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INTERWEAVING GEOCHEMICAL AND GEOSPATIAL DATA TO IDENTIFY HIGH 

CONCENTRATIONS OF METAL CONTAMINATION FROM COPPER, LEAD, AND ZINC 

WITHIN UTOY CREEK, ATLANTA GA 

by 

 

Ryan Walker 

 

Under the Direction of Katie Price PhD 

 

ABSTRACT 

Utilizing geochemical and geospatial data to explore the spatial variability of metals 

within streambed sediment of a local waterway may help to identify anthropogenic input of 

copper, lead, and zinc in urbanized streams. Utoy Creek is an urbanized stream located just 

southwest of downtown Atlanta. Baseline trace metal values and a reference site were used to 

determine if copper, lead, and zinc concentrations were higher or lower than baseline or 

reference site values. The Atlanta Metro Region had over 2,100 miles of impaired streams listed 

on the 2008 303(d) list. This type of study can be used as a proxy to help determine how 

“impaired” local urbanized streams really are and identify areas of interest for future studies. For 

this study, 42 sites were selected for streambed sediment collection, chemical analysis was 

preformed, and GIS and statistical analysis were performed. This study shows that several areas 

in Utoy Creek show elevated metal concentrations of copper, lead, and zinc.   
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1 INTRODUCTION  

Toxic metals, defined as individual or compound metals that negatively affect human or 

ecosystem health, are often byproducts produced by numerous industries and are a prime concern 

in regards to addressing water quality from urban runoff (US EPA, 1983). Urban runoff ranks as 

the second highest source of surface pollutants entering rivers (Walker et al., 1999). Urban 

runoff, specifically overland flow, typically contains significant amount of toxic metals 

(Sansalone, 1999) as well as nutrients, sediments, and other anthropogenic compounds (Jang et 

al., 2005). Up to 50% of the toxic metal content in urban runoff is in dissolved form (Erickson et 

al., 2013). In natural waters, these metals have low solubility and generally are removed by 

sedimentation or sorption (Pitt et al., 1999). However, as the water becomes more acidic, toxic 

metals readily dissolve into ion form. In this form, toxic metals are generally non-degradable and 

build up in food chains via bioaccumulation (Chen & Ray, 2001). 

Zinc is a particularly troubling toxic metal because it can be detected at frequencies of 90% 

in urban runoff samples (Rangsivek & Jekel, 2005). It is one of the most prevalent toxic metals 

along with copper and lead (Rose et al., 2001). This is due to Zinc’s diverse anthropogenic usage 

(Rose et al., 2001). Zinc comes from such sources as the manufacturing of brass and bronze 

alloys (Sen & Khoo, 2013), runoff from galvanized roofs (Rose et al., 2001), wear from brake 

pads (Walker et al., 1999), and wear from tire tread (Councell & Duckenfield, 2004). Zinc is 

essential for humans (US EPA, 2005) as well as for plant development (Rout & Das, 2003) at 

low to moderate levels where it only has low toxicity. At higher concentrations zinc can be toxic 

to plants (Rout & Das, 2003) and can decimate aquatic communities (USGS, 1993). 

Like zinc, copper has diverse anthropogenic uses. Copper comes from such sources as 

wear from brake pads (Hulskotte et al., 2006), copper plumbing (Pavissich et al., 2010), treated 
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lumber (Stilwell & Gorny, 1997) and algaecide (Bishop & Rodgers, 2012). Cooper is essential 

for plants at low concentrations (Yruela, 2005). At high concentrations, both acute and chronic, it 

may be toxic to biota (USEPA, 1985). Thee toxicity of copper is dependent upon the alkalinity of 

the water (USGS, 1999) as well as hardness and pH (Santore et al., 2001). The higher the acidity 

of the water the more toxic copper concentrations become to biota (USGS, 1999). 

Lead has been used by humans since antiquity and comes from such sources as plumbing 

in older housing (Beattie et al., 1972), car batteries (Weijma et al., 2002), lead based paint (Farfel 

& Chisolm, 1990), and glass making (Hynes & Jonson, 1997). The toxicity of lead to humans 

has been well documented as it may effect multiple body systems including the brain, liver, and 

kidneys (WHO, 2016). Lead is a common environmental contaminant and may cause vascular, 

neurological, and genetic damage to mammals (Patrick, 2006), causes phytotoxicity and inhibits 

plant seed germination (Pourrut et al., 2011), and effects reproduction of fish (Tulasi et al., 

1989).  

The urbanization of the Atlanta Metro Region (AMR) has led to increased amounts of 

copper, lead, and zinc in the local water systems. Since 1970, the population of AMR has risen 

from about 1.5 million residents to about 4.2 million residents in 2013 (ARC, 2013). 

Corresponding to the population growth has been the rise in residential, industrial, commercial, 

and transportation sectors within the AMR. These sectors are projected to continue their rapid 

growth rate through 2030 (Miller, 2012). The increase in urbanization leads to changes in the 

AMR land cover. Greater areas of vegetation are covered with impervious surfaces which leads 

to stormwater being rerouted directly into stream channels as overland flow (Rose & Peters, 

2001). This increased amount of urbanization can have a negative effect on the water quality, 
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aquatic habitat, and biotic communities for local waterways in the AMR by changing the 

physical and chemical characteristics of the waterways (Fitzpatrick et al., 2004).  

1.1 Objectives 

The overarching objective of this study is to utilize geochemical and geospatial data to 

explore the spatial variability of metals within streambed sediment from Utoy Creek, a local 

waterway, which is located in an urbanized setting. The United States Geological Survey 

(USGS) has a monitoring station at the mouth of Utoy Creek (USGS Station #02336728). One 

specific objective was to determine whether the metal concentrations are higher or lower than the 

nationwide “baseline” estimates.  An additional objective was to observe values from Utoy 

Creek to observed values in a nearby, non-urban, non-industrialized watershed.  

1.2 Hypothesis 

Due to the diverse anthropogenic use of copper, lead, and zinc as well as the high population 

density and traffic areas surrounding Utoy Creek, the original hypothesis was that copper, lead, 

and zinc concentrations will not be spatially uniform. Furthermore, metal concentrations should 

be higher in industrialized areas than non-industrialized areas.    
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2    Methods 

2.1 Study watershed 

Utoy Creek is located in the Piedmont region in the state of Georgia in the United States. 

Utoy Creek is a tributary of the Chattahoochee River, and this confluence is located approx. 3.5 

miles southwest of downtown Atlanta. It is a part of the HUC #03130002 Middle 

Chattahoochee-Lake Harding Watershed (USEPA, 2016). The stream length of Utoy Creek is 

approximately 35 km. Both the north fork and main stem sections of Utoy Creek flow under 

Interstate-285 (Figure 1) on the way to the Chattahoochee River. Most of the land cover in the 

Utoy Creek drainage basin is urban, and the stream flows through both residential and industrial 

areas. The bedrock geology is primarily porphyritic granite, biotitic gneiss, and mica 

schist/gneiss/amphibole (Lawton, 1976). There were 42 sample sites chosen and five random 

duplicate samples were taken for quality control. The primary objective was to identify copper, 

lead, and zinc concentrations. However, other known metals that are primarily contributed by 

population density were measured as well.  
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Figure 1. Utoy Creek study site. This map shows the drainage basin for Utoy Creek as well as the sample locations 

taken for this study. For reference, Interstate-285 can be seen running north-south in the middle of the drainage 

basin. Interstate-20 is located just north of the drainage basin going from east to west, and the Chattahoochee River 

can be seen in the northwest portion of this map. 

 

2.2      Sample Collection 

Streambed sediment sampling of Utoy Creek occurred from October to December of 

2014. Representative composite samples were taken from the left bank, right bank, and any sand 

bars present at each of the 42 sampling sites. Sediment was collected near the water’s edge and 

only the upper most 0.5 inch of sediment was collected. This type of sample was collected 

because streambed sediment in these areas have been shown to accumulate trace elements that 
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may not be detectable in a water grab sample (Horowitz, 1985). For every ten sites sampled, a 

duplicate sample was taken at a random site for quality control. All samples were placed in an 

iced cooler after being taken and transferred to a lab for chemical analysis. GPS coordinates were 

collected at each site using a standard handheld Garmin (+/- 3m). 

2.3    Chemical Analysis 

All samples were mixed thoroughly for homogenization prior to wet sieving. The wet 

sieving technique was used to retain all grains < 63 µm. The sediment grains in this size fraction 

was chosen because they have the ability to accumulate trace metals as well as toxins and may 

reenter the water column as suspended sediment (FL EPD, 2002). The wet sieved sediment was 

then freeze dried (Horowitz & Elrick, 1987; Horowitz & Elrick 1988).  The < 63 µm sediment 

was then broken down through acid digestion through HNO3-HF-HClO4. All samples, including 

replicates, were then run through chemical analysis by use of Atomic Absorption Spectroscopy 

(AAS) at Georgia State University, Department of Geoscience. Once metal concentrations were 

determined, the values were then compared to Georgia’s Environmental Protection Division’s 

(EPD) freshwater fishing streams water quality standards (GA R&R, 2016). 

2.4   Baseline 

Baseline values were used for comparison purposes and are intended to represent a 

“natural” geochemical signature in the absence of human impact. The baseline values were taken 

from Horowitz (1991) and were estimated using models derived from a combination of multiple 

regression and principal components analyzed from 61 samples taken from un-impacted 

watersheds across the United States and calibrated to reflect local geological signatures. The 

baseline values are estimates from samples all over the United States and will be compared to 
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Bear Creek which represents a local reference site. Bear Creek metal concentration values 

represent actual conditions of a mostly forested watershed.  

2.5 Reference Site: Bear Creek 

A lightly-impacted watershed (Bear Creek) was identified, for comparison of metal 

concentrations between our primary, urbanized watershed (Utoy Creek). The mouth of Bear 

Creek is approximately located 30 miles southwest of downtown Atlanta and the stream length is 

perennial stream length is approximately 15 miles. Like Utoy Creek, Bear Creek is located in the 

Piedmont physiographic region and is a part of the Middle Chattahoochee-Lake Harding 

Watershed. The bedrock is mineralogically similar to Utoy Creek and primarily contains 

porphyritic granite, aluminous schist, biotitic gneiss, and calc-silicate granite gneiss (Lawton, 

1976). Five sample site locations were chosen, and one duplicate sample was collected for 

quality control. 

Bear Creek samples were collected in November 2015. Sample collection followed the 

same protocol as used in Utoy Creek sampling. However, the samples were shipped to ALS 

Minerals for chemical analysis via ICP-AES. The samples were again wet sieved to retain < 63 

µm fraction, and samples were then oven dried. This element of the research design was included 

to understand stream metals concentrations in a relatively undisturbed stream system (Gregory & 

Calhoun, 2007), as opposed to a direct, pairwise comparison between Utoy and Bear Creeks. 
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Figure 2. Bear Creek drainage basin with sample locations. Bear Creek is located just west of Fairburn, Georgia. 

The Chattahoochee River is located in the northwestern portion of the map. 

2.6 GIS 

The chemical analyses were linked to geospatial coordinates collected during sampling 

and entered into ArcGIS 10.1. Concentrations were visualized using graduated symbols to easily 

determine where the highest metal concentrations were located along Utoy Creek. Additionally, 

concentrations of copper, lead, and zinc were related to downstream distance for visualization of 

network sources and their downstream propagation (Lecce et al., 2011). Also, 2010 population 

density data was obtained from the US Census Bureau (US Census, 2010) for visual analysis of 

metal concentrations and high density areas within the Utoy Creek watershed. 
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2.7 Statistical Analysis 

SPSS Statistics 23 was utilized to analyze the metals concentration data. The chemical 

analysis data was run through using histograms, scatter plot graphs, Pearson’s and Spearman’s 

correlations, and the Mann-Whitney U Test. Histograms were utilized to see the distribution of 

frequency of metal concentrations. Scatter plot graphs were utilized to determine regression 

analysis as well as correlations between metal concentrations and ratios between metals and iron 

and aluminum. Pearson’s and Spearman’s correlations were utilized to quantify the relationships 

between metal concentrations for metals that were normally distributed (Pearson’s) and metal 

concentrations that were not normally distributed (Spearman’s). The Mann-Whitney U Test was 

utilized to compare metal concentrations between Utoy Creek and Bear Creek.  

 

 

3     RESULTS 

3.1 Metal Concentrations 

Table 1. Lists the results of metal concentration of all 42 sample sites (Figure 1). Cu, Co, Cd, Pb, and Zn are in 

ppm. Al and Fe are in percent. Easting and Northing refer to UTM NAD 83 Zone 16 N. 

 

Site Cu Co Cd Pb Zn Al % Fe % Easting Northing 

NF 01 45 17 0.3 76 180 10.2 4.4 730677.0 3734882.0 

NF 02 44 16 0.4 84 170 9.3 4.0 731060.7 3736036.6 

NF 03 63 21 0.5 120 320 10.9 5.0 731840.0 3736695.0 

NF 04 51 18 0.5 100 220 9.9 4.1 732614.0 3736806.0 

NF 05 45 19 0.4 80 160 10.1 3.7 732910.0 3736209.0 

NF 06 69 22 0.7 140 310 10.5 5.0 733484.0 3736112.0 

NF 07 64 22 0.6 120 290 10.4 4.7 733849.0 3735653.0 

NF 08 59 18 0.4 110 220 12.5 5.0 734089.0 3736056.0 

NF 09 66 23 0.3 120 200 12.6 5.6 734553.0 3735721.0 

NF 10 90 26 0.9 180 370 10.9 6.1 735294.0 3736068.0 

NF 11 74 19 0.6 140 255 10.6 5.1 735731.0 3735524.0 
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Trib 1-1 24 16 0.2 62 160 12.2 5.1 730462.0 3732606.0 

Trib 1-2 16 16 0.1 40 100 11.5 2.8 730481.0 3733133.0 

Trib 1-3 23 19 0.1 56 150 11.5 4.0 730539.0 3733461.0 

Trib 1-4 43 26 0.2 64 200 10.8 5.3 730469.0 3734429.0 

Trib 2-1 41 16 0.2 67 210 10.3 5.4 729725.7 3736450.4 

Trib 3-1 29 20 0.1 48 120 10.5 3.7 728681.0 3734566.0 

Trib 3-2 39 26 0.1 57 160 11.0 4.6 728255.0 3735446.0 

Trib 3-3 37 24 0.2 43 140 10.4 4.2 727918.0 3735807.0 

Trib 4-1 47 21 0.2 38 120 11.4 5.0 727599.0 3732699.0 

Trib 4-2 43 32 0.1 45 150 10.0 6.2 727156.0 3734468.0 

UT 01 56 25 0.4 72 860 10.2 4.3 724927.0 3736541.0 

UT 02 37 17 0.1 58 330 12.0 3.7 725238.0 3736392.0 

UT 03 57 20 0.3 81 560 10.2 4.4 725758.0 3736385.0 

UT 04 51 24 0.4 70 550 9.6 4.6 726073.7 3736388.9 

UT 05 51 22 0.3 67 460 10.8 4.5 726339.3 3736161.9 

UT 06 55 30 0.4 75 910 9.8 4.7 726766.0 3735855.0 

UT 07 60 29 0.4 77 590 10.5 4.7 727229.0 3735636.0 

UT 08 60 22 0.3 85 220 10.7 4.6 728288.0 3736278.2 

UT 09 57 19 0.3 78 190 9.8 4.5 729083.0 3736114.2 

UT 10 51 20 0.2 110 160 10.6 4.3 730068.0 3735554.9 

UT 11 62 28 0.4 81 220 9.5 5.4 730698.0 3734770.0 

UT 12 68 23 0.4 78 210 9.8 4.9 731179.0 3734400.0 

UT 13 39 19 0.2 60 130 11.9 5.4 731937.2 3733476.9 

UT 14 95 26 0.4 95 250 11.4 5.1 732476.0 3733486.0 

UT 15 80 26 0.3 87 220 10.8 5.3 733082.0 3733702.0 

UT 16 110 27 0.4 100 280 10.8 5.3 733529.0 3733202.0 

UT 17 70 19 0.2 50 160 12.4 3.4 734022.0 3732657.0 

UT 18 120 31 0.5 120 360 10.3 5.7 734484.0 3732029.0 

UT 19 110 35 0.7 200 350 9.7 6.0 735332.0 3731731.0 

UT 20 76 32 0.4 96 290 11.4 6.5 735723.4 3731813.2 

UT 21 110 30 0.4 110 280 11.3 6.7 736495.8 3732018.9 

 

Copper was found to be within the range of 16-120 ppm. Site Trib 1-2 was the lowest 

concentration at 16 ppm and site UT 18 was the highest concentration at 120 ppm. Cobalt was 

found to be within the rage of 16-35 ppm. Sites Trib 4-1, Trib 1-2, NF 02 and Trib 2-1 were the 

lowest concentration at 16 ppm and site UT 19 was the highest concentration at 35 ppm. 

Cadmium concentrations ranged from 0.1 to 0.9 ppm. Six sites, most of which are tributaries for 

Utoy Creek, were at the lowest concentration at 0.1 ppm and site NF 10 was the highest 
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concentration at 0.9 ppm. Lead was found to be within the rage of 38-200 ppm. Site Trib 4-1 was 

the lowest concentration at 38 ppm and site UT 19 was the highest concentration at 200 ppm. 

Zinc was found to be within the range of 100-910 ppm. Site Trib 1-2 was the lowest 

concentration at 100 ppm and site UT 06 was the highest concentration at 910 ppm. Aluminum 

was found to be within the rage of 9.3-12.6%. Site NF 02 was the lowest concentration at 9.3% 

and site NF 09 was the highest concentration at 12.6%. Iron was found to be within the range of 

2.8-6.7%. Site Trib 1-2 was the lowest concentration at 2.8% and site UT 21 was the highest 

concentration at 6.7%. 

 

Table 2. Lists the results of metal concentration of all five sample sites and duplicate sample. Cu, Co, Cd, 

Pb, and Zn are in ppm. Al and Fe are in percent. 

Site Cu Co Cd Pb Zn Al% Fe% 

BC101 8 5 0.5 29 40 5.74 1.77 

BC102 9 10 0.5 16 25 3.81 1.73 

BC103 10 8 0.5 14 27 3.25 2.06 

BC104 9 8 0.5 13 25 3.47 1.87 

BC105 7 4 0.5 11 18 2.60 1.56 

        

 

Copper was found to be within the range of 7-10 ppm. Site BC 105 was the lowest 

concentration at 7 ppm and site BC 103 was the highest concentration at 10 ppm. Cobalt was 

found to be within the range of 4-10 ppm. Site BC 105 was the lowest concentration at 4 ppm 

and site BC 102 was the highest concentration at 10 ppm. Cadmium at every sample site was 

found to be 0.5 ppm. Lead was found to be within the range of 11-29 ppm. Site BC 105 was the 

lowest concentration at 11 ppm and site BC 101 was the highest concentration at 29 ppm. Zinc 

was found to be within the range of 18-40 ppm. Site BC 105 was the lowest concentration at 18 

ppm and site BC 101 was the highest concentration at 40 ppm. Aluminum was found to be 
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within the range of 2.60-5.73 percent. Site BC 105 was the lowest concentration at 2.60 percent 

and site BC 101 was the highest concentration at 5.74 percent. Iron was found to be within the 

range of 1.56-2.06 percent. Site BC 105 was the lowest concentration at 1.56 and site BC 103 

was the highest concentration at 2.06 percent. 

 

Table 3. Lists the minimum and maximum metal concentration values for copper, lead, and zinc for Bear Creek 

(ppm), Regional Baseline (ppm), Utoy Creek (ppm), Georgia Rules and Regulations (391-3-19) for regulated 

substances and soil concentrations that trigger notification. Georgia EPD water quality standards for freshwater 

streams is also shown. 

  Cu Pb Zn 

  Min Max Min Max Min Max 

Bear Creek (ppm) 7 10 11 29 18 40 

Regional Baseline(ppm) 14 26 14 26 71 110 

Utoy Creek (ppm) 16 120 38 200 100 910 

GA R&R Soil Limits 

(ppm)  1500  400  2800 

GA EPD Water Quality 

Limits (ppm) 0.005 0.007 0.0012 0.03 0.065 0.065 

 

 

Table 4. Lists the error estimations for metal concentrations of the sample sites where duplicate samples were taken 

as well as the differences between the two samples. Also lists the ICP-AA and ICP-AES analytical errors.  

 

  
  Cu Co Cd Pb Zn Al Fe 

UT 06 

Sample 1 55 30 0.4 75 910 9.8 4.7 

Sample 2 55 28 0.4 74 830 10.0 4.5 

Difference 0 2 0 1 80 0.2 0.2 

UT 15 

Sample 1 80 26 0.3 87 220 10.8 5.3 

Sample 2 74 22 0.3 80 210 9.8 4.6 

Difference 6 4 0.0 7 10 1.0 0.7 

UT 12 
Sample 1 68 23 0.4 78 210 9.8 4.9 

Sample 2 75 27 0.4 83 240 10.0 5.3 
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Difference 7 4 0.0 5 30 0.2 0.4 

NF 04 

Sample 1 51 18 0.5 100 220 9.9 4.1 

Sample 2 57 19 0.5 110 240 10.1 4.3 

Difference 6 1 0.0 10 20 0.2 0.2 

UT 09 

Sample 1 57 19 0.3 78 190 9.8 4.5 

Sample 2 48 18 0.2 73 170 9.4 4.2 

Difference 9 1 0.1 5 20 0.4 0.3 

ICP-AA  

(NIST 

2709a) 

Reference 34±1 13±1 0.4 17±1 103±4 7.4±0.2 3.4±0.1 

Sample 1 33 14 0.4 17 100 7.3 3.3 

Sample 2 34 12 0.4 17 110 7.4 3.4 

ICP-AES*   <10% <10% <10% <10% <10% <10% <10% 

*Errors reported for ALS minerals in Pavlowsky et al. 2010   

 

3.2 Statistics 
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Figure 3. Histogram of copper. The y-axis is the number of occurrences (Frequency) and the x-axis is the 

concentration level (ppm) of copper. 

 

Figure 4. Histogram of Lead. The y-axis is the number of occurrences (Frequency). The x-axis is the concentration 

level (ppm) of lead. 
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Figure 5. Histogram of Zinc. The y-axis is the number of occurrence (Frequency). The x-axis is the concentration 

(ppm) of zinc. 

 

This histogram of copper (Figure 3) shows a mean concentration of 59 ppm and a 

standard deviation of 24. The histogram of lead (Figure 4) shows a mean concentration of 86 

ppm and a standard deviation of 35. The histogram of zinc (Figure 5) shows a mean 

concentration of 280 ppm and a standard deviation of 180. The three histograms used 42 

samples. All mean averages are above the baseline levels.  
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Table 5. Pearson’s Correlation between Cu, Co, Cd, Pb, Zn, Al, and Fe for Utoy Creek. 

 

Correlations 

  Cu Co Cd Pb Zn Al Fe 

Cu Pearson 
Correlation 

1 .623** .655** .701** .223 -.086 .609** 

Sig. (1-
tailed) 

 .000 .000 .000 .078 .293 .000 

N 42 42 42 42 42 42 42 

Co Pearson 
Correlation 

.623** 1 .315* .328* .372** -.244 .660** 

Sig. (1-
tailed) 

.000  .021 .017 .008 .060 .000 

N 42 42 42 42 42 42 42 

Cd Pearson 
Correlation 

.655** .315* 1 .869** .347* -.310* .400** 

Sig. (1-
tailed) 

.000 .021  .000 .012 .023 .004 

N 42 42 42 42 42 42 42 

Pb Pearson 
Correlation 

.701** .328* .869** 1 .165 -.123 .493** 

Sig. (1-
tailed) 

.000 .017 .000  .149 .219 .000 

N 42 42 42 42 42 42 42 

Zn Pearson 
Correlation 

.223 .372** .347* .165 1 -.297* .061 

Sig. (1-
tailed) 

.078 .008 .012 .149  .028 .351 

N 42 42 42 42 42 42 42 

Al Pearson 
Correlation 

-.086 -.244 
-

.310* 
-.123 -.297* 1 .014 

Sig. (1-
tailed) 

.293 .060 .023 .219 .028  .465 

N 42 42 42 42 42 42 42 

Fe Pearson 
Correlation 

.609** .660** .400** .493** .061 .014 1 

Sig. (1-
tailed) 

.000 .000 .004 .000 .351 .465  

N 42 42 42 42 42 42 42 

**. Correlation is significant at the 0.01 level (1-tailed). 

*. Correlation is significant at the 0.05 level (1-tailed). 

 

 

A significant correlation at the 0.01 level for a 1-tailed test was found between Cu and 

Co, Cu and Cd, Cu and Pb, Cu and Fe, Co and Zn, Co and Fe, Cd and Pb, Cd and Fe, and Pb and 
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Fe. A significant correlation at the 0.05 level for a 1-tailed test was found between Co and Cd, 

Co and Pb, Cd and Zn, Cd and Al, and Zn and Al. 

 

Table 6. Spearman’s rho correlations of Easting and Northing for Utoy Creek. 

Spearman's rho Correlations 

  Cu Co Cd Pb Zn Al Fe Easting Northing 

Cu Correlation 
Coefficient 1.000 .556** .740** .777** .574** -.052 .537** .638** -.202 

Sig. (1-
tailed) 

 .000 .000 .000 .000 .371 .000 .000 .100 

N 42 42 42 42 42 42 42 42 42 

Co Correlation 
Coefficient .556** 1.000 .321* .255 .436** -.187 .591** .125 -.321* 

Sig. (1-
tailed) 

.000  .019 .051 .002 .118 .000 .216 .019 

N 42 42 42 42 42 42 42 42 42 

Cd Correlation 
Coefficient .740** .321* 1.000 .832** .669** 

-
.359** 

.344* .538** .160 

Sig. (1-
tailed) 

.000 .019  .000 .000 .010 .013 .000 .156 

N 42 42 42 42 42 42 42 42 42 

Pb Correlation 
Coefficient .777** .255 .832** 1.000 .539** -.124 .442** .679** .098 

Sig. (1-
tailed) 

.000 .051 .000  .000 .217 .002 .000 .269 

N 42 42 42 42 42 42 42 42 42 

Zn Correlation 
Coefficient .574** .436** .669** .539** 1.000 -.247 .250 .010 .338* 

Sig. (1-
tailed) 

.000 .002 .000 .000  .057 .055 .475 .014 

N 42 42 42 42 42 42 42 42 42 

Al Correlation 
Coefficient -.052 -.187 

-
.359** 

-.124 -.247 1.000 .090 .233 -.317* 

Sig. (1-
tailed) 

.371 .118 .010 .217 .057  .286 .069 .020 

N 42 42 42 42 42 42 42 42 42 

Fe Correlation 
Coefficient .537** .591** .344* .442** .250 .090 1.000 .469** -.376** 

Sig. (1-
tailed) 

.000 .000 .013 .002 .055 .286  .001 .007 

N 42 42 42 42 42 42 42 42 42 

Easting Correlation 
Coefficient .638** .125 .538** .679** .010 .233 .469** 1.000 -.422** 

Sig. (1-
tailed) 

.000 .216 .000 .000 .475 .069 .001  .003 

N 42 42 42 42 42 42 42 42 42 



18 

Northing Correlation 
Coefficient -.202 

-
.321* 

.160 .098 .338* 
-

.317* 
-

.376** 
-.422** 1.000 

Sig. (1-
tailed) 

.100 .019 .156 .269 .014 .020 .007 .003  

N 42 42 42 42 42 42 42 42 42 

**. Correlation is significant at the 0.01 level (1-tailed). 

*. Correlation is significant at the 0.05 level (1-tailed). 

 

 Spearman’s rho correlations were used primarily for easting and northing as these two 

parameters are not normally distributed. A significant correlation at the 0.01 level for a 1-tailed 

test was found between Easting and Cu, Easting and Cd, Easting and Pb, and Easting and Fe. 

Northing and Fe were also significantly correlated at the 0.01 level. A significant correlation at 

the 0.05 level for a 1-tailed test was found between Northing and Co, Northing and Zn, and 

Northing and Al. 

 

Table 7. Pearson’s Correlation between Cu, Co, Cd, Pb, Zn, Al, and Fe for Bear Creek. 

 

Correlations 

  BCZn BCPb BCFe BCCu BCCo BCAl 

BCZn Pearson 
Correlation 

1 .956** .299 .137 -.089 .963** 

Sig. (1-
tailed) 

 .005 .313 .413 .443 .004 

N 5 5 5 5 5 5 

BCPb Pearson 
Correlation 

.956** 1 .016 -.116 -.228 .984** 

Sig. (1-
tailed) 

.005  .490 .426 .356 .001 

N 5 5 5 5 5 5 

BCFe Pearson 
Correlation 

.299 .016 1 .911* .498 .072 

Sig. (1-
tailed) 

.313 .490  .016 .196 .454 

N 5 5 5 5 5 5 

BCCu Pearson 
Correlation 

.137 -.116 .911* 1 .806* -.026 

Sig. (1-
tailed) 

.413 .426 .016  .050 .483 

N 5 5 5 5 5 5 
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BCCo Pearson 
Correlation 

-.089 -.228 .498 .806* 1 -.097 

Sig. (1-
tailed) 

.443 .356 .196 .050  .438 

N 5 5 5 5 5 5 

BCAl Pearson 
Correlation 

.963** .984** .072 -.026 -.097 1 

Sig. (1-
tailed) 

.004 .001 .454 .483 .438  

N 5 5 5 5 5 5 

**. Correlation is significant at the 0.01 level (1-tailed). 

*. Correlation is significant at the 0.05 level (1-tailed). 

 

 

A significant correlation at the 0.01 level for a 1-tailed test was found between Zn and 

Pb, Zn and Al, and Pb and Al. A significant correlation at the 0.05 level for a 1-tailed test was 

found between Fe and Cu, and Cu and Co. Both Utoy Creek and Bear Creek had significant 

correlations between Zn and Al as well as Cu and Co. 

 

Table 8. Spearman’s rho Correlations of Easting and Northing for Bear Creek. 

Spearnman's rho Correlations 

  BCZn BCPb BCFe BCCu BCCo BCAl Easting Northing 

BCZn Correlation 
Coefficient 1.000 .821* .616 .368 .132 .667 -.821* .821* 

Sig. (1-
tailed) 

 .044 .134 .271 .416 .109 .044 .044 

N 5 5 5 5 5 5 5 5 

BCPb Correlation 
Coefficient .821* 1.000 .200 .205 .359 .900* 

-
1.000** 

1.000** 

Sig. (1-
tailed) 

.044  .374 .370 .276 .019   

N 5 5 5 5 5 5 5 5 

BCFe Correlation 
Coefficient .616 .200 1.000 .821* .359 .100 -.200 .200 

Sig. (1-
tailed) 

.134 .374  .044 .276 .436 .374 .374 

N 5 5 5 5 5 5 5 5 

BCCu Correlation 
Coefficient .368 .205 .821* 1.000 .763 .051 -.205 .205 

Sig. (1-
tailed) 

.271 .370 .044  .067 .467 .370 .370 

N 5 5 5 5 5 5 5 5 
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BCCo Correlation 
Coefficient .132 .359 .359 .763 1.000 .359 -.359 .359 

Sig. (1-
tailed) 

.416 .276 .276 .067  .276 .276 .276 

N 5 5 5 5 5 5 5 5 

BCAl Correlation 
Coefficient .667 .900* .100 .051 .359 1.000 -.900* .900* 

Sig. (1-
tailed) 

.109 .019 .436 .467 .276  .019 .019 

N 5 5 5 5 5 5 5 5 

Easting Correlation 
Coefficient -.821* 

-
1.000** 

-.200 -.205 -.359 
-

.900* 
1.000 -1.000** 

Sig. (1-
tailed) 

.044  .374 .370 .276 .019   

N 5 5 5 5 5 5 5 5 

Northing Correlation 
Coefficient .821* 1.000** .200 .205 .359 .900* 

-
1.000** 

1.000 

Sig. (1-
tailed) 

.044  .374 .370 .276 .019   

N 5 5 5 5 5 5 5 5 

*. Correlation is significant at the 0.05 level (1-tailed). 

**. Correlation is significant at the 0.01 level (1-tailed). 

 

Spearman’s rho correlations were used primarily for easting and northing as these two 

parameters are not normally distributed. A significant correlation at the 0.01 level for a 1-tailed 

test was found between Easting and Pb, and Easting and Al. A significant correlation at the 0.01 

level was also found between Northing and Pb, and Northing and Easting.  A significant 

correlation at the 0.05 level for a 1-tailed test was found between Easting and Zn, and Easting 

and Al. A significant correlation at the 0.05 level was also found between Northing and Zn, and 

Northing and Al. 
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Figure 6. Shows zinc, copper, and lead concentrations as a function of downstream distance in the Utoy Creek 

system. The two main branches of Utoy Creek, the mainstem and North Fork, are shown as solid lines. Tributaries 

(corresponding to Figure 1) are shown as point values in the relative positions to the downstream distance where 

they enter Utoy Creek. 

 

 Figure 6 shows clear downstream trends of increasing zinc but decreasing copper and 

lead. It is evident from the figure that key point sources of these metals are located on the main 

branches, as concentrations are consistently lower in the smaller tributaries. While levels of 

copper and lead decline with distance from apparent sources in the upper portions of the 

watershed, zinc levels near the mouth of Utoy Creek are higher than all tributary levels, baseline 

values, and reference site (Bear Creek) values. 
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Figure 7. Graph showing the ratio of zinc to iron on the y-axis and zinc concentration (ppm) on the x-axis. This 

indicates that zinc is significantly correlated to the ratio of zinc to iron. 

 

Figure 8. Graph showing the ratio of lead to iron on the y-axis and lead concentration (ppm) on the x-axis. This 

indicates that lead is significantly correlated to the ratio of lead to iron. 
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Figure 9. Graph showing the ratio of lead to iron on the y-axis and the ration of zinc to iron on the x-axis. This 

indicates that there is a correlation of the ratio of lead to iron and the ratio of zinc to iron when the ratio of zinc to 

iron is around 30-50. 
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Figure 10. Graph showing the ratio of zinc to aluminum on the y-axis and the concentration of zinc (ppm) on the x-

axis. This indicates that the concentration of zinc is significantly correlated to the ratio of zinc to aluminum. 

 

Figure 11. Graph showing the ratio of lead to aluminum on the y-axis and the concentration of lead (ppm) on the x-

axis. This indicates that the concentration of lead is significantly correlated to the ratio of lead to iron. 
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Figure 12. Graph showing the ratio of lead to aluminum on the y-axis and the ratio of zinc to aluminum on the x-

axis. This indicates that there is correlation between the ratio of iron to aluminum and zinc to aluminum when the 

ratio of zinc to aluminum is between 10-40. 

 

 Figures 7 – 12 show the correlation between zinc and lead concentrations and the ratios 

of those metals with iron or aluminum. Figures 9 and 10 show that zinc and lead concentrations 

are significantly correlated to the ratio of zinc or lead to iron. Figure 11 indicates that there is a 

correlation of the ratio of lead to iron and the ratio of zinc to iron when the ratio of zinc to iron is 

around 30-50. 

 Figures 12 and 13 show that zinc and lead concentrations are significantly correlated to 

the ratio of zinc or lead to aluminum. Figure 14 indicates that there is correlation between the 

ratio of iron to aluminum and zinc to aluminum when the ratio of zinc to aluminum is around 10 

- 40. 

  

Table 9. Mann-Whitney U Test between Utoy and Bear Creek samples for Cu, Pb, and Zn. The “0” under the 

stream column represents Utoy Creek. The “1” under the stream column represents Bear Creek. 

 

Ranks 
 

Test Statisticsa 

Stream N 
Mean 
Rank 

Sum of 
Ranks    Cu Pb Zn 

Cu 0 42 26.50 1113.00  
Mann-Whitney U 0.000 0.000 0.000 

1 5 3.00 15.00  
Wilcoxon W 15.000 15.000 15.000 

Total 47    Z -3.625 -3.625 -3.628 

Pb 0 
42 26.50 1113.00 

 
Asymp. Sig. (2-
tailed) 

.000 .000 .000 

1 
5 3.00 15.00 

 

Exact Sig. [2*(1-
tailed Sig.)] .000b .000b .000b 

Total 47    a. Grouping Variable: Stream 

Zn 0 42 26.50 1113.00  
b. Not corrected for ties. 

1 5 3.00 15.00      

Total 47          
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 The Mann-Whitney U Test results showed a significant difference in metal 

concentrations between Utoy Creek and Bear creek for copper, lead, and for zinc (Table 9). The 

42 sample sites for Utoy Creek and the five sites for Bear Creek for the Mann-Whitney U Test.   

 

 

Figure 13. Land cover map of Utoy Creek drainage basin (Homer et al., 2015).  
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 The highest percentage of landcover for Utoy Creek was the Developed, Open Space at 

29% followed by Developed, Low Intensity at 22%. The next highest percentage of landcover 

was for Deciduous Forest at 16% and Evergreen Forest at 17%.   

 

 

Figure 14. Land cover map of Bear Creek drainage basin. (Homer et al., 2015) 

 

Table 10. Landcover classification breakdown for Bear Creek. 

 

Landcover 

Bear 

Creek 

Utoy 

Creek 

Classification Percent Percent 

11 - Water  0.62 0.50 

21 - Developed, Open Space  10.68 28.93 



28 

22 - Developed, Low Intensity 3.82 22.45 

23 - Developed, Medium 

Intensity  1.27 8.41 

24 - Developed, High Intensity  0.32 4.59 

31 - Barren Land  0.15 0.02 

41 - Deciduous Forest  33.67 15.98 

42 - Evergreen Forest  28.54 16.66 

43 - Mixed Forest  0.47 0.73 

52 - Shrub  4.44 0.36 

71 - Grassland/Herbaceous  3.93 0.73 

81 - Pasture/Hay  8.22 0.22 

90 - Woody Wetlands  3.77 0.40 

95 - Emergent Herbaceous  0.11 0.00 

 

 

The highest percentage of landcover for Utoy Creek was for Developed, Open Space at 

29% and Developed, Low Intensity at 22%. The highest percentage of landcover for Bear Creek 

was the Deciduous Forest at 34% followed by Evergreen Forest at 29%. The developed 

landcover classifications were lower than Utoy Creek with the highest percentage being for 

Developed, Open Space at 11% 

4 Discussion 

Baselines were created to help evaluate stream quality (Horowitz et al., 1991). The 

chemical analysis results show that most copper, lead, and zinc concentration levels were found 

to contain amounts higher than the max baseline (Table 1 & 2).  Copper, lead and zinc are 

common in urban runoff and the increase in Atlanta’s population could be the reason behind the 

high levels of zinc concentration found around Utoy Creek. Atlanta area’s population has 

increased 125% from 1970 to 2000 (ARC, 2009) and is predicted to nearly double again by 2040 

(ARC, 2009).  
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The metal concentration values determined for copper, lead, and zinc for both Utoy 

Creek and Bear Creek exceeded GA EPD water quality standards (Table 3) for freshwater 

streams. This study helps show how important streambed sediment sampling can be. Trace 

metals sorb to the < 63 µm sediment. This size of sediment can be deposited along the stream 

banks and stream beds and may also reenter the water column if stream discharge increases. 

Streambed sediment analysis is more likely to show what types of trace metals are in the stream 

as opposed to water grab samples (Horowitz, 1991).  

All cooper concentration levels were found to be below the Georgia Rules and 

Regulations Soil Contamination levels (Table 3). The mean of the copper concentrations was 

found to be 59 ppm (Figure 3) and only three sample sites fell within the established baseline 

levels. The highest concentrations of copper were found near the mouth of Utoy Creek. Sites UT 

14, UT 18, UT 19, UT 16, and UT 21 are all located near the headwaters of Utoy Creek (Figure 

1, Figure 15) and had copper concentrations ranging between 95-120 ppm (Table 1). Sections of 

the headwaters of Utoy Creek run adjacent to Arthur B. Langford Jr. Parkway which is a limited 

access freeway. Wear from brake pads is one of the leading sources of copper for urban 

contaminant (Horowitz, 2009). The cause for the high copper levels in this area are most likely 

caused by high traffic volume.  



30 

 

Figure 15. Graduated color map of copper concentration in Utoy Creek. 

 

All lead concentration levels were found to be below the Georgia Rules and Regulations 

Soil Contamination levels (Table 3). The mean of the lead concentrations was found to be 86 

ppm (Figure 4) and no sample sites fell within the established baseline levels. The highest 

concentrations of lead were found near the mouth of both North Utoy Creek and on the main 

stem of Utoy Creek. Site UT 19 is located near the headwaters of Utoy Creek (Figure 16) and 

had a lead concentration of 200 ppm. Site NF 10 is located in North Utoy Creek and had a lead 

concentration of 180 ppm. Site UT 19 is located in a densely populated area (Figure 18). 

Plumbing, car batteries, and paint are all the leading sources of lead contaminates and could be 

the causes of high lead levels. Site NF 10 is not located in a densely populated area. There could 

possibly be a few different sources at this location. This site is located near Westview Cemetery 
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which is one of the oldest cemeteries in Atlanta. Lead has been used to line coffins and could be 

leaching into Utoy Creek (Jonker and Oliver, 2012). Also, there could be illegal dumping in the 

area. Further research is needed to determine the sources of these high lead levels.  

 

 

Figure 16. Graduated color map of lead concentration in Utoy Creek. 

 

In comparison to Bear Creek, Utoy Creek has a much higher lead concentration. Bear 

Creek lead levels were between 11-29 ppm (Table 3) and Utoy Creek lead levels were between 

38-200 ppm (Table 3). The primary anthropogenic sources of lead contamination are car 

batteries, plumming from old housing, and paint (Horowitz, 2009). As shown in the landcover 
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tables, Utoy creek has a higher percentage of developed areas (Table 9, Table 10). The increased 

amount of developed areas is the most likely cause of the higher elevated lead concentrations in 

Utoy Creek as opposed to Bear Creek. 

For this study all zinc concentration levels were found to be below the Georgia Rules and 

Regulations Soil Contamination levels (Table 3). However, USGS has recorded zinc 

concentration levels that exceed the Georgia Rules and Regulations Soil Contamination levels in 

the past which has caused the State of Georgia to implement a TMDL for Utoy Creek. There are 

specifically four areas in Utoy Creek where zinc concentration were especially high; UT 18 

located near the headwaters of Utoy Creek (Figure 1, Figure 17) has a zinc concentration of 360 

ppm, NF 10 located in the north fork of Utoy Creek (Figure 1) has a zinc concentration of 370 

ppm, UT 01 located near the mouth of Utoy Creek (Figure 1) has a zinc concentration of 860 

ppm, and UT 06 located near the Metaplating Galvanizing plant (Figure 19) has a zinc 

concentration of 910 ppm. 
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Figure 17. Graduated color map of Zinc concentration in Utoy Creek 
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Figure 18. Population density map from US Census data 2010 (US Census, 2010). Map shows Utoy Creek drainage 

basin and corresponding population density near Utoy Creek. 

 

Sites UT 18 and NF 10 are both located in residential areas, while sites UT 01 and UT 06 

are located in industrialized areas. Zinc concentrations were visually compared to population 

density values in Utoy Creek (Figure 18). Site UT 18, located in near the headwaters of Utoy 

Creek (Figure 1), is inside a high population density area which is most likely the reason for high 

zinc levels due to heavy traffic, roofing, and galvanized piping. However, site NF 10, located in 

the north fork of Utoy Creek, does not correspond to high density and is not located near a major 
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road. NF 10 is located near the Westview Cemetery which opened in October of 1884. Further 

investigations are needed to pinpoint the source of the zinc in this area. 

 

 

Figure 19. A close up view near the mouth of Utoy Creek. This map shows the locations of some the sample site 

locations as well as points of interest. For reference purposes, the mouth of Utoy Creek is at the northwest quadrant 

of the map. From north to south the interesting points are Lanthem Time, Metaplate Galvanizing L.P., KapStone, 

Barbour Plastics, and anther KapStone location. 

 

Site UT 06 is located near the Metaplating Galvanization plant as well as a KapStone 

faclility (Figure 19) and shows the highest levels of zinc concentration recorded at 910 ppm 

(Table 1). Site UT 01 is located near Barbour Plastics facility (Figure 19) and shows the second 
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highest levels of zinc concentration recorded at 860 ppm (Table 1). Both locations are located in 

a heavily industrialized area. The zinc concentrations are well above the max baseline level 

(Table 3) as well as the mean zinc concentration (Figure 5). Galvanizing is one of the leading 

sources of zinc contamination. At least one if not all of these facilities are contributing to high 

zinc concentrations in Utoy Creek. 

Copper, lead, and zinc concentrations were normalized by comparing those values to a 

reference metal, i.e. iron and aluminum (Figures 7-12). The reference metals must originate from 

non-anthropogenic sources and help create a baseline to determine anthropogenic input from 

trace metals (FL EPD, 2002). All metals show a positive relationship with the reference metals. 

The zinc to iron graph (Figure 7) and zinc to aluminum graph (Figure 10) shows that most of the 

sites are clustered at lower concentrations of zinc with a few sites that are not grouped together at 

high zinc concentrations. The high cluster of points at the lower zinc concentration show a type 

of “baseline” and the higher zinc concentration points show human input of zinc. The same can 

be said for the lead to iron graph (Figure 8) and the lead to aluminum graph (Figure 11). The 

high cluster of points in the lower lead concentration show a type of “baseline” and the higher 

metal concentration sites show anthropogenic inputs.  

Overall, Utoy Creek metal concentration values for copper, lead, and zinc were found to 

mostly be higher than the regional baseline values. However, Bear Creek metal concentration 

values for copper, lead, and zinc were found to be lower than the regional baseline values. This 

could indicated that the models used to create the baseline values might be over-predicting 

copper, lead, and zinc under natural conditions for the region.  
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4.1 Implications for Metro Atlanta 

Utoy Creek and Bear Creek are just two tributaries of the Chattahoochee River. The 

differences between the metal concentrations in an urbanized, industrial watershed (Utoy Creek) 

to a less-developed stream (Bear Creek) are significant. AMR’s impact on local waterways can 

be seen in the 2008 303(d) list that showed over 2,100 miles of stream in the AMR are classified 

as impaired (ARC, 2011). As such, Utoy Creek may be seen as a proxy relative to other highly 

urbanized streams in the AMR. 

Something else to take note of is that the larger copper and lead metal concentration 

values were higher at the head of Utoy Creek than at the mouth of the stream. This is important 

to note because the USGS monitoring station for Utoy Creek is located on Great Southwest 

Parkway SW and is approximately 365 meters upstream from the mouth of Utoy Creek. The 

copper metal concentration values reach 120 ppm at UT 18 (Table 1) and are 56 ppm near the 

mouth of stream at UT 01 (Table 1). Lead metal concentration values reach 200 ppm at UT 19 

(Table 1) and are at 72 ppm near the mouth of the stream at UT 01 (Table 1). This shows that the 

metal concentration values are being diluted by the time they reach the USGS monitoring station. 

This indicates that monitoring just the mouth of the stream is not capturing what is truly 

happening further upstream in the rest of the drainage basin. USGS may need to reexamine their 

sampling methodology to capture what is occurring in the entire drainage basin. High zinc 

concentrations have been recorded at the USGS station but zinc metal concentration values are 

highest near the mouth of the stream at 910 ppm at UT 06 and 860 ppm (Table 1) at UT 01.  

4.2 Future Research Questions 

We were able to satisfy our objects by determining that metal concentrations of copper, 

lead, and zinc are spatially variable within Utoy Creek. We were also able to determine that the 
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metal concentration levels were found to be above the baseline value which shows anthropogenic 

effected areas. Also, we were able to determine that metal concentrations were higher in the 

industrialized watershed as opposed to the non-industrialized watershed.   

However, the results also indicate that several key areas of further research are needed. 

Further research includes to locate the non-point source lead plume located in the north fork 

section of Utoy Creek and identify the source, locate the non-point source zinc plume located 

near the mouth of Utoy Creek, to quantify the relationships between population density and 

metals concentrations, to obtain traffic density information around Utoy Creek, and to look into 

new stream water quality policies and stream sampling methodology to more accurately reflect 

what is occurring in the entire stream drainage basin. 

 

5 CONCLUSIONS 

By combining geochemical data with geospatial methods we were able to determine the 

spatial distribution of copper, lead, and zinc concentrations along Utoy Creek. This study could 

be a good proxy for similar streams in the AMR, since most regional watersheds have been 

similarly affected by AMR’s increase in population. Numerous streams in the AMR are currently 

listed on the 303d list, including Utoy Creek (GA EPD, 2012). By repeating this process in other 

watersheds, we may be able to identify streams where it would take minimal effort to turn the 

impaired stream into a supporting stream (i.e. remove it from the EPA 303(d) list) and which 

streams would need more attention. This would then lead to better water quality in the region. 

While lead and copper concentrations are located in residential areas, the highest zinc 

concentrations were found in the industrialized section of Utoy Creek. Zinc is a known toxin of 

certain fish and benthic macroinvertebretes (Besser and Leib, 1999). Since the industrialized 
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section of Utoy Creek is near the mouth of the stream there is no chance for the concentration to 

dilute before it enters the Chattahoochee River. As stated previously, Utoy Creek can be used as 

a proxy stream for AMR streams. If high concentrations of metals such as zinc enter the 

Chattahoochee River, the biota of the stream may be greatly affected.   
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