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CONNECTED-DENSE-CONNECTED SUBGRAPHS IN TRIPLE NETWORKS

by

DHARA SHAH

Under the Direction of Sushil Prasad, PhD, Yubao Wu, PhD

ABSTRACT

Finding meaningful communities - subnetworks of interest within a large scale network -

is a problem with a variety of applications. Most existing work towards community detection

focuses on a single network. However, many real-life applications naturally yield what we

refer to as Triple Networks. Triple Networks are comprised of two networks, and the network

of bipartite connections between their nodes. In this paper, we formulate and investigate

the problem of finding Connected-Dense-Connected subgraph (CDC), a subnetwork which

has the largest density in the bipartite network and whose sets of end points within each

network induce connected subnetworks. These patterns represent communities based on

the bipartite association between the networks. To our knowledge, such patterns cannot

be detected by existing algorithms for a single network or heterogeneous networks. We

show that finding CDC subgraphs is NP-hard and develop novel heuristics to obtain feasible

solutions, the fastest of which is O(nlogn+m) with n nodes and m edges. We also study

different variations of the CDC subgraphs. We perform experiments on a variety of real

and synthetic Triple Networks to evaluate the effectiveness and efficiency of the developed

methods. Employing these heuristics, we demonstrate how to identify communities of similar

opinions and research interests, and factors influencing communities.



INDEX WORDS: Triple Networks, Unsupervised community detection , max-flow densest
bipartite subgraph , NP-Hard, greedy node deletions , local search
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PART 1

INTRODUCTION

Community detection is a key primitive with a wide range of applications in real world

[1]. Most existing work focuses on finding communities within a single network. In many

real-life applications, we can often observe Triple Networks consisting of two networks and a

third bipartite network representing the interaction between them. For example, in Twitter,

users form a follower network, hashtags form a co-occurrence network, and the user-hashtag

interactions form a bipartite network. The user-hashtag interactions represent a user’s posts

or tweets containing a hashtag. Figure 5.2 shows a real Twitter Triple Network. The nodes

on the left part represent users and those on the right represent hashtags. The edges among

the nodes on the left represent a user following other user. The edges among the nodes

on the right represent two hashtags appearing in the same tweet. The edges in between

represent a user interacting with tweets containing a hashtag. This Triple Network model

can ideally represent many real world applications such as taxi pick-up-drop-off networks,

Flixster user-movie networks, and author-paper citation networks.

In this paper, we study the problem of finding the Connected-Dense-Connected sub-

Figure (1.1) Twitter Triple Network
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graphs (CDC) in Triple Networks. Given a Triple Network consisting of two graphs

Ga(Va, Ea) and Gb(Vb, Eb) and a bipartite graph Gc(Va, Vb, Ec), the CDC consists of two

subsets of nodes S ⊂ Va and T ⊂ Vb such that the induced subgraphs Ga[S] and Gb[T ] are

both connected and the density of Gc[S, T ] is maximized.

In the Twitter Triple Network in Figure 5.2, we observe two CDC subgraphs: the

one at the top with S1 = {Tammie, Bill, Stacy, Vivien} and T1 = {Patriots, TomBrady,

SuperbowlChamps, halftime}, and the one at the bottom with S2 = {Mike, Daniel, Rob,

Brent} and T2 = {Rams, WeWereRobbed, toughgame, Maroon5}. In either of the two

CDCs, the left and right networks are connected and the middle one is dense. These CDCs

are meaningful. The CDC at the top shows that Patriots’ fans are praising Tom Brady and

are happy to be champions again. The CDC at the bottom shows that LA Rams’ fans are

disappointed to loose the game.

Our problem is different from finding co-dense subgraphs [2323] or coherent dense sub-

graphs [4545], whose goal is to find the dense subgraphs preserved across multiple networks

with the same types of nodes and edges. In our problem, the left and right networks contain

different types of nodes and the edges in the three networks represent different meanings.

Our problem is also different than the densest connected subgraphs in dual networks [6].

Dual networks consist of one set of nodes and two sets of edges. Triple Networks consist of

two sets of nodes and three sets of edges. Triple Networks can degenerate to dual networks

when the two sets of nodes are identical and the bipartite links connect each node to its

replica.

Previous work shows that finding the densest subgraph in a single network could be

solved in polynomial time [7] and finding the densest connected subgraph in dual networks

is NP-hard [6]. We show that finding CDC subgraph in Triple Networks is also NP-hard.

We develop two heuristic approaches to find approximate solutions. The first approach finds

CDC subgraphs of the densest bipartite subgraph. The second approach starts from large

degree nodes and utilizes a local search heuristic to find CDC subgraphs. We further study

variant problems with different connectivity and seed constraints, and also develop heuristics
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for the variant problems. We perform extensive empirical study using a variety of real and

synthetic Triple Networks to demonstrate the effectiveness and efficiency of the developed

algorithms.

The rest of the paper is organized as follows. Section 2 places our work among related

work and contrasts with them. Section 3 defines CDC subgraphs and its variants, proving

that finding these patterns is NP-Hard. Section 4 discusses heuristics to obtain these pat-

terns. Section 5 illustrates effectiveness and of CDC subgraphs and variants, and efficiency

of the heuristic methods deployed on real and synthetic networks. Section 6 concludes this

work.
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PART 2

BACKGROUND AND RELATED WORK

The problem of finding a densest subgraph of a graph has been well studied by data

mining community. At the core, this problem asks for finding subgraphs with the highest

average degree. This problem has been solved in polynomial time using max-flow min-cut

approach [7]. Inspired by this approach, the problem of finding densest subgraph in a directed

graph has also been solved in polynomial time [8]. The prohibitive cost of these polynomial

time algorithms has been addressed with 2-approximation algorithm [9]. However, variations

of densest subgraph problems, such as discovery of densest subgraph with k nodes, have been

shown to be NP-hard [10]. On the other hand, the problem of finding densest subgraph with

pre-selected seed nodes is solvable in polynomial time [11].

The solutions above are designed for homogeneous information network structure where

the nodes and edges have just one type. Heterogeneous information networks [12] – the

networks with multiple node and edge types – have been a new development in the field of

data mining. Heterogeneous network structure provides a model for graph infusion with rich

semantics. The Triple Networks introduced in this paper are a type of heterogeneous network

with node types Va and Vb, and edge types Ea, Eb and Ec. Our work can be categorized

as unsupervised clustering in heterogeneous network. Parallel to our work, Boden et al.

discuss a density based clustering approach of k-partite graphs in heterogeneous information

structure [13]. In this work, two types of nodes Va and Vb are considered. With node type

specific hyper-parameters and the bipartite connections Ec, the connections Ea and Eb are

inferred. This method of clustering is different from our work where Ea and Eb are part

of the network, and the definition of density is hyper-parameter free. Boden et al. detect

communities by subspace clustering on nodes’ projection to attribute space. In contrast,

our work of finding CDC subgraphs cannot be inferred as a subspace clustering technique.
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Though both works produce iterative refinement algorithms, the former concentrates on

improving inference of Ea and Eb iteratively.

The closest network schema to our work is dual networks [6], discovered by Wu et al.

A dual network is comprised of two networks having the same set of nodes but different

types of edges. These two networks are inferred as physical and conceptual networks. Wu et

al. provide 2-approximation algorithms for NP-hard problem of finding subgraphs that are

densest in conceptual network, and are connected in physical network. Though the network

architecture and subgraph patterns are different, our work is inspired by the pruning methods

and variants proposed in this work.
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PART 3

TRIPLE NETWORK, CDC SUBGRAPHS AND VARIANTS

In this section we define Triple Network, CDC subgraph and its variants. We prove

that finding CDC subgraph and variants from a Triple Network is NP-hard.

Definition 1 (Triple network). Let Ga(Va, Ea) and Gb(Vb, Eb) represent graphs of two net-

works. Let Gc(Va, Vb, Ec) represent the bipartite graph between Ga and Gb. G(Va, Vb, Ea, Eb, Ec)

is the Triple Network generated by Ga, Gb and Gc.

We abbreviate a Triple Network as G. An example of Triple Network is illustrated in

figure 3.1(a).

The subgraphs induced by Sa ⊂ Va and Sb ⊂ Vb in networks Ga, Gb and Gc are denoted

by Ga[Sa], Gb[Sb] and Gc[Sa, Sb]. For brevity, we denote this sub Triple Network, a set of

three subgraphs, as G[Sa, Sb].

Definition 2 (Density of a Triple Network). Given a Triple Network G[Sa, Sb], its density

is defined as ρ(Sa, Sb) = |Ec(Sa,Sb)|√
|Sa||Sb|

, where |Ec[Sa, Sb]| is the number of bipartite edges in

(a) An example of a toy Triple Net-

work

(b) CDC subgraphs of the

toy Triple Network

(c) OCD subgraph of

the toy Triple Network

Figure (3.1) Toy Triple Network and its CDC and OCD subgraphs
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subgraph Gc[Sa, Sb], |Sa| is the number of nodes in Ga[Sa] and |Sb| is the number of nodes in

Gb[Sb].

For example, the density of sub Triple Network in figure 3.1(b) with Sa = {1, 2, 3} and

Sb = {6, 7, 8}] is ρ(Sa, Sb) = |Ec(Sa,Sb)|√
|Sa||Sb|

= 6√
3∗3 = 2.

By definition of density, only the bipartite edges of a Triple Network contribute to the

density. Hence, the density of a Triple Network G is same as the density of its bipartite

subgraph Gc.

3.0.1 Connected-Dense-Connected (CDC) subgraphs

Definition 3 (CDC subgraph). Given Triple Network G(Va, Vb, Ea, Eb, Ec), a CDC subgraph

is a sub Triple Network G[Sa, Sb] such that

1. Ga[Sa] and Gb[Sb] are connected subgraphs, and

2. the density ρ(Sa, Sb) is maximized.

For example, the density of each CDC subgraph in figure 3.1(b) is 2, higher than density

of any other sub Triple Network of the Triple Network 3.1(a) that is connected in Ga and

Gb. A Triple Network can have multiple CDC subgraphs.

Theorem 1. Finding CDC subgraph in a triple network is NP Hard.

Proof. We prove that finding CDC subgraph is a reduction of set-cover problem. Let R =

{r1, · · · rp} be a set and and C = {C1, · · ·Cq} be its cover with R = ∪qi=1Ci. The aim of this

set cover problem is to find minimum subset Copt ⊂ C, known as optimal set-cover, such that

each rj ∈ R belongs to at least one set of Copt. This problem is proved to be NP complete.

Let T = {t1, · · · tp} be a set of points, having the same cardinality as R. Let D =

{D1, · · ·Dq} be a set-cover of T , analogous to C, such that if ri ∈ Cj, then ti ∈ Dj. Hence,

T,D can be considered as a copy of R,C.

We construct the triple network as follows. Let Va = {h, r1, · · · rp, C1, · · ·Cq}, where

node h is connected to every Ci ∈ C and node ri is connected to node Cj if ri ∈ Cj in the
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Figure (3.2) Triple Network from set-cover

set-cover problem. Similarly, let Vb = {k, t1 · · · tp, D1, · · ·Dq} be the analogous set to Va. We

connect Va and Vb by connecting all nodes {r1, · · · .rp, h} to all nodes {t1, · · · , tp, k}.

Construction of such triple network is illustrated in figure 3.2 from an instance of set-

cover problem C1 = {r1, r2}, C2 = {r1}, C3 = {r2, r4}, C4 = {r2, r3}, C5 = {r4}.

Let Copt ⊂ C be an optimal solution to the set-cover problem of C and |Copt| = q∗ ≤ q.

Similarly, let Dopt be the analogous optimal solution to D and |Dopt| = q∗ ≤ q. Let H =

{h, r1, · · · , rp} and J = {k, t1, · · · , tp}. The subgraph induced by Sa = H ∪Copt is connected

in Va, and similarly, the subgraph induced by Sb = J ∪Dopt is connected in Vb. Hence, the

subgraph G[Sa, Sb] has density ρ(Sa, Sb) = (p+1)2

(p+q∗+1)
.

Let S1 and S2 be any nonempty node sets where Ga[S1] and Gb[S2] are connected. In

general, S1 = H ′ ∪ C ′ where H ′ ⊂ H and C ′ ⊂ C. Similarly, S2 = J ′ ∪ D′ where J ′ ⊂ J

and D′ ⊂ D. We show that ρ(S1, S2) ≤ ρ(Sa, Sb), making G[Sa, Sb] the CDC subgraph. Let

|H ′| = p1, |C ′| = q1, |J ′| = p2 and |D′| = q2. Hence, ρ(S1, S2) = p1p2√
(p1+q1)(p2+q2)

.

First, we consider the case when S1 contains all the nodes of H and S2 contains all the

nodes of J . In this case, p1 = p2 = p + 1. Also, by definition of optimal set-cover, q∗ ≤ q1

and q∗ ≤ q2. Hence, ρ(S1, S2) = (p+1)2√
(p+q1+1)(p+q2+1)

≤ (p+1)2

(p+q∗+1)
= ρ(Sa, Sb).

Second, we consider the case when S1 contains a subset of nodes H ′ ⊂ H. In this case,

we first show that adding elements from H \H ′ to S1 will only increase its density.

If h 6∈ S1, then after adding h to S1, the resulting subgraph has density (p1+1)p2√
(p1+q1+1)(p2+q2)

>

p1p2√
(p1+q1)(p2+q2)

= ρ(S1, S2). This subgraph is also connected in Ga, since h is connected to
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every Ci ∈ C. To add a node rj ∈ H \ H ′ and making it still connected, we need to add

at most one node Ci to C ′ with rj ∈ Ci. Hence, the density of this resulting subgraph is

(p1+1)p2√
(p1+q1+2)(p2+q2)

> p1p2√
(p1+q1)(p2+q2)

= ρ(S1, S2). We can repeat this process by adding remain-

ing nodes of H \H ′ to S1, while density of the resulting subgraphs keeps increasing.

Similarly, adding elements from J \J ′ to S2 increases density of the resulting subgraphs.

Since we proved in the first case that the density ρ(S1, S2) when H ⊂ S1 and J ⊂ S2, we

have hence completed the proof of the second case.

In summary, we proved that for any nonempty sets S1 ⊂ Va and S2 ⊂ Vb,

ρ(S1, S2) ≤ ρ(Sa, Sb), making G[Sa, Sb] a CDC subgraph. Also,G[Sa, Sb] is the solution

inducted by optimal set covers, an instance being Sa = {r1, r2, r3, r4, h, C1, C3, C4} and

Sb = {s1, s2, s3, s4, k,D1, D3, D4} hence proving that finding CDC subgraphs is NP hard.

3.0.2 Variants of CDC subgraph

CDC subgraphs stipulate connectedness of Ga(Sa) and Gb(Sb). Alleviating this con-

nectivity constraint, we define OCD subgraphs for which exactly one of Ga(Sa) or Gb(Sb) is

connected.

Definition 4 (OCD subgraph). Given a Triple Network G(Va, Vb, Ea, Eb, Ec) a OCD sub-

graph is a sub Triple Network G[Sa, Sb] such that

1. Exactly one of Ga[Sa] or Gb[Sb] is connected, and

2. The density ρ(Sa, Sb) is maximized.

For example, the sub Triple Network G[{1, 2, 3, 4, 5}, {6}] with the highest density 2.23

in figure 3.1(c) is an OCD subgraph as Ga[{5}] is connected. A Triple Network can have

multiple OCD subgraphs.

Finding OCD subgraph in triple network is NP hard

Proof. We prove that finding OCD subgraph is also reduction of the set cover problem. We

first construct the triple network same as in theorem 1. Let Sa = H and Sb = J ∪Dopt. The
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subgraph G[sa, Sb] hence has density ρ(Sa, Sb) = (p+1)2√
(p+1)(p+q∗+1)

We claim that G[Sa, Sb] is an

OCD subgraph. We observe that G[Sb] is connected.

Let S1 and S2 be any nonempty node sets where either G[S1] or G[S2] is connected. In

general, S1 = H ′ ∪ C ′ where H ′ ⊂ H. Similarly, S2 = J ′ ∪D′ where J ′ ∪ J . We show that

ρ(S1, S2) ≤ ρ(Sa, sb).

First, we consider the case when S1 contains all the nodes of H and S2 contains all the

nodes of J . In this case, p1 = p2 = p + 1. Also, by definition of optimal set-cover, q∗ ≤ q1

and q∗ ≤ q2. Hence, ρ(S1, S2) = (p+1)2√
(p+q1+1)(p+q2+1)

≤ (p+1)2√
(p+q∗+1)(p+1)

= ρ(Sa, Sb).

Second, we consider the case when S1 contains a subset of nodes H ′ ⊂ H. In this case,

we first show that adding elements from H \H ′ to S1 will only increase its density. Suppose,

Ga[S1] is not connected and Gb[S2] is connected. Then, after adding element from H \H ′,

the resulting subgraph has density (p1+1)p2√
(p1+q1)(p2+q2)

> p1p2
(p1+q1)(p2+q2)

= ρ(S1, S2). This includes

adding h to S1 if h 6∈ H ′, making resultant subgraph connected in Va. Now suppose Ga[S1]

is connected. Then, following the same case of theorem 1, we first add h if it is not in H ′

and then add element from H \H ′ and still show that the resultant subgraph is connected in

Va and its density increases. Similarly, we conclude that when S2 contains a subset of nodes

in J ′ ⊂ J , adding elements from J ′ \ J also increases the density of the resultant subgraph.

At last, we observe that if Ga[S2] is connected, then the resultant subgraph obtained

by removing elements from C ′ has density p1p2√
(p1+q1−1)(p2+q2)

> ρ(S1, S2).

In summary, we have proved that for any nonempty sets S1 ⊂ Va and S2 ⊂ Vb with

either Ga[S1] or Gb[S2] connected has density ρ(S1, S2) ≤ ρ(Sa, Sb), making G[Sa, Sb] an

OCD subgraph. Also, G[Sa, Sb] is the solution induced by optimal set cover, an instance

being Sa = {r1, r2, r3, r4, h}, Sb = {s1, s2, s3, s4, k,D1, D3, D4} hence proving that finding

OCD subgraphs is NP hard.

3.1 Adding constraints to CDC and OCD subgraphs

We observe that CDC patterns are meaningful around pre-selected nodes in Ga(Sa)

or Gb(Sb). We identify these pre-selected nodes as seeds. We introduce CDC and OCD
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subgraphs with seed constraints, where Ga(Sa) or Gb(Sb) should maintain their connectivity

constraints while containing the seeds.

Definition 5. (CDC seeds).Given a Triple Network G(Va, Vb, Ea, Eb, Ec) and sets of seed

nodes V1 ⊂ Va and V2 ⊂ Vb, the CDC seeds subgraph consists of sets of nodes Sa, Sb such

that V1 ⊂ Sa, V2 ⊂ Sb, Ga[Sa] and Gb[Sb] are connected and density of G[Sa, Sb] is maximized.

Definition 6. (OCD seed). Given a Triple Network G(Va, Vb, Ea, Eb, Ec) and a set of node

V with V ⊂ S, the OCD seed consists of sets of nodes such that either Ga[S] or Gb[S] is

connected and the density of G[S,Ec[S]] is maximized.

Finding OCD, CDC seeds and OCD seed subgraphs in a Triple Network is NP-hard.

Similar set-cover arguments as in Theorem 1 could be used to prove it. Please refer to [14]

for details.
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PART 4

HEURISTIC ALGORITHMS

Since mining CDC subgraphs is NP hard, we propose heuristic algorithms for finding

feasible solutions by two approaches. In our first approach, we obtain the densest bi-partite

subgraph Gc[Sa, Sb] and then find the connected components of Ga[Sa] and Gb[Sb] using BFS.

As a result, we obtain connected sub Triple Networks, with bi-partite edges in Gc[Sa, Sb].

We then choose the one with the highest density as a feasible CDC subgraph. Since the

time complexity of obtaining the densest bi-partite subgraph is higher than that of BFS,

algorithms in sections 4.1 and 4.2 focus on improving the complexity of finding the dens-

est bi-partite subgraphs. In second approach, With given seed nodes from Va and Vb, we

build CDC subgraphs by adding nodes with highest bipartite degrees, while maintaining the

connectedness in Ga and Gb. This Local Search algorithm is presented in section 4.3.

We observe that there can be multiple densest bi-partite subgraphs of a bi-partite graph,

and real world Triple Networks are sparse in Ec. To use the sparsity of Ec as a leverage, we

explore methods to divide the bipartite graph G(Va, Vb, Ec) in to smaller bi-partite subgraphs

first and then apply the densest subgraph algorithms for some of these subgraphs. For an

undirected graph, a connected densest subgraph exists. Following this intuition, we proved

that the same is true for our formulation of the bi-partite graph.

Theorem 2. Let G(Sa1 , Sb1 , E(Sa1 , Sb1)), G(Sa2 , Sb2 , E(Sa2 , Sb2)) be bipartite subgraphs, with

Sa1 ∩ Sa2 = φ, Sb1 ∩ Sb2 = φ,E(Sa1 , Sb2) = φ,E(Sa2 , Sb1) = φ,E(Sa1 , Sb1) ∩ E(Sa2 , Sb2) = φ.

Let |Sa1| = a1, |Sa2| = a2, |Sb1| = b1, |Sb2 | = b2, |E(Sa1 , Sb1)| = e1, |E(Sa2 , Sb2)| = e2.

Let the density of this graphs defined by

ρ(G(Sa1 , Sb1 , E(Sa1 , Sb1)) = e1√
a1b1

,

ρ(G(Sa2,Sb2 , E(Sa2 , Sb2)) = e2√
a2b2

,

ρ(G(Sa1 ∪ Sa2 , Sb1 ∪ Sb2 , E(Sa1 , Sb1) ∪ E(Sa2 , Sb2)) = e1+e2√
(a1+a2)(b1+b2)
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Prove that e1+e2√
(a1+a2)(b1+b2)

≤ max{ e1√
a1b1

, e2√
a2b2
}

Proof. Without loss of generality, let max{ e1√
a1b1

, e2√
a2b2
} = e1√

a1b1
.

This implies,

e1√
a1b1

≥ e2√
a2b2

⇔ e2 ≤ e1

√
a2b2√
a1b1

(4.1)

Now, under this assumption,

e1 + e2√
(a1 + a2)(b1 + b2)

≤ max{ e1√
a1b1

,
e2√
a2b2

} (4.2)

⇔ e1 + e2√
(a1 + a2)(b1 + b2)

≤ e1√
a1b1

(4.3)

(4.4)

Also, LHS of equation (4.2)=

e1 + e2√
(a1 + a2)(b1 + b2)

≤
e1 + e1

√
a2b2√
a1b1√

(a1 + a2)(b1 + b2)
Because (4.1)

=
e1(
√
a1b1 +

√
a2b2)

√
a1b1

√
(a1 + a2)(b1 + b2)

Hence, if we prove

e1(
√
a1b1 +

√
a2b2)

√
a1b1

√
(a1 + a2)(b1 + b2)

≤ e1√
a1b1

= RHS of equation (4.2)

we prove (4.2). Here,

e1(
√
a1b1 +

√
a2b2)

√
a1b1

√
(a1 + a2)(b1 + b2)

≤ e1√
a1b1

⇔ (
√
a1b1 +

√
a2b2) ≤

√
(a1 + a2)(b1 + b2)

⇔ (
√
a1b1 +

√
a2b2)2 ≤ (a1 + a2)(b1 + b2)

⇔ 2
√
a1b1a2b2 ≤ a1b2 + a2b1

⇔
√

(a1b2)(a2b1) ≤ a1b2 + a2b1

2
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This is true since arithmetic mean of two non-negative real numbers is always greater than

or equal to their geometric mean. Hence

e1 + e2√
(a1 + a2)(b1 + b2)

≤ e1(
√
a1b1 +

√
a2b2)

√
a1b1

√
(a1 + a2)(b1 + b2)

≤ e1√
a1b1

= max{ e1√
a1b1

,
e2√
a2b2

}

This allows us to consider sub Triple Networks that are connected in Ec for the densest

subgraph discovery, which significantly lowered the cost of our algorithms.

4.1 Maxflow Densest Subgraph (MDS)

MDS algorithm finds a densest bipartite subgraph of a Triple Network in polynomial

time. Inspired by [8] and [7], we use the max-flow min-cut strategy to prove this.

Definition 7. (Maximum density and densest subgraph in Triple Network) In a Triple Net-

work G(Va, Vb, Ea, Eb, Ec), maximum density is ρ∗ = max
Sa⊆Va,Sb⊆Vb

|Ec(Sa,Sb)|√
|Sa||Sb|

.

The subgraph G[S∗a, S
∗
b ] is a densest subgraph if ρ(S∗a, S

∗
b ) = ρ∗.

Let Gc[Sa, Sb] be a bi-partite subgraph of the Triple Network G. Consider the number

λ ∈ R+ for which |Ec(Sa, Sb)| − λ
√
|Sa||Sb| = 0. λ, thus the density of this graph, depends

on ratio r = |Sa|
|Sb|

and |Ec(Sa, Sb)|. Ratio r can take at most |Va||Vb| different values, and

λ ∈ (0,
√
|Va||Vb|]. It is evident from definition 7 that finding a densest subgraph of the Triple

Network is equivalent to finding

max
Sa⊂Va,Sb⊂Vb

{λ| |Ec(Sa, Sb)| − λ
√
|Sa||Sb| = 0} over all subgraphs Ga[Sa], Gb[Sb]. Let

G(S∗a, S
∗
b , E

∗
c ) be the subgraph for which this maxima is achieved. Instead of enumerat-

ing all possible subgraphs Sa ⊂ Va and Sb ⊂ Vb, if we could guess λ and r. With these

guessed values of λ and r, if there exists a subgraph G[Sa, Sb] with |Sa|
|Sb|

= r and density

greater than the current guess λ, then the densest subgraph would be the graph associated
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with maximum such λ. We argue that it is sufficient to guess r and λ to guess the density

of the bi-partite graph as the following: By definition of λ and r,

λ =
|Ec(Sa, Sb)|√
|Sa||Sb|

r =
|Sa|
|Sb|
⇒ |Sa| = r|Sb|

⇒ λ =
|Ec(Sa, Sb)|
|Sb|
√
r

⇒ λ
√
r =
|Ec(Sa, Sb)|
|Sb|

However, we assume that we only consider connected bi-partite graphs, meaning that for

each va ∈ Sa and vb inSb, we know that their bi-partite degrees d(va) and d(vb) are nonzero.

If that was not the case, then we will have dropped those elements, and have gotten better

density. Also, we proved this as a theorem.

Hence, we can safely say that |Ec(Sa, Sb)| =
∑

vb∈Sb
d(vb), with d(vb) ≥ 1. This means that

|Ec(Sa,Sb)|
|Sb|

represents average degree of |Sb|, that can be approximated as k, k ∈ [1,∞). Hence,

λ
√
r =

k|Sb|
|Sb|

= k

so, by guessing r and λ, we try to see if there is a subgraph G[Sa, Sb] having average degree

k in Sb

Given the values of λ and r, we construct the following flow network using the Triple

Network G. This flow network yields a subgraph G[Sa, Sb] of density greater than λ if such

subgraph exists in G. Else it yields an empty set.

1. Initialize weighted directed graph G′(V ′, E ′) with V ′ = Va∪Vb, E ′ = φ, and a constant

m = |Ec|

2. For all edges {va, vb} ∈ Ec, add (vb, va) with weight 2 to E ′
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(a) Construction of the flow graph for finding a dens-

est subgraph of the Triple Network G(VA, Vb, Ec)

(b) Finding the minimum cut for given ratio

guess r and iteratively adjusting the bounds of

maximum density renders a densest subgraph

G(Sa, Sb)

Figure (4.1) MDS algorithm: Flow construction and iterations

3. Add source node s and sink node t to V ′

4. For all vertices v ∈ Va ∪ Vb, add edge (s, v) with weight 2m to E ′

5. For all vertices va ∈ Va, add edge (va, t) with weight 2m+ λ√
r

to E ′

6. For all vertices vb ∈ Vb, add edge (vb, t) with weight 2m +
√
rλ − 2d(vb) to E ′, where

d(vb) is the degree of vb in G

Now, we apply the MDS algorithm 1 to this graph.

Theorem 3. MDS algorithm yields a densest subgraph of the Triple Network.

Proof. Let G(Va, Vb, Ec) be a Triple Network with Va 6= φ, Vb 6= φ. Let G′(V ′, E ′) be the

weighted directed flow network constructed from this network as mentioned above. Let S, T

be the minimum s-t cut of this flow network. From figure 4.1(a), as a base line, if S = {s}

and T = Va∪Vb∪{t}, then the value the cut is 2m(|Va|+ |Vb|). However, if S = {s}∪Sa∪Sb
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and T = Va \ {Sa} ∪ Vb \ {Sb} ∪ {t} then the value of a cut in this flow network is

2m|Va|+ 2m|Vb| −
∑

va∈Va\Sa

2m−
∑

vb∈Vb\Sb

2m+
∑
va∈Sa

(2m+
λ√
r

)

+
∑
vb∈Sb

(2m+
√
rλ− 2d(vb)) +

∑
{vb,va}∈E
,vb∈Sb,
va∈Va\Sa

2

= 2m(|Va|+ |Vb|) + λ
√
r|Sb|+

λ√
r
|Sa| − 2|Ec(Sa, Sb)|

= 2m(|Va|+ |Vb|)− 2(|Ec(Sa, Sb)| − λ
√
|Sa||Sb|)(∵ r =

|Sa|
|Sb|

)

This non-trivial s-t cut, if exists, is minimal. Hence the value of this cut is less than the value

of trivial cut. In other words, 2m(|Va|+ |Vb|) ≥ 2m(|Va|+ |Vb|)− 2(|Ec(Sa, Sb)| − λ
√
|Sa||Sb|

Hence, for a non-trivial s-t cut, |Ec(Sa, Sb)|λ
√
|Sa||Sb| < 0. So if, for given val-

ues of λ and r, the flow network renders a non-trivial s-t cut S, T ; then the subgraph

S \ {s} = (Sa, Sb, E(Sa, Sb)) has density λ such that

|Ec(Sa, Sb)|−λ
√
|Sa||Sb| < 0. Which implies that the density of the subgraph (Sa, Sb, E(Sa, Sb)) ≥

λ. Hence, maximum density has to be higher than the current guess of λ. However, if the

flow network renders a trivial s-t cut, no subgraph of G has density λ with given r. Hence,

maximum density has to be lower than current guess of λ. By repeating this process as a

binary search, eventually we will find the smallest λ with |Ec(Sa, Sb)| − λ
√
|Sa||Sb| = 0 for

the given r. By iterating on possible values of r, the maximum value of such λ is found. This

value is maximum density and the corresponding subgraph is a densest subgraph of G.

Theorem 4. MDS algorithm is a polynomial time algorithm.

Proof. The density difference of any two subgraphs of a bi-partite graph G(Va, Vb, Ec) is∣∣∣∣ m√
v1v2
− m′√

v
′
1v
′
2

∣∣∣∣ ≥ 1
|Va|2|Vb|2

with 0 ≤ m,m′ ≤ |Ec|, 1 ≤ v1, v
′
1 ≤ |Va|, 1 ≤ v2, v

′
2 ≤ |Vb|. This

guarantees that the search for maximum density in the range (0,
√
|Va||Vb|] can be performed

with step size 1
|Va|2|Vb|2

, halting in O(|Va|3/2|Vb|3/2) iterations.
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Input: Triple Network G(Va, Vb, Ec),with Va 6= φ, Vb 6= φ
Output: A densest subgraph G[Sa, Sb] of G

possible ratios = { ij |i ∈ [1, · · · |Va|], j ∈ [1, · · · |Vb|]}
densest subgraph = φ,maximum density = 0
for ratio guess r ∈ possible ratios do

low ← 0, high←
√
|Va||Vb|, g = φ

while high− low ≥ 1
|Va|2|Vb|2

do

mid = high+low
2

construct a flow graph G′ as described in 1 - 6 and find the minimum s-t cut
S, T
g′ = S \ {source node s}
if g′ 6= φ then

g ← g′

low = mid

else high = mid

if maximum density < low then
maximum density = low
densest subgraph = g

Algorithm 1 Maxflow Densest Subgraph (MDS)

Within each iteration of this binary search, the minimum cut of the flow graph is cal-

culated in O(|Va|+ |Vb|)2(2(|Va|+ |Vb|) + |Ec|)). Hence, the complexity of algorithm 1 is

O(|Va|4.5|Vb|4.5). Adding the cost of BFS as stage II, the upper-bound still remains un-

changed.

4.2 Greedy Node Deletions

Due to high time complexity, MDS algorithm is infeasible for large Triple Networks. In

this section, we present heuristics to obtain a dense bi-partite subgraph with a reduced time

complexity.

The first heuristic to obtain a dense bipartite subgraph is to iteratively delete the nodes

with the lowest bipartite degree while keeping track of the subgraph with the highest density

obtained in the process. This algorithm of Greedy Node Deletion using degrees (GND) is

formalized as Algorithm 2, where criterion in line 2 is node degree.

However, degree is not the best measure of a node’s impact on density. Figure 4.2



19

Input: Triple Network G(Va, Vb, Ec),with Va 6= φ, Vb 6= φ,
criterion to delete nodes

Output: A densest subgraph G[Sa, Sb] of G

Sa = Va, Sb = Vb,maximim density = ρ(Va, Vb)
while Va 6= φ and Vb 6= φ do

v = node with minimum criterion in Va ∪ Vb
Va = Va \ {v}, Vb = Vb \ {v}
if maximum density < ρ(Va, Vb) then

Sa = Va, Sb = Vb, Ec = E[Va, Vb]

return G[Sa, Sb]
Algorithm 2 Greedy Node Deletions

Figure (4.2) GND misses the densest subgraph by deleting the nodes {1, 2, 3}

illustrates that GND delets the nodes {1, 2, 3} iteratively. Iteratively deleting the lowest

degree neighbors of the higher degree nodes may lead to missing the densest bi-partite

subgraph [{1, 2, 3, 4}, {6}].

Instead of accounting for the connections of a node, the percent of the possible connec-

tions of that node may serve as a better measure of the node’s impact on density. With this

intuition, we define rank of a node.

Definition 8 (Rank). Let G(Va, Vb, Ea, Eb, Ec) be a Triple Network. For va ∈ Va, rank(va) =

d(va)
|Vb|

and for vb ∈ Vb, rank(vb) = d(vb)
|Va| .

Using the lowest rank as the deletion criterion, we modify Algorithm 2 and formulate

Greedy Rank Deletion (GRD) Algorithm 2, where the criterion of deletion in line 2 is rank.

A drawback of GRD is that the deletion of nodes is sequential and one at a time and

hence slow. To expedite this process, for each iteration, we delete all the nodes satisfying

the deletion criterion in bulk. This does not lower the time complexity upper-bound, but
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Input: Triple network G(Va, Vb, Ec),with Va 6= φ, Vb 6= φ
Output: A densest subgraph G[Sa, Sb] of G

Sa = Va, Sb = Vb,maximim density = ρ(Va, Vb)
while Va 6= φ and Vb 6= φ do

v = node with minimum rank in Va ∪ Vb
Va = Va \ {v}, Vb = Vb \ {v}
if maximum density < ρ(Va, Vb) then

Sa = Va, Sb = Vb, Ec = E[Va, Vb]

return G[Sa, Sb]
Algorithm 3 Greedy Node Deletion by using node ranks(GRD)

the running time decreases exponentially. Fast Rank Deletion (FRD) is hence formulated as

4. This algorithm could be tuned by choosing different ε values from (−1, 1) with the lower

to higher being less to more deletions per iteration.

Input: Triple Network G(Va, Vb, Ec),with Va 6= φ, Vb 6= φ,
value of ε ∈ (−1, 1)

Output: A densest subgraph G[Sa, Sb] of G

Sa = Va, Sb = Vb,maximim density = ρ(Va, Vb)
while Va 6= φ and Vb 6= φ do

r̄ = average node rank in G
V̄ = {v ∈ Va ∪ Vb | rank(v) < (1 + ε)r̄}
Va = Va \ V̄ , Vb = Vb \ V̄
if maximum density < ρ(Va, Vb) then

Sa = Va, Sb = Vb, Ec = E[Va, Vb]

return G[Sa, Sb]
Algorithm 4 Fast Rank Deletion (FRD)

4.2.1 Time complexity of Greedy Node Deletions

By maintaining two {degree:node} Fibonacci heaps and an index on the nodes, the

time complexity of these greedy deletion algorithms is O((Va+Vb)log(Va+Vb)+Ec). Adding

the cost of BFS for stage II, the total time complexity for obtaining CDC subgraphs is

O((Va + Vb)log(Va + Vb) + Ec + Ea + Eb)
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Input: G(Va, Vb, Ec),with Va 6= φ, Vb 6= φ
seedSa = Set of seeds in Va
seedSb = Set of seeds in Vb

Output: A subgraph G[Sa, Sb] of G

Sa = Connected component of seedSa in Ga
Sb = Connected component of seedSb in Gb
δ(Sa) = Boundary of Sa in Ga
δ(Sb) = Boundary of Sb in Gb
nbhd, the adjacency list of Va in Ga and Vb in Gb
max density = ρ(G[Sa, Sb])
do

v = node in δ(Sa) ∪ δ(Sb) with the highest degree in Gc[Sa, Sb]
Sa = Sa ∪ v if v ∈ Va, Sb = Sb ∪ v if v ∈ Vb
δ(Sa) ∪ δ(Sb) = δ(Sa) ∪ δ(Sb) ∪ nbhd(v) \ {v}
max density = max(max density, ρ(G[Sa, Sb]))

while ρ(Gc[Sa, Sb]) ≥ max density and δ(Sa) ∪ δ(Sb) 6= φ;

return G[Sa, Sb]
Algorithm 5 Local Search (LS)

4.3 Local Search

In practice, given a Triple Network, CDC subgraphs around pre-selected seeds are very

informative. For example, given a set of research interests, a list of research groups that

densely publish in these areas; or given a list of people, hot topics of discussion among their

friend-circles. To capture this intuition, in this section we introduce a bottom-up approach

for obtaining feasible CDC subgraphs, namely Local Search.

Given connected components Sa and Sb containing desired seeds in Va and Vb, the local

search algorithm finds CDC subgraph by adding nodes that increase the density while main-

taining connectedness of Sa and Sb. More precisely, outlined as algorithm 5, this algorithm

iteratively includes previously un-included boundary node of Sa ∪ Sb with the maximum

adjacency value to the set of included nodes.

4.3.1 Time complexity of Local Search

After calculating 2-approximation Steiner trees and maintaining degree:node binary

heap of the boundary δ(Sa) ∪ δ(Sb), the time complexity of Local Search algorithm is
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O(|Va|2log(Va) + |Vb|2log(Vb) + Ec). However, in practice, the search stops in a few iter-

ations and hence imperially the fastest algorithm.

4.4 Algorithms of variants

OCD subgraphs are bi-products of mining CDC subgraphs for the top-down algorithms.

The stage I of finding the densest bi-partite subgraph remains the same, but we apply stage

II connected components of Va or Vb and find the resultant OCD subgraph with highest

density. In bottom-up approach, we use LS algorithm with either Sa or Sb to be empty. The

resultant subgraphs rendered by LS more effective, but smaller in size in comparison to the

top-down algorithms. We obtain CDC seeds and OCD seed subgraphs using LS algorithm.
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PART 5

EXPERIMENTS RESULTS

In this section, we evaluate the effectiveness and efficiency of the proposed methods

through comprehensive experiments on real and synthetic datasets. We demonstrate the

effectiveness of CDC and OCD subgraphs by illustrating novelty of the information obtained

from these subgraphs on real Triple Networks. We demonstrate the efficiency of our algo-

rithms by measuring the running times of the algorithms as well as the density ratios of the

resultant CDC subgraphs.

The experiments are coded in Python 2.7 and run on 8 cores Intel Core i7 3.6Gz CPU

with 32G memory.

5.1 Real Triple Networks

We constructed several Triple Networks form a variety of application domains, here we

present networks constructed from Twitter, NYC taxi data, Flixter and ArnetMiner coauthor

datasets.

5.1.1 NYC Taxi data

New York City (NYC) yellow cab taxi data is a public dataset [15] where each taxi

trip’s pick-up and drop-off point has geographic location in decimal degrees. We consider

the trips from June 2016 to construct a Triple Network. The geographic location accuracy of

this dataset is thresholded up-to 5 decimal points, preserving granularity to different door-

entrances. As a result, we obtain |Ec| = 2, 066, 569 taxi trips with |Va| = 733, 896 distinct

pick-up and |Vb| = 794, 085 distinct drop-off points. We consider the points within haversine

distance of 50 meters to be connected, and obtain Ga(Va, Ea) of and pick-up points and

Gb(Vb, Eb) of drop-off points with |Ea| = 31, 513, 503 and |Eb| = 13, 465, 065 respectively.
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5.1.2 Twitter network

Twitter is a social media for micro-blogging, where users can follow each-other for

updates. To extract meaningful user-follower relationships, we choose the most popular news

networks, namely CNN, Huffington Post and Fox News and randomly chose a few thousand of

their intersecting followers. We iteratively grow this network by including followers of existing

nodes, with certain number of recent tweets, and number of their friends and followers.

Using Twitter’s REST API, we construct a 5-hop network with |Va| = 61, 726 users and

|Ea| = 7, 008, 491 edges. We collect |Vb| = 3, 679, 824 different hashtags from these users’

most recent tweets, with the users posting these hashtags |Ec| = 48, 269, 139 times. We

considered two hashtags related if they appeared in the same tweet. We also keep a count of

the number of tweets per hash-tag co- occurrence. By obtaining |Eb| = 2, 896, 925 hashtag

co-occurrence relations, we concluded building the Twitter Triple Network.

5.1.3 ArnetMiner Coauthor dataset

ArnetMiner Coauthor dataset is comprised of two types of relations: |Va| = 1, 712, 433

authors and their |Vb| = 3, 901, 018 research interests,with |Ec| = 2, 581, 981 relations of au-

thors to their research interests, and |Ea| = 4, 258, 946 co-author relationships. We consider

two interests linked if they co-occur in the list of research interests of an author. We keep a

count of number of authors per research interest co-occurrence. We obtain |Eb| = 953, 490

such edges.

5.1.4 Flixter dataset

Flixter[16] is a social network of users and their movie ratings. In the Flixter dataset,

there are |Va| = 786, 963 users, and |Ea| = 7, 058, 819 edges representing their friend-

circle. The user-item ranking matrix is comprised of |Ec| = 8, 184, 462 user rankings for

|Vb| = 48, 794 movies, with rating scale from 1 to 5 with 0.5 increment. With no sufficient

information, we have |Eb| = 0 edges relating these movies.
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Table (5.1) The real triple-networks on NY Taxi data (TX), Twitter (TW), ArnetMiner
(AM), and Flixter (FX) datasets

Data |Va| |Ea| |Vb| |Eb| |Ec|
TX 733, 896 31, 513, 503 794, 085 13, 465, 065 2, 066, 569
TW 61726 7008491 3679824 2896925 48269139
AM 1712433 4258946 3901018 953490 12589981
FX 786936 7058819 48794 0 8196077

Table (5.2) Logistics of Synthetic Random and R-MAT networks

|Va| |Ea| |Vb| |Eb| |Ec|
219 5× 106 219 5× 106 107

220 107 220 107 2× 107

221 2× 107 221 2× 107 4× 107

222 4× 107 222 4× 107 8× 107

The table 5.1 describes the statistics of the real Triple Networks.

5.2 Synthetic Triple Networks

In order to evaluate efficiency of our algorithms, we construct two types of synthetic

Triple Networks.

We generate Random Networks, with synthetic generation of Ga, Gb and Gc having

random edges.

To approximate real world Triple Networks synthetically, we also generate R-MAT Net-

works with Ga and Gb having R-MAT edges [17181718] and Gc having random edges.

We generate four different configurations of synthetic graphs for Random and R-MAT

networks, mentioned in table 5.2.

5.2.1 Effectiveness Evaluation on Real Networks

We illustrate the effectiveness of CDC subgraphs and variants by emphasizing the knowl-

edge gain from these patterns obtained from real networks. These figures demonstrate that
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(a) CDC subgraph yielding directional flow

of human migration in 1 hour period

(b) OCD subgraph yielding drop-off hot-

spots on a street in 4 hours period

Figure (5.1) CDC and OCD subgraphs from NY Taxi data. Traingles and circles represent
pick-up and drop-off points respectively

(a) CDC subgraph representing Patriots’ fans (b) CDC subgraph representing Rams’ fans

Figure (5.2) CDC subgraphs from Twitter. Users-followers networks on the left and hashtag
networks on the right.

CDC subgraphs and variants are communities detected by the strong associations to their at-

tributes. These subgraphs identify similar opinions, research interests and factors influencing

communities. They are also effective tools for hot-spot detection and fraud detection.

NYC Taxi data Figure 5.1 illustrates CDC and OCD subgraphs with pick-up and

drop-off points as triangles and circles respectively.

Figure 5.1(a) illustrates the CDC subgraph with pick-up locations on 6th Avenue be-

tween 18th and 27th street populated with food and shopping destinations, and drop-of

locations on 8th Avenue. This CDC subgraph is generated by observing the 6:00-7:00 pm

traffic on June 4, 2016. The drop-off points are clustered near 42nd street Port Authority bus

terminals of city transit. This CDC subgraph gives a directional flow of human migration
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(a) CDC seeds subgraph with author and research-interests seeds (b) OCD seed subgraph with research-interest

seeds

Figure (5.3) CDC and OCD subgraphs from ArnetMiner. Co-author networks on the left
and research-interest networks on right.

(a) OCD seed subgraph of user seeds influ-

enced by movies

(b) OCD subgraph of a possible fraud

Figure (5.4) OCD subgraphs from Flixter. User networks on the left and movie networks on
the right.

in a short distance during a specific time-frame. Figure 5.1(b) illustrates OCD subgraph

with pick-up seeds near 5th Avenue and Central Park South. This subgraph is generated by

observing 4:00-8:00 pm traffic on June 1, 2016. The pick-up points are scattered along Man-

hattan and the drop-off points are clustered around Pennsylvania Station, a public transit

hub. Thus, OCD subgraphs could be equivalents to hot-spot detection.

Twitter Network Figure 5.2 represents CDC subgraphs obtained from Twitter Net-

work. Left and right subgraphs represent users-followers and hashtag networks. We remove
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usernames to protect user privacy. These figures represent twitter users and their opinions

about SuperBowl contenders, Patriots and LA Rams. Hence, CDC subgraphs can identify

communities with contrasting opinions.

ArnetMiner coauthor data Figure 5.3 depicts CDC seeds and OCD seed subgraphs

from ArnetMiner Triple Network. Left and right subgraphs represent author-coauthor and

research-interest networks.

Figure 5.3(a) is a CDC seeds subgraph with randomly chosen author seed {M.Kandimir}

and interest seeds {power,energy}. This pattern yields author seed’s associates working on

related research topics of interest seeds. Figure 5.3(b) is OCD seed subgraph with interest

seeds chosen as {algorithm, gpu, performance}. This patterns yields 16 authors and their

respective co-author networks with publications related to interests seeds. Thus, even with

the given seeds, the CDC and OCD subgraphs are different from supervised community

detection.

Flixter data Figure 5.4 depicts OCD subgraphs illustrating influence of movies on

users. Left and right subgraphs represent the users’ social networks and the movies networks,

The users networks are connected.

Figure 5.4(a) is an OCD seed subgraph with users seeds, chosen at random. The right

network represents movies with 5 star rankings by the users on the left. This pattern hence

finds the movies influencing the friend-circle of the seed users. An OCD subgraph in figure

5.4(b) depicts a suspicious ranking activity, where the 3 users on the left give a 5 star ranking

to 144 movies on the right. CDC and OCD subgraphs hence illustrate the power of potential

fraud detection.

5.2.2 Efficiency evaluation

We evaluate the efficiency of our heuristic algorithms by their running-time and the

quality of the resulting CDC subgraphs from real and synthetic networks.
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Table (5.3) CDC subgraph densities from
random networks

nodes 220 221 222 223

DBP 19.083 19.095 19.094 19.086

GND 18.713 18.705 18.691 18.720

GRD 18.901 18.836 18.837 18.698

FRD 7.401 7.389 7.402 7.401

Table (5.4) CDC subgraph densities from R-
MAT networks

nodes 220 221 222 223

DBP 19.071 19.065 19.073 19.072

GND 17.028 16.761 17.019 16.627

GRD 17.201 17.002 17.046 16.689

FRD 6.612 6.610 6.509 6.501

Greedy node deletions The running-times of MDS, GND, GRD, FRD algorithms

on real, random and R-MAT networks are depicted in Figure 5.5. The x axis represents the

number of nodes in Va∪Vb and the y axis represents log scale of seconds. Each point represents

running-time of the algorithm for given network. The running-time of MDS algorithm for

larger networks is more than 24 hours, when we halted the algorithm computations. Running-

times increase with network size, but vary a little for random and R-MAT graphs of the same

size. FRD with ε = 0 is the fastest algorithm.

We discover that GRD yields the densest bipartite subgraph among all algorithms. The

densities of CDC subgraphs obtained by GND, GRD and FRD from random and R-MAT

networks are presented in table 5.3 and 5.4. For each graph, DBP represents the density of

the densest bipartite graph obtained by GRD, without being connected in Ga or Gb. The

ratio, DBP/CDC densitiy, varies a little with the network size. This trend is observed across

all network types and algorithms. GRD produces the best and FRD with ε = 0 produces

the least accurate results.

Local Search (LS) Given the seeds of Va and Vb, LS produces meaningful, locally

dense CDC patterns. We evaluate the efficiency of LS algorithm by measuring its running-

times with 2, 4 and 8 seeds. Figure 5.6 presents the running-times of LS. The x axis represents

the number of nodes in Va ∪ Vb and the y axis represents running-times in seconds. Each

point represents running-time of FRD for given network and seed configuration. The seeds

are chosen randomly in the same connected components. The boundaries δ(Sa) and δ(Sb)

grow larger with increase in the number of seeds. Hence the running-time of LS increases
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(a) Random networks (b) R-MAT networks

(c) Real Networks

Figure (5.5) Running-times for MDS, GND, GRD and FRD

with the number of seeds. We observe similar trends from real networks. In synthetic net-

works, for a given number of seeds, LS running-times vary a little across different network

sizes. This is because LS halts when the density of the current CDC subgraph starts de-

creasing, which depends only on the local topologies of Ga and Gb.

Fast Rank Deletion (FRD) The purpose of FRD is to obtain feasible CDC

subgraphs faster. This is achieved by deleting all the nodes with degree less than

(1 + ε) ∗ average degree at each pass. However, lower ε values result in fewer deletions

per pass, defying the purpose of FRD. Higher ε values result in more deletions per pass,

lowering the densities of the resulting CDC subgraphs. Hence the meaningful results are
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(a) Random networks (b) R-MAT networks

Figure (5.6) LS running-times with 2,4 and 8 seeds

(a) Random networks (b) R-MAT networks (c) Random networks

(d) R-MAT networks

Figure (5.7) FRD evaluations for ε ∈ [−0.4, 0.4]

obtained with ε values in the range of interval [−0.4, 0.4].

Figures 5.7(a) and 5.7(b) represent the running-times of FRD. The x axis represents

different ε values and the y axis represents running-times in log scale of seconds. Each
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point represents running-time of FRD for given network and ε configurations. Increase in

ε value causes higher amount of deletion per pass, resulting in fewer passes. Hence, the

running-times decrease with the increase of ε.

Figures 5.7(c) and 5.7(d) represent the density change of resultant CDC subgraphs for

given ε value, with respect to ε = 0. The x axis represents different ε values, and the y

axis represents the ratio, Density of CDC for ε = 0/Density of CDC with given ε. Each

point represents this density ratio obtained by FRD, for given network and ε configurations.

Higher ε values result in more deletions per pass, lowering the densities of the resulting

CDC subgraphs. Hence, the density ratio increases as the ε value decreases. We observe

similar trends from real networks. The densities of resultant CDC subgraphs obtained by

FRD depend on network topologies. Hence, for the same type of synthetic networks with

the same ε value, the variance in the density ratio is low.
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PART 6

CONCLUSION

In this paper, we introduce Triple Network, its CDC subgraph problem and its variants.

We provide heuristics to find feasible solutions to these patterns, otherwise NP-Hard to

find. We conclude that CDC subgraphs yield communities with similar charasteristics by

illustrating the information gain of these patterns in NYC taxi, Twitter, ArnetMiner, and

Flixter networks. We demonstrate the efficiency of our algorithms on large real and synthetic

networks by observing running-time and density trends in real and synthetic networks.
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PART 7

FUTURE WORK

As future work, we propose the following:

• Use a parallel and distributed implementation of max-flow min-cut algorithm to extend

MDS algorithm to large graphs of the size 220 to 223

• Compare the results of MDS algorithms to see if GND is a 2 approximation of CDC

subgraphs, if not what is the relation between the MDS baseline and CDC results of

our heuristics

• Prove 2-approximation guarantees of GND and GRD algorithms

• Provide parallel-and distributed versioons of these algorithms

• Compare the results of our heuristics to results of clustering with graph embeddings
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