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ABSTRACT 
 

A growing number of public health officials rely on mathematical modeling to aid in making 

decisions, especially during outbreak responses. Math models simulate health phenomenon with 

equations and are useful for forecasting a disease’s progression in a population and evaluating 

the potential effects of interventions. We generated three models to aid practicing health officials 

with addressing real-world issues. 

The first model estimates the impact of immunization strategies on RSV-associated lower 

respiratory tract infections (LRTIs) among infants <12 months. Users input RSV burden and 

seasonality and examine the influence of altering product efficacy and uptake assumptions. We 

used the model to evaluate anticipated immunization products among a US birth cohort. We 

estimated without immunization, 339,650 – 475,980 LRTIs are attended annually in outpatient 

clinics, 126,070 – 168,510 in emergency departments (EDs), and 24,760 – 42,900 in hospitals. A 

passive antibody candidate given to all infants prevented the most LRTIs: 48% of outpatient 

visits without immunization, 51% of ED visits, and 55% of hospitalizations. 

Our second model creates projections of healthcare demand during the early phase of the 

COVID19 pandemic and evaluates the impacts of social-distancing interventions. Users input 

case counts, healthcare resources, and select intervention strategies. Using data from Chile, we 

illustrated the tool as the pandemic unfolded there in April 2020. Our scenarios indicated 

COVID19 patients could overwhelm hospitals by June 2020, peaking in July or August at more 

than 6 times the current supply of beds and ventilators. A lockdown strategy or combination of 

case isolation, home-quarantine, social distancing individuals >70 years, and telework 

interventions could keep treatment demand below capacity. 
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Our third model estimated the impact of COVID19 case investigation and contact tracing 

programs (CICT) in the US. By inputting CICT program data from 23 jurisdictions into our 

model we estimated CICT averted between 1.1 to 1.4 million cases over 60 days during the 

pandemic’s first winter peak. Our upper estimate assumes all interviewed cases and monitored 

contacts complied with isolation and quarantine guidelines, while the lower estimate assumes 

fractions of interviewed cases and contacts did so. These results suggest CICT programs played a 

critical role in curtailing the pandemic.  
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CHAPTER 1 – Introduction and Statement of Purpose 
 

Public Health Officials routinely face the need to make decisions without all the desired 

information for doing so. For example, determining the populations that should receive newly 

licensed vaccine or its regimen scheduling often rely on the results from a few clinical trials 

which have limited generalizability to the larger population. And during the early phases of an 

infectious disease outbreak, officials may need to intervene before having a complete 

understanding of the outbreak’s characteristics, for fear that substantial and preventable 

morbidity and mortality may occur. A growing number of public health officials are relying on 

mathematical modeling to assist with decision-making in the absence of desired information.  

Mathematical models are descriptions of phenomenon using equations. They are imperfect 

abstractions of the real world that are useful for simulating how phenomenon may play out in 

future or studying phenomenon which can’t be tested due to the expense or ethical and logistical 

reasons. Models permit public health officials the opportunity to manipulate aspects of a disease 

or response (i.e., inputs) to see their effects on health outcomes (i.e., outputs). This is known as 

using a model to answer “what-if” questions: “What if we did this?”, or “What if this happens?”. 

In the above examples, public health officials may use modeling to examine the effects of 

deploying immunizations or non-pharmaceutical intervention strategies in different ways. The 

results from modeling provide quantifiable results showing strategies’ absolute and relative 

values (compared to each other). They can also use modeling to appreciate the influence of 

unknown or unmeasurable quantities on these estimates. Furthermore, modeling can simulate 

what would have happened in the absence of public health interventions, permitting evaluation of 

their impact on health outcomes after they’ve been implemented. 
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This dissertation’s aim was to generate mathematical models that can be used by practicing 

public health officials to address real-world, unfolding public health issues, and to illustrate the 

models’ value by using them to generate results that can inform decision-making. I pursue this 

aim through three modeling studies (Chapters 2-5): 1) an examination of the impact of directly or 

indirectly immunizing infants in the US against respiratory syncytial virus (RSV) infection with 

anticipated1 immunization products, 2) forecasting the healthcare demands during the early 

phases of the COVID-19 pandemic and evaluating the effects of social-distancing mitigation 

strategies on the forecasted trajectories, and 3) estimating the number of COVID-19 cases and 

hospitalizations averted by case investigation and contact tracing (CICT) programs across the US 

during the pandemic’s first winter peak.  

With these three models I also aim to demonstrate the value of models which embrace design 

elements that make them specifically suited for use by public health practitioners in an applied 

setting. While each model deals with a separate practical public health issue, all contain common 

design elements that distinguish them from models used in research or for extending theoretical 

knowledge of disease transmission. First, all of the models are implemented in spreadsheets 

(specifically, Microsoft Excel) versus being coded in a software (e.g., R, SAS, MATLAB). 

Spreadsheets are familiar to our intended audience, eliminating the need for users to buy or learn 

how to use a software before they can use the model. The familiarity with spreadsheets may also 

engender comfort with using the model and trust in our calculation’s transparency and logic, 

which our intended audience will likely find easier to follow than coded programming. This is 

due to most public health officials having little formal training in modeling methods (statistical 

or mathematical), and, as such, unfamiliarity often generates suspicion and caution. A second 

 
1 at the time of project conception and completion of analyses 
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design element common to all three models is an emphasis on balancing complexity and utility: 

we chose the simplest useful model for answering the very specific questions that each was 

designed for. While no model can perfectly reflect the reality of disease dynamics in a 

population, models attempting to do so would necessarily require too many parameters and 

relationships between them to have any practical value. We chose model frameworks and made 

simplifying assumptions that deliberately reduced the number of required inputs and the 

complexity of calculations, while still maintaining disease dynamics and features of the public 

health response officials would deem necessary. For example, we only required users input data 

we expected them to be familiar with and could reasonably obtain or estimate. And all 

calculations dealing with tracking case-patient counts over time were executed in discrete steps 

(e.g., compounded per day), permitting our use of simpler algebraic math versus the need for 

calculus-based equations. In our efforts to simplify our models, we also chose to make them 

deterministic versus stochastic. That is, the inputs and parameters in our models are fixed by the 

user instead of allowing for stochasticity (i.e., randomness or chance) to vary them with each 

model run. As such, our models produce the same result each time a given set of inputs are used, 

permitting health officials to more readily grasp the influence each input has on their outcome of 

interest. But employing “simpler” deterministic models does not mean our models do not 

account for uncertainties inherent in modeling. On the contrary, dealing with uncertainty is a 

distinguishing design element of our models: In all model interfaces we emphasize for the user 

what is known and its source, what is unknown, and how the model deals with this absence of 

information. Sometimes the unknown information is estimated, in other instances we assume 

values based on peer-reviewed literature, and/or we allow users to use multiple values (i.e., a 

range) simultaneously to define unknown parameters, so that the results of the model are output 

as a range.  
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In my efforts to develop models for these studies that espouse these design elements, I faced the 

same methodological choices and considerations all modelers do: what type of model to use, 

what features of the disease, population, and response do I want to include, how do I ensure my 

model is “good” enough for the intended user or audience, and how do I evaluate these choices? 

In Chapter 5, I offer some lessons learned from examining these considerations and summarize 

the overall contributions and implications of these studies to their field of research.  
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CHAPTER 2 – Study 1: Estimating the Impact of Anticipated Immunization 
Products on Medically-attended Respiratory Syncytial Virus (RSV) in Infants 
in the US 
 

INTRODUCTION 

Globally, respiratory syncytial virus (RSV) is a leading cause of severe respiratory tract 

infections among young children. In 2015, there were an estimated 33.1 million acute lower 

respiratory tract infections, 3.2 million hospital admissions and 59,600 in-hospital deaths 

attributed to RSV infections (RSVi) among children <5 years of age worldwide. About 45% of 

RSV-associated hospitalizations and deaths occurred among children <6 months of age [1]. Each 

year in the United States, ~1.5 million outpatient visits, ~500,000 emergency department (ED) 

visits, ~58,000 hospitalizations and ~150 deaths are associated with RSVi among children under 

5 years of age [2, 3]. Rates of medically-attended RSVi (MA-RSVi) in the United States are 

highest amongst infants <6 months of age [4, 5]. In the US and other temperate climates, RSV 

season generally lasts six months between fall and spring with a peak during the winter [6]. In 

countries with tropical or subtropical climates, the season may be longer and less predictable [7]. 

Palivizumab, currently1 the only licensed product to prevent RSVi, is recommended for use in 

children with certain “high risk” conditions [8]. It is given in monthly intramuscular injections 

during RSV season. There are over 40 vaccine and antibody products in development for 

prevention of RSVi [9]. Two products in late stages of clinical development target young infants: 

1) a monoclonal antibody designed to provide direct protection (completed phase 2b clinical 

trial) [10]; and 2) a maternal vaccine designed to provide indirect protection through passive 

placental transfer of antibodies (completed phase 3 clinical trial) [11].  Both of these products 

aim to protect against medically-attended lower respiratory tract infections (MA-LRTI) due to 

RSV. Additional maternal vaccines and antibody products are in the clinical development 

pipeline [9].  
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Previous studies have evaluated the potential impacts of immunization on MA-RSVi in a variety 

of countries [12-13]. These analyses have focused on the hospital setting and impacts from 

single, theoretical vaccine products. Only one (Cromer et al.) simultaneously compared multiple 

products in the later stages of clinical development and across several healthcare settings [13]. 

Cromer et al. estimated the direct effects of various pediatric and maternal immunization 

candidate products and strategies using a cohort model in England. While Cromer et al.’s model 

more closely matches trial endpoints for products potentially close to licensure, its assumptions 

may not be generalizable to populations that have different rates of disease and seasonality. It 

also assumed the entire population eligible for an immunization product received it (i.e., 100% 

uptake), which likely overestimates the public response. The evolving state of product 

development highlights the need for flexible and accessible modeling tools, which can be readily 

updated to reflect advancements in our knowledge of product characteristics, and which can be 

applied to jurisdictions with varied RSV epidemiology.      

We therefore developed a modeling tool, called the RSV Immunization Impact Model (RSV 

I2M), for use by practicing public health officials and policy-makers in their jurisdictions, to 

estimate the direct effects of immunization candidates targeting young infants, on MA-RSV-

associated LRTIs. RSV I2M evaluates the potential impact of these products on outpatient clinic 

visits, ED visits, and hospitalizations based on user-adjustable RSVi rates and seasonality, in 

conjunction with assumptions about product uptake and efficacy. Model outputs (visits with and 

without immunization for LRTI due to RSV) can assist policy-makers in the United States and 

other countries with developing economic analyses and recommendations for RSV 

immunization. We also apply the model to a US birth cohort to estimate the potential impact of 

these products on MA-LRTI due to RSV in the United States. 
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METHODS 

Tool Overview 

RSV I2M is a spreadsheet-based tool that uses a Decision Tree model (Appendix 1) to estimate 

the potential impact of three immunization strategies on MA-RSV-associated LRTIs among an 

annual birth cohort through 12 months of age. The birth cohort is divided into “high-risk” and 

“low-risk” (all other) infants. High-risk infants include those with hemodynamically significant 

congenital heart disease (CHD), chronic lung disease of prematurity (CLDP), and infants born 

prematurely at <29 weeks gestational age based on recommendations for who should receive 

palivizumab prophylaxis [30]. The first strategy (Strategy I) generally follows current US-based 

recommendations that high-risk infants receive monthly injections of palivizumab during the 

RSV season (typically October to March) during their first year of life [30]. In the model, 

palivizumab is given starting at birth for those born during the season, and starting at the 

beginning of the next RSV season when births occur out-of-season (OoS) (Table 1). The second 

strategy (Strategy II) provides a new antibody product, hereafter referred to as the “Antibody 

Candidate” strategy, injected as a single dose with the same timing of palivizumab initiation, but 

targeting all infants rather than just those at high risk. The third strategy (Strategy III), the 

“Maternal Vaccine Candidate + Palivizumab” strategy, combines providing vaccine to mothers 

in their third trimester throughout the year (not just during the season) and palivizumab to high-

risk births based on the palivizumab schedule described above. 
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Table 1. RSV Immunization Strategies 

 Strategy I  Strategy II  Strategy III 

Immunization 
Products 

Palivizumab 
(licensed) 

 Antibody 
Candidate 

 Maternal Vaccine 
Candidate 

Palivizumab 
(licensed) 

Eligibility  High-risk infants*  All infants  All pregnant 
women¶ 

High-risk infants* 

When offered Within-RSV 
season 

 Within-RSV 
season 

 Year-round Within-RSV 
season 

Administration 
Schedule 

Monthly injections 
for 5 months  

 Single injection  Single injection Monthly injections 
for 5 months 

Age when 
immunization 
initiated 

Within-season 
birth: at birth 

 

Out-of-season 
birth: age at 
season’s start  
(1-6 months)   

 Within-season 
birth: at birth 
 

Out-of-season 
birth: age at 
season’s start  
(1-6 months) 

 3rd trimester of 
mother’s 
pregnancy 

Within-season 
birth: at birth 
 

Out-of-season 
birth: age at 
season’s start  
(1-6 months)   

* High risk conditions include hemodynamically significant congenital heart disease (CHD), chronic lung disease of 
prematurity (CLD), and prematurity (<29 weeks gestation) without CHD or CLD 

¶ Risk status of infant is not known at time of immunization 

   

Estimates of MA-RSVi visits without any immunization are based upon user inputs regarding the 

size of their birth cohort, prevalence and risk of RSV hospitalizations among those with high-risk 

conditions, rates of RSV (combined for high- and low-risk infants) by month of age in the 

outpatient clinic, ED, and hospital settings, the proportion of MA-RSVi visits resulting in a LRTI 

diagnosis, and RSV seasonality (Table 2). To estimate the effects of immunization, users input 

immunization uptake, efficacy, and duration of protection for each product (Table 2). Uptake 

was defined as the proportion of the population expected to receive the products. Efficacy is 

defined as the percent protected assuming recipients receive the full immunization dose at the 

correct time. For the maternal vaccine, efficacy is reduced by assumptions about the proportion 

of antibodies that successfully transfer to the infant (based on the timing of the mother’s 

vaccination and the infant’s gestational age a birth; Table A2, Appendix 1). Users can download 

the model via the link in Appendix 1 and can readily update several input values as new data 



17 

 

become available and/or to reflect a jurisdiction’s desired immunization policy considerations. 

To illustrate the tool, we used it to estimate the effects of the aforementioned immunization 

strategies on a US birth cohort.
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Table 2. Inputs and Parameter Values for All RSV Immunization Impact Scenarios. 

Parameter 
Baseline 

Value 

Range (used 
in sensitivity 

analyses) 
User-

adjustable Source 
Population and Epidemiological  
Annual live births 3,945,975  Yes [31] 
Births with conditions putting them at “high-RSV risk” § 0.98%  Yes [32] 
Percent of “high-risk” hospitalized before 12 months 
  

9.31% 
 

 Yes 
 

Calculated, Appendix 
1 (A1) 

Rates of Medically-Attended RSV (per 1000 births) ¶   Yes 
See A1 for data 
tables/sources 

Hospitalizations 8.4 (1.5 – 30.8)  
Emergency Department (ED) Visits 66.2 (16.8 – 132.7)  
Outpatient Clinic Visits 230.9 (71.0 – 337.2)  

Proportion of MA-RSVi visits with an LRTI diagnosis, 
by 0-5 / 5-11 months of age categories^ 

 
 

Yes CDC/unpublished 

Hospitalizations 1.00 / 1.00    
ED Visits:  0.65 / 0.50    
Outpatient Clinic Visits 0.65 / 0.30    

Case fatality ratios†   Yes [1] 
0-5 months (%) 0.10    
5-11 months (%) 0.10    

RSV season October to 
March 

 Yes CDC/unpublished; 
A1 

Immunization    
Uptake#     

Palivizumab 38.0%  Yes [33, 34] 
Antibody Candidate 

Low-risk 
High-risk 

 
71% 
80% 

 
(66 – 76) 

 

 
Yes 
Yes 

 
Assumed, [35, 36]** 

Assumed, [32]¶¶ 
Maternal Vaccine Candidate 56% (51 – 61) Yes Assumed, [37]‡‡ 

Antibodies proportion successfully transferred to infants 91.9%  Yes Calculated, A1 
Efficacy (associated with full immunization dosage)     

Palivizumab 51%  Yes [38] §§ 
Antibody Candidate 80% (73 – 85) Yes Assumed, [39]^^ 
Maternal Vaccine Candidate 80% (73– 85) Yes Assumed, [39]^^ 

Duration of Protection     
Palivizumab 150 days  No [40, 41] 
Antibody Candidate 150 days (120 – 180) Yes [10] 
Maternal Vaccine Candidate 90 days (60 – 120) Yes [11] 

¶ Illustrative average (unadjusted) population rates. Appendix 1 (A1) contains the actual age-based (monthly) rates used in all analyses. 
§ High risk conditions include hemodynamically significant Congenital Heart Disease (CHD), Chronic Lung Disease of Prematurity (CLD), 

and Prematurity (<29 weeks gestation) without CHD or CLD. 
^ Based on the average of number of lab-confirmed RSV visits from a national surveillance system between 2002-2009 with any of the 

following diagnoses: croup, bronchiolitis, bronchitis, pneumonia or asthma. 
† Based on estimates for “high income/industrialized” countries. 
# Percent of eligible population targeted to receive an immunization product that actually obtains and completes the full regimen. For 

Palivizumab: One injection monthly for 5 months on time. For Antibody & Maternal Vaccine Candidates: One injection.  
** Baseline value is based on similar uptakes for Hepatitis B vaccine in neonates [36] (applicable to births within the RSV season) and 

Influenza immunization coverage among 6 month to 4 year olds [35] (applicable to births occurring outside RSV season). Range is -/+ 5 
of baseline in the absence of data. 

¶¶Based on the percent of births that obtained the 1st palivizumab injection [32]. 
‡‡ Baseline based on average TdaP (tetanus, diphtheria, pertussis) uptake among pregnant women during a 15-month study period from 

April 2013 - June 2014 [37]; and range is -/+ 5 of baseline. TdaP, like the maternal RSV vaccine, is given in the 3rd trimester of 
pregnancy. 

§§This is the efficacy associated with our assumed uptake (i.e. compliance with all doses) [38]. 
^^Based on average efficacy for term infants across all healthcare settings (hospitalizations, ED, and outpatient clinics) in a study examining 

the efficacy of motavizumab and our assumption of similarity between it and this study’s antibody and maternal vaccine candidates [39]. 
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Calculations, Visits without immunization 

To calculate the number of MA-RSVi resulting in LRTI for each of the three healthcare settings, 

we multiplied the “all-risk” (high- and low-risk) MA-RSVi rate by the proportion of visits in 

each setting with an LRTI diagnosis and the size of monthly birth cohorts (assuming births occur 

evenly across the year) (Appendix 1). These results were then distributed to calendar months 

based on RSV seasonality by multiplying them by the percent of annual visits occurring in each 

month. For countries that currently use palivizumab, like the United States, we added to the 

monthly visit counts MA-LRTIs that would have occurred in the absence of palivizumab. For the 

hospital setting, these additional visits were determined by multiplying the rate of 

hospitalizations among high-risk infants by the size of the high-risk cohort, palivizumab uptake, 

and palivizumab efficacy. The hospitalization rates used in this calculation are a weighted 

average across the different high-risk groups (Appendix 1). For the outpatient clinic and ED 

settings, we assumed the ratio of rates between high- and low-risk infants is the same as the ratio 

of hospitalization rates for high and low risk infants, and that palivizumab would have the same 

efficacy for preventing cases in these settings (Appendix 1). 

 

Calculations, Visits prevented with immunization 

To obtain the annual number of visits prevented with immunization for a given strategy and 

setting, we summed the visits prevented across all months that the immunization remained 

protective, based on its duration of protection. We calculated the monthly visits prevented with 

each immunization strategy differently. For Strategy I, LRTI visits prevented by palivizumab 

equaled the calculated number of MA-RSV-associated LRTIs without immunization among 

high-risk infants, multiplied by palivizumab uptake and efficacy. For Strategies II and III, visits 
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prevented by the immunization candidates equaled the number of MA-RSV-associated LRTIs 

without immunization among both high- and low-risk infants, multiplied by the candidate uptake 

in each risk group and efficacy. The efficacies for both candidates assume recipients receive the 

full immunization dose. To account for incomplete transfer of antibodies from mother to child 

for a portion of births, we multiplied the maternal vaccine efficacy in Strategy III by a reduction 

factor. This factor considers the delay in the mother’s production of antibodies after vaccination 

(dependent on the timing of vaccination relative to birth) and the fact that the amount of antibody 

transfer is dependent on gestational age at birth (Appendix 1). In Strategy III, high-risk infants 

are also eligible to receive palivizumab; therefore, we added the number of visits prevented by 

palivizumab when calculating the total annual prevented visits for this strategy. Finally, we 

calculated the visits that would occur despite having each immunization strategy in place: this 

equaled visits without immunization minus visits prevented. 

   

Calculations, Deaths with and without immunization 

Since data are sparse on the number of RSV-associated deaths that occur outside the hospital 

setting, we estimated deaths with and without immunization based on deaths among hospitalized 

infants. We calculated deaths without immunization by multiplying user-provided hospitalized 

case fatality ratios (hCFR) for infants 0-5 months of age and for those between 6-11 months of 

age and the total annual estimate for hospitalizations due to RSV-associated LRTIs without 

immunization for these age groups. Deaths prevented by immunization were calculated similarly 

to medically-attended visits prevented, whereby deaths that occur without immunization were 

multiplied by the uptake and efficacy for each product. Finally, deaths that would occur despite 
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having each immunization strategy in place equaled deaths without immunization minus deaths 

prevented through immunization. 

 

Model Inputs and Sensitivity Analysis  

To illustrate the model, we estimated the impact of implementing the three immunization 

strategies in the United States. Table 2 includes all model inputs, values used and sources (with 

additional detail in Appendix 1).  

We conducted two sensitivity analyses of immunization candidates’ impacts. In the first, we 

evaluated the influence of high and low estimates for individual parameters, while all other 

parameters were held constant. For this analysis we used the 95% CI bounds for MA-RSVi rates, 

five percentage point reductions and improvements in the baseline uptake for the antibody 

candidate (66-76%) and maternal vaccine candidate (51-61%), the 95% CI bounds for efficacy 

reported in clinical trial results for an antibody candidate (73–85%, which we assumed for the 

maternal vaccine candidate as well), and one month reductions and improvements in durations of 

the antibody candidate (120-180 days), and maternal vaccine candidate (60-120 days) (Table 2).  

In our second sensitivity analysis, we examined the impact of uptake of the immunization 

candidates on LRTI visits by accounting simultaneously for uncertainty in RSV rates, uptake, 

efficacy, and duration. We present the results for this analysis as the lowest and highest possible 

prevented visits associated with a percentage point decrease or increase in uptake, respectively. 

We generated the lowest estimate by combining the 2.5 percentile values for MA-RSVi rates, 

lowest efficacy and uptake, and shortest duration, for each product as inputs (Table 2). High 

estimates were achieved by combining the 97.5 percentile values for MA-RSVi rates, highest 

efficacy and uptake, and longest duration, for each product. 
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RESULTS 

3.1. Visits without immunization 

We estimate, in the absence of palivizumab use, RSV-associated LRTIs in the US among infants 

up to 12 months of age, would result in 407,360 annual outpatient clinic visits (range, based on 

RSV rates uncertainty: 339,650 – 475,980); 147,240 annual ED visits (range: 126,070 – 

168,510), and annual 33,180 hospitalizations (range: 24,760 – 42,900).  

 

3.2. Visits prevented with immunization 

In our illustrative scenario, Strategy II (the “Antibody Candidate”) prevented the most annual 

LRTIs. (Figure 1) This strategy prevents an estimated 196,470 (48% of visits without 

immunization) RSV-associated LRTIs attended in the outpatient clinic setting (range: 163,810–

229,650), 75,250 (51%) LRTIs attended in the ED (range: 64,430 -86,090), and 18,140 (55%) 

LRTI hospitalizations (range: 13,770–23,160). Strategy III (the “Maternal Vaccine Candidate + 

Palivizumab”), prevented an estimated 58,210 (14% of visits without immunization) RSV-

associated LRTIs attended in the outpatient clinic setting (range: 48,520 –67,970), 19,580 (13%) 

LRTIs attended in the ED (range: 16,760 – 22,400), and 8,190 (25%) LRTI hospitalizations 

(range: 6,390 – 10,150). We estimate that Strategy I, (“Current US Recommendations”), 

prevents 8,460 (2% of visits without immunization) RSV-associated LRTIs attended in the 

outpatient clinic setting (range: 7,050 – 9,880), 3,240 (2%) LRTIs attended in the ED (range: 

2,770 - 3,710), and 780 (2%) LRTI hospitalizations (range: 760 – 800).  
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Figure 1. Estimated number of RSV-associated LRTI Visits Expected without 
Immunization and Prevented by Immunization in the US, by Healthcare Setting and 
Immunization Strategy 

 

Notes: Error bars reflect uncertainty in the number of prevented MA-LRTIs associated with 
uncertainty in RSV rates. Uncertainty in the expected visits despite immunization is not shown.  
 
 

3.3. Deaths with and without immunization 

We estimated 33 deaths (range: 25-43) would occur annually among hospitalized infants in the 

US from RSV-associated LRTIs in the absence of immunization and following current 

recommendations for palivizumab use (Strategy I) prevents just one death. Eighteen in-hospital 

deaths (range: 14-23) would be prevented if immunization were implemented according to 

Strategy II, and eight in-hospital deaths (range: 6-10) prevented with Strategy III. 

 

3.4. Sensitivity Analyses 

The relative influence of individual parameters on our estimates of prevented LRTI-associated 

visits varied by immunization strategy and healthcare setting. In both Strategies II and III, 

uncertainty in the duration of immunization protection was the most influential parameter, except 

for the hospital setting, where uncertainty in RSV rates was more influential in Strategy II 
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(Figure 2). When results assuming 120 and 180 days of protection by the antibody candidate are 

compared, the estimated LRTI visits prevented differed by 3,080 in the hospital setting, 26,960 

in the ED setting, and 79,070 in the outpatient clinic setting. When results assuming 60 and 120 

days of protection by the maternal vaccine candidate are compared, the estimated LRTI visits 

prevented differed by 3,880 in the hospital setting, 20,950 in the ED setting, and 51,840 in the 

outpatient clinic setting. The more pronounced effects of immunization duration in Strategy III 

results from RSV rates peaking for the outpatient and ED setting at ages just after our baseline 

90-day duration (Appendix 1, Table 1). Antibody candidate uptake exhibited the least influence 

on prevented LRTIs in Strategy II. In contrast, efficacy was the least influential parameter in 

Strategy III. 
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Figure 2. Sensitivity of Estimates of RSV-associated LRTI Visits Prevented to Select Model Parameters.    

 
Notes: Top row: Immunization Strategy II (the “Antibody Candidate” Strategy). Bottom row: Immunization Strategy III (the 
“Maternal Vaccine Candidate + Palivizumab” Strategy). Parameter values not shown, provided in Table 2. 
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The results of our multivariable sensitivity analysis suggest changes in the antibody candidate 

uptake have a larger impact in preventing RSV-associated LRTI visits than would uptake 

changes in the maternal vaccine candidate. For every percentage point increase in uptake of the 

antibody candidate, we estimate 1,435 to 3,527 outpatient visits would be prevented, compared 

with 273 to 1,611 for the same increase in the maternal vaccine candidate. In the ED setting, a 

one percentage point increase in antibody candidate uptake is associated with 548 to 1,248 LRTI 

visits prevented, while the same uptake increase in maternal vaccine candidate would prevent 

between 82 and 588 LRTIs. In the hospital setting, a one percentage point increase in antibody 

candidate uptake is associated with 128 to 329 prevented LRTIs, and 58 to 215 prevented LRTIs 

for the maternal vaccine candidate. 

    

DISCUSSION   

Using the model and our best estimates of the parameters, we found that in the absence of an 

immunization, there are ~590,000 MA-RSV LRTIs among US infants and that new interventions 

that target all infants may prevent between ~86,000 to ~290,000 of those visits. These results 

indicate substantial RSV morbidity and associated healthcare utilization due to serious RSVi 

may be averted with new products under development. Few deaths (8-18), however, are averted, 

since few deaths in the US are attributed to RSVi. Of the candidates evaluated, administering an 

antibody candidate to all infants born during the season and at the season’s start for those born 

outside the season, prevents the most MA-LRTIs. With this strategy, we estimate nearly 200,000 

outpatient clinic visits, 75,000 ED visits, and 18,000 hospitalizations for LRTIs could be 

prevented annually; approximately 48-55% (across settings) of visits estimated to occur without 
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immunization. Our baseline estimates suggest this strategy may avert approximately 3.5 times 

the number visits for RSV-associated LRTIs to outpatient clinics and EDs, and two times the 

hospitalizations than a strategy in which a maternal vaccine candidate is offered to mothers year-

round (in addition to palivizumab use per current US recommendations).  

In our illustrative scenario, the difference in the number of prevented visits associated with 

candidates was largely attributable to the maternal candidate’s duration of protection being less 

than the antibody candidates’ duration of protection. This was especially pronounced in the 

outpatient clinic and ED settings, where the peak of incidence is beyond the 90 days of 

protection assumed for the maternal candidate. Consequently, changes to our duration 

assumptions for the maternal vaccine candidate had the greatest influence on product impact. 

Despite its lower impact, the maternal vaccine candidate has the potential to reduce MA-RSV 

LRTIs across all three settings by ~74,000 visits a year (beyond the ~12,500 visits prevented by 

palivizumab in our baseline scenario). Preliminary results suggest the efficacy of a maternal 

vaccine may be half what we assumed in our baseline estimates [20]. This would reduce visits 

prevented by the maternal vaccine candidate by about half, but not change the overall conclusion 

about the relative merits of the products and strategies evaluated.  

Although uncertainty in factors over which public health practitioners have some influence, like 

uptake, had less impact on results, they were not trivial. For example, our multivariable 

sensitivity analysis suggests a 10% increase in uptake of the antibody candidate is associated 

with preventing an additional 14,350 to 35,270 outpatient clinic visits, 5,480 to 12,480 ED visits, 

and 1,280 to 3,290 hospitalizations for LRTIs. Similarly, a 10% increase in maternal vaccine 

candidate uptake is associated with preventing 2,730 to 16,110 outpatient clinic visits, 820 to 

5,880 ED visits, and 580 to 2,150 hospitalizations for LRTIs. We also examined the influence of 
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the timing of maternal vaccine uptake, by altering the immunization schedule so that it optimized 

the proportion of infants to whom antibodies successfully transfer (Appendix 1, Figure A2). The 

difference between these results and our baseline results were negligible.   

The relative impact of strategies on hospitalizations are similar to Cromer et al.’s findings (ED 

and outpatients are not comparable) [13]. If we assume 100% uptake for both candidate products 

and limit our evaluation to infants <6 months of age (to match Cromer et al.’s analysis) we find 

the antibody candidate prevents 1.7 times more hospitalizations than the maternal vaccine 

candidate, compared with a ratio of 1.8 in Cromer et al. Our findings are also in line with 

previous studies examining the effect of a single type of vaccine with similar characteristics to 

products we examined. For example, Regnier, using a decision tree model to examine a 

theoretical vaccine for protecting infants in the US from birth, also estimated a 25% reduction in 

hospitalizations, but with assumptions of 69% uptake, 50% efficacy, and a decaying exponential 

distribution for the duration of protection with a 12-month median length [17]. And Hogan et al., 

employing a compartmental transmission model to examine maternal vaccine impacts in Western 

Australia, similarly estimated a 25% reduction in hospitalizations when assuming a similar 

immunization scenario of 50% uptake, 80% efficacy, and 3 months duration of protection [14]. 

A strength of our study is its simplicity. We focus on the impacts of products on infants who are 

immunized, which will be of specific interest to policymakers developing RSV immunization 

guidelines. We do not estimate the indirect effects of immunization in infants (i.e., secondary 

infections prevented). However, this should not be seen as a limitation. Even Hogan et al. 

concluded from their transmission model that herd effects due to the maternal vaccine were 

modest and a simple cohort model would be a reliable alternative for estimating immunization 

impacts among infants [14]. Additional strengths of our study include evaluation of multiple 
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candidate products, the separate consideration of infants with higher risk of healthcare use for 

RSV infection and the additional evaluation of the outpatient and emergency department 

settings. 

RSV I2M has limitations. Estimates of immunization impact are restricted to the season in which 

they are given. It is possible that these products will shift the demand for care to subsequent 

seasons, although there is evidence that primary infection with RSV beyond 12 months of age is 

less likely to result in an LRTI [21]. We also do not account for the possible protection of 

mothers against RSVi by the maternal vaccine candidate. As such, and because we do not 

account for herd effects, we may underestimate the actual benefit of immunizing mothers. Other 

limitations, however, may result in our overestimation of immunization benefits. For example, 

our assumption that effective immunization averts healthcare use does not account for the 

potential that some portion of immunized infants may still become infected with RSV, but 

require a lower level of care (e.g., shift from hospitalization to outpatient visit). We also assumed 

an additive effect of palivizumab on top of visits prevented by the maternal vaccine candidate in 

Strategy III, on the basis that the population of “high-risk” births may derive partial protection 

from the maternal vaccine and from palivizumab. Any overestimation from this limitation, 

however, is negligible (in the US at least), since <1% of births are affected. For jurisdictions that 

do not use palivizumab or who wish to see the potential impact of the maternal vaccine alone, 

users can set palivizumab uptake to 0%. It is worth noting that similar flexibility exists for 

analyzing impacts by setting: jurisdictions wishing to evaluate only the hospital setting can just 

input rates for this setting. 

Our model provides decision makers with the ability to examine the impact of directly or 

indirectly immunizing infants against RSV infection with anticipated immunization products. As 
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such, local and national public health agencies may use it to evaluate jurisdiction-specific 

scenarios of impact. The findings can be used in economic analyses to understand the direct costs 

and benefits of these strategies and others. The results of our illustrative scenario underscore 

potential for these products to reduce serious RSV illness and the benefits of each. Although we 

found limited impact of these products on deaths averted in the United States, they may have 

greater impact in places where RSV-associated deaths are more common. As more data become 

available regarding immunization candidates (i.e., study results regarding efficacy and length of 

protection) and the burden of RSV infections, our tool permits rapid updating of results.   
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CHAPTER 3 – Study 2: A Dynamic Modeling Tool for Estimating Healthcare 
Demand in the Early Phase of the COVID-19 Pandemic and Evaluating 
Population-wide Interventions   
 

On December 31, 2019, the regional office of the World Health Organization (WHO) was 

notified of a cluster of pneumonia cases of unknown origin associated with a market in Wuhan, 

China [26]. A novel coronavirus (SARS-COV-2) was identified as the cause of the infections 

[26] and has since spread worldwide. Just five months later, by May 7, 2020, more than 3.6 

million cases of COVID-19 (illness caused by SARS-COV-2) had been reported in 184 countries 

and territories, including ~250,000 deaths [27, 28]. At that time, the pandemic had overwhelmed 

both national and local healthcare capacity in several countries [29, 30], and was projected to do 

so in many others. Low- and middle-income countries are particularly vulnerable [31], since 

financial and logistical challenges may hinder their ability to augment treatment capacity. As 

such, many countries resorted to societal-wide social distancing interventions in the hopes of 

reducing morbidity and delaying the demand for healthcare resources, to gain time to increase 

treatment capacity. 

Numerous modeling efforts began forecasting the spread of the outbreak and examined the 

potential benefits of social-distancing interventions [29-32]. While informative, those efforts 

were limited to specific nations and snapshots in time and public health officials were reliant on 

the authors for updated estimates as the pandemic evolved. Other internet-based tools offered 

public health users the ability to generate estimates on their own, but these were limited in their 

practical utility because their assumptions and desired results did not necessarily match the 

specific needs of jurisdictions and public health decision makers, or they required coding 

knowledge to access or modify the calculations [33, 34]. These considerations are more critical 
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in low and middle-income countries, which may not have the resources to complete or modify 

such analyses on their own. 

We sought to provide decision makers with the ability to examine the impacts of the early 

COVID-19 pandemic in their jurisdictions and evaluate the effects of various social-distancing 

mitigation strategies and augmenting treatment capacity on morbidity and mortality. Therefore, 

we developed a modeling tool for use by practicing public health officials to estimate the future 

impact of the COVID-19 outbreak on the demand for healthcare resources in their jurisdictions 

and for examining the costs and benefits of various intervention strategies. Once downloaded, 

the model can be used without an internet connection, to assist public health officials with 

choosing locally applicable intervention strategies and by how much to increasing hospital 

treatment capacity. For illustration, we apply the model to Chile, a Southern Hemisphere country 

where the virus was generating local transmission in the middle of 20202 and compare various 

interventions options in the three most affected regions of the country. 

 

METHODS 

Tool Overview 

We created a spreadsheet-based tool that uses a Susceptible-Latent-Infectious-Recovered (SEIR) 

Compartmental Model to project the future impact of a COVID-19 epidemic among any 

population of interest (Appendix 2). The model requires information that is typically available 

for public health officials, including the number of cases in their jurisdiction, the size and 

demographics of their at-risk population, healthcare capacity, expectations for healthcare use, 

and choices of societal-wide social-distancing mitigation strategies users wish to evaluate. Model 

 
2 at the time of initiation of this study 
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outputs reflect the potential demand on the healthcare system due to severely ill individuals with 

and without user-specified mitigation strategies, as well as deaths averted through treatment and 

excess deaths due to healthcare demand exceeding capacity. The demand for healthcare 

resources is measured as the estimated number of COVID-19 patients requiring critical-care or 

Intensive Care Unit (ICU) beds, hospital beds (non-ICU), and mechanical ventilators over the 

course of the outbreak and the maximum occupancy at the outbreak’s peak. The tool offers users 

the ability to evaluate various intervention strategies currently under consideration and in use 

worldwide [29, 30, 35]. These interventions comprise five mitigation-type interventions which 

focus on slowing epidemic spread and reducing its burden on the healthcare system, and one 

suppression-type strategy, which employs aggressive interventions aimed at reversing epidemic 

growth (Table 3). Users can download the model (link in Appendix 2) and readily update all 

input values themselves as new data become available or reflect a jurisdiction’s specific 

epidemiologic profile of disease and policy considerations. All calculations can be readily 

modified by users (although no modifications are necessary for tool use). 
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Table 3. COVID-19 Social-Distancing Intervention Strategies and Effects on Transmission 

Strategy Name  Reduction in R0
a 

(Strategy Type) Description Lowb Highb 

Case isolation 
(mitigation) 

Symptomatic cases stay at home for 7 days, reducing non-
household contacts during this period. Household contacts 
remain unchanged.  

15.8% 18.6% 

Closing Schools and 
Universities + 
Telework 
(mitigation) 

Closing Schools/Universities: Physical closure of all schools 
and universities (or move to virtual learning environment). 
Assumes some increase in contacts in the household and the 
community during the closure, partially offsetting reductions in 
transmission at schools and universities. 
 
Telework: All government switches to telework to the 
maximum extent possible and private businesses are 
encouraged to telework, resulting in 50% of the working 
population teleworking. 

15.8% 16.8% 

Case isolation + 
Household 
quarantine 
(mitigation) 

Case isolation: same as above 

Household quarantine: Following identification of a 
symptomatic case in the household, all household members 
voluntarily remain at home for 14 days. Increased transmission 
between household members during the quarantine period will 
partially offset transmission reductions in the community. 

25.4% 30.0% 

Case isolation + 
Household 
quarantine + Social 
distancing of >70s + 
Telework 
(mitigation) 

Case isolation: same as above 

Household quarantine: same as above 

Social Distancing of >70s: Reduce contacts among older 
individuals (>70 years of age) because of their increased risk 
for severe outcomes and healthcare resource requirements. 
These individuals reduce contacts outside the home by 50%. 

Telework: same as above 

41.9% 47.7% 

Lockdown 
(suppression) 

Population-wide social distancing by forced quarantine of all 
households and workplaces, and border closed to travel. Only 
essential outings from the home are permitted (e.g. 
food/supplies purchases) and for employees working at 
businesses deemed essential for continued operation. 

57.7% 68.2% 

Notes 
a R0 = basic reproduction number. It represents the average number of people who will be infected by any given 

infected person at the early stages of disease spread when there are no control measures.  
b High and Low values of the reduction in transmission associated with each strategy were used to account for 

uncertainty in societal compliance and strategy effectiveness. These reductions were based on equivalent 
reductions in Critical Care Bed Occupancy published in Ferguson et al. (2020), [29, Appendix 2]. We added 10 
percentage points to reduction values for strategies including telework, based on Willem et al. (2020) [35].   
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Calculations: Transmission with and without intervention 

Our SEIR model tracks the number of individuals transitioning between disease states every day 

of the outbreak. The initial number of susceptible individuals is set as the population minus the 

cumulative number infected since the outbreak’s start. Transmission occurs through contacts 

between susceptible and infectious individuals, and we assume an equal probability any one 

person has contact with another (“homogenous mixing”). We also assume transmission chains 

generated by infected travelers entering the population are minimal compared to existing 

transmission in the community. As a result, the number of new infections each day is the product 

of the proportion of the population that is susceptible, the number of infectious persons on a 

given day, and the average number of new infections each infected person causes over the span 

of their illness (the reproduction number; hereafter, “R”) divided by the duration (in days) of the 

average infectious period. Infectiousness is assumed to occur five days after infection [36] and 

lasts 11 days [37]. Upon recovery from infection, individuals are assumed immune to re-

infection during the timespan modeled (through December 2020). In the absence of intervention 

R is 2.0 (low estimate) and 2.8 (high estimate), approximately spanning the middle 50% of the 

gamma distribution of R (95% intervals: 1.4-3.8) estimated from the early growth-rate of the 

epidemic in Wuhan [38, 39]. To account for uncertainty in R, all results are depicted as a range 

based on these low and high estimates for R. During time periods where interventions are 

applied, we reduce the low and high estimates of R by the values in Table 3. Upon mitigation 

concluding, R returns to pre-mitigation levels to illustrate the potential consequences of shorter 

duration interventions. However, advanced users can alter the tool so that when one mitigation 

strategy concludes, another begins. Finally, we do not account for any vaccine as it was unlikely 
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to be available within the modeled time frame [40]. All equations governing dynamics of the 

system are provided in Appendix 2. 

 

Calculations: Hospitalizations and ICU admissions with and without intervention 

In our model, all symptomatic persons with an illness severe enough to warrant hospitalization 

will seek healthcare and the risk for hospitalization is age-dependent (Table 4) [41]. Similarly, 

the percentages of individuals admitted to the hospital requiring ICU care and fatality are also 

age-dependent (Table 4), while the likelihood of patients admitted to the ICU who require 

mechanical ventilation is assumed the same (63.2%) for all ages [42].  

Based on observations for COVID19, we assume individuals seeking hospital care do so 11 days 

after infection (five days incubation + six days of symptoms) [38, 43-45]. We calculate hospital 

(non-ICU) bed occupancy based on a ten-day length of stay for patients treated entirely in non-

critical hospital wards [46, 47] and ICU bed occupancy based on a ten day length of stay when 

critical care is required [41, 45]. We assume a four-day lag from hospital admission to ICU 

admission [45, 47]. When mechanical ventilation is required, we assume the duration of use is 

nine days, based on expert clinical opinion that ventilation is necessary for the duration of ICU 

stays other than two days (one-day lag post ICU admission to initiate ventilator use plus 1 day in 

the ICU post-use) and another day required for ventilator cleaning/re-equipping. 
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Table 4. Risk of Healthcare Use and Outcomes Among COVID19-Infected Individuals 

Age 
group 

% Infected, 
Hospitalized[41] 

% of Hospitalized, 
Admitted to 

ICU[41] 

% ICU patients 
needing ventilationa 

Infection Fatality 
Ratio (IFR) [41]  

Fatality Increase if 
Demand>Capacity b 

0-9 0.01% 5.0% 63.2% 0.002% 1.000% 

10-19 0.04% 5.0% 63.2% 0.006% 1.000% 

20-29 1.10% 5.0% 63.2% 0.030% 1.000% 

30-39 3.40% 5.0% 63.2% 0.080% 1.000% 

40-49 4.30% 6.3% 63.2% 0.150% 1.000% 

50-59 8.20% 12.2% 63.2% 0.600% 1.000% 

60-69 11.80% 27.4% 63.2% 2.200% 1.000% 

70-79 16.60% 43.2% 63.2% 5.100% 1.000% 

80+ 18.40% 70.9% 63.2% 9.300% 1.000% 
a Based on ICNARC (2020)[42]. Alternative estimates include 60% (Meltzer et al., 2015)[48] and 71.1% (Yang et 
al., 2020)[49]. 
b Percentage points increase in fatality when hospitals are overwhelmed. We assumed a 1% increase in the IFR to 
approximately double the population-weighted age-based IFR in Chile, based on data from COVID19 in China 
(Zhang Zuqin et al., 2020)[50]. 

 

To estimate the impact of interventions on hospital resource requirements we calculate two 

measures for each of the three resources tracked in the model: 1) the reduction in peak 

occupancy between the projected outbreak without intervention and when interventions are 

employed, and 2) the number of weeks peak occupancy is delayed due to employed 

interventions. 

 
Calculations, Deaths with and without intervention 

We assume all deaths occur in the hospital unless treatment capacity is overwhelmed, and that it 

takes the same time for an individual to recover and die, despite some preliminary evidence that 

deaths occur faster [44, 46]. As such, we might be overestimating the healthcare resources 

needed to treat the most critical patients (namely ventilators). Given the limited evidence for 

outcome-based durations of resource use, we took a more conservative approach, assuming 

planners would prefer to overestimate resources needs than under-prepare. 
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With treatment, fatality among infected (IFR) is age-dependent [41] (Table 4). When hospital 

capacity is overwhelmed, we assume a 1% increase in the IFR, chosen to approximately double 

the IFR in Chile, based on the observed reduction in IFR in China after treatment capacity was 

augmented to meet demand [50]. We also chose to base our mortality increase for untreated 

CoVID-19 patients on hospital bed availability (versus critical care beds or ventilators) since the 

vast majority of cases do not require critical care (~90% of cases in Chile). When more data 

become available, these assumptions can be updated. Finally, we assume when beds become free 

at overwhelmed hospitals, new admissions are not associated with a patient’s potential outcome. 

To estimate the impact of interventions on deaths we calculate infection fatality rates with and 

without interventions and the number of estimated deaths averted, as the difference in our 

estimates of cumulative deaths with and without interventions. 

 

Illustrative Scenarios and Sensitivity Analyses  

To illustrate the model, we estimated the impact of implementing three intervention strategies in 

three regions of Chile with the most detected cases through April 6, 2020: Región Metropolitana 

(RM), an urban region with the largest population including the country’s capital Santiago, and 

Araucanía and Ñuble, two of the least dense urban regions in Chile, but which had experienced 

rapid growth in late March and were reporting treatment capacity was already strained. We 

implemented the following three intervention strategies (Table 5) in each region, beginning April 

1: Strategy 1) Closure of schools and universities and Telework for 8 months; Strategy 2) Case 

isolation, home quarantine, social distancing of individuals >70 years, and Telework for 8 

months; and Strategy 3) Lockdown for 2 months (6 months shorter duration than the other 

strategies because the social and economic costs of this suppression strategy are not considered 
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sustainable for the long-term). We chose these strategies because they were in use to some 

degree in all three regions [51-53] (Appendix 2). 
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Table 5. COVID19 Healthcare Demand Model Inputs, by Region for all Illustrative 
Scenarios 

 Region  

 Metropolitana Araucanía Ñuble Source 

Populationa 7,112,808 957,224 480,609 [53] 

COVID-19 reported casesb     

Cumulative 20,590 1,907 1,107 [51] 

2 weeks through 05/04/20 12,487 364 133 [51] 

R0 2.0 - 2.8 2.0 - 2.8 2.0 - 2.8 [39] 

Intervention Strategy     

School closures, telework 4/1-12/1/20 4/1-12/1/20 4/1-12/1/20 Assumed 

Case isolation, home quarantine, 
social distancing>70, telework 

4/1-12/1/20 4/1-12/1/20 4/1-12/1/20 Assumed 

Lockdown 4/1-6/1/20 4/1-6/1/20 4/1-6/1/20 Assumed 

Disease severity     

Infected who are hospitalizedc (%) 4.5%  4.8% 5.1% [41] 

Hospitalized, admitted to ICUc (%) 11.4%  12.2% 12.7% [41] 

Infection Fatality ratec (%) 0.8% 0.9% 0.9% [41] 

ICU patients needing ventilator (%) 63.2% 63.2% 63.2% [42] 

Healthcare resourcesd     

Hospital (non-ICU) beds  18,522 2,671 1,010 [55] 

  In-use by Non-COVID Patients (%) 71% 71% 71% [56] 

  In-use by COVID Patients (%)e 3% 3% 3% [51] 

Critical Care Beds 2,326 215 60 [55] 

  In-use by Non-COVID Patients (%) 71% 71% 71% [56] 

  In-use by COVID Patients (%)e 14% 14% 14% [51] 

Ventilators 867 80 22 [55] 

  In-use by Non-COVID Patients (%)f 40% 40% 40% [57] 

  In-use by COVID Patients (%)g 19% 19% 19% Assumed 
a Population distributed by age groups are shown in the Appendix 2, based on Instituto Nacional de Estadísticas’s 
Housing and Population Census, 2017 [53]. 
b Scaled counts to account for assumed 40% under-reporting in reported cases (based on 60% reported by Wang et 

al. (2020)[47] minus 20% to account for improvements in case-detection in Chile since the outbreak’s start).  
c Estimates differ by region due to age structure of the populations (Appendix 2).  
d All beds available in the healthcare system, from public and private hospitals, are now part of the “Sistema 
Integrado COVID-19” under the centralized administration of the Ministry of Health. An ICU bed consists of a cot 
with a monitor, healthcare professionals and medication to treat patient. Some have a mechanical ventilator. There 
are an estimated 1,847 mechanical ventilators; 850 currently available and 997 were acquired in January 2020 [55]. 
We assumed the distribution of  mechanical ventilators was proportional to the number of critical beds in each 
region: Metropolitana,47.0%; Araucanía, 4.3%; Ñuble, 1.2%. (Appendix 2)  
e Based on the reported number hospitalized in “basic beds” (1,216) and in “critical care beds” (699) in all of Chile 
by the Ministry of Health as of May 4, 2020, out of the total existing beds nationally in March 2020 plus anticipated 
beds being added to expand pandemic treatment capacity: 41,706 and 4,954, respectively [55]. 
f Availability of mechanical ventilators was based on a three-year study of 97 ICUs in the US [57].  
g Calculated by applying the % ICU patients needing ventilation (Table 4) to the number of COVID patients in 
critical care beds (see note e) and dividing the result by the total ventilators in Chile (see note f). 
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We conducted two sensitivity analyses to evaluate the effectiveness of varying the 

implementation of mitigation strategies. First, we evaluated the influence of shortening the 

duration (by 2, 4, and 6 months) of mitigation strategies by which successfully reduced our 

healthcare demand estimates to within the range of treatment capacity. This analysis was chosen 

since policymakers may be pressured to lift mitigation strategies as early as possible due to their 

social disruption and economic costs. Then we evaluated the impact of combining the Lockdown 

strategy with all other strategies, so that when the Lockdown strategy ends, another begins and 

lasts 6 months. This analysis is intended to address the potential for the outbreak to rebound in 

the absence of an intervention after a lockdown is lifted [29, 30].   

 

RESULTS 

3.1. Infections and Deaths without intervention 

We estimate in the absence of any interventions, 5,682,168 to 6,592,016 infections would occur 

over the course of the epidemic period modeled (5/5 – 12/31/20) in RM, 766,015 to 889,054 

infections in Araucanía, and 384,509 to 446,285 infections in Ñuble (Figure 3 and Appendix 2). 

These projected counts reflect the possibility that 80% to 93% of the populations in these regions 

may be infected in the absence of any control measures or changes in individual behaviors. 

Under such a scenario, the number of deaths is projected to be between 106,558 to 125,373 in 

RM (1.9% IFR), 13,860 to 16,378 deaths in Araucanía (1.8% IFR), and 7,247 to 8,520 deaths in 

Ñuble (1.9% IFR).  

3.2. Hospital Resource Demands with and without interventions  

Without intervening to control the outbreak, demands for all three of the healthcare resources 

evaluated by our model are projected to exceed capacity sometime in June in RM (Figure 3 and 
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Appendix 2), and peak sometime between the end of July and mid-August. Araucanía and Ñuble 

are projected to exceed capacity in July and peak sometime in August or September 

(approximately one month after RM on both metrics). The degree to which demand is projected 

to exceed supplies differs by region. In RM, peak demand across all resources is 6 to 18 times 

the projected maximum supplies available. The situation is similar in Araucanía and Ñuble for 

hospital beds and ventilators but is more dire for ICU beds: in both regions the unmitigated peak 

ICU bed demand is between 13 and 47 times the supply. 

Among the two mitigation strategies we evaluated (versus the suppression-type Lockdown 

strategy), Strategy 2 reduced the burden on the healthcare system the most. In RM, compared to 

the no intervention scenario, this strategy reduced peak hospital bed occupancy demands by a 

range of 16,024 to 57,225 (35.4-69.2%), ICU bed occupancy between 2,945 to 8,270 beds (44.8-

69.0%), and the number of ventilators needed by 1,572 to 4,237 (47.1-69.3%). This strategy 

would also push the peak demand for healthcare resources back between 7 and 27 weeks, 

affording policymakers more time to plan or acquire more capacity. Greater percent reductions 

but similar delays in the peak demand were observed for Araucanía and Ñuble (Appendix 2). 

Our results suggest that this strategy can ease the demands for healthcare to levels below 

projected capacity constraints when the effectiveness of this strategy is at the higher end of our 

assumed range (i.e., reductions in R0 approach 47.7%) (Table 1, Figure 3). 

For policymakers willing to consider more restrictive measures, our results for the Lockdown 

strategy, suggest it is an incredibly effective strategy, even for its short duration. The pandemic is 

quickly subdued and remains so for the duration of the lockdown period in all three regions, with 

the numbers of cases in treatment remaining relatively flat at levels well below treatment 

capacity. However, once the lockdown is lifted the number of infected begins to rise again, 
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resulting in demand curves similar in size to the no-intervention scenario, but peaking later: 

sometime between mid- August and late September (Figure 5, panel A). 
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Figure 3. Projected occupancy demands and capacity for hospital (non-ICU) beds in Región Metropolitana with and without 
intervention. 

  
Notes. Solid curves: projections using the high estimate for the reproduction number. Dashed curves: projections using the low estimate for the 
reproduction number. Table 3 contains all reproduction numbers. Horizontal Red line: Hospital bed capacity. Blue shaded region: interventions in 
place.   
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3.3. Deaths averted with intervention 

Based on the projected capacity to treat COVID patients in each region, the number of deaths 

resulting from patients being unable to obtain healthcare was 53,515 to 63,836 in RM, 7,130 to 

8,567 in Araucanía, and 3,657 to 4,354 in Ñuble. With Strategy 2, the estimated number of 

deaths averted in RM ranged from 39,006 to 79,233 (36.6-63.2%), between 4,885 and 12,622 in 

Araucanía (35.2-77.1%), and 2,018 to 6,742 in Ñuble (27.8-79.1%) (Table 4). Lockdown 

eliminates between 99.8% and 99.9% of expected deaths in all three regions during the lockdown 

period, but deaths rise afterwards with the subsequent rebound of transmission. 

 

3.4. Sensitivity Analyses 

Figure 4 depicts the effects of shortening the duration of intervention Strategy 2 on hospital bed 

occupancy demands in RM to two (A), four (B), six (C) months of implementation versus our 

initial eight month (D) duration. Similar to our baseline results for Strategy 3 (Lockdown), these 

results show that effectiveness of interventions depends upon the length of time they overlap the 

epidemic period. Specifically, if too many susceptible individuals remain (i.e., insufficient herd 

immunity) at the time interventions are lifted, transmission will return. Even when interventions 

are less effective (R is higher), if the intervention remains in place past peak demand, the 

resulting outbreak may be smaller than when the same strategy is more effective (R is lower) but 

lifted prior to peak demand (Figure 4, Panel C).  
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Figure 4. Sensitivity analysis: Effects of the Duration of COVID19 Intervention Strategy 2 (case isolation, home quarantine, 
social distancing of population >70 years of age, and telework) on Hospital Bed Occupancy Demands in Región Metropolitana. 

 
Notes: Duration for two months (A), four months (B), six months (C), and eight months (D) (and initiated on April 1, 2020). Solid and dashed 
curves reflect uncertainty in the effectiveness of intervention strategies (Table 3). 

A B 

C D 
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Figure 5. Sensitivity Analysis: Effects of a 2-month Lockdown Suppression Strategy alone (A) and followed by various 
mitigation strategies (C-D) for 6 months on Hospital Bed Occupancy Demands by COVID19 Cases. 

Notes: The various mitigation strategies following Lockdown Alone (A) include: Closing Schools and Universities + Telework (B), Case Isolation 
+ Household Quarantine (C), and Case isolation, Household Quarantine, Social Distancing of >70 years of age, and Telework (D) Solid and 
dashed curves reflect uncertainty in the effectiveness of intervention strategies during both the Lockdown period and Post-lockdown intervention 
period per Table 3. 
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Figure 5 illustrates the results for combining a Lockdown suppression strategy with subsequent 

mitigation strategies in RM. The benefit of this approach are an additional one to two months 

delay in peak demand timing beyond delays afforded by each of the mitigation strategies on their 

own. This approach, however, has no effect on the amount of demand (i.e. peak demand is 

similar to the mitigation strategy without lockdown). 

  

DISCUSSION   

In the absence of immunization, our illustrative results suggest the number of severely ill patients 

could overwhelm treatment capacity as early as late May to mid-June in all three regions of Chile 

we evaluated. Our projections also suggest that with immediate aggressive action to implement 

several combinations of interventions the current amount of hospital beds and critical care beds 

may be sufficient. In specific circumstances, regional authorities may find it easier to augment 

their current capacity (e.g., ventilators in Ñuble) along with some mitigation strategies to meet 

demand versus strictly burdening society with disruptive mitigations. Policymakers should be 

aware, however, that our results indicate that more effective intervention strategies at temporarily 

suppressing transmission can also result in larger epidemics upon lifting the strategy than less 

effective, longer-lasting strategies (in the absence of vaccine and changes in individual 

behavior). As such, it may be necessary to keep societal-wide interventions in place, or 

intermittently start and stop them again based on active monitoring of cases counts and treatment 

capacity, until a vaccine or treatment that can be administered outside of the hospital setting are 

available. 

While our projections are reasonable estimates for how the pandemic may play out given our 

current understanding of SARS-CoV-2, they should not be considered as forecasts of what will 
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occur. This is due to the uncertainty in our understanding of an outbreak that is still unfolding, 

the application of experiences of other countries to Chile (such as case severity, resource use by 

non-COVID patients, intervention effectiveness, compliance over time), simplifying assumptions 

(such as homogenous mixing), and case surveillance uncertainty. We assumed homogenous 

mixing to make implementing our model in a spreadsheet more tractable, but as a result, do not 

reflect potential important variabilities in contact patterns stemming from population social and 

spatial structures or behavior differences that can affect population disease dynamics. Since 

obtaining accurate data regarding contact patterns during an ongoing outbreak is challenging and 

because these patterns may evolve with the outbreak, we chose to focus on producing the 

simplest useful model. To address case surveillance uncertainty, users can scale upwards or 

downwards their case count inputs occurring over the prior two weeks based on perceived 

underreporting or overreporting and examine the influence on outputs (as we did in our 

illustrative scenario). Similarly, all assumptions and sources are explicitly presented in the tool, 

and all can be readily modified by the user to reflect their interests and as new information 

comes to light. Therefore, users should consider the value of this tool as its ability to support the 

evaluation of relative differences in results associated with “what-if” scenarios. 

Our model has other limitations worth noting. Our estimates of beds and ventilators needed, and 

the number of deaths averted, also depends on associated resources not modeled here. Such 

resources include trained staff (respiratory therapists, nurses, and physicians) for the successful 

clinical management of hospitalized and ventilated patients and ancillary supplies associated 

with a bed or ventilator (e.g., electric circuits, oxygen). Furthermore, these resources may be 

impacted by the pandemic itself: staff absenteeism due to illnesses [58] and supply-chain 

disruptions in personal protective equipment (PPE) for healthcare personnel may further 
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exacerbate the situation. The effects of seasonality on the transmission dynamics of COVID19 

remains unclear, but the transmission of similar respiratory illnesses (e.g., influenza, syncytial 

virus) peaks in the wintertime [59, 60]. If COVID19 exhibits similar seasonality, or patients with 

these other illnesses place additional demands on the healthcare system, there may be even fewer 

resources available to treat COVID19 patients at the epidemic’s peak. Finally, we do not 

differentiate between specialized pediatric and non-pediatric resources. While this is justifiable 

because the current pandemic does not appear to pose a great enough risk to children to 

overwhelm pediatric healthcare capacity [39, 41, 61], users of the tool should take note of this 

meaningful difference when inputting resource amounts. 

Our model provides decision makers with the ability to examine the impacts of the current 

COVID-19 pandemic in their jurisdictions and evaluate the effects of various social-distancing 

mitigation strategies and augmenting treatment capacity on morbidity and mortality. The results 

of our illustrative scenario underscore the need for policymakers to take immediate and 

aggressive actions, and if they do so, substantial morbidity and mortality may be averted. As 

more data become available (e.g., new treatments or healthcare capacity is augmented) and the 

pandemic evolves (e.g., COVID case counts), our tool permits rapid updating of results 

applicable for making decisions.   
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CHAPTER 4 – Study 3: Estimated COVID19 Cases and Hospitalizations 
Averted by Case Investigation and Contact Tracing in the US 
 

INTRODUCTION 

Reducing exposure to persons with communicable diseases through isolation and quarantine are 

basic tenets of transmission prevention. Public health programs regularly conduct case 

investigation and contact tracing (CICT) as a means of notifying persons infected with or 

exposed to communicable diseases and, often, of their need to isolate or quarantine. However, 

evidence of CICT’s role in mitigating the COVID-19 pandemic thus far is lacking [62]. We 

recently showed, using data from 14 US jurisdictions (five states and nine local health districts), 

that CICT programs were effective at reducing SARS-CoV-2 transmission [63]. Despite these 

findings, the impact and consequent value of CICT remains controversial [64-66]. Some claim 

that the benefits are limited due to difficulty in scaling up services during COVID-19 case 

surges, or community reticence to participate in CICT, curtailing meaningful engagement 

between health departments and cases and their close contacts [64,67,68]. Between June 2020 

and March 2021, the US Centers for Disease Control and Prevention (CDC) distributed more 

than $40 billion to state, local, and territorial health departments to support COVID-19 response 

activities, with a notable portion directed toward CICT activities [66]. A national review of these 

efforts from November 2020 to March 2021, indicates that upwards of 42,000-55,000 case 

investigators and contact tracers (per month) interviewed 9.1 million cases and identified and 

sought to notify 10.7 million contacts [66]. Given the unprecedented funding and effort 

surrounding CICT and continuing debate surrounding its value it is important to quantify for 

public health decision makers the benefits associated with sustaining and/or improving CICT 

programs.  
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We sought to provide public health practitioners with a model that allows them to estimate on 

their own the health impacts of CICT programs in their jurisdictions. We also use this model to 

present an expanded profile of national CICT impacts in the US at its busiest point of the 

pandemic before vaccination was available: 60 days from November 25, 2020, to January 23, 

2021. Our analysis combines primary CICT implementation data with mathematical modeling to 

estimate the number of cases and hospitalizations averted by COVID-19 CICT programs across 

US states and territories. 

 

METHODS 

We used CDC’s COVIDTracer Advanced modeling tool [69] in combination with data from 

CICT programs to estimate cases and hospitalizations averted by CICT activities among states 

and territories funded by CDC’s Epidemiology and Laboratory Capacity for Prevention and 

Control of Emerging Infectious Diseases (ELC) program. We focused on the 60-day period from 

November 25, 2020 to January 23, 2021.  

 

Data 

Sixty-four health departments receiving CICT funding report to CDC’s ELC program monthly 

on the performance of their CICT programs [66]. We used reported metrics from each 

jurisdiction to derive its CICT effectiveness for the 60-day analysis period: the proportion of 

cases and contacts that entered isolation and quarantine because of CICT efforts, and the days 

required to do so (Appendix 3, Case Investigation and Contact Tracing Effectiveness section and 

Figure A2). Reported metrics used to calculated CICT effectiveness include the proportions of 

cases interviewed, contacts notified or monitored, and number of days from testing to case and 
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contact notification. A summary of these data and assumptions used to calculate a range of CICT 

effectiveness values for each jurisdiction are detailed further below and in Appendix 3 (Case 

Investigation and Contact Tracing Effectiveness section and Table A4). We limited our analysis 

to those jurisdictions that reported all the required metrics and passed our data quality checks 

(e.g., the number of contacts identified ≥ number cases that provided at least one contact, the 

number of contacts identified ≥ contacts notified; Figure A3 in Appendix 3).  

 

Model Use 

COVIDTracer Advanced is a deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) 

epidemiological model that illustrates the spread of COVID-19 and impact of interventions in a 

user-defined population. The tool allows users to attribute reductions in transmission to either 

CICT or to a combination of vaccination and all other non-pharmaceutical interventions (other 

NPIs), such as facemask policies, large gathering restrictions, and school/business closures 

(Appendix 3, COVIDTracer Advanced Model section, Tables A1-A3, Figure A1). Estimates of 

reductions in transmission from CICT were obtained by first entering each jurisdiction’s CICT 

effectiveness into COVIDTracer Advanced. After inputting the CICT effectiveness values for a 

jurisdiction, we estimated reductions in transmission due to other NPIs and any inceptive 

vaccination efforts. We accomplished this by “fitting” the curve of cumulative cases modeled by 

COVIDTracer Advanced to the jurisdiction’s reported cases [70] by altering the percentage 

reduction in transmission ascribed to vaccine and other NPIs. The value that minimized the 

deviation (mean-squared error) between the fitted and reported case curves was our estimated 

effectiveness of vaccine and other NPIs. Then we “switched off” CICT (by setting CICT 
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effectiveness to zero) while maintaining the estimated effectiveness of vaccine and other NPIs. 

This simulated what would have happened if CICT had not occurred. 

 
Outcome Measures 

Estimates of CICT-averted cases were obtained by taking the difference between the model-

simulated curve without CICT and jurisdictions’ actual cumulative cases. We also calculated 

averted hospitalizations by multiplying the estimated number of averted cases by age-stratified 

infection-to-hospitalization rates (Table A3 in Appendix 3). In addition to calculating the 

absolute number of cases and hospitalizations averted by CICT in each jurisdiction, we 

calculated two measures of CICT impact to allow comparison among jurisdictions: 1) averted 

cases and hospitalizations per 100,000 population, and 2) the proportion of cases or 

hospitalizations averted by CICT out of the remaining cases, after accounting for the impact of 

vaccination and other NPIs. This latter measure may be interpreted as the number of cases (or 

hospitalizations) averted by CICT among every 100 cases (or hospitalizations) that were not 

prevented by vaccination and other NPIs. Finally, we grouped jurisdictions by their US Census 

Region and compared the group medians of cases averted per 100,000 population to assess 

whether CICT impact differed among regions [71]. 

 

Range of estimates 

Jurisdictions did not report the proportions of cases that effectively isolated and contacts that 

correctly quarantined. Absent compliance data, we generated a range of averted cases and 

hospitalizations to circumscribe the possible impact of CICT. High estimates were calculated by 

assuming all the cases a jurisdiction interviewed and all the contacts it actively monitored fully 

complied [63] with CDC-recommended isolation and quarantine guidelines (Table 6) [72]. In our 
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high estimate scenario, we also assumed that contacts who were notified but not actively 

monitored did not quarantine. That is, we assumed that the cases and contacts CICT programs 

engaged either fully complied or not at all in this scenario. To produce our low estimates, 

however, we altered the effect of CICT program’s engagement by lowering the proportions of 

cases/contacts entering isolation or quarantine based on values derived from the literature 

(Isolation/Quarantine Compliance section in Appendix 3) [68,73,74. Specifically, we assumed 

80% of cases that completed interviews, 80% of monitored contacts, and 30% of notified 

contacts (that were not actively monitored) fully complied with isolation and quarantine 

guidance (Table 6).  

 

Table 6. Assumed proportions of confirmed COVID19 cases and their contacts that 
effectively isolated or quarantined in each analysis scenario. 

 Low impact 
Scenario (%) 

High impact 
Scenario (%) 

Sensitivity Analysis  
(%) 

Confirmed Cases that completed 
interviews 

80 100 100 

Confirmed Cases that did not 
complete interviewsa,b 

0 0 0 

Contacts that were notified and 
monitored 

80 100 100 

Contacts that were notified but 
not monitored 

30 0 100 

Contacts that were not notified 
by their health departmentb 

0 0 0 

Notes: Each row is a mutually exclusive group of cases or contacts. The sum of each row (or column) does not add 
up to 100%, as the numbers represent the assumed compliance within each group. 0% compliance means none of the 
cases or contacts in a group isolated or quarantined effectively. 100% means all the cases or contacts in a group 
isolated or quarantined effectively after being interviewed or notified. 
a Includes cases that weren’t reached and those that were reached but who did not agree to be interviewed. 
b Compliance was set to zero for these case/contact group categories because any transmission reductions from 
quarantine and isolation are not attributable to direct interactions with health department’s CICT staff, and, therefore 
outside of the scope of this analysis. Their inclusion here is to help distinguish between the various cases/contacts 
types. 
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In our model, and irrespective of the above scenarios, infected individuals may transmit to others 

until interactions with their health department prompt them to isolate or quarantine. Also, both 

estimates do not include unmeasured changes in behavior from sources of information other than 

phone calls/texts from CICT programs (e.g., cases informing their own contacts), as measuring 

the influence of such factors are beyond our estimation goals.  

We also conducted two sensitivity analyses. The first evaluated a scenario in which all 

interviewed cases and all contacts notified of their exposure fully complied with CDC-

recommended quarantine guidelines. We chose this aspirational scenario to understand the 

potential impact of CICT assuming maximum community cooperation. Our second sensitivity 

analysis evaluated the effects of assuming a background amount of isolation and quarantining 

would have occurred without direct interactions with health departments. That is, instead of 

setting CICT effectiveness to zero to simulate an epidemic curve without CICT, we assumed 

20% of interviewed cases would have isolated anyways, and 2.5% of notified contacts would 

have learned of their exposure via other means (e.g., parents receiving notice of their child’s 

exposure at school) and acted on this knowledge by effectively quarantining. It should be noted 

that these values represent a hypothetical counterfactual scenario as there is no data on what 

interviewed cases and notified contacts would have done in the absence of their interactions with 

their health departments. 

 

RESULTS 

Twenty-two US states and one territory met our data requirements for inclusion in the analysis 

(Figure A3 in Appendix 3). These 23 jurisdictions had a combined population of approximately 

140 million persons, covering 42.5% of the entire US population and all 4 census regions [71]. 
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Jurisdictions in our analysis reported metrics (% of cases interviewed and contacts notified, and 

contact notification speed) that were similar to those reported by all 64 federally funded CICT 

programs (Table A4 in Appendix 3). 

We estimated that CICT averted 1.11 to 1.36 million cases and 27,231 to 33,527 hospitalizations 

from November 25, 2020, to January 23, 2021, across all 23 jurisdictions analyzed (Figure 6 and 

Figure A4 and Table A5 in Appendix 3). The lower estimates assume fractions of interviewed 

cases and contacts complied with isolation and quarantine guidelines, while the upper estimates 

assume all interviewed cases and monitored contacts did so (Table 6). The median number of 

estimated cases averted per 100,000 population ranged from 704 (low impact scenario) to 895 

(high impact scenario). After accounting for the impact of vaccination and other NPIs, the 

median estimate of the percent of cases averted was 19.1% (range: 1.3 – 65.8%) in the low 

impact scenario and 23.5% (range: 1.6 – 58.7%) in the high impact scenario (Table A5 in 

Appendix 3). 

On average, the number of estimated cases averted was greater among jurisdictions with larger 

populations, with more jurisdictions in the top half of Figure 6, Panel A having greater 

populations than those in the bottom half: the median population size of jurisdictions in the top 

half was 6.4 million (IQR: 4.8 – 9.2 million) and 3.2 million (IQR: 1.0 – 6.0 million) for the 

bottom half. However, per our estimates, CICT programs in jurisdictions with smaller 

populations often averted more cases on a per population basis (Figure 6, Panel B). Jurisdictions 

in the smallest population category (less than 1 million) averted the most cases per population 

(median: 1,714 – 1,875 per 100k population); more than twice the overall median (704 - 895 per 

100k population).  
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We estimate that jurisdictions in the Midwest US averted the most cases on a per population 

basis because of CICT, averting between 1,444 cases per 100,000 population (in our low impact 

scenario) and 1,600 (in our high impact scenario) (Table 7). CICT programs among jurisdictions 

in the Western US were the least effective by our estimates, averting 488 cases per 100,000 (in 

our low impact scenario) to 568 (in our high impact scenario).  

When we maximized compliance among interviewed cases and notified contacts (Table 6), we 

estimated that CICT could have averted 1.72 million cases and 42,2631 hospitalizations 

(approximately 26% greater than our high baseline estimate) across the 23 jurisdictions during 

the 60-day study period. And, when we accounted for the potential that some cases and contacts 

would have isolated and quarantined even without CICT program interviews or notification, we 

estimated that CICT would have averted 0.77 to 1.01 million cases and 18,998 to 24,845 

hospitalizations (30% and 26% less than our baseline low and high impact estimates, 

respectively). 
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Figure 6. Estimated COVID-19 Cases Averted by Case Investigation and Contact Tracing, by Jurisdiction, November 25, 
2020-January 23, 2021 (60 days)  

 Jurisdiction 
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Table 7. COVID19 Case Investigation and Contact Tracing Effectiveness and Health Impacts, by US Census Region (from 
11/25/20 – 1/23/21) 

   Daily  

COVID-19 

Incidence 

per 100k, 

mean 

(Range) 

CICT Effectivenessb, 

Median (Range) 

Estimated Cases Averted, 

Median (Range) 

Estimated Cases 

Averted per 100k 

Population,  

Median (Range) 

US Census 

Regions 

No. 

Statesc 

Total 

Population 

Days from 

infection to 

isolation 

Cases 

isolated, 

low (%) 

Cases 

isolated, 

high (%) 

Low High Low High 

Midwest 5 30,947,757 58 

(42-75) 

7 

(6-7) 

17 

(15-25) 

19 

(18-28) 

73,780 

(19,577-121,865) 

84,523 

(23,221-158,766) 

1,444 

(639-2,213) 

1,600 

(838-2,727) 

Northeast 5 25,348,752 59 

(19-92) 

7 

(6-10) 

16 

(4-35) 

19 

(5-34) 

32,084 

(5,921-66,362) 

41,194 

(7,005-86,692) 

900 

(53-6,139) 

1,155 

(62-8,183) 

South 7 33,384,859 55 

(22-88) 

8 

(7-12) 

19 

(14-41) 

24 

(16-49) 

21,170 

(5,466-120,157) 

27,473 

(6,452-156,557) 

670 

(80-1,987) 

895 

(94-2,590) 

West 6 49,893,913 61 

(28-94) 

8 

(7-9) 

14 

(4-23) 

17 

(5-24) 

19,484 

(4,858-207,417) 

24,326 

(5,721-252,325) 

488 

(271-704) 

568 

(336-856) 

Total 23 139,575,281 58 

(19-94) 

7 

(6-12) 

17 

(4-41) 

19 

(5-49) 

22,014 

(4,858-207,417) 

27,473 

(5,721-252,325) 

704 

(53-6,139) 

895 

(62-8,183) 

Notes: Range = minimum and maximum values 
a Defined by the US Census Bureau [71]. 
b Days from infection to isolation calculated using jurisdictions’ reported days from testing to case and contact notification, the COVID-19 incubation period, and 

assumptions regarding the timing of entry into isolation/quarantine after notification. Percent cases isolated calculated from jurisdictions’ reported metrics on 
CICT program performance, such as the proportions of cases interviewed, and contacts notified or monitored. The lower estimates assume a fraction of 
interviewed cases and contacts complied with isolation and quarantine guidelines, while the high estimates assume all interviewed cases and monitored contacts 
did so (Table 6 and Appendix 3).    
c Includes 22 states (3 with a major city excluded) and 1 territory. 
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DISCUSSION 

In this decision analytical model study, we estimated that CICT programs in 23 US jurisdictions 

potentially averted 1.11-1.36 million cases and 27,231-33,527 hospitalizations in a 60-day period 

during the 2020-21 winter surge. There were 5,269,390 total cases reported across these 

jurisdictions during the same 60-day period, suggesting that CICT may have reduced the 

COVID-19 burden by 17 to 21%. Our range of estimates reflect uncertainties regarding the 

proportions of cases and contacts that effectively isolated or quarantined because of interactions 

with their health departments. Despite this uncertainty, our estimates of CICT impact were 

substantial, with averted cases exceeding 1 million across the 23 jurisdictions in our low impact 

scenario.  

While our aggregate estimated impact was sizeable, it was uneven across the jurisdictions: In the 

lowest performing jurisdiction, we estimated that CICT averted 1 out of every 100 remaining 

cases not prevented by nascent vaccination efforts and other NPIs, and as many as 66 cases in the 

highest performing jurisdiction. We also found that population size was correlated with our 

estimates of CICT impact. On average, our estimates suggest that jurisdictions with larger 

populations averted more cases, although this was expected given their larger populations 

eligible for protection. Conversely, the smallest jurisdictions averted the most cases on a per-

population basis. This result may reflect, in part, that smaller jurisdictions were able to rely on 

existing CICT staff who had community knowledge and experience connecting with the 

population, while the caseloads in larger jurisdictions required hiring temporary, less 

experienced staff. A multivariable analysis, using data from several months of the pandemic, is 

needed to tease apart the effects of such factors. For example, population size alone cannot 

explain the variability in our estimated impacts. Jurisdictions 5, 6, and 7 were in different 
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population categories (with jurisdiction 5 being 10 times larger than jurisdiction 6), but all three 

jurisdictions averted approximately 87,000 cases under our high impact scenario (Figure 6, Panel 

A). Jurisdiction 6’s CICT program is also notable for averting the most cases per 100,000. This 

result reflects the jurisdiction’s success at interviewing cases (79% interviewed and >50% named 

at least 1 contact) and being among the fastest to notify contacts (6 days after cases were likely 

infected).  

We also found regional differences in CICT impact. Based on the median averted case estimates 

per 100,000 population, Midwest jurisdictions’ CICT programs performed the best, while CICT 

programs in Western jurisdictions were least impactful. Future studies exploring the potential 

reasons for these differences may consider incidence, factors affecting public acceptance of 

CICT (e.g., sociodemographic makeup and cultural norms), and aspects of program 

implementation (e.g., staffing levels and efficiency). 

Our sizeable estimates of averted cases are partially due to the success of the analyzed CICT 

programs at suppressing the transmission not controlled by vaccination and other NPIs, 

compounded over approximately 10 generations of infection during our 60-day observation 

period. For example, at jurisdiction 1, where our estimates of the absolute impact of CICT was 

greatest, CICT was responsible for just a 3.0 to 3.5% reduction in new infections per case (Table 

A5 in Appendix 3). However, jurisdiction 1 also had a very large burden of infectious cases at 

the start of our 60-day period and was one of the largest jurisdictions. This example shows that 

even when the percentage reduction in transmission from CICT is in the low single digits, when 

applied to large populations, the influence over multiple generations of cases is meaningful. 

This analysis was possible because of the rich and unique programmatic data provided by 

jurisdictions and the use of assumptions to address key uncertainties, such as the compliance 
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with public health recommendations. Still, important information was absent. As such, our 

results of CICT’s impact may over- or under-estimate the true impact. Our impact estimates may 

be low because we do not account for the indirect effects of CICT programs on transmission 

reductions. For example, due to their interactions with health department staff, cases and contacts 

may have additionally notified and motivated isolation/quarantining among close contacts 

whom, themselves, were not contacted by the CICT program. And some individuals may have 

isolated/quarantined without being contacted, because of CICT program-funded ad campaigns or 

information obtained from their health department’s website. Other factors may have affected 

our estimates, although the direction of their effect is less clear. For example, we may have over- 

or under-estimated CICT’s impact if the calculated number of contacts per case for each 

jurisdiction (Appendix 3, Term B.1.1), the timing of testing and initiation of isolation/quarantine, 

or the compliance with public health recommendations differed from our examined scenarios.   

This study was performed before the Delta or Omicron variants dominated transmission in the 

US, and before vaccine was widely available. Increasing vaccination may be expected to reduce 

the absolute number of cases eligible to be averted by CICT. However, CICT’s effectiveness 

(i.e., percent of cases isolated by CICT) would increase if jurisdictions are able to prioritize 

notification and monitoring of unvaccinated or under-vaccinated populations, especially during 

periods of high caseloads. Further, the impact of CICT can be potentially reduced when Delta or 

Omicron variants are predominately circulating due to their earlier and shorter duration of 

infectiousness. Alternatively, the higher transmissibility of the Delta and Omicron variants 

potentially increases CICT’s impact since each averted case prevents more new infections than 

we originally allowed. The degree to which these factors offset one another is unclear. 
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Our study has several strengths. Foremost, the breadth of data on CICT implementation enabled 

us to generate a profile of CICT impact for nearly half of the US. By anonymizing jurisdictions 

and assessing the same time frame, we were able to present and compare the range of impacts 

among 23 CICT programs spanning the country. Further, this work can be replicated for other 

jurisdictions and time periods. The tool that we used, COVIDTracer Advanced [69], is provided 

(Appendix 4) and designed for use by practicing public health officials. Jurisdictions can conduct 

site-specific analyses using these methods to estimate prevention impact, guide local public 

health programming, and reflect on resource utilization (e.g., hospital beds). 

Our study also has limitations. Jurisdictions’ self-reported CICT performance measures were not 

intended for this analysis. Although we employed the previously described data quality checks 

(Figure A3 in Appendix 3), the reported measures that we used were likely influenced by 

differences in jurisdictions’ surveillance systems, CICT platforms and protocols (e.g., how they 

defined, enrolled, and monitored contacts). The extent to which these differences affected our 

results is unclear. We also only assess the impact over two months (60 days) of the pandemic and 

in 23 US jurisdictions. Results may differ for other jurisdictions and periods (e.g., during the 

Delta or Omicron surges and wider use of vaccine). Because cases were spiking across the entire 

US during the period that we analyzed and the vaccine had not yet been widely administered, it 

is likely that our estimates provide an upper limit of cases averted by CICT during the pandemic 

as of this writing (August 31, 2021). Also, because we used statewide data, our results dilute 

potentially meaningful differences in CICT performance within jurisdictions (e.g., rural versus 

urban counties). Finally, the accuracy of our results may be affected by our model’s design. For 

example, the COVIDTracer Advanced model assumes homogeneous mixing among individuals 

in the population and does not account for any age- or location-based heterogeneities in 
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transmission (such as within and between households or schools), or variations in the 

effectiveness of vaccine and other NPIs over the study period. The extent of the influence of 

these factors, however, appears limited and would not appreciably alter our estimates or their 

implications for public health policy makers (see Appendix 3, Additional Results and 

Commentary, Effect of alternate fitting methods, Figure A5 and Table A6). 

Our analysis combined primary implementation data with mathematical modeling to estimate the 

health impact of COVID-19 case investigation and contact tracing programs across nearly half of 

US state and territory. The volume of estimated cases and hospitalizations averted underscores 

the critical role CICT programs play in curtailing the pandemic, while differences among 

jurisdictions illustrate the opportunities to further improve effectiveness. Case investigation and 

contact tracing remain CDC-recommended practices for personally communicating 

individualized prevention activities against COVID-19 [75]. This work quantifies for public 

health decision makers the benefits from sustaining and improving these programs. 
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CHAPTER 5 – Dissertation Summary and Future Directions of Research 
 

The results of studies in this dissertation demonstrates the value of the biological and public 

health sciences and the benefits of investing in public health infrastructure and programs. We 

estimated millions of averted healthcare visits across all three studies by employing the 

immunizations and non-pharmaceutical interventions examined. Additionally, our evaluation of 

CICT is the first (to our knowledge) to offer policy makers with a profile of this intervention’s 

impact across the US. 

With the provided models, each study enables decision makers to rapidly evaluate on their own, 

locally applicable policy scenarios and their effects on healthcare capacity, both now and in the 

future. For example, the illustrative results produced with our RSV I2M, can be updated by using 

the results of future clinical studies on the efficacy and length of protection offered by the 

immunization products evaluated, even post-licensure. And, even though we found limited 

impact of the evaluated products on deaths averted in the United States, our analysis can be re-

run in other countries where RSV-associated deaths are more common. Similarly, our models 

examining the effects of non-pharmaceutical interventions such as social distancing measures 

and contact tracing on COVID19 healthcare utilization were able to be rapidly updated by public 

health practitioners. Practitioner’s ability to evaluate “what-if” scenarios as they arise is 

paramount in the early phase of outbreak, where a delay in decision-making may be more costly 

than the choice of intervention itself (as we showed). And this flexibility may be useful in the 

future too as the models in our latter studies can be reused for the next respiratory disease 

outbreak. Future enhancements to these models can include an accounting for vaccination or 

variabilities in contact patterns associated with population social and spatial structures that can 

affect disease dynamics. Our analysis of CICT revealed large variabilities in the performance of 
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states. Future research should endeavor to understand these differences and the extent to which 

they are associated with either programmatic implementation options (under the control of public 

health officials) or societal characteristics that dictate public reception to phone calls from health 

departments and isolation/quarantine guidance. Additionally, this analysis can be replicated for 

periods where other COVID variants (i.e., Delta or Omicron) dominated transmission. 

The models in this dissertation were developed with the intent that practicing public health 

officials would use them to assist with decision-making. This aim steered us to make several 

methodological and practical choices during their development that distinguish them from 

models, for example, that are produced for the purposes of academic research. The guiding 

attributes we used are provided in Table 8 and may be considered as a subjective list that define a 

“good” model from the public health practitioner perspective. In this table, attributes are 

assigned to either improving model utility, trust in the model, and/or accessibility. Model utility 

refers to the degree to which model outputs satisfy questions public health practitioners desire to 

answer with the model. A useful model is one that provides practitioners with a complete 

understanding of how to interpret the results, along with any uncertainty and limitations 

associated with them. Trust in the model refers to the practitioners’ confidence that the methods 

employed sufficiently account for all the critical features of disease dynamics and interventions 

considered and that the results are valid. Finally, accessibility refers to the ease with which users 

can use the model to produce results. This entails the cost to run a model (when specific software 

must be purchased) and the time needed to learn how to use the model, including the time needed 

to familiarize oneself with the navigation of the interface, input and output definitions, 

assumptions, and obtaining the necessary input data. 
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Table 8. Model attributes associated with useful, trusted, and accessible models from a public health practitioners’ perspective. 

Model Attributes Example from the three dissertation studies Utility Trust in 
the Model 

Accessibility 

Software-related 

Transparent and modifiable 
calculations 

No programming language knowledge needed to review formulas or 
logic  X X 

Free, ubiquitous, & familiar platform We used spreadsheets for all models  X X 

Model framework – related 

Use the simplest useful model 1) Employed a Cohort-type model to evaluate RSV immunization 
effects versus a model that accounts for few anticipated herd effects. 

2) Assumed homogenous population mixing for both COVID19 models 
versus parameterizing complex and uncertain contact structures. 

 X X 

Results/Outcomes are understandable Use of averted healthcare visits and hospitalizations as outcomes from 
all models are easy to explain and justify to non-modelers (e.g., 
politicians and the public). 

X  X 

Key inputs are values familiar to public 
health officials 

CICT evaluation model inputs on program performance were generated 
by health departments, the intended audience (versus parameters on 
disease dynamics [e.g., infectivity distribution] which were provided). 

X X X 

Calculations rely on algebraic math Discretized the time step of analyses in compartmental models versus 
relying on differential equations.  X X 

How the models accommodate desired use 

Model’s purpose is clear, designed to 
answer just a few, focused questions  

The stated goal for RSV I2M clarifies the intended beneficiary of the 
intervention (infants < 1yr), the time horizon evaluated (their first RSV 
season), and the measure of efficacy (medically attended LRTI visits). 

X X  

Model deals with uncertainty 1) The range of CICT’s estimated impact was based on the degree of 
isolation/quarantine compliance, an unknown quantity. 

2) COVID19 forecasts of healthcare use were produced for a range of 
social-distancing effects 

X X  

Assumptions and sources explicitly 
presented in the modeling tools 

 
 X  

Support examination of multiple 
scenarios that interest practitioners  

COVIDTracer Advanced allows users to enter up to 3 contact tracing 
effectiveness scenarios simultaneously and compare the associated 
simulated epidemic curves 

X   

Models can be readily updated with 
new data 

Users of RSV I2M can easily toggle uptake, efficacy, and duration of 
protection values  X   
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Those who wish to produce their own models for public health officials may evaluate their 

efforts by considering Table 8 as a checklist of sorts, seeing how many of the listed attributes 

describe their model. Ultimately, however, models should be evaluated on whether they are used 

or not and on feedback received from the intended audience. The RSV I2M model was used by 

coauthors to generate results on averted healthcare visits that were presented to the US Advisory 

Committee on Immunization Practices (ACIP), the body which develops recommendations for 

U.S. immunizations, including ages when vaccines should be given, number of doses, time 

between doses, and precautions and contraindications. And coauthors of the model evaluating 

social-distancing impacts on COVID19 transmission presented results to the Chilean Ministry of 

Health soon after the model was developed. Those results contributed to decisions to 

aggressively implement and expand various social distancing measures in Chile. Finally, this 

model’s calculations served as the basis for CDC’s COVIDSurge model, one of three models 

produced by CDC, including COVIDTracer Advanced used in study 3, that were downloaded 

more than 100,000 times over the course of the pandemic (CDC, unpublished).  
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APPENDIX 1 – Additional Methods and Results for Study 1 
 
RSV I2M can be downloaded here: https://ars.els-cdn.com/content/image/1-s2.0-

S0264410X19313866-mmc1.xlsx  

 

Illustrative Scenario Inputs 

Table 2 in the main text outlines the major inputs and parameter values used in this 

illustration. Our modeled annual birth cohort was 3,945,875, based on the 2016 Vital Statistics 

Report [22]. The proportion of high-risk births was based on a recent study that assessed 

palivizumab utilization [23]. Hospitalization rates for high-risk infants were based on 

hospitalization rates found amongst those who did not receive palivizumab in the original 

clinical trials [31, 32]. We obtained all-risk rates of MA-RSVi from population-based 

surveillance data published by the New Vaccine Surveillance Network (NVSN, Table A1) [4, 5]. 

We based the proportions of outpatient clinic and ED visits resulting in an LRTI on the average 

proportion of lab-confirmed RSV visits in NVSN from 2002-2009 with any of the following 

diagnoses: croup, bronchiolitis, bronchitis, pneumonia, or asthma (CDC, unpublished). All 

hospitalized patients were assumed to have an LRTI. Case fatality ratios among hospitalized 

infants were based on estimates for high income/industrialized countries [1]. The RSV season 

was determined by the monthly distribution of outpatient, ED and hospital visits across NVSN 

during the 2000-2009 seasons (CDC, unpublished; Figure A1). The estimate for palivizumab 

uptake (38%) is based on a recent study that defined compliance as receipt of all recommended 

doses [24, 25]. For the Antibody Candidate (anticipated to be a single injection), we assumed 

71% uptake among low-risk newborns, based upon vaccination rates for the birth dose of 

hepatitis B vaccine [27], and 80% among high-risk newborns, which is an estimate of the percent 

of high-risk newborns that receive at least one dose of palivizumab [23]. For the Maternal 

Vaccine Candidate, we based uptake (56%) on TdaP (tetanus, diphtheria, and pertussis) 

immunization in pregnant women because, like the maternal RSV vaccine, it is also given in the 

third trimester of pregnancy [28]. The efficacy used for palivizumab (51%) was based on a meta-

analysis of randomized controlled trials among high-risk infants where the endpoint was 

hospitalizations [29]. For the model, we assumed palivizumab reduces outpatient clinic and ED 

visits by the same percentage as hospitalizations. For the antibody candidate, we based efficacy 

(80%) against inpatient and outpatient MA-RSVi on findings from a clinical trial in term infants 
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of an antibody product similar to palivizumab [30]. Since maternal vaccine also provides passive 

antibody protection to infants, we used the same efficacy for this product. We used 0.919 for the 

maternal vaccine reduction factor, which accounts for the percentage of infants acquiring 

antibodies successfully from their mothers (see Appendix 2 section “Maternal Vaccine 

Candidate”). Duration of protection was based on the endpoints of the clinical trials for each of 

the products (Table 2, main text) [10, 11, 31, 32]. 

Table A1  
US Population-based Rates per 1000 for Medically-Attended RSV infections by health care 
setting and month-of-age 

 
Outpatient Clinic 

Visits [5] 
Emergency Department  

Visits [5] Hospitalizations [4] 
Age 

(months) Rate 95% CI Rate 95% CI Rate 95% CI 

0 85.2 (71.0-99.3) 19.6 (16.8-22.4) 13.5 (10.3-17.1) 

1 187.9 (156.6-219.1) 64.2 (54.9-73.4) 25.9 (21.3-30.8) 

2 234.2 (195.2-273.1) 72.4 (62.0-82.9) 14.3 (11.1-17.8) 

3 232.6 (194.0-271.3) 105.2 (90.1-120.4) 10.3 (7.7-13.5) 

4 265.0 (221.0-309.1) 116.0 (99.3-132.7) 8.9 (6.3-11.8) 

5 289.2 (241.1-337.2) 71.3 (61.1-81.6) 4.8 (2.9-7.0) 

6 264.7 (220.7-308.7) 81.8 (70.1-93.6) 4.1 (2.5-6.2) 

7 207.2 (172.8-241.7) 56.1 (48.0-64.2) 5.6 (3.6-8.0) 

8 277.8 (231.7-324.0) 55.6 (47.6-63.5) 3.4 (1.8-5.2) 

9 227.2 (189.4-264.9) 55.6 (47.6-63.6) 3.8 (2.1-6.0) 

10 241.7 (201.5-281.8) 40.4 (34.6-46.2) 3.7 (2.0-5.7) 

11 258.1 (215.2-301.0) 55.6 (47.6-63.6) 2.9 (1.5-4.8) 
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Figure A1. Seasonal Distribution of Medically-Attended RSV infections in the US (National-
level). Source: CDC, unpublished 

 

“High-Risk” births and RSV risk 

In our analysis “high-risk births” refers to infants who are recommended to receive 

palivizumab under current guidelines [8] and in our strategies I and III. In our illustrative 

scenario we calculated that 0.98% of all births are eligible to receive palivizumab in the US [23]. 

0.98% is the sum of the percent of all births with the following three conditions associated with 

elevated RSVi risk: 1) hemodynamically significant congenital heart disease (CHD), 2) chronic 

lung disease of prematurity (CLD), and 3) prematurity (defined as <29 weeks gestation) without 

CHD or CLD (Table A2). We then obtained the hospitalization rates for each high-risk condition 

from hospitalization rates found amongst those who did not receive palivizumab in the original 

clinical trials [31, 32]. Next, we multiplied the percent of infants with each condition who are 

hospitalized with RSV by the proportion of all US births with the condition to determine the % 

of all live births for each high-risk condition that are hospitalized (Table A2). The sum of this 

product across all three conditions was 0.0913% and represents the percentage of live births with 

a high-risk condition that are hospitalized due to RSV. RSV I2M permits users to redefine high-

risk conditions as they wish, accounting for up to four such conditions. 
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Table A2  
Conditions Associated with Elevated Risk for RSV Infection and Percent Hospitalized 

High-Risk condition 

%, live 
births 
[23] 

%, with condition 
hospitalized for 

RSV [31, 32] 

%, live births with 
condition hospitalized 

for RSV* 
Hemodynamically significant 
congenital heart disease (CHD) 

0.39% 9.7% 0.0378% 

Chronic lung disease of 
prematurity (CLD) 

0.12% 12.8% 0.0154% 

Prematurity (<29 weeks gestation),  
without CHD or CLD 

0.47% 8.1% 0.0381% 

% of live births with a high-risk condition hospitalized due to RSV 
(column sum) 

 
0.0913% 

* Product of row data in prior two columns 
 

Proportion of high and low risk infants 

Although there was a placebo-controlled trial that showed palivizumab reduces MA-

RSVi without hospitalization in preterm infants 33-35 weeks [33], there are no data available 

regarding the efficacy of palivizumab in reducing MA-RSVi in the outpatient clinic and ED 

settings among infants we define as “high-risk”. Therefore, we assumed the ratio of rates 

between high- and low-risk infants in the outpatient clinic and ED settings is the same as the 

ratio of hospitalization rates for high- and low-risk infants, and that palivizumab would have the 

same efficacy for preventing cases in these settings. We obtained the ratio of hospitalization rates 

for high- and low- risk infants by subtracting the expected number of high-risk hospitalizations 

from the expected number of all-risk hospitalizations. Expected all-risk hospitalizations were 

obtained by multiplying the birth cohort times the age-based rates in Table A1 and expected 

high-risk hospitalizations were obtained by multiplying the birth cohort times the percent of live 

births with a high-risk condition hospitalized due to RSV (0.0913%, from Table A2). These 

calculations resulted in a ratio of 8.4 low-risk visits for every high-risk visit (range 5.9 to 11.4, 

when using the 2.5 and 97.5 percentiles values from Table S1 for all-risk rates). 
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Figure. A2. Example Decision Tree Model Schematic. This schematic illustrates one of the 
decision trees used to track monthly birth cohorts in RSV I2M. This tree schematic is for within-
RSV-season births evaluating Strategy II. Different tree structures were used for births occurring 
out of RSV season and the other evaluated Strategies.  All trees are accessible in the RSV I2M 
modeling tool (S1). The probabilities associated with branching of a cohort are described in the 
main methods text (Table 2, main text). 
 
 

Maternal Vaccine Candidate: Proportion of infants successfully immunized 

In our model, the percentage of antibodies that successfully transfer from mothers 

receiving the maternal vaccine candidate was dependent upon a combination of the timing of 

vaccination relative to the infant’s birth, and the infant’s gestational age at birth. We assumed 

there would be a partial (50%) transfer two weeks post-vaccination and full (100%) transfer by 

four weeks post-vaccination, and that maternal antibodies would not wane prior to birth (Table 

S3) [34, 35]. Additionally, we took into account the fact that the efficiency of placental transfer 

of antibodies is dependent on gestational age. We assumed that the amount of antibody transfer 

would be ineffective before 33 weeks gestational age and only partially effective (50%) between 

33-36 weeks gestational age. At term, the transfer would be fully effective [36]. Taking into 

account the distribution of gestational ages of when births occur [22] and when mothers receive 

TdaP vaccination (CDC, unpublished), we calculated that ~92% of antibodies that are needed to 

protect the cohort of infants would be successfully transferred across the immunized population. 

Since the protective level of antibodies needed to offer full protection has not been established, 

Within Season 
Birth Cohort

"Low-risk" 
Newborn

Obtain antibody 
candidate

Ineffective 
Immunization

Attended for RSVi

Not attended for 
RSVi (unknown)

Effective 
immunization

Do not obtain 
antibody candidate

Attended for RSVi

Not attended for 
RSVi (unknown)

"High-risk" 
Newborn

Obtain antibody 
candidate

Ineffective 
Immunization

Attended for RSVi

Not attended for 
RSVi (unknown)

Effective 
immunization

Do not obtain 
antibody candidate

Not attended for 
RSVi (unknown)

Attended for RSVi
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we used this value as a proxy reduction factor for maternal vaccine efficacy. That is, we 

multiplied the percent protected by maternal vaccine by 0.92 to obtain the overall efficacy of 

maternal vaccine.   

 
Table A3.  
Proportion of maternal vaccinations with successful transfer of antibodies to the infant, by 
gestational age at immunization and birth 

* Calculated by 1) summing the product of the percent of births [22] and the proportion of antibody 
transfer in each row, then 2) multiplying the result by the percent of vaccinations administered for a given 
gestational age (percent value at top of each column, based on TdaP uptake [CDC, unpublished]), and 3) 
taking the sum of the column totals on the bottom row. This results in a total 91.9% successful transfer 
rate. 
 

We also conducted a sensitivity analysis examining the influence of our assumption 

regarding the timing of immunization on the proportion of infants to whom antibodies 

successfully transfer. In this analysis we altered the immunization schedule so that it optimized 

the proportion of infants to whom antibodies successfully transfer. This was achieved when 

100% of mothers receiving the maternal vaccine candidate are immunized when the fetus is 

exactly 29 weeks of gestational age. This improved the proportion of infants to whom antibodies 

successfully transfer by 2.1 percentage points to 94.0%. When this transfer proportion was used 

in our baseline illustrative scenario for the US (and all other parameters values in Table 2 

remained the same), our estimated number of MA-LRTI hospitalizations prevented by the 

<28 28 29 30 31 32 33 34 35 36

3.0% 14.4% 14.4% 14.4% 14.4% 14.4% 12.0% 10.0% 3.0% 0.0%

<28 0.68% 0% NA NA NA NA NA NA NA NA NA

28 0.23% 0% 0% NA NA NA NA NA NA NA NA

29 0.23% 0% 0% 0% NA NA NA NA NA NA NA

30 0.23% 0% 0% 0% 0% NA NA NA NA NA NA

31 0.23% 0% 0% 0% 0% 0% NA NA NA NA NA

32 0.59% 0% 0% 0% 0% 0% 0% NA NA NA NA

33 0.59% 50% 50% 50% 50% 25% 0% 0% NA NA NA

34 2.36% 50% 50% 50% 50% 25% 25% 0% 0% NA NA

35 2.36% 50% 50% 50% 50% 50% 25% 25% 0% 0% NA

36 2.36% 50% 50% 50% 50% 50% 50% 25% 25% 0% 0%

37 12.74% 100% 100% 100% 100% 100% 100% 100% 50% 50% 0%

38 12.74% 100% 100% 100% 100% 100% 100% 100% 100% 50% 50%

39 28.97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 50%

40 28.97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

41 6.38% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

42+ 0.35% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2.8% 13.5% 13.5% 13.5% 13.4% 13.3% 11.0% 8.4% 2.3% 0.0%
Proportion vaccinated with 

successful Ab transfer* -->

Percent of Vaccinations Administered (2nd row) by Gestational Age in weeks (top row)Gestational 

Age, Birth 

(weeks)

Percent 

of Births

High-risk 

births

Pre-term 

births

Full-term 

births
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maternal vaccine candidate increased by 170 (from 8,190 to 8,360), prevented MA-LRTI ED 

visits increased by 380 (from 19,580 to 19,960), and prevented MA-LRTI outpatient clinic visits 

increased 1,140 (from 58,210 to 59,350).      
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APPENDIX 2 - Additional Methods and Results for Study 2 
 
SEIR Model (Available for Download here: https://ars.els-cdn.com/content/image/1-s2.0-

S1201971220303507-mmc1.xlsx) 

The model consists of individuals who are either Susceptible (S), Infected but not yet Infectious 
(E), Infectious (I), Total Recovered and Died (D). It projects and tracks the number of 
individuals moving between these categories every day of the outbreak. Projections begin on the 
day following the date input by users for the last day of the most recent 2-weeks of cases 
available. On this date, there are only Susceptible and Infectious individuals. The epidemic then 
proceeds via a growth and decline process: As the number of susceptible individuals is depleted 
(once individuals are infected) the spread of the infection slows. Individuals in the Infectious (I) 
category includes those who are not yet symptomatic (pre-symptomatic) but will become 
symptomatic, those who are symptomatic, and those who are infectious yet not exhibiting 
symptoms (asymptomatic). The dynamics are given by the following equations such that on any 
given day t, the number individuals Susceptible (S), Infectious (I), Recovered (L), and Died (D) 
are: 

�� = ���� − �	
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where:  
N is the population size, 

R is the number of new infections each infected persons causes with R = R0 when no 
mitigation strategy is in place and R=Re when a mitigation strategy is being used, and 

κ is the number of days needed to become infectious after being infected.  

1/γ is the number of days needed to recover (or die) once infectious. 

α is the proportion of infected that die (i.e., infection fatality rate (IFR)) with  =  �when 
hospitals have capacity to treat and  =  "when capacity is overwhelmed 

Note: The Infected but not yet Infectious state (E) is not calculated each day in our tool (i.e., not 
given its own data column), but still contributes to the model by delaying when infected persons 
begin to contribute to the force of infection.  
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Reductions in R0 Associated with Interventions 
We chose the reductions in R0 for each intervention strategy by determining the reduction applied to R0 =2.4 (no intervention) in our 
model which produced comparable percent declines and delays in peak critical care (ICU) bed occupancy from the “do nothing 
scenario” observed in Ferguson et al.’s 1 Figure 2. Table S1 shows how these were determined. 
 
Table A1. Summary of values used for determining the reductions in R associated with interventions 
 Observed in Figure 2 of Ferguson et. al. Observed in our model 
Intervention 
Strategy 

(A) Peak 
Occupancy 

(B) Weeks 
peak is 

delayed 
(compared 

to “Do 
Nothing”) 

(C) Beds 
Occupied 

(D) 
Reduction in 

Beds 
Occupied 

(compared to 
“Do 

Nothing”) 
 

(E) Median 
R0 

(F) Peak 
Occupancy 

(G) Weeks 
peak is 

delayed 
(compared to 

“Do 
Nothing”) 

(H) 
Reduction in 

Beds 
Occupied 

Do Nothing 5/19/2020  -- 2700 -- 2.4 19,538*  -- -- 
Closing Schools 
and Universities 

5/26/2020 1 
 

2400 11.1% 2.25 1087 1 10.9% 

Case isolation 6/1/2020 2 1850 31.5% 1.98 831 3 31.9% 
Case isolation + 
household 
quarentine 

6/7/2020 3 1300 51.9% 1.74 590 5 51.6% 

Case isolation, 
home 
quarantine, 
social distancing 
of >70s 

6/10/2020 3 920 65.9% 1.57 417 8 65.8% 

Lockdown 4/15/2020 -5 5 99.8% 0.9 3 -11 99.8% 
Notes 
* Generated using 2,793 cases through March 31 for all of Chile (per population 17,574,003), and interventions beginning the next day (4/1/20) and continuing 
through the calendar year 
A-C: Estimated from Figure 2 Ferguson, Laydon 1. 
D: (CDo nothing-Cintervention)/ CDo nothing * 100 
E: Manipulated manually in our model until columns E and G approximated columns B 
F-G: Observed in our model 
H: (FDo nothing-Fintervention)/ FDo nothing * 100 
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Interventions Application Timeline in Chile 2,3 

Closure of all daycares, schools, and universities was mandated across all of Chile on March 16; 
followed by case isolation, and mandatory home quarantine for CoVID19 patients on March 19, 
and the implementation of flexible work schedules and telework for government workers began 
March 20. Social distancing measures across Chile include bans on nursing homes visits (03/16), 
closures of non-essential business (03/20, e.g., restaurants, pubs, night clubs), night curfews 
(03/22), and bans on meetings and events ≥50 people (03/24). Additionally, since March 28, two 
major cities in Araucanía, and seven municipalities in Santiago are under a mandatory lockdown. 

 

Table A2. Demographics of the Chilean population in the three study regions 

Age group  Chile Metropolitana Ñuble Araucanía 

   XIII XVI IX 

0-9 2,376,335 937,432 61,464 133,392 

10-19 2,392,112 933,218 66,179 137,493 

20-29 2,861,972 1,238,583 66,985 144,782 

30-39 2,501,414 1,066,451 60,993 124,652 

40-49 2,359,266 951,497 67,450 128,716 

50-59 2,232,733 889,726 66,574 120,577 

60-69 1,499,917 579,388 46,661 84,658 

70-79 879,498 333,994 29,403 53,289 

80+ 470,756 182,519 14,900 29,665 

Urban 15,424,263 6,849,310 333,680 678,544 

Rural 2,149,740 263,498 146,929 278,680 

Total 17,574,003 7,112,808 480,609 957,224 

Notes. Chile has a total of 16 regions. Here we include the three regions that have been more heavily affected 
by CoVID-19 as of April 5th, 2020, since the first case was reported in march 2, as an illustration of the 
potential uses of the tool. Estimates for all regions have been reported to the Ministry of Health. 
Source: CENSO 2017.4 

 

Table S3. Reported cases of COVID-19 by region 

 Region  N Total Two weeks 

Metropolitana XIII 2350 1810 

Araucanía IX 612 553 

Ñuble XVI 522 417 

Chile   5116 4194 

Notes. Total reported CoVID-19 cases as of April 5, 2020 
Source: Ministry of Health5 

 

  



88 

 

Table A4. Healthcare capacity: basic and intensive care beds by region, public and private hospitals 

  Basic beds Beds/ Intensive care Beds/ Mech. 

  Current Increase† Total 100k Current Increase† Total 100k Ventilator 

Metropolitana 16,596 1,926 18,522 260.4 1,937 389 2,326 32.7 867 

Ñuble 942 68 1,010 210.2 38 22 60 12.5 22 

Araucanía 2,202 469 2,671 279.0 136 79 215 22.5 80 

Chile 37,777 3,929 41,706 227.2 3,295 1,659 4,954 29.1 1,847 

Notes.  
†Increase refers to new beds in the health care system as a consequence of CoVID-19 response. All beds available in 
the healthcare system, from public and private hospitals, are now part of the “Sistema Integrado COVID-19” under 
the centralized administration of the Ministry of Health. An intensive care bed (ICU) consists of a cot with a 
monitor, healthcare professionals and medication to treat patient. Some have a mechanical ventilator.  
There are an estimated 1,847 mechanical ventilators; 850 currently available and 997 were acquired in January 
2020.6 We assumed the distribution of mechanical ventilators was proportional to the number of critical beds in each 
region. We assumed 60% of mechanical ventilators would be available based on a three-year study of 97 ICUs in the 
US, including 226,942 admissions to ICUs.7 
Source: Latorre et al. 20206 
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B. ADDITIONAL RESULTS 
B.1.1 Región Metropolitana – Hospital beds 
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B.1.2 Región Metropolitana – ICU Beds 
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B.1.3 Región Metropolitana – Ventilators 
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B.2.1 Región Araucanía - Hospital beds 

 
 



93 

 

B.2.2 Región Araucanía - ICU beds 

 
 
 
 



94 

 

B.2.3 Región Araucanía - Ventilators 
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B.3.1 Región Ñuble - Hospital beds 
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B.3.2 Región Ñuble - ICU beds 
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B.3.3 Región Ñuble - Ventilators 
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COVIDTracer Advanced Model 

COVIDTracer Advanced1 is a spreadsheet-based compartmental Susceptible-Exposed-

Infectious-Recovered (SEIR) epidemiological model, which illustrates the spread of a 

pathogen, resultant disease, and impact of interventions in a user-defined population. 

Readers can download the tool and enter input values of their choosing, exploring the 

impact of scenarios and assumptions beyond those covered in this manuscript. To 

model the clinical progression and transmission of disease using COVIDTracer 

Advanced, we used the following definitions and assumptions. A “case” was defined as 

a person who has been exposed, infected and subsequently becomes infectious, 

regardless of the presence of clinical symptoms. We assumed that for the first 3 days 

after infection, cases do not infect others. During days 4–5 post-infection, cases are pre-

symptomatic but shed virus in amounts that may infect others.2-5 During days 6–14, the 

infected person can be symptomatic and shedding virus, albeit during days 11–14 the 

risk of onward transmission is relatively low but non-zero (the complete infectivity 

distribution is given in Table A1). We assumed that approximately 40% of cases are 

asymptomatic during days 6-14 yet have a risk of onward transmission equal to 75% of 

symptomatic cases (Table A2) without vaccine or other non-pharmaceutical 

interventions (NPIs).5 The model assumes homogeneous mixing among individuals and 

does not account for any age- or location-based heterogeneities in transmission. 
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Table A1. Daily percentage risk of transmission by infectiousness state and 

clinical symptoms. 

Days post infection 
Daily percentage risk of onward 

transmissiona (%) 
 

Infected person’s state 

1 0.00 
Infected,  
not yet infectious 

2 0.00 
3 0.00 
4 16.78 Infectious,  

pre-symptomatic 5 18.03 
6 17.07 

 Infectious, symptomatic 

7 14.52 
8 11.27 
9 8.10 

10 5.48 
11 3.55 
12 2.26 
13 1.46 

14 1.48 
Total 100 

 

a Percentages show when onward transmission might occur by day of infectiousness  
Sources: He et al.2, 3 and Ferretti et al.4 See also COVIDTracer Advanced manual.1 

 

Table A2. Epidemiological parameters, values, and sources. 
Parameter Default 

Value 
Source 

Infected but not yet infectious period 3 days CDC COVID-19 Pandemic Planning Scenarios5 
Pre-symptomatic and contagious 
(infectious) period 

2 days He et al.2, 3, Ferretti et al.4 

Symptomatic and contagious (infectious) 
period 

9 days He et al.2, 3, Ferretti et al.4 

New infections per case (R0) 2.5 CDC COVID-19 Pandemic Planning Scenarios5 

% of cases that are asymptomatic 40% CDC COVID-19 Pandemic Planning Scenarios5 
Infectiousness of asymptomatic cases  
(relative to symptomatic cases) 

75% CDC COVID-19 Pandemic Planning Scenarios5 

 

Table A3. Assumeda proportion of cases by age group and infection-to-

hospitalization rate, default values in COVIDTracer Advanced and sources. 
Age group  

(year) 
% of Total 

Cases 
Source % of all cases admitted 

to hospital care 
Source 

0 to 17 15  
CDC COVID Data 
Tracker6 

0.21 CDC COVID-19 
Response Team7, Wu 
et al.8 

18 to 64 55 2.17 
65+ 30 4.12 

a derived September 2020 using sources available at that time 
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Figure A1. COVIDTracer Advanced Model Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: The model consists of individuals who are either Susceptible (S), Infected but not yet Infectious 

(E), Infectious (I), Recovered or Died (R). Individuals can move between these compartments as 

indicated by the orange arrows. The model tracks the number of individuals moving between these 

categories every day of the outbreak. The rate of new infections is influenced by the number of individuals 

in the Infectious (I) category (depicted by the light grey dashed lines). There are 4 types of Infectious 

individuals: cases (symptomatic or asymptomatic) who adhere to isolation guidelines because they were 

engaged by their health departments via case investigation and contact tracing efforts (CICT), and cases 

(symptomatic or asymptomatic) who do not participate in CICT efforts. The overall risk to the Susceptible 

population of onward transmission is dependent upon both the distribution of cases among these 4 

infectious categories on each day, and any reductions in transmission associated with a jurisdiction’s 

implementation of CICT, and vaccine and other non-pharmaceutical interventions.  
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Case Investigation and Contact Tracing Effectiveness 

The effectiveness of case investigation and contact tracing (CICT) is determined by the 

proportion of cases and their infected contacts that are effectively isolated and 

quarantined, preventing further transmission in the susceptible population. The duration 

of quarantine and isolation is described in Centers for Disease Control and Prevention 

(CDC)’s guidance.9 We assumed that confirmed cases are effectively isolated following 

case interviews. We further assumed that contacts are quarantined upon either contact 

notification or through active monitoring.  

We calculated the average proportion of cases and contacts isolated and quarantined 

by CICT for each location as follows: 

 

Step 1: We first calculated the proportion of cases that effectively isolated:  

 *+,-./0123 ∗ �# *0535 6ℎ06 2+,-.3638 2053 /163#9/3:
;+60. 1<,=3# +> 20535 �                                       ;3#, ? 

 

Step 2: We then calculated the proportion of infected contacts that effectively 

quarantined:    
 *+,-./0123 ∗ % *+160265 /8316/>/38 ∗ % *+160265 1+6/>/38                               ;3#, A 

Where: 

 % Contacts identified = # MNO�PQ�R OPSTU VW �O�TXY�TZTU QPRTR
&N�P[ 1<,=3# +> QNO�PQ�R                     Term B.1 

 and 
 % Contacts notified = # MNO�PQ�R ON��a�TU 

# MNO�PQ�R OPSTU VW �O�TXY�TZTU QPRTR                   Term B.2 

  

The “Total number of contacts” in Term B.1 was the expected total number of 

contacts generated by all cases. We estimated it by multiplying the total cases 

reported by a jurisdiction by the average number of contacts per case as follows: 

;+60. *0535 ∗  c&N�P[ # MNO�PQ�R OPSTU VW �O�TXY�TZTU QPRTR
# MPRTR �dP� OPSTU P� [TPR� � QNO�PQ� e          Term B.1.1 
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Step 3: We took the weighted average between the results of steps 1 and 2 (Terms A 

and B) by weighting quarantined contacts by R0, since undetected infected contacts 

will infect R0 additional individuals on average (or 2.5 new infections per infected 

contact). This resulted in the final equation: 

 

Average proportion of cases and contacts �which become cases� isolated by CICT = 
[% Cases interviewed*Compliance + �R0 * % Contacts identified * �% Contacts 
monitored *Compliance + % Contacts notified but not monitored*Compliance��] / 
�1+R0� 

 

By populating this equation with the assumed compliance to isolation/quarantine 

guidance (described in Table 1), we assessed the following three scenarios.   

 
Equation 1: Baseline Low Estimate 

80% of interviewed cases and monitored contacts, and 30% of notified contacts 
(who are not monitored), isolate or quarantine: 

Average proportion of cases and contacts (which become cases) isolated = 
[% Cases interviewed*0.8 + (R0 * % Contacts identified * (% Contacts 
monitored *0.8 + % Contacts notified but not monitored*0.3))] / (1+R0� 
 

Equation 2: Baseline High Estimate 

100% of interviewed cases and monitored contacts isolate or quarantine: 

Average proportion of cases and contacts (which become cases) isolated = 
[% Cases interviewed + (R0 * % Contacts identified * % Contacts 
monitored)] / (1+R0�  

 
Equation 3: Sensitivity Analysis (Maximum CICT Impact) Estimate 

100% of interviewed cases and 100% of contacts isolate or quarantine: 

Average proportion of cases and contacts (which become cases) isolated = 

[% Cases interviewed + (R0 * % Contacts identified * % Contacts notified)] 
/ (1+R0� 

 
where R0 is the assumed number of new infections per case without any interventions 

and when the population is entirely susceptible to infection (Table A2).  
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In addition, reducing the time from case identification to effective isolation is critical for 

case investigation and contact tracing to succeed. The longer the cases and contacts 

interact with the susceptible population, the greater the opportunity for onward 

transmission. In practice, cases with no known exposure are predominantly identified 

and isolated after symptom onset3, and cases with known exposures (i.e., contacts that 

eventually become infected cases) can begin quarantine upon contact notification (even 

potentially prior to symptom onset). We assumed asymptomatic cases can only be 

identified and isolated if they are notified through case investigation and contact tracing. 

For the purposes of our study, we assumed the proportions of cases with no known 

exposure and cases with known exposures were equal (i.e., 50/50 breakdown) because 

we did not have data on what prompted case identification in each location. Therefore, 

for each location the days to effective case isolation was determined by taking the 

average of the days to effective isolation between case groups with known and no 

known exposures. The time to effective case isolation for each of the two case groups 

was determined as follows:  

 

For symptomatic cases with no known exposures (i.e., symptoms prompt identification):  

We assumed that cases experience a 5-day pre-symptomatic period (See Table A2), 

get tested the day after symptom onset (i.e., 6 days would have transpired since 

infection at the time of testing). We then obtained the number of days from testing to 

result notification by adding the reported “Median days from specimen collection to 

case reporting to the health department (HD)”. We also assumed that confirmed cases 

begin isolation the day after their result notification (i.e., we added 1 to the total 

obtained above). Our assumptions regarding the “next-day” timing of testing and entry 

into isolation are based on symptoms and notifications beginning or occurring 

throughout the day, with a sizeable portion occurring sufficiently late enough in the day 

to prevent testing and entry into isolation the same evening. This assumption takes 

into account practical considerations such as time needed to find a testing site and 

arrange an appointment, and for notified individuals to prepare to isolate (e.g., 

 
3 Some cases can be identified before being symptomatic (e.g., during screening for various reasons) 
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purchasing food or medications, setting up childcare, handling work or other 

commitments).  

 

For cases with known exposures (i.e., those who were notified they were a contact and 

eventually became a case):  

 We first calculated the days from index case testing to their exposed contacts’ 

notification by summing jurisdictions’ reported “Median days from specimen collection 

to case report to the HD”, “Median days from case report to the HD to the case 

interview completion”, and “Median days from case interview completion to contacts 

notification”. We assumed that contacts begin quarantine the day after receiving 

exposure notification from their health department (i.e., we added 1 to the sum above). 

The “next-day” timing of entry into quarantine is based on the same practical 

reasoning as cases needing time to prepare to isolate once notified (described above). 

 We then used the resultant sum from the procedure above to estimate the time (in 

days) from exposure to quarantine for contacts. Because we did not have information 

on when exposures actually occurred for contacts, we assumed that these individuals’ 

exposures occurred at the midpoint of their potential exposure window (in days). We 

identified the earliest date in this window as the first day of infectiousness among 

cases to which contacts were exposed. Based on our assumed 5-day pre-

symptomatic period for symptomatic cases (described above), this was two days prior 

to the symptom onset date in cases exposing the contact. We identified the latest 

possible exposure as the date the cases exposing them were interviewed by the 

health department (because they began isolation the next day). See both “Contacts” 

rows in Figure A2 for a visual depiction of this timeline.  
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Figure A2. Illustrative example of the timing of COVID-19 case isolation and quarantine of contacts 

  Day 1 2 3 4 5 6 7 8 Day 9 Day 10   
Days from 

Exposure to 
Isolation 

Index 
Case 

Exposed   
Contagious 

Period 
Begins 

 Symptom 
Onset 

Tested 

Result 

Notification 

& Case 

Interview 

Begin 
Isolation 

   8 

Contacts  
(Earliest 
possible 

exposure) 

      Exposed     
Exposure 

Notification 
Begin 

Quarantine 
  6 

Contacts  
(Latest 

possible 
exposure) 

              Exposed  
Exposure 

Notification 
Begin 

Quarantine 
  2 

Notes: In this hypothetical scenario, we assume a jurisdiction needed 1 day from specimen collection (testing) to result notification and 2 days from specimen 

collection to contact notification. The index case (symptomatic case with no known exposure) began showing symptoms on day 6 post-infection, got tested on day 7 

and was notified of test result on day 8. The case’s contacts (cases with known exposure) were exposed sometime between days 4 to 8 and notified of their 

exposure on day 9. Therefore, the index case began isolation on day 9 and contacts went into quarantine on day 10 (based on our assumptions above). To calculate 

the days from contacts’ exposure to their quarantine, we took the average of the maximum days a contact was infected (6 days in this example based on the earliest 

possible exposure) and the fewest days the contact could be infected (2 days in this example, based on the latest possible exposure), and weighted each day span 

by the case’s infectiousness on each of possible exposure days. The result is 3.9 days in this example, meaning the contact had been exposed for 3.9 days upon 

initiating quarantine. We then took the average between 8 days (index case) and 3.9 days (contacts) as the number of days from exposure to isolation (for both 

cases and contacts). This is 6 days in this example.  
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The days between cases with known exposures becoming infected and their exposure 

notification can vary from what we assumed. For example, cases may take longer to 

become symptomatic, or get tested the same day that they become symptomatic or 

begin their isolation on the same day as their results notification. Similarly, contacts who 

become cases may be exposed earlier or later than we assumed and may make up a 

larger or smaller share of the case pool. Readers interested in more detail of the 

influence of varying our assumed time to case isolation may wish to see Table A6 in the 

Technical Supplement of our 14-site study on CICT impact, containing results of a 

sensitivity analysis examining this topic in those jurisdictions.10 

 

CDC’s Epidemiology and Laboratory Capacity (ELC)-funded jurisdictions also reported 

the Number of contacts that were notified within 1 day of case interview, the Number of 

contacts that were notified between 1-3 days after case interview, and the Number of 

contacts that were notified within 3 or more days after case interview. We used these 

additional data elements as a quality check (Figure A3) of the reliability of jurisdictions’ 

reported median values regarding notification timing (described above). We did this by 

calculating the lower limit of the average number of days from case interview to contact 

notification as follows: 

0.5 80v5 ∗ �% 2+160265 1+6/>/38 :/6ℎ/1 1 80v� 
+ 2 80v5 ∗ �% 2+160265 1+6/>/38 =36:331 1 − 3 80v5� 
+ 3 80v5 ∗ �% 2+160265 1+6/>/38 3 +# ,+#3 80v5 0>63# 2053 /163#9/3:�. 

This metric assumes that all contacts were notified within 3 days of the case interview. 

We used this metric to exclude jurisdictions from the analysis (i.e., deemed reported 

data unreliable) when the lower limit of the average time to contact notification was 

greater than our calculated time to contact notification using reported median days AND 

the proportion of contacts that were notified 3 or more days after case interview was 

less than 10% of total contacts (i.e., too few to exert enough influence on the average 

lower limit for it to plausibly exceed the median-based value).   
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Figure A3. Inclusion and Exclusion Criteria for Analysis of Jurisdictions 

 

a Three states included a major city or county that were separately funded by the CDC’s ELC program. Their reported 

CICT metrics are exclusive of the separately funded locales.  

64 ELC-funded Jurisdictions
(including 50 states, Washington D.C., 8 US territories, 4 city centers and 1 county)

59 States & Territories Examined for Data Quality

• # contacts identified ≥ cases that provided at least one contact 
• # cases that completed an interview ≥ cases that provided at least one contact
• # contacts identified ≥ contacts notified
• # contacts identified ≥ contacts monitored
• # contacts notified ≥ contacts monitored
• lower limit of average days from case interview to contact notification 

≤ median reported days from case interiew to contact notification

45 States & Territories Examined for Data Completeness

• Both the low and high estimated proportion of cases and contacts 
isolated/quarantined available, with values ranging from 0 to 100%

• Estimated time from infection to isolation/quarantine is available, with 
values ranging from 0 to 20 days

• Total reported cases during the 60-day study period ≥ 30

23 Jurisdictions Analyzed
(1 territory, 19 complete states, and 3 states with a major city excludeda)

4 cities and 1 county were excluded to focus 

on state-level impacts 

21 states and 1 territory had insufficient data for 

our analysis 

8 states and 6 territories failed the data quality check 
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Additional Results and Commentary 

Figure A4. Estimated hospitalizations averted due to CICT programs from 11/25/20 – 1/23/21 (60 days) 
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Table A4. Summary of reported case investigation and contact tracing (CICT) data 

reported to CDC’s ELC program and calculated CICT effectiveness for the 23 

jurisdictions analyzed and all funded jurisdictions, 11/25/20–12/24/20 (30 days) 
Measures Median (Interquartile Range) 

23 Jurisdictions analyzed All Jurisdictionsa 

Reported CICT ELC Program Data   
% of cases interviewed 
% of interviewed cases who named their 

contacts 
% of contacts who were notified 
% of contacts who were monitored 
Reported days from testing to case 

interview 
Reported days from testing to contact 

notification 

49% (39 – 67%) 
25% (15 – 35%) 

 
59% (37 – 72%) 
32% (17 – 50%) 

3.5 days (3.0 – 5.0) 
 

4.0 days (3.0 – 5.2) 

58% (39 – 74%) 
27% (15 – 47%) 

 
64% (35 – 84%) 
48% (29 – 78%) 

3.0 days (2.4 – 5.0) 
 

4.0 days (3.0 – 5.7) 

Calculated CICT Effectiveness   
% of cases and contacts 

isolated/quarantined (high) 
% of cases and contacts 

isolated/quarantined (low) 
Calculated days from exposure to 

isolation/quarantine 

19% (16 – 25%) 
 

17% (14 – 22%) 
 

7.0 days (7.0 – 8.0 days) 

N/A 

a Out of 64 total ELC jurisdictions, 5 did not report CICT program data and 3 reported a zero COVID-19 case count. 

Summary metrics are based on the remaining 56 ELC jurisdictions that reported the following measures: % of cases 

interviewed (n=54); % of interviewed cases who named their contacts (n=52); % of contacts that are notified (n=53); 

% of contacts that are monitored (n=43); Reported days from testing to case interview (n=48); Reported days from 

testing to contact notification (n=45). 
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Table A5. Estimated impacts of case investigation and contact tracing (CICT) and other interventions from 11/25/20 
– 1/23/21 (60 days), by jurisdiction and CICT impact scenarios. 

 Low CICT impactb High CICT impactb 

Jurisdiction % Transmission 
reduction from 

Cases 
Averted 

by CICTe,  
60 days 

Hospitalizatio
ns Averted by 

CICTe,  
60 days 

% Reduction 
in cases and 
hospitalizatio
ns by CICTf,  

60 days 

% Transmission 
reduction from 

Cases 
Averted by 

CICTe,  
60 days 

Hospitalization
s Averted by 

CICTe,  
60 days 

% Reduction 
in cases and 
hospitalizatio
ns by CICTf,  

60 days 

Other 
NPIs & 

Vaccinec 

CICTd Vaccine & 
Other 
NPIsc 

CICTd 

1a 
2 
3 
4 
5 
6 
7a 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21a 
22 
23 

53.6 
53.6 
51.6 
56.5 
54.1 
49.4 
59.7 
61.0 
54.7 
54.2 
55.5 
50.1 
59.2 
53.2 
61.3 
53.6 
50.1 
59.8 
54.2 
49.3 
60.4 
58.6 
62.9 

3.0 
8.7 
9.8 
5.7 
3.5 
13.6 
5.6 
5.0 
3.6 
4.0 
7.1 
2.0 
5.7 
0.9 
2.3 
8.3 
9.2 
3.3 
4.4 
17.0 
0.4 
0.4 
3.4 

207,417  
 121,865  
 120,157  
 97,231  
 70,297  
 65,037  
 73,780  
 63,813  
 66,362  
 32,084  
 21,170  
 24,011  
 22,014  
 19,691  
 19,277  
 19,577  
 11,135  
 13,248  
 10,200  
 13,560  
 5,921  
 5,466  
 4,858 

5,097  
 2,995  
 2,953  
 2,389  
 1,727  
 1,598  
 1,813  
 1,568  
 1,631  
 788  
 520  
 590  
 541  
 484  
 474  
 481  
 274  
 326  
 251  
 333  
 145  
 134  
 119 

12.8 
37.5 
42.6 
23.8 
15.8 
51.6 
22.2 
20.2 
16.9 
18.9 
32.0 
10.0 
23.7 
4.4 
9.6 
36.0 
41.1 
13.9 
19.1 
65.8 
1.3 
1.5 
13.1 

53.3 
52.6 
50.5 
56.3 
53.8 
47.8 
59.4 
60.4 
54.4 
53.8 
54.7 
49.9 
58.9 
53.1 
61.1 
53.0 
49.1 
59.8 
53.7 
51.7 
60.4 
58.6 
62.7 

3.5 
10.5 
11.8 
6.2 
4.3 
16.2 
6.3 
6.3 
4.3 
5.0 
8.9 
2.2 
6.4 
1.2 
2.9 
9.4 
11.0 
3.5 
5.4 
12.9 
0.4 
0.5 
3.9 

 252,325  
 158,766  
 156,557  
 107,689  
 90,217  
 86,692  
 84,523  
 83,647  
 80,059  
 41,194  
 28,595  
 27,473  
 25,359  
 24,455  
 24,197  
 23,221  
 14,586  
 14,102  
 13,247  
 8,304  
 7,005  
 6,452  
 5,721 

 6,200  
 3,901  
 3,847  
 2,646  
 2,217  
 2,130  
 2,077  
 2,055  
 1,967  
 1,012  
 703  
 675  
 623  
 601  
 595  
 571  
 358  
 347  
 326  
 204  
 172  
 159  
 141 

15.1 
43.9 
49.1 
25.7 
19.4 
58.7 
24.6 
24.9 
19.7 
23.0 
38.8 
11.3 
26.4 
5.5 
11.8 
40.1 
47.8 
14.6 
23.5 
54.1 
1.6 
1.7 
15.1 

a Single large city or county in these states were separate Epidemiology and Laboratory Capacity (ELC) jurisdictions and not included in this analysis.  
b Low CICT impact scenario assumes only actively monitored contacts (who later became cases) effectively quarantined/isolated. High CICT impact scenario 

assumes notification prompted contacts (who later became cases) to quarantine effectively. In both scenarios we assumed interviewed cases fully adhered to 
isolation guidelines.  

c Percent reduction in the number of new infections per case (Rt) due to a combination of vaccination and all other nonpharmaceutical interventions (NPIs; e.g., 
masks use, social distancing, school/restaurant closures, etc. Calculated as the percent difference in R0 and Rt after implementation of vaccine and other NPIs. 

d Percent reduction in the number of new infections per case (Rt) due to CICT after the implementation of other NPIs. Calculated as the percent difference between 
Rt after implementation of other NPIs and Rt after implementation of both other NPIs and CICT.  

e After accounting for the impacts from vaccination and all other NPIs.  
f Cases or hospitalizations averted by CICT out of the estimated cases or hospitalizations remaining after the implementation of vaccination and other NPIs. 
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Alternate approaches to simulating Epi-curves without CICT and their results 

We estimated the combined effectiveness of vaccine and other non-pharmaceutical 

interventions (NPIs) by fitting our model to cumulative cases and assuming that the 

effectiveness of NPIs remained constant over the course of our 60-day evaluation 

period. These choices enabled us to 1) avoid the influence of transient testing 

accessibility and test-seeking behaviors, or data reporting artifacts (observed in many 

locations around the Christmas and New Year’s holidays), and 2) maintain 

COVIDTracer Advanced’s accessibility and ease-of-use for practicing public health 

officials. However, fitting to cumulative cases weights early cases over later cases and 

can inflate model fit. Also, fixing the effectiveness of NPIs may result in an over- or 

under-estimation of impact. We, therefore, conducted an excursion analysis to examine 

the influence of these choices on our estimates of averted cases and hospitalizations.  

We selected eight jurisdictions for this analysis: the five with the largest estimates of 

averted cases (accounting for 56% of total averted cases), and three others exhibiting 

clear and large changes in the overall trend of incident cases within our 60-day 

evaluation period (jurisdictions 1-5, 7, 12, and 20 in Table A5). 

For these eight jurisdictions, we repeated our fitting process, but used the incidence epi-

curves, and fit up to three periods using our low CICT impact scenario (Table 6, main 

text). The number of periods and their lengths (in days) were determined by visually 

examining and selecting inflection points in the 7-day moving average of the observed 

incidence curves of reported cases (Figure A5). 

This fitting procedure reduced discrepancies between the observed cumulative case 

count and the fitted curve’s count on the last day of our evaluation period (which we use 

for calculating CICT impact on cases) for 6 of the 8 evaluated jurisdictions (Figure A5). 

Based on the new fits, our averted case estimates decreased for five of the eight states 

and increased for the remaining three (Table A6). Across all eight states, we estimate 

that CICT potentially averted 713,752 cases and 17,539 hospitalizations, 2.0% fewer 

than our main estimates for the same scenario. The similarity of these results to those 

presented in the main text suggest our simplified fitting approach generates estimates of 

averted cases that are sufficiently accurate for policymakers to value the impact of 

CICT, while preserving a simple, easy-to-use model for public health practitioners. 
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Table A6. Effect of alternate fitting methodsa on estimates of the impact of case investigation and contact tracing 
(CICT) from 11/25/20 – 1/23/21 (60 days), under “low” CICT impact scenariob. 

Jurisdiction % Transmission reduction from Other NPIs 
& Vaccined 

Cases Averted by CICTf,  
60 days 

Hospitalizations Averted by 
CICTf,  

60 days 

% Reduction in cases 
and hospitalizations by 

CICTg,  
60 days 

 Main Results 
(Single, Constant 
NPI Effectiveness) 

Alternate Fit (Up to 
three NPI Effectiveness 

Valuesh) 
Main 

Results 
Results, 

Alternate Fit Main Results 
Results, 

Alternate Fit 
Main 

Results 

Results, 
Alternate 

Fit 

1c 
2 
3 
4 
5 
7c 
12 
20 

53.6 
53.6 
51.6 
56.5 
54.1 
59.7 
50.1 
49.3 

48.8, 55.2, 61.4 
52.6, 59.1, 52.9 
55.9, 47.9, 56.5 
56.5, 53.9, 62.2 

54.1 
59.6, 54.1 

50.0, 48.4, 54.9 
54.8, 34.4, 52.2 

207,417 
121,865 
120,157 
97,231 
70,297 
73,780 
24,011 
13,560 

202,236 
113,234 
107,950 
96,477 
71,027 
85,831 
22,823 
14,080 

5,097 
2,995 
2,953 
2,389 
1,727 
1,813 
590 
333 

4,970 
2,782 
2,653 
2,371 
1,745 
2,109 
561 
346 

12.8 
37.5 
42.6 
23.8 
15.8 
22.2 
10.0 
65.8 

13.0 
36.3 
40.4 
23.6 
15.8 
23.3 
9.8 
65.6 

a Using the 7-day moving incidence average for fitting and up to three periods for each jurisdiction using our low CICT impact scenario (Table 1). 
b Low impact scenario assumes 80% of actively monitored contacts (who later became cases), 30% of notified contacts effectively quarantined/isolated and 80% 

interviewed cases fully adhered to isolation guidelines.  
c Single large city or county in these states were separate Epidemiology and Laboratory Capacity (ELC) jurisdictions and not included in this analysis. 
d Percent reduction in the number of new infections per case (Rt) due to a combination of vaccination and all other nonpharmaceutical interventions (NPIs; e.g., 

masks use, social distancing, school/restaurant closures, etc). Calculated as the percent difference in R0 and Rt after implementation of vaccine and other NPIs. 
e Percent reduction in the number of new infections per case (Rt) due to CICT after the implementation of other NPIs. Calculated as the percent difference between 

Rt after implementation of other NPIs and Rt after implementation of both other NPIs and CICT.  
f After accounting for the impacts from vaccination and all other NPIs.  
g Cases or hospitalizations averted by CICT out of the estimated cases or hospitalizations remaining after the implementation of vaccination and other NPIs. 
h See Figure A5 for fitted curves and periods used for fitting. 
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Figure A5. Fitted epidemic curve outputs from COVIDTracer Advanced and 
observed data for the 60-day period, by jurisdiction and fitting approach  

(Case counts excluded to maintain jurisdiction anonymity) 

Jurisdiction 1 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Jurisdiction 2 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Jurisdiction 3 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Jurisdiction 4 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Jurisdiction 5 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods* 

 

* A single fitting period spanning the entire 60-day evaluation period maximized fit for 

this jurisdiction.  
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Jurisdiction 7 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods* 

 

* Two fitting periods maximized fit for this jurisdiction.  
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Jurisdiction 12 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Jurisdiction 20 

Fits Using Cumulative Cases 

 

Fits Using Incident Cases’ 7-day Moving Average and Multiple Fitting Periods 
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Isolation/Quarantine Compliance Scenarios: Sources and Details  

A review of multiple cross-sectional population surveys in the UK suggests 40-45% of 

people who had COVID-like symptoms self-reported fully complying with isolation 

guidance during their infectious periods.11 Another survey in the US found that 85% of 

respondents who had COVID-like symptoms or tested positive stayed home (according 

to CDC guidelines) except to get medical care.12 And a third survey, also in the US, 

found that 93% of adults said they would definitely (73%) or probably (20%) quarantine 

themselves for at least 14 days if told to do so by a public health official because they 

had the coronavirus (i.e., they were confirmed cases; not just exposed contacts).13  
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APPENDIX 4 - Instructions for using COVIDTracer Advanced Special Edition 
 

This appendix provides the step-by-step instructions for using the COVIDTracer model 

to repeat the analysis described in Study 3 to estimate COVID-19 cases averted by 

case investigation and contact tracing activities. The Special Edition version of 

COVIDTracer Advanced is a modification of the publicly available tool on CDC’s website 

that enables users to assess the impact of CICT before vaccine was widely available. 

Additional modifications would be required if you intend to explicitly account for 

vaccinated individuals (e.g., decreasing susceptible population over time, decreased 

risk of hospitalization among vaccinated individuals, etc).  

Readers seeking basic information about the model, data elements, and definitions 

should refer the COVIDTracer Advanced User Manual. However, some statements in 

the web manual are not applicable to the Special Edition version used in this analysis. 

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-

tracing/COVIDTracerTools.html  

COVIDTracer Advanced uses the Windows operating system (Microsoft Windows 2010 

or higher) and Excel (Microsoft Office 2013 or higher).  

 

 
Before starting, complete the following: 
1) Determine your 60-day study period. The first day of your study period is your 

“model start date.” This “model start date” will be referenced later in these 
instructions. For example, if you are interested in estimating cases and 
hospitalizations averted by CICT during the 60-day period from January 1-March 
1, 2021, your “model start date” is January 1, 2021. 
 

2) Obtain these data for the jurisdiction of interest: 

a. Total population 

b. Total cases as of the day before the model start date (In the example study 
period above, this is the total cases reported as of December 31, 2020.)  

c. Cases reported during the past 14 days (In the example study period 
above, this is the sum of cases reported from December 18 to 31, 2020.)  

d. The case trend during the past 14 days (e.g., increasing, plateaued, 
decreasing)  

e. Daily (i.e., incident) case counts for the 60-day study period 

f. The following case investigation and contact tracing program metrics. 
These metrics are meant to be representative of the 60-day study period. If 
you don’t have such data for the entire study period, you may base these 
metrics on a shorter period (e.g., 30 days or 4-weeks) from the model start 
date (and assume they are representative of the full 60 days):  
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i. Number of days from exposure to case isolation and contact 
quarantine 

ii. Percent (%) of all cases successfully isolated and contacts 
quarantined 

 

3) Open the COVIDTracer Advanced_SpecialEdition tool (Supplement 2)  

a. When opening the spreadsheet file, click the “Enable Macros” button for full 
functionality of the tool. 

b. Enable Excel “Solver Add-In.” Instructions: in Excel, click on File → 
Options → Add-ins → select “Analysis ToolPak” → click “Go” (not the “Ok” 
button) → select checkbox for “Solver Add-In” and click “Ok.”  

The Solver button, will appear in the “Data” menu. 

 

In worksheet, “A. Outbreak Details”  

Step 1: Enter the population for the jurisdiction of interest. 

 

 

Step 2: Enter the model start date, the total number of COVID-19 cases in the 

jurisdiction until the day before the model start date, and the number of cases reported 

in the last 14 days within the jurisdiction.  

 

 

Step 3: Set the pattern of daily cases over the past 14-day period selected in Step 3. 

The default is “Daily case counts are slowly increasing.” However, if daily case counts 

have been changing rapidly, remaining constant, or decreasing over the last 14 days, 

select from the pull-down menu the pattern that best matches the jurisdiction’s data.  

The selection of the case trend in the past 14 days determines how reported cases are 

distributed over the 14 days prior to the model’s initiation date. Visually inspect the case 

trend and choose the most appropriate option. You can also run the model with different 

case trend patterns and pick one that yields the “best fit” (by repeating steps 3 to 6). 
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In worksheet, “Case Counts” 

Step 4: Paste the jurisdiction’s daily case counts (i.e., incident cases) for the 60-day 

study period into the “Daily” column (column AH)  

 

 

In Worksheet, “B. Impact of Contact Tracing” 

Step 5: Using your representative CICT program data, enter values for:  

• Number of days after infection that case is isolated  
• % of all cases successfully isolated and contacts traced and monitored 

 

 

 

Step 6: Estimate the % reduction in transmission due to community interventions 

(shown in cell G28) by fitting COVIDTracer Advanced’s simulated curve to your 

observed case curve. You will use the Solver Add-in to do this: The Solver Add-in finds 

an optimal solution for the % reduction in transmission due to community intervention by 

minimizing the mean squared error (a mathematical value describing the differences 

between both curves; shown in cell O32).  

 

 

Instructions for using the Solver:  
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From the Excel menu tab, click “Data” and the “Solver” button, then follow the 

instructions described here to set up the parameters in the pop-up dialogue box (see 

screen shot below):  

 

 
Set Objective: Set objective to cell “$O$32”, which is the mean squared error.  

To: Select “Min”.  

By Changing Variable Cells: Enter $G$28 (This cell refers the Solver to the “Estimated 

% reduction in transmission due to continued community interventions.”) 

Select a Solving Method: For simplicity, we recommend selecting “GRG Nonlinear” 

from the drop-down menu. 

 

Click “Solve” button.  

 

Then the Excel Solver function will automatically find the optimal value (estimated % 

reduction in transmission due to continued community intervention) and populate the 

value in cell G28. The figure below shows a fitted curve (solid line) generated by 
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COVIDTracer Advanced after Step 6, that minimizes deviation from the reported case 

counts (dashed line).  

 

Example Figure: Fitted curve using COVIDTracer Advanced 

 

 

In Worksheet, “Results – Cases Averted” 

Step 7. Users can find the % reduction in transmission due to CICT, and those that are 

attributable to all other interventions. The estimated number of cases and 

hospitalizations averted by CICT are also provided on this page. 
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