 

combat the issue? Depending on the stage at which some diseases such as cancer are detected, 

visualization of diseased tissues can help lead to curative measures.36,41 Currently, many imaging 

methods are utilized in the healthcare industry including: magnetic resonance imaging (MRI), 

single-photon emission computed tomography (SPECT), positron emission tomography (PET), 

and electroencephalography (EEG). These imaging methods aid the healthcare professionals 

assess the situation and help them to define a course of action. For PET, SPECT and MRI 

techniques to be useful, imaging agents must be used that will bind to the tissues in question as 

well as give off energy in the form of positrons as emission radiation or radiative return, which is 

how the instrument obtains the visualization. Agents such as tagged proteins, nanoparticles and 

metal delivery systems have been explored for use in these types of imaging modalities, however 

small organic molecules are just starting to become popular in the realm of PET and SPECT 

imaging. 

1.6 Fluorine in Positron Emission Tomography (PET) 

Fluorine 18 has been heavily relied on for PET imaging. This could be attributed to fluorine’s 

long half-life in comparison to other positron emitting atoms. 11C, 13N and 15O have half-lives of 

20, 10 and 2 minutes respectively, whereas 18F has a half-life of 110 minutes. The 18F atom decays 

into 18O, a non-toxic, non-radioactive nucleus that, when is featured on a sugar molecule (FDG), 
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is excreted through the kidneys and liver .14 This positron emitting isotope has driven the 

development of safe fluorinating contrast agents and binding modalities.42 

18F imaging agents currently are being developed for the visualization of cancer cells and for 

non-cancerous diseases such as Alzheimer’s disease as well as other types of dementia.43,44 Studies 

have used the fluorine atom as a substitute as a hydroxyl group, showing that structurally there is 

little difference between the two, however it has great effect in increasing the lipophilicity of the 

compound to facilitate the transport through the blood brain barrier (BBB). 

PET and SPECT scans are presently the most sensitive molecular imaging techniques 

modalities.36 The use of radioactive isotopes as labels for these imaging methods must be used 

with caution. The positron comes from the nucleus of the radionuclide and is annihilated with an 

electron once it moves away from the nucleus, a process that occurs almost immediately. The 

energies of the emitted positron determine the path length, with larger positron energies 

corresponding to larger distances traveled by the positron,42 as visualized in Figure 21. After 

annihilation occurs, gamma waves are emitted at an almost 180o angle and the waves trigger a 

response from the detector at 511 keV and an image is created. 

 

Figure 21. The annihilation pathway undergone by an 18F atom as well as the gamma ray 

pathways picked up by a surrounding PET detector. 
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The two most common radionuclides used for PET imaging are 11C and 18F. These two labels have 

half-lives of 20.3 and 110 minutes respectively and have different imaging uses. 11C commonly is 

used when labeling compounds with short half-lives in vivo or in vitro. This itself provides its own 

set of problems as its only useful for 20 minutes before half of the radiolabel has decayed. Although 

these compounds can be used past the half-life, it does rush the synthesis, purification and clinical 

use of the molecules. Another disadvantage to using the carbon radiolabel is that these compounds 

can only be produced and used in cyclotron and radiochemistry facilities. Therefore, for clinical 

uses, different professionals and a separate facility from the hospital must be utilized. The 18F 

nuclide, with its longer half-life, no need for separate facilities and low positron energy, presents 

the best physical imaging characteristics. Table 1 shows information compiled by Simon 

Ametamey and coworkers about the common radionuclides, their half-lives and its positron 

energies.  

 

 

Table 1. The half-lives and positron energies of several radionuclides that can used for PET and 

SPECT scans 
Nuclide Half-life (minutes) Positron energy (MeV) 

18F 110 0.64 

11C 20.3 0.97 

13N 10 1.20 

15O 2 1.74 

76Br 972 4.0 

124I 60,192 2.14 
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Many examples exist of compounds, originally synthesized with a fluorine atom, becoming 

synthetically altered in such a way that it becomes a radiolabel. In a few instances, this involves 

converting the fluorine to fluorine-18 directly, however most of the synthetic routes involves 

including a bulky leaving group and then substituting this group with the nuclide. These 

radiolabels, depending on the makeup of the compound as a whole, can be modified to target most 

tissue types, proteins or in vivo. Studies report compounds that bind and image amyloid plaques, 

35 and 36, a common symptom/cause for Alzheimer's Disease,45,46  and hypoxic cells, 37 and 38, 

a major cause of cancer.47,48 Figure 22 gives examples of the wide variety of compounds described 

above, all having 18F present. 

 

Figure 22. Examples of compounds from sources 35-38 respectively.42,45,46 

 

1.7 Fludeoxyglucose (18F-FDG ) and Other Tagged Molecules for Imaging Including 

Synthesis 

The synthesis of fluorine isotope labeled compounds is not as simple as replacing a fluorine 

with its radiolabel. Fluorine is a bad leaving group as explained by its small bond length, and high 
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bond strength with carbon and its size being so small. Therefore, usually to test effectiveness, the 

marker compound is synthesized with fluorine as a control or reference compound, 47,49-52 and then 

the actual radiolabeled compound is synthesized from an analog with a good leaving group in its 

place. Examples of leaving groups used as substitutes would be tosyl (OTs) groups or larger 

halogens such as bromine or iodine.47,49-52 The standard for PET labels is fludeoxyglucose and it 

is the most successful and one of the few radiopharmaceutical currently in use. FDG, shown below 

with its synthesis, is an analogue of glucose where the d-hydroxyl group features an 18F in its place. 

The synthesis of this compound comes from the electrophilic fluorination of a double bond and 

then hydrogenation to replace the non-radiolabeled fluorine atom with a hydroxyl group. Figure 

23 while showing the final 18F-FDG product, also describes the synthetic route taken to obtain this 

PET radiolabel. 

 

Figure 23. The synthesis of radiolabel 18F-FDG.53 

   

 In the case of FDG, the reaction performed to obtain the fluorinated product is electrophilic 

fluorination. However for other examples of PET radiolabeled molecules, nucleophilic substitution 

reactions are performed to achieve the final product. A few of these examples are shown in Figure 

24. Examples of other classes of compounds turned PET labels are: glucoses, 39,49 

caboximidamides, 40,51 hydroxynoraporphines, 41,52 BODIPY dyes, 42,50 and recently, 

cyanines.54 These compounds feature this nucleophilic substitution reaction for a large, good 

leaving group such as tosyl groups being substituted with the radiolabeled 18F. The reaction time 
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of this SN2 reaction is generally around one minute which is helpful when remembering the half-

life of the 18F nuclide is 110 minutes. This leaves maximum amount of time to do in vivo testing 

of the label. In one particular example, the BODIPY dye, 42, shown in figure 24, the radiolabel 

can still be seen prominently after 30 minutes and is beginning to be excreted with no release of 

free 18F after 1 hour.50 This example shows how even with small molecules not modeled after 

FDG, the PET radiolabels being developed exhibit promising signs of both their usefulness and 

non-toxicity. Examples of the synthetic processes used to obtain radiolabeled compounds 

mentioned above are laid out in Figure 24. 

 

Figure 24. Examples of synthetic routes to derive radiolabeled compounds, 39-42, from 

unlabeled precursors.49-52 
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1.8 Conclusion 

The utilization of fluorine atoms in chemistry has increased in the past 30 years, and its 

viability in drug development and imaging has increased. Fluorine's many unique characteristics 

and properties lend to the use of this atom to combat many different problems medicinal chemists 

may face. The inherent size, electronegativity, and blocking of metabolic sites for drugs and 

shortening the triplet state for imaging chromophores can be solved singularly by the addition of 

fluorine atoms on a molecule. Similar to in medicine, the addition of fluorine atoms on a contrast 

agent is becoming increasingly relied on for biomolecular imaging and preventative medicine. 

Other forms of imaging are incorporating fluorine atoms as a radiolabel for an increased use of 

fluorescent probes for multimodal imaging. A unique opportunity presents itself for researchers 

when considering the addition of fluorine on drugs or imaging fluorophores: multipurpose 

molecules. Not only would the fluorinated chromophores be useful intraoperatively and for drug 

tracking in the body, the radiolabeled form could have usefulness as an 18F-radiolabeled compound 

for PET and SPECT purposes. Through the research performed on small molecules containing 

fluorine atoms and functional groups containing fluorine, much has been learned about drug 

metabolic pathways and medical advancements both through drugs and imaging techniques.  
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2 SYNTHESIS AND CHARACTERIZATION OF PENTAMETHINE 

CARBOCYANINE FLUOROPHORES  

2.1 Introduction: Intraoperative Imaging 

After initial preoperative scans, MRI, PET, SPECT, ect, are taken to visualize the area of 

interest, there still remains hours between when the patient goes into surgery (if this course of 

action is required). In the time between these two activities, the body shifts and the surgical field 

differs from what the initial scans show, if only slightly. Currently, the method for determining if 

any diseased tissue remains is to send samples for biopsy until showing only healthy cells. This 

process remains sufficient when dealing with larger organs or tissues, or tissues known to 

regenerate like the liver, however when dealing with small sensitive glands such as the thyroid or 

adrenal gland damaging any parts of these delicate glands can cause major post-operative 

complications.55 Visualizing healthy cells in conjunction with diseased cells can help to reduce 

these complications and one such solution would be the use of organic dyes and reduce the reliance 

of the naked eye visualization and experience. The damaging on these tissues, as they regulate the 

body’s hormone levels and maintain the overall homeostasis of the body can result in post-

operative recovery, varying hormone conditions and even morbidity. A more specific complication 

of this type of surgery is hypocalcaemia; it is a condition where a lack of calcium is present in the 

body, is one of the two largest complications after thyroid and neck surgeries. It is widely accepted 

that the intricate surgeries involving the endocrine system and some of its organs have yet to be 

perfected.56,57 The cyanine dye class represents a promising candidate for the reasons stated above. 

The implementation of these dyes would have no noticable interference with surgeon’s current 
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process. The dyes would be injected preoperatively, track to the area of interest (design), and 

visualized with the use of a series of cameras and NIR lights. Figure 25 gives a schematic of how 

this apparatus may look like with a mouse being the surgical field. Then, hours after the surgery is 

complete, the dyes would be cleared from the body naturally with no toxicity or other concerns to 

the patient.  

 

Figure 25. An illustration of a system of NIR cameras visualizing dyes to be used 

intraoperatively. 

 

 Excitation lights of three wavelengths illuminate the surgical field which contains the dyes: 

(a, brown) background tissue with no dye absorption or bioluminescence, (b, red) dye targeting 

healthy endocrine cells and (c, green) dye targeting diseased tissue. With the use of a camera 
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system, the images can be overlaid and portrayed for a surgeon to see exactly what he or she is 

removing, without having to rely solely on preoperative scans, biopsies, or experience. The 

combination of these techniques, preoperative and intraoperative imaging, could lead to more 

accurate surgical procedures with less postoperative complications.  

2.2 Rationale 

The rationale for the projects presented in this thesis begins with the continuing 

modifications of a scaffold developed by our group58,7 and found to image certain endocrine 

system tissues. Initially, over 200 pentamethine carbocyanine dyes were screened and lead 

molecules were determined. Our previous developments58,7 explored hydrophobicity and electron 

withdrawing groups on the dyes to test their uptake in the endocrine organs. This current study is 

an expansion of our findings and continues to explore the electronic effects of EWG on the 

indolenium end units and features the idea to incorporate fluorine atoms in the dye scaffold. Other 

halogenated atoms such as chlorine and bromine atoms were also incorporated with the dye 

scaffold as a comparison. The synthetic route and means to purify the compounds was generally 

known after many modifications and publications from our lab’s previous work.7, 47-49 After the 

fluorinated symmetrical pentamethine carbocyanine dyes were synthesized and tested for the 

endocrine uptake, it was found that there was uptake in the targeted tissues and glands: compounds 

with chlorine and bromine at the 5-position on the indolenine showed high uptake in the salivary 

glands, fluorine exhibited uptake in the thyroid and parathyroid glands, and the trifluoromethyl 

compounds showed uptake in the pituitary gland. Dyes of this nature that target the endocrine 

system without the use of targeting ligands are the first of their kind. Detailed information of the 
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synthesis and animal data is described in detail as shown in our recent publication in the Journal 

of Medicinal Chemistry. The reprint found on page 53.  

It is possible that altering the number of fluorine atoms might have an effect on the optical 

properties and usefulness of the dyes. Therefore in chapter two, asymmetric analogs featuring only 

one fluorine atom were synthesized and purified. The optical properties and quantum yield of these 

agents were performed and sent to Beth Israel Deaconess Medical Center for biodistribution 

studies to confirm the endocrine tissue uptake in mouse models. The data confirmed that the optical 

properties were not ideal for biological use. Then a third set of compounds described feature 

pentanoic acid groups stemming from the nitrogen on the heterocycle end unit. These dyes, along 

with being pH sensitive, hold value to both medicinal chemistry and renewable energy chemistry. 

The carboxylic acid groups can act as a chelator for titanium oxide plates in a dye-sensitized solar 

cell system or as a linker from a dye to a ligand to be used in vivo. The study on this set of 

carboxylated pentamethine carbocyanine dyes is to observe their optical properties for 

effectiveness for in vivo studies, both for the attachment of ligands, or solely for their structure 

inherent targeting qualities. 

2.3 Synthesis and Optical Property Determination of Halogenated Pentamethine Dyes  

As mentioned, this work is featured in a manuscript published in 2016 in the Journal of 

Medicinal Chemistry under the title Near-Infrared Illumination of Native3 Tissues for Image-

Guided Surgery: doi: 10.1021/acs.jmedchem.6b00038. Contributions are a continuation of 

synthetic work performed as part of my undergraduate research project. This part of the thesis will 

only include my contributions to the publication, however a full version of the manuscript will be 

provided in the appendix. The synthetic portion of compounds 14-25 have been previously 
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reported, however 26-28 and all of the optical property studies was performed during my Masters 

tenure. 

2.3.1 Synthesis of Pentamethine Fluorophores 

 

Scheme 2. Synthesis of 700 nm Emitting Pentamethine Cyanines Featuring Neutral (X = 

H) and Electron-Withdrawing (X = F, Cl, Br, CF3) Moieties, compounds 14-28. 59 

 

The final dyes 14-28 were synthesized starting with para-substituted halogenated phenyl 

hydrazines. The hydrazines were reacted with 3-methyl-2-butanone in acetic acid heated under 

reflux for 72 h to afford the 5-halogenated indolenines 1-5. This reaction proceeds through a 3, 3-

sigmatropic rearrangement reaction to form the heterocycle.60 After a basic workup where the 

products were extracted using dichloromethane (DCM) and sodium bicarbonate to neutralize the 

acetic acid, the indolenines were then reacted with iodomethane in acetonitrile at reflux for 24 h. 

This led to the formation of indolenine salts 6-10 through an SN2 reaction mechanism. . No workup 

was needed and the crude material was used in the next step of the reaction. Reacting salts 6-10 

with ‘linkers’ 11-13 in a 2:1 molar ratio in acetic anhydride at 60 oC for 45 min, the formation of 

dyes 14-28 occurred. The formation of the fluorophores were monitored using regular phase thin 
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layer chromatography with a mobile phase of 99:1 DCM: methanol as well as by UV-Vis. The 

reaction mixtures were allowed to cool, dissolved in DCM and then washed six times with water. 

The water was dried using sodium sulfate and the organic layer was then gravity filtered and the 

solvent was evaporated off. The crystals were washed then with diethyl ether and dried by vacuum 

overnight. The purification of the dyes was achieved by simple recrystallization using diethyl ether 

from dichloromethane. Pure product yields of 37-78% were achieved. Characterization of the final 

dyes included 1H NMR, 13C NMR, 19F NMR, liquid chromatography mass spectrometry, and 

melting point determination will be included in the experimental section on page 80.  

2.3.2 Optical Properties 

The optical property studies, shown in Table 1, were determined experimentally in several 

solvents to determine the in vivo success for the fluorophores. We can see that the compounds 

with hydrogen, fluorine, chlorine, and bromide groups (14–25) exhibit sharp and NIR absorbance 

bands with very high molar absorptivity all being >100,000 M–1 cm–1 which suggests that these 

fluorophores will satisfactorily absorb NIR wavelengths in vivo and will be compatible with the 

intraoperative imaging system. The trifluoromethyl substituted compounds are very poor at 

absorbing light at their wavelength of maximum absorbance, as indicated by their low molar 

absorptivity values in Table 1. This is attributed to the high-electron-withdrawing characteristics 

of the trifluoromethyl groups which lowers the overall probability of electron movement across 

the methine bridge connecting the aza-heterocycles. The in vivo success of these compounds also 

depends of the quantum yield and more importantly the molecular brightness (determined as the 

product of extinction coefficient and quantum yield) of the compounds in serum; therefore, we 

examined the quantum yield of these fluorophores in fetal bovine serum (FBS). Compounds 14–



41 

 

 

28 exhibit high quantum yield values in serum which is very appealing. All of the synthesized 

compounds have sufficiently high molecular brightness values in serum, with many compounds 

exhibiting molecular brightness values of >20,000. We observed an overall trend for the majority 

of compounds that as the size of the central halogen increases, the molecular brightness decreases.  

Table 2. Optical Properties of 700 nm Emitting NIR Fluorophores, 14-28.a 

ID 

λ
abs 

(nm) Extinction Coefficient (, M
-1

cm
-1

) λ
em

 (nm) Stokes Shift QY (, %) MB  x ) 

DMSO EtOH PBS FBS DMSO EtOH PBS FBS EtOH FBS EtOH FBS EtOH FBS EtOH FBS 

14 647 645 640 649 212,500 248,200 218,800 184,500 660 662 15 13 32.7 31.0 81,161 57,195 

15 645 644 642 638 235,300 207,800 171,000 168,800 659 665 15 27 29.2 28.8 60,677 48,614 

16 645 641 638 634 257,330 253,200 204,400 211,700 657 660 16 26 30.1 43.6 76,213 92,301 

17 645 641 638 649 216,700 225,800 196,500 164,400 663 662 22 13 31.6 35.2 71,352 58,868 

18 646 643 638 638 210,900 233,700 193,400 193,400 658 660 15 22 16.5 15.3 38,561 29,590 

19 642 641 635 644 173,200 210,500 170,900 145,800 658 658 17 14 16.3 11.9 34,312 17,350 

20 652 649 645 660 183,400 204,200 174,200 136,000 658 669 19 9 41.5 57.5 84,743 78,200 

21 653 652 647 658 192,800 207,800 140,200 136,000 664 666 14 8 18.3 28.5 38,027 38,760 

22 650 648 643 655 233,100 250,600 185,000 153,700 665 663 17 12 15.4 17.4 38,592 26,744 

23 653 650 653 662 181,200 174,500 144,800 141,100 670 671 20 9 42.4 57.0 73,988 80,427 

24 655 653 660 648 140,200 189,600 121,500 119,700 667 671 14 23 20.8 23.0 39,437 27,531 

25 643 641 635 644 169,000 169,600 166,900 159,600 657 663 16 21 15.5 11.8 26,288 18,833 

26 642 638 636 648 41,200 45,200 28,700 30,600 656 654 18 6 58.7 89.2 26,532 27,295 

27 644 640 638 649 72,000 114,900 56,300 19,500 656 655 16 6 20.5 47.4 23,555 9,243 

28 641 638 635 644 32,400 49,700 19,600 8,400 653 651 15 7 21.1 29.0 10,487 2,436 

                 

aAll measurements were performed in DMSO, ethanol (EtOH), phosphate buffer solution (PBS), and fetal 

bovine serum (FBS), at pH = 7.4, 37 oC. λabs, wavelength of maximum absorbance, λem, wavelength of maximum 

emission; QY, quantum yield; and MB, molecular brightness 

 

Photostability studies were performed on a select number of contrast agents to observe 

their performance when continuously irradiated and can be seen in Figure 26. The selected 

compounds featuring a hydrogen atom at the meso position of the polymethine bridge showed little 

decomposition after being exposed to light for 48 h, however, when chlorine or bromine replace 
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the hydrogen, there is noticeable degradation of up to 35% of the original absorbance. Only a 

minimal 4% absorbance was lost for each of the first compounds in each set; furthermore, these 

data help conclude that these compounds would be applicable for long-duration surgical resections 

with the ability to absorb and fluoresce NIR-light for high-contrast imaging with a half-life of >48h 

for the entire set studied. The studies were compared to the same concentration of dyes kept in 

dark containers, but the same distance from the lamp to determine if thermal degradation 

contributed as well. We found an absence in measurable degradation for the samples kept in the 

dark which leads us to conclude that heat from the lamp imparts a negligible effect and the 

absorbance decrease comes from irradiation. 
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Figure 26. Photodegradation profile in light and dark conditions of a select subset of NIR 

fluorescent contrast agents. The absorbance values for the individual fluorophores were measured 

(at the wavelength of maximum absorption) at different intervals to determine the percentage of 

absorption remaining. 

 

2.3.3 Physicochemical Properties 

Performing calculations on the HOMO/LUMO electron levels can give a unique 

perspective of molecules. When analyzing the minimized three-dimensional structures, we see that 

the meso-halogenation perturbs the trans-pseudoalkene angles and the elongated structure of the 

fluorophore which actually shortens the overall length and perturbs the conjugated bridge by 

requiring the compound to bend to accommodate this central substitution. This is an interesting 
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finding since upon first glance, it seems that adding larger groups to the middle of the compound 

would result in an elongation of the compound simply because it would force the neighboring 

hydrogen atoms apart. Another potential explanation for the decrease in molecular brightness is 

the heavy atom effect that can effectively stabilize the triplet state, allowing for a higher probability 

for competing decay processes of the excited state (i.e., phosphorescence or energy transfer) 

compared to the nonhalogenated fluorophores. 

 
ID 

 Physicochemical Properties 

MW 

(g/mol) 

LogDa 

(pH = 7.4) 
TPSA 

H-bond 

acceptors 

Length 

(A) 

Volume 

(Å3) 

Dipole 

(debye) 

Polarizability  

14 383.548 3.56 6.25 1 18.665 445.51 1.95 76.14 

15 417.994 3.79 6.25 1 18.530 458.45 0.89 77.21 

16 462.445 3.96 6.25 1 18.453 462.96 0.79 77.55 

17 419.529 3.84 6.25 2 18.684 455.28 4.23 76.95 

18 453.974 4.08 6.25 3 18.536 468.22 3.32 78.02 

19 498.425 4.24 6.25 3 18.475 472.73 3.26 78.36 

20 452.439 4.77 6.25 2 18.674 472.01 3.55 78.30 

21 486.884 5.00 6.25 3 18.539 484.95 2.58 79.37 

22 531.335 5.17 6.25 3 18.464 489.45 2.52 79.71 

23 541.341 5.09 6.25 2 18.665 481.25 3.74 79.05 

24 575.786 5.33 6.25 3 18.517 494.19 2.79 80.12 

25 620.237 5.50 6.25 3 18.340 498.70 2.73 80.40 

26 519.544 5.31 6.25 6 20.188 511.26 8.04 81.47 

27 553.989 5.55 6.25 7 19.547 524.14 7.58 82.54 

28 598.440 5.70 6.25 7 19.406 528.65 7.62 82.88 

         

a
Log D = partition coefficient at pH 7.4, TPSA = total polar surface area, while molecular parameters 

(length, volume dipole, and polarizability) were calculated using Spartan Wavefunction (V10) DFT starting with the 

minimized structural conformation of the lowest energy. 

 

Based on the high performance optically and physicochemical values such as cLogD, the 

fluorophores 14-28 were then sent to collaborators at Beth Isreal Deaconess Medical Center at 

Harvard University for animal studies. During the in vivo studies, it was found that compounds 
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17-19 displayed high uptake in the thyroid glands, compounds 20-25 showed uptake in the salivary 

glands, and compounds 26-28 had uptake in the pituitary gland. All of these compunds showed 

good uptake in various endocrine system tissues with good optical properties and show great 

promise for further studies for intraoperative imaging. These studies can be seen in full in the paper 

attached in the appendix.59 

2.3.4 Conclusions 

This study was successful in synthesizing a set of near-infrared fluorophores and 

determining their optical properties. The combination of the design of the compounds and the 

viability of their optical efficiencies lead to their use in in vivo animal studies. The dyes were 

successfully synthesized in good yields, up to 78%, and their optical properties in four solvents 

were determined. Based on their optical properties, in vivo studies were performed (appendix) and 

it was found that these dyes were valuable in the visualization of various endocrine tissues using 

a series of NIR cameras. 

2.3.5 Experimental Details 

2.3.5.1 Synthesis of Pentamethine Cyanine Analogs 

The chemical reagents used in the synthesis of these compounds were obtained from Acros 

Organics, Alfa Aesar, and Matrix Scientific. The reactions were followed using silica gel 60 F254 

thin-layer chromatography plates (Merck EMD Millipore, Darmstadt, Germany). Open column 

chromatography was utilized for the purification of all final compounds using 60–200 μm, 60A, 

classic column silica gel (Dynamic Adsorbents, Norcross, GA). The 1H NMR and 13C NMR 

spectra were obtained using high-quality Kontes NMR tubes (Kimble Chase, Vineland, NJ) rated 

to 500 MHz and were recorded on a Bruker Avance (400 MHz) spectrometer using DMSO-d6 or 
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MeOD-d4 containing tetramethylsilane (TMS) as an internal calibration standard set to 0.0 ppm. 

UV–vis/NIR absorption spectra were recorded on a Varian Cary 50 spectrophotometer. High-

resolution accurate mass spectra (HRMS) were obtained either at the Georgia State University 

Mass Spectrometry Facility using a Waters Q-TOF micro (ESI-Q-TOF) mass spectrometer or 

utilizing a Waters Micromass LCT TOF ES+ Premier mass spectrometer. Liquid chromatography 

utilized a Waters 2487 single wavelength absorption detector with wavelengths set between 640 

and 700 nm depending on the particular photophysical properties. The column used in LC was a 

Waters Delta-Pak 5 μM 100A 3.9 × 150 mm reversed-phase C18 column. Evaporative light-

scattering detection analyzes trace impurities that cannot be observed by alternate methods; a 

SEDEX 75 ELSD was utilized in tandem with liquid chromatography. The integral under the curve 

was determined for both the LC and ELSD spectra and was used to confirm the purity (>95%) of 

the synthesized contrast agents. 

2.3.5.2 Optical and Physicochemical Property Analyses 

All optical measurements were performed in various solvents, including ethanol, dimethyl 

sulfoxide (DMSO), phosphate buffered saline (PBS, pH 7.4), and at 37 °C in 100% FBS buffered 

with 50 mM HEPES, pH 7.4. Absorbance and fluorescence emission spectra of the series of NIR 

fluorophores were measured using Varian Cary 50 absorbance spectrophotometer (190–1100 nm) 

and Shimadzu RF-5301PC spectrofluorometer (350–1000 nm). For fluorescence quantum yield 

(QY) measurements, rhodamine 800 in absolute ethanol (QY = 28%) was used as a calibration 

standard, under conditions of matched absorbance at 620 nm. In silico calculations of 

physicochemical distribution coefficient (log D at pH 7.4) was calculated using Marvin and JChem 



47 

 

 

calculator plugins (ChemAxon, Budapest, Hungary). Electrostatic maps were calculated using 

Spartan DFT calculations at the B3LYP level. 

2.3.5.3 Photostability Analysis 

The photostability experiments were performed to determine the photobleaching threshold 

of the fluorophores. We determined the photobleaching rate by measuring the decrease in 

absorbance at the wavelength of maximum absorption over a 48h time period. The light condition 

involved a glass cell containing individual contrast agent (0.01 mm in methanol) that was affixed 

250 mm away from a 15W F15T8 broad spectrum bulb being irradiated using a portable lamp at 

room temperature. The dark control was also examined to exclude chemical decomposition 

phenomena. The absorbance values were measured at various time points and then plotted versus 

time to obtain the photostability graphs in light and dark. 

2.3.5.4 Liquid Chromatography-Mass Spectrometry Analysis 

The purity of all compounds was measured using liquid chromatography–mass 

spectrometry (LC-MS) on a Waters system consisting of a 1525 binary HPLC pump with a manual 

7725i Rheodyne injector, a 996 photodiode array (PDA) detector, and a 2475 multiwavelength 

fluorescence detector. The column eluent was divided in 2 using a flow splitter (Upchurch 

Scientific). A portion of the eluent flowed into an ELSD (Richards Scientific) while the rest flowed 

into a Micromass LCT ESI-TOF spectrometer (Waters) equipped with a Symmetry (R) C18 (4.6 

× 150 mm, 5 μm) reverse-phase HPLC column. For mass spectrometry, the mobile phase was 

solvent A = 0.1% formic acid in water and solvent B = CH3CN with 95% A for 5 min and a linear 

gradient from 5% to 40% CH3CN (from A to B for 30 min) at a flow rate of 1 mL/min, capillary 

voltage was −3317 V, and sample cone voltage was −50 V. 
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2.3.5.5 Synthesis and Characterization of NIR Fluorophores 

To obtain the final dyes 14–28, the precursor salts 6–10 (2 mol equiv ) were added to a 

clean, dry round-bottom flask. The compounds were stirred in 10 mL of acetic anhydride, and 

either sodium acetate (3 mol equiv) was added along with 1 mol equiv of individual 

malondialdehyde linker 11–13. The reaction was allowed to stir at 40–60 °C for 2 h. The reactions 

were monitored closely using regular phase thin-layer chromatography with a mobile phase of 

DCM/MeOH (99:1) as well as UV–vis-NIR spectrophotometer in quartz cuvettes with methanol 

as a solvent to visualize the absorption band at ∼650 nm against that of the starting materials ∼400 

nm. Upon completion of the reaction, the mixtures were allowed to cool, and the solvent was 

evaporated. The residue was extracted using DCM and was washed with DI water (3 × 70 mL). 

The resulting organic layer was dried under magnesium sulfate, gravity filtered, and evaporated to 

afford crystals that were washed with diethyl ether (2 × 50 mL) and hexanes (50 mL) to yield 

crystals that were dried under vacuum overnight. The pure product was obtained after dissolving 

in methanol and precipitating with ether several times, or the compounds were isolated using flash 

column chromatography and 5% methanol in DCM as the eluting solvent. After purification, the 

compounds were obtained in the designated yields and were fully characterized. 

 

1,3,3-Trimethyl-2-((1E,3E,5E)-5-(1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-

3H-indol-1-ium iodide (14): Yield 64%, MP >260 oC ; 1H NMR (400 MHz, MeOD-d4) δ: 1.71 (s, 

12H), 3.63 (s, 6H), 6.28 (d, J = 16.0 Hz, 2H), 6.65 (t, J  = 12.0 Hz, 1H), 7.24 (t, J = 8.0 Hz, 2H), 

7.29 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 8.25 (t, J = 12.0 Hz, 

2H);  13C NMR (100 MHz, MeOD-d4) δ 27.90, 31.71, 50.50, 104.44, 111.83, 123.31, 126.20, 

129.71, 142.56, 144.29, 155.52, 175.28.  TOF HRMS m/z [M]+ calculated for [C27H31N2]
+ 

383.2487, found 383.2474. 
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2-((1E,3Z,5E)-3-Chloro-5-(1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-

trimethyl-3H-indol-1-ium iodide (15): Yield 64%, M.P. 230-232 °C, 1H NMR (400 MHz, MeOD-

d4) δ 1.76 (s, 12H), 3.71 (s, 6H), 6.435 (d, J = 12 Hz, 2H), 7.32 (t, J = 8 Hz, 2H), 7.39 (d, J = 8 

Hz, 2H), 7.45 (t, J = 8 Hz, 2H), 7.54 (d, J = 8 Hz, 2H), 8.345 (d, J = 12 Hz, 2H). 13C NMR (100 

MHz, MeOD-d4) δ 25.03, 29.53, 48.55, 98.93, 110.02, 121.00, 121.86, 124.55, 127.43, 140.42, 

141.67, 146.72, 174.28. TOF HRMS m/z [M]+ calculated for [C27H30N2Cl]+ 417.2098 found 

417.2107. 

2-((1E,3Z,5E)-3-Bromo-5-(1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-

trimethyl-3H-indol-1-ium iodide (16): Yield 61%, M.P. 230-232 oC ; 1H NMR (400 MHz, CDCl3-

d1) δ 1.91 (s, 12H), 3.82 (s, 6H), 6.36 (d, J = 8 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H, 7.26-7.31 (m, 

4H), 7.39-7.44 (m, 4H) 8.93 (d, J = 12 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 27.04, 31.98, 

49.85, 102.61, 112.19, 115.98, 122.94, 125.97, 128.93, 141.78, 143.02, 149.64, 175.14. TOF 

HRMS m/z [M]+ calculated for [C27H30N2Br]+
  461.1592 found 461.1585. 

5-Fluoro-2-((1E,3E,5E)-5-(5-fluoro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-1,3,3-trimethyl-3H-indol-1-ium iodide (17): Yield 78%, MP >260 oC,  1H-NMR(400 MHz, 

DMSO-d6) δ 1.68 (s, 12H), 3.59 (s, 6H), 6.23 (d, J = 12.0 Hz, 2H), 6.52 (s, 1H), 7.24 (s, 2H), 7.39 

(s, 2H), 7.62 (s, 2H), 8.29 (s, 2H). 13C-NMR (100 MHz, DMSO-d6) δ: 27.27, 31.85, 49.54, 103.64, 

103.76, 110.82, 111.07, 112.43, 112.49, 112.59, 112.66, 115.15, 125.54, 139.55, 143.60, 143.69, 

154.27, 154.29, 159.32, 161.72, 173.64. TOF HR-MS ESI m/z [M]+ calculated for [C27H29F2N2]
+ 

419.2299, found 419.2296. 

2-((1E,3Z,5E)-3-Chloro-5-(5-fluoro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-5-fluoro-1,3,3-trimethyl-3H-indol-1-ium (18): Yield 37%, MP >260 oC, 1H-NMR(400 MHz, 

DMSO-d6) δ: 1.72 (s, 12H), 3.67 (s, 6H), 6.26 (d, J = 14 Hz, 2H), 7.29,7.31 (t, J = 6.8 Hz, 8.8 Hz, 

2H), 7.52-7.54 (m, 2H), 7.70 (d, J = 6 Hz, 2H), 8.41 (d, J = 14 Hz, 2H). 19F NMR (375 MHz, 

DMSO- d6) δ: -116.67 (s, 2F). TOF HR-MS ESI m/z [M]+ calculated for 

[C27H29F2ClN2]
+  453.1909 found 453.1914. 

2-((1E,3Z,5E)-3-Bromo-5-(5-fluoro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-5-fluoro-1,3,3-trimethyl-3H-indol-1-ium (19) Yield 52%, 1H-NMR(400 MHz, DMSO-d6) δ: 

1.72 (s, 12H), 3.67 (s, 6H), 6.26 (d, J = 13.2 Hz, 2H), 7.32 (t, J = 8.8 Hz, 2H) , 7.55-7.52 (m, 2H), 
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7.70 (d, J = 7.6, 2H), 8.46 (d, J = 13.6, 2H). 19F NMR (375 MHz, DMSO- d6) δ: -116.67 (s, 2F). 

TOF HR-MS ESI m/z [M]+ calculated [C27H29F2N2Br]+ was 497.1404 found 497.1394. 

5-Chloro-2-((1E,3E,5E)-5-(5-chloro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-1,3,3-trimethyl-3H-indol-1-ium iodide (20): Yield 59%, MP >260 oC, 1H-NMR(400 MHz, 

DMSO-d6) δ: 1.69 (s, 12H), 3.59 (s, 6H), 6.27 (d, J = 14 Hz, 2H), 6.551 (t, J = 12.4, 12.0 Hz, 1H), 

7.39 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.80 (s, 2H), 8.32 (t, J = 13.2 Hz, 2H). 13C-NMR 

(100 MHz, DMSO-d6) δ: 27.30, 31.84, 49.51, 104.09, 112.87, 123.29, 126.16, 128.67, 129.50, 

142.23, 143.54, 154.72, 173.65. TOF HR-MS ESI m/z [M]+ calculated for 

[C27H29Cl2N2]
+  451.1708, found 451.1722. 

5-Chloro-2-((1E,3Z,5E)-3-chloro-5-(5-chloro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-

dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium (21): Yield 53%, MP >260 oC, 1H-NMR(400 MHz, 

DMSO-d6) δ: 1.72 (s, 12H), 3.67 (s, 6H), 6.26 (d, J = 14 Hz, 2H), 7.52 (m, 4H), 7.89 (s, 2H), 8.43 

(d, J = 13.6, 2H). 13C-NMR (100 MHz, DMSO-d6) δ: 26.81, 32.15, 49.98, 100.72, 113.62, 123.06, 

123.49, 128.80, 130.31, 142.02, 143.83, 147.96, 174.97. TOF HR-MS ESI m/z [M]+ calculated for 

[C27H29Cl3N2]
+  485.1318 found 485.1317. 

2-((1E,3Z,5E)-3-Bromo-5-(5-chloro-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-5-chloro-1,3,3-trimethyl-3H-indol-1-ium iodide (22) Yield 69%, MP 252-254 oC 1H-NMR(400 

MHz, DMSO-d6) δ: 1.73 (s, 12H), 3.67 (s, 6H), 6.28 (d, J = 13.2 Hz, 2H), 7.52 (m, 4H), 7.89 (s, 

2H), 8.47 (d, J = 13.2 Hz, 2H). 13C-NMR (100 MHz, DMSO-d6) δ: 26.79, 32.16, 50.03, 102.96, 

113.65, 116.40, 123.51, 128.82, 130.35, 141.99, 143.83, 149.98, 175.15. TOF HR-MS ESI m/z 

[M]+ calculated [C27H28BrN2Cl2]
+  was 529.0813 found 529.0810. 

5-Bromo-2-((1E,3E,5E)-5-(5-bromo-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-

yl)-1,3,3-trimethyl-3H-indol-1-ium iodide (23): Yield 62%, MP >260 oC, 1H-NMR(400 MHz, 

DMSO-d6) δ: 1.69 (s, 12H), 3.58 (s, 6H), 6.27 (d, J = 14 Hz, 2H), 6.56 (t, J = 12.4, 12 Hz, 1H), 

7.35 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4, 2H), 7.93 (s, 2H), 8.33 (t, J = 13.2 Hz, 2H).  13C-NMR 

(100 MHz, DMSO-d6) δ 27.25, 31.71, 49.48, 104.07, 113.33, 117.45, 126.09, 131.51, 142.63, 

143.85, 154.86, 173.45.  TOF HR-MS ESI m/z [M]+ calculated for [C27H29Br2N2]
+ 539.0697, 

found 539.0695. 

5-Bromo-2-((1E,3Z,5E)-5-(5-bromo-1,3,3-trimethylindolin-2-ylidene)-3-chloropenta-1,3-

dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium (24): Yield 72%, MP >260 oC, 1H-NMR(400 MHz, 
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DMSO-d6) δ: 1.72 (s, 12H), 3.67 (s, 6H), 6.28 (d, J = 12.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.63 

(d, J = 8.0 Hz, 2H), 8.01 (s, 2H), 8.43 (d, J = 12.0 Hz, 2H). 13C-NMR (100 MHz, DMSO-d6) δ: 

26.81, 32.17, 49.96, 100.69, 114.05, 118.37, 123.13, 126.26, 131.63, 142.40, 144.11, 147.96, 

174.78. TOF HR-MS ESI m/z [M]+ calculated for [C27H28Br2N2Cl]+  573.0308, found 573.0316. 

5-Bromo-2-((1E,3Z,5E)-3-bromo-5-(5-bromo-1,3,3-trimethylindolin-2-ylidene)penta-1,3-

dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium iodide (25): Yield 46%, MP 231-232 oC, 1H-NMR(400 

MHz, DMSO-d6) δ: 1.72 (s, 12H), 3.66 (s, 6H), 6.28 (d, J = 13.2 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 

6.64 (d, J = 8.4 Hz, 2H), 8.01 (s, 2H), 8.48 (d, J = 13.6 Hz, 2H). 13C-NMR (100 MHz, DMSO-d6) 

δ: 26.79, 32.11, 50.03, 102.97, 114.07, 116.47, 118.42, 126.27, 131.65, 142.40, 144.13, 150.03, 

175.01. TOF HR-MS ESI m/z [M]+ calculated [C27H28Br3N2]
+  was 616.9803, found 616.9814. 

1,3,3-Trimethyl-5-(trifluoromethyl)-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-

(trifluoromethyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium iodide (26): Yield 55%, 

MP 218-221°C, 1H NMR (400 MHz, CDCl3): δ 1.81 (s, 12H), 3.79 (s, 6H), 6.53 (d, J = 13.6 Hz, 

2H), 7.11 (t, J = 13.6 Hz, 1H), 7.21(d, J = 8.4 Hz, 2H), 7.60 (s, 2H), 7.70 (d, J = 7.6 Hz, 2H), 8.02 

(t, J = 13.6, 2H). 19FNMR: (375 MHz, DMSO-d6): δ 62.00. TOF HRMS m/z [M]+ calculated for 

[C29H29N2F6]
+ 519.2297, found 519.2393. 

2-((1E,3Z)-3-Chloro-5-((E)-1,3,3-trimethyl-5-(trifluoromethyl)indolin-2-ylidene)penta-

1,3-dien-1-yl)-1,3,3-trimethyl-5-(trifluoromethyl)-3H-indol-1-ium iodide (27): Yield 71%, MP 

226-228 °C, 1H NMR (400 MHz, CDCl3): δ 1.91 (s, 12H), 3.87 (s, 6H), 6.47 (d, J = 13.6 Hz, 2 H), 

7.30 (s, 2H), 7.65 (m, 4H), 8.90 (d, J = 10.4 Hz, 2H).  19F NMR (375 MHz, DMSO-d6): δ 62.05. 

TOF HRMS m/z [M]+ calculated for [C29H28N2F6Cl]+ 553.1840, found 553.1996. 

2-((1E,3Z)-3-Bromo-5-((E)-1,3,3-trimethyl-5-(trifluoromethyl)indolin-2-ylidene)penta-

1,3-dien-1-yl)-1,3,3-trimethyl-5-(trifluoromethyl)-3H-indol-1-ium iodide (28): Yield 71%, MP 

226-228 °C, 1H NMR (400 MHz, CDCl3): δ 1.91 (s, 12H), 3.87 (s, 6H), 6.46 (bs, 2H), 7.30 (s, 2H), 

7.69 (m, 4H), 8.91 (d, J =, 7.2 Hz, 2H). 19F NMR (375 MHz, DMSO-d6), δ: 62.01. TOF HRMS 

m/z [M]+ calculated for [C29H28N2F6Br]+ 597.1335, found 597.1597. 
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ABSTRACT: Our initial efforts to prepare tissue-specific near-
infrared (NIR) fluorescent compounds generated successful
correlation between physicochemical properties and global
uptake in major organs after systemic circulation and
biodistribution. Herein, we focus on the effects on biodis-
tribution based on modulating electronic influencing moieties
from donating to withdrawing moieties at both the heterocyclic
site and through meso-substitution of pentamethine cyanine
fluorophores. These selected modifications harnessed innate
biodistribution pathways through the structure-inherent
targeting, resulting in effective imaging of the adrenal glands,
pituitary gland, lymph nodes, pancreas, and thyroid and
salivary glands. These native-tissue contrast agents will arm
surgeons with a powerful and versatile arsenal for intraoperative NIR imaging in real time.

■ INTRODUCTION

During endocrine surgeries and intricate surgical resections,
surgeons mostly rely on their naked eye and experience during
often-lengthy procedures to avoid sensitive glands and
tissues.1−3 Neglecting to carefully navigate the surgical field
can lead to poor patient prognosis even morbidity.4−11

Endocrine and exocrine tissues regulate the body’s hormone
levels, and any perturbation, especially transection, can
jeopardize the patient’s ability to recover after surgery and
maintain proper hormone levels.12−15 The important task of
avoiding sensitive tissues is often difficult as these small and
imperative glands are often obscured by blood and surrounding
tissues. Surgeons require an imaging modality that can allow
them to visualize these tissues during cancer resection surgeries
to improve the surgical success rate, lower overall fatalities, and
advance patient prognoses.
Near-infrared (NIR) fluorescence-guided resection of cancer-

ous tissues has demonstrated significant promise with
increasing advancements being reported over the recent
years.15−27 Unfortunately, research efforts have been over-
whelmingly concentrated on developing cancer-specific NIR-
fluorophores with optimal optical, physicochemical, and
targeting properties. This only satisfies one-half of the main
objective: the ability to simultaneously image the surgical field

with both a disease-targeted fluorophore and a native-tissue-
targeted fluorophore of distinct wavelengths that can both be
simultaneously and separately detected for direct dual-target
imaging in real time.
Significant advancements have been made to develop NIR-

fluorescent compounds that target sensitive endogenous tissue
and help surgeons avoid these hormonal glands in real time
without changing the overall look of the surgical field. The class
of NIR-fluorescent cyanine dyes has shown excellent promise in
the area of NIR-fluorescence image-guided surgery for in vivo
tumor targeting. Cyanine chromophores are broadly defined by
having two nitrogen-containing heterocycles that are connected
through an electron-deficient polymethine bridge with a
delocalized monocation conjugated between both nitrogen
atoms. The wavelengths associated with these compounds are
heavily dependent on the length of the polymethine bridge and
the terminal heterocyclic moieties. Polymethine cyanines are
chemically stable NIR-fluorescent compounds, and we have
investigated the pentamethine class of compounds previ-
ously16,20 and herein for laying the groundwork for endogenous
tissue targeting. The heptamethine cyanine class (∼800 nm
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fluorescence) has been more extensively explored for disease
targeting through the development of zwitterionic decorated
heptamethine cyanines linked with a propinoic acid and
conjugated with a small cyclic peptide (cRGD-ZW800−
1).10,21,22 The longer NIR wavelengths (i.e., 800 nm) are
more easily detected against the background and usually
reserved to detect occult cancerous metastasis due to the
minimal autofluorescence. We plan to further exploit the 700
nm channel (pentamethine cyanines) for native tissue imaging
for dual channel intraoperative imaging.
Toward achieving this goal, we have continued to harness the

structure-inherent tissue affinity to determine the innate
biodistribution and targeting by modulating overall molecular
characteristics such as hydrophobicity (determined through log
D calculations), total polar surface area, molecular size/weight,
and the electronic contributions (electron-donating/-with-
drawing characteristics).15,24,26 The compounds synthesized
and analyzed herein vary by their heterocyclic moieties
(electron donating or withdrawing) and various halogenation
at the central carbon atom of the polymethine chain which
alters the net dipole, volume, polarization, and even the overall
shape of the compounds. We expect these selected
modifications to offer biological perturbation toward under-
standing the molecular characteristics for targeting specific
tissues. Correlating these molecular descriptors with in vivo
biodistribution is expected to result in a clinically significant
paradigm in the quest of translating NIR-targeted contrast
agents into the clinic, and every analyzed compound offers
another evidentiary piece to the puzzle.

■ RESULTS AND DISCUSSION

Synthesis of Pentamethine Fluorophores. Since it has
been previously reported that halogenated hydrocarbons
localize in higher concentration within endocrine and exocrine
glands compared to their nonhalogenated counterparts,16 we
decided to probe the effect of halogenation on pentamethine
cyanines for endocrine and exocrine tissue targeting. For a
direct comparison, we synthesized electron-donating counter-
parts that could offer insight into how potential electronic
factors present in the compounds may influence biodistribu-
tion. We selected methoxy and methylene-dioxy heterocyclic
groups for a direct comparison to the halogenated counterparts
and fully expected perturbation in the biological distribution
profile, but we could not predict the results of these
modifications. Understanding the effects that altering phys-
icochemical properties imparts on the distribution adds
important fundamental knowledge about future targeting ability
for this and many other classes of imaging agents.
We have developed several optimized synthetic routes for

maximizing the structural diversity in the pentamethine cyanine
pharmacophore. The compounds with neutral effects and
electron-withdrawing groups are synthesized starting with the
corresponding phenyl hydrazine salts being refluxed in the
presence of 3-methyl-2-butanone in acidic conditions. This
reaction furnishes the indolenines 2−5 in excellent yield. We
then alkylated the obtained oil using iodomethane in
acetonitrile, which yields the cationic salt 6−10 bearing an
acidic methylene proton. We also separately react aniline with a
warm ethanolic solution of either mucochloric or mucobromic
acid to obtain the pentamethine precursor 12 or 13, with 11
being commercially obtained. These two compounds are
individually combined in the presence of acetic anhydride

Scheme 1. Synthesis of 700 nm Emitting Pentamethine Cyanines Featuring Neutral (X = H) and Electron-Withdrawing (X = F,
Cl, Br, CF3) Moieties

Scheme 2. Synthesis of 700 nm Emitting Pentamethine Cyanines Featuring Electron-Donating Methoxy Groups
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and either triethylamine (fluorine-containing compounds) or
sodium acetate and are heated to afford the brilliant blue
pentamethine fluorophores Schemes 1 and 2.
The electron-donating containing methoxy-substituted com-

pounds are prepared through an identical synthetic route;
however, the final step requires a longer reaction time at a
slightly elevated temperature, due to the methoxy group
electron-donating effects which increases the pKa of the
methylene proton resulting in reduced reactivity of the
methylene carbon. We also designed a complementary set of
compounds bearing heterocyclic-donating groups features the
methylene dioxy ring shown in compounds 36−38. These
compounds are prepared using an alternate synthetic strategy
beginning with the acidic bromination of 3-methyl-2-butanone
followed by SN1 replacement of the tertiary bromine by the
methylene dioxyaniline compound. Upon heating in the
presence of acid catalyst, para-toluenesulfonic acid, the
compound forms the cyclic methylene dioxy 2,3,3-trimethy-
lindolenine ring through a largely unexplored Bischler−Möhlau
method that can be alkylated using aforementioned conditions
for the formation of compound 35. The final methylene dioxy
compounds 36−38 were synthesized using similar chemistry as
the methoxy group (Scheme 3).

Optical and Physicochemical Properties. The optical
properties, shown in Table 1, were performed in several
solvents to determine the in vivo success for the fluorophores.
We can see that the compounds with hydrogen, chlorine,
bromide, and methoxy groups (14−25, 31−33) exhibit sharp
and NIR absorbance bands with very high molar absorptivity all
being >100,000 M−1 cm−1 which suggests that these
fluorophores will satisfactorily absorb NIR wavelengths in
vivo and will be compatible with the intraoperative imaging
system. As expected, the methylenedioxy compounds exhibited
slightly lower molar absorptivity due to a broadening of the
absorption profile which results from a more widely dispersed
energy sublevels. Similarly, the trifluoromethyl substituted
compounds are very poor at absorbing light at their wavelength
of maximum absorbance, as indicated by their low molar
absorptivity values in Table 1. We attribute this to the high-
electron-withdrawing characteristics of the trifluoromethyl
groups which lowers the overall probability of electron
movement across the methine bridge connecting the aza-
heterocycles. The in vivo success of these compounds also
depends of the quantum yield and more importantly the
molecular brightness (determined as the product of extinction
coefficient and quantum yield) of the compounds in serum;
therefore, we examined the quantum yield of these

Scheme 3. Synthesis of 700 nm Emitting Pentamethine Cyanines Featuring Electron-Donating Methylene Dioxy Substitution
on the Phenyl Rings

Table 1. Optical Properties of 700 nm Emitting NIR Fluorophoresa

λabs (nm) extinction coefficient (ε, M−1cm−1) λem (nm) Stokes shift QY (Φ, %) MB (ε × Φ)

ID DMSO EtOH PBS FBS DMSO EtOH PBS FBS EtOH FBS EtOH FBS EtOH FBS EtOH FBS

14 647 645 640 649 212,500 248,200 218,800 184,500 660 662 15 13 32.7 31.0 81,161 57,195
15 645 644 642 638 235,300 207,800 171,000 168,800 659 665 15 27 29.2 28.8 60,677 48,614
16 645 641 638 634 257,330 253,200 204,400 211,700 657 660 16 26 30.1 43.6 76,213 92,301
17 645 641 638 649 216,700 225,800 196,500 164,400 663 662 22 13 31.6 35.2 71,352 58,868
18 646 643 638 638 210,900 233,700 193,400 193,400 658 660 15 22 16.5 15.3 38,561 29,590
19 642 641 635 644 173,200 210,500 170,900 145,800 658 658 17 14 16.3 11.9 34,312 17,350
20 652 649 645 660 183,400 204,200 174,200 136,000 658 669 19 9 41.5 57.5 84,743 78,200
21 653 652 647 658 192,800 207,800 140,200 136,000 664 666 14 8 18.3 28.5 38,027 38,760
22 650 648 643 655 233,100 250,600 185,000 153,700 665 663 17 12 15.4 17.4 38,592 26,744
23 653 650 653 662 181,200 174,500 144,800 141,100 670 671 20 9 42.4 57.0 73,988 80,427
24 655 653 660 648 140,200 189,600 121,500 119,700 667 671 14 23 20.8 23.0 39,437 27,531
25 643 641 635 644 169,000 169,600 166,900 159,600 657 663 16 21 15.5 11.8 26,288 18,833
26 642 638 636 648 41,200 45,200 28,700 30,600 656 654 18 6 58.7 89.2 26,532 27,295
27 644 640 638 649 72,000 114,900 56,300 19,500 656 655 16 6 20.5 47.4 23,555 9243
28 641 638 635 644 32,400 49,700 19,600 8400 653 651 15 7 21.1 29.0 10,487 2,436
31 671 668 658 674 152,300 205,000 133,600 135,000 696 696 28 22 9.6 11.9 19,680 16,070
32 672 671 658 676 148,100 210,000 135,900 162,000 694 692 23 16 3.9 9.7 8190 15,710
33 669 669 655 676 94,200 154,000 82,100 109,000 689 688 20 12 5.1 9.7 7218 10,570
36 691 690 680 698 107,200 108,100 89,200 85,900 705 716 15 18 4.7 6.5 5081 5584
37 689 690 678 693 147,200 156,600 127,100 117,800 716 712 26 19 3.0 4.2 4698 4948
38 687 687 675 691 154,900 165,800 135,700 125,000 715 716 28 25 2.9 3.1 4808 3875

aAll measurments were performed in DMSO, ethanol (EtOH), PBS, and FBS, pH = 7.4 at 37 °C. Abbreviations: λabs, wavelength of maximum
absorbance; λem, wavelength of maximum emission; QY, quantum yield; and MB, molecular brightness.
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fluorophores in fetal bovine serum (FBS). Compounds 14−28,
31−33 exhibit high quantum yield values in serum which is
very appealing. All of the synthesized compounds have
sufficiently high molecular brightness values in serum, with
many compounds exhibiting molecular brightness values of
>20,000. We observed an overall trend for the majority of
compounds that as the size of the central halogen increases, the
molecular brightness decreases. When analyzing the minimized
three-dimensional structures, we see that the meso-halogenation
perturbs the trans-pseudoalkene angles and the elongated
structure of the fluorophore which actually shortens the overall
length and perturbs the conjugated bridge by requiring the
compound to bend to accommodate this central substitution.
This is an interesting finding since upon first glance, it seems
that adding larger groups to the middle of the compound would
result in an elongation of the compound simply because it
would force the neighboring hydrogen atoms apart. Another
potential explanation for the decrease in molecular brightness is
the heavy atom effect that can effectively stabilize the triplet
state, allowing for a higher probability for competing decay
processes of the excited state (i.e., phosphorescence or energy
transfer) compared to the nonhalogenated fluorophores.
Photostability studies were performed on a select number of

contrast agents to observe their performance when continu-
ously irradiated and can be seen in Figure 1. The selected

compounds featuring a hydrogen atom at the meso position of
the polymethine bridge showed little decomposition after being
exposed to light for 48 h, however, when chlorine or bromine
replace the hydrogen, there is noticeable degradation of up to
35% of the original absorbance. Only a minimal 4% absorbance
was lost for each of the first compounds in each set;
furthermore, these data help conclude that these compounds

would be applicable for long-duration surgical resections with
the ability to absorb and fluoresce NIR-light for high-contrast
imaging with a half-life of >48h for the entire set studied. The
studies were compared to the same concentration of dyes kept
in dark containers, but the same distance from the lamp to
determine if thermal degradation contributed as well. We found
an absence in measurable degradation for the samples kept in
the dark which leads us to conclude that heat from the lamp
imparts a negligible effect and the absorbance decrease comes
from irradiation.

Structure-Inherent Targeting Ability of NIR Fluoro-
phores. As native tissue targeting remains predominantly
understudied, we focused our attention to the salivary, thyroid,
pituitary, adrenal glands, lymph nodes, and pancreas. As these
tissues facilitate the regulation of human hormone levels, they
are important for long-term health and should be carefully
avoided during surgical resection in surrounding areas.
After in vivo studies, we found compounds that exhibited

high SBR in targeted tissues (high is designated as a ratio of
target signal to surrounding tissue being >2.0). Without surface
or subcellular receptors readily available for the particular native
tissues, it has been difficult to infer mechanistic insight of how
these fluorophores localize within their respective tissues.
However, we have found several key structural components
that help facilitate structure-inherent biodistribution and
localization in important tissues, including the salivary, thyroid,
pituitary, adrenal glands, lymph nodes, and pancreas.
In surgical resections such as thyroidectomies, it is crucial to

remove the entire thyroid gland while maintaining complete
integrity of the parathyroid gland. Selective thyroid gland
imaging is paramount in the ability to avoid partial thyroid
resection or accidental parathyroid transection which can cause
several abnormal human conditions such as hypocalcemia.
The common clinical indications of salivary gland imaging

are pain and swelling. Imaging is useful in identifying the
masses of salivary glands and also in differentiating them from
the masses/pathologies of adjacent cervical spaces. In proven
cases of salivary gland tumors, imaging helps in delineating the
extent of the lesion and invasion of adjacent cervical spaces.
Cancerous tissues in this area can grow quickly, and surgical
resection of the diseased tissue is needed while sparing excision
of the exocrine salivary glands themselves.
Toward finding the thyroid and salivary glands targeting by

using NIR fluorophores, we evaluated the imaging capability of
these compounds in thyroid and salivary glands. Table 3 shows
the thyroid and salivary glands targeting for the entire set of
compounds. The targeting of these two tissues seemed to
parallel each other, suggesting a biological connection between
these two tissues, though despite an extensive literature review,
an explanation for this remains unclear. Among the entire set of
prepared compounds, we found that central halogenation
reduced the targeting efficacy into these glands. Surprisingly,
the parent set of compounds (14−16) all targeted the salivary
gland with superior SBR. From our data, we can see overall that
the salivary glands are sensitive to the central halogenation but
remain tolerant to the heterocyclic halogen incorporation.
Compounds 20−25 exhibit the halogen trend we observed.
With the heterocyclic halogen substitution, the salivary gland
targeting remains high; however, when the central halogen is
incorporated within the same compounds, we have a severely
diminished targeted ability (i.e., from compound 20 with SBR
of >5 to compounds 21 and 22 with SBR of 1−2). Specifically
compounds 17−25 shown in Figures 2 and 3 exemplify this

Figure 1. Photodegradation profile in light and dark conditions of a
select subset of NIR fluorescent contrast agents. The absorbance
values for the individual fluorophores were measured (at the
wavelength of maximum absorption) at different intervals to determine
the percent absorption remaining.
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trend. Compounds 17, 20, and 23 do not feature halogens at
the central carbon of the polymethine chain and exhibit the
most effective thyroid and salivary gland localization. As the
halogen incorporation increases, the thyroid and salivary gland
localization is forfeited in deference to nonspecific accumu-
lation and high liver uptake due to hepatobiliary clearance
arising from the increase in hydrophobicity.
As one of the important endocrine glands, the pituitary gland

(dubbed the master gland) is responsible for controlling the
hormonal release of signaling chemicals throughout the body.
Transecting this precious gland during surgery causes lasting
side effects from hormone dysregulation with imbalances
perpetuating during the lifetime of the patent. Tumors
associated with the pituitary gland can interfere with signaling
the release of many hormones such as thyroid-stimulating
hormone which directly influences metabolic activity, energy
levels, growth hormones, and the nervous system. Efforts to
remove pituitary gland tumors must critically and clearly image
the native tissue to prevent accidental damage. We found
excellent pituitary gland targeting with the trifluoromethyl
compounds 26−28 (Figure 4). The trifluoromethyl substitu-
tions increase the dipole of the compound considerably (Table
2) which we anticipated to elicit a drastic biological response
compared to the alternate halogenated counterparts. Indeed,
the vast change in electronic dipole from 1 to 4 debye (other
compounds) to >7.5 debye in the trifluoromethyl substituted
compounds (which also corresponds to an increase in
polarizability) lowered the target recognition to some

endocrine tissues; however, the thyroid gland targeting
remained elevated when the central position was halogen-free.
Lymph nodes are widely distributed and are responsible for

immune system function and can indicate an abnormal
physiological condition. For example, an increase in size may
indicate leukemia due to increased trafficking of lymphocytes
from the blood into the lymph nodes. Additionally, thorough
examination of the lymph nodes is crucial for the staging of
cancer as tumor metastases normally first localize in sentinel
lymph nodes. For surgical avoidance and the frequent necessity
to biopsy, a NIR imaging technique to visualize this tissue is
highly important. In the developed set of compounds, we
noticed effective targeting of the lymph node by the methoxy
derivatives 31−33 which is surprising in the context of the
methylene dioxy compounds 36−38 exhibiting low lymph node
targeting. Interestingly we see an inverse effect of the previous
set of compounds where the meso halogenation increases the
imaging signal as compared to the surrounding tissue in the
lymph node with 32 and 33 having a SBR of >5 as indicated by
the +++ in Table 3. Figure 5 shows two successful examples of
nodal imaging in the inguinal and lumbar nodes with
compound 33 exhibiting excellent targeting characteristics.
The adrenal glands, located above the kidney, produce

essential and nonessential hormones that primarily control the
body’s metabolism, blood pressure, and stress response. In
Figure 6, we observed that the methylene dioxy compounds
36−38 exhibited adrenal gland targeting characteristics (++,
SBR 3−5) that also seemed to be tolerant to the addition of

Figure 2. Compounds 20−22, targeting to salivary glands and thyroid glands, and biodistribution of resected organs in CD-1 mice. Ten nmol of
each fluorophore was injected intravenously into 25 g CD-1 mice 4 h prior to imaging and resection. Abbreviations used are Du, duodenum; He,
heart; In, intestine; Ki, kidneys; Li, liver; Lu, lungs; Mu, muscle; Pa, pancreas; SG, salivary gland, Sp, spleen. Arrows indicate the targeted gland.
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meso-halogens. It seems that the log D values predominantly
govern the localization of these compounds as the five
compounds (31, 32, 36−38) with the lowest log D were the
most effective at targeting this tissue, with the methylene dioxy
compounds 36−38 prevailing as the best contrast agents for the
adrenal gland across the series. This finding is also true in their
pancreas targeting ability, as all three compounds within this set
exhibit excellent SBR in pancreatic tissue. Interestingly, the
small change from methoxy 31−33 to the locked ring structure
of 36−38 alters the targeting ability of the compound (i.e.,
comparing 33 and 38). This finding also corroborates our
previous results that pancreatic targeting requires low
comparative log D values. Indeed the highest pancreas targeting
characteristics are from compounds exhibiting comparatively
low log D values (i.e., compounds 36−38, log D 2.80−3.21).
Additionally, the central halogenation seems to lower pancreas-
targeting substantially, except for the methylene dioxy set of
compounds. It is very interesting that independent halogen-
ation (either central or terminal heterocycles) does not seem to
greatly perturb the pancreatic tissue uptake, except for when the
trifluoromethyl group is incorporated. Halogenating both
positions, however, has a detrimental effect on the com-
pound-pancreas localization. For example, compounds 15, 16,
17, 20, and 23 are all effective at pancreas targeting, and only
have halogens at either the heterocycles or bridge. Compounds
18, 19, 21, 22, 24, and 25 with all sites halogenated exhibit
reduced pancreas uptake. We attribute this effect to an increase
in overall hydrophobicity imparted by too many halogens on

the core structure. Additionally, structures with higher
molecular weight in addition to greater hydrophobic character
seem to be poor at pancreatic localization.

Preliminary Cytotoxicity of NIR fluorophores. To
confirm cell cytotoxicity of the tissue-specific fluorophores,
NIH/3T3 mouse fibroblast cells were incubated with the
selected NIR fluorophores, respectively, for 1 h at 37 °C and
gently washed with DMEM. Then, the viability of fibroblasts
was assessed by the alamarBlue assay. The assay system
incorporates an oxidation−reduction (REDOX) indicator that
both fluorescence and changes color in response to chemical
reduction of growth medium resulting from cell growth. As
shown in Figure 7, over 75% of the cells were viable when
treated with NIR fluorophores at concentrations of 2 μM and
10 μM. Therefore, notable cell death was not observed even
with the high concentration of the NIR fluorophores. These
results confirm that tissue-specific NIR fluorophores do not
show obvious cytotoxic effects.

■ CONCLUSIONS

Toward satisfying the clinical need for native tissue targeted
contrast agents in real-time NIR image-guided surgery, we
present compounds that are effective at imaging the salivary,
thyroid, pituitary, adrenal glands, lymph nodes, and pancreas.
We are confident that this work will lay the foundation for
development of native tissue contrast agents for clinical use.

Figure 3. Compounds 23−25, targeting to salivary glands and thyroid glands, and biodistribution of resected organs in CD-1 mice. Ten nmol of
each fluorophore was injected intravenously into 25 g CD-1 mice 4 h prior to imaging and resection. Abbreviations used are Du, duodenum; He,
heart; In, intestine; Ki, kidneys; Li, liver; Lu, lungs; Mu, muscle; Pa, pancreas; SG, salivary gland, Sp, spleen. Arrowheads indicate the targeted gland.
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■ EXPERIMENTAL DETAILS
Synthesis of Pentamethine Cyanine Analogs. The chemical

reagents used in the synthesis of these compounds were obtained from
Acros Organics, Alfa Aesar, and Matrix Scientific. The reactions were
followed using silica gel 60 F254 thin-layer chromatography plates
(Merck EMD Millipore, Darmstadt, Germany). Open column
chromatography was utilized for the purification of all final compounds
using 60−200 μm, 60A, classic column silica gel (Dynamic
Adsorbents, Norcross, GA). The 1H NMR and 13C NMR spectra
were obtained using high-quality Kontes NMR tubes (Kimble Chase,
Vineland, NJ) rated to 500 MHz and were recorded on a Bruker
Avance (400 MHz) spectrometer using DMSO-d6 or MeOD-d4
containing tetramethylsilane (TMS) as an internal calibration standard
set to 0.0 ppm. UV−vis/NIR absorption spectra were recorded on a
Varian Cary 50 spectrophotometer. High-resolution accurate mass
spectra (HRMS) were obtained either at the Georgia State University
Mass Spectrometry Facility using a Waters Q-TOF micro (ESI-Q-
TOF) mass spectrometer or utilizing a Waters Micromass LCT TOF
ES+ Premier mass spectrometer. Liquid chromatography utilized a
Waters 2487 single wavelength absorption detector with wavelengths
set between 640 and 700 nm depending on the particular
photophysical properties. The column used in LC was a Waters
Delta-Pak 5 μM 100A 3.9 × 150 mm reversed-phase C18 column.
Evaporative light-scattering detection analyzes trace impurities that
cannot be observed by alternate methods; a SEDEX 75 ELSD was
utilized in tandem with liquid chromatography. The integral under the
curve was determined for both the LC and ELSD spectra and was used
to confirm the purity (>95%) of the synthesized contrast agents.
Optical and Physicochemical Property Analyses. All optical

measurements were performed in various solvents, including ethanol,

dimethyl sulfoxide (DMSO), phosphate buffered saline (PBS, pH 7.4),
and at 37 °C in 100% FBS buffered with 50 mM HEPES, pH 7.4.
Absorbance and fluorescence emission spectra of the series of NIR
fluorophores were measured using Varian Cary 50 absorbance
spectrophotometer (190−1100 nm) and Shimadzu RF-5301PC
spectrofluorometer (350−1000 nm). For fluorescence quantum yield
(QY) measurements, rhodamine 800 in absolute ethanol (QY = 28%)
was used as a calibration standard, under conditions of matched
absorbance at 620 nm. In silico calculations of physicochemical
distribution coefficient (log D at pH 7.4) was calculated using Marvin
and JChem calculator plugins (ChemAxon, Budapest, Hungary).
Electrostatic maps were calculated using Spartan DFT calculations at
the B3LYP level.

Photostability Analysis. The photostability experiments were
performed to determine the photobleaching threshold of the
fluorophores. We determined the photobleaching rate by measuring
the decrease in absorbance at the wavelength of maximum absorption
over a 48h time period. The light condition involved a glass cell
containing individual contrast agent (0.01 mm in methanol) that was
affixed 250 mm away from a 15W F15T8 broad spectrum bulb being
irradiated using a portable lamp at room temperature. The dark
control was also examined to exclude chemical decomposition
phenomena. The absorbance values were measured at various time
points and then plotted versus time to obtain the photostability graphs
in light and dark.

Liquid Chromatography−Mass Spectrometry Analysis. The
purity of all compounds was measured using liquid chromatography−
mass spectrometry (LC-MS) on a Waters system consisting of a 1525
binary HPLC pump with a manual 7725i Rheodyne injector, a 996
photodiode array (PDA) detector, and a 2475 multiwavelength

Figure 4. Compounds 26−28, targeting to thyroid glands and pituitary gland, and biodistribution of resected organs in CD-1 mice. Ten nmol of
each fluorophore was injected intravenously into 25 g CD-1 mice 4 h prior to imaging and resection. Abbreviations used are Du, duodenum; He,
heart; In, intestine; Ki, kidneys; Li, liver; LN, lymph node; Lu, lungs; Mu, muscle; Pa, pancreas; SG, salivary gland, Sp, spleen. Arrows indicate the
targeted gland. For pituitary glands, arrowheads indicate the anterior portion and arrows for posterior pituitary.
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fluorescence detector. The column eluent was divided in 2 using a flow

splitter (Upchurch Scientific). A portion of the eluent flowed into an

ELSD (Richards Scientific) while the rest flowed into a Micromass

LCT ESI-TOF spectrometer (Waters) equipped with a Symmetry (R)

C18 (4.6 × 150 mm, 5 μm) reverse-phase HPLC column. For mass

spectrometry, the mobile phase was solvent A = 0.1% formic acid in

water and solvent B = CH3CN with 95% A for 5 min and a linear

gradient from 5% to 40% CH3CN (from A to B for 30 min) at a flow

Table 2. in Silico Physicochemical Properties of 700 nm Emitting NIR Fluorophores (log D, TPSA, and H-bond acceptors)
Calculated Using Marvin and JChem Calculator Pluginsa

physicochemical properties

ID MW (g/mol) log D (pH = 7.4) TPSA H-bond acceptors length (A) volume (Å3) dipole (debye) polarizability

14 383.548 3.56 6.25 1 18.665 445.51 1.95 76.14
15 417.994 3.79 6.25 1 18.530 458.45 0.89 77.21
16 462.445 3.96 6.25 1 18.453 462.96 0.79 77.55
17 419.529 3.84 6.25 2 18.684 455.28 4.23 76.95
18 453.974 4.08 6.25 3 18.536 468.22 3.32 78.02
19 498.425 4.24 6.25 3 18.475 472.73 3.26 78.36
20 452.439 4.77 6.25 2 18.674 472.01 3.55 78.30
21 486.884 5.00 6.25 3 18.539 484.95 2.58 79.37
22 531.335 5.17 6.25 3 18.464 489.45 2.52 79.71
23 541.341 5.09 6.25 2 18.665 481.25 3.74 79.05
24 575.786 5.33 6.25 3 18.517 494.19 2.79 80.12
25 620.237 5.50 6.25 3 18.340 498.70 2.73 80.40
26 519.544 5.31 6.25 6 20.188 511.26 8.04 81.47
27 553.989 5.55 6.25 7 19.547 524.14 7.58 82.54
28 598.440 5.70 6.25 7 19.406 528.65 7.62 82.88
31 443.600 3.24 24.71 2 20.631 500.23 4.10 80.61
32 478.045 3.48 24.71 3 20.527 513.28 3.04 81.68
33 522.496 3.64 24.71 3 20.142 517.72 2.89 82.02
36 471.577 2.80 43.17 4 21.203 496.69 2.69 80.33
37 506.019 3.04 43.17 5 20.847 509.64 1.77 81.39
38 550.473 3.21 43.17 5 20.680 514.15 1.72 81.74

aLog D = partition coefficient at pH 7.4, TPSA = total polar surface area, while molecular parameters (length, volume dipole, and polarizability) were
calculated using Spartan Wavefunction (V10) DFT starting with the minimized structural conformation of the lowest energy.

Table 3. Targeting Properties and Biodistribution of 700 nm Emitting NIR Fluorophores for Specific Organs/Tissues at 4 h
Post-Injectiona

targeted tissues biodistribution

ID AG Pa PG SG TG LN Li Ki He Lu Sp Bo

14 − +++ ++ +++ ++ ++ − +++ + − − ++
15 − +++ + +++ + + + +++ − − − +
16 + ++ − +++ + + + +++ − − − +
17 − +++ ++ +++ +++ ++ − +++ − + − +
18 + ++ + ++ ++ ++ ++ +++ − + − −
19 − + − + + − ++ +++ − + − −
20 ++ +++ +++ +++ +++ +++ − +++ + ++ − ++
21 + + + ++ + − +++ ++ − − − −
22 + + − + + − +++ ++ − + − −
23 + +++ +++ +++ +++ +++ ++ +++ + ++ − ++
24 + + + ++ + + +++ ++ − + − +
25 + + − + + − +++ ++ − + − −
26 − ++ +++ ++ ++ − +++ ++ − − − −
27 − + + + − ++ +++ ++ − − − −
28 + + − + − − +++ + − − − −
31 ++ +++ ++ +++ ++ ++ + +++ + + − +
32 ++ ++ ++ ++ ++ +++ +++ +++ − − − −
33 + + ++ ++ + +++ +++ +++ − + + −
36 ++ +++ +++ ++ + + ++ +++ + + − −
37 ++ +++ ++ ++ ++ + +++ ++ − − − −
38 ++ +++ ++ ++ ++ + +++ ++ − − − −

aAbbreviations used are AG, adrenal gland; Pa, pancreas; PG, pituitary gland; TG, thyroid gland; SG, salivary gland; Li, liver; Ki, kidneys; He, heart;
Lu, lungs; Sp, spleen; Bo, bone; LN, lymph node. The SBR of each organ/tissue relative to the abdominal wall was quantified and labeled as − , 1−2;
+ , 2−3; ++, 3−5; and +++, >5.
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rate of 1 mL/min, capillary voltage was −3317 V, and sample cone
voltage was −50 V.
Cell Viability Assay. The cell toxicity and proliferation were

assessed by alamarBlue (Thermo Scientific) assay. The NIH/3T3
fibroblasts were seeded onto 96-well plates (1 × 104 cells per well). To
test cytotoxicity depending on the fluorophore type and concentration,
cells were treated with 2 and 10 μM of each NIR fluorophore (n = 6)
for 1 h and cultured at 24 h post-treatment. At each assay time point,
the incubation cell media was replaced with 100 μL of fresh media.
Ten μL of alamarBlue solution was directly added to 100 μL each well
and incubated for 4 h at 37 °C in a humidified 5% CO2 incubator.
Finally, the 96-well plates were placed into a microplate reader (Spark
10M, TECAN, Switzerland) for measuring the absorption intensity at
570 nm and fluorescence intensity at 590 nm. The data were presented
by dividing by dye-untreated control group. The statistical significance
was determined by one-way analysis of variance (ANOVA).
Animal Models and Biodistribution. Animals were housed in an

AAALAC-certified facility and were studied under the supervision of
BIDMC’s IACUC in accordance with the approved institutional
protocol no. 057-2014. Male CD-1 mice (20−30 g, 6−8 weeks,
Charles River Laboratories, Wilmington, MA) were anesthetized with
100 mg/kg ketamine and 10 mg/kg xylazine intraperitoneally
(Webster Veterinary, Fort Devens, MA). For intraoperative imaging
and biodistribution, the imaging system equipped with a custom filter
set (Chroma Technology Corporation, Brattleboro, VT) composed of
a 650 ± 22 nm excitation filter, a 680 nm dichroic mirror, and an 710
± 25 nm emission filter was used at a fluence rate of 4 mW/cm2, with
white light (400−650 nm) at 40,000 l×. Color and NIR fluorescence
images were acquired simultaneously with custom software at rates up
to 15 Hz over a 15 cm diameter field of view. The imaging system was

positioned at a distance of 18 in. from the surgical field. For each
experiment, camera exposure time and image normalization were held
constant.

Quantitative Analysis. At each time point, the fluorescence and
background intensity of a region of interest (ROI) over each tissue was
quantified using custom imaging software and ImageJ software (NIH,
Bethesda, MD) version 1.45q. The signal-to-background ratio (SBR)
was calculated as SBR = fluorescence/background, where background
is the signal intensity of neighboring tissues such as muscle or skin
obtained over the period of imaging time. All NIR fluorescence images
for a particular fluorophore were normalized identically for all
conditions of an experiment. At least three animals were analyzed at
each time point. Statistical analysis was carried out using the unpaired
Student’s t-test or one-way ANOVA. Results were presented as mean
± SD, and curve fitting was performed using Prism version 4.0a
software (GraphPad, San Diego, CA).

Synthesis and Characterization of NIR Fluorophores. To
obtain the final dyes 14−28, 31−33, and 36−38, the precursor salts
6−10, 30, and 35 (2 mol equiv ) were added to a clean, dry round-
bottom flask. The compounds were stirred in 10 mL of acetic
anhydride, and either sodium acetate or triethyl amine (3 mol equiv)
was added along with 1 mol equiv of individual malondialdehyde
linker 11−13. The reaction was allowed to stir at 40−60 °C for 2 h.
The reactions were monitored closely using regular phase thin-layer
chromatography with a mobile phase of DCM/MeOH (99:1) as well
as UV−vis-NIR spectrophotometer in quartz cuvettes with methanol
as a solvent to visualize the absorption band at ∼650 nm against that
of the starting materials ∼400 nm. Upon completion of the reaction,
the mixtures were allowed to cool, and the solvent was evaporated.
The residue was extracted using DCM and was washed with DI water

Figure 5. Compounds 31−33, targeting to inguinal and lumbar lymph nodes, and biodistribution of resected organs in CD-1 mice. Ten nmol of
each fluorophore was injected intravenously into 25 g CD-1 mice 4 h prior to imaging and resection. Abbreviations used are Bl, bladder; Du,
duodenum; He, heart; In, intestine; Ki, kidneys; Li, liver; LN, lymph node; Lu, lungs; Mu, muscle; Pa, pancreas; Sp, spleen. Arrows indicate the
targeted gland.
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(3 × 70 mL). The resulting organic layer was dried under magnesium
sulfate, gravity filtered, and evaporated to afford crystals that were
washed with diethyl ether (2 × 50 mL) and hexanes (50 mL) to yield
crystals that were dried under vacuum overnight. The pure product
was obtained after dissolving in methanol and precipitating with ether
several times, or the compounds were isolated using flash column

chromatography and 5% methanol in DCM as the eluting solvent.
After purification, the compounds were obtained in the designated
yields and were fully characterized.

1,3,3-Trimethyl-2-((1E,3E,5E)-5-(1,3,3-trimethylindolin-2-ylidene)-
penta-1,3-dien-1-yl)-3H-indol-1-ium Iodide (14). Yield 64%, mp >
260 °C; 1H NMR (400 MHz, MeOD-d4) δ: 1.71 (s, 12H), 3.63 (s,

Figure 6. Compounds 36−38, targeting to adrenal glands and pituitary gland, and biodistribution of resected organs in CD-1 mice. Ten nmol of
each fluorophore was injected intravenously into 25 g CD-1 mice 4 h prior to imaging and resection. Abbreviations used are Du, duodenum; He,
heart; In, intestine; Ki, kidneys; Li, liver; Lu, lungs; Mu, muscle; Pa, pancreas; SG, salivary gland, Sp, spleen. Arrows indicate the targeted gland. For
pituitary glands, arrowheads indicate the anterior portion and arrows for posterior pituitary.

Figure 7. Cell viability assay of selected NIR fluorophores using NIH/3T3 fibroblasts. Cell viability was plotted 1 day post-treatment of compounds
at a concentration of 2 μM (left) or 10 μM (right), compared to untreated control as measured by the alamarBlue assay. Data are representative of N
= 6 independent experiments per condition (mean ± SD).
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6H), 6.28 (d, J = 16.0 Hz, 2H), 6.65 (t, J = 12.0 Hz, 1H), 7.24 (t, J =
8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.48 (d,
J = 8.0 Hz, 2H), 8.25 (t, J = 12.0 Hz, 2H); 13C NMR (100 MHz,
MeOD-d4) δ 27.90, 31.71, 50.50, 104.44, 111.83, 123.31, 126.20,
129.71, 142.56, 144.29, 155.52, 175.28. TOF HRMS m/z [M]+ calcd
for [C27H31N2]

+ 383.2487, found 383.2474.
2-((1E,3Z,5E)-3-Chloro-5-(1,3,3-trimethylindolin-2-ylidene)penta-

1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide (15). Yield 64%,
mp 230−232 °C; 1H NMR (400 MHz, MeOD-d4) δ 1.76 (s, 12H),
3.71 (s, 6H), 6.435 (d, J = 12 Hz, 2H), 7.32 (t, J = 8 Hz, 2H), 7.39 (d,
J = 8 Hz, 2H), 7.45 (t, J = 8 Hz, 2H), 7.54 (d, J = 8 Hz, 2H), 8.345 (d,
J = 12 Hz, 2H). 13C NMR (100 MHz, MeOD-d4) δ 25.03, 29.53,
48.55, 98.93, 110.02, 121.00, 121.86, 124.55, 127.43, 140.42, 141.67,
146.72, 174.28. TOF HRMS m/z [M]+ calcd for [C27H30N2Cl]

+

417.2098 found 417.2107.
2-((1E,3E,5E)-3-Bromo-5-(1,3,3-trimethylindolin-2-ylidene)penta-

1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide (16). Yield 61%,
mp 230−232 °C ; 1H NMR (400 MHz, CDCl3-d1) δ 1.91 (s, 12H),
3.82 (s, 6H), 6.36 (d, J = 8 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H, 7.26−
7.31 (m, 4H), 7.39−7.44 (m, 4H) 8.93 (d, J = 12 Hz, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 27.04, 31.98, 49.85, 102.61, 112.19, 115.98,
122.94, 125.97, 128.93, 141.78, 143.02, 149.64, 175.14. TOF HRMS
m/z [M]+ calcd for [C27H30N2Br]

+ 461.1592 found 461.1585.
5-Fluoro-2-((1E,3E,5E)-5-(5-fluoro-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide
(17). Yield 78%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ
1.68 (s, 12H), 3.59 (s, 6H), 6.23 (d, J = 12.0 Hz, 2H), 6.52 (s, 1H),
7.24 (s, 2H), 7.39 (s, 2H), 7.62 (s, 2H), 8.29 (s, 2H). 13C NMR (100
MHz, DMSO-d6) δ: 27.27, 31.85, 49.54, 103.64, 103.76, 110.82,
111.07, 112.43, 112.49, 112.59, 112.66, 115.15, 125.54, 139.55, 143.60,
143.69, 154.27, 154.29, 159.32, 161.72, 173.64. TOF HR-MS ESI m/z
[M]+ calcd for [C27H29F2N2]

+ 419.2299, found 419.2296.
2-((1E,3E,5E)-3-Chloro-5-(5-fluoro-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-5-fluoro-1,3,3-trimethyl-3H-indol-1-
ium (18). Yield 37%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ:
1.72 (s, 12H), 3.67 (s, 6H), 6.26 (d, J = 14 Hz, 2H), 7.29,7.31 (t, J =
6.8 Hz, 8.8 Hz, 2H), 7.52−7.54 (m, 2H), 7.70 (d, J = 6 Hz, 2H), 8.41
(d, J = 14 Hz, 2H). 19F NMR (375 MHz, DMSO-d6) δ: −116.67 (s,
2F). TOF HR-MS ESI m/z [M]+ calcd for [C27H29F2ClN2]

+ 453.1909
found 453.1914.
2-((1E,3E,5E)-3-Bromo-5-(5-fluoro-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-5-fluoro-1,3,3-trimethyl-3H-indol-1-
ium (19). Yield 52%, 1H NMR(400 MHz, DMSO-d6) δ: 1.72 (s, 12H),
3.67 (s, 6H), 6.26 (d, J = 13.2 Hz, 2H), 7.32 (t, J = 8.8 Hz, 2H), 7.55−
7.52 (m, 2H), 7.70 (d, J = 7.6, 2H), 8.46 (d, J = 13.6, 2H). 19F NMR
(375 MHz, DMSO-d6) δ: −116.67 (s, 2F). TOF HR-MS ESI m/z
[M]+ calcd [C27H29F2N2Br]

+ was 497.1404 found 497.1394.
5-Chloro-2-((1E,3E,5E)-5-(5-chloro-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide
(20). Yield 59%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ:
1.69 (s, 12H), 3.59 (s, 6H), 6.27 (d, J = 14 Hz, 2H), 6.551 (t, J = 12.4,
12.0 Hz, 1H), 7.39 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.80
(s, 2H), 8.32 (t, J = 13.2 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ:
27.30, 31.84, 49.51, 104.09, 112.87, 123.29, 126.16, 128.67, 129.50,
142.23, 143.54, 154.72, 173.65. TOF HR-MS ESI m/z [M]+ calcd for
[C27H29Cl2N2]

+ 451.1708, found 451.1722.
5-Chloro-2-((1E,3E,5E)-3-chloro-5-(5-chloro-1,3,3-trimethylindo-

lin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium
(21). Yield 53%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ: 1.72
(s, 12H), 3.67 (s, 6H), 6.26 (d, J = 14 Hz, 2H), 7.52 (m, 4H), 7.89 (s,
2H), 8.43 (d, J = 13.6, 2H). 13C NMR (100 MHz, DMSO-d6) δ: 26.81,
32.15, 49.98, 100.72, 113.62, 123.06, 123.49, 128.80, 130.31, 142.02,
143.83, 147.96, 174.97. TOF HR-MS ESI m/z [M]+ calcd for
[C27H29Cl3N2]

+ 485.1318 found 485.1317.
2-((1E,3E,5E)-3-Bromo-5-(5-chloro-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-5-chloro-1,3,3-trimethyl-3H-indol-1-
ium Iodide (22). Yield 69%, mp 252−254 °C 1H NMR(400 MHz,
DMSO-d6) δ: 1.73 (s, 12H), 3.67 (s, 6H), 6.28 (d, J = 13.2 Hz, 2H),
7.52 (m, 4H), 7.89 (s, 2H), 8.47 (d, J = 13.2 Hz, 2H). 13C NMR (100
MHz, DMSO-d6) δ: 26.79, 32.16, 50.03, 102.96, 113.65, 116.40,

123.51, 128.82, 130.35, 141.99, 143.83, 149.98, 175.15. TOF HR-MS
ESI m/z [M]+ calcd [C27H28BrN2Cl2]

+ was 529.0813 found 529.0810.
5-Bromo-2-((1E,3E,5E)-5-(5-bromo-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide
(23). Yield 62%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ:
1.69 (s, 12H), 3.58 (s, 6H), 6.27 (d, J = 14 Hz, 2H), 6.56 (t, J = 12.4,
12 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4, 2H), 7.93 (s,
2H), 8.33 (t, J = 13.2 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ
27.25, 31.71, 49.48, 104.07, 113.33, 117.45, 126.09, 131.51, 142.63,
143.85, 154.86, 173.45. TOF HR-MS ESI m/z [M]+ calcd for
[C27H29Br2N2]

+ 539.0697, found 539.0695.
5-Bromo-2-((1E,3E,5E)-5-(5-bromo-1,3,3-trimethylindolin-2-yli-

dene)-3-chloropenta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium
(24). Yield 72%, mp > 260 °C; 1H NMR(400 MHz, DMSO-d6) δ: 1.72
(s, 12H), 3.67 (s, 6H), 6.28 (d, J = 12.0 Hz, 2H), 7.47 (d, J = 8.0 Hz,
2H), 7.63 (d, J = 8.0 Hz, 2H), 8.01 (s, 2H), 8.43 (d, J = 12.0 Hz, 2H).
13C NMR (100 MHz, DMSO-d6) δ: 26.81, 32.17, 49.96, 100.69,
114.05, 118.37, 123.13, 126.26, 131.63, 142.40, 144.11, 147.96, 174.78.
TOF HR-MS ESI m/z [M]+ calcd for [C27H28Br2N2Cl]

+ 573.0308,
found 573.0316.

5-Bromo-2-((1E,3E,5E)-3-bromo-5-(5-bromo-1,3,3-trimethylindo-
lin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium
Iodide (25). Yield 46%, mp 231−232 °C; 1H NMR(400 MHz,
DMSO-d6) δ: 1.72 (s, 12H), 3.66 (s, 6H), 6.28 (d, J = 13.2 Hz, 2H),
7.47 (d, J = 8.0 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 8.01 (s, 2H), 8.48
(d, J = 13.6 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ: 26.79, 32.11,
50.03, 102.97, 114.07, 116.47, 118.42, 126.27, 131.65, 142.40, 144.13,
150.03, 175.01. TOF HR-MS ESI m/z [M]+ calcd [C27H28Br3N2]

+ was
616.9803, found 616.9814.

1,3,3-Trimethyl-5-(trifluoromethyl)-2-((1E,3E)-5-((E)-1,3,3-tri-
methyl-5-(trifluoromethyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-
3H-indol-1-ium Iodide (26). Yield 55%, mp 218−221 °C; 1H NMR
(400 MHz, CDCl3): δ 1.81 (s, 12H), 3.79 (s, 6H), 6.53 (d, J = 13.6
Hz, 2H), 7.11 (t, J = 13.6 Hz, 1H), 7.21(d, J = 8.4 Hz, 2H), 7.60 (s,
2H), 7.70 (d, J = 7.6 Hz, 2H), 8.02 (t, J = 13.6, 2H). 19FNMR: (375
MHz, DMSO-d6): δ 62.00. TOF HRMS m/z [M]+ calcd for
[C29H29N2F6]

+ 519.2297, found 519.2393.
2-((1E,3Z)-3-Chloro-5-((E)-1,3,3-trimethyl-5-(trifluoromethyl)-

indolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-5-(trifluoro-
methyl)-3H-indol-1-ium Iodide (27). Yield 71%, mp 226−228 °C; 1H
NMR (400 MHz, CDCl3): δ 1.91 (s, 12H), 3.87 (s, 6H), 6.47 (d, J =
13.6 Hz, 2 H), 7.30 (s, 2H), 7.65 (m, 4H), 8.90 (d, J = 10.4 Hz, 2H).
19F NMR (375 MHz, DMSO-d6): δ 62.05. TOF HRMS m/z [M]+

calcd for [C29H28N2F6Cl]
+ 553.1840, found 553.1996.

2-((1E,3Z)-3-Bromo-5-((E)-1,3,3-trimethyl-5-(trifluoromethyl)-
indolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-5-(trifluoro-
methyl)-3H-indol-1-ium Iodide (28). Yield 71%, mp 226−228 °C; 1H
NMR (400 MHz, CDCl3): δ 1.91 (s, 12H), 3.87 (s, 6H), 6.46 (bs,
2H), 7.30 (s, 2H), 7.69 (m, 4H), 8.91 (d, J = , 7.2 Hz, 2H). 19F NMR
(375 MHz, DMSO-d6), δ: 62.01. TOF HRMS m/z [M]+ calcd for
[C29H28N2F6Br]

+ 597.1335, found 597.1597.
5-Methoxy-2,3,3-trimethyl-3H-indole (29). Yield 78%, reddish

brown oil; 1H NMR (400 MHz, DMSO-d6) δ 1.17 (s, 6H), 2.16 (s,
3H), 3.68 (s, 3H), 6.74 (m, 2H), 7.38 (s,1H).

5-Methoxy-1,2,3,3-tetramethyl-3H-indol-1-ium Iodide (30). 1H
NMR (400 MHz, DMSO-d6) δ 1.51 (s, 6H), 2.71 (s, 3H), 3.86 (s,
3H), 3.94 (s, 3H), 7.14 (d, J = 8.0 Hz, 1H), 7.47 (s, 1H), 7.81 (d, J =
8.0 Hz, 1H).

5-Methoxy-2-((1E,3E,5E)-5-(5-methoxy-1,3,3-trimethylindolin-2-
ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium Iodide
(31). Yield 75%, mp 228−230 °C; 1H NMR (400 MHz, DMSO-d6):
δ 1.66 (s, 12H), 3.56 (s, 3H), 3.81 (s, 6H), 6.17 (d, J = 12 Hz, 2H),
6.46 (t, J = 12 Hz, 1H), 6.95 (d, J = 8 Hz, 2H), 7.30−7.28 (m, 4H),
8.23 (t, J = 12 Hz, 2H). 13C NMR (100 MHz, DMSO-d6): δ 26.48,
30.62, 48.45, 55.29, 102.06, 108.43, 111.02, 112.84, 123.73, 135.80,
142.15, 151.94, 156.98, 171.55. TOF HRMS m/z [M]+ calcd for
[C29H35N2O2]

+ 443.2699, found 443.2692.
2-((1E,3E,5E)-3-Chloro-5-(5-methoxy-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-5-methoxy-1,3,3-trimethyl-3H-indol-1-
ium Iodide (32). Yield 80%, mp 235−237 °C; 1H NMR (400 MHz,
MeOD-d4) δ 1.73 (s, 12H), 3.67 (s, 6H), 3.85 (s, 6H), 6.34 (d, J = 12
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Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 7.14 (s, 2H), 7.29 (d, J = 8.0 Hz,
2H), 8.23 (d, J = 12 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ
27.05, 31.96, 49.88, 56.33, 99.74, 109.36, 112.76, 114.07, 121.81,
136.50, 143.49, 146.18, 158.51, 173.76. TOF HRMS m/z [M]+ calcd
for [C29H34N2O2Cl]

+ 477.2309; found 477.2327.
2-((1E,3E,5E)-3-Bromo-5-(5-methoxy-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-5-methoxy-1,3,3-trimethyl-3H-indol-1-
ium Iodide (33). Yield 55%, mp 214−216 °C; 1H NMR (400 MHz,
DMSO-d6): δ 1.69 (s, 12H), 3.63 (s, 6H), 3.81 (s, 6H), 6.18 (d, J = 12
Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 7.35 (s, 2H), 7.40 (d, J = 8 Hz, 2H),
8.38 (d, J = 12 Hz, 2H). 13C NMR (100 MHz, DMSO-d6): δ 26.20,
31.16, 49.13, 55.53, 101.20, 108.56, 112.00, 113.28, 114.41, 135.67,
142.68, 147.32, 157.72, 173.09. TOF HRMS m/z [M]+ calcd for
[C29H34N2O2Br]

+ 521.1804 found 521.1801.
5,7,7-Trimethyl-6-((1E,3E,5Z)-5-(5,7,7-trimethyl-5H-[1,3]dioxolo-

[4,5-f ]indol-6(7H)-ylidene)penta-1,3-dien-1-yl)-7H-[1,3]dioxolo[4,5-
f ]indol-5-ium Iodide (36). Yield 38%, 1H NMR (400 MHz, DMSO-
d6) δ: 1.63 (s, 12H), 3.54 (s, 6H), 6.06 (s, 4H), 6.18 (d, J = 16.0 Hz,
2H), 6.46 (t, J = 16.0 Hz, 1H), 7.13 (s, 2H), 7.28 (s, 2H), 8.16 (t, J =
15 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ: 27.59, 31.89, 49.29,
94.35, 102.18, 103.40, 104.03, 125.11, 134.93, 137.52, 145.55, 148.02,
152.68, 173.32. TOF HRMS m/z [M]+ calcd for [C29H31O4N2]

+

471.2278 found 471.2268.
6-((1E,3E,5E)-3-Chloro-5-(5,7,7-trimethyl-5,7-dihydro-6H-[1,3]-

dioxolo[4,5-f ]indol-6-ylidene)penta-1,3-dien-1-yl)-5,7,7-trimethyl-
7H-[1,3]dioxolo[4,5-f ]indol-5-ium (37). Yield 39%, 1H NMR (400
MHz, DMSO-d6) δ: 1.66 (s, 12H), 3.63 (s, 6H), 6.10 (s, 4H), 6.21 (d,
J = 13.6 Hz, 2H), 7.29 (s, 2H), 7.38 (s, 2H), 8.30 (d, J = 13.6 Hz, 2H).
13C NMR (100 MHz, DMSO-d6) δ: 27.10, 32.20, 49.70, 94.92, 100.10,
102.34, 104.12, 135.49, 137.25, 146.04, 146.12, 148.10, 174.41. TOF
HRMS m/z [M]+ calcd for [C29H30N2O4Cl]

+ 505.1894 found
505.1871.
6-((1E,3E,5E)-3-Bromo-5-(5,7,7-trimethyl-5,7-dihydro-6H-[1,3]-

dioxolo[4,5-f ]indol-6-ylidene)penta-1,3-dien-1-yl)-5,7,7-trimethyl-
7H-[1,3]dioxolo[4,5-f ]indol-5-ium (38). Yield 27%, 1H NMR (400
MHz, DMSO-d6) δ: 1.66 (s, 12H), 3.62 (s, 6H), 6.10 (s, 4H), 6.21 (d,
J = 13.6 Hz, 2H), 7.29 (s, 2H), 7.39 (s, 2H), 8.36 (d, J = 13.6 Hz, 2H).
13C NMR (100 MHz, DMSO-d6) δ: 27.08, 32.20, 49.76, 94.94, 102.34,
104.14, 113.95, 135.50, 137.22, 146.16, 146.16, 148.02, 174.59. TOF
HRMS m/z [M]+ calcd for [C29H30N2O4Br]

+ 549.1389 found
549.1368.
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2.4 Synthesis and Optical Properties of Asymmetric Pentamethine Cyanine Dyes 

Based on the results in the previous section, fluorophores that feature varying numbers of 

fluorine atoms were synthesized and studied to determine viability for endocrine tissue imaging. 

This was done by designing asymmetric pentamethine carbocyanine dyes with fluorine atoms and 

trifluoromethyl groups at the 5-position on the indolenine heterocycles. After research into the 

synthetic route,61 it was discovered that modified reaction conditions would have to be developed. 

After purification of the dyes, optical property studies in two solvents were performed and the data 

was analyzed before animal data was sent for.  

2.4.1 Introduction 

As the utility of polymethine cyanine dyes grows spanning several fields, tracers and in 

vivo optical imaging labels,62, 7,63 solar cells,64, 65 and medicinal compounds,66,67 the understanding 

between the chemical structure of these molecules and their optical performances must keep up 

for the improving development of the dyes. This family of dyes has been extensively researched 

due to its reasonable ease of synthetic modification, highly favorable optical properties for in vivo 

application, and low toxicity in the body.68 The cyanine dye class of dye consists of two nitrogen 

containing heterocycles with an elongated positively charged polymethine bridge. These 

compounds differ from other classes of dyes, such as BODIPY, fluorescein, ect., by  the range at 

which the compounds optically operate in: the near-infrared region. This region lies between 650 

nm and 900 nm and is very beneficial for in vivo imaging as there is a good signal to background 

ratio compared to auto fluorescence body tissue and the dyes. They are beneficial for solar cell 

utilization due to their third-order optical nonlinearity and fast response time.69 Based on currently 

available literature, most of the cyanine dyes being published and studied are symmetrical.70 The 
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symmetric synthetic route is simple and better understood than the asymmetric one. Asymmetric 

routes have been explored using a variety of heterocycles for monomethine and trimethine dyes, 

but when analyzing routes for pentamethine dyes, fewer literature examples exist.61 The synthetic 

route for symmetric cyanine dyes is quite robust and proceeds with little solvent for a several 

hundred milligram scale reaction as well as low heat and relatively little work up. The reactions 

are relatively clean and if properly stoichiometrically measured, two molar equivalents of indolium 

added to one molar equivalent of malonaldehyde bis-phenyl amine hydrochloride “linker”, the 

reaction gives relatively high yield and favorable optical and in vivo properties, almost eliminating 

the need to study their asymmetric counterparts. Asymmetric dyes have rarely been studied and 

their optical properties seem to be unreported in literature. In this study, we synthesized and 

optically characterized several asymmetric pentamethine cyanine to and compare their properties 

with that of the previously published symmetrical analogs. The symmetric analogs were published 

previously by our lab and studied in mouse models for the imaging of the endocrine system.63 

2.5 Results and Discussion 

2.5.1 Synthesis 

Scheme 5 shows the synthetic route to obtain new asymmetric dyes. Commercially 

available phenyl hydrazines 1, 4 and 5 were added to clean, dry round bottom flasks in acetic acid 

and 3-methyl-2-butanone and heated to reflux for 72 h. After a basic workup using sodium 

bicarbonate, the resulting indoles 2, 6, and 7 were stirred in minimal (>8 mL) acetonitrile with 

methyl iodide in a sealed tube for 24 h. To synthesize the dyes 10 a-f, compound 3 and 1 molar 

equivalent of sodium acetate were allowed to react at room temperature for 10 min before 

substituted malonaldehyde bis-phenyl amines were added to the reaction and heated to 30 oC. The 
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second indole terminal unit, 8 or 9, and another equivalent of base were added upon observing a 

peak at ~650 nm on a UV-Vis spectrum. This was subsequently heated to reflux and allowed to 

react until completion. All reactions were monitored via TLC using dichloromethane/methanol 

(1%) as eluent. The dyes were extracted using DCM and washed 5 times with DI water. The 

organic layer was dried using magnesium sulfate, filtered and the solvent was evaporated off 

before the crystals were dried under vacuum for 24 h. The dyes were purified by washing the 

crystals with 25 mL of diethyl ether and 25 mL of hexanes before drying again under vacuum. The 

route to obtain the symmetrical dyes is published by Henary et. al. in 2016. 63 

 

Scheme 3. Synthetic routes taken to obtain symmetrical (A.) and unsymmetrical 

pentamethine cyanine dyes (B.). i. acetic acid (25mL), reflux, 72hr; ii. acetonitrile, reflux, 24hr; 

iii. sodium acetate, acetic anhydride, RT, 20min; iv. sodium acetate, acetic anhydride, 60 oC, 20 

min; sodium acetate, acetic anhydride, 60 oC, 30 min. 
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2.5.2 Optical Properties Study 

The optical properties of the symmetric versions of these dyes (11 a-f) have been 

previously published by our group in 2015 and 2016.7,63 Table 1 highlights the differences between 

the asymmetric fluorophores (10 a-c) and fluorinated symmetrical fluorophores (11 a-c). Firstly, 

when analyzing the fluorinated asymmetric dyes, we notice 2.7, 3.9, and 3.9-fold decrease in 

extinction coefficient respectively, compared to the corresponding symmetric dyes with H, Cl, and 

Br at the gamma-carbon. We attribute this to the uneven distribution of electrons across the 

conjugated system. When the compounds have symmetric electronic effects stemming from both 

sides of the “push-π-pull” system, a very high molar attenuation coefficient is observed. However, 

when one side features a highly electron withdrawing group, such as fluorine atom or a 

trifluoromethyl group, we hypothesize that the withdrawing effect localizes the electrons at the 

nitrogen on the corresponding indole more than the equal sharing across the system seen in 

symmetric dyes, dimming the absorption attenuation. Looking at the overall trends in the novel 

asymmetric compounds compared to the symmetrical dyes, the molar attenuation coefficient 

shows an unusual trend when analyzing them in the two solvents. In ethanol, an organic polar 

protic solvent, the value decreases as the molecular weight increases with hydrogen, chlorine, and 

bromine being added at the meso position on the polymethine bridge. However when looking at 

the pattern in aqueous solvent, phosphate buffer, we observe the opposite to this trend but only in 

the asymmetric fluorophores. Again looking at an organic solvent, the quantum yield values when 

comparing the two sets of dyes are not that dissimilar and follow a similar pattern, decreasing with 

increasing halogen size, however, when analyzing the molecular brightness values (MB = ε x Φ), 

the unsymmetrical dyes do not seem to be ideal candidates for in vivo imaging studies. The 
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extinction coefficients remain very low in comparison to the symmetrical dyes and we expect then 

a low signal to background ratio (SBR). As previously published by our group,7,63 the symmetric 

dyes have application in the imaging of endocrine system tissues and the signal to background 

ratio is very high. Predictably with the lower molecular brightness values exhibited by the 

asymmetric dyes, this value would be significantly lower (~35-80%) than the least bright 

symmetrical analog. In aqueous media, the quantum yield of the compounds seems somewhat 

pliable to gamma carbon substitution as the chlorine atom on the bridge increases the quantum 

yield. The bromine atom, a much larger atom, lowers the quantum yield again, presumably due to 

the heavy atom affect. 

The asymmetric trifluoromethyl compounds (10 d-f) mimic the patterns of the symmetrical 

analogs (11 d-f). The quantum yield values are highest with the unsubstituted gamma carbon on 

the bridge with the chlorine-substituted molecule having the lowest, in ethanol. The molecular 

brightness trends downwards still moving from lowest molecular weight to highest as expected 

due to the heavy atom effect. There is an interesting observation in regards to the absorbance and 

emission maxima: there is a 6 nm greater red shift observed in the asymmetric pentamethine 

cyanine dyes to the symmetric equivalents. This is due to the energy of the symmetric vs 

asymmetric compounds. The calculated HOMO and LUMO energies, seen in Table 7, are more 

negative, about 0.2 eV, in the symmetrical fluorophores than the asymmetric, and although the 

energy gap between the two stay pretty consistent when transitioning from one comparable 

molecule to the other, these energy differences contributes to the difference in wavelength maxima 

of both the absorption and fluorescence spectra. As for efficacy for in vivo imaging purposes of 

these asymmetric dyes, their molecular brightness’ discourages us from using them for animal 
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studies; because the molecular brightness of the dyes is so low, the SBR of the dyes would also be 

very low and the quantum yield values makes these dyes poor candidates for these studies. 

Whereas there is a significant drop-off in molar attenuation in the mono fluoro-substituted dyes, 

10 a-f, the only dye that shows this major decrease is the gamma chloro-substituted molecule 10 

b (2.8 fold). The major difference with this set is the quantum yield values, again which we 

hypothesize to be from the asymmetric nature of the compounds and the unequal resonance sharing 

through the molecule dye to the highly electron withdrawing nature of the trifluoromethyl group.  

Table 3. A comparison of symmetrical and unsymmetrical pentamethine cyanine dyes 11 

a-c and 10 a-c. The novel dyes optical properties were performed in polar protic and aqueous 

solvents 
 

 

 

When the compound is symmetrical, we expect equal push-π-pull throughout the molecule, 

however when we substitute only one of the 5-H with trifluoro-methyl, this group is pulling the 

electrons to one side of the molecule more than an even sharing. One way to determine this would 

be to measure the bond lengths of each bond throughout the conjugated system through to the 

trifluoro-methyl and the 5-H by x-ray crystallography.71 All these values and comparisons can be 

seen in tables 3 and 4. Table 3 highlights the symmetrical fluorine substituted dyes (11 a-c) and 

their asymmetric counterparts (10 a-c), while table 4 compares the trifluoromethyl substituted 

symmetrical compounds (11 d-f) and the asymmetric dyes (10 d-f). 

ID λabs (nm) 

Extinction 

Coefficient (e, M-

1cm-1) 

λem (nm) Stokes Shift QY (Φ, F, %) MB (e x F) 

 EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS 

11a 641 638 225,800 196,500 663 662 22 24 31.6 35.2 71,352 69,168 

11b 643 638 233,700 193,400 658 660 15 22 16.5 15.9 38,561 30,750 

11c 641 635 210,500 170,900 658 658 17 23 16.3 11.9 34,312 20,337 

10a 641 637 83,900 47,300 661 657 20 20 31.0 17.5 26,009 8,278 

10b 643 637 67,600 54,000 657 655 20 18 14.7 20.3 9,937 10,962 

10c 640 634 54,200 60,700 655 655 15 21 13.2 8.2 7,154 4,977 
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Table 4. A comparison of symmetrical and asymmetric pentamethine cyanine dyes 11 d-f 

and 10 d-f. The novel dyes optical properties were performed in polar protic and aqueous solvents. 

2.5.3 Physicochemical 

Because of the low extinction coeffiencioents of compounds 10 a-f, it was deemed 

necessary to perform physicochemical calculations to learn more about the factors that could 

contribute to these properties. Calculations of physicochemical properties were performed, seen in 

table 5, to shed some light theoretically about the experimental values obtained through 

spectroscopic experiments (Table 5).  

Table 5. The HOMO/LUMO levels and energy calculated using Spartan '14. 
 

 

 

 

 

 

 

 

 

It may seem odd when analyzing the absorbance maxima values for the asymmetric and 

symmetric dyes that the gamma substituted chlorine compounds have the highest wavelength and 

ID λabs (nm) 

Extinction 

Coefficient (e, M-

1cm-1) 

λem (nm) Stokes Shift QY (Φ, F, %) MB (e x F) 

 EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS 

11d 638 636 45,200 27,700 656 657 18 21 58.7 50.3 26,532 13,933 

11e 640 638 114,900 56,300 656 655 18 17 20.5 19.8 23,555 11,147 

11f 638 635 49,700 19,500 653 651 15 18 21.1 29.0 10,487 5,655 

10d 644 640 42,300 37,800 668 663 24 23 17.7 8.5 7,487 3,213 

10e 640 637 52,200 98,000 664 655 24 18 5.9 2.6 3,080 2,548 

10f 638 633 34,500 62,200 657 653 19 20 6.1 1.2 2,105 746.4 

ID HOMO (eV) LUMO (eV) Gap (eV) Energy 

10a -7.66 -5.51 2.15 -1256.06304 

10b -7.74 -5.65 2.09 -1715.65644 

10c -7.76 -5.66 2.10 -3829.34039 

10d -7.83 -5.61 2.22 -1493.87495 

10e -7.92 -5.79 2.13 -1953.45877 

10f -7.94 -5.80 2.14 -4067.19095 

11a -7.67 -5.52 2.15 -1355.34811 

11b -7.76 -5.7 2.06 -1814.93379 

11c -7.75 -5.64 2.11 -3928.57750 

11d -8.04 -5.8 2.24 -1830.90760 

11e -8.13 -5.98 2.15 -2290.49132 

11f -8.12 -5.92 2.20 -4404.17635 
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that they do not follow a particular pattern. However when looking at the theoretical 

HOMO/LUMO gaps, it is seen that these compounds have the lower gap, which corresponds to a 

higher wavelength since the energy difference and wavelength are inversely proportional 

according to the energy equation E = hc/λ. This is consistent through the symmetric and 

asymmetric fluorophores.  

With the asymmetric fluorine compounds, 10 a-c, there are very few differences in the 

theoretical electron clouds shown in Figure 27. However, when looking at the trifluoromethyl 

groups, there are far greater electron withdrawing inductive and resonance effects by the group on 

the overall molecule. This is visualized by the pear shaped nature of the electron cloud on the 

HOMO visualization in Figure 27. The electron cloud about the central carbon exhibit a shape that 

indicates that the trifluoromethyl group is pulling the electrons towards one end of the molecule 

more than the other. With the symmetrical compounds, 11 a-f, the clouds that are calculated 

through Spartan ’14 show a symmetrical shape which indicates that, as hypothesized, the electrons 

will move freely across the conjugated system. But since there is a strong pull from one side of the 

molecule in 10 d-f, there is weird shaping of the clouds and it is hypothesized that this unevenness 

of the conjugation may be a cause for the lower molar absorbance by the molecules. 
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Figure 27. HOMO/LUMO calculations of compounds 10f and 11f. Both the energy gap 

and the energy levels differ significantly between the symmetric and asymmetric compounds. 

 

2.5.4 Conclusion 

After performing optical property studies and photophysical calculations, a brighter light 

has been shed on the synthesis and optical efficiencies of a select set of pentamethine cyanine dyes 

with the potential for application in in vivo imaging. In addition to requiring a more complicated 

synthetic route and purification method, the asymmetric dyes presented displayed significantly 

lower molar attenuation coefficients, and comparable quantum yield values in organic solvents, 

which leads to being overall less bright than their symmetrical counterparts. Although this study 

is not necessarily indicative of all pentamethine cyanine dyes, the hypothesis can be made that 

having a highly electron withdrawing group at the 5-position of one of the heterocyclic end units 

may not enhance optical properties for in vivo applications due to the heavy withdrawing nature 

of the fluorine functional groups at this position and its resonance effect on the molecule itself. 

Future studies will include electron donating atoms at this position as well has complimenting an 

electron donor atom with an electron withdrawing atom to observe the effects of a, in theory, more 

activated push-π-pull system. Through these studies, it can be concluded that asymmetric 
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carbocyanine dyes featuring highly electron withdrawing groups on this specific heterocycle are 

not worth studying for the use as in vivo contrast agents.  

2.5.5 Experimental Details 

2.5.5.1 Synthesis of Pentamethine Cyanine Analogs 

The chemical reagents used in the synthesis of these compounds were obtained from Acros 

Organics, Alfa Aesar, Matrix Scientific, and Sigma-Aldrich. The reactions were followed using 

silica gel 60 F254 thin-layer chromatography plates (Merck EMD Millipore, Darmstadt, Germany). 

Open column chromatography was utilized for the purification of all final compounds using 60–

200 μm, 60A, classic column silica gel (Dynamic Adsorbents, Norcross, GA). The 1H NMR and 

13C NMR spectra were obtained using high-quality Kontes NMR tubes (Kimble Chase, Vineland, 

NJ) rated to 500 MHz and were recorded on a Bruker Avance (400 MHz) spectrometer using 

DMSO-d6 or MeOD-d4 containing tetramethylsilane (TMS) as an internal calibration standard set 

to 0.0 ppm. UV–vis/NIR absorption spectra were recorded on a Varian Cary 50 spectrophotometer.  

2.5.5.2 Optical Physicochemical Property Analyses 

All optical measurements were performed in various solvents, including ethanol and 

phosphate buffered saline (PBS, pH 7.4), and at 37 °C in 100% FBS buffered with 50 mM HEPES, 

pH 7.4. Absorbance and fluorescence emission spectra of the series of NIR fluorophores were 

measured using Varian Cary 50 absorbance spectrophotometer (190–1100 nm) and Shimadzu RF-

5301PC spectrofluorometer (350–1000 nm). For fluorescence quantum yield (QY) measurements, 

rhodamine 800 in absolute ethanol (QY = 28%) was used as a calibration standard, under 

conditions of matched absorbance at 620 nm. In silico calculations of physicochemical distribution 

coefficient (log D at pH 7.4) was calculated using Marvin and JChem calculator plugins 
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(ChemAxon, Budapest, Hungary). Electrostatic maps were calculated using Spartan DFT 

calculations at the B3LYP level. 

2.5.5.3 Photostability Analysis 

The photostability experiments were performed to determine the photobleaching threshold 

of the fluorophores. We determined the photobleaching rate by measuring the decrease in 

absorbance at the wavelength of maximum absorption over a 48 h time period. The light condition 

involved a glass cell containing individual contrast agent (0.01 mm in methanol) that was affixed 

250 mm away from a 15W F15T8 broad spectrum bulb being irradiated using a portable lamp at 

room temperature. The dark control was also examined to exclude chemical decomposition 

phenomena. The absorbance values were measured at various time points and then plotted versus 

time to obtain the photostability graphs in light and dark. 

2.5.5.4 Synthesis and Characterization of NIR Fluorophores 

Dyes 11a-f were previously reported by Henary et al.1b Phenyl hydrazines 1, 4 and 5 were 

commercially obtained. They were added to 3 mol. equivalents of 3-methyl-2-butanone in 35 mL 

of acetic acid and let to react at reflux for 72 h. The resulting indoles (2, 6 and 7), after basic 

workup with sodium bicarbonate, were reacted with 1.1 mol. equivalent of iodomethane at reflux 

for 24 h to result in indolenine salts 3, 8 and 9. To obtain the final dyes 10 a-f, compound 3 was 

added to a clean, dry round-bottom flask. It was stirred in 5 mL of acetic anhydride, and 1 mol. 

equivalent of sodium acetate along with 1 mol. equivalents of individual malondaldehyde linker. 

The reaction was allowed to stir at RT for 15 min, wherein the reaction was monitored closely by 

UV-Vis for the disappearance of the starting material peak (~400 nm) and the production of the 

half dye (~550 nm). Once all of the starting material was consumed, the other end unit, either 8 or 
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9, is added to the reaction with another equivalent of base and 5 mL acetic anhydride. The reaction 

is then let to complete at 60 oC for 20 minutes. The reactions were monitored closely using regular 

phase thin-layer chromatography with a mobile phase of DCM/MeOH (99:1) as well as UV–vis-

NIR spectrophotometer in quartz cuvettes with methanol as a solvent to visualize the dye 

absorption band at ∼650 nm. Upon completion of the reaction, the reaction mixtures were allowed 

to cool, and the solvent was evaporated. The residue was extracted using DCM and was washed 

with DI water (3 × 70 mL). The resulting organic layer was dried under magnesium sulfate, gravity 

filtered, and evaporated to afford crystals that were washed with diethyl ether (2 × 50 mL) and 

hexanes (50 mL) to yield crystals that were dried under vacuum overnight. The pure product was 

obtained after dissolving in methanol and precipitating with ether several times, or the compounds 

were isolated using flash column chromatography and a gradient of 100% DCM to 5% methanol 

in DCM was used as the eluting solvent. After purification, the compounds were obtained in the 

designated yields and were fully characterized. 

5-fluoro-1,3,3-trimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-

dien-1-yl)-3H-indol-1-ium iodide (10a). Yield 36%, mp > 260 oC; 1H NMR (400 MHz, DMSO-

d6) σ: 1.938 (s, 12h), 3.876 (d, J = 6.4 Hz, 6H), 6.478 (m, J = 14 Hz, 6 Hz, 13.6 Hz, 2H), 7.018 (t, 

J = 12.4 Hz, 11.6 Hz, 1H), 7.262 (s, 1H), 7.299 (d, J = 7.6 Hz, 2H), 7.458 (m, J = 7.2 Hz, 7.2 Hz, 

10 Hz, 2H), 7.559 (t, J = 8.8 Hz, 8 Hz, 2H), 8.403 (m, J = 12.4 Hz, 12.4 Hz, 12.4 Hz, 2H).  13C 

NMR (100 MHz, DMSO-d6) σ: 28.00, 32.48, 32.74, 49.46, 76.74, 77.06, 77.38, 103.89, 104.16, 

110.15, 110.40, 110.49, 111.19, 111.27, 115.10, 115.35, 122.24, 125.27, 126.59, 128.62, 138.84, 

141.08, 142.70, 153.61, 154.09, 159.52, 173.06, 173.75. 
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 2-((1E,3Z)-3-chloro-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-5-

fluoro-1,3,3-trimethyl-3H-indol-1-ium iodide (10b). Yield 31%, mp > 260 oC; 1H NMR (400 MHz, 

DMSO-d6) σ: 1.722 (s, 12H), 3.675 (d, J = 5.6 Hz, 6H), 6.277 (t, J = 14.4 Hz, 15.6 Hz, 2H), 7.319 

(d, J = 7.6 Hz, 2H), 7.499 (m, J = 19.6 Hz, 7.22 Hz, 3H), 7.686 (s, 2H), 8.425 (t, J = 12 Hz, 9.2 

Hz, 2H). 13C NMR (100 MHz, DMSO-d6) σ: 26.88, 32.00, 49.79, 100.35, 110.94, 111.20, 112.16, 

113.35, 115.37, 115.62, 122.59.22.92, 125.98, 128.93, 139.35, 141.77, 143.04, 143.95, 144.03, 

147.53, 147.65, 159.76, 162.17, 147.95, 175.02. 

2-((1E,3Z)-3-bromo-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-5-

fluoro-1,3,3-trimethyl-3H-indol-1-ium iodide (10c). Yield 16%, mp > 260 oC; 1H NMR (400 MHz, 

DMSO-d6) σ: 1.724 (s, 12H), 3.676 (s, 6H), 6.277 (t, J = 14 Hz, 15.6 Hz, 2H), 7.321 (d, J = 7.6 

Hz, 2H), 7.468 (d, J = 6.8 Hz, 1H), 7.527 (s, 2H), 7.698 (s, 2H), 8.479 (d, J = 11.2 Hz, 2H). 13C 

NMR (100 MHz, DMSO-d6) σ: 21.54, 26.84, 32.03, 49.87, 55.42, 102.59, 110.98, 112.22, 113.39, 

115.37, 119.42, 122.95, 126.00, 128.91, 129.09, 129.75, 139.31, 141.79, 143.00, 143.94, 149.52, 

159.78, 162.18, 172.46, 175.13. 

1,3,3-trimethyl-5-(trifluoromethyl)-2-((1E,3E)-5-((E)-1,3,3-trimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium iodide (10d). Yield 29%, mp > 260 oC; 1H NMR 

(400 MHz, DMSO-d6) σ: 1.714 (s, 12H), 3.622 (q, 3.622, J = 26.4, 46.4 Hz, 6H), 6.210 (q, J = 

13.6, 25.2, 13.6 Hz, 1H, 6.560 (m, J = 14.4, 13.6, 8.8, 12, 12.4 Hz, 2H), 7.495 (m, 6H), 7.593 (s, 

1H), 8.326 (m, J = 13.6 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) σ: 

2-((1E,3Z)-3-chloro-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-

trimethyl-5-(trifluoromethyl)-3H-indol-1-ium iodide (10e). Yield 18%, mp > 260 oC; 1H NMR 

(400 MHz, DMSO-d6) σ: 1.776 (d, J = 10 Hz, 12H), 3.729 (t, J = 24, 45.2 Hz, 6H), 6.441 (d, J = 
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13.6 Hz, 2H), 7.324 (t, J = 7.2, 7.2 Hz, 1H), 7.430 (q, J = 14, 9.2, 8, 7.2 Hz, 3H), 7.536 (m, J = 

4.4, 5.2, 7.6 Hz, 2H), 7.815 (s, 1H), 8.388 (d, J = 13.6 Hz, 2H). 13C NMR (100 MHz, DMSO-d6)  

2-((1E,3Z)-3-bromo-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-

trimethyl-5-(trifluoromethyl)-3H-indol-1-ium iodide (10f). Yield 11%, mp > 260 oC; 1H NMR 

(400 MHz, DMSO-d¬6) σ: 1.741 (s, 12H), 3.688 (m, J = 24.4 Hz, 40.4 Hz, 6H), 6.318 (m, J = 

13.2 Hz, 20 Hz, 12.8 Hz, 54.4 Hz, 6.4 Hz, 35.6 Hz, 2H), 7.524 (m, J = 7.2 Hz, 26.8 Hz, 9.6 Hz, 

9.2 Hz, 7.6 Hz, 6.4 Hz, 7.2 Hz, 7.6 Hz, 16.4 Hz, 8 Hz, 15.6 Hz, 7.2 Hz, 13.6 Hz, 7.6 Hz, 19.2 Hz, 

7.6 Hz, 7H), 8.525 (m, J = 8.8 Hz, 4.8Hz, 7.6 Hz, 13.2 Hz, 2H). 13C NMR (100 MHz, DMSO-d6)  

2.6 Synthesis and Optical Properties of Near-Infrared Pentamethine Dyes with N-

Substituted Pentanoic Acid Groups 

The studies performed in the following section revolved around pentanoic acid groups. The 

use of these groups on imaging agents such as cyanine dyes can present researchers with unique 

opportunities to utilize the fluorescent nature of the dyes. The acid group can act as a handle for 

other ligands: for tissue targeting, for drug delivery, or for metal chelating. Therefore, studies on 

the fluorophores themselves should be performed to evaluate the imaging agents effectiveness as 

fluorophores regardless of its ligand handles. The dyes were synthesized, characterized and then 

optical properties were done to discover the optical efficacy of the pentamethine cyanine dyes. 

After the optical studies were performed, physicochemical properties were calculated to find out 

more about the compounds.   
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2.6.1 Synthesis and Purification of Pentamethine Dyes 

 

Scheme 4. The synthetic route used to obtain compounds 4 a-f from the starting material 

phenyl hydrazines 1.  

 

The final dyes were synthesized starting with para-substituted halogenated phenyl 

hydrazines. The hydrazines were reacted with 3-methyl-2-butanone in acetic acid at reflux for 72 

h to afford indole 2a or benz[e] indole 2b. This reaction proceeds through a 3, 3-sigmatropic 

rearrangement reaction to form the heterocycle. After a basic workup where the products were 

extracted using dichloromethane (DCM) and sodium bicarbonate to neutralize the acetic acid, the 

indolenines were then reacted with 3-bromopentanoic acid in acetonitrile at reflux for 24 hours. 

This led to the formation of indolenine salts 3a-b through an SN2 reaction mechanism. No workup 

was needed and the crude material was used in the next step of the reaction. Reacting salts 3a-b 

with unsubstituted or halogenated malonaldehyde bisphenyl amines in a 2:1 molar ratio in acetic 

anhydride at 60 oC for 45 min, the formation of dyes 4a-f occurred. The formation of the 

fluorophores were monitored using regular phase thin layer chromatography with a mobile phase 

of 100% DCM as well as by UV-Vis. The reaction mixtures were allowed to cool, dissolved in 

DCM and then washed six times with 1M HCL. The water was dried using sodium sulfate and the 
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organic layer was then gravity filtered and the solvent was evaporated off. The purification of the 

dyes started with a regular phase open tubular column. After using a mobile phase of 97:3 DCM: 

methanol, it was found through H1 NMR and mass spectrometry that there was formation of the 

mono-ester as well as the di-ester along with the di-acid. Due to the added acidity from the silica 

column, the methanol was able to convert some of the acid groups to methyl esters. A different 

method of purification had to be used since the groups were converting on the column due to the 

methanol but the dye would not move on the column without the methanol.  

Since column chromatography could not be used to purify the compounds, and fast 

recrystallization did not show improved purity, another route had to be explored. A slow 

recrystallization method called solvent vapor transfer was used. The compound was dissolved in 

DCM and placed in a small vial; then, the vial was placed in a larger jar with diethyl ether and the 

lid was secured. The jar was then left untouched for 10 days while the vapors exchange and the 

crystals grow slowly over the 10 days as opposed to quickly. After the crystallization, the crystals 

were dried and the H1 NMR showed that the crystallization had separated the dye from its 

impurities. This method was useful over all six compounds. The H1 NMR spectra showed that 

there was a COOH peak around 11.5 ppm and that there was no the singlet peak integrating to 

three that was present after column chromatography.  

2.6.2 Optical Properties and Physicochemical Calculations 

The optical properties of the compounds 4a-f were measured in ethanol as an organic 

medium and phosphate buffer as an aqueous one and can be seen in Table 6. The extinction 

coefficients of the compounds 4a-f are below 100,000 1/M x cm, usually a marker for researchers 

to judge fluorophores as viable for in vivo studies. The reason for the low extinction coefficient 
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values is unknown based on the analysis of the structures however when looking at the 

physicochemical calculations obtained from the minimized structures, a few hypotheses can be 

made. One of these hypotheses relates to the dimerization that occurs by the carboxylic acids; 

because of this dimerization, the compound is stretched and the electrons have further to go 

between carbons on the ‘bridge’. The Stokes shift values allow for a clear distinction between 

excitation light and fluoresced light. The quantum yield values show a unique trend. For 

compounds 4a-c, there is an increase in quantum yield values as the halogen on the bridge in 

ethanol, however the opposite trend occurs in PBS. As the hydrophobicity of the molecules 

increases when chlorine or bromine are 

added to the molecule, the aqueous 

medium is not allowing for efficient 

absorption to fluorescence to occur 

while the organic solvent is more 

tolerant of the hydrophobicity increase. 

The quantum yield values decreasing is 

observed for compounds 4d-f as well, 

however since the molecules are more 

hydrophobic due to the greater 

hydrophobicity of the benz[e] indole 

compared to the unsubstituted 

indolenine heterocycle. 

Figure 28. The HOMO (top) LUMO (bottom)  

visualizations of compounds 4c. 
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Another unique observation seen from the physicochemical properties is how the atoms on the 

bridge point. Usually, the gamma hydrogen is pointed down, away from the dimethyl groups, the 

beta hydrogens point up, and the alpha protons point down . However, after minimization, the 

hydrogens can be seen to be pointing in the opposite direction. This may be another consequence 

of the COOH dimerization. Because the propionic acid groups come together under the bridge, 

there is less room ‘under’ the molecule. When looking at compound 4c, it is clear that the bromine 

molecule is pointing up; this can be seen in figure 28. Usually, the dimethyl groups clog up that 

space and there is no room for the gamma substituted atom to point up, but due to the bending and 

puckering up of the molecule, there is now room for this atom to exist pointing upwards.  

Table 6. The optical property data collected from compounds 4a-f in two solvents. 

ID λabs (nm) 

Extinction 

Coefficient (e, M-

1cm-1) 

λem (nm) Stokes Shift QY (F, %) MB (e x F) 

  EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS EtOH PBS 

4a 646 643 60,700 56,300 668 659 22 16 23 72.3 13,961 40,705 

4b 645 644 32,200 30,300 663 657 18 13 67.5 42.2 21,735 12,787 

4c  646 644  24,500  18,000  662 655  18 11   78.5  22.5  19,233 4,050  

4d  685 680  78,400  50,700  708   697  23 17  42.3 43.4 33,163  22,004 

4e 684 680 93,100 79,500 702 695 18 15 21 20.7 19,551 16,457 

4f 684 681 95,400 81,000 702   695 18  14   19.9 16.2   19,985 13,122 

 

2.6.3 Conclusions 

Compounds 4a-f were successfully synthesized and purified using an unorthodox method 

compared to what is usually performed for this family of dyes. The dyes were characterized and 

their optical properties were studied in preparation for in vivo imaging. The dyes need to be studied 

further for biodistribution and more in depth H1 NMR studies to fully understand the extent of the 
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dimerization of the acid groups. The dyes can serve as useful handles for other ligands as well as 

for biodistribution studies. Their optical properties suggest that these dyes could be useful for in 

vivo imaging of tissues. The dyes were sent to be studied by our collaborators at Beth Isreal 

Deaconess Medical Center on rat models. These studies will show if there is any structure inherent 

properties afforded from the pentanoic acid groups. 

2.6.4 Experimental Details 

2.6.4.1 Synthesis of Pentamethine Cyanine Analogs 

The chemical reagents used in the synthesis of these compounds were obtained from Acros 

Organics, Alfa Aesar, Matrix Scientific, and Sigma-Aldrich. The reactions were followed using 

silica gel 60 F254 thin-layer chromatography plates (Merck EMD Millipore, Darmstadt, Germany). 

Open column chromatography was utilized for the purification of all final compounds using 60–

200 μm, 60A, classic column silica gel (Dynamic Adsorbents, Norcross, GA). The 1H NMR and 

13C NMR spectra were obtained using high-quality Kontes NMR tubes (Kimble Chase, Vineland, 

NJ) rated to 500 MHz and were recorded on a Bruker Avance (400 MHz) spectrometer using 

DMSO-d6 or MeOD-d4 containing tetramethylsilane (TMS) as an internal calibration standard set 

to 0.0 ppm. UV–vis/NIR absorption spectra were recorded on a Varian Cary 50 spectrophotometer.  

2.6.4.2 Optical Physicochemical Property Analyses 

All optical measurements were performed in various solvents, including ethanol and 

phosphate buffered saline (PBS, pH 7.4), and at 37 °C in 100% FBS buffered with 50 mM HEPES, 

pH 7.4. Absorbance and fluorescence emission spectra of the series of NIR fluorophores were 

measured using Varian Cary 50 absorbance spectrophotometer (190–1100 nm) and Shimadzu RF-

5301PC spectrofluorometer (350–1000 nm). For fluorescence quantum yield (QY) measurements, 
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rhodamine 800 in absolute ethanol (QY = 28%) was used as a calibration standard, under 

conditions of matched absorbance at 620 nm. In silico calculations of physicochemical distribution 

coefficient (log D at pH 7.4) was calculated using Marvin and JChem calculator plugins 

(ChemAxon, Budapest, Hungary). Electrostatic maps were calculated using Spartan DFT 

calculations at the B3LYP level. 

2.6.4.3 Synthesis and Characterization of NIR Fluorophores 

Phenyl hydrazines 1a-b were commercially obtained. They were added to 3 mol. 

equivalents of 3-methyl-2-butanone in 35 mL of acetic acid and let to react at reflux for 72 h. The 

resulting indoles (2a-b), after basic workup with sodium bicarbonate, were reacted with 1.1 mol. 

equivalent of iodomethane at reflux for 24 h to result in indolenine salts 3a-b. To obtain the final 

dyes 4 a-f, compound 3 was added to a clean, dry round-bottom flask. Two mol. equivalents was 

stirred in 5 mL of acetic anhydride, and 4 mol. equivalent of sodium acetate along with 1 mol. 

equivalents of individual malondaldehyde linker. The reaction was allowed to stir at RT for 15 

min. If the reaction proceeded longer than that, the product peak at ~650 nm would decrease on 

UV-Vis. The reactions were monitored closely using regular phase thin-layer chromatography 

with a mobile phase of DCM/MeOH (99:1). Upon completion of the reaction, the reaction mixtures 

were allowed to cool, and the solvent was evaporated. The residue was extracted using DCM and 

was washed with 1M AcOH (3 × 70 mL). The resulting organic layer was dried under magnesium 

sulfate, gravity filtered, and evaporated to afford crystals that were washed with diethyl ether (2 × 

50 mL) and hexanes (50 mL) to yield crystals that were dried under vacuum overnight. The dyes 

were purified using solvent transfer crystallography. The dyes were dissolved in DCM in a small 

vial and placed in a larger vial with the bottom covered in diethyl ether. The vials were sealed and 
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the solvents were allowed to exchange over a 10 day period. After the time was done, the solvent 

was decanted and the pure crystals were dried under vacuum. After purification, the compounds 

were obtained in the designated yields and were fully characterized. 

1-(2-carboxyethyl)-2-((1E,3E)-5-((E)-1-(2-carboxyethyl)-3,3-dimethylindolin-2-

ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-3H-indol-1-ium iodide (4a). Yield 18%, mp > 260 oC; 

1H NMR (400 MHz, MeOD-d4) σ: 1.741 (s, 12h), 2.720 (t, J = 6.8, 7.2 Hz, 4H), 4.388 (t, J = 6.8, 

7.6 Hz, 4H), 6.406 (d, J = 13.6 Hz, 2H), 6.662 (t, J = 13.2, 12.4 Hz, 1H), 7.271 (t, J = 6.8, 7.6 Hz, 

2H), 7.402 (m, J = 7.6, 8, 7.2, 4.6 Hz, 4H), 7.505 (d, J = 7.2 Hz, 2H), 8.269 (t, J = 12.8 Hz, 2H).  

13C NMR (100 MHz, DMSO-d6) σ: 27.61, 31.77, 33.29, 49.35, 52.16, 103.58, 103.98, 104.42, 

111.34, 111.83, 119.72, 122.87, 125.35, 126.46, 128.78, 129.06, 141.67, 142.13, 154.71, 171.34. 

1-(2-carboxyethyl)-2-((1E,3Z)-5-((E)-1-(2-carboxyethyl)-3,3-dimethylindolin-2-ylidene)-

3-chloropenta-1,3-dien-1-yl)-3,3-dimethyl-3H-indol-1-ium (4b). Yield 20%, mp > 260 oC; 1H 

NMR (400 MHz, DMSO-d6) σ: 1.692 (s, 12h), 2.752 (d, J = 26.4 Hz, 4H), 4.717 (s, 4H), 6.357 (d, 

J = 12.4 Hz, 2H), 7.290 (s, 4H), 7.654 (s, 2H), 8.497 (s, 2H).  13C NMR (100 MHz, DMSO-d6) σ: 

27.29, 31.98, 49.96, 52.56, 100.64, 112.36, 123.17, 126.14, 129.04, 132.10, 141.80, 148.40, 

171.16, 174.96. 

2-((1E,3Z)-3-bromo-5-((E)-1-(2-carboxyethyl)-3,3-dimethylindolin-2-ylidene)penta-1,3-

dien-1-yl)-1-(2-carboxyethyl)-3,3-dimethyl-3H-indol-1-ium bromide (4c). Yield 21%, mp > 260 

oC; 1H NMR (400 MHz, DMSO-d6) σ: 1.687 (s, 12h), 2.772 (d, J = 3.6 Hz, 4H), 4.419 (s, 4H), 

6.439 (d, J = 8.4 Hz, 2H), 7.320 (m, 8H), 8.529 (d, J = 12.4, 2H). 

3-(2-carboxyethyl)-2-((1E,3E,5E)-5-(3-(2-carboxyethyl)-1,1-dimethyl-1,3-dihydro-2H-

benzo[e]indol-2-ylidene)penta-1,3-dien-1-yl)-1,1-dimethyl-1H-benzo[e]indol-3-ium bromide 
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(4d). Yield 12%, mp > 260 oC; 1H NMR (400 MHz, DMSO-d6) σ: 1.861 (s, 4H) 1.959 (s, 12h), 

4.452 (s, 4H), 6.402 (d, J = 13.6Hz, 2H), 7.540 (s, 2H), 7.691 (s, 2H), 7.699 (s, 4H), 8.244, (s, 2H), 

8.595 (s, 2H). 

3-(2-carboxyethyl)-2-((1E,3Z,5E)-5-(3-(2-carboxyethyl)-1,1-dimethyl-1,3-dihydro-2H-

benzo[e]indol-2-ylidene)-3-chloropenta-1,3-dien-1-yl)-1,1-dimethyl-1H-benzo[e]indol-3-ium 

bromide (4e). Yield 14%, mp > 260 oC; 1H NMR (400 MHz, DMSO-d6) σ: 1.967 (s, 12H) 2.798 

(s, 4H), 4.529 (s, 4H), 6.460 (s, 2H), 7.538 (s, 2H), 7.685 (s, 2H), 7.696 (s, 4H), 7.834, (s, 2H), 

8.084 (s, 4H), 8.188 (s, 2H), 8.632 (s, 2H). 

2-((1E,3Z,5E)-3-bromo-5-(3-(2-carboxyethyl)-1,1-dimethyl-1,3-dihydro-2H-

benzo[e]indol-2-ylidene)penta-1,3-dien-1-yl)-3-(2-carboxyethyl)-1,1-dimethyl-1H-

benzo[e]indol-3-ium bromide (4f). Yield 15%, mp > 260 oC; 1H NMR (400 MHz, DMSO-d6) σ: 

1.861 (s, 4H) 1.959 (s, 12H), 4.452 (s, 4H), 6.436 (d, J = 13.6Hz, 2H), 7.536 (s, 2H), 7.756 (s, 2H), 

8.079 (s, 4H), 8.244, (s, 2H), 8.626 (s, 2H). 
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APPENDICES  

Chapter 1  

Appendix A.1 1H NMR Spectra 
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Appendix A.2 13C NMR Spectra
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Appendix A.3 19F NMR Spectra 
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Appendix A.3 Mass Spectra 
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Appendix A.4 Absorbance and Fluorescence Spectra 
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Appendix B.4 Physicochemical Properties 
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