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 AUTHIGENIC CLAY FORMATION AND DIAGENETIC REACTIONS, LAKE MAGADI, 

KENYA  

 

By 

 

ELENA L. NIKONOVA 

 

Under the Direction of W. Crawford Elliott, Ph.D. 

 

ABSTRACT 

The purpose of this study is to understand mineral diagenesis authigenic mineral and the effect of 

climate on mineral of Pleistocene-Holocene sediment deposits in the Southern Kenya Rift. Lake 

Magadi unique geologic settings are characterized by extreme alkalinity and high silica 

activities. The mineralogical analysis was achieved by X-Ray diffraction (XRD) and Scanning 

Electron Microscopy (SEM) applications. The bulk mineralogy (quartz, halite, calcite) is the 

same on all localities due to similar volcaniclastics compositions throughout the Kenya Rift 

Valley. The clay mineralogy significantly differ among the groups of sample localities. The 

differences reflect different tectonic settings and ambient climate regime. In humid climate at 

higher elevation detrital clay minerals are abundant (feldspars, phillipsite). At lower elevation 

like Lake Magadi, the clay fractions dominated by authigenic minerals (zeolites and silicate 

minerals found with zeolites).  These results show the potential of clay minerals as terrestrial 

climate proxies. 

 

INDEX WORDS: Clay mineralogy, Zeolites, Lake Magadi, Kenya, Trona, Silicates, 

Geochemistry, XRD, SEM-EDS, Magadiite, Okenite,  
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1 INTRODUCTION  

Lake Magadi is a saline-alkaline pan located in the Southern Kenya Rift. Its unique 

geologic settings are characterized by extreme alkalinity and high silica activities. Unique 

geologic settings in this field area are due to active volcanism and rift tectonics, as well as 

aridity of the climate regime in this area. Mineralogical analysis of modern sediment 

deposits in the Southern Kenya Rift were conducted to understand mineral diagenesis and 

authigenic mineral formation in this area we employed the mineralogical analysis of recent 

to modern sediment deposits in the South Kenya Rift, achieved by using both X-Ray 

diffraction (XRD) and Scanning Electron Microscopy (SEM) applications.  

Previous studies were focused on geological structure and geochemistry of Lake 

Magadi, as well as many archeological and paleontological discoveries of the region 

(Eugster, 1980, Nielsen, 1999, Jones, et al., 1977). As Deocampo (2015) points out, 

elevated salinity and alkalinity in lake waters tends to produce magnesium-enriched 

phyllosilicate clays. By contrast, the same author postulates, “aluminum-rich clays reflect 

freshwater flushing of the watershed associated with the termination of arid paleoclimate 

phases.” Hence, by measuring traces of magnesium and aluminum in clay samples, it is 

possible to deduce environmental change through time in paleolake basins. As a result of 

this observation, Deocampo proposed the Authigenic Clay Index of Aridity (ACACIA) as 

an alternative proxy in reconstructing fluctuating paleolimnology, when other mineral 

proxies cannot be used for reasons discussed by that author. However, in order to be 

successful, the ACACIA assumes direct causation between aridity and magnesium present 

in the clay minerals. In order to support this assumption, it is therefore necessary to assess 

whether or not other factors, besides aridity, influence the inclusion of formation of 



10 

 

magnesium silicates sufficiently enough to attribute it to climate.  The remainder of this 

chapter provides general, geological information about Lake Magadi in order to provide 

context to the research question and hypothesis stated in the last section.  

 

1.1 Geologic Settings   

Lake Magadi is located in the East Africa Rift Valley in Kenya and is a prototype of 

an alkaline saline lake (Eugster, 1970). The sedimentation occurred within the rift due 

numerous volcanic and tectonic activities. In fact, the Rift Valley was formed in a narrow 

fault graben with trachyte lava formations (Baker, 1976). Thus, precursor of the saline lake 

at Magadi was the fresh water Lake Olorgonga (Baker et al., 1971). The Lake Magadi area 

contains Precambrian metamorphic rocks, Plio-Pliestocene fluvial, lacustrine, and volcanic 

sediments (Baker et al., 1971) and was formed at the elevated area, whereas the basement 

system of the lake consists of volcanic and metamorphic rocks and lacustrine sediments 

(Jones et al., 1977). 

The detailed description of geology of stratigraphic units of the Rift Valley was 

published by Baker (Baker, 1958). He discovered that the original rocks of the basement of 

the Rift Valley area are schist, quartz sandstones and gneisses. After the tectonic 

movements and a series of basalt lavas, the composition of the basement underlying Lake 

Magadi significantly changed. The floor base was covered with basalt and alkali trachyte 

coming from the erupted lava. Clay-sized and silt-sized particles were deposited as Eolian 

sediments (Eugster, 1980). Active volcanoes and their faults provided hydrothermal 

alkaline brine circulation to the hot springs. Later, these formations were affected by alkali 

hot springs, high atmospheric temperature, precipitation and high level of evaporation. It 
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leaded to mud deposition during wet period and sodium carbonates and clay deposition 

occurred during the evaporative process. Thereby, a significant amount of evaporite series 

or trona has been accumulated in Lake Magadi sediments (Baker et al., 1971).  

Baker et al., (1971) identified several beds on that area. First, the High Magadi Bed 

stretches through the basin of the lake. This bed was formed on the plateau trachyte lavas, 

chert and limestone rocks (Baker, 1976). Second, the Oloronga Bed is traced from the south 

part and north-east of the Lake Magadi and contains a certain amount of cherts beds 

(Eugster, 1980). Third, chert series bedrocks with unconformities in the beds are found in 

southwest part of lagoon are mainly composed from the chert rocks. Finally, Olorgesailie 

Lake beds are located in the northern part of Olorgesailie Mountain and were created by the 

volcanic ash layers (Eugster, 1980).  

For the following research samples were collected from three areas: High Magadi 

Beds, Olorgesailie Beds, and the Kiserian area. Geological formations and climates 

characterized for these areas will be discussed in the study area section.  

 

1.2 Geochemistry of East Africa Rift Valley  

Lake Magadi is an active dry alkali saline lake with the highest brine concentration 

(specify concentration) located in Kenya in the East Africa. According to the Warren 

(2014), Lake Magadi, in comparison to another lakes of the Rift Valley in Africa, have the 

highest brine concentration (Eugster, 1980). Hydrothermal alkaline brine originated from 

active volcanoes. The hydrothermal fluids are moved via faults and occur at the surface as 

hot springs (Nielsen, 1999). Southern Kenya Rift has been known as a region of high 
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geodynamic activity expressed by recent volcanism, geothermal activity and high rate of 

seismicity (Deocampo and Jones, 2014).  

According to Jones et al., (1977),  the alkalinity of Lake Magadi is obtained from 

the hydrolysis of lavas and volcanic glass. That process produced high concentration of 

SiO2, Na+ and HCO3
-. Over 1700 ppm of sulfate was detected in surface water of Lake 

Magadi due to its removal during the process of evaporation (Deocampo et al.,  2002). 

Circulating ground water or hot springs and alteration of volcanic ash formed new unstable 

minerals as zeolites and zeolites associated minerals as phillipsite, clinoptolite, chabazite, 

magadiite, etc.  

The physical process of evaporation is one of the common processes of salt 

formation for Lake Magadi. Annually, the area has 122 days of precipitation, where the 

amount of precipitation is approximately 1.06 cm per a day. Thus, the annual average 

precipitation level is equal to 400 mm or 40 cm (Eugster, 1980). Therefore, sodium chloride 

or salt precipitated from the lake waters due to extensive evaporation.  

It is well known that the geochemistry of Lake Magadi is consistent with the 

presence of zeolites (phillipsite, erionite, clinoptolite) minerals associated with zeolites 

(magadiite, okenite, kenyaite), authigenic minerals, and evaporate minerals such as trona 

and salt. The presence of authigenic clays can be envisions by reactions of volcanic glasses 

and brines. Zeolites and minerals associated with zeolites mainly composed from reaction 

of saline alkaline brines and volcanic glass (McCarthy et al., 1998).  
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1.3 Study area  

Before addressing the geochemical analysis, it is important to understand that the 

geochemistry of the Lake Magadi will correlate with the geological parameters, such as the 

locations of basins, elevation, trachyte flows, dips of beds, and other factors. Hence, the 

chemistry of minerals and spring water will be linked to geological and geographical 

settings. For instance, the volcanic bedrocks will produce bicarbonate and carbonate water 

and carbonate-based minerals (Eugster, 1980).  

 For the following study, twenty-one study representative samples of modern clay 

selected from the surface at three different locations: the Nairobi area, the Olorgesailie 

formation and the Magadi Trachyte area. Collected samples were examined at Georgia 

State University (GSU) Department of Geoscience. All of the assembled specimens were 

divided into three groups based on their location Table 1-1 indicates the number of samples 

and its brief description, and GPS coordinates of collected locations. Figure 1-1 represents a 

visualization of the different elevations of the collected samples collections and their 

ambient climate. It is also indicates the Group C (Error! Reference source not found.) 

samples location have higher amount of precipitation and vegetation. Therefore, Group C 

was collected on the boarder of Nairobi and the Kiserian area at an elevation of 1600 m 

above the sea level. Group B is on the Olorgesailie formation Oltepesi area at an elevation 

of 1200 m above sea level. Group A (Figure 2-1) was collected from the southern part of 

the Magadi Trachyte area at an elevation of approximately 600 m. These locations differ 

from each other in terms of elevation, structural faulting, fluviatile and lacustrine 

sedimentology, and geochemistry of depositions. Subsequent geochemical and geological 

characteristics for Group A, B and C will be described separately.  
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Figure 1-1. Visualization of elevation of the groups of samples. . 
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Table 1-1 Samples description 
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1.3.1 Kiserian area 

The eastern flanks of the Great Rift Valley were formed as a result of divergent 

tectonic with volcanic rocks about 2.2 Ma (Eugster, 1970). Figure 2-1 represents Kiserian 

area and sample collections from that area (from the right). The sedimentation is dominated 

by volcanic silts, carbonate deposition, and soil erosion (Dawson, 2008). Sediments and 

sands were formed at the contact zones or its intercalations. Weathered and fractured basalt 

and trachyte comprised the unconfined aquifers. McCarthy et al., (1998) observed that 

silica and carbonate precipitation depends on seasons. During dry periods, the salinity of 

ground water increases due to water evaporation. This evaporation also leads to the 

formation of carbonate and silica based minerals. . The evapotranspiration of silica induces 

from the plants’ roots, but the carbonate precipitated in wetland soils (Owen et al., 2009) . 

During the flood cycle or precipitation period, rainwater infiltrates carbonate and silica 

saturated sediments. Salt precipitation will be shifted to lower elevations.  

The area is located at around 1600-1800 m above the sea level and is supplied by 

rainfalls. Rains depositing sediments lead to high detrital sediment contents.  In addition, 

the processes of evapotranspiration and precipitation lead to the formation of clay minerals 

from silicates and silt-sized alkali materials (Perchuk and Kushiro, 2013). Thus, the area is 

dominated by authigenic clay.  

In comparison to the lower Magadi trachyte, the Kiserian area receives higher 

amount of annual precipitation due to its higher elevation. It was estimated by Baker 

(Baker, 1976) that the area consists of fresh water deposit (rains), rich minerals soil, 

authigenic clay and higher vegetation. For the following research five samples were 

collected from this area: #12, 13, 15, 17 and 20 (Figure 2-1).  
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1.3.2 Olorgesailie Basin   

The Olorgesailie Formation was formed approximately 2.2 million years ago 

(Baker, 1976) and is the result of two volcanic episodes from the Olorgesailie volcano 

(Baker et al., 1971).  The sediments consist of wetland, fluvial, and lacustrine sedimentation 

and formed by pedogenesis. The Olorgesailie area is characterized as basalt, sands, gravel, 

and volcanic silts sediments. It receives less precipitation than the Kiserian area due to its 

the lower altitude. Olorgesailie area was formed at an elevation of about 1000-1200 m 

above sea level. The soil composition shows trace of olivine basalt, carbonate and silicates, 

authigenic clay, and alkali trachyte, which suggest that the mineralogy of this area can be 

described as weathered basalt, authigenic clay or silica mineral precipitation. To determine 

the geochemical and mineralogical compositions of these sediments, sample #21 (Figure 

2-1) was collected from this area.  

 

1.3.3 Magadi Trachyte Area 

According to Jones et al., (1977) and Baker et al., (1971), the Magadi trachyte was 

formed from volcanic activities about 1.4-0.7 Ma. The trachyte was developed from 

metamorphic rocks of Precambrian period, fluvial sediments of recent lakes and Pleistocene 

volcanics (Kuria et al., 2010). The lake sediments include alkali lava, silicate minerals, 

sodium carbonates, and volcanic ash.  

 The lake basin is located approximately at an elevation of 580 m above sea, thus, 

precipitation occurs and recharges the ground water system only two months a year: April 

and May. Due to the high temperature, the annual evaporation rate in the basin is very high. 

Most of the precipitation water is lost without reaching the ground water reservoir. 
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According to the Eugster (Eugster, 1980), the annual amount of trona 

((Na2CO3·NaHCO3·2H20)  accumulation is 0.3 cm due to the high rate of water 

evaporation. Thus, trona crystallization leads to the enrichment of sodium and depletion of 

bicarbonate in the brines (Eugster, 1970).   

Sedimentology of the basin dominates by volcaniclastic minerals (chert, tuff, 

volcanic glass) transported during precipitation. Saline alkaline water system of Magadi 

characterizes as formation of sodium carbonate, cherts, zeolites, as well as zeolite-

associated minerals, and authigenic clay (Jones et al., 1977). Thus, the major minerals on 

the basin are the interaction product of groundwater reservoir (brine dominates), 

particularly, alkali lava are alkali-rich and alkali-earth poor minerals. Consequently, the 

vegetation is limited at this area (Nielsen, 1999).  

According to Eugster, 1970, the dissolved solids concentration of Lake Magadi 

varies from 35 to 100 mol/l based on 100 mol/l for the most concentrated springs. Thus, the 

northern part of Magadi is very concentrated (85-90 mol/l) with a high temperature 67-

85°C. Table 1-2 indicates approximate environment conditions for each sample collected in 

the lower basins of Lake Magadi. This data will be used for geochemistry investigation. For 

the following research five samples were collected from this area: # 1-11, 14, 16, 18 and 19 

(Error! Reference source not found.). 
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Table 1-2 Spring water concentration (mol/l) and temperature (° C) 

 

 

1.3.4 Study Purpose and Hypothesis  

The following research is the derivative of research of Dr. Deocampo and the part of 

ACACIA (Authigenic Clay Index of Aridity) investigation. Previous studies of the 

Pleistocene paleoclimate in Lake Magadi in the East Africa Rift Valley focused on the 

correlation of paleohydrology basin and global climate change (Baker, 1958). Furthermore, 

Russell & Cohen, 2012 states that climate evolution of the South Kenya provided new 

insights of rainfall dynamics. However, the conclusion cannot be established due to the 

limited terrestrial records.  Thus, ACACIA development will help to fill the gaps of the 

paleoenvironmental records of the South Kenya.  

 To support the research of Dr. Deocampo and ACACIA, geochemical and 

mineralogical analyses will be implemented to understand the evolution of basin and brine 

geochemistry of Lake Magadi and the associated climatic and tectonic regime for the 

region. The authigenic silicates or most abundant minerals in samples will be studied to 

understand how they were formed in relative to the climates and hydro-geochemical 

processes in the three regions studied. . Particularly in this study, I will focus on authigenic 
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formation and diagenetic reactions in East African Rift Valley in Kenya and especially at 

Magadi Basin. The first and the main hypothesis of that research is to investigate whether 

or not the authigenic mineralization increases with lower elevation and more arid climate 

regime. This hypothesis will be tested by geochemical and mineralogical analysis.  

 

1.4 Methods  

To provide a full geochemical and mineralogical study of authigenic and detrital 

clay minerals, several chemical analyses will be implemented. To prepare materials for the 

mineralogical study, samples were dried, labeled and separated for the archived materials 

and research specimens. X-Ray diffraction (XRD) bulk analysis or whole rock analysis was 

required for identification of chemical and structural characteristics of clay-based minerals 

present in clay-based rocks (Środoń, 2013). Bulk patterns indicated whether or not clay-

sized materials are present on the samples. The clay-sized samples would be selected for 

further chemical analysis. Clay-based samples were prepared for XRD – clay analysis. 

Clay-based samples were prepared for XRD by Jackson’s treatment to remove cementing 

minerals.  

Jackson’s treatment included several operations. To remove the cementing agent, 

first carbonate treatment will be implemented. To complete clay dispersion, the organic 

treatment 30% H2O2) was used. Finally, samples were treated for removal of crystalline 

Fe2O3 (iron oxide) and amorphous coating of Fe2O3 (Jackson, 1979).  

Samples were prepared for XRD clay-based analysis to obtain a clear signal for the 

identification of clay minerals (Hradil et al,. 1950). The intensity and shapes of peaks, and 

diffraction patterns will be used to identify the individual clay minerals (Moore & 
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Reynolds, 1997). If required, the SEM (scanning electron microscopy) test was applied for 

producing electron images and chemical elements analysis of the researched material.  

 

1.5 Expected results  

The testing of the hypothesis will provide the correlation of authigenic mineralization 

and climate regime in East Africa Rift Valley. Accordingly, it was expected that the 

samples of Kiserian area with the highest (for this research) elevation (Group C) would 

consists of more volcanic reach soils, more alkali–earth minerals (calcium, magnesium), 

and more basalts due to the high amount of precipitation and vegetation. Weathered basalt 

clay was expected to be dominated in the regions of Olorgesailie formation. However, it 

was possible to state that the Olorgesailie area and Kiserian formation might have the same 

geochemical composition due to their location in the Nairobi area. The lower part of the 

Magadi trachyte consists of salt, alkali-riched minerals (salts, carbonates, sulfates) and 

consists of low amounts of alkali-earth elements. Authigenic clay, detrital silicates, as well 

as saline minerals, sodium silicates, zeolites and zeolites-associated minerals were expected 

to be found in the samples due to the high salinity, high springs, and pH.  
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2 METHODS  

2.1 Sample Collection  

 

Soil samples were collected by Dr. Deocampo and his colleagues, during the dry 

season in June and July 2014 by trowel and stored in clean polyethylene bags. The multiple 

samples were collected from select at a location in west part of the lake Magadi (S 01° E, 

36°). Figure 2-1 shows the location of the mines. Samples were collected on July 24-26, 

2014. The profile was derived by Deocampo and his field party. Out of collected samples, 

twenty-one specimens were selected for this research. Table 2-1 represents the description 

and the GPS coordinates of sample collection locations. For the description of research, 

only numbers of the samples were used. Samples were collected in four different locations 

selected to provide a broad range of sample diversity in terms of climate and mineral 

provenance.  

The first station (Group A at S1° 47’ 27.38 “; E36° 54’ 81.53” ± 3 min) was a 

shallow area of the lake with hot springs. Microbial mats were sampled near the hot springs 

and significant evaporation. Mud was collected from where the lake had receded. The 

second station (Group B at S01° 33.914 min) was a central volcano or basalt area and 

sediments were sampled. The third station (Group C at S01° 27.914 min; E36° 29.068) 

sediments were collected from the flanks of the Kiserian area. The location and the 

description for each sample are in the Table 2-1.  
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Table 2-1: Sample location and description 

Sample # Description 
Coordinates  

Latitude Longitude 

1 Wind Blow Sand 14 - MAG - 4 S 01 54’ 47.76” E 36˚17’38.53”680 

2 
High Magadi Bed Clay Magadi - 14 - 
NGUN - 5 

S 01˚ 58’ 35.34” E 36˚ 14’ 2.85” 610 

3 Saline Clay Magadi - 14 - TLB - 2     

4 14 - MAG - 9 S 1˚ 50’ 21.93” E 36˚ 16’ 15.91 “607 

5 14 - MAG - 3 S 01 47.215" E 36' 16.854'' 612 

6 Fish Bed Clay S 01˚ 59’ 19.04” E 36˚ 16’ 9.30”610 

7 MAG - 7 - Clay Trona  S 01˚ 52’ 47.85” E 36˚ 16’ 32.88”607 

8 
Trona Clay (zeolite) zeolite) 14 - 
MAG – 6 

S 01˚ 52’ 45.87” E 36˚ 16’ 33.63”607 

9 MOD Colliviom Rift Scarp - NGUN - 4  S 01˚ 51.177" E 36 12.996" 637 

10 
Late Placob Debtu Fbw - CO3 
cement S 01 51.177" E 36 12.996 

11 Key Sample 14 - MAG - 5 S 01˚59’18.63” 36˚16’09.20” 609 

12 14 - KIS - 3 S 01 29.536" E 36 37.375 1815 

13 14 - KIS - 4 S 01 31.310" E 36 36.400 1519 

14 14 - NGUN - 1 S 01 31.310" E 36 12.996 637 

15 14 - KIS - 1 S 01 27.810" E 36 39.153 2026 

16 Magadite 14 - MAG - 2 S 01˚54’45.46” 36˚ 17’41. 56”609 

17 14 - KIS -5 (beneath lava)  S 01 31.398" E 36 36.440 1511 

18 Paleosol 14 - MAG - 3 S 01 47.215" E 36' 16.854'' 612 

19 Magadi DOP 14 - TLB - 1 Paleosol     

20 14 - KIS -2  S 01˚27’28.46” E 36˚38’32.95”2007 

21 Weathered Basalt Clay 14 - OLT - 1  S 01 33.914" E 036 27.068 1014 

 

ArcGIS program was used to create the topographic map of samples site locations Figure 

2-1. 

 

 



24 

 

 

Figure 2-1 Lake Magadi sample locations 
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2.2 Sample Preparation  

To remove moisture from the material, collected samples were dried in the oven 

overnight at 50°C for 24 hours. Some samples (#6, 8, 12, 16,17, and 21;) required drying 

for 72 hours. Dry specimens were divided into two equal amounts with a 0.25-inch sample 

splitter. Half of each portion was archived and another half was split into two more parts for 

further chemical analysis and investigation. Archived samples were labeled and stored in 

the Clay Laboratory, Department of Geoscience, (KH 310).  

For the whole rock mineral determination, further preparation of the soil samples 

consisted of powdering and homogenization. To achieve the analytical acceptable particle 

grain size, an Impact Ball Pestle Impact Mill (Figure 2-2) was used. Approximately 25 g of 

sample was placed into the ceramic casket with a stainless steel ball for approximately 7 

minutes to achieve homogeneity (Mahadi & Palaniandy, 2010).  The powder was labeled 

and stored in small glass tubes. The ceramic casket was cleaned using deionized water and 

after rinsed in alcohol. 
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Figure 2-2 Impact Ball Pestle Impact Mill 

 

2.2.1 Preparation for the clay analysis by using Jackson’s method  

To disperse the colloids of mineral soils the method of segregation of clay, silt, and 

sand particles was applied. Jackson’s method permits separation of different series of 

minerals into three fraction sizes (Glenn et al.,  1960) and removal of flocculents from the 

specimens. The Jackson’s method includes three basic steps to permit disaggregation of the 

aluminosilicate mineral fractions from sediments and soils (Jackson, 1979): removal of 

carbonate cements; the removal of organic matter, and; removal of iron oxide cements. 

Carbonate cement removal (i.e. carbonate treatment) was used to remove carbonates and 

gypsum from the research material. To remove Mg and Ca carbonates and to provide 

effective soil dispersion, the samples were washed with 1 N sodium acetate (NaOAc) of pH 

5 at 50o C (acid in reaction) (Jackson, 1979)The suspension was then centrifuged for 7 
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minutes at 1100 rpm to settle the insoluble clay.  The centrifugation was repeated with fresh 

buffer and centrifuged until the supernatant liquid was cleared (Jackson, 1979).   

Following carbonate removal, to complete clay dispersion, the soils were treated to 

remove organic matter. As a result of the carbonate removal, the slight increase of pH level 

of the supernatant after centrifugation was noted. The increased pH is thought to be due to 

the presence of dissolved calcium salts. These salts retard the soil organic matter oxidation 

(Jackson, 1979). The organic matter removal was implemented by adding 10 ml volumes of 

30% hydrogen peroxide, H2O2 first at room temperature then heated at 50 oC. (Follett, 

1965). During this process, the reaction between 30% of H2O2 and the soil/sediment 

occurred. The mixture was observed closely for 5-10 minutes to prevent foaming over and, 

then, placed into a 50°C water bath for 4 hours for complete organic matter decomposition 

(Jackson, 1979). To insure complete removal of organic matter and colloidal fractions, the 

process was repeated three times for each sample. For complete analysis, the soil was 

washed with absolute methanol (CH3OH) and centrifuged (Iannicelli-Zubiani et al., n.d.).  

The iron (III) oxide (Fe2O3) treatment was necessary for the removal of the 

crystalline iron (III) oxide and amorphous iron oxide coating from the samples.  In other 

words, during this treatment, successful separation of colloidal aluminosilicate can now 

occur (Jackson, 1979) and clean aluminosilicate appears, which is necessary for the X-Ray 

diffraction procedure. To remove iron oxide, the samples were treated with 0.3M Na-citrate 

(Na3C6H5O7) and 1M Na-bicarbonate (NaHCO3) and heated in a water bath at 50°C for 15 

minutes. One gram of sodium dithionite (sodium hyposulfite) was added to the mixture and 

the specimen was stirred vigorously for 60 seconds and heated for four more minutes. The 

process was repeated three more times until the red or brown color disappeared. The 
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solution was then centrifuged twice using sodium acetate-acetic acid buffer and once with 

2-3 ml of absolute methanol (CH3OH).  

The timed settling - decantation method (Jackson 1979) was used for the  separation  

of sand, silt and clay separation with the sizes of >50 , 20 -50 μm and <2 μm respectively. 

The calculation was based on the height of the sample suspension in the 500-ml such as 

every 10 cm of specimen in the samples is equal to 8 hours of waiting time. Another words, 

sample should stayed undisturbed for 8 hours for each 10 cm to obtain the < 2 μm fraction. 

Table 2-2 provides the calculation for each sample to be undisturbed.         

Using the pipette method, the clay fraction of size <2 μm was collected from the 

beaker. After collection, the clay was placed on a microscopic slide and dried at room 

temperature for 24 hours. This method aligns the clay particle surface perpendicularly with 

c-axis of the phyllosilicate crystals (Jackson, 1974). 

Table 2-2 Sample Preparation 

Sample, N Height, cm Time, h 

6 5 6.25 

7 5 6.25 

8 4.5 5.62 

10 5 6.25 

11 5 6.25 

14 4.5 5.62 

15 5 5 

16 4.6 4.6 

17 4.8 4.8 

18 4.7 5.88 

21 5 6.25 
 

2.2.2 Preparation for clay analysis by using physical treatment 

The second independent clay mineral separation method for X-Ray diffraction 
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oriented mount was performed by physical treatment. For physical slide preparation, an 

ultrasonic probe was used for dispersion. According to Ashman, et al (2009), ultrasound 

vibration can separate different size of particles and the size fractions obtained by this 

method can be used for further chemical and physical analysis without prior chemical 

treatments.  To prepare samples, 20 g of powdered specimen was initially placed inside a 

beaker and 40 ml of distilled water was added (Firoozi et al., 2015) . The beaker was placed 

on a vibrational stable surface in the ultrasonic bath (Figure 2-3) to disaggregate the soil for 

80 to 120 seconds (Fristensky and Grismer, 2008).  

An ultrasonic processor (Sonics Inc.) with resonance frequency of 20 kHz was used 

for this method. After the ultrasound treatment, samples were washed in a 50-ml plastic bottle 

using by centrifuge (Mikhail, 1978) at 8400 rpm for 1 hour. After centrifugation, a thin layer 

believed to be the clay layer (< 2 µm) is observed at the top of the centrifuged sediment. An 

upper layer <2-µm of the clay grout was transferred mechanically using a small spatula or 

knife from the beaker to a microscope slide for oriented mounting for XRD analysis.  
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Figure 2-3 Ultrasonic Processor (GLENN et al. 1960) 

2.3 X-Ray diffraction Bulk analysis  

The Panalytical XRD diffraction data were scanned from 2-32 ° 2θ intervals, 

counting for 0.02° 2θ, and 1°2θ/min scanning speed (Figure 2-5). Oriented mounts were 

produced following the methods of Moore and Reynolds (1997).  Bulk powers were loaded 

into circular sample holders to produce random oriented mounts (Figure 2-4). To filter 

CuKß radiation, a graphite monochromator or Ni filter was used. Twenty-one bulk powder 

samples were prepared for this analysis by placing the samples powders into the circular 

sample holders using a scratched glass to keep grains undirected. These random mounts 

were examined using 5-70° scan angle range for 30 minutes under the room conditions. The 

diffraction patterns oriented mount for each sample was analyzed by HighScore Plus 

software of the X-Pert Panaltyical XRD whose error is estimated conservatively at 10%. 



31 

 

The sample patterns were interpreted with identification database ICDD (Moore & 

Reynolds, 1997).   

 

Figure 2-4 XRD Sample preparations for Bulk Analysis 

 

2.4 X-Ray diffraction of the clay fractions  

After the detailed analysis of the bulk fractions by XRD was analyzed, twelve 

samples were selected for clay analysis based on present of illite, smectite, and kaolinite 

seen in the analyses of the bulk samples. These minerals were identified using their 001 

reflection. Test material was prepared by two methods: chemical treatment and physical 

treatment described in previous sections. Approximately 2 ml of the test material  <2 µm 

specimen was extracted from the sample and placed into the petrographic (23 by 46 mm) 

glass slide using a pipette. The slides were left to dry at the room temperature overnight. 

After the samples were dried, the slides were analyzed on XRD from 3-32°, 2θ. Five slides 

were selected for 24 hours for ethylene glycol solvation to verify swelling clays within the 

test specimen, based on the presence of smectite in the air-dried patterns (Moore and 

Reynolds, 1997).  
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Figure 2-5 XRD PANalytical X’Pert PRO XRD 

 

As the desirable results hadn’t been achieved by Jackson’s sample preparation 

method, the ultrasonic treatment on clay had been implemented. After the centrifugation of 

the samples, a thin upper level of the clay <0.25 µm to  <1 µm grout was collected and 

placed onto petrographic glass slide and dried at room temperature for 24 hours (Firoozi, 

2015). No notable mineralogical difference could be observed between 0.1 µm and 1 µm 

size fraction in this study. All the 12 air-dried and ethylene glycol-treated samples were 

analyzed at 3-32°, 2θ 30 minutes scan.     

X-ray diffractometry for mineral identification is based on having a constant 

wavelength of radiation interacting with the unknown samples.  At GSU, the X’pert Pro 

XRD uses a Bragg-Brentano geometry. Whereas, λ is the wavelength of the incident ray, θ 

is the angle between the incident rays and the surface of the crystal of the test material, d is 

the spacing between layers of atoms and the test material. The results can be calculated  by 
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knowing the spacing between layers of atoms, d, for each diffracted peak and the angle 

between the incident rays and the surface of the crystal, θ using Bragg’s Law.  The d-

spacing for each peak measured in Å. A summary of the methodology and theoretical 

development can be found in Moore and Reynolds (1989). Another words, the Bragg’s Law 

described as: nλ = 2dsinθ, where d is d-spacing value in angstroms, λ is the wavelength of 

incident and diffracted radiation, θ is the angle between the sample mount and incident 

radiation.  

The X-Ray are produced by heating a tungsten cathode using a >15 Ma current. 

These thermionic electrons are accelerated into a Cu anode at - 45 kV relative to the 

cathode. The collision of the thermionic electrons and the Cu block produces both white 

radiation and characteristic radiation. The latter is used in X-ray diffractometry. The 

characteristic X-Rays emitted from the Cu target in the X-ray generating tube strikes the 

sample at an angle θ. When diffraction occurs, the diffracted beam is emitted from the 

sample at an angle of 2θ relative to the incident beam.   The results generated a distinctive 

peak for identification of the mineralogy for each sample. 

 

2.4.1 Data Analysis using Principal Component Analysis  

To analyze the data, PCO (Principal Component Analysis) and MATLAB were 

implemented. To find the correlation between geographical location (latitude, longitude) 

and mineral chemical composition MATLAB software was applied. MATLAB will 

generate and represent a scatter plot where each dot represents the specific sample point. 

This type of plot is useful to quickly visualize any correlations that may exist in the data 

(Ballabio, 2015). Correlation signifies that the setting of one variable has an influence on 
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the value of the other. Typically, one would employ principal component analysis to 

identify important correlations; however, the scarce amount of samples available would 

have been insufficient to yield a good estimator of the covariance matrix, which is required 

by PCA (Anjam and Valdman, 2015). Instead, it was decided to plot a line through the data 

using a least squares fit. This provides a visual reference to assess the amount of scatter. 

Hence, if a relationship exists between the quantities listed on the axes, the dots will exhibit 

a non-random pattern. 

Cluster Analysis was used to find the correlation of scans and to distinguish 

difference in mineral composition.  The comparison of peak and positions will be combined 

into clusters in a 3D model (Milcius et al., 2015). The relationships were determined 

automatically using HighScore Plus software.  

 

2.4.2 The error of XRD and XRD HighScore Software measurements 

The error from XRD and XRD HighScore measurements calculated from the 

summation of individual errors. These errors associated with HighScore Software include 

with peak searching and analysis, background determination, outlier correlation.  The 

systematic errors associated with equipment involved equipment calibration, samples 

sensitivity, sample displacement, peak asymmetry, angular errors. It was estimated that the 

error is approximately  ≈10 %.   

 

2.5 Scanning Electron Microscopy SEM –EDS  

SEM produces electron images and elemental mapping.  Figure 1 shows the seven 

primary components of an SEM (Figure 2.5): beam generation, beam manipulation, beam 
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interaction, signal processing, detection, vacuum, and display and record. The components 

of the SEM work together to ascertain the characteristics of the micrograph image, such as 

resolution and magnification. 

The vacuum system is an essential SEM component, which initiated before any 

other function. The vacuum system creates a mean-free path for electrons, prevents high 

voltage discharge between the filament and the anode, prevents O2 sensitive filament 

oxidation, and safe guards against contaminating gases from water vapor and organics 

(Simmons, 2013). The SEM’s three stage condenser lens system is also a very important 

aspect of the electron beam increasing the resolution and lower the signal, the beam travels 

through condenser lens C2 further refining the beam spot, and then the beam goes through 

condenser lens C3 with controls the final focusing of the image on the viewing system as 

well as the depth of the focus (Russell, 1999). After the electron beam travelling at 

approximately 20 kV penetrates the specimen, both elastically and inelastic scattering of 

electrons occurs (Figure 2-6). Elastical scattering (backscattering electrons) is increased 

with increasing atomic weight of elements in the sample and is collected by the backscatter 

electron detector to reduce noise. Inelastical scattered electrons are attached through a 

Faraday cage and then collected by the secondary electron detector converting the 

electronic signal into an image on a computer monitor (Reimer, 1984).  
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Figure 2-6 Scanning Electronic Microscope 

The EDS functions of the SEM use X-Rays to provide a quantitative analysis. The 

electron beam (Figure 2-7) is directed to a targeted area particle on the specimen stage 

generating energy specific X-Ray energy, which is absorbed by a silicon crystal capable of 

detecting multiple wavelengths simultaneously. 
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Figure 2-7 Scanning Electronic Microscope  

2.5.1 SEM Samples preparation  

To prepare the specimen for analysis, a grain of material approximately 5mm in 

diameter was mounted on double-sided carbon tape, and affixed to a metal specimen 

mount. The mount and sample were then placed in the vacuum evaporation system (VES), 

and the VES was depressurized to create a high vacuum. An electrical current was passed 

through a rod of graphite positioned between two conductors, vaporizing the graphite at the 

atomic level and causing it to adhere to the sample. This process, known as thermal 

deposition, increases the thermal and electrical conductivity of the sample by coating the 

sample in a thin layer of carbon. This electroconductive carbon layer allowed the specimen 

to be viewed using an electron optical system. The coated specimens were then placed on 

the viewing stage of the SEM, and sealed inside the vacuum chamber (Uchic et al., 2006) 
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2.6 Preliminary Dehydration – Rehydration Study of Na-silicate minerals  

In an attempt to synthesize okenite from precursor sodium silicate mineral, we 

reacted dehydrated magadiite with a chalk (CaCO3) and Magadi type brine solution. The 

solution was place into oven at 50° C for 72 hours. Another sample was prepared by adding 

a Calcium hydroxide saturated solution to dehydrated magadiite and left at standard room 

temperature and humidity for 72 hours. SEM analysis was conducted on dehydrated 

magadiite and the synthesized samples to identify associated mineral diagenesis seen in 

nature.  The concentrations of solutions were not calculated. Thus, the experiment was 

preliminary in scope and was simply to gage whether Ca-saturated brines interacting with 

magadiite can produce okenite.  

3 RESULTS 

3.1 XRD Bulk Analysis Results 

XRD bulk analysis was used to determine the complete mineralogical composition 

of 21 samples. These data enable the selection of samples for further XRD - clay analysis 

and SEM scanning.  

In the first place, minerals were recognized by using the diffraction data and 

methods of mineral identification  methods per Moore & Reynolds (1997). The method 

involves the identification of peaks intensity and positions at the angle of 45° 2θ or less and 

calculating the d-spacing per Bragg’s law (Hradil et al., 1950). The determined peak values 

were compared with the minerals and their known diffraction characteristics.  

According to the whole rock analysis using the identification tables in Moore and 

Reynolds (1997), the most abundant minerals in these samples by inspection of the 
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diffraction peaks were: quartz, calcite, illite/smectite, halite and zeolites from XRD data 

using powder diffraction data and by matching peaks of the observed data to known 

diffraction data for minerals (Moore & Reynolds, 1997).  K-Feldspar, trona, magnesium 

calcite, kaolinite/chlorite were found in less abundance in a fewer number of samples 

(Moore & Reynolds, 1997). Diffraction peaks that were consistent for the following 

minerals were observed: for gypsum, magnesium oxide, albite, perovskite, montmorillonite, 

pyrochlore, plagioclase, anorthoclase, sepiolite, magadiite and portlandite were found in a 

fewer number of samples.  The distinct diffraction peaks of calcite were detected at 3.86 Å, 

3.03 Å, 1.60 Å. Diffraction peaks corresponding to quartz were discovered at 3.34 Å, 2.28 

Å, 2.12 Å and 2.05 Å. The diffraction peaks belonging to mixed layer Illite/Smectite were 

observed at 5.61 Å, 8.58 Å, 11.16 Å, and 15.80 Å. Smectite diffraction peaks were seen at 

15.51 Å, 10.4Å, and 11.20 Å.  

Table 3-1 XRD bulk analysis (Moore-Reynolds) 

 

To verify these results, all specimens were selected for detailed clay mineral 

identification and quantification on a bulk rock basis using the XRD HighScore Plus 
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Software. The software also provided the percentage of minerals in each sample or 

Principal Component Analysis (PCA). According to the quantitative XRD analyses using 

High Score Plus Software, most of the samples consist, in general, of phyllosilicate 

minerals, zeolites, zeolite-associated minerals, silicate minerals (albite, quartz), trona, and 

halite (NaCl). The phyllosilicate clay minerals found are: kaolinite/chlorite, illite, and 

montmorillonite. Silicate minerals, such as quartz, sanidine, albite, anorthoclase, were 

detected in most of the samples. Besides this, calcite was one of the most common 

minerals.  Magadiite, a mineral found frequently at Lake Magadi, was discovered in two 

samples: #16 and #21. Magadiite was identified based on the observed diffraction peaks at 

7.25 Å and 15.69 Å. The XRD results demonstrate that the most common investigated 

zeolites in these samples are phillipsite, clinoptolite, mordenite, chabazite. According to the 

results of bulk analysis, twelve samples with clay content were selected for further clay 

analysis. These samples: # 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, and 21. Table 

3-2 shows the summary of the observed minerals on the bulk analysis; check mark indicates 

the presence of the mineral on the whole rock analysis.  

Using HighScore, the most abundant minerals (occurring 8 or more times in these 

21 samples) are sanidine, low quartz, high albite, anorthoclase and erionite. XRD analysis 

indicates high albite as albite which stable at very high temperatures above 800°C (Guo et 

al., 2015   ). Furthermore, HighScore was able to discriminate and quantify two kind of 

quartz (low and high quartz). The less abundant minerals were detected in 4-7 samples are 

phillipsite, calcite, halite, and trona. The least common minerals found only in one or two 

research samples are zeolites (mordenite, phillipsite, chabazite); kaolinite, illite, 

montmorillonite, magnesium calcite, analcime, and magadiite. Table 3-2 represents the 
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summarizing quantitative XRD analysis. Each sample represents as 100% of different 

components. The sample’s XRD patterns and the percentage diagrams are given in 

Appendix C. The discussion of results will take place on the next section.  

Table 3-2 XRD bulk analysis HighScore Plus 

 

3.1.1 MATLAB Analysis 

The measured percentages of minerals of each sample were visualized using 

MATLAB based on the percentage ratio of minerals in the samples calculated in HighScore 

Plus Software (Figure 3-2). Figure 3-1 - Figure 3-4 show Scatter plots of “latitude vs. 

halite,” “latitude vs. quartz,” “longitude vs. quartz,” and “longitude vs. trona” are shown in 
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Figures 3-1-Figure 3-4.  Each dot represents a specific sample point in these scatter plots. 

This type of plot is useful to quickly visualize any correlations that may exist in the data. 

Correlation signifies that the setting of one variable has an influence on the value of the 

other. Typically, one would employ principal component analysis to identify important 

correlations; however, the small scarce amount of samples available would have been 

insufficient to yield a good estimator of the covariance matrix, which is required by PCA. 

Instead, it was decided to plot a line through the data using a least squares fit; this 

correlation provides a visual reference to assess the amount of scatter. Hence, if a 

relationship exists between the quantities listed on the axes, the dots will exhibit a non-

random pattern.  

For example, it can clearly be seen in Figure 3-1 that quartz and longitude are 

linearly correlated. Quartz decreases as the longitude increases, suggesting that one is more 

likely to find quartz west of the lake than east. It turns out that the longitudes coincide with 

increased elevation.  These data enable to test the hypothesis showing that authigenic 

mineralization was increases with the elevation. This correlation might mean that the high 

concentration of low quartz occur in the Nairobi formation with higher precipitation and 

more alkali-earth minerals (magnesium, calcium). Similarly, there seems to be a linear 

relationship between halite and latitude. Halite increases with latitude, which coincides with 

presence of the Magadi Trachyte area to the higher elevation and higher attitude. This 

correlation might mean that the halite concentration is increasing with increasing of 

elevation and precipitation.  
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Figure 3-1 Halite vs. latitude. 

 

 

Figure 3-2 Quartz (low) vs. latitude. 
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For example, Figure 3-2 and Figure 3-2 demonstrate the correlation between quartz 

and latitude and halite and latitude. The pattern states that the abundance of illite and quartz 

increases with latitude. Another example of correlation between variables traced between 

longitude and trona and longitude and quartz. Figure 3-3 and Figure 3-4 demonstrates that 

the concentration of quartz decreasing with increasing of longitude. However, trona did not 

correlate with longitude.  Trona exists throughout in the whole research area at the different 

longitudes. However, there is not enough data and the scatter is too large to make any 

conclusions about quartz concentration on different areas.  

 

Figure 3-3 Longitude vs. quartz 
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Figure 3-4 Longitude vs. trona. 

 

3.1.2 X-Ray Diffraction Cluster Analysis 

 

XRD cluster analysis was implied to examine the identified phases’ quantification. 

The principle component analysis (PCA) was performed as 3D image (Cammelli et al., 

2010). PCA demonstrates the possible correlation or uncorrelated variables of minerals in 

twenty-one research samples. Cluster analysis combined similar diffractograms attributes as 

peaks, cleavage and positions of crystal structure, and strengths these parameters into 

statistic correlation.   However, the percentage ratio of all the present minerals is 

approximate due to lack of structural information availability.   

 Figure 3-5 demonstrates that all twenty-one samples could be divided into two 

clusters (blue and green) and established on the right corner of PCA. The outliers 

represented by for samples # 7, 13, 14, and 20 consist of different mineralogy or different 
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peaks intensity. All outlier samples were mainly located on the left side of PCA 

diffractograms. All outliers display a significant difference in their mineral composition, 

demonstrated that the mineralogy varied from sample to sample.  

The largest cluster C1 (blue) consist of samples # 6, 10, 8, 9, 11, 12, 15, 16, 17, 18, 

and 19. The green cluster contains only 5 samples with similar chemical crystal structure: 1, 

3, 4, 5 and 21. The PCA results will be discussed in the Discussion section.  

 

Figure 3-5 Cluster analysis of bulk samples. 
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3.2 XRD Clay Analysis  

 

3.2.1 Chemical method of sample preparation 

After careful inspection of bulk patterns, it was determined that only 12 samples out 

if 21 or ~ 57% of all the specimens consist of clay-based minerals (i.e. phyllosilicates). 

Following samples were selected for clay analysis: sample # 6, 7, 8, 10, 11, 12, 14, 15, 

16, 17, 18, and 21 (Group A – samples # 6, 7, 8, 10, 11, 16, 18; Group B  - #21, Group C 

– 15, 17) . For the first clay-sized structural information analysis, all the samples were 

prepared using chemical treatment or Jackson’s method (Jackson, 1979) and then, the 

powder sample was prepared and placed into a microscope slides (Hradil et al., 1997). 

After performing the XRD clay analysis, we determined that samples analyzed after being 

processed with Jackson’s treatment did not produce quality diffraction patterns. The 

reason is that although Jackson’s treatment is useful in detrital clay analysis and it is 

proven less effective in analysis of authigenic zeolite type clay minerals possibly due to 

incompletely formed crystal structures. For example, Figure 3-6 represents the pattern of 

sample # 16 after Jackson’s treatment, the d-spacing of peaks also indicated on the 

pattern. 

The slide was dried using two methods: 1) at room temperature for 24 hours (red 

pattern), 2) the slide was stored in an ethylene glycol, solvation for vapor explosion for 24 

hours (green pattern). Weak peaks of smectite, chlorite/kaolinite, and kaolinite can be 

observed. Also the extra noise was present on the patterns. Weak peaks and extra 

background noise was observed on all the received patterns that were treated using 

Jackson’s methods  
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Figure 3-6 XRD clay analysis of Sample # 16 (Group A) after Jackson’s 

treatment. 

 

3.2.2 XRD patterns after the physical treatment  

 

For the second XRD – clay analysis samples were treated by sonication. Clearer 

peaks were observed after XRD analysis. For example, Figure 3-7 demonstrates the pattern 

of sample # 16 after sonication treatment. In comparison, to the patterns after Jackson’s 

treatment, sonication treatment does not destroy some minerals, which can be observed on 

the diffraction pattern.  

According to the quantitative analysis of XRD data, low quartz, vermiculite, calcite, 

montmorillonite, and phillipsite were recognized as the most abundant. The peaks of low 

quartz were discovered at 2.45 Å, 3.34 Å, and 4.25 Å; the peaks of montmorillonite were 

identified at 15.03 Å, 5.01 Å, 3.77 Å and 3.02 Å. Phillipsite peaks, which were not seen in 

the samples treated using Jackson’s methods, were seen at 17.52 Å, 12.56 Å, and 10.84 Å. 
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Table 3-3 indicates the abundance of minerals in researched samples. However, the 

percentage ratio of minerals in the samples was not calculated due to two reasons. First, the 

high background noise was observed in these samples. This increased background and 

noise and peak deviation was due to process of peeling from the slides. Peeling was 

observed in the samples as soon as samples started to dry. Peeling samples were # 6, 7, 10, 

12, 11, 14, and 21. Another reason for high probability of deviation ratio calculation is 

some unidentified or questionable minerals were found in the samples. The peak at 20.71 Å 

was discovered but was not identified by HighScore Plus software. Furthermore, the d-

spacing of some minerals is very close to each other, thus it was not clear enough which 

minerals some of the peaks belong to. Further investigation is required in order to verify our 

results.  

Table 3-3 XRD Clay analysis 

 

A unique peak was detected in sample 16 at d-spacing of 20.71 Å (Figure 3-7). 

After the solvation with ethylene glycol vapor at room temperature, the following peak 
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shifted to 22.70 Å. To identify the mineral composition of sample # 16 the scanning 

electron microscopy analysis had been assigned to this sample (Section 3-3). Based on 

diffraction characteristics, the peak at 20.71 Å is identified as magadiite. 

 

Figure 3-7 XRD Pattern of Sample #16 (Group A) after sonication.  

 

3.3 SEM-EDS Results  

 

The following SEM – EDS results were carried out for samples 12, 16 and 17, in 

order to further confirm the aforementioned presence of magadiite as well as the presence 

of okeonite and zeolites. Okeonite would be a possible explanation for the 20.71 Å peak 

observed Figure 3-7. In particular, they were used to check whether or not the okenite was 

present in the specimens. The findings are shown in Figures 3-10 through 3-17.   The X-ray 

microanalysis for each sample, respectively, is shown in Figure 3-8 and Figure 3-14. The 

corresponding X-ray secondary electron images are shown in Figure 3-9,Figure 3-9, Figure 

3-10 and Figure 3-14. All the images were taking at the cross with 15.00 kV accelerating 



51 

 

voltage for electron gun (beam energy), from the distance of 25 mm by SE1 as a secondary 

electron detector Figure 2-7. 

The SEM analysis found that the most abundant elements in sample #12 of Group B 

(Figure 3-8) were sodium (Na), silicate (Si), iron (Fe) and potassium (K). Weak peaks of 

titanium could also observed in the microanalysis, but since they did not exceed the 

calculated background noise (grey line), no formal conclusion could be made about the 

presence of titanium.  

 

Figure 3-8 X-Ray Microanalysis of Sample #12 (Group B). 
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Figure 3-9 X-Ray Electron Image of Sample #12 (Group B). 

Three representative secondary electron images were taken of sample #16 (Group 

A). Figure 3-10 demonstrates the snapshot of the sample 16. All the images of sample 16 

were taken at the same parameters. The scale of the image illustrated on the picture. The 

other two images of sample 16 are located in the Appendix C. 
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Figure 3-10 X-Ray Electron Image of Sample #16-01 (Group A). 

 

Figure 3-11 Ray Microanalysis of Sample #16-01 (Group A). 
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The analysis was repeated twice: once at a gun distance of 28 mm and another at a 

gun distance of 25 mm. The SEM analysis at 28 mm found three representative secondary 

electron images were taken of sample #16 (Group A). These elements are shown in Figure 

3-10 and Figure 3-13.  The SEM analysis at 25 mm is shown in Figure 3-12, after honing in 

on one of the cavities. It was found that the most abundant chemicals were sodium (Na), 

silicate (Si) and calcite (Ca). Aluminum (Al) and potassium (K) were not detected, even 

though this is the same sample, while calcite was observed at 25 mm, even though it was 

detected at 28 mm. The associated crystal structure is shown in Figure 3-13, where the 

white cotton-looking formation is believed to be fibrous crystal. The presence of a newly 

discovered calcite and the observed fibrous crystal structure in the cavity are indications of 

possible okenite. The discussion will be provided in the following section.  

 

Figure 3-12 X-Ray Microanalysis of Sample #16-02 (Group A). 
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Figure 3-13 X-Ray Electron Image of Sample #16-02 (Group A). 

 

Four sides of sample #17 (Group B) were investigated on SEM. The SEM analysis 

examined that the most abundant chemicals founded in the first investigated surface 17 are 

sodium (Na), silicate (Si), Aluminum (Al) and iron (Fe) (Figure 3-14). Seven secondary 

electron images were taken of sample #17. Figure 3-15 represents the snapshot of the 

sample with circular grains. Image was taken with 15.00 kV accelerating voltage for 

electron gun (beam energy), from the distance of 25 mm by SE1 as a secondary electron 

detector. The other two images of sample 17 are located in the Appendix D.  
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Figure 3-14 X-Ray Microanalysis of Sample #17 (Group B). 

 

Figure 3-15 X-Ray Electron Image of Sample #17 (Group B). 
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4 DISCUSSION  

4.1 XRD 

4.1.1 Principal Component Analysis  

Samples with similar patterns were combined into clusters (Figure 3-5). The blue 

cluster C1 includes samples # 2, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, and 19. Table 4-1 

Mineralogy of C1 (blue) cluster indicates samples locations and mineralogy for each 

sample in the cluster (Table 4-1).  All samples, with the exception of samples # 12, 15 and 

17, belong to sample Group A collected at the lower bed of Magadi Trachyte area. These 

samples basically consist of sodium aluminum authigenic silicate minerals such as sanidine, 

anorthoclase, montmorillionite, cristobalite, thermonatrite. Samples include the high 

percentage of zeolites, i.e. clinoptolite, erionite, phillipsite, and associated zeolites minerals 

such as magadiite and possibly okenite. Another words, cluster C1 combined samples with 

alkali –rich minerals and this statement supported our hypothesis. 

 Samples # 12, 15 and 17 from the Group C consisted of a higher percentage of 

sanidine and zeolite phillipsite. It is similar in mineralogy to the mineralogy of the volcanic 

rich soils in the Nairobi area. Due to this similarity, the contents were combined at the same 

cluster with samples Group A. Thus, the correlation traced between the geographical 

location and authigenic mineralization. This part of analysis proves the hypothesis that at 

the lower elevation (580 m above sea level) the concentration of authigenic minerals is 

relatively high.  
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Table 4-1 Mineralogy of C1 (blue) cluster. 

 

The green cluster C2 consists samples # 1,3,4, 5 and 21. Samples 1,3,4 and 5 were 

collected from the Magadi area and belong to the Group A, but sample 21 (Group B) was 

collected from the Olorgesailie area at high elevation and was included in the same cluster. 

Table 4-2 demonstrates that most of the samples comprised of albite, sanidine, quartz, 

calcite, anorthoclase and calcite. However, sample 21 consists of montmorillionite, 

kaolinite and magadiite. Thus, it can be concluded that sample # 21 was included into 

cluster C2 because of its basic chemical composition of magnesium (Mg), sodium (Na), 

silicate (Si), and aluminum (Al). It was determined by HighScore software that sample #21 

contains synthetic magadiite or mordenite (mordenite has the same d-spacing as synthetic 

pattern of magadiite. So, the HighScore software accidentally identified synthetic magadiite 

instead of mordenite.  

Table 4-2 Mineralogy of C2 (green) cluster 
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* For sample #21 magadiite should be replace for mordenite 

 

4.1.2 Data visualization  

For data visualization, MATLAB application was applied. This type of plot is useful 

to quickly visualize any correlations that may exist in the data. Correlation signifies that the 

setting of one variable has an influence on the value of the other. Typically, one would 

employ principal component analysis to identify important correlations of bulk analysis; 

however, the small amount of sample available would have been insufficient to yield a 

good estimator of the covariance matrix, which is required by PCA. It is reasonable to say 

that quartz and longitude are linearly correlated as shown in Figure 3-3. Quartz decreases as 

the longitude increases, suggesting that one is more likely to find quartz increases towards 

to the Magadi area to the east. In other words, the higher concentration of quartz is 

observed in the lower Magadi Trachyte area. Consequently, the Lake Magadi basin (Group 

A) consist of silica based minerals which were abundant with time and under the influence 

of hot springs, pressure and pH to zeolites, authigenic clay, and zeolites associated 

minerals. It turns out that the longitude coincides with decreasing elevation and increasing 
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of alkali-rich and alkali-earth poor minerals concentration, but decreasing of detrital 

minerals.  

Similarly, there seems to be a linear relationship between Halite and latitude (Figure 

3-1). Halite increases with latitude, which coincides with increasing of elevation. This 

correlation might mean that the concentration of actual clay increases with altitude. It is 

feasible, because the higher elevation area has more fresh water precipitation, more 

vegetation. Thus, the Kiserian area (Group C) consists of actual clay at the elevation of 

1600 m above sea, whereas the Magadi basin has a negligible amount of poor clay. This 

observation supports our hypothesis.  

 

4.2 XRD Clay Results 

 

 

Figure 4-1 Sample #16 clay mineralogy analysis (red pattern – air dry, green 

pattern – ethylene glycol treatment) 
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4.2.1 General Analysis  

According to XRD clay analysis, samples from the Magadi basin (Group A) consist 

of zeolites, authigenic clay, and associated zeolite minerals. Thus, phillipsite, clinoptolite, 

mordenite, chabazite were detected in samples. Magadiite was found only in one sample of 

Group A – sample # 16.   

Unexpectedly, magadiite was found in sample # 21 (Group C), which was collected 

from the Olorgesailie area. Thus, it is reasonable to say that magadiite was formed with 

weathered basalt clay under certain weathering conditions in addition to being an 

authigenically formed silicate. 

Group C was collected at the highest altitude and it was discovered that these 

samples contain more detrital clay and detrital based minerals such as anorthoclase, 

sanidine, albite, vermiculate, analcime, erionite, kaolinite, illite, montmorillionite. 

Therefore, the concentration of actual clay-sized silicate minerals likely resulting from 

pedogenic processes at the higher elevation supports the hypothesis.  

 

4.2.2 XRD of Sample #16 (Magadiite 14 - MAG – 2 – Group A) 

After the general clay analysis, attention was concentrated on sample #16 and 

basically at the unknown peak with d-spacing of 20.7144 Å, In order to test our hypothesis 

and to determine the authigenic mineral formation reaction, the further research was 

focused on the investigation of the unknown peak. The first assumption was that this peak 

belongs to the clay-based mineral. To prove this theory, the specimen was stored in the 

ethylene glycol tank for 24 hours. According to the Moore & Reynolds, (1997), expendable 

2:1 layer phyllosilicate (smectite) clay-based mineral peaks should shift to higher d-spacing 
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values after the glycol solvation. Figure 4-1 demonstrates that the peak shifted to the higher 

d-spacing of 23.07 Å.  

The literature search was implemented to identify the d-spacing of peak at 20.71 Å 

and at 23.07 Å. According to the Vida and Volzone (2009) and HighScore Plus software, 

the unknown peak can be identified as Ca - Montmorillionite. However, montmorillionite is 

a member of smectite group, and by definition, whose d001 d-spacing value typically 

cannot be shifted to d-spacings higher than 17 Å after soaking in ethylene glycol.  

The next assumption was that 20 Å peak belongs to hydrosodium silicate kenyaite 

(Na2Si22O41(OH)8•6(H2O) (Kodikara et al., 2012). According to Eugster (1980), kenyaite 

forms at the High Magadi beds with nodules of magadiite (Warren, 2014). Thus, this 

possibility wase tested with scanning electron microscopy. We found that Ca was present 

from SEM analyses. Thus, this phase is not kenyaite. 

 Frost and  Xi (2012) stated that the 21 Å, 3.15 Å, 3.45 Å, and 7.89 Å peaks belong 

to the silica based mineral okenite (Ca3[Si6O15]•6(H2O). Okenite is the mineral associated 

with other zeolitic minerals and magadiite (Guthrie and Carey, 2015). Previous research 

attributes that okenite was found with basalt and is a product of alkali-silica reactions 

(Peterson et al, 2006).   The observed 20.71 Å of our research sample might be okenite, 

even though the mineral database stays that the okenite peak has 21 Å d-spacing. 

HighScore software has only the patterns for dehydrated peaks and does not include the 

information of hydrated zeolites associated minerals. SEM qualitative analyses showed the 

presence of Si, Ca, Na (trace), which is consistent with the presence of okenite.  

Finally, we dehydrated a sample of magadiite. The d-spacings of dehydrated 

magadiite was similar to those d-spacings observed for sample 16 except that the 
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dehydrated magadiite did not have the peak at 21 Å. Thus, the scanning electron 

microscopy procedure was used to help identify the mineralogy of specimen #16. Likewise, 

samples #12 and 17 with questionable mineralogy were chosen for SEM analyses.  

 

4.3 SEM Results  

SEM results provided qualitative chemical microanalysis and high-resolution 

surface images.  First examined sample was specimen # 12 from Nairobi area (Group A) 

from the Kiserian area.  The microanalysis of sample #12 identifies that the most abundant 

elements are sodium (Na), silicate (Si), aluminum (Al), iron (Fe) and potassium (K) (Figure 

3-8). These SEM results support our assumption that the Magadi Trachyte area described as 

detrital silicates, quartz, calcite and saline minerals.  

The first representative SEM image and microanalysis was taken from the surface of 

sample #16 (Figure 3-11). The microanalysis reveals that the surface of the specimen 

comprised of sodium (Na), silicate (Si), and low percentage of potassium (K), as small 

peaks were observed. Chemical composition and SEM image support our evidence that 

montmorillonite is possibly present at this sample.  

The next three images were taken from different cavities of the sample. 

Surprisingly, chemical analysis showed the abundance of calcium (Ca), which can be the 

evidence of the presence of okenite based on  silicon (Si) and a peak of sodium (Na). The 

high peaks of calcium were the first evidence of okenite  [Ca3[Si6O15]•6(H2O] present in 

abundance in the cavity.  Sodium is not the part of the okenite mineral structure. However  

Cole & Lancucki, (1983) stated that “calcium in okenite can be replaced with sodium with 

time”. Based on the method of sample preparation for SEM where the sample is put under 

high vacuum, the okenite was assumed to be dehydrated and thus the crystal structure 
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started to transfer to dehydrated structure, and the swelling pattern of okenite was lost 

(Frost & Xi, 2012b). 

The image of the cavity represents the white fibers (crystals) or white cotton balls 

(Frost & Xi, 2012a). The same description of okenite and chemical structure Frost & Xi, 

(2012a) provided in their research of vibration spectroscopic study of okenite. Another 

relevant factor is that the okenite is the reaction product of alkali silicates (Peterson et al., 

2006) and possibly could be formed on our studied area. Therefore, it provides us a strong 

evidence of okenite formation in that area. Thus, okenite is an authigenic mineral, which 

was identified at the low elevation area – the hypothesis was further confirmed by finding 

okenite in an area composed of authigenic minerals. The identification of okenite can be 

further confirmed via the use of scanning transmission electron microscopy coupled with 

analytical elemental microscopy (Klint & Elliott, 2000) 

The chemical analysis of sample #17 was taken from the same Kiserian area (Group 

C) as sample #12 (Figure 3-16). Microanalysis shows that sodium (Na), silicate (Si), 

aluminum (Al), iron (Fe) and potassium (K) are present. The common chemistry 

demonstrates that the minerals formed from the detrital material under the same erosion 

processes. Thus, our hypothesis is partially supported in that the minerals formed on the 

high elevation with higher vegetation and precipitations are will consist more of volcanic 

soils, more alkali earth minerals, and detrital minerals.  
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4.4 Preliminary dehydration-rehydration of Na-silicate minerals  

           

Figure 4-2. Synthesized sodium chloride. 

The reaction of a solution of magadiite and the chalk produced an abnormal and 

novel crystal habit for (Figure 4-2) of sodium chloride on a matrix of sodium chloride 

silicate (magadiite).  This habit is a new observed habit for NaCl, typically cubic habit. 

XRD data was not measured for this crystal.  Elemental analyses show presence of Na and 

Cl. The SEM can not detected the presence of elements whose atomic number is lower than 

11 (Na). Thus, elements such as C and O might be present but not detected.   Another likely 

phase could be NaCO3.  The achieved result demonstrated that our theory that okenite can 

be formed from magadiite and brine solution was incorrect. However, the calcium 

carbonate was detected in addition to NaCl (Figure 4-3), but this calcite appears to be  

dissolved in brine by reaction with a sodium chloride matrix. Given the evaporation of 

saline brines at STP yield euhedral and cubic crystals of halite, the formation of this unique 

circular habit for NaCl or NaCO3 warrants further investigation.    
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Figure 4-3 Unstable Calcium Carbonate Crystal  
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5 CONCLUSION 

The following conclusions are derived from the research conducted on hand 

samples collected from the Lake Magadi South Kenya:  

1) Lake Magadi (Group A) is characterized by very little authigenic clay (constitute with 

quartz, calcite) and more authigenic minerals (such as zeolites and zeolite-associated 

minerals) due to low precipitation, little vegetative cover and extreme alkalinity of ground 

water that recharge the lake. Bulk mineralogy is dominated by albite, sanidine, analcime, 

trona, halite and phillipsite. Clay analysis revealed the presence of erionite, moderite, 

montmorillionite, phillipsite. 

2) The Olorgesailie area (Group B) is composed of weathered basalt clay and 

zeolites. These minerals are associated with more humid climate patterns and lake deposits. 

The area also can reflect changes in overall humid climate regime and might not reflect 

recent to modern climate patterns but reflect the Pleistocene humid period.    

3) The Kiserian area (Group C) is characterized by similar bulk composition to the 

other sites, reflecting similar rift volcanism across the region. The mineralogy of detrital 

clay suggests more humid climate regime compare the other two localities. The diverse clay 

mineral assemblage as well as presence of kaolinite indicates intense weathering associated 

with more humid climate patterns.  

To conclude, although the bulk mineralogy is the same on all localities due to 

similar volcaniclastics compositions throughout the Kenya Rift Valley, the clay mineralogy 

significantly differs between sample localities reflected different tectonic settings and 

climate regime. In humid climate at higher elevation detrital clay minerals dominate, 

whereas, in humid climate at higher elevation detrital clay minerals dominate. In the 
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transition region between higher elevation with detrital clay and lower elevation with 

authigenic clay, both detrital and authigenic minerals were present.  The clay minerals are 

potentially useful as qualitative terrestrial climate proxies.  
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Appendix A XRD Bulk Results 
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XRD Bulk Sample # 3 

 

 

 

XRD Bulk Sample # 4 
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XRD Bulk Sample # 5 

 

 

XRD Bulk Sample # 6 
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XRD Bulk Sample # 7 

 

 

XRD Bulk Sample # 8 
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XRD Bulk Sample # 9 

 

 

XRD Bulk Sample # 10 
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XRD Bulk Sample # 11 

 

 

XRD Bulk Sample # 12 
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XRD Bulk Sample # 13 

 

 

XRD Bulk Sample # 14 
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XRD Bulk Sample # 15 

 

 

XRD Bulk Sample # 16 

 

 

 

 

Halite 7 %

Trona 6 %

Albite high 12 %Sanidine 12 %

Clinoptilolite 16 %
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Montmorillonite (Ca-exchanged) 11 %
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XRD Bulk Sample # 17 

 

 

XRD Bulk Sample # 18 

 

 

 

 

Sanidine 19.8 %

Chabazite 6.9 %
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XRD Bulk Sample # 19 

 

 

 

XRD Bulk Sample # 20 

 

Halite 12 %

Erionite 30 %
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Quartz low 4 %
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XRD Bulk Sample # 21 
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Appendix B XRD Clay Results 

 

 

XRD Clay Results  1 Sample # 6 

 

XRD Clay Results  2 Sample # 7 
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XRD Clay Results  3 Sample # 8 

 

 

XRD Clay Results  4 Sample # 10 
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XRD Clay Results  5 Sample # 11 

 

 

XRD Clay Results  6 Sample # 12 
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XRD Clay Results  7 Sample # 14 

 

 

XRD Clay Results  8 Sample # 15 
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XRD Clay Results  9 Sample # 16 

 

 

XRD Clay Results  10 Sample # 17 
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XRD Clay Results  11 Sample # 18 
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Appendix D SEM images and chemical analysis 

 

 

XRD Microanalysis 1 Sample #12 

 

XRD Image 1 Sample # 12 – 01  
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XRD Microanalysis 2 Sample # 16 – 01 

 

 

XRD Image 2 Sample 16 – 01 
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XRD Microanalysis 3 Sample # 16 – 03 

 

 

XRD Image 3 Sample # 16 – 03 
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XRD Microanalysis 4 Sample # 17 

 

 

XRD Image 4 Sample # 17 – 01 
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XRD Image 5 Sample # 17 – 02 

 

 

XRD Image 6 Sample # 17 – 03 
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