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THE USE OF IN SITU GAMMA RADIATION MEASUREMENTS AS A METHOD OF 

DETERMINING RADON POTENTIAL IN URBAN ENVIRONMENTS 
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ABSTRACT 

Radon is a radioactive gas that is the leading cause of lung cancer in non-smokers. While 

radon is natural and ubiquitous, higher concentrations greatly increase cancer risk. As such, 

understanding the spatial distribution of radon potential is key to planning and public health 

efforts. This project tests a method of determining radon potential using in situ measurements of 

gamma radiation. The in situ measurements were used to create a raster of gamma emissions in 

the study region using kriging. The resulting model showed that the operational scale of gamma 

radiation in the study region was 4.5 km. Indoor radon concentrations were then assigned gamma 

emission rates from the raster and the two were compared. While there was evidence of an 

association between higher gamma and high radon, the gamma readings were not quantitatively 

predictive. As such only categorical predictions of radon potential and risk could be made.  
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1 INTRODUCTION  

 Indoor radon gas represents a serious public health risk. Behind smoking, radon is the 

leading cause of lung cancer, accounting for between 3 and 14 percent of all lung cancer deaths 

worldwide (Darby et al., 2001; World Health Organization, 2009; Noh et al., 2016; Oh et al., 

2016; Sheen et al., 2016). This risk is so high in part because radon gas is one of the most 

common radioactive particles to which people are exposed (Kauppinen et al., 2000), accounting 

for as much as 50% of a person’s  lifetime radiologic dose (Garcia-Talvera et al., 2007). Further, 

indoor concentrations of radon are often 10 times higher than average outdoor concentrations 

(UNSCEAR, 1994; Harley et al., 1988). This makes indoor radon especially troubling as 

increasing exposure, either through increased duration or increased magnitude, is directly 

correlated with heightened cancer risk (WHO, 2009; Planchard and Besse, 2015; Kang et al., 

2016). Cancer risk due to radon is increased further by smoking, with the risk of cancer among 

smokers who are regularly exposed to the Environmental Protection Agency action level of 

radon (4 pCi/L) being almost 9 times higher than the risk to non-smokers exposed to similar 

levels (EPA, 2009). This problem is especially bad in the US, where radon accounts for 

approximately 21,000 deaths annually (epa.gov/radon).    

 Radon is a naturally occurring, ubiquitous gas. Various radon gases form through 

radioactive decay of unstable isotopes such as thorium-232 and uranium-238 (National Research 

Council, 1999; Peterson et al., 2007). The uranium-238 decay series specifically forms radon-

222 via the alpha decay of radium-226 (Sakoda et al., 2011). This is important because radon-

222 is the most common radon nuclei found in buildings (WHO, 2009) and thus the decay of 

uranium-238 and its daughters in soil and bedrock are a driver of indoor Radon potential.  
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 One major control of indoor radon is geology. Because radon-222 is a byproduct of 

uranium-238 decay, the amount of uranium-238 contained in an area’s underlying bedrock will 

directly impact the amount of radon-222 released from the ground in that area; however, the 

amount of -238 is not uniform across all rock types, with some types (like granitic rocks and 

shales) having more uranium-238 on average (Muikku et al., 2007). Beyond just the amount of 

radioactive source material, bedrock characteristics such as permeability and porosity can affect 

the amount of radon-222 released into the overlying soil (or air in the case of rock outcroppings) 

(Bossew and Lettner, 2007). Fault activity can also affect radon-222 concentrations, with faults 

accumulating uranium-238 and providing pathways for radon to escape the ground (Pereira et al. 

2010).   

 Another key control of radon in any home is that home’s underlying soil. Soil gas 

infiltration is the primary natural source of radon entering any home (WHO, 2009). As such, 

soils high in uranium-238 are generally expected to produce higher radon concentrations. 

Additionally, as with bedrock, the permeability of soil can affect the amount of radon-222 

released from the ground (Bossew and Lettner, 2007). While soils high in uranium-238 are often 

the result of parent rock high in uranium-238, soils high in moisture or soils that have been 

transported from where they formed, such as floodplain soils, may result in very different radon 

emissions than would be expected based on their underlying geology (Grasty, 1997). 

 An important, non-natural control of indoor radon concentration is home construction and 

building materials. If a home is well built, lacking structural defects, said home is likely to have 

low radon-222 concentrations even if the emissions from the ground are very high (Vauptic et 

al., 2002). If there is a construction defect though, such as a foundation crack, radon will likely 

flow into the lower pressure of the home via the defect (Appleton, 2007). Additionally, climate 
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controls within the home will alter temperature and humidity, which can affect rates of radon-

222 infiltration into the home (Akbari et al. 2013). Finally, building materials, especially 

concrete and wallboard, can contain uranium-238 and uranium-238 progeny such as Ra-226, can 

lead to radon-222 emission from floors and walls (Chen et al., 2010).  

 In response to the health hazard posed by radon, researchers have attempted to predict 

radon concentrations in various areas, called radon potential mapping, using indoor radon 

concentrations and geology. This is done by generalizing known radon concentrations to the 

underlying geologic unit and extrapolating this to areas without radon measurements based on 

that area’s bedrock (Cinelli et al., 2012). Areas with underlying geology consisting of granitic 

and gneissic rock, both generally high in uranium-238, show a trend toward higher indoor radon 

concentrations (Buttafuoco et al., 2007). 

To further improve the accuracy of these geologic radon potential maps, other input 

variables, specifically gamma dose rate, have been also been investigated. Gamma radiation, 

measured in this study as the number of photons released/detected in a given area over a given 

time, is produced naturally as a result of the decay of potassium-40, throium-232, and uranium-

238 (Wilford, 2012). The latter two (throium-232 and uranium-238) produce radon as well 

(National Research Council, 1999; Peterson et al., 2007), and uranium-238 concentrations in 

various sources is an important control of radon-222. The link between gamma radiation and 

radon-222 is improved since more gamma photons are released during the uranium-238 decay 

cycle than any other gamma producing cycle (world-nuclear.org). In fact, uranium-238, which 

again is the progenitor of radon-222, is so well linked to gamma radiation that gamma 

spectroscopy was used for uranium mining exploration (Wilford and Minty, 2007). In the field 
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this link has held true, with gamma emissions having a linear relationship to soil Ra-226 (Garcia-

Talvera et al., 2013), which is in turn correlated to indoor radon-222 (Nason and Cohen, 1980). 

 The association between gamma and radon has been used to help create more robust 

radon potential maps. This association, while indirect as explained above, is consistent, with 

gamma emissions correlating with indoor radon (Szegvary et al., 2007a). One study in Northern 

Ireland found that equivalent U concentration, which was derived from aerial gamma emission 

rate measurements, was the most important independent variable in predicting radon potential 

(Appleton et al., 2011a). Other studies have found that gamma dose rate accounts for as much as 

58-60% of radon flux variability (Szegvary et al., 2007b; Griffiths et al., 2010). 

 Despite showing some ability to predict radon potential, methods of radon potential 

mapping focused on geology have serious shortcomings. Any study is only as accurate as the 

geologic data itself (Friedman and Groller, 2010). Often these studies only find correlations with 

some rocks (like granite, shales, and U enriched phosphate rocks) and radon concentrations 

(Buttafuoco et al., 2007), leaving variations of radon in other rock types unexplained. In some 

cases only a quarter of all variation in radon concentration can be explained by geology 

(Appleton and Miles, 2010), and this assumes geologic data are available and reliable, which 

simply is not true for some areas (Chen, 2009). 

 The shortcomings of geology focused radon potential mapping efforts would naturally 

lead one to prefer gamma radiation based efforts; however, these too have issues. While gamma 

emission rate functions as a proxy for uranium-238 concentration and can provide an immensely 

important independent variable when predicting radon-222 concentrations (Appleton et al., 

2011a), the gamma data are collected primarily via aircraft to improve spatial coverage. The 

issue is that aerial gamma measurements have a 1 km plus spatial resolution (Appleton et al., 
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2011b; Drolet et al., 2013). This poses problems because buildings and roads, which would 

naturally fall into those 1 km grid cells, can artificially increase or decrease gamma readings 

(Appleton et al., 2008). Further, aircraft must fly higher over cities, which introduces even more 

error because accuracy of gamma measurements decrease exponentially with distance from the 

ground (Appleton et al., 2008). Given the interference from the built environment, this data 

collection method is simply not accurate enough to be useful in a heavily urbanized 

environments, which is where the majority of people worldwide now live (United Nations, 

2014). 

 Problems with both of the methods of radon potential mapping explained above prompted 

this study to ask the following research question: how effective are in situ gamma emission 

measurements at predicting radon potential in urbanized environments? This question led to two 

primary objectives: 

(1) create a spatially complete database of forest-soil gamma emission for the entire 

study region, and 

(2) examine the relationship between gamma emission rate and indoor radon 

concentration. 

In answering the above question, this study attempts to determine if ground-truth measurements, 

which are intentionally taken in places with minimal influence from the built environment, can 

solve the problems associated with airborne gamma readings in a city. This would allow for the 

use of the gamma-based method of radon potential mapping to be used in environments where it 

would have previously been inaccurate. 
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1.1 Study Region  

The study region of this project is DeKalb County, located near the center of the Atlanta 

metropolitan statistical area in northern Georgia (Figure 1). DeKalb, with 722,161 residents and 

306,954 residential units in 2014 (census.gov), was selected for four reasons. First, DeKalb 

homes have been sampled for indoor radon enough to provide the data needed to achieve the 

second objective of this project. Second, DeKalb is heavily urbanized, with 13.5% of the county 

being classified as “urban” land by the USDA (Figure 2) and a population density of almost 

2,700 residents per mi2, while still having undisturbed, non-flood plain forest soils in some areas, 

allowing for completion of the first objective of this project. Third, DeKalb County has its own 

water system and very few private wells. This is important because radon can be found dissolved 

in water, especially water from drilled private wells (Vesterbacka et al., 2005). This additional 

radon exposure risk would have been very difficult to account for using the methods of this 

study; however, accounting for this exposure is not necessary in an area where these wells are 

uncommon, such as DeKalb. Fourth, DeKalb acts as a good case study for the type of area where 

knowing radon potential is important. Not all of the county is developed, despite being near 

Atlanta, a major, growing city. In the future, new development will lead to people living in 

previously undisturbed areas of the county. Knowing if those areas are at risk of radon exposure 

before development could help county officials make planning decisions to protect the 

population of newcomers prior to their moving in. 
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Figure 1 – Map of Georgia highlighting the Atlanta MSA and DeKalb County  
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Figure 2 – Map of urban land in DeKalb County (data source: USDA) 
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2 DATA AND METHODS 

2.1 Gamma emission rate sampling  

A geospatial database of gamma emissions in DeKalb County was created. Gamma 

emission readings were taken throughout the county using a Ludlum Measurements Inc. model 

2221 scaler ratemeter attached to a scintillation probe. This device (Figure 3) measured the 

number of gamma photons that came in contact with the scintillation probe per minute. While 

this ratemeter measure the full spectrum of gamma radiation (i.e. from sources other than 

uranium-238 decay), readings can be used to relate uranium-238 content from one place to 

another because the proportion of gamma radiation produce by uranium-238 remains constant 

(Szegvary et al., 2007b). To ensure that the measurements of gamma emission were the result of 

authigenic radiation and not merely an artifact of some disturbance to the soil, all sample sites 

were forest areas with older growth trees outside of flood plains (e.g. Figure 4).

 

Figure 3 – Ratemeter and scintillation probe used in gamma emissions sampling 
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Figure 4 – Example of a gamma emissions sample spot 

 

Sites were selected for sampling based on their suitability (i.e. whether they had 

undisturbed, forested soils) and their underlying geology. Residential areas were avoided to 

ensure investigators did not intentionally trespass on private property. Google Earth was used to 

determine if a site had both forested soils and was not on private property (Figure 5). Suitable 

sites found via Google Earth were than compared to DeKalb’s geology (Figure 6) to ensure sites 

did not all fall into a few geologic units. Once a site was selected, spots on top of each soil type 

(Figure 7) in the immediate vicinity of the site were selected. Three to five gamma emission 

readings would then be taken on top of each spot at the site (most sites had about three spots). 

The latitude, longitude, soil type, bedrock type, and result (in photons/min) of each reading 
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would be recorded at each spot. Bedrock was of particular importance, as uranium-238 is mostly 

in bedrock. Each of the three to five measurements at a spot were taken roughly a 5 to 10 meters 

apart to ensure that buried material was not distorting the reading and to ensure that small 

uranium-238 variations within soils and rock units could be captured. Each reading was one 

minute long. Once all readings for a specific spot were taken, the mean of those readings was 

assigned to that spot. 

 

Figure 5 – Example of a gamma emissions sample site (image credit: Google Earth) 
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Figure 6 – Map of geology in DeKalb County (data source: USGS) 
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Figure 7 – Map of soils in DeKalb County (data source: USDA) 
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2.2 Gamma emission rate analysis  

General descriptive statistics of gamma emission rates were gathered. First the basic 

descriptive statistics (mean, range, standard deviation) of gamma emission rates were calculated 

in order to get a general sense of the data. Spatial autocorrelation was tested for using Moran’s I. 

The normality of the data was also checked. Mean and standard deviation of gamma emission 

rates were also calculated for the data after grouping by soil and bedrock type separately in order 

to ascertain if gamma emissions differed by rock and soil type. 

In an effort to explore any possible connections between gamma emissions rates and 

soil/bedrock type, two one-way ANOVA test were run, one grouping gamma emissions by soil 

type and one grouping by bedrock type. A Tukey post-hoc analysis was then done for both to 

determine if any rock/soil type had consistently distinct mean gamma emission rates. Any 

soil/rock type with an n of only 1 was excluded as ANOVA requires a variance value to properly 

analyze a mean (with an n of 1 the variance is non-existent). The two-tailed critical value of each 

ANOVA test was based on α = .05. 

2.3 Spatial interpolation modelling  

In addition to statistical analysis, the gamma emissions data were also used to create a 

predictive spatial interpolation model for gamma emission rates across DeKalb. This continuous 

surface allowed gamma emission rates to be extracted to each of the indoor radon concentration 

readings this project had access to, allowing the project to have a good sense of the gamma 

emission rate for any radon measurement without having to individually sample for gamma 

emissions at each radon sample location. The method used for the spatial interpolation model 

was kriging. Kriging was chosen because kriging models automatically account for errors due to 

some random variation and can calculate root mean squared errors (RMSE) as well as standard 
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errors. To ensure that the most accurate surface possible was created, four different kriging 

models (simple, empirical Bayesian, ordinary, and universal) were run separately and compared 

to one another using standardized RMSE (defined as 
𝑅𝑀𝑆𝐸

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟
), and the model with the 

standardized RMSE closest to 1 (the perfect value) was chosen. The resulting raster was then 

generalized to a scale of 1 km, in keeping with the scale used by the studies mention in the 

introduction. 

In addition to creating a continuous, predictive surface, kriging modelling also produces a 

semivariogram, which represents the variance of paired points versus the distance between those 

points (Diem, 2003). Semivariograms often have a nugget, sill, and range (Figure 8). Break 

points within the semivariogram, which would include the range, can be understood to be the 

operational scale of a given phenomenon (Lam and Quattrochi, 1992; Diem, 2003). As such, the 

semivariogram can be used to determine if any region was sufficiently well sampled. Thus this 

study calculated the operational scale (defined here as the distance range of the semivariogram) 

and used half that distance as the optimal search radius to ensure full spatial coverage. 

 

Figure 8 – Idealized semivariogram 
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2.4 Radon sampling and analysis 

Indoor radon concentration readings were collected. These readings was obtained through 

the ongoing NIH funded project. That project had two sources of radon data available. The first 

data source was 2,054 readings data provided by a private radon testing firm, Air Chek Inc, and 

the second was 200 readings collected by the NIH funded project’s own volunteer effort (Figure 

9), which sampled for indoor radon in previously under sampled areas.  

The resulting 2254 indoor radon concentration readings were then compiled together and 

cleaned. First, radon values of zero were removed as such a reading is more likely the result of 

error, either during sampling on entering into the database, than anything else. Radon is 

ubiquitous and is essentially always present in some small quantity. Next, readings with no 

coordinates were thrown out because they would not be able to be paired with a gamma emission 

rate. Finally, readings taken at the same location but at various times were removed, save the 

first reading. This was done to ensure that the reading used was the natural state of the house, 

and not the result of some mitigation. After cleaning 1358 points remained (Figure 10). All 

analysis of radon was done using these points. 

Cleaned data was used to generate a semivariogram model of indoor radon. This was 

done to determine if any spatial autocorrelation present in the radon data was sufficient to help 

explain variations in said data. The nugget was also analyzed to determine if the sample scale 

was sufficiently fine to allow for interpolation. 
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Figure 9 – Map of the radon sample locations before data cleaning 
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Figure 10 - Map of cleaned indoor radon concentration sampling locations 

 



19 

Next, each reading was assigned a gamma emission rate value based on location. This 

was done by mapping the radon readings and extracting a gamma emission rate value to each 

point from the raster produced by the interpolation model mentioned above. Any points falling 

outside of the raster, and thus unable to be paired with a gamma value, were subsequently 

removed from the dataset. 

General statistics were obtained for radon and relationships between radon and gamma 

were tested for. First basic descriptive statistics, including mean and standard deviation, of the 

indoor radon concentrations were calculated. Next, a Spearman correlation test was used to 

determine if there was a relationship between gamma and radon. Then the points were grouped 

by radon value into below and at or above EPA radon action level (4.0 pCi/L). Gamma emission 

rate means of the two groups were compared using a t-test. Finally, a chi-squared test was used 

to compare radon, grouped by EPA action level, and gamma, grouped by mean (i.e. above or 

below the mean). All test statistics had a two-tailed with critical values based on α = .05. 

2.5 Radon potential mapping 

Based on the results of the gamma/radon comparison, a map of potential radon risk was 

created. This was done by stratifying the radon concentration values based on gamma emission 

rates into general categories of radon risk. Once categories were established, ANOVA testing 

comparing the mean radon concentrations of each category was done to ensure that the 

categories were in fact distinct from one another. This use of one-way ANOVA to ensure 

heterogeneity of radon values when they are grouped categorically by a parameter is in keeping 

with previous studies (Drolet et al., 2013; Drolet et al., 2014). To deal with issues of multiplicity 

if multiple ANOVA tests were needed to find heterogeneous categories, the two-tailed critical 

value was based on α = .01. 
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3 RESULTS 

3.1 Gamma emission rates  

After sampling, 400 valid locations were available for analysis throughout DeKalb 

without obvious spatial gaps (Figure 11). While there is some variation to the coverage, along I-

85 for example there is more sampling immediately south of the interstate than there is 

immediately north, this variation is the result of land use. This project avoided trespassing on 

private lands, and some areas of DeKalb are exceedingly residential, making public lands 

difficult to find. However, even taking into account the sometimes varying density of sample 

spots, it is clear that no portion of the county lacks representation in the sampling scheme. 

Descriptive statistics of the gamma emissions that were sampled shed light on the 

phenomenon itself. With values ranging from 2,798 to 25,575 photons/min, the 400 sample spots 

had a mean gamma emission rate of 10,586 photons/min (95% CI: 10,230 to 10,942 

photons/min, df = 399) (all gamma emission rates are rounded to the nearest whole number after 

analysis). The distribution of the gamma emission values is roughly normal despite a spike of 

below mean value between 7,000 and 8,000 photons/min (Figure 12). That uptick in below mean 

value coupled with a few very high (over 20,000 photons/min) values result in a histogram with 

a slight positive skew, but the deviation from normal is not enough to merit transforming the data 

and may simply be the result of some clustering of sample sites. Additionally, since no 

parametric statistical tests were run using these values, there is not an overwhelming need for the 

data to be perfectly normal. 
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Figure 11 – Map of gamma emission rate sampling locations 
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Figure 12 – Histogram of sampled gamma emission rates 

 

The distribution of gamma emission values across the county shows clear spatial 

autocorrelation, especially in a few areas (Figure 13). First there is an obvious grouping of low 

values in the far southwestern part of DeKalb. Additionally, there is a clear group of high values 

along the eastern border and in the southeast of the county. Finally there is an interesting 

intersection of a band of high values cutting across from the middle of the western border up to 

the northeast. This area of relatively high values is bordered on its north by a band of low values 

distributed in the same southwest to northeast trend. All these grouping are in keeping with 

gamma emissions’ strong spatial autocorrelation, with a Moran’s I of .49 (Z = 16.4, p <.0001). A 

Moran’s I that much greater than zero confirms that gamma emissions do vary spatially. 
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Figure 13 – Map of sampled gamma emission rate values 
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3.2 Gamma emission rate variation by rock and soil type 

While variation in mean gamma emission rates for various bedrock types varies 

somewhat (Table 1) there is limited value in knowing those variations. Specifically, while the 

ANOVA results suggest that there were some differences in gamma emissions by rock type (F = 

12.29, df = 
12

386
, p < .05), only one of the rock types has a consistently distinct mean from the rest. 

Excluding schist/gneiss, granitic gneiss has a significantly higher mean gamma emission rate 

than any other rock type. However similar distinctions cannot be made for the other rock types, 

making the predictive value of bedrock limited. This is further reinforced by the low R2 value of 

the ANOVA, with only 27.6% of gamma variation being explained by rock type. 

Table 1 – Descriptive statistics of gamma emission rates for each bedrock type 

Bedrock type 
N 

Mean 

(photons/min) 

95% Confidence 

Interval 

Coefficient 

of Variation 

Biotite Gneiss 59 8813 8253 - 9374 .25 

Biotite Gneiss/Felsic Gneiss 7 9598 8299 - 10898 .18 

Biotite Gneiss/Mica Schist 72 11573 10979 - 12167 .22 

Granite 20 11426 10128 - 12724 .26 

Granitic Gneiss*  39 14800 13452 - 16148 .29 

Granitic Gneiss/Amphibolite 32 8637 7440 - 9835 .40 

Mica Schist 33 11023 10043 - 12003 .26 

Mica Schist/Gneiss 107 10406 9761 - 11050 .33 

Schist 7 6138 5701 - 6575 .10 

Schist/Gneiss 1 18154 - - 

Quartzite 3 5969 4976 - 6961 .15 

Quartzite/Mica Schist 6 9812 8783 - 10842 .13 

Ultramafic 13 7979 5179 - 10779 .64 

*This rock type has a mean that is statistically distinct from all the others based on ANOVA and a Tukey post-hoc comparison. 
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 Variation among gamma emissions by soil type also provided minimal predictive value 

(Table 2). Unlike with bedrock, where at least one rock type was clearly distinct, no soil type 

was distinct from all the others in a significant way according to the ANOVA, though there were 

still difference (F = 5.11, df = 
15

383
, p < .05). With few exceptions most of the soils showed no real 

distinction, indicating that soil does not appreciably impact gamma emission rates. This too is 

reinforced by a low R2, with only 16.7% of gamma variations being explained. 

Table 2 – Descriptive statistics of gamma emission rates for each soil type 

Soil series 
N Mean 95% Confidence Interval 

Coefficient of 

Variation 

Altavista 4 10169 4901 - 15437 .53 

Appling 12 11120 10151 - 12089 .15 

Ashlar 16 12896 11039 - 14752 .29 

Ashlar-Wedowee 28 12934 11145 - 14722 .37 

Cecil 51 10906 10090 - 11723 .27 

Chestatee 5 13750 9896 - 17632 .32 

Gwinnett 31 9023 7441 - 10606 .50 

Hiawassee 1 5660 - - 

Iredell 1 2990 - - 

Madison 52 10850 10103 - 11597 .25 

Musella 2 12083 10168 - 13998 .11 

Pacolet 162 10036 9545 - 10527 .32 

Sweetapple-Grover  8 12043 10699 - 13387 .16 

Udorthent 4 15368 11052 - 19683 .29 

Wedowee 13 11187 9017 - 13358 .36 

Wilkes 9 5327 4376 - 6278 .27 
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3.3 Spatial interpolation modelling 

The semivariogram model indicates that gamma emissions are strongly spatially 

dependent. Aside from allowing the production of a continuous surface for gamma emissions, 

this also confirms that enough sampling has been done. The operational scale (defined as the 

range of the semivariogram in this study, as explained in the section 2.3) of gamma in DeKalb is 

roughly 4.5 km (Figure 14). An operational scale of 4.5 km further indicates that the optimal 

search radius in this project’s study region would be about 2.25 km.  

 

Figure 14 – Semivariogram model of gamma emission rate sample locations 

 

Based on comparisons of errors among multiple kriging models, an empirical Bayesian 

kriging model was determined to be the most accurate. The standardized RMSE (defined in 

section 2.3) of the empirical Bayesian kriging model, .977 (a value of 1 is the optimal 

standardized RMSE), indicates it is the best model to predict gamma emission rates based on the 

available sample data (Table 3). 



27 

Table 3 – Comparison of errors in various kriging models 

Model type Root mean squared error Standardized RMS error 

Simple kriging 2260.04 0.902 

Empirical Bayesian kriging  2241.41 0.977 

Ordinary kriging 2251.78 0.921 

Universal kriging 2323.23 1.115 

 

 The kriging surface resulting from the selected model provides an accurate assessment of 

variation of gamma emissions in DeKalb. Similar to Figure 9, the results of the empirical 

Bayesian kriging model show high values in the eastern/southeast border of DeKalb and very 

low values in the southwest and north/northeast parts of the county (Figure 15). Notably the 

central/south central part of the county shows a relatively high degree of variability though it 

should be noted that this region is not as well sampled as some of the other parts of the county 

(Figure 11) and sits on top of a fairly uniform portion of DeKalb geology consisting mostly of 

granitic gneiss (some with amphibolite, some without). 
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Figure 15 - Map of predicted gamma emission rates created using an empirical Bayesian kriging model 

optimized to the sampled gamma data with grid cells resized to 1 km square 
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3.4 Radon sampling  

The distribution of radon values is not as spatially autocorrelated as that of gamma 

emissions. With a Moran’s I of .09 (Z = 10.8, p < .0001), radon is autocorrelated, but not a 

particularly strong way. This lack of autocorrelation can be seen in the semivariogram model of 

radon (Figure 16).  

While there is minimal spatial autocorrelation there were clearly some areas with 

consistently low radon (Figure 17). Most notably the far southwestern part of the county 

contained none of the 176 actionable homes were located. Additionally, the central/south central 

portion of the county appears to be a pocket of relative low for radon. 

 

Figure 16 - Semivariogram model of indoor radon concentrations 
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Figure 17 – Map of indoor radon concentrations 
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Radon in DeKalb is on average below the EPA action level, though the data is not 

normal. The 1,352 readings had a mean concentration of 2.31 pCi/L (95% CI: 2.17 to 2.45 pCi/L, 

df = 1351). Based on the histogram it is clear that the radon readings are not normally distributed 

(Figure 18). This is because, while radon levels cannot fall below 0.0 pCi/L, there is no 

theoretical upper limit to how high indoor radon concentrations can be.  

 

Figure 18 – Histogram of indoor radon concentrations 

3.5 Radon/gamma comparison and analysis  

The descriptive statistics of predicted gamma emission rates extracted to the indoor radon 

reading locations show a similar, albeit muted version of the gamma emission phenomenon 

relative to the sampled rates. The 1,348 values (four radon reading were taken outside the area of 

coverage of the kriging model and thus did not have gamma emission rates extracted to them) 

had a mean of 10,293 photons/min (95% CI: 10,178 to 10,408 photons/min, df = 1,347) with 

value ranging from 5,178 to 22,208 photons/min. It is worth noting that the predicted values of 

gamma emissions had a less extreme range than the sampled values. Further, the predicted values 
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were much closer to the shape of the normal distribution (Figure 19), potentially because of the 

significantly higher N or the fact that the radon sample sites were less clustered than gamma 

sites. 

 

Figure 19 – Histogram of predicted gamma emission rates 

 

The results the f correlation test show a significant, though very weak, correlation 

between gamma emissions and radon. Specifically, Spearman’s rho was .059 (N = 1348, p < 

.05). While this correlation was significant, the R2 makes clear that this correlation is mostly a 

result of a high N (Figure 20). As such this correlation does not provide any valuable predictive 

ability beyond indicating some positive association. 
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Figure 20 - Scatterplot of predicted gamma emission rates versus indoor radon concentrations 

 

Despite weak correlation, there is some relationship between gamma emission rates and 

indoor radon concentrations. The t-test found that mean predicted gamma emission rates of 

dwellings with indoor radon concentrations below 4.0 pCi/L (mean = 10244, s = 2161, n = 1172) 

were significantly lower than mean predicted gamma emission rates in dwellings with indoor 

radon concentrations of 4.0 pCi/L (the EPA action level) or more (mean = 10619 photons/min, s 

= 2045, n = 176) (t = -2.158, df = 1346, p < .05). This would mean that generally one would 

expect to find higher gamma values at homes with actionable radon readings, even if only 

marginally. 

This association between actionable radon concentrations and higher gamma emissions is 

strengthened more by the results of the chi-squared test. The chi-squared test indicates that 
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actionable radon concentrations are related to above mean gamma emission rates (χ2 = 4.728, df 

= 1, p < .05) (Table 4).  

Table 4 – 2x2 contingency table relating indoor radon and gamma emissions 

 Gamma Emission Rate 

Above mean Below mean 

Indoor Radon 

concentration 

At or above EPA 

action level 
106 (93) 70 (83) 

Below action level 603 (614) 569 (556) 

 

Expected values, which are in parentheses, have been rounded to the nearest whole number value 

3.6 Radon potential map 

The high variability among the radon readings meant that the county could only be 

stratified into 3 categories of risk based on gamma emissions, with basically all of the county 

either “at risk” or “highly at risk” (Figure 21). The break points between the categories were 

7,500 and 13,000 photons/min. The ANOVA indicated that each of the categories had a distinct 

average indoor radon concentrations (F = 5.45, df = 
2

1345
, p < .01), with a Tukey post-hoc 

comparison indicating that all 3 are distinct (minimally at risk: mean radon = 2.0 pCi/L, 7.8% of 

readings at/above 4.0 pCi/L; at risk: mean radon = 2.3 pCi/L, 13.3% of readings at/above 4.0 

pCi/L; highly at risk: mean radon = 3.0 pCi/L, 18.5% of readings at/above 4.0 pCi/L). 
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Figure 21 – Map of radon potential 
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4 DISCUSSION 

4.1 Gamma emissions 

Gamma emissions varied by rock type in an unremarkable way. Only granitic gneiss had 

statistically distinct, specifically higher, gamma emissions, which is in line with the literature, as 

granitic rocks generally have more gamma source material (Muikku et al., 2007). Additionally, 

the amount of variation in gamma emissions explained by bedrock type, 27.6% based on the 

ANOVA in section 3.2, is very similar to the amount of variation of radon explained by rock 

type, about 25% (Appleton and Miles, 2010). Past studies have also found that only a few, 

uranium-238 rich rock types may be predictive of radon flux (Buttafuoco et al., 2007), which 

would seem to hold true for gamma emissions based on this study. 

Ultramafic rock produced unexpected null results, possibly as a result of inaccuracies of 

the geologic map used. Ultramafic rocks are generally understood to be low in uranium-238, but 

in the ANOVA in section 3.2 showed the gamma emissions rate of ultramafic rock was not 

distinctly lower than all, or even most of the other rock types. In fact, based on mean gamma 

emissions, ultramafic is actually the third lowest. While this might be a result of some geologic 

feature that has concentrated uranium-238 in this unit, it may also be a function of coarse 

resolution in the geologic map used. At a resolution of 1:500,000, the geologic map used for this 

project likely had some inaccuracies, especially in defining the edges of various geologic units. 

The accuracy of geologic maps is a known problem in radon potential mapping (Friedman and 

Groller, 2010), and it follows that this problem would extend to gamma emissions, as gamma 

and radon share natural source materials. For the ultramafic unit of southwest DeKalb, this may 

have meant that some, higher uranium-238 rock types adjacent to the ultramafic unit were 



37 

erroneously classified as ultramafic. This would help explain why ultramafic has the highest 

coefficient of variation at .64.  

Variations in gamma emissions across soil series were even less remarkable then 

variations by geologic unit. The predictive power of soil was not only lower, with only 16.7% of 

variation explained based on the ANOVA in section 3.2, but there was also no consistently 

distinct gamma emission rate for any soil type. The closest to being distinct, Wilkes (which had 

significantly lower gamma emissions than all but one of the other soil series) might shed light on 

why soil explains any variation. Wilkes is formed from mafic rocks, which are generally lower in 

gamma’s radioactive source materials. This means that the low gamma emission rates found over 

Wilkes soils may simply be a function of the parent rock Wilkes sits on top of. In that way, the 

difference in explained variation between rock type and soil series may simply be a function of 

soil series being an imperfect proxy for bedrock type. This makes sense as the areas that depart 

most from expected radon based on geology areas with soils high in moisture or transported from 

other locations (i.e. areas with soils that are not indicative of underlying geology) (Grasty, 1997). 

4.2 Spatial interpolation 

While the primary focus of the spatial interpolation modeling effort was to create a 

continuous surface of gamma emissions, the results of the semivariogram model show that the 

first objective of this project was achieved and that the 400 sample points were sufficient to 

spatially cover DeKalb. Two parts of the semivariogram would indicate that this project sampled 

enough locations. The first is the range, which as a break in the semivariogram provides the 

operational scale for gamma emissions (Lam and Quattrochi, 1992; Diem, 2003). The range 

provides the absolute furthest distance sample points can be from one another. Based on Figure 

14 the range of gamma in DeKalb is 4.5 km. That means that, based on the operational scale, all 
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of DeKalb is sufficiently covered (Figure 22). Half the operational scale, also known as the 

optimal search radius, provides the ideal maximum distance between sample points to ensure 

coverage accurately represents a given phenomenon. For this study the optimal search radius was 

2.25 km. Comparing that distance to the gamma sample points it is clear that, with one exception 

in south central DeKalb, the county is sufficiently well sampled (Figure 23). 

The second part of the semivariogram in Figure 14 that indicates enough sampling of 

gamma emissions was done was the nugget. The nugget, explained in Figure 8, can be 

understood to show some systemic error or a variation in the phenomenon occurring at distances 

well below the sampling interval (Burrough and McDonnell, 1998). The lack of a nugget in 

Figure 14 would indicate that most of the variation in gamma emissions in DeKalb has been 

captured by the sampling interval. This likely means that, while additional sample sites may 

make the predictions of the interpolation model more robust, further sampling is unlikely to 

change the outcome. Taken together, the results of the semivariogram and interpolation model 

generally indicate that this project succeeded in completing its first objective. 
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Figure 22 – Coverage map of gamma sampling based on the operational scale of gamma emissions 
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Figure 23 – Coverage map of gamma sampling based on the optimal search radius of gamma emissions 
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4.3 Radon and gamma 

There is a clear, positive relationship between gamma emissions and indoor radon 

concentrations, even if that relationship is weak. The results of the correlation, t-test, and chi-

squared test all point to the same conclusion: higher gamma emissions are generally associated 

with higher indoor radon concentrations. This follows the literature that establishes the same 

positive relationship (Jackson, 1992; Szegvary et al., 2007a; Szegvary et al., 2007b). This is 

conceptually sensible as uranium-238 is an important geologic driver of both radon and gamma 

emissions (Garcia-Talvera et al., 2007; Peterson et al., 2007; Sakoda et al., 2011; Wilford 2012). 

While there is clearly a relationship between gamma and indoor radon, said relationship is 

too weak to be quantitatively predictive. The extremely low R2 associated with the significant 

correlation between gamma and indoor radon in this study is the first indication that this is true. 

The poor R2 is largely caused by confounders, which result in variation in indoor radon reading 

that does not vary spatially or in a way that gamma could predict. The large nugget in Figure 16 

and low Moran’s I for indoor radon both indicate that a large portion of radon variability cannot 

be explained by spatial variation. These variations are likely caused by non-natural drivers such 

as construction quality and building materials (Vauptic et al., 2002; Appleton, 2007; Chen et al., 

2010). In fact, building characteristics may influence indoor radon more than natural controls of 

radon (Borgoni et al., 2014). All told the positive relationship between gamma and indoor radon 

found in this project, even if weak, clearly satisfies the second objective laid out in the 

introduction.  

4.4 Radon risk 

Despite not being able to quantitatively predict indoor radon using gamma emissions, a 

broader assessment of radon potential or general risk is possible. Such an assessment occurs in 



42 

Figure 21. Defining most of the county as either “at risk” or “highly at risk” is actually in line 

with the EPA’s assessment of DeKalb, which it labels a level 1 radon risk (level 1 is the highest 

level of risk) (epa.gov/radon). Additionally the ANOVA confirms that these categories are not 

arbitrary, with only 7.8% of tested dwellings in the “minimally at risk” region being at or above 

the EPA action level for radon versus 18.5% of tested dwelling in the “highly at risk” region. 

The “at risk” region had a similar percentage of dwellings at or above the action level as the 

dataset as a whole (13.3% and 13.1% respectively). 

This broad, categorical distinction of radon potential or risk is an appropriate way to 

approach this kind of radon potential mapping. Outdoor gamma emissions have been found to be 

most useful as a qualitative predictor of indoor radon (Quindos et al., 2008). This is largely 

because gamma emissions are linked outdoor controls of radon which are then linked to indoor 

radon (Nason and Cohen, 1980; Szegvary et al., 2007a; Garcia-Talvera et al., 2013). This 

indirect link between external gamma emissions and indoor radon is confounded by indoor, non-

natural controls of radon, making any prediction of radon potential necessarily general. 

However, the cheapness and ease of this method make the cautious use of these more general 

predictions valuable (Voltaggio et al., 2006; Smethurst et al., 2008). 

Using the radon risk map produced by this study might help locate sites where 

confounders play a role in increasing radon above what natural sources would produce. 

Specifically, 13 of the 176 dwelling with radon at or above the EPA action level fell into the 

“minimally at risk” zone (Figure 24). All 13 of these homes are in the northern part of the county 

and seven of them are all in one area, Tucker. This cluster of dwellings likely have high radon as 

result of confounders such as building characteristics. Alternatively there may be some geologic 

features unique to this area that were not fully accounted for. 
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Figure 24 – Radon sample location likely driven by building characteristics 
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5 CONCLUSIONS 

Gamma emissions are effective at predicting radon potential, if only in a categorical way. 

This data should be used cautiously, but the methods used here can be a key first step to further 

research. While gamma emissions cannot be used to give an exact value for indoor radon, the 

ease and low cost of collecting gamma data can help establish what areas are at increased risk or 

merit additional scrutiny when it comes to radon. This project would indicate that the use of in 

situ measurements can allow investigators to use gamma emissions as a variable in radon 

potential mapping, even in a city where the traditional aircraft collected data would not be 

accurate. Combining this data with other variables may further improve predictive power.  

A key result of this project is the operational scale of gamma emissions. Future research 

focused on gamma radiation, especially in the southeast United States could use the 4.5 km 

operational scale found in this study to inform sampling protocols. This operational scale will 

also help determine if an area has been sufficiently sampled before attempting to interpolate 

gamma radiation data. It should be noted that, under different geologic conditions, the 

operational scale of gamma may vary. The 4.5 km value could be a useful starting point either 

way however, especially in the Piedmont geologic region. 

An important conclusion of this project is that the use of indoor radon measurements in 

determining geogenic radon potential might be problematic. While a sufficient number of 

variables and controls may yield a more predictive model, the possibility of cofounders causing 

spurious correlations is always high with indoor radon measurements. Future research should 

focus not only on including multiple variable to explain radon variation, but also on using radon 

data that has been as scientifically controlled as possible. Ideally, if using indoor radon readings, 

these reading should come from homes that are as similar as possible. If possible, future research 
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should attempt to create a database of radon measurements taken in a controlled way directly 

from the ground to determine if gamma is a more quantitative predictor of geogenic radon, even 

if gamma only categorically predicts indoor radon.  
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