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Signed Graphs with Maximum Nullity at Most Two

by

F. Scott Dahlgren

Under the Direction of Hein van der Holst, PhD and Marina Arav, PhD

ABSTRACT

A signed graph is an ordered pair (G,Σ), where G = (V,E) is a graph and Σ ⊆ E. The

edges in Σ are called odd, and the edges in E \ Σ are called even. The family of matrices

S(G,Σ) is defined such that if [ai,j] = A ∈ S(G,Σ), then ai,j < 0 if there is at least one edge

between i and j and if all edges between i and j are even; ai,j > 0 if there is at least one

edge between i and j and if all edges between i and j are odd; ai,j ∈ R if there is at least

one even edge and at least one odd edge between i and j; and ai,j = 0 if there are no edges

between i and j. The maximum nullity of a signed graph M(G,Σ) is the largest corank(A)

for A ∈ S(G,Σ). The matrix A ∈ S(G,Σ) has the Strong Arnold Property with respect to

(G,Σ) if X = 0 is the only matrix such that AX = 0, and xi,j = 0 if i is adjacent to j or



i = j. The stable maximum nullity of a signed graph ξ(G,Σ) is the largest corank(A) for

A ∈ S(G,Σ) where A has the Strong Arnold Property. Here, we present a combinatorial

characterization of signed graphs with maximum nullity at most two, extending a result

of Johnson, Loewy, and Smith. We also find the forbidden minors for signed graphs with

stable maximum nullity at most two, extending a result of Hogben and van der Holst. We

generalize the notion of zero forcing to signed graphs. We find the zero forcing number of

signed graphs with maximum nullity at most two, extending a result of Row.

INDEX WORDS: Signed graphs, maximum nullity, zero forcing, inverse eigenvalue
problem for a graph, linear algebra, combinatorial matrix theory.
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We start with a graph. We place real numbers as weights on the vertices and place

weights on the edges. Then, we know the eigenvalues for our problem. The inverse eigenvalue

problem for a graph asks ‘which graphs have the real numbers λ1, . . . , λn as eigenvalues?’

An instructive question to start is ‘which graphs can achieve any set of real numbers as their

eigenvalues?’

Observation 1.1. The empty graph on n vertices is the only simple graph which may

achieve any n-tuple of real numbers as eigenvalues.

Proof. First, we consider a matrix A with eigenvalues all equal to 1. Then, A is similar to

the identity matrix I. That is, for some nonsingular matrix V , we have

A = V IV −1 = V V −1 = I.

Therefore, the empty graph is the only simple graph which has eigenvalues all equal to 1.

Next, we consider any n-tuple of real numbers λ1, . . . , λn, and we place them along the

diagonal of Λ, where Λ is a diagonal matrix. The eigenvalues of Λ are exactly our n-tuple

of real numbers. As Λ is diagonal and as our graph is simple, the graph of Λ is the empty

graph on n vertices. Therefore, the empty graph on n vertices may achieve any n-tuple of

real numbers as eigenvalues. Because the empty graph is the only simple graph with all

eigenvalues equal to 1, the empty graph is the unique simple graph which may achieve any

n-tuple of real numbers as eigenvalues.

Observation 1.1 shows us that adding a single edge e to the empty graph limits which

eigenvalues are possible. In general, the inverse eigenvalue problem for a graph is very chal-
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lenging. Related problems include the multiplicity of eigenvalues, inertia sets, and minimum

rank. In this dissertation, we are primarily interested in the category of signed graphs with

the possibility of parallel edges, instead of the category of simple graphs. Unlike for a sim-

ple graph, the family of matrices for a signed graph is closed under addition, which feels

more natural in certain settings. While many results carry over nicely from simple graphs

to signed graphs, others do not. As an example, we may add an odd edge f and a parallel

even edge e to the empty graph; and, the resulting signed graph shows that Observation 1.1

does not hold for signed graphs with multiple edges.

Here, we build upon previous work of Arav, Hall, Li, and van der Holst who characterized

2-connected signed graphs with maximum nullity at most two [4]. In 2007, Hogben and van

der Holst found the forbidden minors for graphs with stable maximum nullity at most two

[14]. The existence of forbidden minors is guaranteed by the Graph Minor Theorem of

Robertson and Seymour, which proves Wagner’s Conjecture that every infinite family of

graphs has a finite number of forbidden minors [18]. Geelen, Gerards, and Whittle extended

the Graph Minor Theorem to include signed graphs; so, we may find a finite number of

forbidden minors for signed graphs with stable maximum nullity at most two [11]. Here, we

extend the results of Hogben and van der Holst [14] to signed graphs by finding the forbidden

minors of signed graphs with stable maximum nullity at most two. In 2009, Johnson, Loewy,

and Smith provided a combinatorial characterization of graphs with maximum nullity at most

two [16]. Here, we extend their result to signed graphs with maximum nullity at most two.

In 2012, Row found the zero forcing number of graphs with maximum nullity at most two
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[20]. Here, we extend this result by finding the zero forcing number of signed graphs with

maximum nullity at most two. We also generalize the notion of zero forcing on signed graphs

by finding new color change rules for signed graphs, which may be of interest outside the

inverse eigenvalue problems.
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1.1 Matrices

We consider the family of real matrices M(n×m) with n rows and m columns. We write

A = [ai,j] ∈M(n×m) when we wish to detail the entries of A: the entry ai,j lies in the i-th

row and j-th column. If n = m, then we write M(n× n) for the family of square matrices.

We may find a submatrix of A ∈ M(n×m) which includes α ⊆ {1, 2, . . . , n} rows and

β ⊆ {1, 2, . . . ,m} columns, denoted A[α, β]. If A ∈ M(n× n) and α = β, then we write

A[α] instead of A[α, α] when convenient. Recall that we may consider A ∈ M(n× n) as a

linear transformation from the vector space Rn into Rn. The range of A are all those vectors

y ∈ Rn for which there exists a vector x ∈ Rn such that y = Ax. In general, we write dim(U)

for the dimension of a linear subspace U of Rn, and rank(A) is the dimension of the range

of the matrix A ∈M(n× n). The dim(U) is also the number of vectors in a basis of U . The

kernel of A are all those vectors x ∈ Rn such that Ax = 0, denoted ker(A). The ker(A) is

also a subspace of Rn.

Definition 1.2. Suppose A ∈M(n×m). We name the dimension of the ker(A) the corank

of A, denoted corank(A).

Lemma 1.3. Suppose A ∈ M(n× n), and corank(A) = k with 0 < k ≤ n. Let α ⊂

{1, . . . , n} be an index set such |α| = k − 1. Define U ⊆ Rn where u ∈ U if and only if

u[α] = 0. Then, we may find a vector x ∈ ker(A) ∩ U such that x 6= 0.

Proof. As U and ker(A) are subspaces of Rn,

dim
(
U ∩ ker(A)

)
= dim(U) + dim

(
ker(A)

)
− dim

(
U ∪ ker(A)

)
.
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As, dim(U ∪ ker(A)) ≤ n,

dim(U ∩ ker(A)) ≥ dim(U) + dim(ker(A))− n.

As dim(U) = n− (k − 1) and dim(ker(A)) = k,

dim(U ∩ ker(A)) ≥ (n− k + 1) + k − n = 1.

As dim(U ∩ ker(A)) > 0, we may find x ∈ U ∩ ker(A) such that x 6= 0.

A matrix D = [di,j] ∈ M(n× n) is a diagonal matrix if i 6= j implies di,j = 0, and

the diagonal of D has real entries di,i. The identity matrix I is a diagonal matrix with a

diagonal of all ones. When convenient, we write In to clarify that In ∈M(n× n). A matrix

U ∈ M(n× n) is real orthogonal if UTU = UUT = I. For A ∈ M(n× n), if there exists

B ∈M(n× n) such that AB = I, then B is the inverse of A, and we write B = A−1. If A−1

exists, we say that A is full rank.

The complement of a subset α ⊆ {1, 2, . . . , n} is the subset α = {i ∈ {1, 2, . . . , n} | i 6∈ α}.

We partition a matrix A with index sets α, β such that

A =

[
A[α, β] A[α, β]

A[α, β] A[α, β]

]
=

[
A1,1 A1,2

A2,1 A2,2

]
.

The result is a 2× 2 block matrix. In a similar process, we may partition A into an n′ ×m′

block matrix so long as n′ ≤ n and m′ ≤ m. A block diagonal matrix is a block matrix where

Ai,j = 0 whenever i 6= j. The direct sum of two matrices A and B is the block diagonal

matrix D where A and B appear along the diagonal, and we write D = A⊕B.

A matrix A = [ai,j] ∈ M(n× n) is a symmetric matrix if A = AT ; that is, if ai,j =
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aj,i ∀i, j ∈ {1, . . . , n}. An eigenvalue λ of A and an eigenvector x 6= 0 of A satisfy Ax =

λx. We limit our discussion of eigenvalues and eigenvectors to symmetric matrices. A

symmetric matrix has only real eigenvalues. If A is a symmetric matrix, then there exists a

real orthogonal matrix U such that UAUT is a diagonal matrix. Further, the diagonal entries

of UAUT are the n eigenvalues of A. The multiplicity of an eigenvalue is the number of times

the eigenvalue appears on the diagonal of UAUT . For symmetric matrices, the multiplicity

of zero as an eigenvalue of A is exactly the corank(A). If the symmetric matrix A has an

eigenvalue λ with multiplicity k, then corank(λI − A) = k.

Definition 1.4. Suppose we partition A ∈M(n× n) such that

A =

[
A1,1 A1,2

A2,1 A2,2

]
.

If A2,2 is full rank, then the Schur complement of A2,2 in A is

A/A2,2 = A1,1 − A1,2A
−1
2,2A2,1.

When the matrix A2,2 is a single nonzero entry an,n, then we denote A/A2,2 = A/an,n when

convenient.

Observation 1.5. If A is a symmetric matrix, then corank(A) = corank(A/A2,2)

Proof. We may write A as a product of an upper triangular matrix, a block diagonal matrix,

and a lower triangular matrix.

A =

[
A1,1 A1,2

A2,1 A2,2

]
=

[
I A1,2A

−1
2,2

0 I

] [
A/A2,2 0

0 A2,2

] [
I 0

A−12,2A2,1 I

]
.
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As the triangular matrices have non-zero diagonal, each is full rank. As A and A/A2,2 are

real symmetric, the corank(A) = corank(A/A2,2 ⊕ A2,2) = corank(A/A2,2) + corank(A2,2).

As A2,2 is full rank, corank(A2,2) = 0. Therefore, corank(A) = corank(A/A2,2).

The Hadamard product of A = B◦C is the entrywise product ai,j = bi,jci,j. The following

definition is from Barioli, Fallat, and Hogben [6].

Definition 1.6. Suppose A,X ∈M(n× n). We say X fully annihilates A if

• AX = 0,

• A ◦X = 0, and

• I ◦X = 0.
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1.2 Graphs

A graph is an ordered pair G = (V,E) where V is the vertex set and E is the edge set. When

convenient, the vertex set is assumed to be V = {1, 2, . . . , n}. If a graph has more than one

edge between a pair of vertices, then these are parallel edges ; the graph is a multigraph; and

the graph has multiple edges. If an edge e = ii for some vertex i, then e is a loop. A graph

with no multiple edges and no loops is a simple graph.

An edge e is incident on the two endvertices u, v if e = uv. Two vertices u, v are

adjacent if there is an edge between them, denoted u↔v. The degree of a vertex v is the

number of edges incident on v, denoted dG(v) or simply d(v). A pendant vertex is a vertex

with d(v) = 1. Similarly, a pendant edge is an edge incident on a pendant vertex. A path

is an alternating sequence of vertices and edges, v1e1v2e2 . . . ek−1vk, where each vertex is

unique; and P has endvertices v1 and vk. The length of a path P is the number of edges

in P , denoted l(P ) = |E(P )| = k − 1. The distance between two vertices a, b ∈ V is

dG(a, b) = min{l(P ) : P has endvertices a and b}. Similarly, if U,W ⊆ V , dG(U,W ) =

min{dG(a, b) : a ∈ U, b ∈ W}.

Definition 1.7. A k-separation in a graph G is an ordered pair (G1, G2) such that

• |V (G1) ∩ V (G2)| = k,

• V (G1) ∪ V (G2) = V (G), and

• E(G1) ∪ E(G2) = E(G).
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Definition 1.8. Let G = (V,E) be a simple graph with a cut vertex v. Suppose G1 =

(V1, E1) and G2 = (V2, E2) are subgraphs of G. If

• E1 6= ∅,

• E2 6= ∅,

• V = V1 ∪ V2,

• E = E1 ∪ E2, and

• V1 ∩ V2 = {v};

then, G is the 1-sum of G1 and G2 at v.

Notice that a 1-sum of G at v defines a particular 1-separation of G.

Definition 1.9. The adjacency matrix A of the simple graph G = (V,E) has entries

• ai,j = 0 if ij 6∈ E, and

• ai,j = 1 if ij ∈ E.

If V ′ ⊆ V and E ′ ⊆ E where E ′ has endvertices in V ′, then H = (V ′, E ′) is a subgraph of

G. Further, H is an induced subgraph of G if E ′ includes all edges from E with endvertices

in V ′. That is, we may construct a subgraph by deleting edges and vertices from a graph;

and, whenever we delete an endvertex v, we also delete all edges of the form uv for u ∈ V .

We may define an induced subgraph more precisely in terms of the adjacency matrix. If

α ⊆ {1, 2, . . . , n} and A is the adjacency matrix of G, then A[α, α] is the adjacency matrix

of the induced subgraph H of G on the vertex set α, denoted H = G[α].
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Definition 1.10. The Laplacian matrix A of the simple graph G = (V,E) has entries

• ai,j = 0 if i 6= j and ij 6∈ E,

• ai,j = −1 if i 6= j and ij ∈ E, and

• ai,j = d(i) if i = j.

Definition 1.11. The generalized Laplacian matrix A of the simple graph G = (V,E) has

entries

• ai,j = 0 if i 6= j and ij 6∈ E, and

• ai,j < 0 if i 6= j and ij ∈ E.

Definition 1.12. Let G = (V,E) be a simple graph. Define S(G) to be the family of

matrices such that A ∈ S(G) has entries

• ai,j = 0 if i 6= j and ij 6∈ E, and

• ai,j 6= 0 if i 6= j and ij ∈ E.

So, the adjacency matrix, the Laplacian matrix, and the generalized Laplacian matrices

all belong to S(G).

Definition 1.13. The maximum nullity of a simple graph G is

M(G) = max
A∈S(G)

{corank(A)}.

The following theorem rephrases the results of Fiedler about tridiagonal matrices in terms

of simple graphs [10].
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Theorem 1.14. G is a path if and only if M(G) = 1.

The contraction of an edge uv ∈ E(G) results in a graph H where V (H) = (V (G) \

{u, v}) ∪ w and E(H) = E(G) \ uv, where the edges in E(G) which were adjacent to {u, v}

in G are now adjacent to w ∈ V (H). We say H is a minor of G if we may obtain H from

G by a sequence of contracting edges, deleting edges, or deleting isolated vertices, denoted

H � G. If H � G and H is not isomorphic to G, then H is a proper minor of G, denoted

H ≺ G.

Definition 1.15. We say A ∈ S(G) has the Strong Arnold Property (SAP) with respect to

the simple graph G if X fully annihilates A implies X = 0.

The following lemma is from van der Holst [22].

Lemma 1.16. Suppose G = (V,E) is a simple graph, |V | = n, A ∈ S(G), and {y1, y2, . . . , yk}

is a basis for ker(A). Form the matrix U such that

U =
[
u1 u2 · · · un

]
=


yT1
yT2
...
yTk

 .
A has the SAP if and only if the matrices {uiuTi | i ∈ V } and {uiuTj + uju

T
i | ij ∈ E} form

a basis for M(k × k).

The following definition is from Barioli, Fallat, and Hogben [7].

Definition 1.17. The stable maximum nullity of a simple graph G is

ξ(G) = max{corank(A) | A ∈ S(G), A has the SAP}.
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1.3 Signed Graphs

A signed graph is an ordered pair (G,Σ), where G is a graph and Σ ⊆ E. We call Σ the

signature of (G,Σ). Edges in Σ are odd edges, and edges in E \ Σ are even edges. While we

do not allow loops, we do allow multiple edges.

Definition 1.18. Let (G,Σ) be a signed graph. Define S(G,Σ) to be the family of matrices

such that A ∈ S(G,Σ) has entries

• ai,j < 0 if i↔j and all edges between i and j are even,

• ai,j > 0 if i↔j and all edges between i and j are odd,

• ai,j ∈ R if there as at least one even edge and at least one odd edge between i and j,

and

• ai,j = 0 if i 6= j and there are no edges between i and j.

For signed graphs, A,B ∈ S(G,Σ) implies that A + B ∈ S(G,Σ); that is, S(G,Σ) is a

cone. The corresponding statement is not true for simple graphs, because A,−A ∈ S(G).

Definition 1.19. The maximum nullity of a signed graph is

M(G,Σ) = max{corank(A) | A ∈ S(G,Σ)}.

Observation 1.20. Let (G,Σ) be a signed graph where G is a simple graph. If A ∈ S(G,Σ),

then A ∈ S(G). So, M(G,Σ) ≤M(G).

Definition 1.21. The matrix A ∈ S(G,Σ) has the Strong Arnold Property (SAP) with

respect to (w.r.t) (G,Σ) if X = 0 is the only matrix such that
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• AX = 0, and

• xi,j = 0 if i↔j or i = j.

Definition 1.22. The stable maximum nullity of a signed graph (G,Σ) is

ξ(G,Σ) = max{corank(A) | A ∈ S(G,Σ), A has the SAP w.r.t. (G,Σ)}.

If (G,Σ) has no parallel edges of opposite sign, then ξ(G,Σ) ≤ ξ(G) because S(G,Σ) ⊆

S(G). The following lemma is from Arav, Hall, Li, and van der Holst (Corollary 20 in [3]).

Lemma 1.23. If (H,Ω) � (G,Σ), then ξ(H,Ω) ≤ ξ(G,Σ).

If we switch around a vertex v, then the resulting signed graph is (G,Σ∆δ(v)), where

δ(v) are the edges incident on v and ∆ is the symmetric difference. Similarly, if U ⊆ V , then

we may also switch around U to obtain (G,Σ∆δ(U)), where δ(U) are the edges between U

and V \ U . Two signed graphs (G,Σ1) and (G,Σ2) are switching equivalent if there exists

U ⊆ V such that Σ2 = Σ1∆δ(U).

Lemma 1.24. Switching around vertices does not change the maximum nullity nor the

stable maximum nullity of a signed graph.

Proof. Let A ∈ S(G,Σ). Let U ⊆ V (G). Take D to be a diagonal matrix with di,i = −1 if

i ∈ U ; otherwise, di,i = 1. Define B = DAD.

For all i, j ∈ V , the entry bi,j = di,iai,jdj,j = ±ai,j. Further, bi,j = −ai,j if and only if

ij ∈ δ(U). Therefore, B ∈ S(G,Σ∆δ(U)). As D is real orthogonal, corank(B) = corank(A).

Suppose corank(A) = M(G,Σ). Then, M(G,Σ) = corank(B) ≤ M(G,Σ∆δ(U)). Using the

same argument, we may switch around U in (G,Σ∆δ(U)) to obtain



15

M(G,Σ) ≤M(G,Σ∆δ(U)) ≤M(G,Σ∆δ(U)∆δ(U)) = M(G,Σ∆∅) = M(G,Σ).

Therefore, M(G,Σ) = M(G,Σ∆δ(U)).

Suppose A has the SAP with respect to (G,Σ). Suppose for a contradiction that B

does not have the SAP. Then, we may find X 6= 0 such that such that BX = 0 and

xi,j = 0 if i↔j or i = j. Because DADX = BX = 0, we have A(DXD) = 0. That is,

A does not have the SAP. Hence, A has the SAP if and only if B has the SAP. Therefore,

ξ(G,Σ) = ξ(G,Σ∆δ(U)).

A subgraph of a signed graph is odd if it has an odd number of odd edges. In particular,

an odd cycle in a signed graph is a cycle with an odd number of odd edges. Similarly, an

even cycle is a cycle with an even number of odd edges.

Zaslavsky proved the following theorem about signed graphs (Proposition 3.2 in [23]).

Theorem 1.25. Two signed graphs (G,Σ1) and (G,Σ2) are switching equivalent if and only

if they have the same set of odd cycles.

The following theorem is from Arav, Hall, Li, and van der Holst (Theorem 49 in [3]).

Theorem 1.26. A signed graph (G,Σ) has ξ(G,Σ) ≤ 1 if and only if (G,Σ) is switching

equivalent to (H, ∅), where H is a graph whose underlying simple graph is a disjoint union

of paths.

Later, we use the following corollary about trees, and we provide a proof here for com-

pleteness.
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Corollary 1.27. If T is a tree, then M(T,Σ) = M(T ) for any signature Σ.

Proof. Let (T,Σ) be a signed graph where T is a tree. Suppose A ∈ S(T ) with corank(A) =

M(T ). Because M(T ) ≥M(T,Σ), we only need to show M(T ) ≤M(T,Σ) .

Define the signature Ω0 such that A ∈ S(T,Ω0). Denote k = |Ω0∆Σ|. If k = 0, then our

proof is complete. So, we may assume there exists an edge e0 ∈ Ω0∆Σ. If we define Ω1 =

Ω0∆e0, then we may find a real orthogonal diagonal matrix D0 such that D0AD0 ∈ S(T,Ω1).

As |Ω1∆Σ| = k − 1, we may repeat this process for the sequence of edges {e0, . . . ek−1}, and

Ωk = Σ. Finally, we observe that

M(T ) = corank(A) = corank(Dk . . . D0AD0 . . . Dk) ≤M(T,Σ).

From Theorem 1.14, we know that M(G) = 1 implies that G is a path. Together with

Corollary 1.27 above, we also know that M(G,Σ) = 1 implies G is a path. This result is the

prototype for our work: a complete characterization of the signed graphs with M(G,Σ) = 1.

A signed graph (H,Ω) is a minor of (G,Σ) if (H,Ω) may be obtained from (G,Σ) by a

sequence of sign switchings, deleting edges, deleting isolated vertices, or contracting an edge.

We write (H,Ω) � (G,Σ) when (H,Ω) is a minor of (G,Σ). If (H,Ω) � (G,Σ) but G 6= H,

then (H,Ω) is a proper minor of (G,Σ), denoted (H,Ω) ≺ (G,Σ).

Arav, Hall, Li, and van der Holst showed that ξ(G,Σ) = 1 implies that G is a disjoint

union of paths [3]. Additionally, they proved the following theorem which we use later.
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Lemma 1.28. Suppose (G,Σ) is a signed graph, |V | = n, A ∈ S(G,Σ), and {y1, y2, . . . , yk}

is a basis for ker(A). Form the matrix U such that

U =
[
u1 u2 · · · un

]
=


yT1
yT2
...
yTk

 .
A has the SAP with respect to (G,Σ) if and only if the matrices {uiuTi | i ∈ V } and

{uiuTj + uju
T
i | ij ∈ E} form a basis for M(k × k).

Lemma 1.29. Let (G,Σ) be a signed graph. Then, M(G,Σ) = M(G,E \Σ) and ξ(G,Σ) =

ξ(G,E \ Σ).

Proof. Let A ∈ S(G,Σ) such that corank(A) = M(G,Σ). Because −A ∈ S(G,E \ Σ) and

because corank(A) = corank(−A), M(G,Σ) ≤ M(G,E \ Σ). If A ∈ S(G,Σ) has the SAP

with respect to (G,Σ), then −A ∈ S(G,E \ Σ) has the SAP with respect to (G,E \ Σ).

Otherwise, we found a matrix X 6= 0 such that xi,j = 0 if i↔j or i = j and −AX = 0;

yet, AX 6= 0. So, ξ(G,E) ≤ ξ(G,E \ Σ). Because Σ = E \ (E \ Σ), a second application

of our argument implies M(G,Σ) ≥ M(G,E \ Σ) and ξ(G,Σ) ≥ ξ(G,E \ Σ). Therefore,

M(G,Σ) = M(G,E \ Σ) and ξ(G,Σ) = ξ(G,E \ Σ)
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Figure 1.1 A ∆Y -transformation on a simple graph.

1.4 ∆Y -Transformations

Suppose G is a simple graph, and G has a triangle (K3) which we label T . Then, we may

perform a ∆Y -transformation on G to obtain a new graph H by deleting the edges of T ,

adding a new vertex v, and adding edges between v and the vertices of T (Figure 1.4).

The following lemma from Hogben and van der Holst shows that ∆Y -transformations do

not decrease the stable maximum nullity of a graph (Lemma 2.1 in [14]).

Lemma 1.30. Let G be a simple graph, and let H be obtained from G by applying a

∆Y -transformation. Then, ξ(G) ≤ ξ(H).

Their proof of this lemma relies on building a matrix in S(H) with the SAP, begin-

ning with a matrix in S(G) which has the SAP. We adapt these proofs to signed graphs

with triangles for the maximum nullity and stable maximum nullity. First, we provide the

corresponding definition for signed graphs.

Definition 1.31. Suppose (G,Σ) is a signed graph, and (G,Σ) has a triangle which we label

T . Then, we may perform a ∆Y -transformation on (G,Σ) to obtain a new signed graph
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(H,Ω) by deleting the edges of T , adding a new vertex v, and adding odd edges between v

the vertices of T .

Lemma 1.32. Let (G,Σ) be a signed graph, and let (H,Ω) be obtained from G by applying

a ∆Y -transformation. Then, M(G,Σ) ≤M(H,Ω) and ξ(G,Σ) ≤ ξ(H,Ω).

Proof. Let (G,Σ) be a signed graph on n vertices with a triangle T . For clarity, we assume

that V (T ) = {1, 2, 3} and denote V (T ) = V (G) \ V (T ) = {4, 5, . . . , n}. First, we want to

show that we may assume that T has no odd edges. If T is an odd cycle, then we may instead

consider (G,E(G)\Σ) where T is an even cycle. By Lemma 1.29, M(G,Σ) = M(G,E(G)\Σ)

and ξ(G,Σ) = ξ(G,E(G) \ Σ). So, we assume that T is an even cycle. If T has two odd

edges, then they must be incident on a vertex t ∈ T . Then, we may switch around t, and

M(G,Σ) = M(G,Σ∆δ(t)) and ξ(G,Σ) = ξ(G,Σ∆δ(t)) by Lemma 1.24. As T has no odd

edges in (G,Σ∆δ(t)), we may assume T has no odd edges in (G,Σ) for the rest of the proof.

Let (H,Ω) to be the result of applying a ∆Y -transformation on T in (G,Σ). Let A ∈

S(G,Σ). Then, we may partition A as

A =

[
K +R A[V (T ), V (T )]

A[V (T ), V (T )] A[V (T )]

]
,

where K and R describe the adjacency of T , as follows:

• ri,j < 0 if ij is an edge in T ,

• ki,j = 0 if there are no edges between {i, j} and V (T ),

• ki,j > 0 if there are only even edges between {i, j} and V (T ),
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• ki,j < 0 if there are only odd edges between {i, j} and V (T ), and

• ki,j ∈ R if there is both an even edge and an odd edge between {i, j} and V (T ).

We want to construct a matrix in S(H,Ω) with the same corank as A. Because the edges

of T are even, r1,2r2,3r1,3 < 0. So, we want to find positive real numbers b, c, d such that

r1,2 = −bc, r1,3 = −bd, and r2,3 = −cd. The solution follows from b =
√
−r1,2r1,3/r2,3,

c =
√
−r1,2r2,3/r1,3, and d =

√
−r2,3r1,3/r1,2. With these real numbers a, b, c we augment A

with an (n+ 1)-th row and column, to construct a matrix B:

B =


r1,1 + b2 k1,2 k1,3 A[1, V (T ) b

k2,1 r2,2 + c2 k2,3 A[2, V (T ) c

k3,1 k3,2 r3,3 + d2 A[3, V (T ) d

A[V (T ), 1] A[V (T ), 2] A[V (T ), 3] A[V (T )] 0
b c d 0 1

 .
Then, the Schur complement of bn+1,n+1 in B is:

B/bn+1,n+1 =


r1,1 + b2 k1,2 k1,3 A[1, V (T )

k2,1 r2,2 + c2 k2,3 A[2, V (T )

k3,1 k3,2 r3,3 + d2 A[3, V (T )

A[V (T ), 1] A[V (T ), 2] A[V (T ), 3] A[V (T )]

−

b2 bc bd 0
cb c2 cd 0
db dc d2 0
0 0 0 0

 = A.

From Lemma 1.5, corank(A) = corank(B) because B/bn+1,n+1 = A. Further, B ∈ S(H,Ω),

so M(G,Σ) ≤M(H,Ω).

Next, we want to investigate ξ and the SAP. Let Y be a symmetric matrix such that

yi,j = 0 if i↔j or i = j and such that BY = 0. Then we may partition Y :

Y =


0 y1,2 y2,3 Y [1, V (T )] 0

y2,1 0 y2,3 Y [2, V (T )] 0

y3,1 y3,2 0 Y [3, V (T )] 0

Y [V (T ), 1] Y [V (T ), 2] Y [V (T ), 3] Y [V (T )] Y [V (T ), n+ 1]

0 0 0 Y [n+ 1, V (T )] 0

 .
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As BY = 0, the entries y1,2 = y2,3 = y3,1 = 0. Let X ∈M(n× n) such that

X =


0 0 0 Y [1, V (T )]

0 0 0 Y [2, V (T )]

0 0 0 Y [3, V (T )]

Y [V (T ), 1] Y [V (T ), 2] Y [V (T ), 3] Y [V (T )]

 .
Because BY = 0, AX = 0. Suppose A has the SAP. Because xi,j = 0 if i↔j or i = j and

because A has the SAP, we have X = 0. Because X = 0 and BY = 0, Y [V (T ), n + 1] = 0.

Hence, Y = 0, and B has the SAP. Therefore, ξ(G,Σ) ≤ ξ(H,Ω).
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1.5 Zero Forcing

We start this section with a game on a simple graph G = (V,E), taken from [1]. Before the

game begins, all the vertices of G are colored white. First, we color some nonempty subset

of vertices B ⊆ V blue. Then, we apply the color change rule: if b is a blue vertex and if

w is the only white vertex in the neighborhood of b, then we color w blue. We have a new

set of blue vertices after applying the color rule once, B(1) = B ∪ w. We keep applying the

color change rule until we may no longer color any white vertices blue. The game ends after

s < n steps. If B(s) = V , then B is a zero forcing set of G. Denote the family of all zero

forcing sets of G with B. We say B is a minimum zero forcing set if |B| = minX∈B |X|, and

the zero forcing number of G is Z(G) = |B|.

Next, we tie zero forcing to the algebraic properties of A ∈ S(G). The following lemma

is from the Special Graphs Workshop [1].

Lemma 1.33. For a simple graph G, M(G) ≤ Z(G).

Proof. Let G = (V,E) be a simple graph. Suppose for a contradiction that M(G) > Z(G).

Then, we may find a zero forcing set B and a matrix A ∈ S(G) with n ≥ corank(A) =

M(G) > Z(G) = |B|. As corank(A) > |B|, from Lemma 1.3, we may find x ∈ kerA such

that xb = 0 for all b ∈ B, but x 6= 0.

Here, we begin an iterative argument using the size of B. As B is a zero forcing set

and |B| < n, there is some blue vertex v ∈ B which colors some white vertex w 6∈ B when

applying the color change rule: w ∈ B(1). As x ∈ kerA, we have
∑n

j=1 av,jxj = 0. Because

xb = 0 for all b ∈ B, we have av,wxw = 0. As vw ∈ E, we have av,w 6= 0. So, xw = 0. That is,
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xb = 0 for all b ∈ B(1). As B is a zero forcing set, B(s) = V after applying the color change

rule s times. So, we may repeat the same argument until xb = 0 for all b ∈ B(s) = V . That is,

x = 0. Because we assumed x 6= 0, we have our contradiction. Therefore, M(G) ≤ Z(G).

The proof of Lemma 1.33 clarifies the choice of the color change rule for simple graphs.

We make use of a simple corollary, which follows directly from Lemma 1.33 and Observation

1.20.

Corollary 1.34. If (G,Σ) is a signed graph and G is a simple graph, then

ξ(G,Σ) ≤M(G,Σ) ≤M(G) ≤ Z(G).

Definition 1.35. The path covering number of a graph G, denoted P (G), is the minimum

number of vertex-disjoint paths that cover V (G), such that each path in the covering is an

induced subgraph of G.

The following theorem is from Hogben (Theorem 2.13 in [13]) and follows from the fact

that applying the color change rule to a zero forcing set constructs a path cover.

Theorem 1.36. For any graph G, P (G) ≤ Z(G).

Goldberg and Berman studied a variant of zero forcing for sign pattern matrices [12].

We will define sign pattern matrices in section 1.8, and we will use a different definition

than Goldberg and Berman. For this section alone, a sign pattern matrix P is a matrix

whose entries are from the set {−, 0,+, ?}. Their rules for zero forcing require the diagonal

entries to have known signs (that is, from the set {−, 0,+}), which they call a sign pattern
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matrix with fixed periphery. So, their results are not perfectly applicable to our work, as

A ∈ S(G,Σ) has no restriction on the diagonal entries. They derive new zero forcing rules

for sign pattern matrices with fixed periphery and a zero forcing number Z±(P ). We are

interested in the zero forcing number

Z(G,Σ) = min{|α| : α ⊆ V (G),∀A ∈ S(G,Σ) ∀x ∈ kerA, x[α] = 0 =⇒ x = 0}.

Similar to here, they define the maximum nullity M(P ) = max{corank(A) | sign(A) = P}.

Despite these differences, we can apply one result from their work (Theorem 3.2 and Rule 2

in [12]):

Lemma 1.37. If P is a sign pattern matrix, then M(P ) ≤ Z±(P ).

Translating this to our work, we have the following lemma.

Lemma 1.38. If (G,Σ) is a signed graph, then M(G,Σ) ≤ Z(G,Σ) ≤ Z(G).

Proof. Let (G,Σ) be a signed graph. Let P be a sign pattern matrix with fixed periphery

such that (G,Σ) is the signed graph of P and M(P ) = M(G,Σ). If sign(A) = P , then

A ∈ S(G,Σ); hence Z±(P ) ≤ Z(G,Σ). Because S(G,Σ) ⊆ S(G), we have Z(G,Σ) ≤ Z(G).

From Lemma 1.37, we have M(P ) ≤ Z±(P ). Hence, we may write

M(G,Σ) ≤M(P ) ≤ Z±(P ) ≤ Z(G,Σ) ≤ Z(G).
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1.6 Graph Structures and Maximum Nullity

This section details combinatorial structures of graphs and signed graphs related to the

maximum nullity or stable maximum nullity.

1.6.1 1-Separations

Originally in terms of the partial inertia sets of a signed graph allowing loops, the following

is from Arav, van der Holst, and Sinkovic (Formula (3) in [5]).

Lemma 1.39. Let [(G1,Σ1), (G2,Σ2)] be a 1-separation of a signed graph (G,Σ) with v =

V (G1) ∩ V (G2). Then,

M(G,Σ) = max {M(G1,Σ1) +M(G2,Σ2)− 1,M((G1,Σ1)− v) +M((G2,Σ2)− v)− 1} .

Proof. Let |V (G)| = n. Taking Formula (3) in [5], we have

min
{
I(G,Σ)

}
= min

{(
I
(
(G1,Σ1)− v

)
+ I
(
(G2,Σ2)− v

)
+ {(1, 1)}

)
∪
(
I(G1,Σ1) + I(G1,Σ1)

)}
,

where I(G,Σ) are all possible ordered pairs (p, q) such that there exists A ∈ S(G,Σ), A has

p positive eigenvalues, and A has q negative eigenvalues. As |V (G) −M(G,Σ)| is the sum

of the number of positive eigenvalues and the number of negative eigenvalues, we have

n−M(G,Σ) = min{|V (G1 − v)|+ |V (G2 − v)| −M((G1,Σ1)− v)−M((G2,Σ2)− v) + 2,

|V (G1)|+ |V (G2)| −M(G1,Σ1)−M(G2,Σ2)}.



26

Because [(G1,Σ1), (G2,Σ2)] is a 1-separation, we count each vertex of G−v exactly one time

in |V (G1− v)|+ |V (G2− v)|. Similarly, we count v twice and all other vertices of G once in

|V (G1)|+ |V (G2)|. So, we have

n−M(G,Σ) = min{n− 1−M((G1,Σ1)− v)−M((G2,Σ2)− v) + 2,

n+ 1−M(G1,Σ1)−M(G2,Σ2)}.

Now, we simplify to obtain our result:

−M(G,Σ) = min{−M((G1,Σ1)− v)−M((G2,Σ2)− v) + 1,−M(G1,Σ1)−M(G2,Σ2) + 1}.

M(G,Σ) = max{M((G1,Σ1)− v) +M((G2,Σ2)− v)− 1,M(G1,Σ1) +M(G2,Σ2)− 1}.

1.6.2 Trees and Forests

Barioli, Fallat, and Hogben proved the following theorem about forests (Theorem 3.7 in [7]).

Theorem 1.40. If F is a forest, then ξ(F ) ≤ 2.

The following Theorem is the main result of Johnson and Duarte and relates the path

covering number to the maximum nullity for trees [15].

Theorem 1.41. If T is a tree, then M(T ) = P (T ).
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1.6.3 Linear 2-Trees

We may iteratively construct a tree on n > 2 vertices, as follows. We start with a K2, two

vertices joined by a single edge. Then, we grow the tree by identifying one of the vertices in

the graph with one of the vertices of a second copy of K2. So, we have a P3. We continue

identifying vertices of our graph with a vertex of a new copy of K2 until we have our tree.

Instead of using copies of K2 to build a 1-tree, we may use copies of Kk+1 to build a

k-tree using the same process. At each step, we identify a Kk in the graph with a Kk in the

new copy of Kk+1. In particular, we are interested in 2-trees, built by identifying a K2 in

the graph with a K2 in a new copy of a triangle. A 2-path is a 2-tree whose dual is a path.

A partial 2-path is a subgraph of a 2-path. A linear 2-tree is a 2-connected partial 2-path,

introduced by Hogben and van der Holst in [14] and under another name by Johnson, Loewy,

and Smith in [16]. Sinkovic proved the following theorem (Theorem 3.13 in [21]).

Theorem 1.42. If G is a partial 2-path, then M(G) = P (G).

1.6.4 Graph of Two Parallel Paths

Johnson, Loewy, and Smith provided two equivalent definitions of a graph of two parallel

paths [16]. First, we provide their definition using matrices from S(G).

Definition 1.43. A graph G is a graph of two parallel paths if there exists A ∈ S(G) such

that

A =

[
T1 B
BT T2

]
,

where T1 and T2 are irreducible and tridiagonal. Further, B satisfies the following:



28

• If bi,j 6= 0, then bk,l = 0 for k > i and l < j, and for k < i and l > j.

• If B 6= 0 and bk1,k1+1 6= 0, then B has a nonzero entry other than bk1,k1+1.

Their other definition of a graph of two parallel paths uses the existence of a particular

embedding in the plane [16]. Specifically, a graph G is a graph of two parallel paths if we

may draw G such that

• the two paths P1 and P2 cover the vertices of G,

• P1 and P2 are independent, induced paths,

• any edges between P1 and P2 do not cross, and

• the vertices of G are all drawn on the infinite face.

Together with a family of exceptional graphs, Johnson, Loewy, and Smith showed the graphs

of two parallel paths are the only graphs with M(G) = 2 [16]. They used the following lemma

in the proof of their main result (Lemma 3.7 in [16]).

Lemma 1.44. Suppose G is a graph of two parallel paths. Then, M(G) = 2.

The following theorem from Row fully characterizes graphs with a zero forcing number

of two (Theorem 2.3 in [20]).

Theorem 1.45. For a simple graph G, Z(G) = 2 if and only if G is a graph of two parallel

paths.
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1.6.5 Thin Outs

The blocks of a 1-connected simple graph G are the maximal connected subgraphs with no

cut vertex. At one extreme, a 2-connected graph has only a single block. At the other

extreme, every K2 of a tree is a block. A thin out of G is a block B of G with a pendant

vertex added to each vertex of B which is also a cut vertex of G. At one extreme, a 2-

connected graph is isomorphic to its own thin out. At the other extreme, every thin out of a

tree with at least 3 vertices is either a P3 or a P4. The following lemma is from Arav, Hall,

Li, and van der Holst (Corollary 42 in [3]).

Lemma 1.46. If (G,Σ) is the disjoint union of (G1,Σ1) and (G2,Σ2), then

ξ(G,Σ) = max {ξ(G1,Σ1), ξ(G2,Σ2)} .

The following lemma follows from a result of Arav, Hall, Li, and van der Holst, originally

phrased in terms of inertia sets (Theorem 43 in [3]).

Lemma 1.47. Let (G,Σ) be a connected signed graph and suppose (G,Σ) is the 1-sum of

(G1,Σ1) and (G2,Σ2) at v, with both E(G1) and E(G2) nonempty. For i = 1, 2, let (Hi,Ωi)

be the signed graph obtained from Gi and K2 by identifying the vertex v with a vertex of

K2. Then,

ξ(G,Σ) = max {ξ(H1,Ω1), ξ(H2,Ω2)} .

Lemma 1.48. Let (G,Σ) be a signed graph with ξ(G,Σ) ≥ 3. Then, there exists a 2-

connected block B of G such that a thin out (H,Ω) of B in (G,Σ) satisfies ξ(H,Ω) ≥ 3.
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Proof. Let (G,Σ) be a signed graph with ξ(G,Σ) ≥ 3. By Lemma 1.46, we may assume

(G,Σ) is connected. If (G,Σ) is 2-connected, then (G,Σ) is exactly one block. So, we may

assume that G has at least 1 cut vertex v. If v ∈ V (G1) for some block of G, then we

found a 1-sum (G1,Σ1) and (G2,Σ2) at v. If we identify a vertex of K2 with v in (Gi,Σi),

then we obtain the signed graph (Hi,Ωi) for i = 1, 2. By Lemma 1.47, we may assume that

ξ(H1,Ω1) ≥ 3. We repeat this process for a new cut vertex of H1 until we have our thinout

(H,Ω).

1.6.6 T3-Family of Graphs

Hogben and van der Holst introduced the T3-family to fully characterize the graphs with

ξ(G) ≤ 2 [14]. They defined the T3 graph as the result of deleting the edges of a triangle

from K2,2,2. The graphs T3(∆Y )i are the result of applying a series of i ∆Y -transformations

to T3. The T3-family includes K4, K2,3, and T3(∆Y )i (Figure 1.2).

The following theorem and corollary are some of the main results of Hogben and van der

Holst [14].

Theorem 1.49. Let G = (V,E) be a simple graph. Then, ξ(G) ≤ 2 if and only if G has no

minor isomorphic to a graph in the T3-family.

Corollary 1.50. Let G = (V,E) be a 2-connected simple graph on n vertices. The following

are equivalent:

• ξ(G) = 2.

• M(G) = 2.
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Figure 1.2 The T3-family from Hogben and van der Holst [14].

• G has no K4-minor, no K2,3-minor, nor T3-minor.

• G is a linear 2-tree.
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41

2 3

5

Figure 1.3 The odd 4-wheel. Solid edges are even, and dotted edges are odd.

1.7 2-Connected Signed Graphs with M(G,Σ) ≤ 2

The main result of Arav, Hall, Li, and van der Holst fully characterizes 2-connected signed

graphs with M(G) ≤ 2 [4]. First, we need to define several signed graphs. The odd 4-wheel

or W o
4 is drawn in Figure 1.3. We denote the signed graph (Kn, ∅) by Ke

n; the signed graph

(Kn, E(Kn)) by Ko
n; (K2,3, ∅) by Ke

2,3; and (K4, {e}) for a single e ∈ E(K4) by Ki
4. By K=

n ,

we denote the signed graph on n vertices where there is exactly one even edge and exactly

one odd edge between each pair of vertices. The following lemma is from Arav, Hall, Li, and

van der Holst (Lemmas 1–4 in [4]), and it follows more general results in their previous work

[3].

Lemma 1.51.

1. M(K=
n ) = ξ(K=

n ) = n,

2. M(Ke
n) = ξ(Ke

n) = n− 1,

3. M(Ki
4) = ξ(Ki

4) = 2,

4. M(Ke
2,3) = ξ(Ke

2,3) = 3, and
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5. M(Ki
2,3) = ξ(Ki

2,3) = 2.

Next, we need to define a class of signed graphs which we construct similarly to a linear

2-tree. A pair of edges {e, f} ∈ E(K4) are split if both e and f belong to an even and odd

triangle in Ki
4. We construct a sided wide 2-path [(G,Σ),F] recursively:

1. Let (G,Σ) be an even cycle, an odd cycle, or a Ki
4.

(a) If (G,Σ) is a cycle, let F be two distinct edges in G.

(b) If (G,Σ) is a Ki
4, let F be a split pair of edges in Ki

4.

Then, [(G,Σ),F] is a sided wide 2-path.

2. Let [(G,Σ),F] be a sided wide 2-path. Let e and f be distinct edges in an even or odd

cycle C. If (H,Ω) is obtained from (G,Σ) by identifying the edge f of C with an edge

h in F, then [(H,Ω), (F − h) ∪ e] is a sided wide 2-path.

3. Let [(G,Σ),F] be a sided wide 2-path. Let {e, f} be a split pair in Ki
4. If (H,Ω)

is obtained from (G,Σ) by identifying the edge f of Ki
4 with an edge h in F, then

[(H,Ω), (F − h) ∪ e] is a sided wide 2-path.

For a sided wide 2-path [(G,Σ),F], the edges in F are the sides of [(G,Σ),F]. For a

signed graph (G,Σ), if there exists a set F of two distinct edges such that [(G,Σ),F] is a

sided wide 2-path, then (G,Σ) is a wide 2-path. A partial wide 2-path is a spanning subgraph

of a wide 2-path. We note that if G is a partial 2-path, then (G,Σ) is a partial wide 2-path.

Now, we may state the main result of Arav, Hall, Li, and van der Holst [4].
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Theorem 1.52. Let (G,Σ) be a 2-connected signed graph. Then, the following are equiva-

lent:

• M(G,Σ) ≤ 2.

• ξ(G,Σ) ≤ 2.

• (G,Σ) has no minor isomorphic to K=
3 , Ke

4 , Ko
4 , or Ke

2,3.

• (G,Σ) is a partial wide 2-path or is isomorphic to W o
4 .
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1.8 Sign-Nonsingular Matrices

We take this section largely from Brualdi and Shader’s text [8]. A sign pattern matrix is a

matrix with entries from the set {0,+,−}. The qualitative class of an n ×m sign pattern

matrix S is

Q(S) =
{
A ∈M(n×m) : sign(ai,j) = si,j ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}

}
.

If for every matrix A ∈ Q(S), A has independent rows and independent columns, then S is a

sign-nonsingular matrix, abbreviated SNS-matrix. That is, the linear system Ax = b has a

unique solution if A ∈ Q(S) and S is a SNS matrix. A SNS-matrix is a maximal SNS-matrix

if changing any 0 to either + or − results in a sign pattern matrix which is not a SNS-matrix.

A directed graph or digraph is an ordered pair D = (V,E), where V are the vertices and

E are the directed edges. Here, we do not allow loops. The directed edges are ordered pairs

from the Cartesian product V × V . If ij ∈ E, then we say i is incident on j and write i→j.

A signed digraph is a digraph where we label each directed edge with one sign from the set

{+,−}. If S is a sign pattern matrix, then D(S) is the signed digraph of S, a digraph where

the directed edge ij is labeled with the sign si,j whenever si,j 6= 0. A directed cycle in a

digraph is a sequence of directed edges such that

i1→i2→ . . .→ik→i1,

and the vertices i1, i2, . . . , ik are all distinct. The sign of a directed cycle i1→i2→ . . . ik→i1

is the product

sign(i1i2)sign(i2i3) · · · sign(ik−1ik)sign(iki1).
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The following theorem defines the relationship between signed digraphs and SNS matrices

(Theorem 3.2.1 in [8]).

Theorem 1.53. Let S be a square sign pattern matrix with negative diagonal entries, that

is si,i = − for all i. Then, S is a SNS-matrix if and only if every directed cycle of the signed

digraph D(S) is negative.

We illustrate an application of this theorem to a maximal SNS-matrix (6.5 in [8]),− + 0
− − +
− − −

 , (1.1)

with Figure 1.4. The sign pattern in (1.1) also corresponds to a signed graph as shown in

Figure 1.4, as follows. The rows of (1.1) index the vertices ui, and the columns index the

vertices vj. We place an odd edge between ui and vj if the corresponding entry of (1.1) is

positive, and an even edge if the corresponding entry is negative. We may also construct the

sign pattern in (1.1) from our bipartite signed graph, using a method originally from Little,

as follows [17]. First, we switch around vertices so that we have a perfect matching with

odd edges. Then, we label our edges with + if the edge is odd and − if the edge is even.

Next, we direct each edge in our signed graph from the vertices ui to the vertices vj. Finally,

we contract the edges in our perfect matching. We will use this construction to obtain zero

forcing rules on signed graphs.

Little found a characterization of SNS-matrices [17], but first we need a definition. We

may subdivide a graph G by replacing a P2 = ue0w with a P3 = ue1ve2w to obtain a

subdivision of G, the resulting graph H. If we subdivide each edge an even number of times,
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1

2

3

++

−

−−

u1

u2

u3

v1

v2

v3

Figure 1.4 The signed digraph of the maximal SNS-matrix of order 3 and the corresponding
signed graph, where odd edges are dashed and even edges are solid.

then H is an even subdivision of G. Although originally a result of Little, we also rely on

results of Robertson, Seymour, and Thomas to state the following theorem [17, 19].

Theorem 1.54. Let S be a sign pattern matrix. Let (G,Σ) be the bipartite signed graph

corresponding to S. Suppose G has a perfect matching. Then, D(S) has no positive directed

cycle if and only if G has no even subdivision of K3,3.
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CHAPTER 2

Signed Graphs with Stable Maximum Nullity at Most Two
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This chapter contains the results of Arav, Dahlgren, and van der Holst [2]. The following

theorem is the main result of this chapter. The last section of this chapter contains the

proof.

Theorem 2.1. A signed graph (G,Σ) has ξ(G,Σ) ≤ 2 if and only if (G,Σ) has no minor

isomorphic to Ke
4 , Ko

4 , or a signed graph in the K=
3 -family.

The above theorem extends the result of Hogben and van der Holst, where they found

the forbidden minors for graphs with stable maximum nullity at most two [14].
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2.1 The Signed Four-Wheel

Lemma 2.2. Let (G,Σ) be a signed graph with a pendant vertex v, such that ξ(G,Σ) = k.

Suppose A ∈ S(G,Σ) has the SAP, and corank(A) = k. If av,v 6= 0, then ξ(G−v,Σ\δ(v)) = k.

Proof. Let (G,Σ) be a signed graph with a pendant vertex v. Denote with (H,Ω) = (G −

v,Σ \ δ(v)). Suppose there exists a matrix A ∈ S(G,Σ) such that corank(A) = ξ(G,Σ) = k

and av,v 6= 0. Suppose A has the SAP with respect to (G,Σ). Write A as

A =

[
av,v A[v, v]
A[v, v] A[v]

]
.

The Schur complement of av,v in A is

B = A/av,v = A[v]− a−1v,vA[v, v]A[v, v].

From Observation 1.5, corank(B) = k. As A[v, v]A[v, v] is zero except for one diagonal entry

and as A[v] ∈ S(H,Ω), we also have B ∈ S(H,Ω).

Suppose for a contradiction that B does not have the SAP with respect to (H,Ω). Then,

there exists a non-zero real symmetric matrix X such that BX = 0 and xi,j = 0 if i↔j or

i = j. Take Y such that

Y =

[
0 −a−1v,vA[v, v]X

−a−1v,vXA[v, v] X

]
.

As X has a zero diagonal and A[v, v] has one non-zero element, A[v, v]XA[v, v] = 0. Further,

A[v]XA[v, v] = BXA[v, v] + a−1v,vA[v, v]A[v, v]XA[v, v] = 0. So,

AY =

[
av,v A[v, v]
A[v, v] A[v]

] [
0 −a−1v,vA[v, v]X

−a−1v,vXA[v, v] X

]
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=

[
−a−1v,vA[v, v]XA[v, v] −A[v, v]X + A[v, v]X
−a−1v,vA[v]XA[v, v] BX

]
= 0.

Because X has a zero diagonal, by construction yi,j = 0 if i = j. As X has a zero

diagonal, A[v, v]X has a zero corresponding to the pendant edge of v: yv,j = 0 if v↔j.

Because xi,j = 0 if i↔j for the vertices of H, we have yi,j = 0 if i↔j. That is, A does not

have the SAP with respect to (G,Σ). Thus, we have our contradiction, and B has the SAP

with respect to (H,Ω). Hence, ξ(H,Ω) ≥ k. As (H,Ω) is a minor of (G,Σ), ξ(H,Ω) ≤ k.

Finally, ξ(G− v,Σ \ δ(v)) = k.

Lemma 2.3. Let (G,Σ) be a W o
4 with single pendant edges attached to some of the vertices

of W o
4 . Then, ξ(G,Σ) = 2.

Proof. We may take A ∈ S(G,Σ) which has the SAP and corank(A) = ξ(G,Σ). By Lemma

2.2, the entry av,v = 0 whenever v is a pendant vertex. If (G,Σ) has no pendant vertices, then

(G,Σ) = W o
4 . From Theorem 1.52, corank(A) = ξ(W o

4 ) ≤ 2. If (G,Σ) has exactly 1 pendant

vertex v adjacent to u, then we may take the the matrix B to be the Schur complement

of the submatrix with columns and rows {u, v} in A ∈ S(G,Σ). The graph of B is either

a 4-cycle or a 4-cycle with a chord edge, and corank(A) = corank(B) ≤ 2. If (G,Σ) has

more than 1 pendant vertex, then we may sequentially apply the Schur complement as in the

previous case to obtain the matrix B. The graph of B is a subgraph of either a 4-cycle or a

4-cycle with a chord edge, and corank(A) = corank(B) ≤ 2. For all our cases, corank(A) ≤ 2

and A has the SAP, so ξ(G,Σ) ≤ 2. Because (G,Σ) has an odd cycle, Theorem 1.26 implies
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ξ(G,Σ) ≥ 2. Therefore, ξ(G,Σ) = 2.
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K=
3 K=

3 (∆Y ) K=
3 (∆Y )2 K=

3 (∆Y )3

Figure 2.1 The K=
3 -family of signed graphs. Solid edges are even; dotted edges are odd; and

dashed lines may be odd or even.

2.2 The K=
3 -Family of Signed Graphs

Starting with K=
3 , we construct the K=

3 -family of signed graphs by repeating the following:

selecting a pair of parallel edges, subdividing one of these parallel edges, assigning the re-

sulting two edges any sign, and applying a ∆Y -transformation on the the resulting triangle.

Figure 2.1 depicts the members of the K=
3 -family. When convenient, we keep track of the

members of the K=
3 -family by the number of ∆Y -transformations: K=

3 , K=
3 (∆Y ), K=

3 (∆Y )2,

and K=
3 (∆Y )3.

Lemma 2.4. Every member (G,Σ) of the K=
3 -family has ξ(G,Σ) = 3.

Proof. From Theorem 1.52, we know ξ(K=
3 ) ≥ 3 because K=

3 is 2-connected. By definition,

every (G,Σ) in the K=
3 -family may be formed from K=

3 by a sequence of the following on pairs

of multiple edges: subdivide an edge and perform a ∆Y -transformation on the subsequent

triangle. As a signed graph is a proper minor of its own subdivision, Lemmas 1.32 and 1.23

imply ξ(K=
3 (∆Y )3) ≥ ξ(G,Σ) ≥ ξ(K=

3 ) ≥ 3.

Consider the simple graph H associated with K=
3 (∆Y )3. We construct a zero forcing set



44

B to show Z(H) ≤ 3. First, we select two pendant vertices u and v. Next, we select the

vertex w along the shortest path from u to v with d(w) = 2. So, B = {u, v, w} is a zero

forcing set for H. From Corollary 1.34, we have ξ(K=
3 (∆Y )3) ≤ Z(H) ≤ |B| = 3. Because

3 ≤ ξ(G,Σ) ≤ ξ(K=
3 (∆Y )3), we conclude ξ(G,Σ) = 3.

The following corollary is immediate from Lemma 2.4

Corollary 2.5. If (G,Σ) has a minor isomorphic to a member of the K=
3 -family, then

M(G,Σ) ≥ ξ(G,Σ) ≥ 3.

Lemma 2.6. If (G,Σ) is a member of the K=
3 -family and (H,Ω) ≺ (G,Σ), then ξ(H,Ω) < 3.

Proof. Suppose (H,Ω) is a proper minor of a member of the K=
3 -family. We only need to

consider the components of (H,Ω) with at least 3 vertices to show ξ(H,Ω) < 3. We proceed

by a case study on whether (H,Ω) has multiple edges.

Suppose (H,Ω) has no multiple edges. From Theorem 1.40, every forest F has ξ(F ) ≤ 2.

So we may assume (H,Ω) has exactly one cycle C; otherwise, ξ(H,Ω) ≤ 2. If there exists

two pendant vertices a and b such that dH(a, b) = 3, then {a, b} form a zero forcing set for

(H,Ω). Otherwise (H,Ω) has at least one pendant vertex a, and {a, b} form a zero forcing

set where dH(a, b) = 2. So the zero forcing number of (H,Ω) is at most 2 when (H,Ω) has

a cycle, and Corollary 1.34 implies ξ(H,Ω) ≤ 2. Therefore, ξ(H,Ω) < 3 when (H,Ω) has no

multiple edges.

Suppose (H,Ω) has multiple edges. For each pair of multiple edges, replace the odd edge

with a path of length two consisting of odd edges and apply a ∆Y -transformation on the
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resulting triangle to form the signed graph (H ′,Ω′). As (H ′,Ω′) has no multiple edges and is

again a proper minor of (G,Σ), the above argument holds and ξ(H ′,Ω′) < 3. Lemmas 1.32

and 1.23 imply ξ(H,Ω) ≤ ξ(H ′,Ω′) < 3 when (H,Ω) has multiple edges.

Figure 2.2 illustrates the case study of the proof of Lemma 2.6.
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Figure 2.2 The K=
3 -family and their minors. The first row are the members of the K=

3

family. Below the horizontal rule, each column are proper minors of the member of the
K=

3 -family in that column. Arrows to the right represent a subdivision of an edge followed
by a ∆Y -transformation.
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2.3 Partial Wide 2-Paths

Definition 2.7. Let (G,Σ) be a signed graph. A pair [G1, G2] of subgraphs of G is a wide

separation of (G,Σ) if there exists an odd 4-cycle C4 such that

• G1 ∪ C4 ∪G2 = G,

• E(G1) ∩ E(C4) = ∅,

• E(G2) ∩ E(C4) = ∅,

• V (G1) ∩ V (G2) = ∅,

• V (G1) ∩ C4 = {r1, r2}, and

• V (G2) ∩ C4 = {s1, s2};

where r1 and r2 are not adjacent in C4; and, s1 and s2 are not adjacent in C4. We call r1, r2

the vertices of attachment of G1 and s1, s2 the vertices of attachment of G2.

Lemma 2.8. Let (G,Σ) be a signed graph with pendant vertices s1, s2 adjacent to u1, u2

where u1 6= u2. If

• there exists A ∈ S(G,Σ) such that

– corank(A) = ξ(G,Σ),

– A has the SAP, and

– as1,s1 = as2,s2 = 0; and
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• G− {u1, u2, s1, s2} has three components, each a path,

then ξ(G,Σ) ≤ 2.

Proof. We relabel the vertices u1, u2, s1, s2 as n − 3, n − 2, n − 1, n. We take the Schur

complement B = A/A[{n−3, n−2, n−1, n}]. From Observation 1.5, corank(A) = corank(B).

The graph H = G(B) has three components, each a path: P1, P2, and P3. We again relabel

the vertices such that i ∈ Pj, i′ ∈ Pj′ , and j < j′ implies i < i′.

From Theorem 1.14, corank(B) ≤M(H) = 3. Suppose for a contradiction that corank(B) =

3. Then, we may find non-zero vectors x1 ∈ ker (B[P1]), x2 ∈ ker (B[P2]), and x3 ∈

ker (B[P3]). Because B = B[P1]⊕B[P2]⊕B[P3], the vectors {[x1 0 0]T , [0 x2 0]T , [0 0 x3]
T}

form a basis for kerB. Then, we may write U

U =



x1 0 0
0 x2 0
0 0 x3

yn−3,1 yn−3,2 yn−3,3
yn−2,1 yn−2,2 yn−2,3
yn−1,1 yn−1,2 yn−1,3
yn,1 yn,2 yn,3


.

where the columns of U are a basis for ker(A) for some choice of yi,j for i = n−3, n−2, n−1, n

and j = 1, 2, 3. As an−1,n−1 = 0, the pendant edge (n−1)(n−3) forces yn−3,j = 0. Similarly,

an,n = 0, and the pendant edge (n− 2)(n) forces yn−2,j = 0. So, we have
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U =



x1 0 0
0 x2 0
0 0 x3
0 0 0
0 0 0

yn−1,1 yn−1,2 yn−1,3
yn,1 yn,2 yn,3


.

We denote the i-th row of U with ui. Because each edge is incident on {n−3, n−2} or within

the paths P1, P2, P3, the span of the matrices {uiuTi | i ∈ V } and {uiuTj +uju
T
i | ij ∈ E} has

dim ≤ 5. Because corank(A) = 3 and A has the SAP, Lemma 1.28 implies this dimension

must be 6. We have our contradiction; and corank(B) ≤ 2. Therefore, we have

ξ(G,Σ) = corank(A) = corank(B) ≤ 2.

2.3.1 Two Wide Separations

The K2,4e
j
i family of signed graphs is presented in Figure 2.3.

Lemma 2.9. ξ(K2,4e
0
i ) = 2 for i = o, e.

Proof. Because K2,4e
0
i has an odd cycle for i = o, e, Theorem 1.26 implies ξ(K2,4e

0
i ) ≥ 2

for i = o, e. Because K2,4e
0
i is a partial wide 2-path for i = o, e, Theorem 1.52 implies

ξ(K2,4e
0
i ) ≤ 2 for i = o, e.

Lemma 2.10. ξ(K2,4e
1
i ) ≤ 2 for i = o, e.

Proof. Let A ∈ S(K2,4e
1
i ) such that A has the SAP and corank(A) = ξ(K2,4e

1
i ). If a12,12 6= 0,

then we may take the Schur complement A/a12,12. The signed graph of A/a12,12 is exactly
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Figure 2.3 The K2,4e
j
i family of signed graphs, for i = e, o and j = 0, 1, 2, 3, 4, 5. Solid edges

are even, and dotted edges are odd. Dashed edges are even for K2,4e
j
e and are odd for K2,4e

j
o.
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K2,4e
0
i , and Lemmas 2.2 and 2.9 imply ξ(K2,4e

1
i ) = ξ(K2,4e

0
i ) = 2. If a12,12 = 0, then we

consider the Schur complement B = A/A[{9, 12}]. The graph of B is a tree T with P (T ) = 2,

and Theorem 1.41 implies corank(B) ≤ 2. Therefore, we have

ξ(K2,4e
1
i ) = corank(A) = corank(B) ≤ 2.

Lemma 2.11. ξ(K2,4e
2
i ) ≤ 2 for i = o, e.

Proof. Let A ∈ S(K2,4e
2
i ) such that A has the SAP and corank(A) = ξ(K2,4e

2
i ). If a12,12 6= 0,

then we may take the Schur complement A/a12,12. The signed graph of A/a12,12 is exactly

K2,4e
0
i , and Lemmas 2.2 and 2.9 imply ξ(K2,4e

2
i ) = ξ(K2,4e

0
i ) = 2. If a12,12 = 0, then we

consider the Schur complement B = A/A[{9, 12}]. The graph of B is a graph on two parallel

paths, denoted H. So, we may apply Lemma 1.44, and corank(B) ≤M(H) = 2. Therefore,

we have

ξ(K2,4e
2
i ) = corank(A) = corank(B) ≤ 2.

Lemma 2.12. ξ(K2,4e
3
i ) ≤ 2 for i = o, e.

Proof. Let A ∈ S(K2,4e
3
i ) such that A has the SAP and corank(A) = ξ(K2,4e

3
i ). If a12,12 6= 0,

then Lemma 2.10 implies corank(A) ≤ 2. If a13,13 6= 0, then Lemma 2.11 implies corank(A) ≤

2. So, we may assume both a12,12 = a13,13 = 0. We take the Schur complement B =

A/A[{10, 11, 12, 13}]. The graph H = G(B) has three components, each a path. Therefore,

Lemma 2.8 implies ξ(K2,4e
3
i ) ≤ 2.
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Lemma 2.13. ξ(K2,4e
4
i ) ≤ 2 for i = o, e.

Proof. Let A ∈ S(K2,4e
3
i ) such that A has the SAP and corank(A) = ξ(K2,4e

3
i ). If a12,12 6= 0,

then Lemma 2.12 implies corank(A) ≤ 2. If a13,13 6= 0, then Lemma 2.12 implies corank(A) ≤

2. So, we may assume both a12,12 = a13,13 = 0. We take the Schur complement B =

A/A[{10, 11, 12, 13}]. Then, we may obtain the tree T = G(B) by subdividing each edge of

K1,4 exactly once. As P (T ) = 3, Theorem 1.41 implies corank(B) ≤ P (T ) = 3.

If B[{7, 8}] is full rank, then we may take the Schur complement C = B/B[{7, 8}]. The

resulting tree T ′ = G(C) has P (T ′) = 2. From Theorem 1.41, corank(C) ≤ M(T ′) = 2.

Therefore,

corank(A) = corank(B) = corank(C) ≤M(T ′) = 2.

So, we may assume corank(B[{7, 8}]) ≥ 1 for the remainder of the proof. As corank(B[{7, 8}]) ≥

1 and as b7,8 6= 0, all entries of B[{7, 8}] are nonzero. Then, the detB[{7, 8, 9}] = b27,9b8,8 6= 0.

By symmetry, the same argument applied to the other branches of T implies corank(B[{1, 2}]) ≥

1, corank(B[{3, 4}]) ≥ 1, and corank(B[{5, 6}]) ≥ 1.

Take the Schur complement C ′ = B/B[{7, 8, 9}] and the graph F = G(C ′). The forest F

is three disjoint paths each on two vertices. Suppose for a contradiction that corank(B) = 3.

Then, the corank(C ′) = corank(B) = 3. We may find non-zero vectors x1 ∈ ker (C ′[{1, 2}]),

x2 ∈ ker (C ′[{3, 4}]), and x3 ∈ ker (C ′[{5, 6}]). Because C ′ = C ′[{1, 2}] ⊕ C ′[{3, 4}] ⊕

C ′[{5, 6}], the vectors {[x1 0 0]T , [0 x2 0]T , [0 0 x3]
T} form a basis for kerC ′. Then, the
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columns of W ,

W =


x1 0 0
0 x2 0
0 0 x3
y7,1 y7,2 y7,3
y8,1 y8,2 y8,3
y9,1 y9,2 y9,3

 ,

form a basis for kerB for some yi,j, i = 7, 8, 9 and j = 1, 2, 3, where we may take [y7,1 y7,2 y7,3] ∝

[y8,1 y8,2 y8,3]. Because b2,9 6= 0, the coordinates y9,j = 0 for j = 1, 2, 3. Then, the columns

of U ,

U =



x1 0 0
0 x2 0
0 0 x3
y7,1 y7,2 y7,3
y8,1 y8,2 y8,3
0 0 0

y10,1 y10,2 y10,3
y11,1 y11,2 y11,3
y12,1 y12,2 y12,3
y13,1 y13,2 y13,3


,

form a basis for ker(A), where we may take [y12,1 y13,1] ∝ [y12,3 y13,3]. As a12,12 = 0, the

pendant edge v10v12 forces y10,j = 0. Similarly, a13,13 = 0, and the pendant edge v11v13 forces

y11,j = 0. As dim(U) = 3, we may take y12,2 = 0, and we may write:

U =



x1 0 0
0 x2 0
0 0 x3
y7,1 y7,2 y7,3
y8,1 y8,2 y8,3
0 0 0
0 0 0
0 0 0

y12,1 0 y12,3
y13,1 y13,2 y13,3


.

We denote the i-th row of U with ui. The span of the matrices {uiuTi | i ∈ V } and {uiuTj +
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uju
T
i | ij ∈ E} has dim ≤ 5. Because corank(A) = 3 and A has the SAP, Lemma 1.28 implies

this dimension must be 6. We have our contradiction; and corank(B) ≤ 2. Therefore, we

have

ξ(K2,4e
4
i ) = corank(A) = corank(B) ≤ 2.

Lemma 2.14. ξ(K2,4e
5
i ) ≤ 2 for i = o, e.

Proof. Let A ∈ S(K2,4e
5
i ) such that A has the SAP and corank(A) = ξ(K2,4e

5
i ). If a14,14 6= 0,

then Lemmas 2.2 and 2.13 imply corank(A/a14,14) ≤ 2. If a13,13 6= 0, then Lemmas 2.2

and 2.12 imply corank(A/a13,13) ≤ 2. If a12,12 6= 0, then Lemmas 2.2 and 2.12 imply

corank(A/a12,12) ≤ 2. So, we may assume a12,12 = a13,13 = a14,14 = 0. Take the Schur

complement B = A/A[{9, 10, 11, 12, 13}]. Then, the graph of B is four copies of K2, and

Corollary 1.14 implies corank(B) ≤ 4.

Suppose for a contradiction that corank(B) = 4. Then, we may find nonzero vectors

x1 ∈ ker (B[{1, 2}]), x2 ∈ ker (B[{3, 4}]), x3 ∈ ker (B[{5, 6}]), and x4 ∈ ker (B[{7, 8}]).

Then, the columns of U ,

U =



x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4
y9,1 y9,2 y9,3 y9,4
y10,1 y10,2 y10,3 y10,4
y11,1 y11,2 y11,3 y11,4
y12,1 y12,2 y12,3 y12,4
y13,1 y13,2 y13,3 y13,4
y14,1 y14,2 y14,3 y14,4


,
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form a basis for the ker(A) for yi,j where i = 9, . . . , 14 and j = 1, 2, 3, 4. Because a12,12 = 0,

the pendant edge v9v12 forces y9,j = 0 for j = 1, 2, 3, 4. Similarly, y10,j = y11,j = 0 for

j = 1, 2, 3, 4. So, we may write

U =



x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4
0 0 0 0
0 0 0 0
0 0 0 0

y12,1 y12,2 y12,3 y12,4
y13,1 y13,2 y13,3 y13,4
y14,1 y14,2 y14,3 y14,4


.

We denote the i-th row of U with ui. The span of the matrices {uiuTi | i ∈ V } and {uiuTj +

uju
T
i | ij ∈ E} has dim ≤ 7. Because corank(B) = corank(A) = 4 and A has the SAP,

Lemma 1.28 implies this dimension must be 10. We have our contradiction; and corank(B) ≤

3.

We assume for a contradiction that corank(B) = 3. So, one of the four paths in the graph

of B corresponds to a full rank 2× 2 matrix, and we may assume that corank(B[{7, 8}]) =

0. So, we may find nonzero vectors q1 ∈ ker (B[{1, 2}]), q2 ∈ ker (B[{3, 4}]), and q3 ∈
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ker (B[{5, 6}]). With a similar argument, the columns of W ,

W =



q1 0 0
0 q2 0
0 0 q3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
z12,1 0 z12,3
z13,1 z13,2 0
z14,1 0 z14,3


,

form a basis for ker(A) for some z12,1, z12,3, z13,1, z13,2, z14,1, z14,3. We denote the i-th row of

W with wi. The span of the matrices {wiwTi | i ∈ V } and {wiwTj + wjw
T
i | ij ∈ E} has

dim ≤ 5. Because corank(B) = corank(A) = 3 and A has the SAP, Lemma 1.28 implies this

dimension must be 6. We have our contradiction; and corank(B) ≤ 2. Therefore, we have

ξ(K2,4e
5
i ) = corank(A) = corank(B) ≤ 2.

Lemma 2.15. Let (G,Σ) be a signed graph such that the removal of pendant vertices

yields a 2-connected partial wide 2-path (H,Ω). Let [H1, H2] and [H3, H4] be distinct wide

separations of (H,Ω) such that H1 ⊆ H3 and H4 ⊆ H2. Let r1, r2 be the vertices of

attachment of H2 and let s1, s2 be the vertices of attachment of H3. Let P1 and P2 be

disjoint paths between {r1, r2} and {s1, s2}, where Pi has endvertices ri and si for i = 1, 2.

If a pendant edge is incident with a vertex on P1 or P2, then either

• (G,Σ) has a minor isomorphic to a member of the K=
3 -family or
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• ξ(G,Σ) ≤ 2 and both H1 and H2 are disconnected.

Proof. If (G,Σ) has a pendant vertex adjacent to an internal vertex of P1 or P2, then we

found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). So, we may assume every pendant vertex

is adjacent to an endvertex of P1 or P2.

Suppose that a pendant vertex is adjacent to an endvertex of P1. If P1 has at least two

edges, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. So, we may assume that

P1 has 1 edge or r1 = s1. If P2 has at least two edges, then we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y )3. So, we may assume that P2 has 1 edge or r2 = s2. If both P1 and

P2 each have exactly 1 edge, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. So,

we may assume that r1 = s1 or r2 = s2.

Suppose that P1 has exactly 1 edge and r2 = s2. If H1 or H4 is connected and if a

pendant vertex is adjacent to r1 or s1, then (G,Σ) has a minor isomorphic to K=
3 (∆Y ). If

H1 or H4 is connected and if a pendant vertex is adjacent to r2 = s2, then (G,Σ) has a minor

isomorphic to K=
3 (∆Y )2. So, we may assume that both H1 and H4 are disconnected. Then,

(G,Σ) is isomorphic to a minor of K2,4e
5
i , and Lemma 2.14 implies ξ(G,Σ) ≤ ξ(K2,4e

5
i ) ≤ 2.

We may apply the same argument by symmetry for the case that P2 has exactly 1 edge and

r1 = s1.

Next, we assume that r1 = s1 and r2 = s2. If H1 and H4 are connected, then we found a

minor of (G,Σ) isomorphic to K=
3 (∆Y ). If both H1 and H4 are disconnected, then we found

a minor of (G,Σ) isomorphic to K2,4e
5
i . Lemma 2.14 implies ξ(G,Σ) ≤ ξ(K2,4e

5
i ) ≤ 2. So,

we may assume that H1 is disconnected and H4 is connected.
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By symmetry, we may assume that (G,Σ) has a pendant edge t1r1 incident on P1. If

H4 contains a cycle, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. So, we may

assume that H4 has no cycles. As H4 is connected, we may find a path Q between q1 and

q2, the vertices of attachment of H4 in [H3, H4]. If (G,Σ) has a pendant edge incident on an

internal vertex of Q, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. If Q has at

least two edges and (G,Σ) has pendant edges incident on both q1 and q2, then we found a

minor of (G,Σ) isomorphic to K=
3 (∆Y )2. So, we may assume that Q has exactly one edge

or that (G,Σ) has at most one pendant vertex adjacent to Q.

Let A ∈ S(G,Σ) such that corank(A) = ξ(G,Σ) and A has the SAP. If the entry at1,t1 6= 0,

then Lemma 2.2 implies ξ(G,Σ) = ξ(G − t1,Σ \ t1r1). As (G − t1,Σ \ t1r1) is a minor of a

2-connected partial wide 2-path, Theorem 1.52 and Lemma 1.23 imply ξ(G−t1,Σ\t1r1) ≤ 2.

Hence, ξ(G,Σ) ≤ 2. So, we may assume that at1,t1 = 0. We take the Schur complement

B = A/A[{t1, r1}]. Next, we construct a zero forcing set for G − {t1, r1}. Let v1, v2 be the

vertices of attachment of H1 for the wide separation [H1, H2]. If (G,Σ) has a pendant vertex

adjacent to v1, then we take z1 to be this pendant vertex; otherwise, we take z1 = v1. If

(G,Σ) has a pendant vertex adjacent to q1 or q2, then we take z2 to be this pendant vertex;

otherwise, we take z2 = q2. Then, Z = {z1, z2} is a zero set for G− {t1, r1}, and by Lemma

1.33 corank(B) ≤ M(G − {t1, r1}) ≤ Z(G − {t1, r1}) ≤ |Z| = 2. From Observation 1.5, we

have corank(A) = corank(B) ≤ 2. Therefore, ξ(G,Σ) = corank(A) ≤ 2.

Suppose (G,Σ) has a pendant edge t2r2 incident on P2. By Lemma 2.2, we may assume

that entries at1,t1 = at2,t2 = 0, corresponding to the pendant vertices t1 and t2. Then,
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G− {t1, r1, t2, r2} has three components, each a path. From Lemma 2.8, ξ(G,Σ) ≤ 2.

Lemma 2.16. Let (G,Σ) be a signed graph such that removing pendant vertices yields a

2-connected partial 2-path (H,Ω) with at least two wide separations. Then, either (G,Σ)

has a minor isomorphic to a member of the K=
3 -family or ξ(G,Σ) ≤ 2.

Proof. Let [H1, H2] and [H3, H4] be two distinct wide separations of (H,Ω) such that there

are no wide separations [F1, F2] and [F3, F4] with F1 ⊂ H1 and F4 ⊂ H4. Let u1, u2 be the

vertices of attachment of H1; let r1, r2 be the vertices of attachment of H2; let s1, s2 be the

vertices of attachment of H3. Because (H,Ω) is 2-connected, we may find disjoint paths P1

and P2 between {r1, r2} and {s1, s2} in (G,Σ). If any pendant vertex is adjacent to P1 or

P2, then Lemma 2.15 implies (G,Σ) has a minor isomorphic to a member of the K=
3 -family

or ξ(G,Σ) ≤ 2. So, we may assume no pendant vertex is adjacent to P1 or P2.

Suppose H1 contains a cycle C. Without loss of generality, we may assume that C is at

the end of the partial wide 2-path H, and we have a 2-separation (C,F ) of H. So, we may

find exactly two vertices {v1, v2} = V (C) ∩ V (F ), and we may assume that v1↔v2. Let Q1

be a path from v1 and u1; let Q2 be a path from v2 and u2. As (H,Ω) is 2-connected, we may

take Q1 disjoint from Q2. If (G,Σ) has a pendant vertex adjacent to (Q1 − v1) ∪ (Q2 − v2),

then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). We take the path P from C by

removing the edge v1v2, and P has endvertices v1 and v2.

Suppose H1 contains no cycle. Then, we take the path P ⊆ H1 with endvertices u1 and

u2.

If (G,Σ) has two pendant vertices adjacent to vertices pi, pi+2 ∈ V (P ) and dP (pipi+2) ≥ 2,
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then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, (G,Σ) has at most

two pendant vertices adjacent to pj, pj+1 ∈ V (P ) where dP (pj, pj+1) = 1. If there are

two such pendant vertices w1↔pj and w2↔pj+1, then we add the edge w1w2 to obtain

(G(1),Σ(1)) = (G,Σ ∪ w1w2). If there is only one such pendant vertex w1↔pj, then we add

the edge w1pj+1 to obtain (G(1),Σ(1)) = (G,Σ ∪ w1pj+1). If H1 is disconnected, then H1

consists of two isolated vertices {v1, v2}, because (H,Ω) is 2-connected. If (G,Σ) has no

pendant edge at v1, then take x1 = v1; otherwise, we take this pendant vertex to be x1.

Define x2 similarly. Take (G(2),Σ(2)) = (G(1),Σ(1) ∪ x1x2).

We apply our argument on H1 to H4 in (G(2),Σ(2)). The resulting signed graph (G(3),Σ(3))

is a 2-connected partial wide 2-path. By Theorem 1.52, we have ξ(G(3),Σ(3)) ≤ 2. As

(G,Σ) � (G(1),Σ(1)) � (G(2),Σ(2)) � (G(3),Σ(3)), Lemma 1.23 implies ξ(G,Σ) ≤ (G(3),Σ(3)).

Therefore, ξ(G,Σ) ≤ 2.

2.3.2 One Wide Separation

Lemma 2.17. Let (G,Σ) be a signed graph such that the removal of all pendant vertices

yields a partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. Let u1, u2 be

the vertices of attachment of H1; let w1, w2 be the vertices of attachment of H2. Suppose

that

• H1 and H2 are paths;

• there are pendant vertices adjacent to u1 and u2;

• there are no pendant vertices adjacent to the internal vertices of H2;
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• if there is a pendant vertex adjacent to an internal vertex of H1, then l(H1) = 2 and

either

– at most one pendant vertex is incident with {w1, w2} or

– H2 has one edge w1w2.

Then, ξ(G,Σ) ≤ 2.

Proof. Let A ∈ S(G,Σ) such that corank(A) = ξ(G,Σ) and A has the SAP. Let s1, s2 be the

pendant vertices such that s1↔u1 and s2↔u2.

Suppose as1,s1 = as2,s2 = 0. Then, we may take the Schur complementB = A/A[s1, s2, u1, u2],

and by Observation 1.5 we have corank(A) = corank(B). The forest F = G(B) con-

sists of two disjoint paths, and Theorem 1.41 implies corank(B) ≤ P (F ) = 2. Hence,

ξ(G,Σ) = corank(A) = corank(B) ≤ 2. So, we may assume that as1,s1 6= 0. We take

(G(1),Σ(1)) = (G − s1,Σ \ s1u1). By Lemma 2.2, we know that ξ(G,Σ) = ξ(G(1),Σ(1)). If

a pendant vertex of (G,Σ) is adjacent to an internal vertex of H1, then we may add edges

to (G(1),Σ(1)) to obtain a 2-connected partial wide 2-path (G(2),Σ(2)). By Theorem 1.52,

ξ(G(2),Σ(2)) ≤ 2. Because (G(1),Σ(1)) � (G(2),Σ(2)), Lemma 1.23 implies ξ(G(1),Σ(1)) ≤

ξ(G(2),Σ(2)). Hence, ξ(G,Σ) = ξ(G(1),Σ(1)) ≤ ξ(G(2),Σ(2)) ≤ 2. We may therefore as-

sume no pendant vertex of (G,Σ) is adjacent to an internal vertex of H1. Similarly, if at

most one pendant vertex of (G,Σ) is adjacent to {w1, w2}, then we may add edges to ex-

tend (G(1),Σ(1)) to a 2-connected partial wide 2-path (G(3),Σ(3)). With a similar argument,

ξ(G,Σ) = ξ(G(1),Σ(1)) ≤ ξ(G(3),Σ(3)) ≤ 2. We may therefore assume that (G,Σ) has pen-
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dant vertices t1 and t2 adjacent to w1 and w2, where t1↔w1 and t2↔w2. If at1,t1 = at2,t2 = 0,

then we may take the Schur complement C = A/A[{t1, t2, w2, w2}]. By Observation 1.5,

we have corank(A) = corank(C). The forest F ′ = G(C) consists of two disjoint paths.

So, we may apply Theorem 1.41 to obtain corank(C) ≤ P (F ′) = 2. Hence, we have

ξ(G,Σ) = corank(A) = corank(C) ≤ 2. We may therefore assume that at1,t1 6= 0. We may

delete vertex t1 from (G,Σ) and apply Lemma 2.2 to obtain ξ(G,Σ) = ξ(G− t1,Σ \ δ(t1)).

We may extend (G − t1,Σ \ δ(t1)) by adding edges to obtain a 2-connected partial 2-

path; and by Theorem 1.52 and Lemma 1.23 we have ξ(G − t1,Σ \ δ(t1)) ≤ 2. Therefore,

ξ(G,Σ) = ξ
(
G− t1,Σ \ δ(t1)

)
≤ 2.

Lemma 2.18. Let (G,Σ) be a signed graph such that removal of all pendant vertices yields

a partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. If both H1 and H2

are connected, then either (G,Σ) has a minor isomorphic to a member of the K=
3 -family or

ξ(G,Σ) ≤ 2.

Proof. Let u1, u2 be the vertices of attachment of H1, and let w1, w2 be the vertices of

attachment of H2.

Suppose that H1 contains a cycle C. We may assume that C is the cycle at the end of the

partial wide 2-path (H,Ω), and we found a 2-separation (C,F ) of H. Let {v1, v2} = V (C)∩

V (F ). Because (H,Ω) is 2-connected, we may find disjoint paths Q1 and Q2 between {v1, v2}

and {u1, u2}. If a pendant vertex of (G,Σ) is adjacent to V (H1)\V (C), then we found a minor

of (G,Σ) isomorphic to K=
3 (∆Y ) (and another minor of (G,Σ) isomorphic to K=

3 (∆Y )2).
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So, we may assume that any pendant vertices adjacent to H1 are adjacent to V (C). Let

P1 ⊂ C be the path obtained from C by removing the edge v1v2. If (G,Σ) has two pendant

vertices adjacent to vertices a1, a2 ∈ V (P1), dP1(a1, a2) ≥ 2, and {a1, a2} \ {u1, u2} 6= ∅; then

we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, either

• there are at most two pendant vertices adjacent to vertices a1, a2 ∈ V (P1) and dP1(a1, a2) =

1;

• there are three pendant vertices adjacent to the vertices of P1, l(P1) = 2, and the

endvertices of P1 are u1 and u2; or

• there are two pendant vertices of (G,Σ) adjacent to the endvertices of P1, and the

endvertices of P1 are u1 and u2.

Suppose that H1 has no cycle. Then, H1 is a path from u1 to u2. We take P1 = H1.

If (G,Σ) has two pendant vertices adjacent to vertices b1, b2 ∈ V (P1), dP1(b1, b2) ≥ 2, and

{b1, b2}\{u1, u2} 6= ∅; then we found a minor of (G,Σ) isomorphic toK=
3 (∆Y )2. Hence, either

there are at most two pendant vertices adjacent to vertices b1, b2 ∈ V (P1) and dP1(b1, b2) = 1;

there are three pendant vertices adjacent to the vertices of P1, l(P1) = 2, and the endvertices

of P1 are u1 and u2; or there are two pendant vertices of (G,Σ) adjacent to the endvertices

of P1, and the endvertices of P1 are u1 and u2.

We apply our case study on H1 to H2, and we have defined P2 ⊆ H2. For i = 1, 2, if

(G,Σ) has at most two pendant vertices adjacent to c1, c2 ∈ V (Pi) and dPi
(c1, c2) = 1, then

(G,Σ) is a minor of a partial wide 2-path. Hence, Theorem 1.52 and Lemma 1.23 imply



64

ξ(G,Σ) ≤ 2. So, we may assume that either there are pendant vertices adjacent with both

endvertices of P1, the endvertices of P1 are u1 and u2, and l(P1) ≥ 2; or there are pendant

vertices adjacent with both endvertices of P2, the endvertices of P2 are w1 and w2, and

l(P2) ≥ 2. By symmetry, we may assume that there are pendant vertices adjacent with both

endvertices of P1, the endvertices of P1 are u1 and u2, and l(P1) ≥ 2. If H2 has a cycle, then

we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. So, we may assume that H2 has no

cycle, and P2 = H2 is a path with endvertices w1 and w2.

If (G,Σ) has a pendant vertex adjacent to V (P2) \ {w1, w2}, then we found a minor

of (G,Σ) isomorphic to K=
3 (∆Y )3. So, we may assume that any pendant vertex of (G,Σ)

adjacent to P2 is adjacent to w1 or w2. If l(P1) ≥ 3 and (G,Σ) has a pendant vertex adjacent

to P1−{u1, u2}, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. If l(P1) = 2, then

(G,Σ) has a pendant vertex adjacent to P1 − {u1, u2}, (G,Σ) has pendant vertices adjacent

to w1 and w2, and l(P2) ≥ 2; and we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. So,

we may assume that l(P2) = 1. Hence, if l(P1) = 2 and (G,Σ) has a pendant vertex adjacent

P1 − {u1, u2}, then either l(P2) = 1 or (G,Σ) has at most one pendant vertex adjacent to

{w1, w2}. By Lemma 2.17, we have ξ(G,Σ) ≤ 2.

Lemma 2.19. Let (G,Σ) be a signed graph such that the removal of pendant vertices yields

a 2-connected partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. Let u1

and u2 be the vertices of attachment of H1. Let P be a path in l(H1) ≥ 2, with endvertices

u1 and u2. If H2 is disconnected, then either (G,Σ) has a minor isomorphic to a member of

the K=
3 -family or ξ(G,Σ) ≤ 2.
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Proof. Suppose that H1 contains a cycle C. As (H,Ω) is 2-connected, we may find disjoint

paths Q1 and Q2 between {u1, u2} and V (C). Let vi = V (Qi) ∩ V (C) for i = 1, 2. If (G,Σ)

has a pendant vertex adjacent to an internal vertex of Q1 or Q2, then we found a minor of

(G,Σ) isomorphic to K=
3 (∆Y ).

Lemma 2.20. Let (G,Σ) be a signed graph such that the removal of pendant vertices yields

a 2-connected partial wide 2-path (H,Ω) with exactly one wide separation. Then, either

(G,Σ) has a minor isomorphic to a member of the K=
3 -family or ξ(G,Σ) ≤ 2.

Proof. Let [H1, H2] be the wide separation of (G,Σ). If H1 and H2 are connected, then

Lemma 2.19 implies either (G,Σ) has a minor in the K=
3 -family or ξ(G,Σ) ≤ 2. So, we

may assume that H2 is disconnected. Let u1 and u2 be the vertices of attachment of H1.

If l(H1) ≥ 2, then Lemma 2.20 implies either (G,Σ) has a minor in the K=
3 -family or

ξ(G,Σ) ≤ 2. Hence, we may assume either E(H1) = {u1u2} or H1 is disconnected. That

is, H is a graph of two parallel paths. Lemma 1.44 implies ξ(H,Ω) ≤ M(H) ≤ 2. From

Lemma 2.2, ξ(G,Σ) = ξ(H,Ω) ≤ 2. So for i = 1, 2, we may assume that any pendant vertex

of (G,Σ) which is adjacent to Qi − vi is adjacent to ui.

Suppose (G,Σ) has a pendant vertex s1 adjacent to u1. Then, v1 6= u1, and l(Q1) ≥ 1.

If both l(Q1) ≥ 1 and l(Q2) ≥ 1, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2.

So, we may assume that l(Q2) = 0, and u2 = v2. Then, H1 − {u1, u2} has no cycle.

If H1 − {u1, u2} is not a path, then it contains a K1,3, and we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y )3. So, we may assume that H − {u1, u2} is a path. Suppose that no

pendant vertex is adjacent to u2.
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Let A ∈ S(G,Σ) with corank(A) = ξ(G,Σ) such that A has the SAP. We may assume

that as1,s1 = 0; otherwise, we may delete the pendant vertex s1 by Lemma 2.2. Then, we

may take the Schur complement B = A/A[{u1, s1}]. By Lemma 1.5, corank(A) = corank(B).

Because G−{u1, s1} is a partial 2-path with a path cover number of two, by Theorem 1.42,

corank(B) ≤ 2; and ξ(G,Σ) = corank(A) = corank(B) ≤ 2. If (G,Σ) has a pendant vertex

s2 adjacent to u2, then we may assume that as2,s2 by Lemma 2.2. Because G−{u1, u2, s1, s2}

consists of three paths, we may apply Lemma 2.8, and ξ(G,Σ) ≤ 2. Therefore, (G,Σ) has no

pendant vertex adjacent to V (Qi)\ vi for i = 1, 2. So, any pendant vertex of (G,Σ) adjacent

to H1 is adjacent to V (C) \ {u1, u2}.

Let P1 be the path obtained from C by deleting the edge v1v2. If (G,Σ) has pendant

vertices adjacent to v1 and v2 and if l(P1) ≥ 2, then we found a minor of (G,Σ) isomorphic to

K=
3 (∆Y )2. If (G,Σ) has two pendant vertices adjacent to a1, a2 ∈ V (P1), {a1, a2} 6= {v1, v2},

and dP1(a1, a2) ≥ 2; then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, (G,Σ)

has at most two pendant vertices adjacent to a1, a2 ∈ V (P1) and dP1(a1, a2) = 1. We may

add an edge between our pendant vertices to (G,Σ), and the resulting signed graph is a

2-connected partial wide 2-path. By Theorem 1.52, ξ(G,Σ) ≤ 2. So, whenever H1 contains

a cycle, either ξ(G,Σ) ≤ 2 or (G,Σ) has a minor isomorphic to a member of the K=
3 -family.

Suppose that H1 contains no cycle. As (H,Ω) is 2-connected, H1 must be a path with

endvertices u1 and u2. Suppose there are pendant vertices adjacent to b1, b2 ∈ V (H1) and

dH1(b1, b2) ≥ 2. Suppose b1 = u1. If H1 − {u1, u2} is not a path, then it must contain K1,3;

and we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. So, we may assume that (G,Σ)
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has no pendant vertex adjacent to u1 or u2; and we found a minor of (G,Σ) isomorphic

to K=
3 (∆Y )2. Hence, we may assume that dH1(b1, b2) = 1. We may add an edge between

our pendant vertices to (G,Σ), and the resulting signed graph is a 2-connected partial wide

2-path. By Theorem 1.52, we have ξ(G,Σ) ≤ 2. So, whenever H1 contains no cycle, either

ξ(G,Σ) ≤ 2 or (G,Σ) has a minor isomorphic to a member of the K=
3 -family.

2.3.3 No Wide Separations

The proof of the following lemma, originally in terms of simple graphs, is from Hogben and

van der Holst (Theorem 5.1 in [14]).

Lemma 2.21. Let (G,Σ) be a signed graph such that the removal of pendant vertices yields

a 2-connected partial 2-path (H,Ω). If (G,Σ) has no wide separation, then either (G,Σ) has

a minor isomorphic to a member of the K=
3 -family or ξ(G,Σ) ≤ 2.

Proof. Let A ∈ S(G,Σ) such that corank(A) = ξ(G,Σ) and A has the SAP. Let W ⊆ V (G)

be the pendant vertices of (G,Σ), and let S ⊆ V (G) be those vertices adjacent to the pendant

vertices W . By Lemma 2.2, we may assume that as,s = 0 ∀s ∈ S.

Because (H,Ω) is a partial 2-path with no wide separations, H is outerplanar; therefore,

G is outerplanar. So, we may embed G in the plane with every vertex on the infinite face.

Let B be the collection of cycles bounding the finite faces. Then, the dual of G is a path

P whose vertices correspond to the finite faces of our embedding with an edge pq ∈ E(P )

whenever p and q share a common edge in our embedding of G. Let p1, p2 be the endvertices

of P .
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If (G,Σ) has a pendant vertex s ∈

( ⋃
q 6=p1,p2

Bq

)
\ (Bp1 ∪Bp2), then we found a minor of

(G,Σ) isomorphic to K=
3 (∆Y ). Hence, we may assume S ⊆ Bp1 ∪Bp2 .

Suppose there is a vertex s1 ∈ S such that s1 ∈
⋂
B∈B

V (B). Let w1 ∈ W such that

w1↔s1. Take the Schur complement A′ = A/A[S ∪W ]. If the graph F = G(A′) has at least

3 components, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. So, F has at most

2 components. Because s1 ∈
⋂
B∈B

V (B), these two components are both paths. By Theorem

1.41, corank(A′) ≤ M(F ) = P (F ) = 2. By Lemma 1.5, corank(A) = corank(A′) ≤ 2.

Hence, we may assume that S ∩
( ⋂
B∈B

V (B)

)
= ∅.

If p1 = p2, then S = ∅ and (G,Σ) has no pendant vertices. So, (G,Σ) is a 2-connected

partial wide 2-path, and Theorem 1.52 implies ξ(G,Σ) ≤ 2. Hence, we may assume that p1 6=

p2. If there are two vertices s2, s3 ∈ S∩V (Bp1) with dH(s2, s3) ≥ 2, then we found a minor of

(G,Σ) isomorphic to K=
3 (∆Y )2. Similarly, if there are two vertices s4, s5 ∈ S ∩ V (Bp2) with

dH(s4, s5) ≥ 2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, there is an

edge e1 ∈ E(Bp1) and an edge e2 ∈ E(Bp2) such that {e1, e2} is incident on every vertex of S.

If we identify an edge of a copy of C4 with e1 and identify an edge of another copy of C4 with

e2, then the resulting signed graph (G(1),Σ(1)) is a 2-connected 2-path. By Theorem 1.52,

ξ(G(1),Σ(1)) ≤ 2. As (G,Σ) � (G(1),Σ(1)), Lemma 1.23 implies ξ(G,Σ) ≤ ξ(G(1),Σ(1)) ≤ 2.
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2.4 Proof of the Main Result

Proof. Suppose (G,Σ) has a minor isomorphic to a member of the K=
3 -family, Ke

4 , Ko
4 , or

Ke
2,3. If (G,Σ) has a minor isomorphic to a member of the K=

3 -family, then Lemma 2.4

implies that ξ(G,Σ) ≥ 3. From Lemma 1.51, if (G,Σ) has a minor isomorphic to Ke
4 , Ko

4 ,

or Ke
2,3, then ξ(G,Σ) ≥ 3.

Suppose ξ(G,Σ) ≥ 3. By Lemma 1.48, there exists a thin out (H,Ω) of a block of (G,Σ)

with ξ(H,Ω) ≥ 3. Let (H ′,Ω′) be obtained from (H,Ω) by removing pendant vertices. If

(H ′,Ω′) has a minor isomorphic to a member of the K=
3 -family, Ke

4 , Ko
4 , or Ke

2,3, then (G,Σ)

has a minor isomorphic to a member of the K=
3 -family, Ke

4 , Ko
4 , or Ke

2,3. Therefore, we may

assume that (H ′,Ω′) has no minor isomorphic to K=
3 -family, Ke

4 , Ko
4 , or Ke

2,3. By Theorem

1.52, we know that (H ′,Ω′) is either a W o
4 or a partial wide 2-path. From Lemma 2.3, we

know that (H ′,Ω′) is not W o
4 . Therefore, (H ′,Ω′) is a partial wide 2-path. If (H ′,Ω′) has

at least two wide separations, then Lemma 2.16 implies (H,Ω) has a minor isomorphic to

a member of the K=
3 -family. If (H ′,Ω′) has exactly one wide separation, then Lemma 2.20

implies that (H,Ω) has a minor isomorphic to a member of the K=
3 -family. If (H ′,Ω′) has

no wide separations, then Lemma 2.21 implies (H,Ω) has a minor isomorphic to a member

of the K=
3 -family. Because (H,Ω) � (G,Σ), no matter how many wide separations are in

(H ′,Ω′), (G,Σ) has a minor isomorphic to a member of the K=
3 -family.
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CHAPTER 3

Signed Graphs with Maximum Nullity at Most Two



72

The following theorem is the main result of this chapter. The last section of this chapter

contains the proof.

Theorem 3.1. Let (G,Σ) be a signed graph. Then, M(G,Σ) ≤ 2 if and only if one of the

following holds:

1. (G,Σ) is a signed graph with two parallel paths;

2. (G,Σ) is a Seahorse;

3. (G,Σ) is a Starfish;

4. (G,Σ) is a Sea Anemone;

5. (G,Σ) is a Mollusk;

6. (G,Σ) is a Stingray;

7. (G,Σ) is obtained from W o
4 by attaching single pendant paths to some of the vertices

of W o
4 ;

8. (G,Σ) is obtained from attaching at most two pendant paths to each vertex of K2; or

9. (G,Σ) is obtained from attaching at most two pendant paths to each vertex of K=
2 .

The above theorem extends the result of Johnson, Loewy, and Smith, a combinatorial

characterization of the graphs with maximum nullity at most two [16]. We depict examples

in Figure 3.1.
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3.1 Global Structure of Signed Graphs (G,Σ) with M(G,Σ) ≤ 2

Lemma 3.2. Let (G,Σ) be the disjoint union of (G1,Σ1) and (G2,Σ2). Then,

M(G,Σ) = M(G1,Σ1) +M(G2,Σ2).

Proof. First, we observe that corank(A) = corank(A1) + corank(A2) whenever A = A1⊕A2.

If A1 ∈ S(G1,Σ1) and A2 ∈ S(G2,Σ2), then A1 ⊕ A2 ∈ S(G,Σ). Hence, M(G1,Σ1) +

M(G2,Σ2) ≤ M(G,Σ). If A ∈ S(G,Σ), then we may partition A = A1 ⊕ A2 such that

A1 ∈ S(G1,Σ1) and A2 ∈ S(G2,Σ2). Hence, M(G,Σ) ≤M(G1,Σ1) +M(G2,Σ2).

Lemma 3.3. Let (G,Σ) be a disconnected signed graph with M(G,Σ) = 2. Then, (G,Σ)

is a disjoint union of two paths.

Proof. For each component (Gi,Σi) of (G,Σ), we know M(Gi,Σi) ≥ 1. From Lemma 3.2,

we know that M(Gi,Σi) = 1 for each component. So, (G,Σ) has exactly two components.

From Theorem 1.14, (Gi,Σi) is a path for i = 1, 2. That is, (G,Σ) is the disjoint union of

two paths.

Definition 3.4. Let (G1,Σ1) and (G2,Σ2) be signed graphs. We may form the signed graph

(G,Σ) by identifying a vertex v1 ∈ V (G1) with a vertex v2 ∈ V (G2) and name the vertex

v ∈ V (G). Then, (G,Σ) is the 1-sum of (G1,Σ1) and (G2,Σ2) at v. We say that (G,Σ) is

obtained by attaching v2 in (G2,Σ) to v1 in (G1,Σ). If G2 is a path, then we say that (G,Σ)

is obtained by attaching a path to (G1,Σ1). If G2 is a path and dG2(v2) = 1, then we say

that (G,Σ) is obtained by attaching a pendant path to (G1,Σ1); and (G,Σ) has a pendant

path attached to v.
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Lemma 3.5. Let (G,Σ) be a connected signed graph containing a cycle. If M(G,Σ) ≤ 2,

then either

1. (G,Σ) is obtained from a 2-connected signed graph (H,Ω) with M(H,Ω) ≤ 2 by

attaching pendant paths at vertices of (H,Ω); or

2. (G,Σ) is obtained from a K=
2 by attaching pendant paths to K=

2 .

Further, at each vertex of H at most two pendant paths can be attached.

Proof. If (G,Σ) has no cut vertex, then we may apply Theorem 1.52 to the case where

(G,Σ) = (H,Ω). So, we may assume that (G,Σ) has a cut vertex, and we may find a 1-

separation of (G,Σ). Suppose for a contradiction that [(H1,Ω1), (H2,Ω2)] is a 1-separation

of (G,Σ) such that H1 contains a cycle and H2 contains a cycle. From Lemma 1.39, we have

M(G,Σ) ≥ M(H1,Ω1) + M(H2,Ω2) − 1 ≥ 2 + 2 − 1 = 3, but M(G,Σ) ≤ 2. So, we may

assume that H1 has a cycle; and we may assume H2 has no cycle. From Lemma 1.39, we

have M(H1,Ω1) ≤M(G,Σ)−M(H2,Ω2) + 1 ≤ 2− 1 + 1 = 2.

Suppose for a contradiction that H2 contains a vertex v such that dH2(v) ≥ 3. Hence, we

have P (H1) ≥ 2. As H2 is a tree, Theorem 1.41 implies M(H1) = P (H1) ≥ 2. From Lemma

1.27, we have M(H1,Ω1) = M(H1) ≥ 2. From Lemma 1.39, we have

M(G,Σ) ≥M(H1,Ω1) +M(H2,Ω2)− 1 ≥ 2 + 2− 1 = 3.

Therefore, H2 has no vertex v with dH2(v) ≥ 3. That is, H2 is a path. If (G,Σ) is the 1-sum

of (H1,Ω1) and (H2,Ω2) at w, then w is either a pendant vertex of H2 or an internal vertex

of H2. So, at most two pendant paths may be attached to H1 at w.
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Lemma 3.6. Let (G,Σ) be the 1-sum of (G1,Σ1) and (P,Σ2) at v, where P is a path with

endvertex v. Then,

M(G,Σ) = max{M(G1,Σ1),M(G1 − v,Σ1 \ δ(v))} ≥M(G1,Σ1).

Proof. From Lemma 1.39, we have

M(G,Σ) = max{M(G1,Σ1) +M(P,Σ2)−1,M(G1−v,Σ1 \ δ(v)) +M(P −v,Σ2 \ δ(v))−1}.

Because P − v is a path, M(P,Σ2) = M(P − v,Σ2 \ δ(v)) = 1. So,

M(G,Σ) = max{M(G1,Σ1),M(G1 − v,Σ1 \ δ(v))} ≥M(G1,Σ1).
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3.2 Pendant Paths on an Odd 4-Wheel

Lemma 3.7. If (G,Σ) is obtained from W o
4 by attaching single pendant paths to some of

the vertices of W o
4 , then M(G,Σ) = 2. If (G,Σ) is obtained from W o

4 by attaching two

pendant paths to a vertex of W o
4 , then M(G,Σ) > 2.

Proof. Suppose first that no vertex of W o
4 has more than one pendant path attached. Let

S ⊆ V (W o
4 ) be the vertices with single pendant paths attached. If S = ∅, then Theorem

1.52 implies M(W o
4 ) = 2. If S 6= ∅, then W o

4 − S is a graph on two parallel paths, and

Lemma 1.44 implies M(W o
4 − S) ≤ 2. As (G,Σ) is formed from W o

4 adding single pendant

paths, Lemma 3.6 implies M(G,Σ) ≤ 2. Because G is not a path, Theorem 1.14 implies

M(G,Σ) = 2.

Suppose next that we form (G,Σ) by attaching two pendant paths to v ∈ V (W o
4 ). Then,

(G,Σ) is the 1-sum of W o
4 and P at v, where P − v consists of two disjoint paths. So,

M(P − v) = 2. From Lemma 1.39,

M(G,Σ) = max{M(W o
4 ) +M(P )− 1,M(W o

4 − v) +M(P − v)− 1}

= max{2 + 1− 1, 2 + 2− 1} = 3.
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3.3 Pendant Paths Attached to 2-Connected Partial Wide 2-Paths
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Signed graph with two parallel paths.

Stingray with l(P1) + l(P2) = 1.

Stingray with l(P1) + l(P2) = 0.

A Sea Anemone with l(P ) = 2.

A Mollusk.

A Seahorse.

A Starfish.

Figure 3.1 Examples of signed graphs with maximum nullity at most two. Solid edges are
even; dotted edges are odd; and dashed lines may be even or odd.
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3.3.1 Two Wide Separations

Definition 3.8. Let (G,Σ) be a signed graph obtained from adding pendant paths to (H,Ω),

where (H,Ω) is a 2-connected partial wide 2-path. Suppose

• [H1, H2] and [H3, H4] are distinct wide separations of (H,Ω);

• H1 ⊆ H3 and H2 ⊆ H4;

• {r1, r2} are the vertices of attachment of H2;

• {s1, s2} are the vertices of attachment of H3; and

• P1 and P2 are vertex disjoint paths where

– P1 has endvertices r1 and s1, and

– P2 has endvertices r2 and s2.

We call (G,Σ) a Stingray if the following hold:

1. No vertex of H is attached to two or more pendant paths.

2. There is exactly one pendant path attached to a vertex of P1 or P2.

3. l(P1) + l(P2) ≤ 1.

4. If l(P1) + l(P2) = 1, then H1 and H4 are disconnected.

5. If l(P1) + l(P2) = 0, then

• exactly one of H1 or H4 is disconnected, and the other one is a path Q;
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• if l(Q) ≥ 2, then there is at most one pendant path attached to an endvertex of

Q, and there are no pendant paths attached to an internal vertex of Q.

Lemma 3.9. If (G,Σ) is a Stingray, then M(G,Σ) = 2.

Proof. Because (G,Σ) is not a path, Theorem 1.14 implies M(G,Σ) ≥ 2. Let P be the

pendant path attached to the vertex v ∈ V (P1) ∪ V (P2). Let [G1, P ] be a 1-separation of

G at v. By definition, (G1, E(G1) ∩ Σ) is a 2-connected partial wide 2-path, and Theorem

1.52 implies M(G1, E(G1)∩Σ) ≤ 2. Because P (G1−P ) = 2, Theorem 1.42 implies M(G1−

P,E(G1 − P ) ∩ Σ) ≤ M(G1 − P ) = P (G1 − P ) = 2. Hence, we may apply Lemma 3.6 to

the 1-separation at v, and we have

M(G,Σ) = max{M(G1, E(G1) ∩ Σ),M(G1 − P,E(G1 − P ) ∩ Σ)} ≤ 2.

Lemma 3.10. Let (G,Σ) be a signed graph such that the removal of pendant paths yields

a 2-connected partial wide 2-path (H,Ω) with at least two wide separations. If there is a

vertex with at least two pendant paths attached in (G,Σ), then M(G,Σ) ≥ 3.

Proof. Let v be the vertex of (G,Σ) with at least two pendant paths attached. Let (G1,Σ1) be

a path with endvertices on these pendant paths. Then, we have a 1-separation [(G1,Σ1), (G2,Σ2)]

at v. For i = 1, 2, let (G
(1)
i ,Σ

(1)
i ) be the signed graph obtained from (Gi,Σi) by deleting the

vertex v. Then, G
(1)
1 is a disjoint union of two paths. From Theorem 1.14 and Lemma 3.2,

we have M(G
(1)
1 ,Σ

(1)
1 ) = 2. Because (G,Σ) has two wide separations, G

(1)
2 is not a path, so
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we have M(G
(1)
2 ,Σ

(1)
2 ) ≥ 2. From Lemma 1.39, we have

M(G,Σ) ≥M(G
(1)
1 ,Σ

(1)
1 ) +M(G

(1)
2 ,Σ

(1)
2 )− 1 ≥ 2 + 2− 1 = 3.

Lemma 3.11. Let (G,Σ) be a signed graph such that the removal of pendant paths yields

a 2-connected partial wide 2-path (H,Ω). Let [H1, H2] and [H3, H4] be distinct wide sepa-

rations in (H,Ω) such that H1 ⊆ H3 and H4 ⊆ H2. Let

• r1, r2 be the vertices of attachment of H2,

• s1, s2 be the vertices of attachment of H3, and

• P1 and P2 be vertex-disjoint paths between {r1, r2} and {s1, s2}, where Pi has endver-

tices ri and si for i = 1, 2.

Suppose a pendant path is incident with a vertex on P1 or P2. Then, M(G,Σ) = 2 if and

only if (G,Σ) is a Stingray.

Proof. From Lemma 3.9, if (G,Σ) is a Stingray, then M(G,Σ) = 2.

Suppose M(G,Σ) = 2. We want to show that (G,Σ) is a Stingray. Because ξ(G,Σ) ≤

M(G,Σ) ≤ 2, Theorem 2.1 implies (G,Σ) has no minor isomorphic to a member of the K=
3 -

family. From Lemma 3.10, no vertex of (G,Σ) has more than one pendant path attached.

Suppose a pendant path is attached to an internal vertex of P1 or P2. Then, we found a

minor of (G,Σ) isomorphic to K=
3 (∆Y ). So, we may assume that any pendant path attached

to a vertex of P1 or P2 is attached to an endvertex of P1 or P2.
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Next, we want to prove that l(P1) + l(P1) ≤ 1. By symmetry, we assume that (G,Σ)

has a pendant path attached to an endvertex of P1. If l(P1) ≥ 2, then we found a minor

of (G,Σ) isomorphic to K=
3 (∆Y )3. So, we may assume that l(P1) ≤ 1. If l(P2) ≥ 2, then

we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. So, we may assume that l(P2) ≤ 1. If

l(P1) = l(P2) = 1, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. So, we have

l(P1) + l(P2) ≤ 1.

Suppose that l(P1) + l(P2) = 1. By symmetry, we may assume that l(P1) = 1 and

l(P2) = 0. Because l(P2) = 0, we have r2 = s2. If H1 is connected and there is a pendant

path attached to {r1, r2 = s2}, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. If

H1 is connected and there is a pendant path attached to s1, then we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y ). Hence, H1 is disconnected. By symmetry, we may apply the same

argument to H4. Hence, both H1 and H4 are disconnected. Suppose for a contradiction

that more than one pendant path is attached to V (P1) ∪ V (P2). Let (G(1),Σ(1)) be the

graph obtained by removing these pendant paths and their vertices of attachment. Then,

P (G(1),Σ(1)) ≥ 3. As (G(1),Σ(1)) is a partial 2-path, Theorem 1.42 implies M(G(1),Σ(1)) =

P (G(1)Σ(1)) ≥ 3. From Lemma 1.39, we have M(G,Σ) ≥M(G(1),Σ(1)) ≥ 3. Hence, there is

at most one pendant path attached to V (P1) ∪ V (P2). That is, (G,Σ) is a Stingray.

Suppose that l(P1) + l(P2) = 0. Then, r1 = s1 and r2 = s2. If both H1 and H4 are

connected, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). Suppose that both

H1 and H4 are disconnected. Let (G(1),Σ(1)) be the signed graph obtained by removing the

pendant path P and its vertex of attachment from (G,Σ). Because P (G(1),Σ(1)) ≥ 3,
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Theorem 1.42 implies M(G(1),Σ(1)) = P (G(1),Σ(1)) ≥ 3. From Lemma 1.39, we have

M(G,Σ) ≥ M(G(1),Σ(1)) ≥ 3. Because M(G,Σ) = 2, we may assume that H1 is dis-

connected and H4 is connected or that H1 is connected and H4 is disconnected. By sym-

metry, we may assume that H1 is disconnected and H4 is connected. Suppose (G,Σ) has

more than one pendant path attached to V (P1) ∪ V (P2). Then, there must be one pendant

path attached to r1 and one pendant path attached to r2. Let (G(2),Σ(2)) be the signed

graph obtained by removing these pendant paths and their vertices of attachment. Because

P (G(2),Σ(2)) ≥ 3, Theorem 1.42 implies M(G(2),Σ(2)) = P (G(2),Σ(2)) ≥ 3. From Lemma

1.39, we have M(G,Σ) ≥M(G(2),Σ(2)) ≥ 3. Hence, (G,Σ) has exactly one pendant path P

attached to a vertex in V (P1) ∪ V (P2).

By symmetry, we may assume that (G,Σ) has a pendant path P attached to P1. If

H4 has a cycle, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, we may

assume that H4 has no cycle. Let Q be the path in H4 connecting the vertices of attachment

of the wide separation [H3, H4]. If Q has a pendant path attached to an internal vertex of

Q, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. Hence, we may assume any

pendant path attached to a vertex of Q is attached to an endvertex of Q. If l(Q) ≥ 2 and

(G,Σ) has pendant paths attached to both endvertices of Q, then we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y )2. Hence, we may assume that l(Q) = 1 or that (G,Σ) has at most

one pendant path attached to an endvertex of Q. That is, (G,Σ) is a Stingray.

Lemma 3.12. Let (G,Σ) be a signed graph without multiple edges. Suppose some vertices

are colored blue and other vertices are colored white. Suppose (C4, {14}) is a subgraph of



84

(G,Σ), where V (C4) = {1, 2, 3, 4} and E(C4) = {14, 42, 23, 31}. If the vertices {1, 2} are

colored blue and {3, 4} are the only white vertices adjacent to {1, 2} in (G,Σ), then we may

color the vertices {3, 4} blue in (G,Σ).

Proof. Let (H,Ω) be the induced subgraph on the vertices {1, 2, 3, 4}. Further, let (H,Ω)

have an odd edge {14} and even edges {42, 23, 31}. Let [ai,j] = A ∈ S(H,Ω). If x ∈ ker(A),

then

Ax =


a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4



x1
x2
x3
x4

 = 0.

We color the vertices {1, 2} blue. That is, x1 = x2 = 0. Then, we have the following

equations

a1,3x3 + a1,4x4 = 0 (3.1)

a2,3x3 + a2,4x4 = 0. (3.2)

Because a1,3 < 0 and a1,4 > 0, x3 and x4 have the same sign. Because a2,3 < 0 and a2,4 < 0,

x3 and x4 have opposite signs. Hence, x3 = x4 = 0; and, x = 0. That is, we may color {3, 4}

blue in (H,Ω). Let B ∈ S(G,Σ). Then, we may write

By =

[
A R
RT S

] [
x
z

]
=

[
Rz

RTx+ Sz

]
.

If {3, 4} are the only white neighbors of {1, 2} in (G,Σ), then the nonzero entries of R

correspond to blue vertices. If y ∈ ker(A), then we may assume the coordinates of y which

correspond to these blue vertices are forced to be zero; that is, ri,k 6= 0 implies zk = 0.
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Hence, Rz = 0. Therefore, we may color {3, 4} blue in (G,Σ) whenever {3, 4} are the only

neighbors of {1, 2} which are colored white in (G,Σ).

Definition 3.13. A signed graph has two parallel paths if there exist two pairs of vertices

{u1, u2} and {v1, v2} such that (G,Σ) is a spanning subgraph of a sided wide 2-path with

sides u1u2 and v1v2, and there exists two disjoint paths with endvertices {u1, v1} and {u2, v2},

respectively.

Lemma 3.14. Let (G,Σ) be a signed graph with two parallel paths. Then, M(G,Σ) ≤ 2.

If G is not a path, then M(G,Σ) = 2 and Z(G,Σ) = 2.

Proof. By definition, we may find a sided wide 2-path with sides u1u2 and v1v2 such that

(G,Σ) is a spanning subgraph. If (G,Σ) has no wide separation, then {u1, u2} is a zero forcing

set for (G,Σ). Otherwise, we may continue coloring vertices blue until we color the vertices

{r1, r2} blue, where {r1, r2} are the vertices of attachment for some wide separation. From

Lemma 3.12, we may also color the other two vertices of attachment blue. Hence, {u1, u2} is a

zero forcing set for (G,Σ), and Z(G,Σ) ≤ 2. From Lemma 1.38, M(G,Σ) ≤ Z(G,Σ) ≤ 2. If

(G,Σ) is not a path, Theorem 1.14 implies M(G,Σ) = 2, and we also have Z(G,Σ) = 2.

Lemma 3.15. Let (G,Σ) be a signed graph such that the removal of pendant paths yields

a 2-connected partial wide 2-path (H,Ω), with at least two distinct wide separations. Then,

M(G,Σ) = 2 if and only if

1. (G,Σ) is a signed graph with two parallel paths, or

2. (G,Σ) is a Stingray.
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Proof. If (G,Σ) is a signed graph with two parallel paths, then Lemma 3.14 impliesM(G,Σ) =

2. If (G,Σ) is a Stingray, then Lemma 3.9 implies M(G,Σ) = 2.

Suppose next that (G,Σ) is a signed graph such that the removal of pendant paths

yields a 2-connected partial wide 2-path (H,Ω) with at least two distinct wide separations.

Let [H1, H2] and [H3, H4] be distinct wide separations in (H,Ω) such that H1 ⊆ H3 and

H4 ⊆ H2. We take [H1, H2] in (H,Ω) such that there is no wide separation [H
(1)
1 , H

(1)
2 ]

with H
(1)
1 a proper subgraph of H1. Similarly, we take [H3, H4] such that there is no wide

separation [H
(1)
3 , H

(1)
4 ] with H

(1)
4 as a proper subgraph of H4. Let {u1, u2} be the vertices of

attachment of H1; let {r1, r2} be the vertices of attachment of H2; and let {s1, s2} be the

vertices of attachment of H3. Let P1 and P2 be disjoint paths between {r1, r2} and {s1, s2}

such that Pi has endvertices ri and si for i = 1, 2. If a pendant path is attached to a vertex

in V (P1) ∪ V (P2), then Lemma 3.11 implies that (G,Σ) is a Stingray. So, we may assume

that no pendant path is attached to V (P1) ∪ V (P2).

Suppose H1 contains a cycle C. We may assume that C is at the end of the partial wide

2-path H. That is, there is a 2-separation [C,F ] of H. Let {v1, v2} = V (C)∩ V (F ). Let Q1

and Q2 be two disjoint paths between {v1, v2} and {u1, u2}, such that Qi has endvertices vi

and ui for i = 1, 2. If a pendant path is attached to a vertex of Q1 − v1 or to a vertex of

Q2 − v2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). So, any pendant path of

(G,Σ) attached to Qi is attached to vi. Let P be the path obtained from C by removing the

edge between v1 and v2.

Suppose H1 contains no cycle. As H is 2-connected, H1 is connected. Let P be the path
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in H1 with endvertices u1 and u2.

Suppose there are two pendant paths attached to vertices w1, w2 ∈ V (P ). If dP (w1, w2) ≥

2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. Hence, there are at most two

pendant paths attached to vertices {w1, w2}, and dP (w1, w2) = 1. By symmetry, we may

apply the same argument to the wide separation [H3, H4]. Hence, (G,Σ) is a signed graph

with two parallel paths.
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3.3.2 One Wide Separation

Definition 3.16. Let (G,Σ) be a signed graph obtained from adding pendant paths to

(H,Ω), where (H,Ω) is a 2-connected partial wide 2-path with exactly one wide separation

[H1, H2]. Let {u1, u2} be be the vertices of attachment of H1, and let {w1, w2} be the vertices

of attachment of H2. We call (G,Σ) a Sea Anemone if the following hold:

1. H2 is a path.

2. The removal of any edge between u1 and u2 in H1 yields a path P .

3. There is a single pendant path attached to each vertex in {u1, u2}.

4. If there is a pendant path attached to an internal vertex of P , then l(P ) = 2.

5. There are no pendant paths attached to the internal vertices of H2.

6. If l(H2) ≥ 3 and there are pendant paths attached to each vertex in {w1, w2}, then

there is no pendant path attached to any internal vertex of P .

7. There is no vertex of (H,Ω) with two pendant paths attached in (G,Σ).

Lemma 3.17. If (G,Σ) is a Sea Anemone, then M(G,Σ) = 2.

Proof. Let P1 and P2 be the pendant paths attached to u1 and u2, respectively. Let

(G(1),Σ(1)) = (G−P1,Σ\E(P1)), and let (G(2),Σ(2)) = (G−(P1−u1),Σ\E(P1−u1)). Then,

G(1) is a partial 2-path with P (G(1)) = 2. From Theorem 1.42, M(G(1),Σ(1)) ≤M(G(1)) = 2.

From Lemma 1.39, we have M(G,Σ) = max{M(G(1),Σ(1)),M(G(2),Σ(2))}. Hence, we may

assume that M(G,Σ) = M(G(2),Σ(2)).
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Suppose (G(2),Σ(2)) has a pendant path Q attached to a vertex w ∈ {w1, w2}. Let

(H,Ω) = (G(2)−Q,Σ(2)\E(Q)), and let (H(1),Ω(1)) = (G(2)−(Q−w),Σ(2)\E(Q−w)). Then,

H is a partial 2-path with P (H) = 2. From Theorem 1.42, we have M(H,Ω) ≤ M(H) =

P (H) = 2. From Lemma 1.39, we have M(G(2),Σ(2)) = max{M(H,Ω),M(H(1),Ω)}. Hence,

we may assume that M(G,Σ) = M(G(2),Σ(2)) = M(H(1),Ω(1)). If there is a pendant path

attached to an internal vertex of P , then the pendant vertex of the pendant path attached

to P and the pendant vertex of P2 are a zero forcing set of (H(1),Ω(1)) by Lemma 3.12.

Otherwise, the pendant vertex of P2 and v, where dP (v, u2) = 1, are a zero forcing set of

(H(1),Ω(1)) by Lemma 3.12. By Lemma 1.38, we have M(H(1),Ω(1)) ≤ Z(H(1),Ω(1)) ≤ 2.

Hence, M(G,Σ) = M(G(2),Σ(2)) = M(H(1),Ω(1)) = 2. So, we may assume that no pendant

path Q is attached to a vertex w ∈ {w1, w2}. Whenever there is no pendant path Q, the same

zero forcing sets for our argument on (H(1),Ω(1)) are also zero forcing sets for (G(2),Σ(2));

and M(G,Σ) = M(G(2),Σ(2)) = 2. Therefore, M(G,Σ) = 2.

Lemma 3.18. Let (G,Σ) be a signed graph such that the removal of pendant paths yields

a partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. Suppose H1 and H2

are connected. Then, M(G,Σ) = 2 if and only if one of the following holds:

1. (G,Σ) is a signed graph with two parallel paths, or

2. (G,Σ) is a Sea Anemone.

Proof. If (G,Σ) is a Sea Anemone, then Lemma 3.17 implies M(G,Σ) = 2. If (G,Σ) is a

signed graph with two parallel paths, then Lemma 3.14 implies M(G,Σ) = 2.
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Suppose (G,Σ) is a signed graph with exactly one wide separation [H1, H2] such that

M(G,Σ) = 2. Let u1, u2 be the vertices of attachment of H1, and let w1, w2 be the vertices

of attachment of H2. Suppose for a contradiction that two pendant paths R1 and R2 are

attached to a vertex s. Let (G(1),Σ(1)) = (G− R1,Σ \ E(R1)). Then, G(1) has at least two

components, one of which is a not path; and Lemma 3.3 implies M(G(1),Σ(1)) ≥ 3. As (G,Σ)

is the 1-sum of R1 and (G(1),Σ(1)) at s, Lemma 1.39 implies M(G,Σ) ≥ M(G(1),Σ(1)) ≥ 3.

Hence, no vertex of (G,Σ) has two or more pendant paths attached.

Suppose that H1 has a cycle C. We may assume that C is at the end of the partial wide

2-path H. That is, there is a 2-separation (C,F ) of H. Let {v1, v2} = V (C)∩V (F ). Let Q1

and Q2 be disjoint paths between {v1, v2} and {u1, u2} such that Qi has endvertices vi and ui

for i = 1, 2. Suppose a pendant path in (G,Σ) is attached to a vertex in V (H1)\V (C). That

is, the pendant path is attached to a vertex of V (Qi)\vi for i = 1 or i = 2. Hence, we found a

minor of (G,Σ) isomorphic toK=
3 (∆Y ). From Theorem 2.1, we haveM(G,Σ) ≥ ξ(G,Σ) ≥ 3.

Hence, we may assume that any pendant path attached to a vertex of H1 is attached to a

a vertex of C. Let P1 = C − {v1v2}. If there are two pendant paths attached to vertices

x1, x2 ∈ V (P ) with dP (x1, x2) ≥ 2 and {x1, x2} 6= {u1, u2}, then we found a minor of (G,Σ)

isomorphic to a K=
3 (∆Y )2. From Theorem 2.1, we may assume that either

• (G,Σ) has at most two pendant paths attached to vertices of P1;

• (G,Σ) has three pendant attached to vertices of P1, l(P1) = 2, and the endvertices of

P1 are u1 and u2; or

• (G,Σ) has two pendant paths attached to the endvertices of P1.



91

Because both H1 and H2 are connected, we apply the same argument to H2, and the

above is also true for P2 ⊆ H2.

Suppose (G,Σ) has at most two pendant paths attached to the vertices x1, x2 ∈ V (P1)

and at most two pendant paths attached to the vertices y1, y2 ∈ V (P2). If dP1(x1, x2) =

dP2(y1, y2) = 1, then (G,Σ) has two parallel paths. Lemma 3.14 implies M(G,Σ) = 2.

Hence, we may assume that either

• (G,Σ) has pendant paths attached to both endvertices of P1, the endvertices of P1 are

u1 and u2, and l(P1) ≥ 2; or

• (G,Σ) has pendant paths attached to both endvertices of P2, the endvertices of P2 are

w1 and w2, and l(P2) ≥ 2.

By symmetry, we may assume that (G,Σ) has pendant paths attached to both endvertices

of P1, the endvertices of P1 are u1 and u2, and l(P2) ≥ 2. If H2 contains a cycle, then we

found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. From Theorem 2.1, we may assume that

H2 has no cycle. Because H is 2-connected and because H2 is connected, H2 is a path with

endvertices w1 and w2.

Suppose a pendant path of (G,Σ) is attached to an internal vertex of P2. Then, we

found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. From Theorem 2.1, we may assume that

no pendant path of (G,Σ) is attached to an internal vertex of P2. If l(P1) > 2 and there

is a pendant path attached to an internal vertex of P1, then we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y )2. From Theorem 2.1, we may assume that if a pendant path is

attached to an internal vertex of P1, then l(P1) = 2. Suppose that l(P1) = 2, that (G,Σ)
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has a pendant path attached to an internal vertex of P1, and that l(P2) ≥ 2. If (G,Σ)

has a pendant path attached to w1 or w2, then we found a minor of (G,Σ) isomorphic to

K=
3 (∆Y )3. From Theorem 2.1, we may assume that if (G,Σ) has a pendant path attached

to an internal vertex of P1 and if P2 has an internal vertex, then (G,Σ) has no pendant paths

attached to either w1 or w2. That is, (G,Σ) is a Sea Anemone.

Definition 3.19. Let (G,Σ) be a signed graph such that removing all pendant paths yields

a 2-connected partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. Let u1

and u2 be the vertices of attachment of H1. Suppose H1 contains a path of length at least

two with endvertices u1 and u2. Suppose H2 is disconnected. We call (G,Σ) a Mollusk if

each of the following hold.

1. There is a pendant path at u1.

2. There is no pendant path at u2.

3. H1 − {u1, u2} is a path.

4. Each pendant path attached to a vertex of H1 − {u1, u2} is attached to an endvertex

of H1 − {u1, u2}.

5. No vertex of H is attached to more than one pendant path.

Lemma 3.20. If (G,Σ) is a Mollusk, then M(G,Σ) = 2.

Proof. Let v1 and v2 be the vertices of attachment of H2. Let P be the pendant path

at u1; let (G(1),Σ(1)) be the signed graph obtained from (G,Σ) by removing the vertices
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V (P − u1); and let (G(2),Σ(2)) be the signed graph obtained from (G,Σ) by removing the

vertices V (P ). As G is the 1-sum of G(2) and P at u1, Lemma 3.6 implies M(G,Σ) =

max{M(G(1),Σ(1)),M(G(2),Σ(2))}. Because (G(1),Σ(1)) has two parallel paths, Lemma 3.14

implies M(G(1),Σ) = 2. Hence, we may assume that M(G,Σ) = M(G(2),Σ(2)).

The signed graph (G(2),Σ(2)) has two pendant paths attached to u2. Let Q be one of

these pendant paths. Let (F (1),Ψ(1)) be the signed graph obtained from (G(2),Σ(2)) by

removing the vertices V (Q − u2), and let (F (2),Ψ(2)) be the signed graph obtained from

(G(2),Σ(2)) by removing the vertices V (Q). Because (F (1),Σ(1)) has two parallel paths,

Lemma 3.14 implies M(F (1),Ψ(1)) = 2. Because (F (2),Σ(2)) has two parallel paths, Lemma

3.14 implies M(F (2),Ψ(2)) = 2. Because G(2) is the 1-sum of F (2) and Q, Lemma 3.6

implies M(G(2),Σ(2)) = max{M(F (1),Ψ(1)),M(F (2),Ψ(2))} = 2. Therefore, M(G,Σ) =

M(G(2),Σ(2)) = 2.

Lemma 3.21. Let (G,Σ) be a signed graph such that the removal of pendant paths yields a

2-connected partial wide 2-path (H,Ω) with exactly one wide separation [H1, H2]. Suppose

that H2 is disconnected and H1 is connected. Then, M(G,Σ) = 2 if and only if

1. (G,Σ) is a signed graph with two parallel paths; or

2. (G,Σ) is a Mollusk.

Proof. Suppose (G,Σ) is a signed graph with two parallel paths. Because (G,Σ) is not a

path, Lemma 3.14 implies M(G,Σ) = 2. Suppose (G,Σ) is a Mollusk. Then, Lemma 3.20

implies M(G,Σ) = 2.
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For the converse, suppose that M(G,Σ) = 2. Let u1 and u2 be the vertices of attachment

of H1. We proceed with a case study on whether H1 has a cycle or not.

Suppose that H1 contains a cycle C. Let Q1 and Q2 be disjoint paths between {u1, u2}

and V (C) such that Qi has endvertices {ui, vi} for i = 1, 2 and v1, v2 ∈ V (C). We proceed

with a case study on whether (G,Σ) has a pendant path attached to a vertex in V (Q1) \ v1

or a vertex in V (Q2) \ v2.

Suppose there is a pendant path attached to a vertex in V (Q1)\v1 or attached to a vertex

in V (Q2)\v2. If the pendant path is attached to an internal vertex of Q1 or an internal vertex

of Q2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). From Theorem 2.1, we have

M(G,Σ) ≥ ξ(G,Σ) ≥ 3. So, the pendant path must be attached to u1 or u2. By symmetry,

we may assume that a pendant path P1 is attached to u1 in (G,Σ). Then, l(Q1) ≥ 1. From

Lemma 3.5, we know that P1 is the only pendant path attached to u1 in (G,Σ). If l(Q2) > 0,

then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. From Theorem 2.1, we may assume

that l(Q2) = 0 and u2 = v2. If H1 − {u1, u2} has a cycle, then we found a minor of (G,Σ)

isomorphic to K=
3 (∆Y )2. From Theorem 2.1, we may assume than H1 − {u1, u2} has no

cycle. If there is a pendant path attached P2 to u2 in (G,Σ), then G − {P1, P2} is a forest

with P (G − {P1, P2}) = 3. From Theorem 1.41, M(G − {P1, P2}) = P (G − {P1, P2}) = 3.

From Lemma 1.39, we have

M(G,Σ) ≥M
(
G− {P1},Σ \ E(P1)

)
≥M

(
G− {P1, P2},Σ \

(
E(P1) ∪ E(P2)

))
= 3.

Hence, we may assume that no pendant path is attached to u2. Let G1 be the graph obtained

from H1 by attaching the pendant paths of (G,Σ) to the vertices of H1. If G1 − {u1, u2} is
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not a path, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. Hence, H1 − {u1, u2}

is a path. That is, (G,Σ) is a Mollusk.

Suppose next that there are no pendant paths attached to any vertex in V (Q1) \ v1 nor

any vertex in V (Q2) \ v2. Hence, any pendant path in (G,Σ) attached to a vertex of H1 is

attached to V (C) \ {u1, u2}. Let P be the path formed by removing any edges between v1

and v2 in C. If there are pendant paths attached to w1, w2 ∈ V (P ) such that dP (w1, w2) ≥ 2

and {w1, w2} 6= {u1, u2}, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. From

Theorem 2.1, we may assume that there are at most two pendant paths attached to V (P )

in (G,Σ) and dP (w1, w2) = 1. That is, (G,Σ) is a signed graph with two parallel paths.

Therefore, if H1 has a cycle, then either (G,Σ) is a Mollusk or (G,Σ) is a signed graph with

two parallel paths.

Suppose next that H1 contains no cycle. Then, H1 is a path P with endvertices u1

and u2. Suppose there are pendant paths attached to vertices w1, w2 ∈ V (P ) such that

dP (w1, w2) ≥ 2. Then, l(P ) ≥ 2. Suppose that a pendant path P1 is attached to u1. If there

is a pendant path P2 attached to u2, then G−{P1, P2} is a forest with P (G−{P1, P2}) = 3.

From Theorem 1.41, M(G− {P1, P2}) = P (G− {P1, P2}) = 3. From Lemma 1.39, we have

M(G,Σ) ≥M
(
G− {P1},Σ \ E(P1)

)
≥M

(
G− {P1, P2},Σ \

(
E(P1) ∪ E(P2)

))
= 3.

Hence, we may assume that no pendant path is attached to u2. Let G1 be the graph obtained

from H1 by attaching the pendant paths of (G,Σ) to the vertices of H1. If G1 − {u1, u2} is

not a path, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. From Theorem 2.1,

we may assume that G1−{u1, u2} is a path. Hence, H1−{u1, u2} is a path. That is, (G,Σ)
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is a Mollusk.

Suppose next that no pendant path is attached to the endvertices of P , which are u1 and

u2. Then, we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. By Theorem 2.1, we may

assume that dP (w1, w2) = 1. Then, (G,Σ) has at most two pendant paths attached to two

internal vertices of P and these two internal vertices of P are also neighbors in P . That is,

(G,Σ) is a signed graph with two parallel paths. Therefore, if H1 has no cycle then either

(G,Σ) is a Mollusk or (G,Σ) is a signed graph with two parallel paths.

Lemma 3.22. Let (G,Σ) be a signed graph such that the removal of pendant paths yields a

2-connected partial wide 2-path (H,Ω) with exactly one wide separation. Then, M(G,Σ) ≤ 2

if and only if one of the following holds:

1. (G,Σ) is a signed graph with two parallel paths;

2. (G,Σ) is a Sea Anemone; or

3. (G,Σ) is a Mollusk.

Proof. If (G,Σ) is a signed graph with two parallel paths, then Lemma 3.14 impliesM(G,Σ) ≤

2. If (G,Σ) is a Sea Anemone, then Lemma 3.17 implies M(G,Σ) = 2. If (G,Σ) is a Mollusk,

then Lemma 3.20 implies M(G,Σ) = 2.

Suppose that M(G,Σ) ≤ 2. Let [H1, H2] be the wide separation of (H,Ω). Let u1 and u2

be the vertices of attachment of H1. If H1 is connected and H2 is connected, then Lemma

3.18 implies (G,Σ) is a Sea Anemone or (G,Σ) is a signed graph with two parallel paths.

If H1 is connected and H2 is disconnected, then Lemma 3.21 implies (G,Σ) is a Mollusk or
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(G,Σ) is a signed graph with two parallel paths. If H1 is disconnected and H2 is connected,

then Lemma 3.21 implies (G,Σ) is a Mollusk or (G,Σ) is a signed graph with two parallel

paths. If H1 is disconnected and H2 is disconnected, then Lemma 3.5 implies (G,Σ) is a

signed graph with two parallel paths.
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3.3.3 No Wide Separations

Definition 3.23. Let (G,Σ) be a signed graph obtained from adding pendant paths to

(H,Ω), where (H,Ω) is a 2-connected partial 2-path. Suppose

• C1 and C2 are distinct cycles in H such that there exists two 2-separations of H:

(C1, H1) and (C2, H2);

• P1 and P2 are disjoint paths between C1 and C2 in H;

• u1 = P1 ∩ C1 and u2 = P2 ∩ C1; and

• v1 = P1 ∩ C2 and v2 = P2 ∩ C2.

We call (G,Σ) a Seahorse if the following hold:

1. l(P1) = 0 and l(P2) = 1.

2. There is a single pendant path attached to each vertex in {u1 = v1, u2, v2}.

3. If l(C1 − u1u2) ≥ 3, then no pendant path is attached to C1 \ {u1, u2}.

4. If l(C2 − v1v2) ≥ 3, then no pendant path is attached to C2 \ {v1, v2}.

Lemma 3.24. If (G,Σ) is a Seahorse, then M(G,Σ) = 2.

Proof. Let P be the pendant path attached to u1. Let

(G(1),Σ(1)) =
(
G− P,Σ \ E(P )

)
,

and let

(G(2),Σ(2)) =
(
G− (P − u1),Σ \ E(P − u1)

)
.
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Because G(1) is a tree with P (G(1)) = 2, Theorem 1.41 implies M(G(1),Σ(1)) ≤ M(G(1)) =

P (G(1)) = 2. Because (G(2),Σ(2)) is a signed graph with two parallel paths, Lemma 3.14

implies M(G(2),Σ(2)) ≤ 2. From Lemma 1.39, we have

M(G,Σ) = max{M(G(1),Σ(1)),M(G(2),Σ(2))} ≤ 2.

As (G,Σ) is not a path, Theorem 1.14 implies M(G,Σ) = 2.

Definition 3.25. If (G,Σ) is a signed graph obtained by either

• adding a single pendant path to each vertex of a signed C5;

• adding a single pendant path to each vertex of a signed house graph; or

• adding a single pendant path to each vertex of a signed C4 and identifying an edge of

the signed C4 with an edge of a signed cycle;

then (G,Σ) is a Starfish.

Lemma 3.26. If (G,Σ) is a Starfish, then M(G,Σ) = 2.

Proof. If (G,Σ) is formed from adding pendant paths to C5, then let v ∈ V (C5) of (G,Σ).

Otherwise, we let v ∈ V (G) such that dG(v) = 4. Let P be the pendant path attached to v.

Let

(G(1),Σ(1)) =
(
G− P,Σ \ E(P )

)
,

and let

(G(2),Σ(2)) =
(
G− (P − v),Σ \ E(P − v)

)
.
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Because G(1) is a tree with P (G(1)) = 2, Theorem 1.41 implies M(G(1),Σ(1)) ≤ M(G(1)) =

P (G(1)) = 2. Because (G(2),Σ(2)) is a signed graph with two parallel paths, Lemma 3.14

implies M(G(2),Σ(2)) ≤ 2. From Lemma 1.39, we have

M(G,Σ) = max{M(G(1),Σ(1)),M(G(2),Σ(2))} ≤ 2.

As (G,Σ) is not a path, Theorem 1.14 implies M(G,Σ) = 2.

Lemma 3.27. Let (G,Σ) be a signed graph such that the removal of pendant paths yields

a 2-connected partial wide 2-path (H,Ω). Suppose (H,Ω) has no wide separation. Then,

M(G,Σ) ≤ 2 if and only if one of the following holds:

• (G,Σ) is a signed graph with two parallel paths;

• (G,Σ) is a Seahorse; or

• (G,Σ) is a Starfish.

Proof. If (G,Σ) is a signed graph with two parallel paths, then Lemma 3.14 impliesM(G,Σ) ≤

2. If (G,Σ) is a Seahorse, then Lemma 3.24 implies M(G,Σ) = 2. If (G,Σ) is a Starfish,

then Lemma 3.26 implies M(G,Σ) = 2.

Suppose M(G,Σ) ≤ 2. From Lemma 3.5, we know that no vertex in V (H) has more

than one pendant path attached in (G,Σ). We proceed with a case study on the number of

cycles in (H,Ω). Suppose (H,Ω) has at least two distinct cycles. Let C1 and C2 be distinct

cycles in (H,Ω). Then, we have two 2-separations of H: (C1, H1) and (C2, H2). We may

find two disjoint paths P1 and P2 between C1 and C2 such that P1 has endvertices u1 and

v1; P2 has endvertices u2 and v2; u1, u2 ∈ V (C1); and v1, v2 ∈ V (C2).
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If (G,Σ) has a pendant path attached to an internal vertex of P1 or an internal vertex of

P2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y ). By Theorem 2.1, M(G,Σ) ≥

ξ(G,Σ) ≥ 3. So, we may assume that any pendant path of (G,Σ) is attached to C1 or C2. If

there are no pendant paths attached to w1, w2 ∈ V (C1) such that dC1−u1u2(w1, w2) ≥ 2 and

there are no pendant paths attached to x1, x2 ∈ V (C2) such that dC2−v1v2(x1, x2) ≥ 2, then

(G,Σ) is a signed graph with two parallel paths. Hence, we may assume that there is a pair of

vertices w1, w2 with pendant paths attached in (G,Σ) such that dC1−u1u2(w1, w2) ≥ 2 or there

is a pair of vertices x1, x2 with pendant paths attached in (G,Σ) such that dC2−u1u2(x1, x2) ≥

2. By symmetry, we assume that the vertices w1 and w2 have pendant paths attached to

dC1−u1u2(w1, w2) ≥ 2. Let Ri be the pendant path attached to wi for i = 1, 2. Because of

our construction of P1, we may assume that w1 = u1 or that w1 is between u1 and w2 along

the path C − u1u2. If w1 6= v1 and w2 6= v2, then we found a minor of (G,Σ) isomorphic to

K=
3 (∆Y )2. From Theorem 2.1, we may assume either w1 = v1 or w2 = v2. By symmetry,

we may assume w1 = v1. From our definition of P1, we have that u1 = w1 = v1. If there

exists two distinct vertices y1, y2 ∈ V (C1)\u1 attached to pendant paths in (G,Σ) such that

dG(y1, y2) ≥ 2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. From Theorem

2.1, we may assume that dG(y1, y2) = 1 for any two distinct vertices y1, y2 ∈ V (C1) \ u1

attached to pendant paths in (G,Σ).

We continue with the case that (G,Σ) has at least two cycles, and we proceed with a case

study on l(P2). Suppose l(P2) ≥ 1. Suppose a pendant path Q2 is attached to a vertex in C2

such that dC2−v1v2(Q2, u1) ≥ 2. If R2 is not attached to u2, then we found a minor of (G,Σ)



102

isomorphic to K=
3 (∆Y )3. From Theorem 2.1, the pendant path R2 is attached to u2. That

is, w2 = u2. Because of the symmetry from u1 = v1, the same argument implies that Q2 is

attached to v2. If l(P2) > 1, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. From

Theorem 2.1, we may assume l(P2) = 1. If l(C1− u1u2) ≥ 3 and a pendant path is attached

to a vertex in V (C1) \ {u1, u2}, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3.

From Theorem 2.1, we assume that if l(C1 − u1u2) ≥ 3, then no pedant path is attached

to C1 − {u1, u2}. By symmetry, we may assume that if l(C2 − v1v2) ≥ 3, then no pedant

path is attached to C2−{v1, v2}. That is, (G,Σ) is a Seahorse. Hence, we may assume that

dC2−v1v2(Q2, u1) = 1. Because for any two distinct vertices y1, y2 ∈ V (C1) \ u1 attached to

pendant paths in (G,Σ) we know dG(y1, y2) = 1. That is, (G,Σ) is a signed graph with two

parallel paths.

We continue with the next case when l(P2) = 0. Then, u2 = v2. Recall that there is

a pendant path Ri attached to wi in (G,Σ) for i = 1, 2 such that dC1−u1u2(w1, w2) ≥ 2. If

(G,Σ) has no pendant path attached to u1 and no pendant path attached to u2, then we

found a minor of (G,Σ) isomorphic to K=
3 (∆Y )2. If w1 = u1 and (G,Σ) has a pendant path

attached to the vertex v ∈ V (C2)\v2 such that dC2−v1v2(v, u1) ≥ 2, then we found a minor of

(G,Σ) isomorphic to K=
3 (∆Y )3. If no pendant path is attached to u2 and all pendant paths

are attached to {u1, v} ∈ V (C2) \ {v1, v2} such that d(v, u1) = 1, then (G,Σ) is a signed

graph with two parallel paths.

Hence, we may assume that (G,Σ) has a pendant path attached to u1 and a pendant path

attached to u2. If (G,Σ) has a pendant path attached to a vertex v ∈ V (C1) \ {u1, u2} such
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that dC1−u1u2({u1, u2}, v) ≥ 2, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3.

By Theorem 2.1, we may assume that if a pendant path in (G,Σ) is attached to a vertex

v ∈ V (C1) \ {u1, u2}, then dC1−u1u2(u1, v) = 1 or dC1−u1u2(u2, v) = 1. By symmetry, we

may assume if a pendant path in (G,Σ) is attached to a vertex v ∈ V (C2) \ {u1, u2}, then

dC2−v1v2(v1, v) = 1 or dC2−v1v2(v2, v) = 1. If either pair of the following statements holds,

then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3:

1. • (G,Σ) has a pendant path S1 attached to a vertex in V (C1) \ {u1, u2} such that

dC1−u1u2(S1, u1) ≥ 2, and

• (G,Σ) has a pendant path S2 attached to a vertex in V (C2) \ {u1, u2} such that

dC2−u1u2(S2, u1) ≥ 2; or

2. • (G,Σ) has a pendant path S1 attached to a vertex in V (C1) \ {u1, u2} such that

dC1−u1u2(S1, u2) ≥ 2, and

• (G,Σ) has a pendant path S2 attached to a vertex in V (C2) \ {u1, u2} such that

dC2−u1u2(S2, u2) ≥ 2.

From Theorem 2.1, if (G,Σ) has two pendant path attached to V (C1)\{u1, u2}, then l(C1−

u1u2) = 3, and in addition, if there is a pendant path attached to a vertex of V (C2)\{u1, u2},

then l(C2 − u1u2) = 2. If l(P1) = 0, then (G,Σ) is a Starfish. If l(P1) > 0, then (G,Σ)

is a Seahorse. Similarly, if (G,Σ) has two pendant path attached to V (C2) \ {u1, u2}, then

l(C2− u1u2) = 3, and in addition, if there is a pendant path attached to a vertex of V (C1) \

{u1, u2}, then l(C1 − u1u2) = 2. If l(P1) = 0, then (G,Σ) is a Starfish. If l(P1) > 0, then

(G,Σ) is a Seahorse.
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We continue with the case when H has at most one cycle. Because H is 2-connected,

V (H) are on a cycle C and |V (H)| ≥ 3. Let P1, . . . , Pk be the pendant paths attached to the

vertices of H, ordered around C. If k ≥ 6, then we found a minor of (G,Σ) isomorphic to

K=
3 (∆Y )3. By Theorem 2.1, we may assume that k ≤ 5. Suppose k = 5. If dC(Pi, Pi+1) = 2

for some i, where k + 1 = 1, then we found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. By

Theorem 2.1, dC(Pi, Pi+1) = 1 for all i = 1, . . . k. That is, (G,Σ) is a Starfish. Suppose next

that k = 4. If dC(Pi, Pi+1) ≥ 2 and dC(Pi, Pi−1) ≥ 2 for some i, then we found a minor

of (G,Σ) isomorphic to K=
3 (∆Y )3. By Theorem 2.1, we may assume that dC(Pi, Pi+1) =

dC(Pi+2, Pi+3) = 1 for some i. That is, (G,Σ) is a signed graph with two parallel paths.

Suppose next that k = 3. If dC(P1, P2) ≥ 2, dC(P2, P3) ≥ 2, and dC(P3, P1) ≥ 3, then we

found a minor of (G,Σ) isomorphic to K=
3 (∆Y )3. If dC(Pi, Pi+1) = 1 for some i, then (G,Σ)

is a signed graph with two parallel paths. Finally, suppose k ≤ 2. Then, (G,Σ) is a signed

graph with two parallel paths.
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3.4 Proof of the Main Result

Proof. First, we prove the forward direction. If (G,Σ) is a signed graph with two parallel

paths, then Lemma 3.15 implies M(G,Σ) ≤ 2. If (G,Σ) is a Seahorse or a Starfish, then

Lemma 3.27 implies M(G,Σ) = 2. If (G,Σ) is a Sea Anemone or a Mollusk, then Lemma

3.22 implies M(G,Σ) = 2. If (G,Σ) is a Stingray, then Lemma 3.15 implies M(G,Σ) = 2.

If (G,Σ) is obtained from attaching single pendant paths to W o
4 , then Lemma 3.7 implies

M(G,Σ) = 2. If (G,Σ) is obtained from attaching at most two pendant paths to each vertex

of K2, then G is a tree, and Lemma 1.41 implies M(G,Σ) ≤ M(G) = P (G) ≤ 2. If (G,Σ)

is obtained from attaching at most two pendant paths to each vertex of K=
2 , then Lemma

3.5 implies M(G,Σ) ≤ 2.

Next, we suppose that M(G,Σ) ≤ 2. If M(G,Σ) = 1, then G is a path by Theorem

1.14. So, we may draw (G,Σ) as a signed graph with two parallel paths. So, we may assume

that M(G,Σ) = 2. If G is disconnected, then Lemma 3.3 implies (G,Σ) consists of two

disjoint paths; and, we may draw (G,Σ) as a signed graph with two parallel paths. So, we

may assume that G is connected. If G has no cycle, then G is a tree. From Lemma 1.41,

we may minimally cover the vertices of G with two paths; and, we may draw (G,Σ) as a

signed graph with two parallel paths. So, we may assume that G has a cycle. By Lemma

3.5, we may assume that (G,Σ) is obtained from attaching pendant paths either (1) to K2,

(2) to K=
2 , or (3) to a 2-connected signed graph (H,Ω) with M(H,Ω) ≤ 2. Further, we

may assume that no vertex has more than two pendant paths attached. The first two cases

are listed. For the third case, Theorem 1.52 implies that (H,Ω) is either W o
4 or a partial
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wide 2-path. If (H,Ω) = W o
4 , then Lemma 3.7 implies that no vertex has more than one

pendant path attached. If (H,Ω) is a 2-connected partial wide 2-path, then we finish our

proof with a case study on the number of wide separations in (H,Ω). If (H,Ω) has two wide

separations, then Lemma 3.15 implies (G,Σ) is either a Stingray or a signed graph with two

parallel paths. If (H,Ω) has exactly one wide separation, then Lemma 3.22 implies (G,Σ)

is either a Sea Anemone, a Mollusk, or a signed graph with two parallel paths. If (H,Ω) has

no wide separations, then Lemma 3.27 implies (G,Σ) is either a Seahorse, a Starfish, or a

signed graph with two parallel paths.
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CHAPTER 4

Zero Forcing Number for Signed Graphs with Maximum Nullity at Most Two
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4.1 Zero Forcing on Signed Graphs

In this section, we generalize the notion of zero forcing on graphs by finding new color change

rules for signed graphs. In the remaining sections of this chapter, we find the zero forcing

number of signed graphs with maximum nullity at most two.

Consider a simple graph G. We let A ∈ S(G), and we let x ∈ ker(A). The color change

rule for simple graphs comes from the fact that

ai,jxj = 0

implies xj = 0 whenever the white vertex j is the only neighbor of the blue vertex i. For

parallel edges, we have the possibility that ai,j = 0 whenever there is an edge between i

and j, which allows xj 6= 0. For signed graphs, we may also consider a system of equations

derived from the null space

ai,jxj + ai,kxk = 0

al,jxj + al,kxk = 0.

Here, we may also force xj = xk = 0, depending on the signature of our signed graph. In

particular, we need to exclude the possibility that the determinant is zero.

Definition 4.1. Suppose (G,Σ) is a signed graph with some vertices colored blue and others

colored white. If S ⊆ V (G), then we partition the neighborhood N(S) into the blue vertices

NB(S) and the white vertices NW (S).
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Lemma 4.2. Let (G,Σ) be a signed graph without parallel edges. Let S be the sign pattern

matrix of A ∈ S(G,Σ). Suppose some vertices B ⊆ V (G) are colored blue and the others

are colored white. Then, we may color the vertices in NW (B) blue if and only if there exists

a subset B0 ⊆ B such that S[B0, NW (B)] is a SNS-matrix.

Proof. First, we observe that S[B,NW (B)]x = 0 always has the solution x = 0. If S[B0, NW (B)]

is a SNS-matrix for some B0 ⊆ B, then by definition, x = 0 is the only solution. That is, we

may color the vertices in NW (B) blue.

Suppose next that we may color the vertices of NW (B) blue. That is, x = 0 is the

unique solution to S[B,NW (B)]x = 0. Then, S[B,NW (B)] has full column rank. Hence,

we have |B| ≥ |NW (B)|. If |B| = |NW (B)|, then S[B,NW (B)] also has full row rank, and

S[B,NW (B)] is a SNS-matrix. If |B| > |NW (B)|, then we found linear dependent rows in

S[B,NW (B)]. So, there is a subset of blue vertices B0 ⊆ B such that S[B0, NV (B)] has full

row rank. That is, S[B0, NV (B)] is a SNS-matrix.

Observation 4.3. There is a natural bijection between the signed digraphs without a pos-

itive cycle and the coloring rules on signed graphs without parallel edges.

Proof. Suppose D is a signed digraph with no positive cycles. Let (H,Ω) be the signed graph

obtained by decontracting the vertices of D. From Theorem 1.53, we have a SNS-matrix S.

If we identify the rows of S as blue vertices and the columns of S as white vertices, then

by Lemma 4.2, we may color all vertices blue. Suppose we have a signed graph (G,Σ) with

some vertices B colored blue. If for some blue vertices B0 ⊆ B, the induced subgraph on
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B0∪NW (B0) is isomorphic to (H,Ω), then we may color the vertices NW (B0) blue in (G,Σ).

That is, D defines a unique coloring rule.

Suppose we may apply a coloring rule to the blue vertices B and color the white vertices

NW (B) blue in a signed graph (G,Σ). Let A ∈ S(G,Σ), and let S be the sign-pattern

matrix of A. From Lemma 4.2, we may find vertices B0 ⊆ B such S[B0, NW (B)] is a SNS-

matrix. Because S[B0, NW (B)] is a SNS-matrix, A[B0, NW (B)] is non-singular. So, the

determinant of A[B0, NW (B)] is non-zero. Hence, at least one term in the alternating sum

of the determinant is nonzero for some permutation π of the vertices in NW (B):

ab1,π(NW (B))1ab2,π(NW (B))2 · · · ab|B|,π(NW (B))|B| .

We may resign around vertices of B0 such that these edges are even, and we have a SNS-

matrix with negative entries along the diagonal. By Theorem 1.53, we have a signed digraph

D(S[B0, NW (B)]) with no positive cycles.

Lemma 4.4. Suppose (G,Σ) is a signed graph, and suppose the vertices B = {b1, b2, b3} are

colored blue. If a subgraph on the vertex set B ∪ NW (B) is isomorphic to K3,3, such that

one vertex partition is blue and the other is white, then no color change rule allows us to

color the vertices in NW (B) blue.

Proof. We may always switch around a blue vertex such that we have negative entries along

the diagonal of S, a 3× 3 sign pattern matrix with no zeros. By Theorem 1.53, S is a SNS-

matrix if and only if D(S) has no positive cycle. So, ij and ji must be of opposite sign. Then,

the signed digraph in Figure 1.4 is a subgraph of D(S). That is, we have replaced a zero in
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the maximal SNS-matrix (1.1) with a + to obtain S. Therefore, S is not a SNS-matrix. By

Lemma 4.2, there is no color change rule allowing us to color the vertices NW (B) blue.

We note that the previous Lemma also follows from Little’s result in Theorem 1.54

because G contains an even subdivision of K3,3.

Observation 4.5. The signed graph (G,Σ) in Figure 4.1 has M(G,Σ) = Z(G,Σ) = 3, while

Z(G) = 4.

Proof. The vertices {7, 9, 11} are a minimum zero forcing set for (G,Σ), which requires an

application of (1.1), when the blue vertices {1, 3, 5} color the white vertices {2, 4, 6} blue.

As (G,Σ) has a minor isomorphic to K=
3 (∆)3, Theorem 2.1 implies M(G,Σ) ≥ ξ(G,Σ) ≥ 3.

Therefore,

ξ(G,Σ) = M(G,Σ) = Z(G,Σ) = 3.

The vertices {1, 8, 10, 12} are a minimum zero forcing set for G, by brute force [9].

Lemma 4.6. Suppose (G,Σ) is a signed graph with M(G,Σ) ≤ 2. The color change rule

corresponding to the maximal SNS-matrix of order 3 is never applied to (G,Σ).

Proof. We consider the maximal SNS-matrix in (1.1) and the corresponding signed graph

(K3,3 − e,Ω) in Figure 1.4. If we contract the even edges of (K3,3 − e,Ω), then we have a

Ko
4 . That is, Ko

4 � (K3,3 − e,Ω) � (G,Σ). From Theorem 2.1, we have

M(G,Σ) ≥ ξ(G,Σ) ≥ ξ(Ko
4) ≥ 3.

Yet, M(G,Σ) ≤ 2; so, we never apply this rule to (G,Σ).
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Figure 4.1 A signed graph (G,Σ) with Z(G,Σ) < Z(G). Even edges are solid, and odd edges
are dashed.

Lemma 4.7. Suppose we have a signed graph (G,Σ) with some vertices B colored blue.

Suppose the white vertices NW (B) are on a cycle Cn. Suppose the vertices of Cn alternate

blue and white: w1↔b1↔w2↔ . . .↔bn↔w1. Suppose no cord edge on Cn has a blue end-

vertex and a white endvertex. If n = 4k and Cn is odd, then we may color NW (B) blue. If

n = 4k + 2 and Cn is even, then we may color NW (B) blue.

Proof. Let D be a signed digraph which is a negative directed cycle. By Lemma 4.3, D

defines a color change rule. If D has 2k vertices, then D has an odd number of directed

edges labeled with +. Then, the corresponding signed graph (Cn,Σ) has an odd number of

odd edges and n = 4k. If D has 2k + 1 vertices, then D has an even number of directed

edges labeled with +. Then, the corresponding signed graph (Cn,Σ) has an even number of

odd edges and n = 4k + 2.

Lemma 4.8. Let (G,Σ) be a signed graph without parallel edges. Suppose M(G,Σ) ≤ 2,
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and Z(G,Σ) ≤ 2. We color some vertices of (G,Σ) blue and color others white. Then, we

may apply the following color change rules to (G,Σ).

Rule 1 If w is the only white vertex adjacent to a blue vertex, then we may color w blue.

Rule 2 If {w1, w2} are the only white neighbors of the blue vertices {b1, b2} such that b1w1

is even, b1w2 is even, b2w1 is even, and b2w2 is odd, then we may color the vertices

{w1, w2} blue.

Rule 3 If {w1, w2} are the only white neighbors of the blue vertices {b1, b2} such that b1w1

is even, b1w2 is odd, b2w1 is odd, and b2w2 is odd, then we may color the vertices

{w1, w2} blue.

Proof. The first rule is the usual zero forcing rule for simple graphs. The other two rules

follow from Lemma 3.12. Because Z(G,Σ) ≤ 2, we do not consider cases where |NW (Bk)| >

2, where Bk are the blue vertices after the k-th application of a coloring rule. Otherwise,

we applied some coloring rule at step j < k but did not color all the vertices in NW (Bj)

blue.

Lemma 4.9. Let (G,Σ) be a signed graph without parallel edges. Suppose M(G,Σ) ≤ 2,

and Z(G,Σ) ≤ 3. We color some vertices of (G,Σ) blue and color others white. Suppose

the vertices are on an even cycle

C6 = b1↔w1↔b2↔w2↔b3↔w3↔b1.

Suppose NW ({b1, b2, b3}) = {w1, w2, w3}, Then, we may apply the following color change rule

to (G,Σ).
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Rule 4 If no cord edge between a blue and a white vertex of C6 is on an even C4, then we

may color {w1, w2, w3} white.

Proof. As Z(G,Σ) ≤ 3, we need not consider the case where the blue vertices B have

|NW (B)| > 3.

Because M(G,Σ) ≤ 2, Lemma 4.6 implies we need not consider the maximal SNS-matrix

on 3 vertices nor the corresponding signed digraph D, where D is edge maximal for having

no positive cycle. Suppose we remove exactly one directed edge e from D. If e is 1j, then we

may apply rule 1 to b1 and color wj blue. If e is i3, then we may apply rule 1 to bi and color

w1 blue. The only corresponding even cycle in C6 is b2↔w1↔b3↔w2↔b2. So, removing e

from D corresponds to removing all even cycles from C6. From Lemma 4.7, we may continue

removing cord edges of C6, and we may still color the vertices {w1, w2, w3} white.

To show that C6 is minimal, we remove a single edge biwi. Then, we apply rule 1 to bi

and color the white vertex wi−1 blue, where w0 = w3.

Lemma 4.10. Let (G,Σ) be a signed graph with M(G,Σ) ≤ 2. If (G,Σ) has no wide

separation and no parallel edges, then Z(G) = Z(G,Σ).

Proof. As (G,Σ) has no wide separation and no parallel edges, then only the first color

change rule from Lemma 4.8 applies. That is, the collection of zero forcing sets for G is

exactly the same collection as for (G,Σ), and Z(G) = Z(G,Σ).

Lemma 4.11. Let (G,Σ) be a signed graph with M(G,Σ) ≤ 2. If [G1, G2] is a wide

separation, then G1 ∪ C4 ∪ G2. Let the vertices of attachment of G1 be {b1, b2}, and let



116

{w1, w2} be the vertices of attachment of G2. Let (H,Ω) be obtained by removing all edges

from C4 except u1v1 and u2v2. Then, Z(G,Σ) = Z(H,Ω).

Proof. Suppose {b1, b2} are colored blue in both (G,Σ) and (H,Ω). Suppose NW ({b1, b2}) =

{w1, w2} in both (G,Σ) and (H,Ω). In (G,Σ), we may apply rule 2 or 3 to {b1, b2} and color

{w1, w2} blue. In (H,Ω), we first apply rule 1 to b1 to color w1 blue and again apply rule 1

to color w2 blue.
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4.2 Signed Graphs with M(G,Σ) = Z(G,Σ) = 2

Lemma 4.12. Z(Ki
4) = 2.

Proof. Let the vertices of K4 be {1, 2, 3, 4}. Let the only odd edge of Ki
4 have endvertices 1

and 4. We start by coloring the vertices {1, 2} blue. Then, we may apply Lemma 3.12 and

color the vertices {3, 4} blue. Because M(Ki
4) = 2, we may apply Lemma 1.38, and we have

2 = M(Ki
4) ≤ Z(Ki

4) ≤ 2. Hence, Z(Ki
4) = 2

Observation 4.13. Z(Ki
4) < Z(K4)

Proof. From the previous Lemma 4.12, we know that Z(Ki
4) = 2. If we color two vertices of

K4 blue, then each blue vertex has two white neighbors. So, Z(K4) ≥ 3. If we color three

vertices of K4 blue, then each blue vertex has exactly one white neighbor. So, Z(K4) = 3.

Lemma 4.14. Let [(G,Σ),F] be a sided wide 2-path. Then, the endvertices of either edge

in F are a zero forcing set for (G,Σ).

Proof. First, we start with (G1,Σ1) which is either an even cycle, an odd cycle, or a Ki
4.

Then, [(G1,Σ1),F1] is a sided wide 2-path with sides F1. If G1 is a cycle, then the endvertices

of e ∈ F1 are a zero forcing set. If (G1,Σ1) = Ki
4, then F1 is a split pair of edges. So, the

endvertices of e ∈ F1 are a zero forcing set by Lemma 3.12. Next, we consider (G2,Σ2), which

is either an even cycle, an odd cycle, or a Ki
4. If G2 is a cycle, then we identify an edge

e ∈ E(G2) with an edge in F1, and we may color the vertices of V (G2) blue. If (G2,Σ2) = Ki
4,

then we identify an edge in F1 with an edge in a split pair of (G2,Σ2), and we may color the

vertices of V (G2) blue. By definition, any sided wide 2-path may be constructed iteratively
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in this way. Therefore, the endvertices of either edge in the sides of a wide sided 2-path are

a zero forcing set.

Corollary 4.15. If (G,Σ) is a wide 2-path, then Z(G,Σ) = 2.

Proof. If (G,Σ) is a wide 2-path, then by definition there exists two distinct edges F such

that [(G,Σ),F] is a sided wide 2-path. From Lemma 4.14, Z(G,Σ) ≤ 2. From Theorems

1.14 and 1.52, M(G,Σ) = 2. From Lemma 1.38, 2 = M(G,Σ) ≤ Z(G,Σ) ≤ 2. Therefore,

Z(G,Σ) = 2.

Lemma 4.16. If (G,Σ) is a 2-connected partial wide 2-path, then Z(G,Σ) = 2.

Proof. We begin with a wide 2-path (H,Ω) such that V (G) = V (H), E(G) ⊆ E(H), and Σ ⊆

Ω. There exists a sided wide 2-path [(H,Ω),F]. For e ∈ F, H− e is not 2-connected. So, the

side edges in F are edges of G. Let {u1, u2} be the endvertices for an edge in F. Color {u1, u2}

blue. For our first case, {u1, u2} are vertices of attachment for a wide separation of (G,Σ).

Then, we may color {v1, v2} blue, where {v1, v2} are the other two vertices of attachment

in our wide separation blue, because of Lemma 3.12. For our second case, we assume that

{u1, u2} belong to a cycle C that has no vertices of attachment to a wide separation of (G,Σ).

Then, we found a 2-separation of G, [G1, G2] where G1 is a cycle. We may color the vertices

of G1 blue, and we name the vertices {v1, v2} = V (G1) ∩ V (G2). If neither the first nor the

second case is true, then we found a wide separation [(G1,Σ1), (G2,Σ2)] where G1 is a path

or a cycle and {u1, u2} ⊆ V (G1). So, we may color the vertices of G1 blue, and we apply

rule 2 or 3 to the blue vertices of G1 to color the vertices {v1, v2} blue, where {v1, v2} are
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the vertices of attachment of G1. We may repeat our case study again starting with the blue

vertices {v1, v2} and ignoring all the other blue vertices. Eventually, we color all the vertices

of (G,Σ) blue. That is, {u1, u2} is a zero forcing set for (G,Σ), and Lemma 1.38 implies

2 = M(G,Σ) ≤ Z(G,Σ) ≤ 2. Therefore, Z(G,Σ) = 2.
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4.3 Signed Graphs with M(G,Σ) = 2 ≤ Z(G,Σ)

Lemma 4.17. Z(W o
4 ) = 3

Proof. As {1, 2, 3} is a zero forcing set of W4, Lemma 1.38 implies Z(W o
4 ) ≤ Z(W4) = 3.

We may apply Rule 2 to {1, 3} to color {4, 5} blue only if 2 is also colored blue. By

symmetry, other applications of Rule 2 are the same. As there are only two odd edges in

W o
4 , we never apply Rule 3. Hence, the zero forcing sets for W4 are the same as for W o

4 .

That is, Z(W o
4 ) = 3.

Lemma 4.18. Let (G,Σ) be obtained by attaching pendant paths to vertices of W o
4 . If

M(G,Σ) = 2, then Z(G,Σ) = 3

Proof. From Lemma 3.7, M(G,Σ) = 2 implies that no vertex of W o
4 has more than one

pendant path attached in (G,Σ). If Z(G,Σ) = 2, then we found a zero forcing set with two

vertices in W o
4 . However, Lemma 4.17 forbids a zero forcing set with only two vertices in

W o
4 . We label the first five vertices of (G,Σ) as in Figure 1.3. For i = 1, 2, 3, we take vi as i

if no pendant path is attached to i in (G,Σ); otherwise, we take vi as the pendant vertex of

the pendant path attached to i. So, {v1, v2, v3} is a zero forcing set of G, and Lemma 1.38

implies 3 ≤ Z(G,Σ) ≤ Z(G) = 3.

Lemma 4.19. If (G,Σ) is a Stingray, then Z(G,Σ) = 3.

Proof. We use the notation from Definition 3.8. For i = 1, 3, we replace the C4 in the wide

separations [Hi, Hi+1] of G with two edges. The resulting graph H is not a graph on two

parallel paths. From Theorem 1.45, Z(H) > 2. From Lemma 4.11, Z(G,Σ) = Z(H) ≥ 3.



121

Suppose l(P1)+l(P2) = 1. Then we take v1, v2 ∈ V (H1) such that vi is the furthest vertex

from the vertex of attachment ai in H1 for i = 1, 2. We take v3 to be the pendant vertex of

the pendant path attached to a vertex of P1 or P2. Then, {v1, v2, v3} is a zero forcing set of

(G,Σ). So, Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3

Suppose l(P1)+l(P2) = 0. If there is a pendant path attached to the vertex of attachment

q on the path Q, then we take v1 to be the pendant vertex. If there is no pendant path

attached to Q, then we take v1 = q. We take v2 to be the unique vertex such that dQ(v1, v2) =

1. We take v3 to be the pendant vertex of the pendant path attached to a vertex of P1 or P2.

Then, {v1, v2, v3} is a zero forcing set of (G,Σ). So, Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3.

Lemma 4.20. If (G,Σ) is a Sea Anemone, then Z(G,Σ) = 3.

Proof. We use the notation from Definition 3.16. First, we replace the C4 in the wide

separations of G with two edges. The resulting graph H is not a graph on two parallel

paths. From Theorem 1.45, Z(H) > 2. From Lemma 4.11, Z(G,Σ) = Z(H) ≥ 3.

Suppose first that (G,Σ) has a pendant path attached to an internal vertex of the path

P in H1. Name the pendant vertex of this pendant path p1. By definition, there is a single

pendant path attached to the vertex of attachment u1 of the wide separation H1. Similarly,

name the pendant vertex of this pendant path p2. If (G,Σ) has a pendant path attached to

the vertex of attachment w1 of H2, then name this pendant vertex p3. Then, {p1, p2, p3} is

a zero forcing set of (G,Σ). If (G,Σ) has no pendant path attached to w1, then {p1, p2, w1}

is a zero forcing set of (G,Σ). So, 3 ≤ Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3.

Suppose next that (G,Σ) has no pendant path attached to an internal vertex of the
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path P in H1. Then, we take the pendant vertex pi of the pendant path attached to ui

for i = 1, 2. If (G,Σ) has a pendant path attached to the vertex of attachment w1, then

name this pendant vertex p3. Then, {p1, p2, p3} is a zero forcing set of (G,Σ). If (G,Σ)

has no pendant path attached to w1, then {p1, p2, w1} is a zero forcing set of (G,Σ). So,

3 ≤ Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3.

Lemma 4.21. If (G,Σ) is a Mollusk, then Z(G,Σ) ≤ 3. Further, Z(G,Σ) = 2 if and only

if (G,Σ) is also a signed graph with two parallel paths.

Proof. We use the notation from Definition 3.19. First, we replace the C4 in the wide

separations of (G,Σ) with two edges. Name the resulting signed graph (H,Ω).

Suppose that there are two pendant paths attached to vertices of H1 − {u1, u2}. Then,

H is not a graph on two parallel paths, and (G,Σ) is not a signed graph with two parallel

paths. From Theorem 1.45, Z(H) > 2. From Lemma 4.11, Z(G,Σ) = Z(H) ≥ 3. We take

v1 and v2 to be the pendant vertices of these two pendant paths. We take v3 to be the

pendant vertex of the pendant path attached at u1. Hence, {v1, v2, v3} is a zero forcing set

of (G,Σ). So, 3 ≤ Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3.

Suppose that there is exactly one pendant path attached to a vertex w of H1 − {u1, u2}

such that w↔u1. Then, H is a graph on two parallel paths, and (G,Σ) is a signed graph with

two parallel paths. From Theorem 1.45, Z(H) = 2. From Lemma 4.11, Z(G,Σ) = Z(H) = 2.

Hence, Z(G,Σ) = 2.

Suppose that there is exactly one pendant path attached to a vertex w of H1 − {u1, u2}
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such that w↔u2. Then, H is not a graph on two parallel paths, and (G,Σ) is not a signed

graph with two parallel paths. From Theorem 1.45, Z(H) ≥ 3. From Lemma 4.11, Z(G,Σ) =

Z(H) ≥ 3. Take v1 to be the pendant vertex of the pendant path attached at w. Take v2 to

be the pendant vertex attached at u1. Take v3 = u2. Then, {v1, v2, v3} is a zero forcing set

of (G,Σ). So, 3 ≤ Z(G,Σ) ≤ 3. Hence, Z(G,Σ) = 3.

Suppose that there is no pendant path attached to any vertex of H1−{u1, u2}. Then, H

is a graph on two parallel paths, and (G,Σ) is a signed graph with two parallel paths. From

Theorem 1.45, Z(H) = 2. From Lemma 4.11, Z(G,Σ) = Z(H) = 2. Hence, Z(G,Σ) = 2.

Therefore, Z(G,Σ) ≤ 3 if (G,Σ) is a Mollusk. Further, Z(G,Σ) = 2 if and only if (G,Σ)

is also a signed graph with two parallel paths.

Lemma 4.22. If (G,Σ) is a Seahorse, then Z(G,Σ) = 3.

Proof. Because G is not a graph on two parallel paths, Theorem 1.45 implies Z(G) > 2. As

the pendant vertices of G are a zero forcing set, Z(G) = 3. As (G,Σ) has no parallel edges

or wide separations, Lemma 4.10 implies Z(G,Σ) = Z(G) = 3.

Lemma 4.23. If (G,Σ) is a Starfish, then Z(G,Σ) = 3.

Proof. We use the notation from Definition 3.25. For our first case, we suppose that (G,Σ)

has 5 pendant paths. We take the pendant vertices {p1, p2, p3} of the pendant paths attached

to {v1, v2, v3} such that dG(v1, v2) = dG(v2, v3) = 1 and d(v1) = d(v3) = maxv∈V d(v). Then,

{p1, p2, p3} is a zero forcing set, and Z(G) ≤ 3. As G has 5 pendant vertices, P (G) ≥ 3.

For our second case, suppose that (G,Σ) has only 4 pendant paths. Then, we may find

a 2-separation (C4, Ck) of G where {v1, v2} ∈ V (C4) ∩ V (Ck). We take v3 ∈ V (C4) such
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that v3 6∈ {v1, v2}. Then, (G,Σ) has pendant paths attached to {v1, v2, v3}, and we take

the pendant vertices to be {p1, p2, p3}. Then, {p1, p2, p3} is a zero forcing set for Z(G).

Suppose for a contradiction that P (G) = 2. Then, each path in the covering must end on a

pendant vertex of G. If the edge v1v2 is along one of these two paths, then the path must

have endvertices p1 and p2. Yet, any path covering with the edge v1v2 must have more than

two paths. If the edge v1v2 is not in a path of our covering, then p1 and p2 are covered by

different paths because the paths must be induced. Because the paths in our covering must

have endvertices which are pendant vertices in G, the two paths cannot cover V (Ck)\{v1, v2}.

So, we have our contradiction, and P (G) ≥ 3.

So, if (G,Σ) is a Starfish then Z(G) ≤ 3 and P (G) ≥ 3. From Theorem 1.36, 3 ≥ Z(G) ≥

P (G) ≥ 3. Hence, Z(G) = 3. Because (G,Σ) has no parallel edges and no wide separation,

Corollary 4.10 implies Z(G,Σ) = Z(G) = 3.

We conclude this chapter with an extension of a result of Row to signed graphs [20].

Theorem 4.24. Let (G,Σ) be a signed graph where G is not a path. Then, (G,Σ) has

M(G,Σ) = Z(G,Σ) = 2 if and only if (G,Σ) is a signed graph with two parallel paths.

Proof. First, suppose that (G,Σ) is a signed graph with two parallel paths and that G is not

a path. From Lemma 3.14, we have that M(G,Σ) = Z(G,Σ) = 2.

Next, suppose that (G,Σ) is a signed graph such that M(G,Σ) = Z(G,Σ) = 2. Theorem

1.14 implies G is not a path. From Theorem 3.1, we know that (G,Σ) is a signed graph

with two parallel paths, a Seahorse, a Starfish, a Sea Anemone, a Mollusk, a Stingray, or
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obtained from W o
4 by adding single pendant paths to some of the vertices of W o

4 . Because

Z(G,Σ) = 2, Lemmas 4.22, 4.23, 4.20, and 4.19 implies (G,Σ) is not a Seahorse, a Starfish, a

Sea Anemone, or a Stingray. Similarly, Lemma 4.18 implies (G,Σ) may not be obtained from

W o
4 by adding single pendant paths to some of the vertices of W o

4 . If (G,Σ) is a Mollusk, then

Lemma 4.21 implies that (G,Σ) is also a signed graph with two parallel paths; otherwise,

Z(G,Σ) = 3. Therefore, M(G,Σ) = Z(G,Σ) = 2 implies (G,Σ) is a signed graph with two

parallel paths.
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