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ABSTRACT 

Calcium (Ca2+), a crucial effector for many biological systems, has been associated with 

diseases such as cardiovascular disease, Alzheimer’s, Parkinson’s, cancer, and osteoporosis. It is 

important to develop calcium sensors to measure intracellular Ca2+ dynamics at various biological 

and pathological states. Our lab has engineered such probes by designing a Ca2+ binding site into 

fluorescent proteins such as Enhanced Green Fluorescent Protein (EGFP) and mCherry. In this 

thesis, we aim to improve optical properties and metal binding properties of green EGFP-based 

sensor CatchER and mCherry based red sensors by site-directed mutagenesis and protein 

engineering, various spectroscopic methods and cell imaging. The green EGFP-based sensor 

CatchER, with a Ca2+ binding pocket charge of -5, displays the greatest affinity for Ca2+ and has 

the greatest fluorescence intensity change with Ca2+ when compared to its variants with a less 

negative binding pocket charge. In addition, we have also designed several SR/ER targeting 

CatchER variants using Ryanodine receptor and Calnexin transmembrane domains. These 

constructs were shown to display a strong presence in the SR/ER lumen and further designed for 



a new luminal orientation. Further, we have shown that the optical properties of two red calcium 

sensors can be significantly improved by modifying the local environment of the chromophore.   
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1 Introduction 

1.1 Calcium Signaling and Calcium Dynamics 

Calcium (Ca2+) metal ions play a fundamental role in many of the biological functions of 

the body. As a second messenger1, it induces the release of neurotransmitters2 in the synapse of 

neurons, stimulates contraction of smooth and skeletal muscle3, regulates metabolism, initiates 

fertilization4, mediates protein folding, activates cell proliferation, and commences gene 

transcription among other roles. Ca2+ concentrations vary among the organelles of a cell as well as 

among different cell types for the various Ca2+ functions. Ca2+
 concentrations can be as low as 10-

7-10-6 M in the cytosol to 10-3 M in the extracellular region. The sarcoplasmic/endoplasmic 

reticulum (SR/ER) of the cell acts as the storehouse for Ca2+ and has a 10-4-10-3 M Ca2+ 

concentration. The dynamics of Ca2+ movement throughout the cell differ depending on the signal 

process and the various Ca2+ binding proteins involved. 

 Many Ca2+ binding proteins are present at various cellular locations to maintain the Ca2+ 

homeostasis and to control calcium dynamics. For example, Ca2+ channels and pumps are present 

at different cellular locations to modulate calcium levels and transport Ca2+ response to signaling. 

As shown in Figures 1.1 and 1.2, Ca2+ pumps such as the plasma membrane calcium ATPase 

(PMCA) and sodium-calcium exchanger (NCX) in the cell membrane and the sarco/endoplasmic 

reticulum (SR/ER) calcium ATPase (SERCA) in the SR/ER membrane pump Ca2+ out of the 

cytosol to ensure a low concentration of free cytosolic Ca2+ at sub M range. In the cytosol, 

calmodulin, a ubiquitous Ca2+ trigger protein, binds Ca2+ upon increase of free Ca2+ levels. It has 

a large Ca2+-dependent conformational change and in turn, regulates various biological processes 

inside the cell. Within the SR/ER, there are chaperone and Ca2+ binding proteins such as calnexin, 

calreticulin, and calsequestrin5 that assist in buffering Ca2+ in this cellular compartment. 
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Depending on the cell type, the ryanodine receptor (RyR1 or 2) and the inositol 1,4,5-triphosphate 

receptor (IP3R) in the membrane of the SR/ER are Ca2+ channels release the SR/ER Ca2+ at mM 

upon response to corresponding signal molecules such as ryanodine or IP3. The channel and rate 

of Ca2+ transport vary depending on the receptors and stimulus used as well as the cell type itself. 

In excitable cells, voltage-gated Ca2+ channels are the primary source of signal transduction 

through the use of action potentials to release Ca2+ into the cytosol, for example in excitation-

contraction coupling of muscle cells and excitation-transcription coupling in neuron cells. This 

process can take 1-5 ms in skeletal muscle and neuron cells and up to 100 ms in smooth muscle 

cells in the heart. Ca2+ release also occurs as a result of calcium-induced calcium release6 (CICR) 

where the release of lipid messenger inositol 1,4,5-trisphosphate (IP3) after hormone stimulation 

induces the release of Ca2+ from the SR/ER through IP3R, an event that occurs in 10-60 seconds. 

The released Ca2+ goes on to induce Ca2+ release from the SR/ER through the RyR, taking 1-5 

seconds.  
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Figure 1-1 Dynamics of Ca2+ inside the cell  

The intracellular Ca2+ dynamics vary. Ca2+ flows into the cell through Ca2+ channels and 

pumps on the plasma membrane such as the sodium-calcium exchanger (NCX) and plasma 

membrane calcium ATPase (PMCA). The cytosolic calcium concentration is maintained by buffer 

proteins such as calreticulin and calnexin.  Biological functions that use Ca2+ as a second messenger 

for their signal transduction pathways are triggered by increased cytosolic Ca2+. This increase comes 

from Ca2+ release from the Ca2+ storage organelle SR/ER by either hormone activation (IP3R 

activation by IP3 produced by G protein receptor activation) or calcium-induced calcium release 

(increased calcium in the cytosol activates the ryanodine receptor). Ca2+ is present in other organelles 

to assist with their function, post-translational protein modification in the Golgi, breakdown enzymes 

of the lysosomes, DNA transcription in the nucleus, and function of mitochondrial enzymes. 
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Figure 1-2 Gating and uptake of intracellular Ca2+  

The rate of Ca2+ release varies by channel and Ca2+ binding protein. The Ca2+ binding 

proteins in the cytosol such as calmodulin have very quick binding (100 ms), faster than the Ca2+ flow 

out of the cell via PMCA activation (0.1-1 s) and NCX activation (0.5-1 s). The fastest kinetics are 

seen in the SR/ER where Ca2+ is released quickly via the RyR (1-5 ms) and the IP3R (10-60 s) and 

pulled in quickly through SERCA (0.05-5 s). 

1.2 Importance for Monitoring Calcium Dynamics 

Since Ca2+ has been found to play a role in many different biological processes, disruptions 

to its homeostasis have been correlated with many diseases. For example, many heart and skeletal 

diseases, such as cardiac hypertrophy, arrhythmia, malignant hyperpyrexia, and CPVT, have 

mutations of the ryanodine receptor, IP3R, and SERCA pump. Such mutations can negatively 

affect the expression levels and function of these channels which impair basal calcium in the ER 

and the calcium release. 
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The dysfunction of Ca2+ release of the SR/ER has been found in cases of Alzheimer’s 

disease7, heart disease, Huntington’s disease8, and diabetes among others. The release of Ca2+ as 

a second messenger from the SR/ER to the cytosol, by either an action potential or Ca2+-induced 

calcium release (CICR), activates a number of biological pathways such as muscle contraction in 

muscle cells and neurotransmitter release in the neurons. Malfunction of these channels, which can 

be due to mutations in or expression of the channels and pumps, can cause irregular Ca2+ 

movement and concentrations in the cell. These diseases have created a pressing need for an 

accurate way to measure Ca2+ concentrations, changes, and movements throughout the cells via 

the development of calcium sensors. 

 

Figure 1-3 Diseases of the SR/ER  

Mutations in the SR/ER Ca2+ pumps and channels can cause decreased/increased protein 

expressed, improper folding, or irregular function. These abnormalities with the channels can cause 

changes in the basal cytosolic Ca2+, SR/ER Ca2+, or rate of Ca2+ transport which will then disrupt the 

signal transduction pathways in which Ca2+ acts as a messenger. 

Arrhythmia
Abnormal activation of IP3R in the 
junctional zone of atrial cells cause 
chaotic beats

Cardiac hypertrophy and 
Congestive heart failure (CHF)

Hypertrophic stimuli increases 
ambient IP3 an activates perinuclear 
IP3R, causing hypertrophy that leads 
to CHF

Catecholaminergic polymorphic 
ventricular tachycardia (CPVT)

Missense mutations in human RyR2 
and calsequestrin2 cause altered 
luminal SR Ca2+

Cancer
Missense mutations of the 
SERCA pump isoforms 
decrease its expression and 
increase cell proliferation

Alzheimer’s 
Increase in resting Ca2+ levels due to 
increased activation of IP3R
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1.3 Fluorescence Spectroscopy and Criteria for Intracellular Calcium Probes/Indicators 

There has been considerable growth in the field of intracellular Ca2+ probe development 

for use in measuring the Ca2+ dynamics inside the cell. The use of fluorescence spectroscopy has 

become widely utilized for this goal. Fluorescence occurs when a highly aromatic species, called 

a fluorophore, transitions through its various vibrational states. Photons from visible light hit a 

fluorophore at a particular wavelength and bring it from a stable low energy state to a high 

energy state, a process that occurs on a femtosecond timescale. The species then undergoes 

vibrational relaxations in picoseconds followed by a nanosecond return to the low energy ground 

state which releases a photon at a longer wavelength. The field of Ca2+ indicator development 

utilized the fluorescence process where binding of Ca2+ causes a change in fluorescence 

intensity.  

Fluorescence imaging is a very powerful technique to monitor cellular calcium response. 

Due to the pioneering work by Dr. Roger Tsien, the cellular imaging field started with the 

development of cell permeable intracellular Ca2+ dyes such as Fura-2 AM for use in measuring 

the Ca2+ dynamics inside the cell9-14. Figure 1-3 shows that fluorescence occurs when a 

fluorophore or chromophore undergoes vibrational relaxations in picoseconds followed by a 

nanosecond return to the low energy ground state which releases a photon at a longer 

wavelength. This process was used in the development of Ca2+ indicators and dyes where 

binding of Ca2+ causes a change in fluorescence intensity. 
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Figure 1-4 Jablonski Diagram 

When energy is applied to a chromophore compound, this chromophore will absorb the 

photon energy and go from a low energy ground state to a high energy excited state. The excited 

compound can go through a number of vibrational and internal conversion energy states before 

returning to the lowest level excited state. From the lowest level excited state, the compound can 

then enter a triplet state for phosphorescence, undergo intersystem crossing, or emit off the photon 

energy as fluorescence. 

 

A good fluorescent Ca2+ indicator must fulfill a number of criteria for biological use. First, 

it should have good optical properties such as strong fluorescence at an ambient body temperature 

of 37 ˚C. Second, it must bind Ca2+ with the necessary Kd that is close to the target environment, 

such as the SR/ER of 1 mM. Third, it should exhibit a large calcium-dependent fluorescence 

change (large dynamic range) of fluorescence, preferably a ratiometric change. Such a signal 

change should have a 1:1 binding that is required for quantitative measurement. Third, it should 

exhibit good Ca2+ binding kinetics with fast on and off rates. Fourth, it needs to exhibit structural 
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stability at the ambient body temperature of 37 ˚C and pH insensitivity. It should also ideally have 

minimal interaction with other target proteins in the intracellular environment.  

There are currently two classes of fluorescent Ca2+ indicators used: synthetic Ca2+ 

indicating dyes and genetically encoded Ca2+ indicators (GECIs). To be used in biological studies, 

a fluorescent Ca2+ indicator must first correctly fold with full chromophore formation at 37 °C. 

The indicator should also display a Ca2+-induced change in its fluorescence intensity that is 

independent of any pH-induced change and should have favorable optical properties. The Ca2+ 

binding affinity of the indicator should be in the appropriate range for the desired environment and 

be selective over other metals. The indicator should also maintain limited interactions between 

with other biological molecules in this environment to prevent deactivation. 

1.4 Synthetic Ca2+ indicating dyes  

Figure 1-4 shows that 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid 

(BAPTA) is a non-fluorescent Ca2+ chelating polycarboxylic acid that has a higher specificity for 

Ca2+ than EGTA and EDTA. BAPTA was used to derive the commonly used fluorescent chemical 

indicators, often referred to as dyes, used today for intracellular Ca2+ measurement. These 

compounds come in three different forms: salts, dextran conjugates, or acetoxymethyl (AM) esters.  
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Figure 1-5 Synthetic Ca2+ dyes 

Structure of Ca2+ chelator BAPTA and derivatives Fura-2-AM (Kd = 145 nM; ex = 340/380 

nm), Indo-1-AM (Kd = 230 nM; em = 405/485 nm), and Fluor-4-AM (Kd = 345 nM; em = 520 nm). 

 

The AM ester form of these compounds can be loaded into the cell within minutes of 

incubation. A major setback of the calcium dyes is that they are very hydrophilic, tend to 

compartmentalize, and leak out or get pumped out of the cell after a short time. These features 

make them difficult to use for longer term experimentation. Their dextran conjugates have some 

improvement in the compartmentalization and leaking problem. The AM ester fluorescent dyes 

were designed for easy cell loading. These dyes are hydrophobic and readily diffuse through the 

Fura-2-AM

Indo-1-AM Fluo-4-AM
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membrane into the cell with the addition to culture media. Once inside esterases cleave off the AM 

groups to trap the dye inside which accumulates in high concentration inside the cell. 

The synthetic dyes have many advantages. In addition to their simpler methods of loading, 

there is a broad range of affinity choices. Some dyes have a high affinity for use in the cytosol and 

others have a low affinity for use in the intracellular compartments. The dyes also display pH 

insensitivity and photostability. There is also the choice of ratiometric dyes that have a shift in the 

excitation or emission upon Ca2+ binding or single excitation/emission dyes. The vast selection of 

dyes also allows for more equipment choices as far as microscope and light source. As far as 

disadvantages, aside from the compartmentalization and diffusion problems, the dyes lack 

targeting capabilities and also have some buffering effect. The second class of indicators, the 

GECIs, addresses these setbacks. 

1.5 Fluorescent Proteins (FP) 

 The second class of Ca2+ sensors is the Genetically Encoded Calcium Indicators or 

GECIs15. These indicators are only composed of amino acids, so the Ca2+ binding capabilities are 

determined by mutagenesis. Naturally, fluorescent proteins (FPs) such as green fluorescent protein 

(GFP) and discosoma (DsRed) are used as templates (Figure 1-6).  

Green fluorescent protein16, 17 (GFP) is a 238 amino acid -barrel protein isolated from the 

jellyfish aequeora Victoria. Through the center of the barrel runs a large -helix that holds the p-

hydroxybenzylideneimidazolinone fluorophore comprised of residues Ser65-Tyr66-Gly67. These 

residues autocyclize to make the fluorescent chromophore that possesses a major and minor 

excitation peak at 395 nm and 475 nm respectively and a single emission peak at 508 nm. A 

mutation at residue 65 from serine to threonine gave the enhanced green fluorescent protein 

(EGFP) which loses the major 395 nm excitation while having a 6-fold increase in the minor 
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excitation which red shifts to 488 nm. This version is noticeably brighter than the wild-type 

version. Further mutations to the chromophore have yielded the blue, cyan, and yellow variants, 

commonly used to biosensor engineering. 

DsRed18 is another -barrel fluorescent protein found in discosoma coral (Figure 1-6). 

Unlike GFP, DsRed forms tetramers that can loosely come together to form octamers. The Gln66-

Tyr67-Gly68 chromophore undergoes the same autocyclization reaction with an extra 

dehydrogenation step that extends the conjugation into the backbone and shifts the chromophore 

from green to red during maturation. DsRed provides the possibility of a pH insensitive probe with 

deeper skeletal tissue penetration but because of the tetramer formation and a 12-hour maturation 

time cannot be readily used for biological studies. Many mutations have been carried out through 

the use of a random library to make a monomeric version of DsRed without losing the optical 

properties. Some of the key mutations include the Q66M/T/C to the chromophore and mutations 

to neighboring residues 41, 62, 64, 67, 83, 163, 195, 197, and 21319.  

The mFruits fluorescent proteins were generated by Tsien et al.20 and are a series of 

monomeric FPs with different colors. mCherry is one of the mFruits that is widely for biological 

tagging and sensor engineering because of its low chromophore pKa of ~4.0 and maturation time 

of 15 minutes. We also use mCherry and EGFP to develop a red and green calcium sensor (chapter 

2 and 3). The key determinants that contribute to the optical properties of fluorescent proteins are 

essential for creating Ca2+ sensors. This question will be addressed in chapter 2. 
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Figure 1-6 Fluorescent proteins GFP and DsRed 

Tertiary structure of FPs GFP (ex = 396/470 nm, em = 504 nm) and the tetrameric DsRed 

(ex = 558 nm, em = 583 nm).  

1.6 Calcium Binding Proteins 

Calcium binding properties are important for creating calcium sensors. Figure 1.7 shows 

several common calcium binding motifs in calcium binding proteins. For example, calcium 

binding sites in the C2 domain are formed by discontinuous calcium binding residues. The C2 

domain contains approximately 130 amino acid residues folded into eight -sheets and three loops. 

These domains are capable of binding Ca2+ and phospholipids, with the binding of the later 

improving the affinity for Ca2+ by up to 1000 fold in some cases. These domains do not show any 

substantial conformational changes upon Ca2+ or phospholipid binding, have a significant 

sequence distance between chelating residues, and are capable of binding to other targets.  

The EF-hand domain shown in Figure 1-7, also referred to as the helix-loop-helix domain, 

contains approximately 30 amino acid residues. Proteins with EF-hand motifs commonly present 

as pairs of 2, 4, 6, or more EF-hands that cooperatively bind. The critical loop region contains the 
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predominantly negatively charged residues that hold a single Ca2+ in the pentagonal bipyramid 

binding coordination. For example, calmodulin and troponin C contain 4 EF-hand motifs in two 

domains. Both proteins exhibit big conformational change upon calcium binding. Some proteins 

with this domain do not exhibit conformation changes upon Ca2+ binding while others such as 

calmodulin have structural changes for regulation purposes. The EF-hand motif is the most 

commonly used Ca2+ binding motif for engineering biosensors15, 21, 22. The troponin C (TnC) is a 

specialized Ca2+ binding protein that closely associates with troponin I and troponin T in the 

troponin complex. TnCs only known function is regulating muscle contraction in skeletal and 

cardiac muscle. The protein is not found natively in the cytosol but can be expressed without 

aggregation in various cells. 

 

Figure 1-7 Commonly used Ca2+ binding domains 

Ca2+ loaded Troponin C (yellow) and Calmodulin (pink) proteins with the Ca2+ molecules 

(green) residing in the EF-hand motifs of each protein. 
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1.7 Genetically Encoded Calcium Indicators (GECIs) 

There are several methods for engineering GECIs pioneered by Persechini and Tsien. 

Earlier and common GECIs were created by utilizing Förster Resonance Energy Transfer (FRET) 

for their fluorescence measurement23, 24. This technique uses two fluorophores in proximity to each 

other where the excited energy of one is transferred the other. The Cameleon series of GECIs are 

one example of a FRET pair using blue (BFP) and green fluorescent proteins for the fluorophores 

and calmodulin with one of its binding peptides M13 as the Ca2+
 binding motif 15, 23. Early versions 

of BFP were not suitable for biological use due to strong absorbance in the UV range, so the second 

generation of Cameleons was made using cyan (CFP) and yellow (YFP) fluorescent proteins14, 15, 

23. YFP was further improved by mutagenesis to create pH insensitive versions named Citrine and 

Venus. The use of circular permutated (cp) versions of Venus, a mutant where the N and C 

terminals are linked together, and a new N and C terminals are made elsewhere on the protein, 

displayed more than a five-fold change in the emission fluorescence of the sensors. Although these 

sensors provided excellent optical properties and high Ca2+ affinities, the use of calmodulin as the 

Ca2+ binding motif causes problems in the sensors because of its role in signal transduction1, 23, 25, 

26. For example, the high number of native calmodulin in the cell binding to the peptide in the 

sensor and the calmodulin in the sensor binding to other target proteins in the cell deactivate the 

sensor15, 23. One attempt to eliminate these interactions involved making a series of FRET pair 

sensors were made using troponin C as the Ca2+ binding motif27, 28. 

The first generation of FRET pair biosensors made using TnC were similar to the 

Cameleons in that they used CFP and Citrine but there is no binding peptide used with TnC like 

the M13 used with calmodulin. CFP was later substituted with Cerulean to optimize the brightness 

of the proteins. Engineering the C-terminal of the EF-hands within the backbone also eliminated 
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FRET detectable Mg2+ binding with the exchange of a slightly decreased Ca2+ affinity. Further 

mutations to eliminate low-affinity lobes of the biosensor gave the Tn-XXL, a biosensor that will 

remove the need for earlier generation TnC based FRET sensors15. 

Baird et al. discovered that GFP could withstand large insertions without disruptions to the 

protein structure or destruction of fluorescence, setting the stage for work to create single 

fluorophore sensors29. Substituting the residue 145 tyrosine in YFP with the sequence for 

calmodulin gave Camgaroo. With Ca2+
 binding the sensor experienced an absorbance spectrum 

change where the dominant peak changes from being the 400 nm peak to the 490 nm peak. The 

400 nm is consistent with the protonated form of the YFP chromophore, implying that the Ca2+ 

encouraged the deprotonation of the chromophore in Camgaroo. Unfortunately, this sensor 

displayed large pKa changes from 10.1 in the Ca2+ free form to 8.9 in the Ca2+ loaded form. This 

pH change along with the poor visibility at basal Ca2+ levels and less than ideal Ca2+ Kd made it 

difficult to use. The second generation Camgaroo-2 was improved for visibility but not for the 

other characteristics. 

Three biosensors, the pericams, were made using a circular permutated version of YFP by 

fusion of the M13 peptide to the new N-terminal and calmodulin fused to the new C-terminal. 

Flash pericam has an 8-fold increase with Ca2+ binding, ratiometric pericam has a change in the 

excitation wavelength with Ca2+ binding, and inverse pericam, which is bright in its resting state, 

and has a decrease in fluorescence with Ca2+ binding. 

Substituting the YFPcp backbone for a GFPcp with calmodulin on the C-terminal and M13 

on the N-terminal gave one of the most used GECI G-CaMP. Ca2+ binding to G-Camp increased 

the chromophore ionization as shown by the decrease and increase in the 400 nm and 490 nm 

excitation wavelengths respectively. This biosensor possesses a high affinity for Ca2+ but is dim 
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and slow to mature at 37 °C. Maturation was improved in G-CaMP1.6, GCaMP2, and further in 

G-CaMP3, the most optimized of the single fluorophore biosensors. 

Campbell et al. did a colony based screening of G-CaMP3 to find the variants with the 

greatest Ca2+-dependent change. Three proteins were chosen to make up the GECO series which 

exhibit high Ca2+ affinities and fluorescent increases with Ca2+. Making the Y66H mutation creates 

the BFP chromophore to the sensor, dubbed B-GECO. Replacing the cpGFP in the GECO1.1 with 

a cp variant of mApple created a red version of the sensor named R-GECO. B-GECO and R-GECO 

are pH insensitive compared to GECO, and the longer wavelength of R-GECO allows for deeper 

tissue penetration. 

 
Table 1-1 Commonly used Genetically Encoded Calcium Indicators 

 

Subcellular
Compartment

Green Cyan Yellow Red

Intracellular
(0.1-1 μM)

GCaMP
(Kd=0.5 μM)

G-GECO 
(Kd=0.6-1.2 μM)

B-GECO
(Kd = 0.2-0.5 μM)

Flash pericam
(Kd=0.7 μM)

R-GECO 
(Kd=0.5 μM)

YC3.6 
(Kd = 0.3 μM)

TN-XXL 
(Kd=0.8 μM)

Golgi YC3.3 (Kd=4.4 μM)

Lysosome

Mitochondria/ 
Nuclear envelope

(1-10 μM)

Cameleon-2
(Kd = 0.07; 11 μM)

YC4.6 
(Kd = 0.06, 14.4 μM)

Ratiometric pericam
(Kd=1.7 μM);

Camgaroo -2
(Kd=5.3 μM)

ER/SR
(0.2-1 mM)

CatchER 
(Kd= 190 μM)

G-Cepia1er
(Kd=672 μM)

D1ER 
(Kd = 0.8, 60 μM)

Cameleon-4 
(Kd = 0.083, 700 μM)

R-Cepia1er
(Kd=565 μM)

GEM-Cepia1er
(Kd=558 μM)
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These insertions of CaM variants allowed the GECIs in use today to provide a less toxic 

option compared to the synthetic dyes with the capability for targeting to different organelles. 

However, the limited range of Ca2+ Kds, large bulky size and pH sensitivity observed in the GFP-

based sensors limit these targeting capabilities. One of the limitations of such constructs is the 

complexed pH dependence. With these sensors, the change in fluorescence intensity with Ca2+ 

binding resembles the change with environmental pH. This sensitivity is also shown with the 

neutral chromophore pKa values of these sensors. The pH insensitive red and blue versions are one 

way to combat the setbacks. Our lab is working to engineer Ca2+ biosensors using a different 

approach.  

1.8 Gaps for Calcium Sensor Rapid Kinetics Challenges 

To understand the relationship between Ca2+ and the diseases it has been associated with 

the entire signal cascade needs to be measured. This measurement requires Ca2+ probes with fast 

kinetics to measure the beginning and ending traces. Many signals, such as those from Ca2+ 

sparks require deconvolution to obtain the intrinsic signals. Ca2+ transients from high-frequency 

action potentials require similar analysis and can end up missing peaks in the beginning or the 

end of the trace.  

Currently, the synthetic dyes such as Fluor-5-N possess fast off rates but are limited with 

their use due to their high affinity for Ca2+ and their lack of targeting capabilities which only 

allow them to measure up to 80 nm from a channel. The GECIs containing the EF-hand motifs 

from calmodulin and troponin C can be targeted for microdomain measurement but possess slow 

on rates due to the global structure conformation changes that occur upon Ca2+ binding. This 

cooperative binding prevents them from capturing the rapid Ca2+ release from the SR/ER. There 
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is currently work being done to improve the targeting of the synthetic dyes, but the need for a 

Ca2+ indicator with fast kinetics still exists. 

1.9 Design and Engineering of Calcium Sensors in the Yang Lab 

Rather than using two or more coupled EF-hand motifs or native EF-hand proteins to insert 

into fluorescent proteins for single fluorophore or FRET paired Ca2+ sensors, the Yang group uses 

a very different approach. We aimed to Ca2+ sensors by the addition of a single Ca2+ site into 

fluorescent proteins. In early work pioneered by Zou et al. we grafted a single Ca2+ EF-hand 

binding motif into EGFP to create a protein called G122. This protein displays an absorbance 

spectra resembling the wild type GFP with peaks at 398 nm and 490 nm, indicating a neutral and 

anionic form of the chromophore contributing to the fluorescence. It also displays fast Ca2+ binding 

kinetics at 398 nm, a millimolar binding affinity, and a selectivity for Ca2+. The addition of Ca2+ 

induces and increase in absorbance at 398 nm and a decrease at 490 nm. This trend is also present 

in the fluorescence spectra of these wavelengths. 

Later, April Ellis and Shen Tang designed a non-native Ca2+ binding site into a fluorescent 

protein. We hypothesize that the addition of a Ca2+ binding site on the surface of the FP near the 

chromophore environment will lead to a Ca2+-dependent fluorescence change. Using an algorithm 

to predict the location on the FP for the site as well as what residues to use as ligands, we used 

site-mutagenesis to create the GFP-based CatchER30: a low-affinity Ca2+ sensor with fast kinetics 

and a longer fluorescence lifetime that is useful for measuring Ca2+ dynamics in the SR/ER.  

In the process of creating CatchER, four variants of increasing binding pocket charge were 

created: D8 with a -2 charge, D9 with a -3, D10 with a -4, and CatchER (D11) with a -5. With 

these variants, some questions about the electrostatic effects of a de novo Ca2+ binding site was 
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raised. These included inquiring about what effects to the protein’s tertiary structure, the UV-vis 

and fluorescence spectra, the biophysical properties, and the fluorescence intensity. 

Red pH insensitive Ca2+-binding proteins R-Catcher (MCD1) and R-CatchER´ (MCD15), 

were developed using the same methods with mCherry as the template by Dr. You Zhuo. 

Modifications are readily being made to improve the fluorescence dynamic range and SR/ER 

membrane targeting of our sensors. The challenges and limitations of these sensors, such as the 

low quantum yield, low fluorescence dynamic range, and lack of color, will be addressed in chapter 

2. 

1.10 Overview of this thesis 

This thesis serves to outline the work done on design, optimization, and application of 

fluorescent protein-based intracellular calcium (Ca2+) sensors. Chapter 1 introduces the role of 

Ca2+ in the body including the concentrations, dynamics, and kinetics before leading to the 

diseases associated with Ca2+ and presents the need for tools to measure the intracellular Ca2+ 

dynamics.  

Chapter 2 describes the work on optimizing a red pH insensitive sensor for its 

fluorescence properties and chromophore maturation. We hypothesize that manipulating the 

ionization of the chromophore to increase the pKa will be key to achieving the desired 

fluorescence intensity and the increased Ca2+-induced change in fluorescence intensity. The 

problem to address with this work is whether we can manipulate the sensitive area of the 

chromophore to create an optimized sensor that will fold well and display a Ca2+ dependent 

change in fluorescence.  

Chapter 3 describes the work done to analyze our method of Ca2+ binding pocket 

development by observing the effect of increasing electrostatic interactions in our green CatchER 
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variants. CatchER is used for measurement of the high Ca2+ concentrations in the SR/ER. The 

problems addressed are whether a de novo site can successfully be engineered in a fluorescent 

protein with a desired binding affinity and optical properties.  

Chapter 4 discusses the work done to target CatchER specifically to the membrane of the 

SR/ER and anchor it there with an orientation toward the cytosol. The major problem is whether 

we can successfully target our sensor to a particular region of the SR/ER to allow for local Ca2+ 

dynamic measurements rather than global ones. Key challenges faced with this is whether the 

cytosolic Ca2+ concentrations in these local regions can reach concentrations high enough for our 

sensors to capture their signal and if a truly cytosolic-facing sensor can be made using tags that 

initiate protein translation within the ER. This work sets out to answer these questions. Chapter 5 

discusses the significance of this work and the impact it will have to further Ca2+ research. 

 

2 Optimization of mCherry Based Ca2+ Binding Proteins as Calcium Sensors 

2.1 Introduction 

2.1.1 Calcium dynamics at low pH and the unmet need for a pH insensitive sensor 

As discussed in Chapter 1, there are extensive studies on the Ca2+ dynamics and content in 

the cytosol and SR/ER of the cell where concentrations and pathways of Ca2+ are well known. 

Gradually more and more research is also being done to study the Ca2+ dynamics of the more acidic 

organelles such as the endosomes, lysosomes, and Golgi apparatus. It is known that these 

organelles have Ca2+ stores and even possess some Ca2+ dependent pathways for cell function, but 

little is known about the specifics of these pathways.  

The endolysosomal system is involved in degradation of various macromolecules and 

micromolecules in the cells for either recycling or removal from the cell. The synthesis of the 
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lysosomes begins with endocytosis of the plasma membrane to form an endosomal vesicle. As this 

vesicle matures to an endosome and finally a lysosome, the luminal pH continues to decrease. The 

final pH of a lysosome is typically 4.5-5.5. A relationship between Ca2+ signaling and the function 

of lysosomal enzymes has been made after Ca2+ channels and pumps have been found in the 

membrane of the lysosome. Some metabolic diseases are found to be connected to deficiencies in 

these enzymes. 

More is known about the Ca2+ flow in and out of the Golgi apparatus. The Golgi is involved 

in synthesis and packaging of proteins meant for the lysosomes, plasma membrane, SR/ER, and 

secretory vesicles. Studies have shown that the pH in the Golgi is not homologous throughout but 

rather increases from the cis-Golgi network (CGN) close to the ER membrane to the trans-Golgi 

network (TGN) on the far side of the Golgi. After being synthesized in the SR/ER proteins are 

transported to the CGN and continue through the Golgi for posttranslational modifications and 

secreted to their appropriate destinations from the TGN. The CGN has Ca2+ uptake mediated by 

the SERCA pump of the SR/ER and secretory pathway Ca2+-ATPase (SPCA) whereas only the 

SPCA is dominant at the TGN. The main difference between these two pumps is that SPCA 

functions to transport Mn2+ equally as Ca2+. IP3R found on the Golgi membrane indicate that it 

may be a poorly IP3-sensitive Ca2+ store to complement the SR/ER high IP3-sensitive Ca2+ store. 

As with the lysosomes the luminal Ca2+ of the Golgi helps regulate the posttranslational enzymes 

and diseases such as Hailey-Hailey have been connected to dysfunction of the Ca2+ pump and 

Golgi enzymes. 

The interest in studying these Ca2+ dynamics of these organelles is halted by the lack of 

measurement tools. The majority of the commonly used GECIs utilized for intracellular Ca2+ 

measurement make use of EGFP and its derivatives as the template because of the brightness and 
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high fluorescence quantum yield of these proteins at ambient temperatures. While these sensors 

possess the appropriate optical properties, the chromophore pKas are in the 6.5-7.5 range, making 

these sensors pH sensitive. It is this pH sensitivity that prevents the use of these indicators for 

measuring calcium dynamics in the endolysomes and Golgi. Thus, there is an unmet need for a pH 

insensitive Ca2+ sensor to assist in these studies.  

2.1.2 Red fluorescent protein as a scaffold for design of a pH insensitive calcium sensor 

mCherry, the red monomeric derivative of DsRed, is a potential candidate for a scaffold to 

design calcium sensors that are insensitive to low pH due to its low chromophore pKa value. As 

discussed in Chapter 1.6 Figure 1-5 the red fluorescent protein DsRed comes from Discosoma sp., 

a type of soft coral. It has a -can tertiary structure just like GFP with a Q66-Y67-G68 

chromophore located in the center -helix of the -can. This chromophore extends into the 

backbone adding to the conjugation and giving the excitation and emission spectra a red shift 

compared to that of GFP. Unlike GFP and its derived proteins, DsRed forms a tetramer which 

hinders it from being used as a Ca2+ indicator in biological systems. A series of mutations by Tsien 

et al. led to the monomeric red fluorescent protein mCherry with a Q66M mutation to the 

chromophore to improve maturation time. mCherry excites and emits at 587 nm and 610 nm 

respectively. The longer wavelength of this protein allows for high tolerance to photobleaching 

and deeper tissue penetration allowed by the longer wavelength, and shorter chromophore 

maturation time make mCherry a good candidate for Ca2+ probing. Table 2-1 summarizes the pKa 

values for fluorescent proteins. The pKa of mCherry is 4.0 making it insensitive to pH around 5-

6.5 in the endolysosomes and Golgi. 
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Table 2-1 Commonly used fluorescent proteins 

Protein ex em pKa 

Cerulean 433 nm 475 nm 4.7 

mOrange 548 nm 562 nm 6.5 

EGFP 488 nm 507 nm 6.0 

EYFP 514 nm 527 nm 6.9 

mCherry 587 nm 610 nm 4.5 

 

2.1.3 Creation of the MCDx Sensors 

A previous graduate student in the lab, Dr. You Zhuo (Joy) devoted her studies to 

engineering Ca2+ probes using mCherry. She looked to utilize the H-bond network of the M66-

Y67-G68 mCherry chromophore. Using crystal structure 2H5Q, the potential H-bonds that help 

stabilize the chromophore in the -barrel were determined as shown in Figure 2-1. The tyrosyl of 

the chromophore was found to directly H-bond with the side chains of S146 and Q163. Indirect 

H-bonds to E144, the only main chain interaction to chromophore interaction, and I197 are made 

through S146. The nitrogen of the imidazolinone ring of the chromophore is involved in an H-

bond network with E215, Q42, S69-K70, the carbonyl of the imidazolinone, R95, and Q64. The 

thioether sulfur of the chromophore also has an H-bond interaction with the side chain amide of 

Q213. A potential Ca2+ binding site was to be engineered by creating an area of high negative 

charge potential using aspartate and glutamate residues. 

All possible Ca2+ binding sites in mCherry and red protein mKate were predicted using 

the program MUG. The sites were engineered using site mutagenesis PCR. The primers designed 

were no more than 45 base pairs long with tm values for annealing in the 45-55 °C range and a 
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GC content of less than 70%. The vectors used were prsetb for bacterial expression and pcdna3.1 

for mammalian expression. A Histidine-tag was placed at the N-terminal of the bacterially 

expressed DNA for purification. To target the sensor to the ER, the ER retention tag KDEL was 

placed at the C-terminal and the ER targeting sequence of calreticulin was fused at the N-

terminal. The specific mutations made are shown in Table 2-1. 

 
Figure 2-1 mCherry structure and H-bond network 

2H5Q crystal structure of mCherry (left) and mCherry chromophore environment (right) 

with the bonds of predicted H-bond network shown as dotted lines. 

 

 

As shown in Table 2-2, of the seven sites made, the MCD1 group maintains the red color 

and displayed an increase in fluorescence upon Ca2+ binding. The quantum yield, extinction 

coefficient, and chromophore pKa of MCD1 is lower than that of mCherry. MCD14 and MCD15 

were made to optimize MCD1 for expression in mammalian cell lines. These proteins have similar 

M66-Y67-G68

S111

Q109

R95

Q64 Q163

E144

S146

I197

E215

Q42

Wat 4

Wat 3

Wat 1

Wat 2
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quantum yield and extinction coefficients to MCD1 with pKa values closer to mCherry. The major 

setback for these sensors was the small fluorescence dynamic range. Although the proteins were 

responding to Ca2+ binding with a Kd of 0.1, 0.09, and 0.5 for MCD1, MCD14, and MCD15 

respectively, the change in fluorescence from the Ca2+ free form to the Ca2+ saturated form was 

small.  

In this chapter, we set out to improve the dynamic range and optical properties of our red 

sensors by further manipulating the H-bond network of the chromophore. We will first examine 

the formation of the RFP chromophore to identify which residues play a crucial role in this process. 

We will then observe the effect of making multiple mutations to residue 163 in our sensors, which 

interacts with the phenolate ion of the chromophore, has on the protein expression and optical 

properties. We will then look at the Ca2+-induced changes and Ca2+ affinity of the proteins. Lastly, 

we will determine what other changes can be made in the chromophore environment to improve 

the MCD1x Ca2+ sensors further. 
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Table 2-2 First generation MCDx variants and mutations 

Position Design Strategy Clones Mutations 

Pocket 1 

Influence the H-bonds 

formed between the 

chromophore tyrosyl and 

WAT1-E144 backbone, 

S146 side chain. 

Modification around 

MCD1 is to modify the 

Ca2+ binding affinity and 

the optical properties. 

MCD1 

MCD14 

MCD14Y 

MCD14YS 

MCD15 

MCD16 

MCD17 

MCD18 

MCD19 

MCD110 

MCD111 

MCD112 

A145E/N196D/K198D/R216E 

MCD1 + R220E 

197Y + MCD14 

197Y/199S + MCD14 

MCD14 + D198E 

MCD14 + S147D  

MCD14 + I197T/K198E/L199S/D200A  

MCD14 + K198E/D200A 

MCD1 + D198E 

MCD15 + L199S 

MCD15 + D196E 

MCD1 + E220Q 

Pocket 2 

Influence the H-bonds 

formed between the 

chromophore tyrosyl and 

WAT1-E144 backbone. 

MCD2 

MCD22 

MCD23 

MCD24 

MCD25 

MCD26 

K198D/Y214E/R216E 

N196E/Y214E/R216E 

MCD2 + D200E 

MCD2 + D200Q 

MCD2 + D200N 

MCD2 + E216D 

Pocket 3 

Influence the H-bonds 

formed between the 

chromophore tyrosyl and 

Q163 side chain. 

mcEE 

mcP4 

mcP5 

R164E/K166E 

G142E/R164E/K166E 

R164E/K166E/H172E 

Pocket 4 

Influence the H-bonds 

formed between the 

chromophore and Q109 

and R95. (Figure 2.1) 

mcP6 K92E/T108E 

Pocket 5 
Insert the EF-hand away 

from the chromophore. 
MCIN1 

153^154 (Insertion is between residue 153 

and 154.Same as below) 

Pocket 6 
Insert the EF-hand near the 

chromophore tyrosyl. 

MCIN2 

MCIN3 

MCIN4 

135V^142G 

142G^147S 

143W^147S 

Pocket 7 

Mount the calcium binding 

site in cp-mKate in the 

corresponding location as 

MCD1 and CatchER. 

cp-mKate_149-148 

cp-mKate_168-167 

cp-mKate_189-188 

cp-mKate_154-153 

Corresponding to mKate 

A142E/R198E/V216E 
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Table 2-3 Optical properties of MCD1x Ca2+ binding proteins 

Protein ex em Kd (mM) 

Extinction 

coefficient  

(M-1 cm-1) 

Quantum 

yield 

Protein 

brightness 
pKa 

Apo/Holo Apo Holo Apo Holo Apo Holo 

mCherry 587 nm 610 nm ___ 72,000 0.22 0.16 4.5 

MCD1 587 nm 610 nm 0.1 ± 0.03 64,000 0.17 0.24 0.11 0.15 3.6 5.0 

MCD14 587 nm 610 nm 0.085 ± 0.004 67,000 0.20 0.22 0.13 0.15 4.4 4.8 

MCD14 587 nm 610 nm 0.48 ± 0.08 65,000 0.21 0.24 0.14 0.16 4.4 4.6 

Data courtesy of Dr. You Zhuo. All error not listed held a value of 0.01 

2.2 Materials and Methods 

2.2.1 Primer Preparation  

 Primers were ordered from Integrated DNA Technologies (IDT). The primers were 

designed to be 30-40 base pairs long with GC content of no more than 60%. The primer powder 

was spun down, and elution buffer was added based on its concentration to make a 100 M 

concentration stock. The stock was diluted to 30 M for experimental use with elution buffer.  

2.2.2 PCR Sample Preparation and Process  

 The PFU polymerase kit from Promega was used for site mutagenesis. A 50 L solution 

was made by adding five microliters of 10X PFU polymerase buffer with MgSO4, 0.1-0.2 mM of 

two millimolar dNTPs, 1.5-2.25 mM of 25 mM MgSO4, four microliters of 20 ng template DNA, 

one microliter of each 30 M primer, one microliter of the PFU polymerase, and the rest sterile 

ddH2O to a PCR tube. The program was run for 25 cycles. 
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2.2.3 Ligation, Inoculation, and Sequencing  

 Site mutated samples amplified with Pfu polymerase PCR were incubated with one 

microliter of DpnI at 37°C for one hour. After incubation, the sample was transformed into XL-

gold E. coli cells. This strain of E. coli allows for DNA ligation inside the cell. One microliter of 

the DNA was added 50 L of the competent cells. The solution was mixed and left on ice for 30-

90 minutes. The mixture was then placed in a 42 °C water bath for exactly 45 seconds. Following 

this heat shock step, the mixture was placed back on the ice for two minutes before adding 200 L 

of nutrient rich XYZ media and incubating at 37°C for 30-90 minutes. Following incubation, 200 

L of the solution was spread on an ampicillin-treated agar plate and left to incubate overnight at 

37°C. 

 The plate was retrieved after 16-18 hours of incubation, and multiple colonies were 

inoculated for DNA amplification. Ten microliters of ampicillin were added to ten milliliters of 

LB media in a 50 mL falcon tube for each colony selected. A single colony was added to this 

solution using an inoculation loop, and the solution was left to shake at 37°C overnight. After 16-

18 hours of incubation, the DNA was amplified using QIAprep miniprep kit as directed. The DNA 

obtained was sent for sequencing to Genewiz Inc. Samples with the correct sequence were 

expressed and used for further study. 

2.2.4 Transformation, Expression, and Purification in E. coli 

 mCherry-based proteins were in the prsetb vector for the bacterial expression carried out 

in the rosetta gammi E. coli competent cell line. To 50 L of the competent cells 0.5-1 L of 

plasmid was added. The solution was mixed and left on ice for 30-90 minutes. The mixture was 

then placed in a 42 °C water bath for exactly 90 seconds. Following this heat shock step, the 

mixture was placed back on the ice for two minutes before adding 50 L of LB media and 
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incubating at 37 °C for 30-90 minutes. Following incubation, 50 L of the solution was spread 

antibiotic treated agar plate and left to incubate overnight at 37 °C. 

 The next morning the transformation plate was retrieved from the incubator. Ten milliliters 

of LB was treated with ten microliters of 100mg/mL ampicillin. A single colony from the 

transformation plate was added to the LB-antibiotic solution using an inoculation loop. The 

inoculate solution was left to shake at 37° C overnight. After 16-18 hours of incubation, the 

solution was retrieved for expression. One liter of LB media was prepared for every ten milliliters 

of inoculate with the one milliliter of 100mg/mL ampicillin.  

Two one-milliliter samples of the antibiotic-media solution were taken for optical density 

(O.D) blanks. The ten milliliter inoculate sample was then added to the flask, and a one-milliliter 

sample was taken for an O.D. reading (600 nm). The sample was placed in a refrigerated shaker 

to shake at 30 ° C. One milliliter of the sample was taken approximately every hour until the O.D. 

reached 0.6. Once and O.D. of 0.6 was reached, 200 L of one molar IPTG was added to induce 

expression of the polymerase and the temperature was lowered to 25 °C. The cell pellet collected 

before inoculation was saved for SDS-PAGE analysis. Approximately two more O.D. readings 

were taken, and the solution was left to shake overnight. The following morning one last O.D. 

reading was taken, and the cell pellet saved for SDS-PAGE analysis of the post-induction sample. 

The cell pellet from the full solution was collected by centrifugation (7000 rpm for 36 minutes) 

and frozen until ready to purify. 

The proteins were purified using a fast protein liquid chromatography (FPLC) instrument 

by General Electric (GE). The cell pellets were suspended in approximately 20 mL of extraction 

buffer (20 mM Tris, 100 mM NaCl, 0.1% Triton; pH 8.0) and vortexed to mix. The solution was 

sonicated for six rounds of 30 pulses to lyse the cells and then centrifuged at 17,000 rpm for 36 
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minutes. The supernatant was filtered using a 0.45 mm Whatman filter before being injected onto 

the nickel loaded five milliliter HiTrap chelating column. The Histidine-tagged protein was bound 

to the nickel coating the column while the impurities were washed away with buffer A (40 mM 

K2HPO4, 10 mM KH2PO4, 250 mM NaCl; pH 7.4). The protein was eluted off using an increasing 

concentration of buffer B (buffer A with 0.5 imidazole). The imidazole was removed using a 120 

mL gel filtration column with ten millimolar Tris (pH 7.4). The purified protein was concentrated 

and stored appropriately for future use. 

2.2.5 Transfection in Mammalian Cells 

 The protein was placed in the pcdna3.1 vector for mammalian expression. In vivo studies 

were carried out in C2C12 mouse myoblast cells and HEK293 cells. The cells were cultured in 

high glucose DMEM buffer with 10% fetal bovine serum (FBS). The transfection reagent used to 

deliver the plasmid into the cell was Lipofectamine 2000. A one microgram DNA to three 

microliters Lipofectamine 2000 ratio was used for mCherry based protein transfection. One 

milliliter of transfection solution was prepared for every slide of cells being transfected. Two tubes 

of 0.5 mL OPTI were prepared. The Lipofectamine 2000 was added to one and the DNA to the 

other. The solutions were left to sit for approximately one minute at room temperature. The DNA 

solution was then added in its entirety to the lipofectamine solution. After using a pipette to mix 

the solution was centrifuged for five seconds and placed in a dark, room temperature drawer to 

incubate for five minutes.  

 For HEK293 cells, the cells were previously split to the imaging slides and left to reach 

40% confluency before transfection. The cells were rinsed with Hank’s Balanced Salt Solution 

(HBSS) before adding four milliliters of OPTI buffer. After the incubation time has lapsed the 

transfection solution was added dropwise to the dish and left to incubate at 37 °C for four hours. 
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The buffer was then changed to fresh DMEM and the cells left for 36-48 hours to allow protein 

expression. 

For C2C12 cells, the cells were split just before transfection. During the incubation time, 

the cells were rinsed with HBSS and digested in trypsin to split. The cells were transferred to the 

coverslips with three milliliters of DMEM buffer and one milliliter of OPTI buffer. After the 

incubation time has lapsed the transfection solution was added dropwise to the dish and left to 

incubate at 37 °C for 24 hours. The buffer was then changed to fresh DMEM and the cells left for 

36-48 hours to allow protein expression. 

2.2.6 Ca2+ Titration 

 A Ca2+ titration was performed to solve for the dissociation constant (Kd) and determine 

the Ca2+ binding affinity of the proteins. One milliliter of a 10 M protein sample was prepared in 

10 mM Tris buffer (pH 7.4) with 2 M EGTA. The absorbance spectrum was taken before 

experimentation to observe the calcium free apo form absorbance. A fluorescence spectrum was 

taken at the 587 nm excitation wavelength using the fluorometer. Fifty micromoles of Ca2+ were 

added to the solution, and another fluorescence spectrum was taken at the excitation wavelength. 

This step was repeated as the Ca2+ concentration was slowly increased in the solution to ten 

millimolar. An absorbance spectrum was taken at the end of the experiment to observe the calcium 

saturated holo form absorbance. The maximum value of each spectrum at the wavelength of 

emission was normalized with Eq. 2.1. The normalized data was graphed as normalized 

fluorescence versus wavelength (nm) and fitted with Eq. 2.2 to obtain the Kd. In the equations, F 

is the fluorescence, A is the absorbance, F0 is the lowest fluorescence value with no Ca2+, Fmax is 

the greatest fluorescence value at Ca2+ saturation, p is the protein being analyzed, and r is the 

reference protein. 
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2.2.7 Chromophore pKa 

The pKa of the chromophore was determined by taking fluorescence spectra of the protein 

in various pH conditions. A ten micromolar protein sample was made in 12 different pH buffers, 

outlined in Table 2-3, with two micromolar EGTA and incubated overnight at 4 °C. The next day 

the pH of each sample was determined using a pH meter to observe the calcium free apo form pH. 

A fluorescence spectrum was taken at the 587 nm excitation wavelength using the fluorometer. 

The protein was saturated with ten micromolar Ca2+, and the fluorescence spectrum was taken 

again. The pH of each sample was determined using a pH meter to observe the calcium saturated 

holo form pH. The data was normalized with the Eq. 2.3. The normalized data was graphed as the 

normalized fluorescence versus pH and fitted with Eq. 2.4 to obtain the chromophore pKa of the 

apo and holo forms. 
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Table 2-4 Buffers used for pKa determination 

Buffer Concentration (mM) pH 

Sodium Acetate (NaOAc)  500 2.0 

(NaOAc) 10 3.0 

(NaOAc) 10 3.5 

(NaOAc) 10 4.0 

2-(N-morpholino)ethanesulfonic acid (MES) 10 5.0 

(MES) 10 5.5 

(MES) 10 6.0 

piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES)  10 6.5 

(PIPES) 10 7.0 

2-Amino-2-hydroxymethyl-propane-1,3-diol (Tris)  10 7.4 

(Tris) 10 8.0 

(Tris) 10 9.0 

 

 

2.2.8 Quantum Yield and Extinction Coefficient 

 The quantum yield () and extinction coefficient () are measures of the fluorescence 

efficiency and light absorption strength respectively of a species. The quantum yield was 

determined by preparing the protein at five different concentrations (15 M, 20 M, 25 M, 30 

M, and 35 M) in ten millimolar Tris buffer (pH 7.4) with two micromolar EGTA. The wild-

type protein was also prepared at five different concentrations (5 M, 10 M, 15 M, 20 M, and 

25 M) in ten millimolar Tris buffer (pH 7.4) with two micromolar EGTA as a control and for 
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calculations.  The fluorescence spectra of the wild-type and apo protein form were obtained at 587 

nm excitation using a fluorometer. The absorbance spectra of both were also obtained using UV-

vis. Ten microliters of one molar Ca2+ were added to the protein sample for a final Ca2+ 

concentration of ten millimolar. The fluorescence and absorbance spectra of the holo protein form 

were obtained the same as the apo form. The maximum value of fluorescence at the 610 nm 

emission wavelength was graphed versus the maximum value of absorbance at the 587 nm 

excitation wavelength for each protein to obtain the fitted line slope. This value along with the 

literature quantum yield of the template reference protein was used in Eq. 2.5 to calculate the 

quantum yield.  

 

 

 The extinction coefficient was determined using an alkali denaturation assay. The protein 

was prepared at five different concentrations (15 M, 20 M, 25 M, 30 M, and 35 M) in ten 

millimolar Tris buffer (pH 7.4) with two micromolar EGTA. The template protein was also 

prepared at five different concentrations (5 M, 10 M, 15 M, 20 M, and 25 M) in ten 

millimolar Tris buffer (pH 7.4) with two micromolar EGTA. The absorbance spectra of the apo 
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protein form and holo protein form, as well as the absorbance spectra of the wild-type protein, 

were acquired. The proteins were then unfolded to expose the chromophore by adding 0.1 M 

sodium hydroxide (NaOH). After mixing the absorbance of each was taken again. To obtain the 

fitted line slope the maximum absorbance value of the folded protein was graphed versus the 

maximum absorbance value of the denatured protein. This slope along, with the literature 

extinction coefficient value for the template protein chromophore at the maximum absorbance in 

the denatured form, was used in Eq. 2.6. The quantum yield and extinction coefficient can be 

utilized further to determine the brightness of the protein as shown in Eq. 2.7. 

2.2.9 Fluorescence Dynamic Range 

 The dynamic range is a measurement of the fluorescence intensity change from the apo to 

the holo form of our proteins. This characteristic was determined in vitro using the apo and holo 

fluorescence data from the Ca2+ titrations and in vivo using cultured cells transfected with ER-

tagged protein as described in section 2.2.5. For the in vivo determination, the coverslip containing 

the transfected cells, as outlined in section 2.2.5, was rinsed three times with 1.8 mM Ca2+ Ringers 

buffer (145 mM NaCl, 2.5 mM K2HPO4, 1 mM MgSO4, 10 mM HEPES buffer, 10 mM glucose, 

1.8 mM Ca2+; pH 7.4) and mounted for imaging using the Leica microscope at 40X magnification. 

After ideal cells were found and focused, the experiment was carried out at 550 nm excitation in 

KCl rinse solution (125 mM KCl, 25 mM NaCl, 10 mM HEPES buffer, 0.2 mM MgCl2; pH 7.25). 

The cell walls were first permeated using 0.01% saponin. After rinsing the saponin away with KCl 

rinse, one micromolar EGTA was added to empty the ER of Ca2+. The cells were rinsed once more 

with KCl rinse and then saturated with ten millimolar Ca2+. The peak data was analyzed using Eq. 

2.8 to determine the dynamic range. 
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2.3 Results 

2.3.1 Strategy for Optical Property Optimization 

2.3.1.1 DsRed-like Chromophore Formation 

The MCD1x Ca2+ binding proteins made from mCherry maintain the low chromophore 

pKa and long wavelength emission that the wild type has but exhibit a decrease in the quantum 

yield and extinction coefficient. The dynamic range of the proteins is also very small compared to 

our green CatchER and other published Ca2+ probes (Zhuo, 2014). For the proteins to be used 

successfully as an intracellular probe, these characteristics must be optimized. We hypothesize that 

this can be done by influencing the ionization of the chromophore based on our knowledge in 

designing green calcium indicator CatchER (Tang et al., PNAS). It is imperative to understand the 

chromophore and its formation to achieve this goal. 

It is known that the chromophore forms after the protein properly folds, but the mechanism 

for chromophore formation in red FPs like DsRed and its variants is actively being investigated. 

Many theories for this mechanism have been hypothesized. It was originally believed that the 

extended conjugation of the red chromophore in DsRed and other red FPs involved an anionic 

GFP-like green intermediate (Gross et al., 2000)31 after a mixture of green and red color was 

observed in mature DsRed samples. The immature green chromophore was believed to have 

formed after the chromophore cyclization and first oxidation step and would yield the mature red 

chromophore following a second oxidation step. This theory was later challenged as the oxidation 

to the red chromophore was believed to involve a carbanion state which would be energetically 
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unfavorable from the anionic GFP-like green intermediate. The anionic GFP-like intermediate is 

instead believed to be an endpoint form32, 33.  

It was then proposed that the mechanism to the red chromophore involved a branched 

mechanism33-35. On one path is the GFP-like chromophore endpoint and on the other the red 

chromophore via a blue chromophore intermediate. The blue intermediate, absorbing around 400 

nm, would be capable of creating the carbanion state needed to extend the -system conjugation 

to make the red chromophore. 

Mechanism studies, as well as work to monomerize the tetrameric DsRed by Campbell et 

al., have uncovered crucial residues for chromophore formation. These residues work in different 

ways to encourage the protein folding and chromophore formation. Campbell et al. reported three 

“hot spots” that play a role in the chromophore maturation. The first of these involves the 

chromophore sidechain residue Q66, N42, and V44 in DsRed. Residues 42 and 44 were found to 

improve the maturation time of the protein by influencing the conformation of Q66. The second 

hot spot contained the sidechain of residue 163 being influenced by V175, F177 and possibly 

I16120. In DsRed and its derivatives, residue 163 interacts directly with the phenolate in the 

chromophore. Different residues, whether it be a lysine (DsRed), glutamine (dimer2), or 

methionine (mRFP1) in that position20, 32 were found to cause different polarizations, shifting the 

electron density of the chromophore and encouraging formation.  

The third hot spot was thought to be the most sensitive. It contained the K70 sidechains 

and the adjacent S197 and T217 sidechains. Having a positively charged residue in position 70 

was found to be crucial for chromophore formation because it delocalizes the oxygen in the 

imidazolinone ring and encourages its negative charge20, 34. Having a larger polar residue in 

position 197 such as threonine or tyrosine would allow H-bonding with the chromophore and 
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improve its maturation32. Conservative mutations to these residues were crucial intermediates to 

mRFP1 and have strong effects on the fluorescent properties (Campbell et al., 2002). 

Residues that do not interact directly with the chromophore have also been found to play 

significant roles in the chromophore formation. Mutations V71A and L150M to mRFP1 are in one 

of the hydrophobic pockets close to hot spot three and are thought to influence the chromophore 

by causing subtle packing rearrangements20. Verkhusha et al. found that small residues at position 

71 are preferred after the introduction of V71M halted the chromophore at the GFP-like endpoint 

likely, because the larger residue displaces K70 toward the chromophore and quickly deprotonate 

the phenolate. Residue K83 also influences the orientation of residue L70. Mutations of K83 in 

DsRed to large nonpolar residues in the mFruits (K83L in mCherry and mStrawberry and K83F in 

mOrange) causes a position shift of K70 that is likely one reason for the red shift in the mFruits36. 

This residue is also crucial for the folding of monomeric reds after L83K mutations to mCherry 

and mStrawberry disrupted protein folding. The interaction of K70 and E148, a necessary 

interaction in the absence of the AC interface of the DsRed tetramer, is credited for the folding. 

The protein environment is also important for successful chromophore formation. All of 

the proposed mechanisms for chromophore formation involve oxidation and dehydration steps, 

none of which involve any outside enzymes but instead occur with the aid of neighboring residues 

in certain ionic states. These steps can only be carried out fully and efficiently in the proper pH 

conditions. The temperature is also important for chromophore formation. While many FPs are 

being engineered to express at ambient body temperature for biological studies, there are still some 

chromophores that do not efficiently form in that range. Another factor that can affect the 

chromophore formation is the cell strain used to express the protein. Not all cell lines can express 

FPs so that they fold properly and without proper folding, the chromophore will not form. 
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2.3.1.2 Design of Optimized Next Generation MCD1x 

We hypothesize that manipulating the ionization of the chromophore is key to optimizing 

the optical properties of the red sensors. Using the knowledge of which residues are pivotal to the 

chromophore formation, we began non-random mutagenesis. Our first approach was to make 

multiple mutations to residue 163. This residue is located in hot spot two and interacts directly 

with the chromophore20. Residue 163 was also found to play a role in the sensing mechanism of 

the R-GECO2 sensor reported by Campbell et al37. In DsRed and other monomeric variants this 

residue is either lysine or methionine, but in mCherry, it has been mutated to glutamine. This 

glutamine carried over into our sensors. The mutations Q163M, Q163K, Q163E, Q163L, Q163I, 

and Q163N were made to MCD15, and the Q163M mutation was made into MCD1.  

Table 2-5 Design of Q163 Mutants 

Mutation Rationale 

Q163M Recovered mutation from mRFP1; present in 

other mFruit proteins 

Q163K 
Recovered mutation from DsRed 

Q163I Non-aromatic Hydrophobic residue structural 

isomer of Leu 

Q163L Non-aromatic Hydrophobic residue; structural 

isomer of Ile 

Q163E 
Charged residue; -CH2 longer than Gln 

Q163N 
-CH2 shorter than Gln 

 

Our second approach was to make other chromophore sensitive residue mutations based 

on a sequence comparison of mCherry with other second generation monomers: mOrange, 

mStrawberry, mBanana, and mTangerine. These mFruits were made from mRFP1 in a similar 

fashion to mCherry. The different mutations made gave the different optical properties among the 

mFruits as outlined in Figure 2-2. mOrange and mBanana were chosen because they both possess 
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high quantum yields as well as a pH sensitivity similar to those in GFP and its variants. mOrange 

also has a high extinction coefficient. mStrawberry is considered a medium between mCherry and 

mOrange with a high extinction coefficient and relatively fast maturation time but has a low 

quantum yield similar to mCherry. mTangerine has a slightly higher pKa than mCherry but shows 

a decrease in all other optical properties.  

In choosing residues to mutate any residues that interact with the chromophore directly but 

have been previously seen to cause a decrease in optical properties when mutated, such as K70, 

were left alone. Residues in proximity to those were instead chosen. Six mutations total were 

chosen: S62T and Q64N from mStrawberry, I197E from mBanana, and A175S, L83F, and T41F 

from mOrange. Residues I197 and L83 sit in hot spot three20 and interact indirectly with the 

chromophore through K70. Residue 197 also sits between two of our Ca2+ binding pocket residues: 

196 and 198. Residue A175 sits in hot spot two and interacts with the chromophore indirectly 

through Q163. Residue T41 is a neighbor residue to hot spot one where Q42 interacts with M66 

in the chromophore. Residue 64 does not interact with the chromophore directly but has been found 

to contribute to changes in photostability in a mutant of mOrange in combination with residue 163, 

99, and 97 (Shaner et al, 2008)38 and plays a role in the chromophore formation of orange DsRed 

variants (Subach et al, 2012)39. Residue 62 is mentioned for creating stability for the chromophore 

in mStrawberry along with residue 64 without direct interaction with the chromophore. As of this 

thesis the T41F mutant in MCD1 has been successfully cloned. 

 



41 

 

Table 2-6 Fluorescent properties of DsRed and the first and second generation variants 

Fluorescent 

Protein 

ex 

(nm) 

em 

(nm) 

Extinction 

Coefficient 

(M-1cm-1) 

Quantum 

Yield 

Brightness 

%DsRed 

pKa 

T0.5 for 

maturation 

at 37 ˚C 

T0.5 for 

bleach 

DsRed 558 583 75000 0.79 100 4.7 ~10 h ND 

T1 555 584 38000 0.51 33 4.8 <1 h ND 

Dimer2 552 579 69000 0.69 80 4.9 <2 h ND 

mRFP1 584 607 50000 0.25 21 4.5 <1 h 6.2 

mHoneydew 487/504 537/562 17000 0.12 3 <4.0 ND 5.9 

mBanana 540 553 6000 0.70 7 6.7 1h 1.4 

mOrange 548 562 71000 0.69 83 6.5 2.5 h 6.4 

dTomato 554 581 69000 0.69 80 4.7 1 h 64 

tdTomato 554 581 138000 0.69 160 4.7 1 h 70 

mTangerine 568 585 38000 0.30 19 5.7 ND 5.1 

mStrawberry 574 596 90000 0.29 44 <4.5 50 min 11 

mCherry 587 610 72000 0.22 27 <4.5 51 min 68 

2.3.2 Expression and Purification 

The cell pellets collected after expression of the 6 Q163 mutants in MCD15 are shown 

below in Figure 2-2 and compared to MCD15 without any mutation and mCherry. All proteins 

were expressed as outlined in 2.2.4. Mutants Q163K and Q163E appear to have lost all red color. 

Mutants Q163I and Q163L appear to have a light pink and purple color respectively. Mutants 

Q163N has a very faint pink color that can be seen against a white background. Mutant Q163M 

shows the brightest deep red color as well as more collected pellet than the other mutations. 
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Figure 2-2 Expressed MCD15 Q163 mutants 

Cell pellet collected after Rosetta Gammi expression of residue 163 mutants in MCD15 

template as outlined in section 2.2.4. 

 

 Figure 2-3 shows the chromatograms from the gel filtration step of purification for 

proteins MCD1 Q163M, MCD15 Q163M, MCD15 Q163L, and MCD15 Q163I. The protein 

samples were collected from the second blue peak circled in brown. The first blue peak circled in 

red is currently being investigated. It was noted that this peak appears to increase in size with 

decrease in protein color and quantity. 

  

mCherry MCD15 Q163M Q163K Q163E Q163I Q163L Q163N
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Figure 2-3 Gel filtration FPLC chromatograms 

MCD1 Q163M (A), MCD15 Q163M (B), MCD15 Q163L (C), and MCD15 Q163I (D) 

purification chromatograms after gel filtration using Sephacryl S300 column using 10 mM Tris 

buffer (pH 7.4). The UV of the protein is the blue spectrum with two peaks while the imidazole 

removed from the samples is shown in the brown spectrum with the single peaks. The mature 

protein peak is circled in brown while unknown peak one is circled in read. 

 

Figure 2-4 shows the SDS-PAGE analysis of the peaks seen in the Figure 2-3 

chromatograms for the MCD15 mutants. The MCD15 Q163M mutant only displayed a band for 

peak two. Q163I showed a faint band for peak one that appeared to be the same size as the 

protein in peak two. Q163L has the same bands as Q163I, with the peak one band being stronger 

for this mutant. 
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Figure 2-4 SDS-PAGE of gel filtration samples 

SDS-PAGE gel (10%). Samples were dissolved in SDS buffer and heated to 100 ˚C for 10 

minutes. Protein band present at 29 kDa. Top Gel: MCD15 sonicated supernatant (1), MCD15 

sonicated pellet (2), protein ladder (3), MCD15 Q163M sonicated supernatant (4), MCD15 Q163M 

sonicated pellet (5), MCD15 Q163M gel filtration peak 1 (6), MCD15 Q163M gel filtration peak two 

(7), MCD15 Q163M gel filtration peak three (8), MCD15 Q163I sonicated supernatant (9), MCD15 

Q163I sonicated pellet (10). Bottom Gel: MCD15 Q163I gel filtration peak one (1), MCD15 Q163I 

gel filtration peak two (2), MCD15 Q163M gel filtration peak three (3), protein ladder (4), MCD15 

Q163L sonicated supernatant (5), MCD15 Q163L sonicated pellet (6), MCD15 Q163L gel filtration 

peak one (7), MCD15 Q163L gel filtration peak two (8), MCD15 Q163L gel filtration peak three (9). 
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Figure 2-5 shows the native protein gel for the peak one samples from gel filtration of the 

Q163M mutants compared with the pure protein and the mCherry template. The purpose of this 

gel was to examine the folded structure to see if the unknown gel filtration peak could be an 

oligomer. The mCherry protein in lane two appears to form multiple oligomers but does not 

appear in the monomer form. The sensors and their mutants, however, appear mostly in the 

monomer form with double bands around 29 kDa. MCD1 Q163M does show a light band in the 

possible dimer size region.  

 

Figure 2-5 Native protein gel of gel filtration samples 

NativePAGETM Novex 14-16% protein gel. Samples were prepared and loaded as specified 

in manufacturer protocol and run at 150V for 120 minutes. LC075 ladder (1), mCherry pure (2), 

MCD1 pure (3), MCD1 Q163M pure (4), MCD1 Q163M gel filtration peak 1 (5), MCD15 pure (6), 

MCD15 Q163M pure (7), MCD15 Q163M gel filtration peak 1 (8). 

 

Figure 2-6 shows the purified MCD1 and MCD15 proteins in quartz cuvettes in the apo 

form. The proteins were prepared in 5 M concentrations. The chromophore environment based 

on crystal structure 2H5Q are shown below with the binding pocket residues and residue 163. 
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Figure 2-6 Purified MCD1x proteins 

The tertiary structure of mCherry (2H5Q) shown with purified mCherry. (5 M protein in 

10 mM Tris; pH 7.4). The purified MCD1x mutants are shown with the binding pocket region for 

each protein and residue 163 (5 M protein in 10 mM Tris; pH 7.4). 

2.3.3 Effect of Q163M Mutation on Protein Optical Properties 

Figure 2-7 shows the absorbance and fluorescence spectra of MCD1 and MCD15, with 

and without the Q163M mutation, compared to mCherry after expression in rosetta gammi 

bacteria cells. The Q163M mutation appears to cause a slight 3 nm shift in the chromophore 

absorbance from 587 nm to 590 nm. A small absorbance peak appears at ~505 nm in the Q163M 

mutant proteins. There also appears to be a 5 nm shift in the emission peak from 610 nm to 615 

nm with the Q163M mutation. The mutation recovers lost absorbance and fluorescence 
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mCherry

MCD15
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intensities in both proteins, with MCD1 Q163M having a higher absorbance and fluorescence 

than mCherry. 

 

 

Figure 2-7 Q163 Mutation Effect on UV-VIS and Fluorescence Spectra  

Protein samples were prepared at 10 M concentration in 10 mM Tris (7.4 pH). A blank 

Tris buffer sample was used for the background in UV-VIS. The slit widths of the fluorometer were 

set using mCherry. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

240 320 400 480 560 640

MCD15 Q163 Mutants

Absorbance Spectra

mCherry
MCD15
MCD15 Q163M
MCD15 Q163I
MCD15 Q163L

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

240 320 400 480 560 640

MCD1 and MCD1 Q163M

Absorbance Spectra
mCherry
MCD1
MCD1 Q163M

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

0

1 10
5

2 10
5

3 10
5

4 10
5

5 10
5

6 10
5

7 10
5

600 620 640 660 680 700

MCD15 Q163 Mutants

Fluorescence Spectra

mCherry
MCD15
MCD15 Q163M
MCD15 Q163I
MCD15 Q163L

F
lu

o
re

s
c
e
n

c
e

Wavelength (nm)

0

2 10
5

4 10
5

6 10
5

8 10
5

1 10
6

1.2 10
6

1.4 10
6

1.6 10
6

600 620 640 660 680 700

MCD1 and MCD1 Q163M

Fluorescence Spectra

mCherry
MCD1
MCD1 Q163M

F
lu

o
re

s
c

e
n

c
e

Wavelength (nm)



48 

 

Figure 2-8 Pure mCherry and MCD15 Q163M  

Pure mCherry (left) and MCD15 Q163M (right) in quartz cuvettes. The proteins were 

introduced to a long wave UV light source (bottom). Proteins were prepared at 20 mM 

concentration in 10 mM Tris buffer (pH 7.4) with 2 M EGTA. 

Figure 2-9 shows the ImageJ analysis of the proteins transfected into C2C12 mouse 

myoblast cells. As with the fluorescence seen in bacterially expressed protein, the fluorescence 

intensity increases with the Q163M mutation and MCD1 Q163M is the most intense of the 5. 

MCD15 displayed very low fluorescence and poor transfection. 
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Figure 2-9 True Protein Fluorescence in C2C12 Mammalian Cells  

The C2C12 cells were transfected with protein as outlined in section 2.2.5. Images were 

analyzed using ImageJ software to determine the true cell fluorescence. 

 

 Figure 2-10 displays the extinction coefficient values and quantum yield values that have 

been determined as shown in 2.2.8. MCD1 Q163M displays the greatest extinction coefficient, 

recovering the loss brought by the Ca2+ binding pocket. The quantum yield has yet to be 

determined but is expected to maintain the trend of increased optical properties. MCD15 Q163M 

thus displays the greatest quantum yield value. 
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Figure 2-10 Optical Properties 

The extinction coefficient and quantum yield of the proteins were determined as outlined in 

section 2.2.8. Samples were prepared in 10 mM Tris buffer (pH 7.4) at five different concentrations. 

Experiments were done in duplicate. Slit widths were set using the sample with the greatest 

fluorescence intensity. St Dev < 0.02 

 

2.3.4 Chromophore pKa 

Figure 2-11 shows the data for the pKa determination for MCD15 Q163M. Graphs A and 

B show the raw fluorescence data for the protein in environment pH from 2 to 9 for the apo and 

holo protein form respectively.  Graph C displays the normalized data from A and B, apo in red 

and holo in blue, to give the chromophore pKa. 
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pKa 

Apo Holo 

4.4 ± 0.3 3.9 ± 0.3 

Figure 2-11Chromophore pKa of MCD15 Q163M 

The protein sample was prepared as outlined in 2.2.7. The experiment was done in 

duplicate. Fluorescence spectra of the protein in the apo (dashed) and holo (solid) form in various 

pH conditions. Normalization of these data points with apo (gray dashed) and holo (gold solid) gives 

the pH profile and the chromophore pKa. The pKa values for the chromophore are listed in the 

figure table. 

 

2.3.5 Ca2+-Induced Effect on Optical Properties 

In figure 2.12 the Ca2+-induced changes to the absorbance and fluorescence spectra are 

shown. There does not appear to be any change in the chromophore absorbance peak at 587 nm 

with Ca2+, but the peak at 505 nm does increase with increasing Ca2+ concentrations. The 

fluorescence change with the 163M mutation appears to be the same as the fluorescence with 

163Q. However, 163lI shows a noticeable increase in fluorescence. 
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Figure 2-12 Ca2+-Induced Spectral Changes  

Protein samples were prepared at 10 M concentration in 10 mM Tris (7.4 pH). A blank 

Tris buffer sample was used for the background in UV-VIS. The slit widths of the fluorometer were 

set using mCherry. The 2 M EGTA were added to obtain the apo readings (dashed) and 10 mM 

Ca2+ was added to obtain the holo reading (solid lines). 
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 Figure 2-13 shows the UV-VIS Ca2+ titration of MCD15 Q163M with the UV-VIS 

spectrum of mCherry as a comparison. The protein was prepared to 20 M concentration in 10 

mM Tris (pH 7.4) and the titration was carried out the same as the fluorescence Ca2+ titration 

outlined in 2.2.6. 

 

Figure 2-13 UV-VIS Ca2+ Titration 

MCD15 Q163M was prepared at 20 M concentration in 10 mM Tris (7.4 pH). A blank Tris 

buffer sample was used for the background in UV-VIS. A slow addition of Ca2+ metal was done and 

UV-VIS spectra taken at various increments.  

 

The bar graph in Figure 2-14 compares the Ca2+-induced change in the quantum yield of 

MCD1, MCD15, and MCD15 Q163M. MCD1 displayed the largest Ca2+- induced change in 

quantum yield but MCD15 Q163M displayed greatest quantum yield values. 
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Figure 2-14 Ca2+-Induced Optical Property Changes  

Protein samples were prepared at five different concentrations in 10 mM Tris (7.4 pH) as 

outlined in section 2.2.8. A blank Tris buffer sample was used for the background in UV-VIS. The 

slit widths of the fluorometer were set using mCherry. The 2 M EGTA were added to obtain the 

apo readings (black lined), and 10 mM Ca2+ was added to obtain the holo reading (blue solid). St 

Dev < 0.02. 

 

2.3.6 Ca2+ Kd 

The UV-VIS spectra and fluorescence emission spectra for the residue 163 mutants in 

MCD1 and MCD15 were previously shown in Figure 2-12. Figure 2-15 shows the normalized 

fluorescence data that gives the Ca2+ Kd for MCD1, MCD1 Q163M, MCD15, MCD15 Q163M 

and MCD15 Q163L following a Ca2+ titration as outlined in section 2.2.6. The proteins were 
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various Ca2+ concentrations. A titration for MCD15 Q163I could not be obtained due to low 

protein yield. 

 

Figure 2-15 Ca2+ affinity of MCD1x sensors 

MCD1 (red), MCD1 Q163M (blue), MCD15 (green), MCD15 Q163M (pink), and MCD15 

Q163L (orange). Samples were prepared to 10 M in 10 mM Tris (pH 7.4). Experiment was done in 

triplicate. 

 

2.3.7 Fluorescence Dynamic Range 

In addition to the Ca2+ affinity, the raw fluorescence data was used to determine the 

dynamic range of fluorescence of the residue 163 mutants using Eq. 2.8 in section 2.2.9. The 

dynamic range values for MCD1, MCD15, and MCD15 Q163M were also determined using in 

vivo imaging as outlined in section 2.2.9. These values, along with the Kd, are reported in Table 

2-7. 
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The in vivo dynamic range determination data of MCD1, MCD15, and MCD15 Q163M 

are shown in Figures 2-16, 2-17, and 2-18 respectively. Imaging was done on the inverted 

fluorescence Leica microscope in C2C12 mouse myoblast cells. Cells were transfected with 

respective protein as outlined in section 2.2.5. 

 

Table 2-7 Ca2+ affinity and dynamic range 

Protein Ca2+ Kd in vitro Dynamic Range in vivo Dynamic Range 

MCD1 0.03 ± 0.01 1.118 ± 0.03  1.128 ± 0.01 

MCD1 Q163M 0.08 ± 0.01 1.098 ± 0.01 --- 

MCD15 0.50 ± 0.08 1.089 ± 0.01 1.170 ± 0.3 

MCD15 Q163M 0.12 ± 0.04 1.099 ± 0.02 1.21 ± 0.03 

MCD15 Q163L 0.06 ± 0.02 1.124 ± 0.01 --- 
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Figure 2-16 MCD1 in vivo dynamic range 

MCD1 protein in pcDNA3.1 vector transfected in C2C12 mouse myblast cells as described 

in section 2.2.5. Ringers buffer (145 mM NaCl, 2.5 mM K2HPO4, 1 mM MgSO4, 10 mM HEPES 

buffer, 10 mM glucose, 1.8 mM Ca2+; pH 7.4), KCl rinse solution (125 mM KCl, 25 mM NaCl, 10 

mM HEPES buffer, 0.2 mM MgCl2; pH 7.25), 0.01% saponin, 1 M EGTA, and 10 mM Ca2+ were 

used as described in 2.2.5. Cell images were taken before (top) and after (bottom) experiment. 
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Figure 2-17 MCD15 in vivo dynamic range 

MCD15 protein in pcDNA3.1 vector transfected in C2C12 mouse myblast cells as described 

in section 2.2.5. Ringers buffer (145 mM NaCl, 2.5 mM K2HPO4, 1 mM MgSO4, 10 mM HEPES 

buffer, 10 mM glucose, 1.8 mM Ca2+; pH 7.4), KCl rinse solution (125 mM KCl, 25 mM NaCl, 10 

mM HEPES buffer, 0.2 mM MgCl2; pH 7.25), 0.01% saponin, 1 M EGTA, and 10 mM Ca2+ were 

used as described in 2.2.5. Cell images were taken before (top) and after (bottom) experiment. 
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Figure 2-18 MCD15 Q163M in vivo dynamic range 

MCD15 Q163M protein in pcDNA3.1 vector transfected in C2C12 mouse myblast cells as 

described in section 2.2.5. Ringers buffer (145 mM NaCl, 2.5 mM K2HPO4, 1 mM MgSO4, 10 mM 

HEPES buffer, 10 mM glucose, 1.8 mM Ca2+; pH 7.4), KCl rinse solution (125 mM KCl, 25 mM 

NaCl, 10 mM HEPES buffer, 0.2 mM MgCl2; pH 7.25), 0.01% saponin, 1 M EGTA, and 10 mM 

Ca2+ were used as described in 2.2.5. Cell images were taken before (top) and after (bottom) 

experiment. 
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2.4  Discussion 

2.4.1 Chromophore Development 

The 163 mutants were expressed and purified as outlined in section 2.2.4. The dialysis and 

desalting methods were utilized in the past to remove imidazole from the pure proteins, but these 

methods do not remove all of the imidazole. To eliminate as much imidazole as possible the size 

exclusion method through gel filtration chromatography was used. In doing this additional peaks 

were seen in the chromatographs that were not seen in desalting. MCD1, MCD1Q163M, MCD15, 

and MD15 Q163M all displayed a small peak before the large protein peak. The Q163L and Q163I 

mutants have less color and exhibit an increase in that first peak as well as the appearance of a 

third peak after the protein peak. The chromatographs of these are shown in Figure 2-3. 

With an understanding of the mechanism for DsRed-like chromophore development, it is 

believed that the first peak, may be an immature form of the chromophore. In the samples with 

deep color and a high concentration after purification, this peak is very small but in those samples 

where the chromophore is slower or less efficiently developing this peak increases to intensities 

comparable to the mature protein peak. The fractions from this peak do not display any noticeable 

color in any of the samples, and the concentration in MCD1, MCD15, and their Q163M mutants 

is too low to show anything in the SDS-PAGE. The peak one samples from Q163I and Q163L do 

show bands in SDS-PAGE. The bands are very faint but maintain the same sizes as the protein 

bands in the mature protein. If the protein took the pathway branch toward the green chromophore, 

it would fail to have the fragment bands that are indicative of the extended conjugation into the 

backbone. This tells us that the possible immature protein in this peak would be in the blue 

intermediate form or the colorless stage before the blue intermediate.  
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UV-vis of this peak was obtained for MCD15 Q163M but only displayed a low peak at 280 

nm, again a likely effect of low concentration. Spectra for this peak in the other mutants are being 

obtained to see if there are any other absorbance peaks. A native protein gel could also tell us more 

about this peak such as whether there is folded protein present, whether there is any dimer in the 

sample, and the approximate size of any protein. 

The UV-vis spectra for MCD1 and MCD15 maintain the same peaks as the spectrum for 

mCherry. This changes with the Q163M mutation where a 3 nm red shift in the major absorbance 

peak from 587 nm to 590 nm occurs. There is also the appearance of a peak at 505 nm that does 

not appear with the Q163L or Q163I mutants. It is, however, seen in the previous RFP generations 

with the M163 residue. The excitation and emission spectra are shown in Figure 2-7. The Q163 

mutant proteins show a 5 nm red shift in emission from the MCD1 and MCD15 templates, whose 

spectra are consistent with mCherry. An excitation scan was run at the peak emission, and it was 

noticed that there is no distinct peak at 505 nm in either Q163M mutant. Instead, the 505 nm 

fluorescence is observed to be an increasing part of the main 590 nm excitation peak in MCD1 and 

MCD15. This tells us that there is a non-emitting species made by the presence of methionine in 

position 163 that absorbs on its own at 505 nm. Figure 2-13 displays the UV-VIS Ca2+ titration of 

MCD15 Q163M. The 505 nm peak does have a noticeable increase with Ca2+, a property that will 

be further studied.  

The percent fluorescence intensity change of MCD1, MCD1 Q163M, MCD15, and 

MCD15 Q163M as compared to mCherry is shown below in Table 2-8. The values reported are 

for the Ca2+ free apo and Ca2+ loaded holo forms. Introducing the pocket of negative charges to 

mCherry to make the Ca2+ binding MCD1 caused a 25.3% decrease in fluorescence intensity.  

The additional R220E and D198E mutations made to create MCD15 caused a much larger 71.0% 
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fluorescence decrease compared to mCherry. This indicates that the binding pocket has a 

destabilizing effect on the chromophore that results in the loss of wild-type fluorescence 

properties. 

Table 2-8 Fluorescence intensity change compared to mCherry 

Protein Apo Fluorescence Intensity 

Change  

Holo Fluorescence 

Intensity Change  

MCD1 -25.3% -16.0% 

MCD1 Q163M +78.7% +96.4% 

MCD15 -71.0% -68.2% 

MCD15 Q163M -26.1% -27.4% 

 

The introduction of methionine to residue 163 causes a dramatic increase in fluorescence 

over the wild type. The Q163M mutation caused a 78.7% increase in the fluorescence for MCD1 

compared to mCherry. In MCD15 the fluorescence intensity is still 26.1% lower than mCherry, 

but this is a dramatic increase from MCD15 with glutamine in position 163.This implies that the 

interaction between the tyrosyl oxygen of the chromophore with the sulfur of methionine 

improves the stabilization of the chromophore dramatically. This is supported by the color 

intensity of the proteins compared to the wild-type and other 163 mutants. The increase in the 

587 nm peaks of the absorbance spectra, an indication of the chromophore formation in a similar 

way to the 280 nm peak indicating protein concentration, supports the improved stabilization and 

formation of the chromophore. 

The chromophore pKa of each mutant was determined by incubating the protein in 12 

different buffers of different pH ranging from 2 to 9 and taking fluorescence spectra. mCherry is 

known for having a low pKa value of 4.5, making it insensitive to pH changes that can occur during 

experimentation. The creation of a Ca2+ binding site to form MCD1 decreases the pKa slightly to 



63 

3.6. In MCD15 the chromophore pKa is 4.4, nearly identical to mCherry. The addition of the 

Q163M mutation to MCD15 caused no change in the pKa, leading us to believe that this mutation 

provides improved chromophore stability without changing the overall ionization. 

The extinction coefficient and quantum yield are measurements of the strength of photon 

absorption and the efficiency of chromophore fluorescence respectively at a wavelength of 

excitation. These values are summarized in Table 2-9 below for mCherry, MCD1, MCD15 and 

MCD15 Q163M. The extinction coefficient for both MCD1 and MCD15 are 64 and 65 

respectively, lower than the 72 of mCherry. The Q163M mutation in MCD15 brought the 

extinction coefficient to 88. This leads us to believe that the 163 residue plays a role in the 

chromophore’s ability to absorb photons.  

The single quantum yield of 0.22 for mCherry is lower than some of the other mFruits. The 

Ca2+ sensors display quantum yields slightly lower than the wild type. In both MCD1 and MCD15, 

the quantum yields come out to 0.17 and 0.21 respectively. The Q163M mutation to MCD15 

restores the quantum yield to the mCherry value of 0.25. This tells us that the cluster of negative 

charges we introduced to create our pocket caused a decrease in both absorption strength and 

fluorescence efficiency but the Q163M mutation in MCD15 interacts with the chromophore in a 

way that it recovered the quantum yield and greatly improved the extinction coefficient. 

Multiplying the extinction coefficient by the quantum yield gives you the protein brightness. 

Proteins MCD1 and MCD15 show a respective 31% and 13% decrease in the brightness compared 

to mCherry while MCD15 Q163M shows a 39% increase in the brightness.  
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Table 2-9 Optical properties 

Protein 
Extinction 

Coefficient (587 

(mM-1 cm-1)) 

Quantum Yield () Brightness () 

Apo Holo Apo Holo 

mcherry 72 0.22 15.8 

MCD1 64 0.17 0.24 10.8 15.4 

MCD15 65 0.21 0.24 13.7 15.7 

MCD15 Q163M 88 0.25 0.27 22.0 23.8 

 

 One explanation for the increase in properties of the Q163M mutant is hydrophobicity. 

As shown in Figure 2-18 the transition from glutamine to methionine increases the 

hydrophobicity dramatically. This drastic change in interaction is crucial for this particular 

residue since it is not only in the H-bond network but interacting directly with the phenolate 

oxygen. This increase in hydrophobicity is essentially eliminating an interaction that the oxygen 

was having with the nitrogen. Exactly how this change affects the conformation of the 

chromophore cannot be said at this time, but the ionization has been changed. 

 

Figure 2-19 Amino Acid Hydrophobicity  

Row A from J. Kyte and R.F. Doolittle40. Row B from D.A. Engelman, T.A. Steitz, and A. 

Goldman41. Hydrophobicity scales measure the degree of hydrophobicity of different amino acid 

side chains. It was developed based on the solubility measurements of amino acids in different 

solvents, vapor pressures of sidechain analogs, analysis of sidechain distributions with soluble 

proteins and the theoretical energy calculations. 

 

Phe Met  Ile  Leu Val  Cys Trp Ala  Thr Gly Ser Pro  Tyr   His  Gln Asn Glu Lys  Asp   Arg

2.8   1.9  4.5  3.8   4.2   2.5  -0.9  1.8   -0.7  -0.4  -0.8  -1.6  -1.3  -3.2  -3.5  -3.5   -3.5   -3.9   -3.5   -4.5

3.7   3.4  3.1  2.8   2.6   2.0   1.9  1.6    1.2    1.0   0.6  -0.2  -0.7  -3.0  -4.1  -4.8   -8.2   -8.8   -9.2  -12.3

Amino Acid

Row A

Row B

Row A from J. Kyte and R.F. Doolittle
Row B from D.A. Engelman, T.A. Steitz, and A. Goldman
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2.4.2 Ca2+ Binding Properties 

When looking at the Ca2+ affinity data in Figure 2-6 MCD1 has the greatest affinity for Ca2+ 

with a Kd 0.03 mM. MCD15 displays a weaker affinity of with a Kd of 0.5 mM. The Q163M 

mutation has a different effect in these two proteins, increasing the affinity for MCD15 but 

decreasing it in MCD1. As shown in Figure 2-1, Q163 directly interacts with the chromophore as 

a part of hot spot two and indirectly bonds with other residues in the network and other hotspots.  

MCD15 was made for improved mammalian cell expression by making the D198E and R220E 

mutations to MCD1. One of these residues, D/E198 of which neighbors hot spot two residue I197, 

affects the conformational of the binding pocket. The Q163M mutation may be working through 

the H-bond network with the chromophore tyrosyl and S63 to stabilize the chromophore. This 

stabilization is likely affecting the interactions of the imidazolinone ring with K70 and I197 to 

influence the binding pocket, particularly the area with residue D/E198, in a way that improves 

the binding affinity with the glutamate in MCD15 but decreases it with aspartate in MCD1. 

In determining the other Q163 mutation affinities in MCD15, the Q163I mutant could not 

be accurately determined because the yield of protein was too low to perform the triplicate titration 

experiments. The Q163L mutant, however, gave a Kd of 0.06 mM. This is an increase in affinity 

compared to Q163M mutation with a Kd of 0.12 mM. The reason a nonpolar residue improves the 

binding affinity while the polar one decreases it is still unknown at this time. 

The opposite effect occurs for the fluorescence intensity than what is seen with the affinity. 

As stated above in 2.4.1, the nonpolar residues decreased the fluorescence intensity of the 

chromophore while the polar residue increased it. The addition of Ca2+ induced an increase in 

fluorescence for all of the mutations, indicating that our binding pocket is in a position to not only 

influence the H-network but also affect the optical properties of the chromophore differently with 
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and without Ca2+. The magnitude of the fluorescence intensity change from the apo to holo forms 

is similar in all mutants, 10.5%-12%, except for in MCD15 and MCD15 Q163L, both of which 

display a less that 4% change in fluorescence with Ca2+. 

The chromophore pKa after Ca2+ binding caused an increase to 5.0 for MCD1 and a 

negligible increase to 4.6 in MCD15. This change in ionization retained the pH insensitivity. In 

the MCD15 Q163M, mutant Ca2+ binding caused a decrease in chromophore pKa to a value of 3.9, 

making it more pH insensitive that mCherry. The mutation did not cause any change to the 

chromophore pKa in MCD15 but this change in trend with the addition of Ca2+ further supports the 

theory that its presence in the H-bond network does add stabilization of the chromophore with and 

without Ca2+. Similar results were seen with Campbell et al. (2013)37 where a Q163M mutation 

into an RGECO variant maintains fluorescence at low pH. 

The presence of Ca2+ does not appear to effect the extinction coefficient in any of the 

proteins. The quantum yield, however, does increase with Ca2+ binding in all of the variants. 

MCD1 and MCD15 reached values slightly larger than that of mCherry at 0.24 and MCD15 

Q163M had a value of 0.25. The sensors display an increase in brightness from the apo to holo 

form: 43% for MCD1, 15% for MCD15, and 5% for MCD15 Q163M. Although the addition of 

the Q163M mutation to MCD15 made the protein 51% brighter the Ca2+-induced brightness 

change, an indication of the dynamic range, decreased. The calculated dynamic range, from both 

in vitro, and in vivo experimentation, shows no change with the Q163M mutation.  

2.5 Conclusion 

In the goal toward creating a pH insensitive Ca2+ sensor capable of deeper tissue 

penetration we set our sights on utilizing the H-bond network of the DsRed derived mCherry. 

After engineering a Ca2+ site on the surface of the protein, we were able to obtain a sensor with 
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good mM affinity for the ER but with low optical properties. We hypothesized that concentrating 

on the hot spot residues for chromophore development could help to improve on these properties. 

We decided on residue Q163, located in hot spot two, and made six mutations to this residue. 

Q163E, Q163K, and Q163N in MCD15 showed little to no color after expression and failed to 

show in purification. Q163I and Q163L in MCD15 expressed with a lower efficiency than the 

previous generation. The Q163M mutation in MCD15 and MCD1 showed an improvement in the 

chromophore development and yield of the protein. This mutation improved the optical 

properties of our sensor including the fluorescence intensity, extinction coefficient, and protein 

brightness without compromising the pH insensitivity. Unfortunately, while this improved 

protein is much brighter in both mammalian cells and bacterial cells, the fluorescence dynamic 

range did not change. This leads to the conclusion that while the added chromophore stability 

this mutation provides raises the apo fluorescence properties above those of mCherry but the 

Ca2+ - dependent change was brought to a comparable level and thus the change between these 

two remains small. A new series of mutations targeted to other hot spot residues is currently 

being made with the hopes of further improvement.  

2.6 Next Steps for Red Sensor Optimization 

As mentioned in 2.1.3 the next approach to optimization is determining the effect of 

making single mutations to different residues in the chromophore hot spots. These mutations were 

chosen after a sequence comparison between mCherry and monomeric DsRed derivatives 

mOrange, mStrawberry, mBanana, and mTangerine. These mutations are intended to be made in 

the absence of and in addition to the Q163M mutation. These mutations are currently being made, 

and data on their characteristics is to be reported. 
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3 Evaluation of Charge Contributions to Optical and Metal Binding Properties of EGFP 

Based Calcium Sensor CatchER  

3.1 Design of Intracellular Ca2+ Probe CatchER 

3.1.1 GFP as a Biomarker 

As discussed in section 1.5, green fluorescent protein (GFP) is a fluorescent protein first 

isolated from the jellyfish Aequorea victoria by Shimomura et al. in 1962. The protein was found 

to produce a green color after absorbing the bioluminescence from pure blue aequorin protein. 

GFP has an 11 strand -barrel tertiary structure with an -helix running through the center of the 

barrel. The fluorescence comes from the Ser65-Tyr66-Gly67 chromophore that lies in the center 

of the -helix of the protein. The chromophore is protected from photobleaching and sensitivities 

of the environment. The UV-vis spectrum shows a major absorbance peak at 395 nm and a minor 

peak at 488 nm. These peaks are believed to be different because excitation at 395 nm gives an 

emission at 508 nm whereas the peak at 488 gives a peak of 503 nm. UV-vis taken in high pH 

conditions displayed an increase in the 488 nm peak intensity and a decrease in the 395 nm 

intensity, indicating that the 395 nm peak corresponds with the neutral form of the chromophore 

and 488 nm with the anionic form.  

Different mutations to the chromophore environment of GFP yield a number of variants 

separated into seven classes16. Class 1 is the wild-type GFP protein. Class 2 contains variants with 

the S65T mutation to give a phenolate anion in the chromophore. The enhanced version of the wild 

type GFP (EGFP) belongs to this class. This mutation eliminated the neutral form of the 

chromophore leaving one dominant peak at 488 nm in the UV-vis spectrum. The emission of this 

variant sits at 510 nm. Class 3 of GFP does not have any mutations directly to the chromophore 

residues, but the surrounding mutations yield a neutral phenol in the chromophore with an 
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excitation at 399 nm. The yellow fluorescent proteins (YFP) with an S65G mutation make up class 

4. This class has a phenolate anion with stacked -electron system and redshifted excitation peaks 

around 510 nm. The Y66W mutation to the chromophore gives the indole chromophore group seen 

in the blue shifted cyan fluorescent proteins (CFP) of group 5 which absorb around 435 nm. Class 

6 is comprised of the blue fluorescent proteins (BFP) that have an imidazole chromophore and 

blue shifted absorbance at 380 nm. The class 7 protein contains the Y66F mutation with a 360 nm 

excitation. All of the classes can be used to engineer biosensors. For our studies, we used EGFP 

in class 2 as a template. 

3.1.2 Engineering CatchER and its variants 

EGFP was chosen for the template to use due to its enhanced fluorescent properties over 

wtGFP. Statistical analysis was done for 1491 Ca2+ binding sites and with this knowledge, the 

algorithm software MUG was used to predict for Ca2+ binding sites on EGFP. A site on the 

surface was chosen, and a series of substitutions via PCR was done to engineer a negatively 

charged de novo Ca2+ binding pocket involving residues 147, 202, 204, 223, and 225. The 

variants outlined in Table 3-1 were made. Protein D11, which displayed a Ca2+ affinity in the 

mM range and the greatest Ca2+-induced change in optical properties, became the Ca2+ sensor for 

detecting high concentration in the ER (CatchER). 

 

Table 3-1 Summary of CatchER variants 

Protein Mutations Ca2+ Pocket Charge 

D8 S202D, F223E -2 

D9 S202D, F223E, S147E -3 

D10 S202D, F223E, S147E, 

T225E 
-4 

CatchER (D11) S202D, F223E, S147E, 

T225E, Q204E 
-5 
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While CatchER was further improved for its folding at ambient temperatures, the 

biophysical properties of the other variants with the lower binding pocket charge were 

determined to understand better what effect the increasing electrostatic interactions had on our 

sensor. In this chapter, we report on our work to validate our method of sensor engineering by 

evaluating the effects of increasing the electrostatic interactions on the protein expression and 

structure, the biophysical properties, the Ca2+-induced changes in fluorescence, and the Ca2+ 

binding affinity. 

3.2 Materials and methods 

3.2.1 Transformation, Expression, and Purification in E. coli 

 EGFP based proteins were in the pet28a vector for bacterial expression. The bacterial 

expression was carried out in the BL21-DE3 E. coli competent cells. To 50 L of the competent 

cells 0.5-1 L of protein DNA was added. The solution was mixed and left on ice for 30-90 

minutes. The mixture was then place in a 42 °C water bath for exactly 90 seconds. Following this 

heat shock step, the mixture was placed back on the ice for 2 minutes before adding 50 L of LB 

media and incubating at 37 °C for 30-90 minutes. Following incubation, 50 L of the solution was 

spread antibiotic treated agar plate and left to incubate overnight at 37 °C. 

 The next morning the transformation plate was retrieved from the incubator. Ten milliliters 

of LB was treated with 6 L of 50 mg/mL kanamycin. A single colony from the transformation 

plate was added to the LB-antibiotic solution using an inoculation loop. The inoculate solution was 

left to shake at 37°C overnight. After 16-18 hours of incubation, the solution was retrieved for 

expression. One liter of LB media was prepared for every 10 mL of inoculate with 600 L of 50 

mg/mL kanamycin.  
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Two 1-mL samples of the antibiotic-media solution were taken for optical density (O.D) 

blanks. The 10 mL inoculate sample was then added to the flask, and a 1 mL sample was taken for 

an O.D. reading (600 nm). The sample was placed in a refrigerated shaker to shake at 37 ° C. A 1-

mL sample was taken approximately every hour until the O.D. reached 0.6. Once 0.6 was reached, 

200 L of 1 M IPTG was added to induce expression of the polymerase and the temperature was 

lowered to 25 °C. The cell pellet sample taken before inoculation was saved for SDS-PAGE 

analysis. Approximately two more O.D. readings were taken, and the solution was left to shake 

overnight. The following morning one last O.D. reading was taken and the cell pellet saved for 

SDS-PAGE analysis of the post-induction sample. The cell pellet from the full solution was 

collected by centrifugation (7000 rpm for 36 minutes) and frozen until ready to purify. 

The proteins were purified using a fast protein liquid chromatography (FPLC) instrument 

by General Electric (GE). The cell pellets were suspended in approximately 20 mL of extraction 

buffer (20 mM Tris, 100 mM NaCl, 0.1% Triton; pH 8.0) and vortexed to mix. The solution was 

sonicated for six rounds of 30 pulses to lyse the cells and then centrifuged at 17,000 rpm for 36 

minutes. The supernatant was filtered using a 0.45 mm Whatman filter before being injected onto 

the nickel loaded 5-mL HiTrap chelating column. The Histidine-tagged protein was bound to the 

nickel coating the column while the impurities were washed away with buffer A (40 mM K2HPO4, 

10 mM KH2PO4, 250 mM NaCl; pH 7.4). The protein was eluted off using buffer B (buffer A with 

0.5 imidazole). The imidazole was removed using the dialysis method in 2 L of 10 mM Tris (pH 

7.4) that was changed every 3 hours for 2-3 days. The purified protein was concentrated and stored 

appropriately for future use. 
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3.2.2 Circular Dichroism  

The secondary structure of the proteins was examined using circular dichroism (CD). A 20 

M protein sample was made in 10 mM Tris buffer (pH 7.4) with 2 M of EGTA and placed in a 

400 L CD cuvette. The N2 tank was turned on, and the machine was purged for approximately 5 

minutes to get rid of any O2. A scan for each sample was obtained with and without Ca2+. 

3.2.3 Ca2+ Titration 

 To determine the calcium binding affinity, the dissociation constant (Kd) was determined 

by Ca2+ titration. One milliliter of 10 M protein sample was prepared in 10 mM Tris buffer (pH 

7.4) with 2 M of EGTA. The absorbance spectrum was taken before experimentation to observe 

the calcium free apo form absorbance. A fluorescence spectrum was taken at the 395 nm and 488 

nm excitation wavelengths using the fluorometer. Fifty micromoles of Ca2+ were added to the 

solution, and another fluorescence spectrum was taken at each excitation wavelength. This step 

was repeated as the Ca2+ concentration was slowly increased in the solution to 10 mM. An 

absorbance spectrum was taken at the end of the experiment to observe the calcium saturated holo 

form absorbance. The maximum value of each spectrum at the wavelength of emission was 

normalized with Eq. 3.1. The normalized data was graphed as normalized fluorescence versus 

wavelength (nm) and fitted with Eq. 3.2 to obtain the Kd. In the equations F is the fluorescence, A 

is the absorbance, F0 is the lowest fluorescence value with no Ca2+, Fmax is the greatest fluorescence 

value at Ca2+ saturation, p is the protein being analyzed, and r is the reference protein.  
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3.2.4 Chromophore pKa 

The pKa of the chromophore was determined by taking fluorescence spectra of the protein 

in various pH conditions. A 10 M protein sample was made in 12 different pH buffers, outlined 

in Table3-2, with 2 M EGTA and incubated overnight at 4 °C. The next day the pH of each 

sample was determined using a pH meter to observe the calcium free apo form pH. A fluorescence 

spectrum was taken at the 395 nm and 488 nm excitation wavelengths using the fluorometer. The 

protein was saturated with 10 M Ca2+, and the fluorescence spectrum was taken again. The pH 

of each sample was determined using a pH meter to observe the calcium saturated holo form pH. 

The data was normalized with the Eq. 3.3. The normalized data was graphed as the normalized 

fluorescence versus pH and fitted with Eq. 3.4 to obtain the chromophore pKa of the apo and holo 

forms. 

 

Table 3-2 Buffers used for pKa determination 

Buffer Concentration (mM) pH 

Sodium Acetate (NaOAc)  500 2.0 

(NaOAc) 10 3.0 

(NaOAc) 10 3.5 

(NaOAc) 10 4.0 

2-(N-morpholino)ethanesulfonic acid (MES) 10 5.0 

(MES) 10 5.5 

(MES) 10 6.0 

piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES)  10 6.5 

(PIPES) 10 7.0 

2-Amino-2-hydroxymethyl-propane-1,3-diol (Tris)  10 7.4 

(Tris) 10 8.0 

(Tris) 10 9.0 
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3.2.5 Quantum Yield and Extinction Coefficient 

 The quantum yield () and extinction coefficient () are measures of the fluorescence 

efficiency and light absorption strength respectively of a species. The quantum yield was 

determined by preparing the protein at five different concentrations (15 M, 20 M, 25 M, 30 

M, and 35 M) in 10 mM Tris buffer (pH 7.4) with 2 M EGTA. The wild-type protein was also 

prepared at five different concentrations (5 M, 10 M, 15 M, 20 M, and 25 M) in 10 mM 

Tris buffer (pH 7.4) with 2 M EGTA as a control and for calculations.  The fluorescence spectra 

of the wild-type and apo protein form were obtained at excitation wavelengths 395 nm and 488 

nm using the fluorometer. The absorbance spectra for both proteins were obtained using UV-vis. 

Ten millimoles of Ca2+ were added to the protein sample. The fluorescence and absorbance spectra 

of the holo protein form were obtained the same as the apo form. The maximum value of 

fluorescence at the wavelength of emission was graphed versus the maximum value of absorbance 

at the wavelength of excitation for each protein to obtain the fitted line slope. This value along 

with the literature quantum yield of the template reference protein was used in Eq. 3.5 to calculate 

the quantum yield.  
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 The extinction coefficient was determined using an alkali denaturation assay. The protein 

was prepared at five different concentrations (15 M, 20 M, 25 M, 30 M, and 35 M) in 10 

mM Tris buffer (pH 7.4) with 2 M EGTA. The template protein was also prepared at 5 different 

concentrations (5 M, 10 M, 15 M, 20 M, and 25 M) in 10 mM Tris buffer (pH 7.4) with 2 

M EGTA. The absorbance spectra of the apo protein form and holo protein form, as well as the 

absorbance spectra of the wild-type protein, were acquired. The proteins were then unfolded to 

expose the chromophore by adding 0.1 M sodium hydroxide (NaOH). After mixing the absorbance 

was taken. To obtain the fitted line slope the maximum absorbance value of the folded protein was 

graphed versus the maximum absorbance value of the denatured protein. This slope along with the 

literature extinction coefficient value for the template protein chromophore at the maximum 

absorbance in the denatured form was used in Eq. 3.6. The quantum yield and extinction coefficient 

can be used further to determine the brightness of the protein as shown in Eq. 3.7. 
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3.2.6 Fluorescence Dynamic Range 

 The dynamic range is a measurement of the fluorescence intensity change from the apo to 

the holo form of our proteins. This characteristic was determined using the Ca2+ free and Ca2+ 

loaded fluorescence intensities. The peak data was analyzed using Eq. 3.8 to determine the 

dynamic range where F is the lowest fluorescence value and F0 is the highest fluorescence value 

upon Ca2+ saturation. 

 

3.3 Results 

3.3.1 Tertiary Structure 

 Figure 3-1 shows the Far-UV CD spectra of the EGFP and the variants D8, D9, D10, and 

CatchER. Ten scans of each were taken and averaged together in the program. Each protein is 

shown in dashed lines. The -sheet structure has a peak at 218 nm in Far-UV CD spectrum. An 

overlay of the variants and template spectra show there is no deviation from this range, and the 

protein’s secondary structure remains intact. The proteins were saturated with 10 mM Ca2+, and 

another CD spectrum of each was taken. The results of the holo forms are in the same color as 

their apo forms with a solid line. As with the apo form spectra, the holo form remains in the 218 

nm range with a fair amount of overlap. 
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Figure 3-1 Far-UV CD of CatchER variants 

Each 20 M protein sample was prepared in 10 mM Tris (pH 7.4) with 5 M EGTA. Spectra 

collected for apo (dashed line) and holo (solid line) forms. 

3.3.2 Ca2+ Binding Affinity 

 The Ca2+ Kd was found by performing a titration as described in section 3.2.3 and 

normalized with Eq. 3.2 in the program KaleidaGraph. This experiment was done in triplicate.  

The Ca2+ concentration intervals are listed below in Table 3-3. Figure 3-2 shows the raw and 

normalized data for the titration experiments of D10. The absorbance spectra of the apo (2 M 

EGTA) and holo (10 mm Ca2+) forms of the protein show a consistent decrease in the absorbance 

of the neutral form of the chromophore at 395 nm and an increase in the absorbance of the anionic 
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form of the chromophore at 488 nm. The normalized curve demonstrates the saturation curve and 

gives the Ca2+ binding affinity of the protein. 

 

Table 3-3 Ca2+ concentrations used for Kd determination 

[Ca2+] (mM) in solution L of CaCl2 added to solution 

0 0 

0.005 0.5 (10 mM Stock) 

0.025 2.0 (10 mM Stock) 

0.050 2.5 (10 mM Stock) 

0.100 0.5 (100 mM Stock) 

0.250 1.5 (100 mM Stock) 

0.500 2.5 (100 mM Stock) 

1.0 5.0 (100 mM Stock) 

3.0 2.0 (1 M Stock) 

5.0 2.0 (1 M Stock) 

7.0 2.0 (1 M Stock) 

10.0 3.0 (1 M Stock) 
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Figure 3-2 Ca2+ titration data for CatchER variant D10 

Protein was prepared to 10 M concentration in 10 mM Tris (pH 7.4) with 2 M EGTA. 

Fluorescence spectra for the apo (dashed line) and holo (solid line) forms at 395 nm (top left) and 

488 nm (top right) excitation wavelengths. Absorbance spectra (bottom left) for apo (dashed line) 

and holo (solid line) forms. Normalized fluorescence data (bottom right) to give the Ca2+ Kd at 395 

nm (gold) and 488 nm (brown) excitation wavelengths. 
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Table 3-4 and Figure 3-3 show the normalized Kd values for D8, D9, D10, and CatchER 

for both 395 nm and 488 nm. The values were determined as outlined in section 3.2.3 and 

graphed using Kaleidagraph. 

 

Table 3-4 Normalized Ca2+ Kd values for CatchER variants 

Protein D8 D9 D10 CatchER 

395 nm 1.43 ± 0.01 1.89 ± 0.02 0.56 ± 0.02 0.32 ± 0.01 

488 nm 1.10 ± 0.01 1.46 ± 0.03 0.40 ± 0.02 0.23 ± 0.01 
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Figure 3-3 Normalized Ca2+ Kd values for CatchER variants 

Each 10 M protein sample was prepared in 10 mM Tris (pH 7.4) with 2 M EGTA. Ca2+ 

Kd for the 385 nm excitation (green) and 488 nm excitation (black) in mM 
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3.3.3 Chromophore pKa 

The buffers used to prepare the samples for pKa determination is outlined in Table 3-2 in 

section 3.2.4. The fluorescence spectra of D10 in each buffer shows that the increase in solution 

acidity results in increased loss of chromophore fluorescence. Normalization using Eq. 3.4 in 

KaleidaGraph gives the pH profile of the variants and the pKa value, shown for D10 in Figure 3-

4. There is a decrease in pKa at both 395 nm and 488 nm upon Ca2+ saturation. This change 

increases from D8 to CatchER and is larger at the 488 nm excitation. The effect of the increasing 

charge on chromophore pKa is shown in Table 3-5. The chromophore pKa increases slightly with 

the increase in binding pocket charge from -2 to -5. The addition of Ca2+ is shown to cause a 

decrease in the pKa at both wavelengths of excitation. This decrease gets slightly larger going 

from D8 to CatchER. 

 

 

Figure 3-4 pH profiles of CatchER variants 

Each 10 M protein sample was prepared in the buffers outlined in Table 3-2 with 2 M 

EGTA. Apo emission spectra of D10 in buffers of pH 1-9 (left). Normalized pH profile of D10 
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(right) for the apo (dashed line) and holo (solid line) forms for both the 395 nm (gray) and 488 nm 

(gold) excitation wavelengths. 

 

Table 3-5 CatchER variants pKa values 

Protein 

395 nm 488 nm 

Apo Holo Apo Holo 

D8 6.8 6.7 6.7 6.7 

D9 6.8 6.8 7.3 7.1 

D10 7.1 6.9 7.6 7.3 

CatchER 7.1 6.9 7.6 6.9 

 

3.3.4 Extinction Coefficient and Quantum Yield 

 The extinction coefficient () is a measurement of absorbance efficiency while the 

quantum yield is a measurement of fluorescence efficiency. The extinction coefficient () was 

determined using the denaturation assay as described in section 3.2.5 and the quantum yield was 

determined by measuring the photons absorbed vs. photons emitted. Both experiments were done 

at 488 nm, the common wavelength used for green fluorescence in biological studies. Table 3-6 

lists these values for all CatchER variants in the apo and holo forms. Figure 3-5 shows the 

normalized extinction coefficient and quantum yield values in the apo and holo forms.  
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Table 3-6 Extinction coefficient and quantum yield of CatchER variants 

Protein 

Extinction Coefficient () 

mM-1 cm-1 
Quantum Yield () 

Apo Holo Apo Holo 

D8 
19.0 21.4 0.7 0.6 

D9 
13.6 19.6 0.7 0.6 

D10 
15.3 20.6 0.8 0.6 

CatchER 
7.1 15.0 0.8 0.6 

 

 

Figure 3-5 Extinction coefficient and quantum yield of CatchER variants 

Five concentrations of each CatchER variant were prepared (10 M, 15 M, 20 M, 25 M¸ 

and 30 M) in 10 mM Tris (pH 7.4) with 2 M EGTA. Five concentrations of EGFP were prepared 

(5 M, 10 M, 15 M, 20 M, and 25 M) in 10 mM Tris (pH 7.4) with 2 M EGTA. Left: 

extinction coefficient comparison of CatchER variants in the apo (red) and holo (blue) forms. 

Right: the quantum yield comparison of the CatchER variants in the apo (red) and holo (blue) 

forms. 
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3.3.5 Protein Brightness 

 The extinction coefficient was multiplied by the quantum yield value to give the overall 

brightness of the proteins. This data is shown in Figure 3-6. 

 

Figure 3-6 Brightness of CatchER variants 

Five concentrations of each CatchER variant were prepared (10 M, 15 M, 20 M, 25 M¸ 

and 30 M) in 10 mM Tris (pH 7.4) with 2 M EGTA. Five concentrations of EGFP were prepared 

(5 M, 10 M, 15 M, 20 M, and 25 M) in 10 mM Tris (pH 7.4) with 2 M EGTA. Left: 

brightness comparison of CatchER variants in the apo (red) and holo (blue) forms. Right: the 

brightness values of the CatchER variants. 

 

3.3.6 High Salt Environment on Ca2+ Binding 

The effect of increased salt ion in the environment was measured by repeating the Ca2+ 

titration experiment outlined in section 3.2.3 and adding KCl salt to the Tris buffer. This was 

done for 150 mM KCl, 300 mM KCl, 500 mM KCl, and 1 M KCl. The raw data and normalized 

spectra for this experiment are shown in Figure 3-7. Table 3-7 lists the Kd values determined 

from this experiment at 395 nm and 488 nm excitation wavelengths. Values listed as NB indicate 

there was no binding of Ca2+ to the protein as the normalized data could not be fitted. 
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Figure 3-7 D10 high salt Ca2+ titration 

Each 10 M protein sample was prepared in 10 mM Tris (pH 7.4) with 2 M EGTA and 

150 mM (red), 300 mM (blue), 500 mM (green), or 1 M (black) KCl. Fluorescence spectra at 395 nm 

(top left) and 488 nm (top right) excitation wavelengths for the apo (dashed line) and holo (solid 

line) forms. Normalized fluorescence data at 395 nm (bottom left) and 488 nm (bottom right) 

excitation wavelengths. 
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Table 3-7 CatchER variants high salt Ca2+ Kd 

395 nm ex Ca2+ Kd (mM) 

Protein 150 mM KCl 300 mM KCl 500 mM KCl 1 M KCl 

D8 NB NB NB NB 

D9 NB NB NB NB 

D10 6.1 13.3 NB NB 

CatchER 2.0 9.74 7.1 NB 

488 nm ex Ca2+ Kd (mM) 

Protein 150 mM KCl 300 mM KCl 500 mM KCl 1 M KCl 

D8 NB NB NB NB 

D9 NB NB NB NB 

D10 5.8 NB NB NB 

CatchER 1.0 NB NB NB 

3.3.7 Magnesium Metal Binding 

The Mg2+ metal binding affinity of the proteins was determined the same as the Ca2+ 

titration outlined in section 3.2.3. MgCl2 stocks were used instead of CaCl2 stocks in the same 

concentrations as shown in Table 3-3. Figure 3-8 shows the raw UV-Vis, fluorescence, and 

normalized fluorescence data for D10. Table 3-8 lists the Mg2+ Kd values for each of the 

CatchER variants. Values listed as NB indicate there was no binding of Mg2+ to the protein as 

the normalized data could not be fitted 
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Figure 3-8 D10 Mg2+ titration 

Each 10 M protein sample was prepared in 10 mM Tris (pH 7.4) with 2 M EGTA and 

either 0 mM salt (green), 100 mM KCl (brown), or 100 mM NaCl (purple). Fluorescence spectra at 

395 nm (top left) and 488 nm (top right) excitation wavelengths and the absorbance spectra (bottom 

left) for the apo (dashed line) and holo (solid line) forms. Normalized fluorescence data at 395 nm 

and 488 nm excitation wavelengths (bottom right) with the fitted curve for no salt at 395 nm (gold 

solid) and 488 nm (beige solid) excitation wavelengths. 
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Table 3-8 CatchER variants Mg2+ titrations 

Proteins 395 nm 488 nm 

D8 4.8 ± 1.3 NB 

D9 2.42 ± 0.6 2.64 ± 0.2 

D10 1.6 ± 0.3 1.18 ± 0.06 

CatchER 0.5 ± 0.1 0.7 ± 0.1 

 

3.4 Discussion  

The template EGFP has a stable -barrel secondary structure. One concern with 

introducing a non-native Ca2+ binding site to its surface was that the cluster of negative charges 

would disrupt the tertiary structure and add instability to the protein. To examine this possibility, 

a CD spectrum was taken for each variant in the apo and holo form. The increase in repulsive 

charges made to engineer the binding pocket does not appear to have an unfolding effect on the 

variants as the overlay of the spectra in Figure 3-1 show the proteins remaining folded with all 

peaks remaining in the 218 nm range. The effect of Ca2+ binding on the tertiary structure was 

tested by saturating the proteins with 10 mM Ca2+ and running another CD spectrum of each. As 

with the apo form spectra, the holo form remains in the 218 nm range with a fair amount of 

overlap showing that Ca2+ binding does not appear to cause any structural changes to the protein. 

This also leads us to believe that the increase in fluorescence we see upon Ca2+ binding is caused 

by a change in the chromophore ionization and not a change in residue conformation. 

The raw fluorescence spectra for the apo form of each protein at the 395 nm excitation 

shows the basal fluorescence intensity increasing with the increased pocket charge. Upon Ca2+ 

saturation the fluorescence of D8 and D9 both increase to the same intensity while the intensity of 
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D10 surpasses the lower two charged variants. At 488 nm excitation, the basal levels of all the 

variants are at approximately the same level while their final intensities after saturation differ. 

While D10 is the highest once again, D8 is the second highest and D9 the lowest. CatchER 

maintains the highest fluorescence among the variants for both wavelengths. 

As the negative charges in the binding pocket increase, the quantum yield increases as well 

meaning the fluorescence of the protein becomes more efficient as you go from a -2 charge to a -

5 charge. When 10.0 mM of Ca2+ was added to the samples, each protein experienced a decrease 

in the quantum yield to the EGFP value. This entails that more photons are being absorbed than 

emitted when Ca2+ is added, an assumption that is supported by the absorbance spectrum of the 

protein with and without Ca2+ where the peak at 488 nm increases when Ca2+ is added for all of 

the proteins. 

While the quantum yield increased the extinction coefficient showed a non-specific trend 

with CatchER having the lowest value followed by D9, D10, and then D8. All four proteins saw 

an increase in the extinction coefficient with Ca2+ saturation, maintaining the order of intensity. 

The brightness was found to mimic the extinction coefficient trend as you increased the negative 

charge in the binding pocket. When Ca2+ was added, CatchER had a noticeable increase in 

fluorescence. This shows that although the proteins get dimmer going from a -2 to -5 magnitude 

when Ca2+ binds a favorable optical change useful for in vivo use is seen in the protein with the 

greatest charge. 

 The fluorescence response of each variant to calcium was observed using a fluorometer as 

described in section 3.2.3 with the Ca2+ increments described in Table 3-1 to learn the electrostatic 

effects on Ca2+ binding affinity. The Kd was calculated using Eq. 3.1 in section 3.2.3 above. When 

there is more metal bound protein in solution than dissociated protein and metal ions than the Kd 
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will be a small value. The smaller the Kd, the greater affinity the protein has for the metal. The 

observed trend for the variants was that the magnitude of the negative charge was directly related 

to the Ca2+ binding affinity of the protein. As the negative charge in the binding pocket was 

increased going from D8 to CatchER the affinity increased. This can be seen as the normalized 

fluorescence curve takes a tighter shape with a lower error in D10 and CatchER. 

This change in binding affinity could be seen in the raw fluorescence data. As seen in Figure 

3-2 at 395 nm excitation the basal fluorescence intensities increase with the increased charge. At 

488 nm the basal fluorescence level is nearly the same for all of the variants. The fluorescence 

change upon saturation at both wavelengths of excitation is greatest for D10 and CatchER while 

D8 shows a greater change in fluorescence than D9.  

All of the proteins maintain the pH sensitivity that is seen in GFP derived chromophores. 

The pKa is shown to increase slightly with the pocket charge from 6.8 to 7.1 at 395 nm and 6.7 to 

7.6 at 488 nm shown in Figure_. With the addition of Ca2+ all pKa values either remain the same 

or experience a slight decrease in value. Even with the Ca2+-induced decrease, the chromophores 

remain pH sensitive. 

After determining that the increasing pocket charge improved the affinity for Ca2+, we were 

interested in understanding what effect increasing the electrostatic interactions of the environment 

would have on the binding affinity of the CatchER variants. This was done by repeating the Ca2+ 

titration experiments in conditions with increasing KCl in the Tris buffer. As shown in Figure 3-

7, the intensity of fluorescence change decreases with the increasing salt conditions at both 

excitation wavelengths. The Ca2+ affinity for the already weakly binding D8 and D9 variants is 

eliminated at both 395 nm and 488 nm excitations in the presence of KCl. D10 and CatchER both 

lose binding completely after 150 mM KCl at 488 nm excitation. At 395 nm excitation D10 
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maintains weak binding up to 300 mM KCl and CatchER displays a nonspecific trend of weak 

binding up to 500 mM KCl. This lets us know that that the existence of salt ions does interfere 

with the sensor’s ability to bind with Ca2+ metal. 

Since all Ca2+ binding proteins, found natively and engineered, have been shown to bind 

with Mg2+ metal to some degree we were interested in determining the Mg2+ affinity of these 

sensors. The Ca2+ titration was repeated as outlined in section 3.3.2 but with MgCl2 being added 

instead of CaCl2. The trend for Mg2+ binding appears to be the same for Ca2+ binding where 

CatchER with the -5 charge has the greatest affinity for the Mg2+ metal at both wavelengths of 

excitation. The Ca2+ Kd values for CatchER are 0.32 mM and 0.23 mM for 395 nm and 488 nm 

excitation respectively and the respective Mg2+ Kd values are 0.5 mM and 0.7 mM. CatchER 

exhibits a stronger binding for Ca2+
 at 488 nm and Mg2+ at 395 nm. The Mg2+ affinity is 

approximately two times weaker a both wavelengths than the Ca2+ affinity overall for both 

excitations. 

3.5 Conclusion 

One challenge in sensor engineering using the grafting method is preventing interactions 

between the binding site and other intracellular proteins. This can be prevented by creating a de 

novo site, as done with CatchER. This process involved increasing the negative charge of the 

Ca2+ binding pocket through mutagenesis to create CatchER with a complete -5 charge. CatchER 

was compared with its variants of lesser pocket charge: D8 (-2), D9 (-3), and D10 (-4). The 

results show that CatchER has the most significant fluorescence change with Ca2+ binding, 

improved quantum yield, and the greatest affinity for Ca2+, making this an efficient method of 

sensor engineering. 
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4 Targeting of CatchER to the Membrane of the Endoplasmic Reticulum 

4.1 Need for Targeting Capabilities 

The Ca2+ homeostasis in cells is important for maintaining function (Chapter 1.1). This 

homeostasis is regulated by Ca2+ channels and pumps on the cell and organelle membranes and 

by buffer proteins throughout the cell. Most of the Ca2+ in the cell is stored in the SR/ER, and the 

lowest amount of free Ca2+ is seen in the cytosol. The intracellular organelles contain Ca2+ levels 

appropriate for their function, such as post-translational modifications in the Golgi and 

polypeptide degradation in the lysosomes. Ca2+ movement to and from the SR/ER occurs using a 

number of channels and pumps located on the membrane such as the inositol tris-phosphate 

receptor (IP3R), ryanodine receptor (RyR), and Sarco/Endoplasmic Reticulum Ca2+ ATPase 

(SERCA). The release of Ca2+ as a second messenger from the SR/ER to the cytosol, by either an 

action potential or Ca2+-induced calcium release (CICR), activates a number of biological 

pathways such as muscle contraction in muscle cells and neurotransmitter release in the neurons. 

Malfunction of these channels and pumps can cause irregular Ca2+ movement and concentrations 

in the cell. These malfunctions could be due to mutations or expression in the channels and can 

lead to diseases such as diabetes, Alzheimer’s disease42, Darier’s disease25, heart disease, and 

Huntington’s disease8 to name a few. The field of Ca2+ sensor development has thus grown out 

of the need for tools to monitor intracellular Ca2+ dynamics.  

There are many synthetic fluorescent dyes utilized for intracellular Ca2+ measurement 

that provide a wide range of colors, wavelengths, and Ca2+ affinities. The major setback of these 

dyes is that they lack targeting capabilities for localized Ca2+ measurements. The genetically 

encoded Ca2+ indicators (GECIs) are protein based with non-native Ca2+ binding site added by 
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manipulating the protein DNA sequence. DNA manipulation also allows GECIs to be targeted to 

specific parts of a cell with the addition of a target sequence.  

For measuring Ca2+ flow in and out of the SR/ER a sensor could be targeted a couple of 

different ways. The ER targeting sequence from calreticulin and the ER retention sequence 

lysine-aspartate-glutamate-leucine (KDEL) could be used for sending a sensor to the lumen of 

the ER. Transmembrane domains, such as those from the Ca2+ channels, pumps, and binding 

proteins of the SR/ER, can also be used as targeting sequences. Transmembrane regions of an 

SR/ER protein are often inserted cotranslationally or post-translationally43 into the membrane. 

Our lab has already attached the first 18 amino acids of calreticulin and the KDEL 

retention sequence to the N and C terminals respectively to target our sensors to the SR/ER. The 

objective of this chapter is to develop the calcium sensor CatchER at various local SR 

environments to understand the key determinants important for targeting. Attaching a 

transmembrane sequence to one or both sides of a Ca2+ sensor, such as CatchER, could anchor it 

to various local cellular environments close to the membrane of the SR/ER and allow for local 

Ca2+ dynamic measurements. 

In this chapter, we present work done to target CatchER by placing transmembrane 

domains from integral ER proteins RyR and calnexin to anchor the protein in the ER membrane 

with an intended orientation. We first identify what segments of each protein to use for the 

anchoring process. We then discuss the results of drug-induced Ca2+ release from the ER and 

possible protein orientation. Lastly, we discuss plans to improve the targeting of CatchER further 

for local ER/SR Ca2+ measurement. 
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4.2 Design of Targeted CatchER Constructs 

The ryanodine receptor (RyR1) and calnexin membrane proteins of the SR/ER were 

chosen for CatchER anchoring constructs shown in Figure 4-1. The transmembrane proteins of 

the SR/ER have been found to heterogeneously express on the membrane so these constructs 

would be expected to express in the region of the receptor or protein from which the selected 

transmembrane domain (TMD) was taken. The Zorzato model44 for the topology of the RyR1 

channel was used to select which segments to use for targeting. Four constructs for anchoring 

CatchER to the SR/ER membrane were previously made using RyR1: CatZ5, CateZ5, CatLeZ5, 

and Z10Cat. These constructs were made using the 5th and 10th TMDs of RyR1 with CatchER 

having an orientation toward the cytosol.  

CatZ5, CateZ5, and CatLeZ5 are all single TMD constructs. CatZ5 was made using TMD 

5 (Z5) of RyR1 fused to the C-terminal of CatchER. For the construct, CateZ5 part of the loop 

regions on each side of Z5 were included to make an extended eZ5 targeting sequence fused to 

the C-terminal of CatchER. In the CatLeZ5 construct the extended eZ5 region was again used 

with a Ser-Leu-Pro-Ala linker was added between the C-terminal of CatchER and N-terminal of 

the TMD. The Kozak sequence was also added to the N-terminal of CatchER to improve the 

protein expression in mammalian hosts. The Z10Cat construct uses two TMD domains from 

RyR1. Z10Cat resembles CatLeZ5 with the addition of TMD 10 (Z10) to the N-terminal of 

CatchER with a single Pro amino acid linker between the two. These constructs would express 

on the region of the membrane with RyR1 and measure the dynamics of Ca2+ moving out of the 

SR/ER. 

A fifth construct Z10CatR was designed using the same 5th and 10th RyR1 

transmembrane domains in Z10Cat to have CatchER oriented toward the SR/ER lumen. This 
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construct uses CatchER with calreticulin and KDEL ER retention tags on the N and C-terminal 

respectively. The terminals of the TMDs were swapped to change the orientation. eZ5 followed 

by the single Proline linker and Kozak sequence are fused to the N-terminal before the 

calreticulin signaling sequence while the S-L-P-A linker followed by Z10 are fused to the C-

terminal after the KDEL retention sequence.  

A sixth construct CaX was made using the single transmembrane domain from calnexin 

(X) fused to the N-terminal with no linkers to give CatchER a cytosolic orientation. This 

construct would express in the mitochondria-associated endoplasmic reticulum membrane45 

(MAM) where calnexin46, 47, a Ca2+ chaperone that assists with glycoprotein assembly, is 

expressed and be useful in measuring Ca2+ concentrations in this localized region of the SR/ER. 
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Figure 4-1 Constructs of targeted CatchER 
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4.3 Materials and Methods 

4.3.1 PCR Sample Preparation and Process  

 The KOD hot start polymerase kit from Novagen was used for adding large TMDs 

to the proteins. For KOD a 50 L solution was made by adding 5 L of 10X KOD polymerase 

buffer, 0.1-0.2 mM of 2 mM dNTPs, 1.5-2.25 mM of 25 mM MgSO4, 4 L of 10 ng template 

DNA, 0.5 L of each 30 M primer, 1 L of the KOD polymerase, and the rest sterile ddH2O to a 

PCR tube. 

4.3.2  Gel Extraction, Ligation, Inoculation, and Sequencing  

 DNA samples amplified using the KOD hot start polymerase were extracted using the gel 

extraction technique. The entire solution was inserted into 0.8-1.0% agarose DNA gel run for ~1 

hour at 70 volts. The product band was cut out, and the DNA extracted using a QIAquick gel 

extraction kit as directed. The sample was then ligated using the rapid DNA ligation kit from 

Thermo Fisher Technologies according to the company protocol. The ligated sample was amplified 

using DH5 E. coli competent cells. Fifteen microliters of the ligated product were added to 50 

L of competent cells and put on ice for 30-90 minutes. The mixture was then placed in a 42 °C 

water bath for exactly 90 seconds. Following this heat shock step, the mixture was placed back on 

the ice for 2 minutes before adding 200 L of nutrient rich XYZ media and incubating at 37°C for 

30-90 minutes. Following incubation, 200 L of the solution was spread on an ampicillin-treated 

agar plate and left to incubate overnight at 37°C. 

 The plate was retrieved after 16-18 hours of incubation. Ten microliters of ampicillin were 

added to 10 mL of LB media in a 50 mL falcon tube for each colony selected. One colony was 

added to each tube using an inoculation loop, and the solution was left to shake at 37°C overnight. 
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After 16-18 hours of incubation the DNA was amplified using QIAprep miniprep kit as directed. 

The DNA obtained was sent for sequencing to Genewiz Inc. Samples with the correct sequence 

were expressed and used for further study. 

4.3.3 Transfection in Mammalian Cells 

The proteins were placed in the pcDNA3.1 vector for mammalian expression. In vivo 

studies were carried out in C2C12 mouse myoblast cells and HEK293 cells. The cells were cultured 

in high glucose DMEM buffer with 10% fetal bovine serum (FBS). The transfection reagent used 

to deliver the protein DNA into the cell was lipofectamine. A 1:2 g DNA to L lipofectamine 

ratio was used for EGFP based protein transfection. One milliliter of transfection solution was 

prepared for every dish of cells being transfected. Two tubes of 0.5 mL OPTI were prepared. The 

lipofectamine was added to one and the DNA to the other. The solutions were left to sit for 

approximately one minute at room temperature. The DNA solution was then added in its entirety 

to the lipofectamine solution. After using a pipette to mix the solution was centrifuged for five 

seconds and placed in a dark, room temperature drawer to incubate for five minutes.  

 For HEK293 cells the cells were previously split to the imaging slides and left to reach 

40% confluency before transfection. The cells were rinsed with Hank’s Balanced Salt Solution 

(HBSS) before adding four milliliters of OPTI buffer. After the incubation time has lapsed the 

transfection solution was added dropwise to the dish and left to incubate at 37 °C for four hours. 

The buffer was then changed to fresh DMEM and the cells left for 36-48 hours to allow protein 

expression. 

For C2C12 cells the cells were split just before transfection. During the incubation time, 

the cells were rinsed with HBSS and digested in trypsin to split. The cells were transferred to the 

cover slips with three milliliters of DMEM buffer and one milliliter of OPTI buffer. After the 
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incubation time has lapsed the transfection solution was added dropwise to the dish and left to 

incubate at 37 °C for 24 hours. The buffer was then changed to fresh DMEM and the cells left for 

36-48 hours to allow protein expression. 

4.3.4 Mag-Fura-2 Cell Diffusion 

Mag-Fura-2 is a high-affinity ratiometric Ca2+ dye designed for measurement of Ca2+ in 

the SR/ER. The acetoxymethyl (AM) ester for was used to quickly and easily load the dye into 

the C2C12 cells. Pluronic f-127, a nonionic compound, was used to facilitate the solubilization 

of the dye in the biological cell media. The cells were split onto slides and allowed to grow for 

24-36 hours before dye loading. One milliliter of HBSS solution was placed in a 1-mL 

Eppendorf tube. To this, four microliters of 1 mM Mag-Fua-2 and two microliters of 20% 

pluronic f-127 was added. The dish of cells was rinsed three times with HBSS solution, and then 

two milliliters of HBSS added. The entire dye-pluronic-HBSS solution was added to the dish and 

left for incubation in a dark area for 15 minutes. The cells were gently rinsed once more and 

mounted for imaging. 

4.3.5 Fluorescence Dynamic Range 

 The dynamic range is a measurement of the fluorescence intensity change from the apo to 

the holo form of our proteins. This characteristic was determined in vivo using cultured cells 

transfected with the tagged protein as described in section 4.3.3 or Mag-Fura-2 dye loaded as 

described in section 4.3.4. The slide containing the transfected cells, as outlined in section 4.3.3, 

was rinsed three times with 1.8 mM Ca2+ Ringers buffer (145 mM NaCl, 2.5 mM K2HPO4, 1 mM 

MgSO4, 10 mM HEPES buffer, 10 mM glucose, 1.8 mM Ca2+; pH 7.4) and mounted for imaging 

using the Leica microscope at 40X magnification. After ideal cells were found and focused, the 

experiment was carried out at 550 nm excitation in KCl rinse solution (125 mM KCl, 25 mM NaCl, 
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10 mM HEPES buffer, 0.2 mM MgCl2; pH 7.25). The cell walls were first permeated using 25 M 

digitonin. After rinsing the digitonin away with KCl rinse, 1 M EGTA was used to empty the ER 

of Ca2+. The cells were rinsed once more with KCl rinse and then saturated with 10 mM Ca2+. The 

peak data was analyzed using Eq. 4.8 to determine the dynamic range. 

 

4.3.6 CatchER Orientation Determination via Drug Treatment 

The orientation of the membrane-targeted CatchER constructs was determined in vivo 

using cultured cells transfected with the tagged proteins as described in section 4.3.3. The slide 

containing the cells were rinsed three times with 1.8 mM Ca2+ Ringers buffer (145 mM NaCl, 2.5 

mM K2HPO4, 1 mM MgSO4, 10 mM HEPES buffer, 10 mM glucose, 1.8 mM Ca2+; pH 7.4) and 

mounted for imaging using the Leica microscope at 40X magnification. After ideal cells were 

found and focused, the experiment was carried out at 550 nm excitation in the same 1.8 mM Ca2+ 

Ringer’s solution. After the signal had become stable the cells were treated with either 200 M 4-

chloromethcathinone (4-cmc) or 400 M caffeine, both agonist of the RyR, to induce Ca2+ flow 

out of the SR/ER. The peak was given time to recover before the agonist was rinsed off with 1.8 

mM Ringer’s buffer. The data was analyzed to determine the orientation of the protein. 

4.4 Results 

4.4.1 Dynamic Range of Mag-Fura-2 and CatchER 

The Mag-Fura-2 dynamic range experiment was carried out as outlined in sections 4.3.4 

and 4.3.5. No permeabilizing agent was added to this dish of cells. As shown in Figure 4-2 the 
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signal shows a decrease upon addition of 1 mM EGTA. After the signal baselines, the EGTA is 

washed off and 10 mM of Ca2+ is added, leading to a sharp increase in the signal. Once the signal 

levels off, the Ca2+ is washed away. 

 

Figure 4-2 Mag-Fura-2 dynamic range 

Dye was loaded in C2C12 cells using a 2:1 dye to pluoronic f-127 ratio and left to incubate in 

a dark space for 10 minutes. Data was obtained using the Leica inverted fluorescence microscope; 

488 nm excitation; 170 gain; 0.07 exposure time. Cell images were taken before (top) and after 

(bottom) experiment. 

 

The dynamic range experiment is repeated for the CatchER protein. The cells are 

transfected as described in section 4.3.3 with the CatchER protein being expressed at 30 ˚C 

instead of 37 ˚C for proper protein folding. As shown in Figure 4-3, after initial rinsing with KCl 

buffer the cells were permeabilized with 25 M digitonin. The digitonin was washed off shortly 
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after and 1 mM EGTA was added to chelate out any free SR/ER Ca2+. After rinsing off, the 

EGTA 10 mM Ca2+ was added to the cells and the signal increased. 

 

 

Figure 4-3 CatchER dynamic range 

Protein was transfected in C2C12 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 30 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 170 gain; 0.07 exposure time. Cell images were taken before (top) 

and after (bottom) experiment. 
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4.4.2 In Vivo Imaging of Anchored CatchER Constructs  

4.4.2.1 Z10Cat in C2C12 Cells 

Figure 4-4 shows the Z10Cat construct in C2C12 cells. The cells were treated first with 

200 M 4-cmc and then with 400 M Caffeine to induce SR/ER Ca2+ release as described in 

section 4.3.5. Both drug treatments induce a decrease in the protein’s fluorescence signal that 

recovers on its own over time. 

 

Figure 4-4 Z10Cat RyR agonist drug treatment in C2C12 cells 

Protein was transfected into C2C12 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 30 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 200 gain; 0.07 exposure time. Cell images were taken before (top) 

and after (bottom) experiment. 
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4.4.2.2 CaX in Hek293 and C2C12 Cells 

Figure 4-5 shows the CaX construct in Hek293 cells and Figure 4-6 shows the CaX 

construct in C2C12 cells. The cells were both treated first with 200 M 4-cmc to induce SR/ER 

Ca2+ release. Both cell types with this construct display a decrease in the fluorescence signal that 

partially recovers on its own over time. 

 

Figure 4-5 CaX RyR agonist drug treatment in Hek293 cells 

Protein was transfected into Hek293 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 30 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 200 gain; 0.07 exposure time. Cell images were taken before (top) 

and after (bottom) experiment. 
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Figure 4-6 CaX RyR agonist drug treatment in c2c12 cells 

Protein was transfected into C2C12 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 30 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 200 gain; 0.07 exposure time. Cell images were taken before (top) 

and after (bottom) experiment. 

 

4.4.3 Reorientation of Anchored Constructs 

When making the Z10CatR construct, because the TMDs are so large four pairs of primers 

were needed to add them. After completing all four rounds of PCR, a DNA gel was run to 

determine which samples to send to sequencing. Because this construct is nearly the same in size 

as the Z10Cat construct, Z10Cat was used for mass comparison as shown in Figure 4-7 below. All 

of the samples were lower on the gel than Z10Cat, indicating that they are smaller. It was decided 

to send samples 1, 4, 5, and 7 for sequencing. 
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Figure 4-7 Z10CatR PCR DNA agarose gel 

Ten microliters of diluted DNA from amplified PCR products of Z10CatR run in a 0.8-1.0% 

agarose gel. The gel was run at 70V for ~1 hour. Z10Cat was used for a size comparison. 

 

The sequencing came back to show that half of each domain was added correctly. The 

second half of the domains can be added directly to these samples using the same primers. In 

addition to finishing this construct on CatchER, this construct will be made using the CatchER-T 

protein, an improved CatchER variant with has three thermostability mutations that allow it to 

express at 37 C 

4.4.4 In Vivo Imaging of Improved CatchER Variants 

4.4.4.1 CatchER and CatchER-T Y49N 

The RyR agonist 4-cmc was used to deplete the SR/ER Ca2+ store and test the response of 

CatchER in mammalian cells. As shown in Figure 4-8 the fluorescence signal of CatchER 

decreases as Ca2+ flows from the SR/ER into the cytosol. 
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Figure 4-8 CatchER RyR agonist drug treatment in C2C12 cells 

Protein was transfected in C2C12 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 30 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 170 gain; 0.07 exposure time. Cell images were taken before (top) 

and after (bottom) experiment. 

 

CatchER-T Y49N is the CatchER protein with two mutations to improve the protein’s 

folding at 37 C. This protein was treated with 200 M of 4-cmc. As shown in Figure 4-9, the 

treatment with this drug caused a decrease in the fluorescence intensity. After ~3 minutes, the 

fluorescence began to recover on its own. This shows that the protein is functioning inside the ER 

as the decrease in the Ca2+ store caused a large decrease in the fluorescence intensity that began to 

recover as Ca2+ began to return to the ER. This indicates that the sensor can still function with the 

additional mutation. 
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Figure 4-9 CatchER-T Y39N RyR agonist drug treatment in C2C12 cells 

Protein was transfected in C2C12 cells using a 2:1 lipofectamine reagent to DNA ratio and 

left to express at 37 ˚C for 24-48 hours. Data was obtained using the Leica inverted fluorescence 

microscope; 488 nm excitation; 170 gain; 0.1 exposure time. Cell images were taken before (top) and 

after (bottom) experiment. 

 

4.5 Discussion 

The dynamic range conveys the change in the fluorescence of a Ca2+ sensor upon binding 

to Ca2+. The larger the dynamic range, the greater the fluorescence change from apo to holo 

form. This value was determined for CatchER in C2C12 mouse myoblast cells by taking the 

fluorescence in the holo form (fmax) over the fluorescence in the apo form (fmin) as shown in Eq. 

4.8 in section 4.3.5. The dynamic range for CatchER, shown in Figure 4-3, came out to be 1.04 

which is 31% lower than the 1.51 of Mag-Fura-2 shown in Figure 4-2. 
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 For the targeted constructs, designed to have CatchER anchored to the membrane of the 

SR/ER with an orientation toward the cytosol, the orientation was tested by transfecting the 

C2C12 and Hek293 cells with the targeted CatchER as described in section 4.3.3 and measuring 

the release of Ca2+ from the RyR. The RyR agonists 4-cmc and caffeine were used to induce 

Ca2+ release through the receptor from the SR/ER to the cytosol. The first construct tested was 

Z10Cat, which has the 10th and 5th TMD of RyR according to Zorzato’s topology on the N and 

C-terminals respectively shown in Figure 4-1, in C2C12 cells. This construct is expected to 

express in the location of the RyR receptors and measure the expected fluorescence signal is an 

increase with the addition of Ca2+ because it should be catching the Ca2+ coming out of the 

SR/ER with the cytosolic orientation. As seen in Figure 4-4 once 4-cmc is added there is a 5% 

decrease that recovers after ~4 minutes. The same trend is seen with the addition of caffeine, 

where a 5% decrease occurs with a slower recover time of ~8 minutes.  

 The second construct tested is CaX, which contains the single TMD from calnexin on the 

N-terminal to give CatchER a cytosolic orientation, in both Hek293 and C2C12 cells. This 

construct is expected to express in the mitochondrial-associated endoplasmic membrane (MAM) 

where the calnexin protein expresses. As with Z10Cat the protein is expected to measure the 

Ca2+ present in that region after release from the SR/ER and the fluorescence signal in is 

expected to increase. The signal after 4-cmc treatment in Hek293 cells, shown in Figure 4-5, 

shows a ~10% decrease in fluorescence that partially recovers after 6.5 minutes. In C2C12 cells, 

Figure 4-6, there is a ~13% fluorescence decrease that recovers in 6.5 minutes as it did in 

Hek293. The difference between the CaX signals in these two cell lines is the amount of 

fluorescence recovery. In C2C12 the fluorescence recovers ~98% of the way on its own whereas 

in Hek293 the signal only recovers ~50% of the way. 
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These results indicate that there is a strong signal coming from inside the SR/ER for both 

anchored constructs. There are two explanations for this: overexpression of protein not yet 

inserted and low concentration. While these CatchER proteins do not have any ER tags on them 

to induce translation inside the ER, the added hydrophobic TMDs signal for translation to occur 

inside the ER. There are two ways that a membrane protein can be inserted into the ER 

membrane: post-translation where it is translated and then inserted the ER membrane and co-

translation where the protein is inserted into the membrane as it is being translated. The CatchER 

proteins are likely being overexpressed and inserted post-translation causing a strong luminal 

signal. There is also the problem of low cytosolic Ca2+. It was hoped that placing CatchER in the 

vicinity of RyR that it would be able to measure Ca2+ as it is released but the concentration is 

likely still too low for the protein’s Kd. This causes the high luminal signal from the free protein 

to be the dominant signal we see. 

Since the cytosolic constructs appear to display strong luminal signal, it was decided to 

change the CatchER orientation to be strictly luminal by switching the TMDs in Z10Cat so that 

eZ5 is on the N-terminal and Z10 is on the C-terminal, called Z10CatR. To properly add these 

large domains, four pairs of primers were used in four separate rounds of PCR. Primer pairs one 

and three add the second half of TMDs ten and five respectively. If these add correctly, then 

primers two and four will allow for the addition of the first half of these domains by utilizing part 

of the first TMD sequences as part of the annealing section. Figure 4-7 shows the DNA agarose 

gel for seven amplified samples after PCR with the Z10CatR construct used as a size 

comparison. Sequencing of four of the samples showed that half of each domain, the second half, 

added correctly but the first half of each did not. The PCR rounds for primers two and four are to 

be repeated. 
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In addition to testing the orientation of the targeted constructs the drug treatment 

experiment can also test the effect of mutations on the CatchER fluorescence. The major 

downside to CatchER is that it does not express well at ambient body temperature and must be 

expressed at 30 ˚C instead. To counteract this, mutations that have improved fluorescence in 

other GFP derived proteins at ambient temperature were introduced to CatchER. Dr. Shen Tang 

made the S175G mutation to CatchER to create CatchER-T. Florence Reddish introduced the 

Y39N to CatchER-T to further improve the protein folding. The fluorescence response of one of 

these mutants, CatchER-T Y39N, is compared to that of CatchER. 

CatchER and CatchER-T Y39N, both containing calreticulin and KDEL ER retention tags 

on the N and C-terminal respectively, were transfected into C2C12 cells as described in section 

4.3.3, 30 ˚C for CatchER and 37 ˚C for CatchER-T Y39N, and treated with 4-cmc as described 

in section 4.3.6. The response of CatchER to Ca2+ release in C2C12, shown in Figure 4-8, is 

compared to the response of CatchER-T Y39N shown in Figure 4-9. It is first noted that 

CatchER-T Y39N has fluorescence comparable to CatchER after being expressed at ambient 

body temperature. The fluorescence signal for both proteins decreases as expected as Ca2+ is 

released into the cytosol. For CatchER the signal decreases by ~6% and the fluorescence 

intensity recovers two-thirds of the way on its own. CatchER-T Y39N experiences a ~10% 

decrease and shows a full intensity recovery on its own. Other mutations are being made to 

CatchER in addition to S175G and Y39N to improve the folding and protein brightness of 

CatchER at 37 ˚C. 

4.6 Conclusion 

Once a sensor has been developed, the next step is to target it for local Ca2+ 

measurements in specific areas. For CatchER, a low-affinity Ca2+ sensor best suited for the 
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SR/ER, the target region is the membrane of the SR/ER by utilizing the TMDs of native integral 

proteins of the SR/ER such as RyR and calnexin. The constructs created were designed to have a 

cytosolic orientation but displayed luminal signal when tested with RyR agonists. This prompted 

a new design with a luminal orientation to be designed.  

CatchER is actively being improved for its folding and fluorescence intensity at ambient 

body temperature as well as for membrane targeting for local Ca2+ measurements. The Y39N 

mutation to CatchER-T gave a protein with folding and fluorescence intensity at 37 ˚C that was 

comparable to CatchER at 30 ˚C. More mutations are being made to improve the brightness of 

CatchER, and these improved mutations are set to be used for the new targeting studies. 

 

5 Significance of this work 

The role of Ca2+ in the body is crucial for overall health and well-being. The tightly 

maintained dynamics of Ca2+ are regularly being studied and discrepancies being found to play a 

role in many diseases in the body. To further study how Ca2+ relates to these diseases the field of 

Ca2+ biosensor development has grown. This field is working to provide the need for Ca2+ 

biosensors. This work outlines the progress made to fill in the gaps that remain in the Ca2+ sensor 

field. We have worked to engineer a green EGFP based sensor for measurement of the SR/ER 

Ca2+ store and the optimize a pH insensitive red mCherry based sensor to allow for deep tissue 

imaging of Ca2+ in the SR/ER and in the more acidic organelles. 

The many channelopathies of the SR/ER require a sensor with weak binding affinity and fast 

kinetics that has specific targeting for localization around the channel of choice. The green 

CatchER work includes studies on the validity of a de novo binding pocket creation method and 

work, on membrane targeting with cytosolic orientation. It was discussed in chapter 3 that a de 
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novo site could be created, eliminating the problem of intracellular protein-protein interactions 

seen with grafted sensors using calmodulin Ca2+ binding sites. Introducing negative charges into 

the chromophore environment to create the pocket changed the absorbance spectrum from the 

EGFP template spectrum to resembling that of the wtGFP spectrum with a neutral chromophore 

peak at 395 nm and an anionic chromophore peak at 488 nm. The amount of neutral form 

increased with the increasing charge while the anionic form decreased. The complete binding 

pocket in CatchER with the -5 charge displayed the greatest affinity for Ca2+ in addition to 

having the greatest change in fluorescence and protein brightness upon Ca2+ binding, making 

CatchER useful for intracellular measurement. 

To obtain measurements for Ca2+ in the desired cellular environment, it is necessary to 

successfully target the protein to a specific organelle. Doing this would allow for Ca2+ dynamic 

measurements in the target region without interfering signal from other areas with similar Ca2+ 

concentrations. The cell already has polypeptide targeting sequences and tags for co-translation 

and post-translation which are commonly used for this goal, KDEL for SR/ER retention for 

example. These tags, however, will result in homologous expression of the protein throughout 

the target organelle. For disease studies, it would be useful to measure the local Ca2+ dynamics in 

the location of the suspected problem area, such as IP3R2 in arrhythmia of atrial cells or RyR in 

CPVT.  

Chapter 4 of this work focused on this targeting where constructs of CatchER were targeted 

to be anchored to the SR/ER membrane with a cytosolic orientation using transmembrane 

domains of RyR1 and calnexin. It was found that the constructs were displaying dominant 

signals from the lumen of the SR/ER when the release of SR/ER Ca2+ was induced with RyR 

agonists, possibly due to overexpression in the SR/ER and a low concentration of cytosolic Ca2+ 
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in the area of the sensor fully inserted into the membrane. Because of this, new constructs are 

being made to have the protein facing the luminal side of the SR/ER for Ca2+ measurement. 

While GFP derived chromophore are commonly being used to biosensor development, they 

are sensitive to the pH of the environment and lack the ability to measure Ca2+
 in the more acidic 

organelles such as the lysosomes. This leaves a gap in intracellular Ca2+ measuring capabilities. 

The DsRed derived mCherry protein would not have this problem with a chromophore pKa of 

~4.5 and would allow for deeper tissue penetration in imaging because of the longer wavelength 

excitation and emission. This protein was used to engineer a red Ca2+ sensor in the same way as 

the green CatchER. While the sensor displayed the desirable mM Ca2+ Kd for measurement, the 

fluorescent optical properties and dynamic fluorescence change with Ca2+ binding were weak 

compared to the green counterparts.  

Chapter 2 describes the work to optimize these properties by attempting to change the 

ionization of the chromophore. It describes the effect of mutations made to residue 163 in the 

sensitive H-bond region of the chromophore. The Q163M mutation in both MCD1 and MCD15 

sensors caused a drastic increase in both UV-Vis and fluorescence spectra for both proteins, with 

MCD1 Q163M surpassing the intensities of the mCherry template. The extinction coefficient and 

protein brightness were both greatly increased as well, showing that this mutation increased the 

stability and formation efficiency of the chromophore. Other mutations to this residue, including 

Q163L, Q163I, Q163K, Q163N, and Q163E are still being studied but do not appear to show 

comparable improvement in the chromophore stability. The Q163K/E/N mutations caused a loss 

in protein color while Q163I displayed a decrease in the protein expression yield. This project 

will continue with mutations in the other hot spots being made with and without the 

chromophore stabilizing Q163M mutation.  
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This work is novel in improving on fluorescent protein sensors. It provides a new method of 

engineering as well as strategic steps for manipulating the chromophore ionization. It is our plan 

to utilize the green and red sensors in new and improved ways such as local versus global Ca2+ 

measurements as well as measurements in acidic organelles of the cell. 
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APPENDIX  

PCR program for targeting of CatchER and site mutagenesis of MCD1x mutants 

Protocol for primer phosphorylation 

 Spin down primer powder 

 Add enough EB buffer to make 100 uM sample (for 53.4 nM use 534 L, etc) 

 Label reverse and forward tubes 

 For phosphorylation of 5` end 

o PNK kit Procedure 

 Ingredients (do for each primer); total volume should be 50 L 

 5 L of 10X PNK buffer 

 1 L of 10 mM ATP pH 7.5 

 30 M of Primer (for 100 M samples: 5 L) 

 38 L sterile dH2O 

 1 L of PNK Enzyme 

 Incubate at 37° C for 30 minutes 

 Deactivate enzyme by putting at 65° C - 70° C for 10 minutes 

  PCR procedure 

o KOD kit procedure 

 Ingredients (1 sample per PCR); total volume should be 50 L 

 34 L sterile dH2O 

 5 L of 10x KOD buffer 

 3 L 25 mM MgSO4 

 0.5 L of each 30 M primer (total 1 L primer) 

 1 L of 10 ng/L template DNA 

 5 L of 2 mM DmTP mix 

 1 L polymerase enzyme 

o PCR instrument 

 File and load 

 Lid- 105 

 No wait 

 1- T = 95° C for 2 min – Hot start 

 2- T = 95° C for 45 sec- denature cycle 1 

 3- T = tm -5° C for 30 sec - annealing 

o If selecting gradient 

 Main menu-options-gradient-.02 mL tube 

 R= 3.0° C/s (how fast) 

 G = 4 
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 4- T = 70.0° C for 3.30 min- elongation 

 5- go to step 2 – repeat 24 

 6- T = 70.0° C for 3.30 min- last elongation 

 Hold at 4° C - exter 

o Exit-save yes-none, override yes 

 Close lid-turn to right- hit start 

o PFU kit procedure 

 Ingredients (1 sample per PCR); total volume should be 50 L 

 34 L sterile dH2O 

 5 L of 10x PFU buffer 

 1 L of each 30 M primer (total 2 L primer) 

 4 L of 20 ng/L template DNA 

 5 L of 2 mM DmTP mix 

 1 L polymerase enzyme 

o PCR instrument 

 File and load 

 Lid- 105 

 No wait 

 1- T = 95° C for 1.5 min – Hot start 

 2- T = 95° C for 30 sec- denature cycle 1 

 3- T = tm- 5° C for 1 min - annealing 

o If selecting gradient 

 Main menu-options-gradient-.02 mL tube 

 R= 3.0° C/s (how fast) 

 G = 4 

 4- T = 72.0° C for 8 min- elongation 

 5- go to step 2 – repeat 24 

 6- T = 72.0° C for 8 min- last elongation 

 Hold at 4° C - exter 

o Exit-save yes-none, override yes 

 Close lid-turn to right- hit start 

 

DNA gel -0.8% (0.8 g/100 mL) 

 Make TAE buffer from 10X concentrated bottle if none made 

 Need two red end pieces, clear dish, and white comb 

 35-50 mL of buffer sufficient for small holder 

 Place red end pieces on either end of holder 
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 Prepare gel 

o Place 50 mL of 1X TAE buffer with 0.4 g of Agarose (want 0.8% - 1% so use 0.4 

g - 0.5 g) in flask 

o Microwave for 50 seconds or until solution is clear 

o Add 5 L of DNA dye( diluting 10,000 times) 

o Swirl until solution is pink and allow to cool slightly (when flask isn’t hot-hot to 

touch) 

o Gently pour into holder and add in the white comb 

o Cover gel to cool 

 Centrifuge PCR samples for a couple seconds 

 To remove the gel scrape sides with syringe needle and pour on a little buffer to loosen. 

Remove red end piece from one end. Gently remove the white comb. Scrape other end 

and remove red end piece. 

 Place holder in gel cassette (wells on black end) and cover to top with TAE buffer 

 Make the DNA samples 

o Add dye (6X so 10 L for the 50 L sample). Pipette to mix 

 Add 10 L of marker (equal weight DNA) in lane 2 and each sample in lanes 4-end 

 Set machine to 70 volts and start (look for bubbles on black end to ensure it’s working) 

 Remove once samples have reached approximately ½ way down the gel 

 Check for DNA under UV light (in dark) and cut those sections out. 

o These are ~1 g in weight 

 Place in centrifuge tubes 

DNA extraction 

 Dissolve gel to get DNA 

o 1 tube weighs ~1 g 

o Weigh with gels in to determine the gels weight 

o Going to add 300 L of dissolving buffer for every 100 mg of gel 

o Follow directions on kit to ligate and extract DNA 

 Typically 30 L of solution 

 3 L buffer 

 ~5-15 L DNA (however many samples) 

 1 L enzyme (ligase) 

 Rest water 
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