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EXPLORING PARALLEL EFFICIENCY AND SYNERGY FOR MAX-P REGION

PROBLEM USING PYTHON

by

VINEY SINDHU

Under the Direction of Sushil Prasad, Ph.D.

ABSTRACT

Given a set of n areas spatially covering a geographical zone such as a province, form-

ing contiguous regions from homogeneous neighboring areas satisfying a minimum threshold

criterion over each region is an interesting NP-hard problem that has applications in var-

ious domains such as political science and GIS. We focus on a specific case, called Max-p

regions problem, in which the main objective is to maximize the number of regions while

keeping heterogeneity in each region as small as possible. The solution is broken into two



phases: Construction phase and Optimization phase. We present a parallel implementation

of the Max-p problem using Python multiprocessing library. By exploiting an intuitive data

structure based on multi-locks, we achieve up 12-fold and 19-fold speeds up over the best

sequential algorithm for the construction and optimization phases respectively. We provide

extensive experimental results to verify our algorithm.

INDEX WORDS: Clustering, Geospatial, Homogeneous Regions, Multiprocessing, Opti-
mization
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PART 1

INTRODUCTION

Clustering geographical areas into homogenous regions have many applications in var-

ious domains such as urban development, districting, transport planning, analyzing crime

rates etc [1]. The homogeneous region can be defined as a set of contiguous areas with

high degree of similarity for a given attribute such as per capita income, population etc.

Generally speaking, problems of this kind are NP-hard [2] as the size of geographical areas

to be grouped into homogeneous regions increases, the clustering running time increases ex-

ponentially. Hence, it is important to utilize the parallel processing capabilities of modern

hardware to perform the computation. Furthermore, improving the accuracy of the solution

by efficiently taking advantage of parallel synergy is another important aspect of these kinds

of problems.

Many researchers and scientists have contributed to the problem of aggregating areas

into homogeneous regions. Duque, Anselin, and Rey [2] referred to it as max-p region

problem, Hensen [6] referred to it as clustering under connectivity constraints, Maravalle and

Simeone [12] referred to it as regional clustering, Wise [13] referred to it as regionalization.

Major challenges in solving this problem are to ensure spatial contiguity of each region,

measure homogeneity of each region, explore solution space, and ways to check solution

feasibility. Other constraints in solving this problem are the shape of the region, equality of

an attribute value across the region, and boundary integrity. Due to these constraints, some

different formulations and solution strategies have been contributed by researchers.

Availability of highly disaggregated spatial data and computational resources provides

the opportunity for researchers to explore new applications of these clustering models. New

opportunities bring new challenges and one of the challenges is ever-increasing data size.

DiMOS lab working under the direction of Dr. Prasad has already laid out the roadmap [7,8]
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on using GPUs for the parallel processing of geospatial datasets. There are many available

algorithms to cluster the areas into homogeneous regions, however, most of them are not

scalable. Another challenge is to decide on the number of homogeneous regions to be formed

after clustering. Most of the available models require the number of regions as input. Also

in order to decide on the best clustering model for a set of given areas, one needs to know

about all the available algorithms. Mostly, researchers want to design regions for analysis

rather than summarizing and finding the number of regions in the data. In this situation,

the researcher may not know the number of regions to be designed, however they may know

the condition which will make a region suitable for analysis. This information can be used

as criteria to decide the number of regions.

In this thesis, we use the clustering model explained in [2] as the max-p problem. The

max-p region model is implemented in python, therefore, to have a benchmark for evaluation

of our work, we have also used python for this research. Another reason to use python is

that lot of researchers are familiar with python and use it on day to day basis for analysis.

The problem aggregates n areas into an unknown maximum number of homogeneous

regions, where each region satisfies a minimum threshold value for a given spatial attribute.

The problem is formulated as an Integer Linear Programming (ILP) with a two-part objective

function. The algorithm has two phases: first, it tries to form as many initial regions as

possible (the first part of the objective function) by starting from random areas called seeds

and grow them until each region reaches to the threshold. The remaining areas that do not

form regions in the first step are called enclaves and are assigned to the regions. In the

second phase, the algorithm tries to optimize the objective function among those solutions

with the maximum number of regions (the second part of the objective function). This goal is

achieved by exchanging areas in the border of two neighboring regions. Unlike other models,

this model does not impose any constraint on the shape of the regions, instead, the number

of regions (p) and shape of the regions are data dependent and are decided by the algorithm

at runtime. The max-p model tries to maximize the number of homogeneous regions, based

on a predefined minimum threshold value. The degree of aggregation bias is minimized by
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maximizing the homogeneity within the regions. In this paper, we exploit parallel processing

to improve the performance of the max-p model. We also use parallel synergy to improve

the accuracy of solutions by trying more solutions in parallel as well as exploiting a fine

parallelism model in each solution. Multiple solutions are created simultaneously on multiple

processors in parallel and then compared to choose the best feasible solution. Then all

the regions of the best feasible solution are processed on multiple processors in parallel to

optimize and increase homogeneity within them.

In summary, our key contributions in this work are:

� Parallel implementation of the construction phase of Max-p problem that is up to 12

times faster than the best sequential algorithm for the largest (56× 55) lattice size.

� Parallelizing the optimization phase of finding the best feasible solution that is up to

19 times faster than the best sequential algorithm.

� End to end running time of our parallel implementation achieves 13-fold speed up over

the best sequential algorithm.

� Using a parallel data structure based on multiple locks to reduce parallelism overhead.

� By taking advantage of parallel synergy, we often improve the secondary objective

function better then sequential algorithm by exploring the exponential search space in

parallel.

The rest of the thesis is organized as follows. In Section 2, we present literature review.

In Section 3, we describe the problem statement. In Section 4, we discuss the algorithm used

to solve the problem. In Section 5, we present experimental results and evaluate performance.

In Section 6, we summarize the research work.
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PART 2

LITERATURE REVIEW

In this section, we present a survey on various methods of clustering areas into a set of

homogeneous regions. The algorithm used in one of the methods [14, 15] to aggregate areas

into regions has two parts. The first part of the algorithm aggregate areas into regions using

conventional clustering algorithm. In this part, areas are clustered based on the attributes

and not on the locations. In the second part of the algorithm, regions are created as subsets

of the spatially contiguous areas from the already created clusters. The number of regions

created from this method depends on the attributes used to calculate homogeneity within

regions [16].

Another method [3] tries to aggregate n atomic spatial units into p-compact contiguous

regions. Compactness is a property that generalizes the notion of a subset of Euclidean

space being closed (that is, containing all its limit points) and bounded (that is, having all

its points lie within some fixed distance of each other). The heuristic framework addresses the

problem through phases of dealing, randomized greedy and edge reassignment. This MERGE

technique uses a novel method of the normalized moment of Inertia (NMI) for computing the

compactness of each region. MERGE algorithm has three phases. The first phase is initial

growth phase which involves a dealing procedure that ensures that each region grows to a

particular viable size. The second phase is growth completion phase, where a randomized

greedy algorithm applied to the partial regions from the first phase to create a set of regions

that meets all the constraints. Third is local search phase, where heuristic framework allows

for backtracking to find improvements by using a form of Simulated Annealing.

The p-Compact-regions Problem can be thought as a regionalization or zonation or

the districting problem in different contexts. For example, providing emergency medical

service with satisfactory coverage in areas or police deployment in an efficient manner for
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designated patrol areas or partitioning an area into compact electoral districts to prevent

gerrymandering and many more such cases. Most of the problems consider the only con-

tiguity of surrounding regions without any regard for compactness of individual regions.

However, in p-compact regions algorithm, minimization of dissimilarity between each pair

of areas within the same region is dismissed in favor of maximizing overall compactness of

resultant p-regions. The compactness index (for a particular region) is defined to be directly

proportional to the square of the area and inversely proportional to the second MI of the

units assigned to that region.

A study [30] was conducted on late-stage breast cancer risk in the state of Illinois by

constructing geographic areas. There exists a problem with small population numbers that

arise when dividing a geographical region into subregions for developing statistical models

for data analysis. Often, sparsely populated regions are formed, and they do not provide a

true representation of the data. There have been studies that have tried to tackle the small

population problem, and the data suppression that accompanies it, namely Spatial smoothing

and Hierarchical Bayesian modelling. The REDCAPc method that has been suggested takes

into consideration the data confidentiality and privacy issues that accompany data on Cancer.

The Goal of this method [30] is to divide the Region into homogeneous areas which

have similar attributes with a minimum threshold for the number of people within a region.

Regions are created in a way such that similarity of the population within the region is

maximized. The research also took into consideration the classification of each area as being

urban or rural, the access to primary care physicians and clinics that provide for cancer

screening, the demographic factors of each neighbourhood within the region. This results in

larger Geographic sub-regions.

As a result of this, socio-economic barriers become less significant as opposed to social-

cultural barriers. This research also showed that late-stage cancer risk is higher in young

patients due to less number of screening visits and primary care visits as compared to older

patients. It also demonstrated that the proximity to cancer screening facilities is not that

significant a factor as compared to access to a primary care center. The differences that exist



6

between urban and rural populations do not pose as a significant determinant in the Risk.

Constrained Agglomerative Hierarchical Classification [27] imposes a contiguity con-

straint. The basic idea of the Constrained Agglomerative Hierarchical Classification algo-

rithm was when performing aggregation give preference to those pairs of the cluster’s which

are structurally close to each other meaning contiguous. In this way, structurally closed

cluster pairs get a favor. To decide if two points are contiguous or not depends on the dis-

tance between them which is calculated using Euclidean distance formula and this distance

is compared against a threshold value known as a contiguity threshold, and If the distance

between two points is beyond the contiguity threshold then these points are not close enough

to be considered as contiguous and therefore cannot be aggregated.

In a contiguity constraint hierarchy, there is a ”relation of contiguity” that is the sym-

metric and transmissible relation among the clusters. The concept of transmissibility can

be explained as if two clusters ”h” and ”k” are contiguous to each other, then in all the

clusters in which ”k” is present and all the clusters in the hierarchy build after ”k” will

also contiguous to ”h”. The algorithm is modified at each step only the contiguous clusters

pairs are selected. The pairs are determined by comparing their Euclidean distance with the

contiguity threshold. The process will continue until there are no more contiguous clusters

to pair. For the remaining clusters, the transmissibility property is used for classification.

There can be a possibility when there are no more pairs of contiguous clusters that mean

some clusters are still unclassified in the Hierarchy, this will happen if the threshold selected

is too small. Therefore, to overcome this situation, a new contiguity threshold is selected,

and the value of the new threshold should be greater than the previous one. With the new

threshold value, the last built hierarchical tree will be rebuilt based on the new relation of

contiguity between the clusters.

This algorithm provides a flexibility in selecting the contiguity threshold. And, it might

be required to try various threshold values before achieving the complete hierarchical clas-

sification. The selection of the contiguity threshold can be based on several factors of the

data however if the threshold is too small then very few pairs of clusters are achieved and
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if the threshold is too large too many pairs of clusters are achieved and these unnecessarily

will increase computing time.

Spatial interaction models [28] are concerned with aggregate spatial behaviour patterns

and use data which have been spatially aggregated more than once. In the past literature, it is

not concluded that the results of spatial interaction modelling have a behavioural significance,

or whether or not they reflect the way in which a study region is partitioned into zones. Nor

is much known about the extent to which model performance is influenced by the choice

of the zoning system. Various attempts have been made to ascertain the extent to which

the performance of different kinds of spatial interaction models are influenced by different

specifications of spatial zoning systems. There is a basic need for a comprehensive empirical

investigation to explore the significance of zoning-system effects on spatial interaction models.

To determine the effect of zoning system, two null hypothesis were tested and which

are (a) that the parameter values and goodness-of-fit statistics for spatial interaction models

are substantially unaffected by the choice of zoning system (b) that parameters calculated

for an M-zone partition will remain valid for a Z-zone partition, where L is less than M.

To test the two null hypotheses, a random sample of 261 twenty-two zone partitions and 87

forty-two zone partitions were generated from the set of seventy-three bus’s. These sample

sizes are determined by the number of partitions which could be examined in one hour

of central processing unit (CPU) time on an IBM 370/168. The goodness of fit of the

four models is assessed in terms of a residual standard deviation statistic. The size of the

standard deviations of the goodness-of-fit statistics and the large range of results indicated

the importance of the zoning system on the performance of these models.

The quantitative revolution in the spatial sciences involved the importation of statistical

methods which placed little emphasis on the importance of space. The concept that zoning

systems should always be defined independently of the model is based on a statistical rather

than a geographical perspective of the model building. The central theme underlying most

spatial representation problems is how to approach spatial model building in the absence

of any fixed spatially-aggregated data. Zoning systems are not only the most direct way
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in which space is represented in the model building but they are also the cause of various

aggregation, scale, and autocorrelation phenomena. Accordingly, it is believed that these

inherently spatial problems can be solved most readily by seeking a geographical rather than

a statistical solution, in terms of an appropriate zone-design procedure.

The algorithm developed to solve this problem for spatial interaction models is an

extension of Openshaw [28]. It is a heuristic procedure which attempts to improve the quality

of a starting classification of TV bsu’s into M zones and uses a random search strategy. It

is inefficient in the sense that it does not use any historical information to decide where to

search next, but it is not restricted to any particular type of function. At best it will result

in a set of solutions which tend to converge in the direction of optimality but which differ

from the global optimum by some unknown degree of error. In the situations under which it

has been tested the procedure has behaved in a satisfactory and reliable manner, although

the principle of caveat emptor must apply to some extent.

Zoning systems have a considerable effect on spatial interaction models, are valuable in

applied situations and plays an important role to make a spatial model building. If attention

is restricted to short-term forecasting or impact studies in the calibration year, the zoning

system will probably retain its optimal properties. The results of the paper indicate the need

for a critical reassessment of the conventional approach to spatial study and model building.

Until some satisfactory theory comes, an optimal approach is the only practical solution to

handle the zone-design problem.

Another method [29] is using the semi-supervised clustering by adapting K-Means for

regionalization by specifying contiguity constraints based on a neighbourhood representa-

tion. For the Reg K-Means algorithm, three real datasets were used and show improvement

in intra-cluster variance, minimization of the objective function and computational time as

compared to AZP (optimization method ). Regionalization problems are related to aggre-

gation of N regions, objects into K geospatial units or geographical areas. Regionalization

approaches are very useful in statistical spatial data analysis, the study of geographic pat-

terns or diseases or spatial econometrics of health studies. It today’s world algorithms to



9

tackle such problems are very useful in smart cities scenario, to find clusters of neighbour

areas with common characteristics for different purposes. Regionalization aims at grouping

regions according to with their specific features as per neighbourhood restrictions repre-

sented by methods using spatial contiguity constraints. Semi-supervised algorithms low

computational complexity is helpful to perform we applications cauterization scenarios. Reg

K-Means is faster than AZP for analysing optimizations and partition compactness for the

larger Dataset considering real situations for finding good partitions in regionalization con-

text.

Supervised regionalization methods [31] are considered as a major contributor in per-

forming a qualitative comparison of various aspects of the spatially contiguous regions. Su-

pervised regionalization methods do not focus on model competition and are only referenced

for regionalization process. These regionalization methods are divided into eight groups

based on the rules that are applied to the pre-defined sets of adjoining regions. The primary

focus of the regionalization method lies with the designing of analytical regions, which en-

compasses various rules like one area can be a part of one region, the sum total of all the

regions should be smaller in comparison of all the areas that are a part of the scope data for

the analysis.

One of the approaches that these regionalization methods adapt to perform the analysis

on the larger spatial units is Statistical spatial data analysis. Statistical spatial data analysis

performs collective analysis on the larger spatial units in order to maintain the integrity and

confidentiality of the data, to prevent the difference in the results that may occur due to

population, to reduce errors due to outliers inaccurate data. The approach followed by Sta-

tistical spatial data analysis helps in the better conceptualization of the information that is

present on the maps and such type of analysis can be done in two ways. The first approach

uses official areas like counties or states; whereas, the second approach analytically combines

pre-defined areas that fit the rule or principle used to carry out the analysis. A posterior

condition is usually applied to the explicit and indirect methods that are incapable of sat-

isfying the constraint based on the adjoining regions. Such methods can be differentiated
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based on the constraints that are applied to the conventional clusters and constraints that

aim to achieve maximum spatial regional compactness.

Regionalization used via conventional rules are very basic in nature as they divide the

large datasets using hierarchical partitioning and then segregate the dataset based on the

regional rule if the regions are not adjoining in nature. Such aggregation criteria do not

enforce the necessity of regional compactness. Changes to data based on the shape of the

spatial region are inevitable and the result is always prone to changes based on the centroid

issues. Regionalization based on the compactness aims at reducing the product value of

the distance of the centroids between the region and ad area and the total number of the

population residing in those areas. Another approach that is being used to reduce the impact

of such constraints is called integer programming model, under which the assumption that,

the total number of residents living in an area is equal to the square feet of that area, is

made.

Algorithms based on explicit spatial regional constraint is based on the concept of the

hybrid optimization models. This approach focuses on reducing the number of territorial

links within a network to redesign the shortest path between the areas. The overall review

of the taxonomy of such spatial contiguous regions revealed that it is impossible to achieve

perfect regionalization with a single technique due to various attributes and unwanted defi-

ciencies that occur due to large unit areas. Combination of various algorithms and techniques

will help in identifying the desirable characteristics, optimizing strategies, preventing aggre-

gation process from being generalized, improving local search process and identifying true

profits by designing analytical regions.

Efficient regionalization techniques [19] for socio-economic geographical units using a

minimum spanning trees maximizes internal homogeneity in an area. The minimum span-

ning tree is constructed by first creating a connectivity graph with neighbourhood relation-

ship whose edges have the cost inverse proportional to the similarity of the region. The

minimum spanning tree is then partitioned by removal of edges that connect not so similar

regions resulting maximized homogeneity. Two-step procedures (non-spatial clustering and
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neighbourhood preserving classification), clustering procedure using geo-coordinates as extra

attributes, AZP algorithm (explicit neighbourhood relationship) are used. The graph-based

regionalization has two challenges, first is reducing the computational cost of optimization

and second is to reduce sensitiveness born out of choice of initial position of the tree. These

challenges are addressed by first creating MST representing a statistical summary and then

implementing heuristic to reduce MST to get spatial clusters.

There is another method [32] called Fuzzy Geographically Weighted Clustering-Ant

Colony(FGWC-ACO), which is used to study the characteristics of the population with

respect to their geographical area. Although the computational running time of FGWC-ACO

is slower than existing FGWC, it is used as an optimization tool to improve demographic

clustering accuracy. The experiment shows that by adding context variables to existing

FWGC-ACO will result in improvement in computational speed. In the existing FGCW,

the performance was slow due to the repeated iterations of ACO algorithm to achieve the

best solution. The algorithm follows the behaviour of ant colonies. After evaluating the

quality of food, ants chose the shortest path between the food source and the nest. During

the return to the nest, ant leaves a chemical pheromone to track the path for the next journey

or by the other ants. The quantity of pheromone speaks about the quantity and quality of

food. Also, the algorithm explains population characteristics considering the hidden pattern

of the different population present in different geographical locations. This fuzzy algorithm

categorizes population in different clusters with probabilities. This technique provides a

membership value to each cluster.

McMahon [33] discusses two approaches regarding region delineation. The first approach

is with the help of visual pattern recognition regions are recognized, these regions have

similar landscape properties from its mapped data. But since this procedure has to be done

manually, so it requires quite a domain experience. Also, it is bounded by small-scale regions

and strenuous to regenerate. The second one was more of a data-driven approach which was

used for identifying regions based on spatial variability. Clustering techniques such as k-

means and hierarchical clustering are used to segregate the geographical area into smaller
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units. The probable limitation to the above clustering technique is that they do not assure

that the final regions will be spatially contiguous. So, effective methods are needed that can

do clustering that is based on mapped variables but also are spatially contiguous.

Therefore, another method [34] is used to explore the achievability of applying con-

strained spectral clustering to region delineation problem. Constrained clustering includes

set of must-link constraints (ML), cannot-link constraints (CL), or both. Between a pair of

data instances, a must-link and a cannot-link constraint define a relationship. A must-link

constraint specifies that the samples/cases in the must link relation has to be linked with the

same cluster and for cannot-link constraints, it is complete opposite i.e. should not be linked

to the same cluster. As compared with traditional clustering the constrained clustering uses

domain constraints. Domain constraints are used in Shuai Yuan’s and Pang-Ning Tan’s ac-

tivity so that it can guide the algorithm to a prudent solution or away from an unacceptable

solution.

Also, to tackle the large dataset, the algorithms [34] should maintain a balance between

the region parameters i.e. spatial contiguity and landscape homogeneity. Also, the proper or

complete working of an algorithm is very much dependent upon how the spatial constraints

are incorporated into the framework. If the algorithms are not able to maintain a balance

between spatial contiguity and landscape homogeneity then the results produced might not

be contiguous and can possibly have arbitrary shape and size. If considering the other

situation where the algorithm is biased to only give the output which is geographically

connected then the landscape similarities will be not correct. One of the main advantages

of Spectral clustering is its flexibility of integrating groups of similarity functions which has

an advantage as compared with a traditional k-means algorithm.

Another method [17,18] uses x and y coordinates of the centroids of areas as additional

attributes in the conventional clustering algorithm. Due to these additional attributes nearby

areas will be clustered together. Regions will be spatially contiguous, however, continuity

of the areas within the region depends on the weights assigned to x and y coordinates as

compared to other attributes [19]. An increase in weights of x and y coordinates will increase
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the spatial contiguity within the regions, however, it will lead to decrease in weights assigned

to other attributes which in turn decreases the homogeneity within the regions. The main

challenge of this method is to decide on how to assign weights to the attributes [17,27,38].

There are other methods [16, 18, 26, 28, 36] that ensure spatial contiguity based on the

information from the neighbouring structure. For example, adapted hierarchical clustering

algorithms [23, 25, 40] allow to merge clusters only if they share common borders. Another

example is graph theory based algorithms [19,24,35] which represent areas and neighbouring

structures as connected graphs.

The choice of method to aggregate areas into homogeneous regions depends on the

problem. For example, if the shape of the region is to be guided by the spatial distribution of

variables, then clustering using x and y coordinate method is not appropriate as it generates

circular regions. The method purposed in this article ensures contiguity by clustering only

those areas into a region which shares a common border.



14

PART 3

PROBLEM STATEMENT

The main goal of max-p region problem is to cluster the areas into the maximum number

of homogeneous regions such that each region satisfies a predefined minimum threshold

value for a given spatially extensive attribute [2]. A spatially extensive attribute refers to

a parameter that we want to be greater than a minimum threshold for each cluster. The

second goal of this model is to achieve the most homogeneity within each cluster. In the

other words, max-p aims to minimize total heterogeneity of all clusters. We will define this

term later in this section. The way max-p prioritizes these two goals is that if two clustering

configurations satisfy minimum threshold criteria, the model chooses the one with the larger

number of regions (maximizing p). In case of a tie, the one with less total heterogeneity is

selected.1

3.0.1 Preliminary Notation

The following is the formulation of max-p problem [2].

Area :

Given n areas A = {A1, A2, ..., An}, (n = |A|) and m attributes assigned to each area such

that Ai, y is the y-th attribute of area Ai where 1 ≤ y ≤ m. Also, let li denote a parameter

that we want to be greater than a minimum threshold of area Ai.

Relationship :

Let d : A× A→ R+ ∪ {0} be the dissimilarity between areas based on the set of attributes

Y such that dij ≡ d(Ai, Aj) satisfies the conditions dij ≥ 0, dij = dji and dii = 0

for i, j = 1, 2, . . . , n. Distance functions can be utilized; i.e., dij can also satify the

1The problem statement and equations 3.1 through 3.4 are taken from [2]
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subadditivity, or triangle inequality, condition: dij ≤ dik + dkj for i, j, k = 1, 2, . . . , n.

Let W = (V, E) denote the contiguity graph associated with A such that vertices vi ∈ V

correspond to areas Ai ∈ A and edges {vi, vj} ∈ E if and only if areas Ai and Aj share a

common border.

Feasible Partitions of A :

Let Pp = {R1, R2, ..., Rp} denotes a partition of areas A into p regions with 1 ≤ p ≤ n

such that:



|Rk| > 0 for k = 1, 2, ..., p

Rk ∩Rk′ = θ for k, k′ = 1, 2, ..., p ∧ k 6= k′

∪pk=1 Rk = A∑
Ai∈Rk

li ≥ threshold > 0for k = 1, 2, ...., p

(3.1)

Let II denotes the set of all feasible partitions of A.

We define heterogeneity of a region Rk as Equation 3.2:

h(Rk) =
∑

ij:Ai,Aj∈Rk,i≤j

dij (3.2)

where Rk ∈ Pp. We also define total heterogeneity of partition Pp as the sum of heterogeneity

over all of its regions (Equation 3.3):

H(Pp) =

p∑
k=1

h(Rk) (3.3)

Finally, the max-p problem can be formulated as finding P ∗p ∈ II such that:
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
|P ∗p | = max(|P ∗P | : Pp ∈ II)

@Pp ∈ II : |Pp| = |P ∗p | AND H(Pp) < H(P ∗p )

(3.4)

Let us illustrate this with a basic example. Table 1 shows a regular lattice with n = 12

areas from A1 to A12. We consider two attributes: 1) y is the average income in an area and l

is the number of people in that area where l represents the spatially extensive attribute. The

primary objective is to find the maximum number of contiguous regions. We need to group

these 12 areas in such a way that each region contains at least 100 people (i.e. threshold =

100). The secondary objective is to find the solution with the lowest heterogeneity based on

attribute y. We used Manhattan distance for heterogeneity such that dij = |yi − yj|.

A1

y1 = 3000, l1 = 23
A2

y2 = 3200, l2 = 27
A3

y3 = 3300, l3 = 33
A4

y4 = 5200, l4 = 21
A5

y5 = 5000, l5 = 20
A6

y6 = 3100, l6 = 20
A7

y7 = 5300, l7 = 24
A8

y8 = 5400, l8 = 25
A9

y9 = 5100, l9 = 25
A10

y10 = 7500,
l10 = 35

A11

y11 = 7100,
l11 = 30

A12

y12 = 7300,
l12 = 40

A1

y1 = 3000, l1 = 23
A2

y2 = 3200, l2 = 27
A3

y3 = 3300, l3 = 33
A4

y4 = 5200, l4 = 21
A5

y5 = 5000, l5 = 20
A6

y6 = 3100, l6 = 20
A7

y7 = 5300, l7 = 24
A8

y8 = 5400, l8 = 25
A9

y9 = 5100, l9 = 25
A10

y10 = 7500,
l10 = 35

A11

y11 = 7100,
l11 = 30

A12

y12 = 7300
l12 = 40

(a) Input: n = 12, m = 2 (b) Solution 1: p = 2, H = 36, 500

A1

y1 = 3000, l1 = 23
A2

y2 = 3200, l2 = 27
A3

y3 = 3300, l3 = 33
A4

y4 = 5200, l4 = 21
A5

y5 = 5000, l5 = 20
A6

y6 = 3100, l6 = 20
A7

y7 = 5300, l7 = 24
A8

y8 = 5400, l8 = 25
A9

y9 = 5100, l9 = 25
A10

y10 = 7500,
l10 = 35

A11

y11 = 7100,
l11 = 30

A12

y12 = 7300,
l12 = 40

A1

y1 = 3000, l1 = 23
A2

y2 = 3200, l2 = 27
A3

y3 = 3300, l3 = 33
A4

y4 = 5200, l4 = 21
A5

y5 = 5000, l5 = 20
A6

y6 = 3100, l6 = 20
A7

y7 = 5300, l7 = 24
A8

y8 = 5400, l8 = 25
A9

y9 = 5100, l9 = 25
A10

y10 = 7500,
l10 = 35

A11

y11 = 7100,
l11 = 30

A12

y12 = 7300,
l12 = 40

(c) Solution 2: p = 3, H = 40, 100 (d) Solution 3: p = 3, H = 3, 800

Table (3.1) An example of max-p problem, (a) input areas, (b) a solution with p = 2, (c) a
feasible solution with p = 3, (d) another feasible solution with p = 3. Solution 3 is chosen
because it has lowest total heterogeneity among partitions with maximum number of regions
(p = 3).

As shown in Tables 3.1, there are three solutions for partitioning these areas where

Solution 2 and 3 reach to the maximum number of regions. Therefore, Solution 1 is not a

feasible solution as there are other solutions with more number of regions. Hence, Solution

2 and Solution 3 are the feasible solutions as we can see that it is not possible to have more
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than three regions with at least 100 people per region. Also, we can see that Solution 3

has heterogeneity lower than that of Solution 2. Therefore, Solution 3 is the best feasible

solution for this example. All the regions of Solution 3 have more than 100 people each. 103

people in Rwhite, 115 people in Rgreen and 105 people in Rblue.
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PART 4

METHODS

In this section, we present our algorithm to solve the problem of clustering areas into the

maximum number of homogeneous regions. The algorithm has two phases, i.e. the construc-

tion phase and the optimization phase. The construction phase generates a feasible solution

and optimization phase improves the feasible solution by minimizing the heterogeneity within

the regions through local swapping of areas between neighbouring regions.1

4.0.1 Construction Phase

In this phase, areas are clustered into the maximum number of regions based on a

minimum threshold value of the spatially extensive attribute. An initial feasible solution is

generated at the end of this phase. We repeat this algorithm multiple times with random

seeds (100 times for this experiment) to calculate the set of feasible solutions. We run this

algorithm on multiple processors simultaneously for each instance to improve the running

time of our algorithm. Once all the processes finish successfully, we compare the output of

each process and select the best feasible solution. We use the objective function explained

in [2] to decide on which solution is the best out of all the solutions.

Objective function is a minimization function which can be formulated as follows [2].

Parameters:

i = index of areas,

k = index of regions,

c = index of contiguity order (areas are ordered such that areas next to each other share

border),

dij = dissimilarity relationship between areas i and j with i < j,

1This two phase algorithm is adopted from [2]. We extend the python implementation from [2]
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[H] = Total heterogeneity

[H]tij =


1, if area i and j belong to same region k

0, otherwise;

[H]xkci =


1, if Ai is assigned to region Rk in order c

0, otherwise;

Minimize:

[H]Z = (−
n∑
k=1

n∑
i=1

xk0
i ) ∗ 10h +

∑
i

∑
j|j>i

dijtij

The objective function consists of two parts, one part controls the number of regions and

second part controls the total heterogeneity H(Pp). The first part is obtained by adding the

number of areas designated as root areas (Xk0
i ), and the second part is obtained by adding

the pairwise dissimilarities between areas assigned to the same region. Since the objective

function is formulated as a minimization problem, we multiply the first term by minus one.

These two parts are combined together in such a way that there is an implicit hierarchy

where the number of regions comes before the impact of total heterogeneity. We achieve this

hierarchy by multiplying the first term by a scaling factor h = 1 + log(
∑

i

∑
j|j>i dij). For p

regions the objective functions starts at p ∗ 10h. This value increases when we add the total

heterogeneity, but h is big enough such that, regardless of the value of heterogeneity, the

objective function will never reach −(p− 1) ∗ 10h.

The Construction phase has two different parts: region growing and enclave assignment.

During region growing a random area is selected from the set of unassigned areas. Then,

this area is added to the region. We check if this newly formed region reaches the minimum

threshold value of the spatial regional attribute. We stop growing the new region if the

minimum threshold value is met, otherwise, we keep adding unassigned neighbouring areas

to the region until it reaches the minimum threshold value. This is repeated until it is not

possible to grow any new region that satisfies the minimum threshold value. Areas which are

not assigned to any region during growing part are called ”enclaves”. At the end of growing
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Algorithm 1 : Find best feasible solution [2]
A : set of areas,
l : spatially extensive attribute of areas,
W : neighborhoods,
t : threshold constraint on attribute l at region level,
Ψ : set of partitions before enclave assignment,
ε : set of enclave areas,
Au : set of unassigned areas,
ns : Number of solutions

for each processor;i = 1 to ns do in parallel

while Au 6= empty do
Ak = select at random, one area from Au

Au = Au −Ak

Rk = {Ak}, randomly selected area is assigned to region
building region = True
T = lk, value of attribute l in region Rk

while building region = True do
if T ≥ t then

Ψ = Ψ ∪ {Rk}, add region Rk to partition Ψ
else

N = neighbors ⊂ Au

if N 6= empty then
Ai = random area from N
Au = Au −Ai

Rk = Rk ∪Ai

T = T + li
else

ε ∪ {Rk}
building region = False

end if
end if

end while
end while
if Ψ 6= empty then

feasible = True
while ε 6= empty do

εi = random area from ε
η = region η ⊂ Ψ, that shares border with εi
if η 6= empty then

Rk = random region ⊂ η
Rn

k ew = Rk ∪ εi
Ψ = Ψ− {Rk} ∪Rn

k ew, update region RkinΨ
ε = ε− εi

else
feasible = False

end if
end while

else
feasible = False

end if
end for
Pfeasible = Ψ, at this point all the areas have been assigned to a region
return Pfeasible
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part, the algorithm generates set of growing regions and the enclaves are randomly placed

in an enclave queue.

Check floor function available in pysal library in python is used to check if the current

growing regions reach the minimum threshold value for the spatially extensive attribute.

Input for this function is the list of areas in any given region. It finds out the values for

the spatially extensive attribute for all these areas and adds them and compares with the

threshold value to check if it is greater than or equal to the threshold value.

Figure (4.1) Check floor function from python pysal library to check if a growing region has
reached minimum threshold value

A partial solution generated from growing sub-phase will be processed further by an

enclave assignment step where we pop the enclave queue and attempt to assign the enclave

to a randomly selected neighbouring region. If the selected enclave is not yet contiguous
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to an existing region, it is returned to the end of the enclave queue. The process continues

until the enclave queue is exhausted. The algorithm thus requires that the adjacency graph

formed on the areas is connected.

We can run the python function on multiple processes using the following code. ”Pool”

will create the number of processes we want to use for execution and then we pass the

function to these processes using the map function in pool library. Once all the processes

complete the task, all the results are joined and the connection is closed. It can be seen from

the below code snippet that we use p.close before p.join, however, it is mandatory to do so

as multiprocessing library accepts it only this way.

Figure (4.2) Pool function from python multiprocessing library to create and manage multiple
processes

Another way to create multiple processes in python is by using process class available

in multiprocessing library. Unlike pool, we have full control on the processes we created and

we can assign them work as per requirement. First, we create the instance of the process and

then we start it. Once all the processes finish their job, we use join operation to synchronize

and close all the processes. Following code snippet shows the working example of Process

class. The main difference Pool and Process is that in Pool all the work assignment is done

automatically, however, in Process, we have to take care of work assigned to each process.

4.0.2 Optimization Phase

In this phase, the best feasible solution from construction phase is optimized by mini-

mizing heterogeneity within the regions. We use multiple processors to perform this task in

parallel. Each processor selects a region and all its neighbours which are eligible to move.
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Figure (4.3) Process function from python multiprocessing library to create and manage
multiple processes

Neighbour areas which can be removed from the region while the region still satisfying mini-

mum threshold value and contiguity constraint are eligible to move. Each processor acquires

two locks, one on the region where an eligible area is being added and one in the region from

where an eligible area is being moved. Then we move the area which minimizes the value

of objective function. Once the movement is complete, then both the locks are released and

another processor that is ready to move the area from one region to another can acquire the

lock and make the change. This process is repeated for all the regions in parallel until there

is no such neighbour area which when is moved will further minimize the value of objective

function.

First, we find the neighbours of all the areas in a region. After that, we check for each

neighbour that if we remove it from the current region, whether or not the region can main-

tain its contiguity and also satisfies the minimum threshold criteria. All the neighbour areas

which can be removed from the region while the region still satisfying minimum threshold

value and contiguity constraint are eligible to move.

Following code snippet shows how we are finding the area which when moved from its

current region, further minimizes the objective function value. For each eligible area, we try

to move it from its current region to the region assigned to a particular processor. After

that, we calculate the objective function value for the new solution and compare it with an

already available solution to check if it is smaller than the current value. We take the area

which gives us the minimum value of objective function.
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Algorithm 2 : Optimize Pfeasible to minimize heterogeneity [2]
A : set of areas,
l : spatially extensive attribute of areas,
t : threshold constraint on attribute l at region level,
Ψ : set of partitions,
R : set of regions in Ψ,
p : number of regions

swapping = True
while swapping = True do

moves = 0 for each processor: i = 1 to p do in parallel

Rk = random region in Ψ
NBk = neighbors of all the areas of region Rk

for Ni in NBk do
Rm = region that contains neighbor area Ni

if lm ≥ t and doesn’t break contiguity then
Ne = Ne ∪Ni, set of areas which are eligible for movement from region Rm to Rk

end if
end for
if Ne 6= empty then

Nei = Area from Ne that minimizes the objective function when moved from region Rm to Rk

if Nei 6= empty then

acquire lock on Rk and Rm

Rk = Rk ∪Nei

Rm = Rm −Nei

move += 1
release lock on Rk and Rm

end if
end if

end for
if moves = 0 then

swapping = False
end if

end while
Pp = Optimized solution with minimum heterogeneity
return Pp
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Figure (4.4) Code snippet to find the areas which minimizes the objective function value

Once we find the area which minimizes the objective function value, then we acquire

the lock on both the regions from which area is being moved and also the region to which

area is being moved. We acquire the two locks based on the index of the regions. We acquire

the lock first on the region with smaller index and then on the region with the larger index.

This is done to avoid the race condition. Once the area is moved, then we release the locks

on both the regions. Multiple locks are used to reduce the lock overhead.

Let us explain the algorithm with the help of an example. Assume we have the feasible

solutions(Pp) with three regions.

Region R1, R2 and R3 are sent to processors P1, P2, P3. Pp is a shared memory list
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Figure (4.5) Code snippet to show movement of area from one region to another by acquiring
the locks in respective regions

which can be updated by all the processors. Now on processor P1, first we will find all

the neighbour areas of R1, which are eligible to move from their current region. Assume,

NR1(A4, A5, A6) is the list of neighbour areas which are eligible to move from their current

region.

Now, we will find the area from NR1 , which then moving to R1, will further minimize the

objective function. Assume, A4 is the area which minimizes the current value of objective

function.
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Figure (4.6) Feasible solution after the construction phase with three regions

Figure (4.7) Areas eligible to move to region R1

Figure (4.8) Area the minimizes the objective function value

Processor P1 will acquire lock on region R1 and R2 and move the area A4 from region

R2 to R1. Once, the movement is complete, P1 will release the lock on region R1 and R2.

Now, other processors can acquire the lock and update the list. This is repeated on all the

processors concurrently.

2

2These codes can be downloaded the following link: https://github.com/vineysindhu/parallel-max-p-
region. Also the code for sequential max-p region is available at the following link: https://github.com/pysal
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Figure (4.9) Area A4 moved from region R2 to region R1
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PART 5

EXPERIMENTS

5.1 Performance Evaluation

In this section first, we briefly explain the system we used for our experiments and then

presents our results.

5.1.1 Experimental Setup

All the experiments employ a compute node that has 16-core Intel Xeon CPUE5-2650

V2 CPU running at a clock speed of 2.60 Ghz with 64GB main memory. All the code for this

experiment is written in the Python programming language. The multiprocessing library

available in Python is used to connect to multiple processors. Also, we have used a compute

node that has 64-core AMD Opteron(TM) Processor 6272 with 64GB main memory for

comparison against 16-core Intel.

5.1.2 Experiments and Results

In this section, we evaluate the performance of our algorithm. We have created regular

lattices using numpy library available in python. Three different sets of lattices (20 × 20,

33× 33, 55× 56) are created for the evaluation. We considered two areas to be neighbours

if and only if they share a line (rook). We have also used three different thresholds for

spatially extensive attribute i.e. 25, 100 and 300. We have done several experiments to

evaluate the performance parallel max-p region algorithm. All the experiments are done

to explore either the parallel efficiency or the parallel synergy or both in the exponential

space. Parallel efficiency means to reduce running time of the algorithm by using parallel

processing. Parallel synergy means exploring exponential space by using parallel processing

and trying to find the best feasible solution which gives us the minimum value of objective
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function. Our experiments show that we can achieve both efficiency and synergy by using

multiple processes. We have divided the results section further into two parts, Evaluating

the efficiency and Exploring synergy.

5.1.2.1 Parallel Efficiency: We did several experiments to evaluate the perfor-

mance of our algorithm in terms of running time efficiency.

Average running time comparison of parallel and sequential max-p region

algorithm: First, we have compared the running time of our algorithm with that of se-

quential max-p implementation presented in [2]. Table 5.1 presents the average running time

in seconds for different sets of lattices and different threshold values for both the sequential

and the parallel max-p algorithm. All the timings are taken on Intel 16-core system by using

64 processes for the construction phase and for the optimization phase we have used the

number of regions as the number of processes. As shown in table 5.1, the speed-up is in-

creasing with lattice size, because smaller lattices form fewer regions. As a result, we are not

able to take full advantage of multiprocessing capabilities of the system for small problems.

We observed that running time for the optimization phase of a 20x20 lattice for a threshold

value of 300 is almost 0, because only one region will be created for n = 400 and threshold

300, hence, there will be no optimization phase.

Average running time comparison of the construction phase of parallel max-p

region on 16-core Intel processor to that of 64-core AMD Opteron processor: We

have also compared the running time of the construction phase of parallel max-p region on

16-core Intel processor to that of 64-core AMD Opteron processor. This comparison is done

for two lattices 20x20 and 55x56 with a threshold of 100 and 300 by using the different

number of processes to find best feasible solution i.e. 8, 16, 32, 64, 128, 256, 512. Figure 5.1

presents the charts which show that running time of algorithm decreases with increase in

the number of processes up to a certain limit and after that, it starts to increase again.

It can be interpreted from the graph that for 16-core Interprocessor threshold to decrease
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Lattice
Sequential max-p Parallel max-p

Speedup
Con-
struc-
tion

Opti-
miza-
tion

Total
Con-
struc-
tion

Opti-
miza-
tion

Total

20× 20
(n =
400)

Threshold
= 25

10.57 3.33 13.90 1.76 2.43 4.19 3.31

33× 33
(n =

1,056)
64.04 16.46 80.50 9.29 8.61 17.90 4.50

56× 56
(n =

3,080)
472.89 120.44 593.33 67.60 29.05 96.65 6.14

20× 20
(n =
400)

Threshold
= 100

56.01 23.28 79.29 5.68 13.25 18.93 4.19

33× 33
(n =

1,056)
395.80 101.64 497.44 35.18 27.04 62.22 7.99

56× 56
(n =

3,080)
3117.80 1573.83 4691.63 271.32 109.86 381.18 12.30

20× 20
(n =
400)

Threshold
= 300

154.99 0.01 155 14.86 0.16 15.02 10.31

33× 33
(n =

1,056)
1180.36 774.13 1954.49 104.98 83.36 188.34 10.38

55× 56
(n =

3,080)
9814.39 6222.92

16037.31
829.53 320.85 1150.38 13.94

Table (5.1) Average running time comparison for sequential max-p and parallel max-p for
three different thresholds.
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running time is 64 and for 64-core AMD Opteron threshold is 128. Once this threshold is

reached, running starts to increase again. Hence, it is clear from the results that we should

use 64 processes for 16-core Intel system and 128 processes for 64-core AMD system to get

the best running time. We also analysed the CPU usage for each process for the different

number of processes. For 16-core Intel system, each process can utilize 100 percent of CPU

capacity for up to 16 processes and after that, it decreases to 50 percent for 32 processes.

It becomes stable at 17 percent after 128 processes. For 64-core AMD system, each process

can utilize 100 percent of CPU capacity for up to 64 processes and starts decreasing after

that. It becomes stable at 70 percent after 128 processes.
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(b) Construction, 20× 20, T=300
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(c) Construction, 55× 56, T=100

8 16 32 64 128 256 512

1,000

2,000
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4,000

Number of processes

(d) Construction, 55× 56, T=300

Figure (5.1) Average running time of construction phase on 16-core Intel vs 64-core AMD Opteron

Single lock vs multiple locks average running time comparison of the opti-

mization phase: We started by using single lock on the list of regions in optimization

phase. This lead to a lock overhead problem. In order to reduce the lock overhead, we

have used multiple locks i.e. one lock for each region. After using multiple locks, we can

reduce lock overhead time. Table 5.2 presents the running time of the optimization phase

for different lattices and different thresholds. It can be seen that after using multiple locks,

the running time of the algorithm is reduced.

Relation between number of areas moved and decrease in objective function

value: We have also analysed the effect of movement of areas from one region to another
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Lattice threshold = 100 threshold = 300

Single Lock
Multiple

Locks
Single Lock

Multiple
Locks

20x20
(n = 400)

17.47 13.25 0.29 0.16

33x33
(n = 1,056)

41.53 27.04 133.76 83.36

55x56
(n = 3,080)

156.47 109.86 639.63 320.85

Table (5.2) Single lock vs multiple locks average running time for optimization phase in
seconds

on objective function value. The decrease in objective function value is directly proportional

to the movement of areas from one region to another in each iteration of optimization phase.

The more areas move from one region to another, the more the decrease in objective function

value. Table 5.3 presents the decrease in objective function value with the decrease in the

number of areas moved from one region to another. There are few outliers also, for example

in iteration 3 number of areas moved decreased, however, decrease in objective function value

increased.

Since we are doing the filtering of the list of areas and regions multiple times in our

code, we decided to run a small experiment to explore various methods to filter the list and

see which one gives the best performance. We tried the below methods and found that list

compression method is the fastest of all the methods to filter the python lists.

Running time using set(a) - set(b) : 2.86102294921875e-06 seconds

Code - list(set(neighbors)-set(enclaves))

Running time using list compression : 2.384185791015625e-06 seconds

Code - [neighbor for neighbor in neighbors if neighbor not in enclaves]

Running time using One of the lists as set : 3.337860107421875e-06 seconds

Code - [neighbor for neighbor in neighbors if neighbor not in set(enclaves)]

Running time using lambda function : 5.0067901611328125e-06 seconds

Code - list(filter(lambda x: x not in set(enclaves), neighbors))
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Iteration
Number of

areas moved

Decrease in
Objective
Function

Value

Percentage
Decrease

1 12 1.59 0.026
2 12 1.58 0.026
3 11 1.62 0.028
4 11 1.14 0.020
5 10 0.94 0.017
6 11 1.38 0.025
7 10 0.63 0.012
8 7 0.29 0.005
9 6 0.54 0.010
10 4 0.15 0.003
11 2 0.19 0.004
12 4 0.25 0.005
13 4 0.09 0.002
14 1 0.004 0.000
15 1 0.004 0.000
16 0 0 0.000

Table (5.3) Decrease in objective function value with the decrease in areas moved in opti-
mization phase for 20x20 lattice with threshold = 25

5.1.2.2 Exploring synergy or accuracy of the parallel max-p region algo-

rithm: We did the following experiments to explore the synergy of the parallel max-p

region algorithm.

Analysis of top solutions after the construction phase: First, we analysed the

top feasible solutions that we get after construction phase of the algorithm. Table 5.4,

5.5 and 5.6 presents the analysis for 20x20, 33x33 and 55x56 lattices with threshold 25

respectively. All the solutions present in the tables give the maximum number of regions for

their respective lattice size. We can see from the table 5.4 that our algorithm will select

the solution with minimum objective function value after construction phase and tries to

optimize it. Hence, Solution 1 will be chosen for optimization. However, when we analysed

other top solutions, we found that Solution 5, does not have minimum objective function
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value after construction phase, but it gives us best results after optimization phase. Similarly,

in the table 5.5, Solution 3 gives the best results after optimization, however, it will not be

selected at first by the algorithm. Also, in the table 5.6, Solution 5 gives the best results.

Solutions
Objective function

value after
construction phase

Objective function
value after

optimization phase
Solution 1 63.13 54.28
Solution 2 63.92 54.14
Solution 3 63.27 54.89
Solution 4 63.60 55.93
Solution 5 63.32 51.49

Table (5.4) Exploring synergy in top solutions for 20x20 lattice with threshold = 25

Solutions
Objective function

value after
construction phase

Objective function
value after

optimization phase
Solution 1 173.94 148.38
Solution 2 173.72 148.36
Solution 3 174.49 145.25
Solution 4 174.39 151.35

Table (5.5) Exploring synergy in top solutions for 33x33 lattice with threshold = 25

Comparison of change in objective function value of sequential and parallel

max-p region algorithm: We have also analysed the change in objective function value

during optimization phase and its relation to the number of areas moved from one region

to another. Table 5.7 presents the change in objective function value and the number of

areas moved in optimization phase for both sequential max-p and parallel max-p algorithm.

As shown in table 5.7, the decrease in objective function value is directly proportional to

the number of areas moved from one region to another. The parallel max-p algorithm can

perform similarly to the sequential max-p algorithm in terms of decrease in the objective
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Solutions
Objective function

value after
construction phase

Objective function
value after

optimization phase
Solution 1 498.15 410.82
Solution 2 493.82 411.39
Solution 3 497.09 413.88
Solution 4 497.88 415.94
Solution 5 497.51 408.86

Table (5.6) Exploring synergy in top solutions for 55x56 lattice with threshold = 25

function value. However, there are few outliers where sequential max-p algorithm performs

much better than the parallel max-p.

Analysis of objective function value by growing regions in parallel for the

construction phase: We grew regions in parallel to explore synergy in the exponential

space. Usually we create 100 solutions and each solution in parallel, however, in each solution,

the regions are grown in a single process. Here, we created 20 solutions and within each

solution, we grew the regions in parallel. We assigned a total of 60 processes, which means 3

processes to each solution. Each solution will use these processes and try to grow maximum

possible regions based on lattice size and threshold. For example, for 20 × 20 lattice and

threshold of 25, maximum possible regions are 16. These 3 processes will try to grow 16

regions in parallel by seeding from 3 different areas at a time. If any of the regions is not

able to reach the minimum threshold value, all the areas of that region will be added to

enclaves. Since we did it in parallel, we were able to explore the space in parallel and get the

results similar to that we got by generating 100 solutions. For example, we got the maximum

number of regions as 13 and objective function value as 51.52 for 20 × 20 lattice with the

threshold of 25 by generating 20 solutions in parallel. Hence, by exploring space in parallel,

we can get synergy with less number of solutions as compared to exploring it in sequence.
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Lattice
Sequential max-p Parallel max-p

Initial Final
De-

crease
Areas
Moved

Initial Final
De-

crease
Areas
Moved

20× 20
(n =
400)

Threshold
= 25

61.99 50.64 11.35 130 62.05 51.15 10.90 115

33× 33
(n =

1,056)
172.68 141.00 31.68 388 172.20 145.25 26.95 269

56× 56
(n =

3,080)
495.41 409.91 85.50 1069 494.98 408.84 86.14 917

20× 20
(n =
400)

Threshold
= 100

64.10 58.21 5.89 79 63.78 57.41 6.37 86

33× 33
(n =

1,056)
177.21 160.73 16.48 245 177.39 157.44 19.95 263

56× 56
(n =

3,080)
507.28 439.13 68.15 1022 508.20 452.51 55.69 721

20× 20
(n =
400)

Threshold
= 300

64.82 64.82 0 0 64.82 64.82 0 0

33× 33
(n =

1,056)
178.41 165.95 12.46 219 178.34 168.55 9.79 151

55× 56
(n =

3,080)
510.42 461.91 48.51 745 511.75 469.81 41.94 702

Table (5.7) Change in objective function value and number of areas moved in optimization
phase for sequential max-p and parallel max-p for three different thresholds.
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PART 6

CONCLUSION AND FUTURE WORK

In this thesis, we present a parallel implementation of a constrained clustering problem,

where our aim is to cluster areas into a set of the maximum number of homogeneous regions

based on a minimum threshold value of a spatially extensive attribute and do so in a compu-

tationally efficient manner. We propose a heuristic solution to this problem which can help

us achieve our goal and also aide in minimizing aggregation bias. This algorithm can help

us to solve many real-life problems. For example, police districting needs headquarters to be

allocated in all the territories. Hence areas can be aggregated into regions such that regions

are homogeneous in terms of crime types, and each region contains a minimum potential to

handle emergency calls. Once the regions are designed, we can decide on the best location

for headquarters.

Future work will include efficiently growing regions for every solution in parallel so that

we can achieve parallel efficiency also along with parallel synergy. Also, we can implement

this algorithm using MPI in python to take advantage of multiple nodes rather than just one

node. Currently, we try to find the solution in the search space by seeding from the random

areas. In future, we can try to search the exponential space by seeding from the pre-defined

areas, which will decrease the randomness and will give us more control for exploring synergy.
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