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ABSTRACT 

As the role of privacy becomes more established in research, new questions and 

implementations trickle into the Distributed Control Systems (DCS) space focusing on privacy-

preserving tools. In the near future, standards will have to include measures to protect the 

privacy of various objects, people, and systems in DCS plants. Building a privacy framework 

capable of meeting the needs of DCS applications and compatible with current standards to 

protect against intellectual theft and sabotage is the primary aspect for DCS. By identifying the 

lack of privacy protections in the current standards, detailing requirements for the privacy, and 

proposing suitable technologies we can provide guidelines for the next set of standards for DCS 

protections. 
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1 INTRODUCTION  

 

Distributed Control Systems (DCS) play significant part in the daily lives of citizens around 

the world. DCS handles the production and consumption of wastewater treatment, electricity 

generation, manufacturing, and other large-scale processes. Across decades of technological 

improvements, the scalability of DCS grew from large city production to regional distribution 

[1]. However, the computers and machines over the years of progress were not replaced every 

time with up-to-date security improvements resulting in long-term infrastructure vulnerabilities. 

In the post-cloud era, companies managing DCS now have incentives to replace outdated 

hardware to connect devices within the Internet of Things. Holes in network security are filled 

with new updates, and a greater importance is placed on cybersecurity. Typically, data in DCS is 

stored on the data historian—a computer that records all processes occurring within a plant. The 

data must be transmitted throughout the plant for operations and in the cloud for performance 

analysis. 

Due to control security faults, espionage and sabotage of operations occur via intercepted or 

altered data transmissions. Data historians store environmental data such as time, pressure, 

temperature and various other statistics for operations. Knowledge of this information can be 

used to reverse engineer industrial processes or to sabotage vulnerable equipment. 

One attack scenario illustrates a security failure to a plant in Morgan County, Alabama 

owned by Toray Industries. The plant in question produced military-grade carbon fiber that is put 

on watch-lists for export by the United States to prevent terrorists and foreign entities from 

reverse engineering and selling copies. The Yokogawa data historian, Exaquantum, used in the 

plant had known vulnerabilities that were exploited to gain access to the manufacturing data 
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housed in the facility. The Department of Homeland Security notified the company and the 

relevant notice was issued in 2014 resulted in Yokogawa Electric applying patches to the 

vulnerable software.    

The Toray plant represents an example of information espionage through control security 

faults. Software vulnerabilities will always be abundant, but manageable with the adoption of 

reportable notices like Industrial Control Systems Cyber Emergency Response Team (ICS-

CERT). However, the data retained in these systems will need further protection. Research into 

the security of DCS environments are still in the early stages of development and has yet to 

touch on the topic of data privacy. Soon, the current standards such as NIST SP-800-82, IEC 

62443/ISA 99 and industry specific standards like ISA 88 should be re-contextualized within a 

privacy-protected world. 

By analyzing the current standards and technologies of privacy-protection algorithms, we 

recommend standard modifications to create a framework that can obfuscate, disclose, or 

otherwise protect the data within industry requirements. 

1.1 Cybersecurity in Distributed Control Systems 

DCS traditionally started as a singular, physical plant that hosted all the necessary 

components for processing hardwired to one another via copper wiring. As time grew on, it grew 

necessary to have multiple sites all reporting back statistics to corporate offices and integrate 

new technology such as mainframes. Thus, IEC 62443/ISA 99’s predecessor, ISA 95, was 

created.   
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Figure 1 Purdue Hierarchy Model 

 

ISA 95 provided a baseline standard for companies to follow in order to communicate with 

multiple plants, set up new infrastructure, and manage roles within a DCS. Each level was 

designed to maintain a different aspect of plant production with data moving between each layer. 

Developing technologies were integrated to form the functions required of the standard. For 

example, Level 2 Supervisor Control and Monitoring saw the creation the “Data Historian”, a 

computer that keeps a record of all time-series data for every device within a DCS plant.  

In the post-2010 “cloud era”, DCS plants were now connected to internet with vast data 

passed from Level 2 to Level 3 and 4 via cloud-based systems and data stores. As such, more 

cybersecurity control was implemented to provide authentication and integrity with tools like 

logins, access portals, and firewalls. Currently, these security practices are being implemented 

into the new version of standards for DCS, IEC 62443 / ISA 99.    
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1.2 Adversary Models  

Adversaries throughout most DCS models are never omnipresent unless they access 

oracles responsible for controlling randomization mechanisms. Adversary goals include to either 

infiltrate, sabotage, or leave backdoors within DCS. Most of the standards around DCS look at 

the same adversary models presented in research.  

[3] provides the most detailed look into adversary models for Smart Grid privacy that can 

be extracted to provide general guidelines for other time-series dependent DCS. One of the 

primary attacks in the Smart Grid includes the “Non-intrusive appliance load monitoring attack”, 

or NALM, for short. According to [3], NALM is “to detect appliance usage in households” with 

the use to inexpensive sensors that can be attached to the main smart meter. The sensor can be 

used to sniff data off the smart meter or try to gain more granular data such as electromagnetic 

interference to guess what kind of devices are inside the home. Current research focusing on 

adversarial examples tries to leverage the data gained by NALM and the predicted output of the 

load monitoring algorithm which controls power production to create an attack with the same 

probability as a false alarm. Therefore, the DCS will infer the behavior as normal, create false 

conclusions about power consumption, and lead to power production increase or decrease not in 

phase with the actual data values.  
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2 LITERATURE REVIEW 

 

2.1 Current Specifications 

Historically, the demand for security in DCS did not come from system designers but 

instead arose as a natural consequence from business interests of reducing risk. As DCS plants 

grew larger and spread worldwide, different business and operational relations needed a standard 

in order to provide interoperability, reliability, and security. 

The standards analyzed for the scope of this paper are summarized in Table 1. A survey 

paper concerning the frequency of the standards in literature and the context of each can be 

found in [1].  

Table 1 Standards for DCS Security and Privacy 
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For most of these standards, the focus is on the control layer with the formal definitions of 

DCS operations. Many devices such as PLCs (Programmable Logic Controllers) ship with 

compatibility to these standards. The fundamental standards of IEC 62443/ISA99 or ISA99 that 

make up the interfaces of DCS do not mention any security considerations since they were 

created 30 years ago with a "design first, secure later" approach. NIST SP 800-82 guidelines 

describe the majority fundamental control layer security mechanics, including encryption and 

access control. 

For any mentions of privacy, the guidelines of NISTR 7268 and CIS CSCs 13 and 14 try to 

integrate privacy considerations into DCS protections. However, privacy in these three 

documents are defined only as it relates to individuals with personal information, persons, 

behavior, and communications  within the "Smart Grid" context [4]. 

Furthermore, these privacy considerations are happening at the control layer instead of the 

data layer. This is due in part to the effort of making a reduced, manageable scope of relating 

privacy to individual persons. However, today's research and technology requires an expansion 

of this scope from individual persons to machines and systems within a DCS. While the control 

layer was the best place to protect individual persons of DCS, the data layer will be the place 

where privacy is protected for machines. 

While the philosophical, legal, and social questions surrounding the nature of privacy are 

outside of the scope of this paper, there is a need for a model to organize protections similar to 

IEC 62443/ISA99's Purdue Hierarchy Model (Fig. 1). Separation of different principles with 

respect to the control and data layers is important for standard recommendations to protect 

privacy. 
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2.2 Separation of Security and Privacy 

In past research, DCS security is based on the fundamental security principles of 

confidentiality, integrity, and availability. In 1988, these principles originated in [5] as the CIA 

triad, which dominates computer security research and education today. Within a DCS, each of 

these principles relate to physical computers and relationships in both the standards and in 

operation. [6] provides a comprehensive overview of the security principles in control systems 

and exemplary mitigations against security attacks based on these principles.   

As research into privacy for computers continues to grow, there is still a need to relate 

privacy to other concepts of control security and business policy. The principles of privacy differ 

from those of security and policy which indicates a need to make privacy an separate field of 

study. Luckily, two years after the development of the CIA triad, [7] presented the McCumber 

Cube (Fig. 2 ) synonymous to the principles of security, privacy, and policy. On one side of the 

cube the original CIA triad is present, while the principles of privacy are represented as data 

transmission, storage, and processing on the other side. The last side promotes the interests of 

policy through education, and standardization. 

In the McCumber Cube model, the past standards of policy, the current adoption of 

security principles, and the future development of privacy principles are combined to promote 

the creation of effective protections for DCS.  The separation of security and privacy principles 

can correlate to network principles of the control plane and data plane. Focusing on the data 

plane manages a scope that privacy can act on and thus provide protections in a system like DCS. 

To be clear, the separation of privacy and security should not be confused as a "zero-

sum" scenario where gaining privacy comes at the cost of security or results [2]. Some of tools to 
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be mentioned do have trade-offs, but should be compatible within a DCS for "real, practical 

results". 

By addressing security and privacy separately, research can focus on solutions 

specifically targeting each concept. For DCS, control plane security has been researched 

thoroughly with various implementations and ideas being presented [6], but insights into data 

plane privacy leave a lot to be desired. As such, this paper will focus on looking at current 

standards around DCS and into implementations for privacy considerations. 

 

  

Figure 2 The McCumber Cube 
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3 PRIVACY PRESERVING TECHNOLOGIES FOR DCS CONTEXTS 

With the establishment of privacy in the McCumber Cube model, the identification and 

development of several tools suitable for use within a DCS have become available. We suggest 

these tools as potential privacy implementations for a general privacy framework for DCS. 

Within a DCS, devices and modules communicate with one another to provide information 

about certain industrial processes. Such an example of a relationship includes a device such as 

temperature sensor and a module such as a server to which data is reported. From this data, 

adversaries can steal information that attempt to recreate or sabotage that process. Other 

examples of modules may include the Safety Instrumented Systems (SIS) or Manufacturing 

Execution System (MES), which need to transfer, process, and store data from devices. 

3.1 Differential Privacy 

Differential privacy attempts to add noise to data so an adversary will not be able to 

identify whether a data record belongs to one database or another with high confidence. The 

corresponding mechanism uses some randomized function K to manipulate every data point 

within the two databases, D1 and D2  [8]. The function takes input parameters of the two 

databases as well as a privacy budget ε to spread across all data points. The goal of differential 

privacy is to inject noise in order to protect individual data points yet disclose enough 

information that can be used for the general conclusions of the dataset (i.e. utility). 

Many research papers focusing on differential privacy do so within the Smart Grid 

context. The Smart Grid processes inputs from the Advanced Metering Infrastructure (AMI) that 

transmits time-series data on power consumption for processing at Level 2. From the power 

consumption data, decisions need to be made in order to produce more or less power. To protect 

against false data injection, the data processed must include measures of privacy. [9] explores 
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privacy preservation of solar power generation and [10] creates a privacy-preserving protocol to 

obfuscate queries and receive fine-grained results of power consumption. [3] compiles an in-

depth view of three privacy-preserving protocols of data minimization. 

For use of Level 2 and below, the same measure of privacy preservation occurs on the 

plant between many sensor devices and a controller commanding inputs required to change the 

amount of production. With differential privacy, there is a sacrifice of accuracy of data returned 

to preserve privacy of the actual data inputs, so the question is whether the trade-off is accurate 

enough or worth the cost. 

[11] provides a general framework to gauge the privacy costs of a DCS with a number of 

agents that practice a differential private protocol. A closed-loop state model of a DCS is used to 

see the cost if an agent (i.e. device) can communicate feedback on the state of a process while 

giving noisy data values and then also determine an agents preferred next state to control the 

process. Such a framework can be used to verify differential private protocols or algorithms 

across agents for the purposes of standardization for different industries and data sets. 

Unfortunately, differential privacy may not be the solution for every DCS since data 

points must be manipulated to gain privacy. While this trade-off is controlled by the privacy 

budget ε not all industries may be able to cope with the loss. For example, in Emerson's DeltaV 

PLC operation, there is the Statistical Process Monitoring module that alarms and acts based on 

thresholds set by plant operators [12]. These thresholds can be any range of "engineering units" 

such as voltage, gallons, or grams per mole. Since differential privacy requires some randomized 

mechanism to work, the amount of noise added exceed engineering units that have a low 

tolerance of modification. Sensitive industries may not be able to adopt differential privacy 
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protections as readily as other industries such as electricity or water. Therefore, it is not 

recommended to include differential privacy for those specialized industry standards. 

Current research include various attack models for the ways of adding noise via a 

randomized noise mechanism. Specifically to DCS contexts, [13] provides an attack model in 

which an adversary can manipulate a differential private DCS by injecting false data with having 

the same probability as triggering a false alarm. Under these conditions, integrity and privacy of 

data becomes disrupted in the system and result in an overall loss in stable state of the DCS.   

3.2 Private Information Retrieval  

For differential privacy, the problem is if the data record was from one database or 

another. For private information retrieval (PIR), the problem is on not disclosing whether the 

query of the data record was requested from one database or another. As such, PIR requires 

different challenges in order to satisfy its query-based privacy role separate from differential 

privacy. PIR was popularized in [14] with a more efficient scheme. 

For PIR, randomness is injected into queries for data in the goal of sending multiple 

queries to the database in order to gain the sought answer without the database or adversary 

knowing. Suppose we have non-communicating databases Dk with k number of databases that 

hold a xn string of data n number of bits. A user will be interested in find i index of the data, so xi 

, but queries all the databases independently with random queries to obfuscate the queries. In this 

way, the index i that the user is looking for is never disclosed. Protocols for PIR dealing with a 

single database are information-theoretic, meaning that even with infinite computational power 

an adversary would not be able to retrieve the data.   

In the protocols discussed in research, the databases returns a single bit of data for each 

query where all queries can be XOR'd by the user to gain the entire true value.  Most research 
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seeks to reduce the communication complexity of bits sent vs bits received between a user and 

many databases. Cooperating databases might also present a problem, since cooperating 

databases will be able to disclose the index of sought for data based on their queries to the user. 

However, [14] and [15]  provide protocols that computationally bounded adversaries with 

control of up to an upper bound of compromised, cooperating databases. 

In DCS, PIR would be very useful in gathering data from either sensors from Level 1 or 

from multiple site historians from Level 2. Queries for the data running through a PIR scheme 

would be to retrieve time-series data, recover from privacy or security losses, and transfer large 

data sets without adversary knowledge if combined with codes such as those generated by hash 

functions. While research for practical PIR needs to enter industries, it can provide guarantees 

for privacy protections that do not alter data records.       
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4 TOWARDS A GENERAL PRIVACY FRAMEWORK FOR DCS 

 

For every standard presented in Table 1, we present recommendations to provide privacy 

protections for DCS. Each standards' existing security and policy attributes are examined in the 

McCumber Cube model. For each standards' scope and objectives, the recommendations create 

new requirements for privacy protection using the technologies specified in Section 3. 

Of the given standards, there are two to be ignored: IEC 62443/ISA 99 and ISA 88. These 

two standards mainly consider the policy procedures and processes in order for a DCS to 

function. Matured security concepts such as the CIA triad are currently in the working drafts for 

these standards, so recommendations for privacy considerations are too early to recognize with 

current research. "Best practices" similar to principles detailed in [2] are currently being 

discussed in research like [16] for DCS in Europe due to General Data Protection Regulation 

(GDPR).   

4.1 Recommendations for Standards 

From the technological solutions in Section 3, we integrate potential recommendations 

for current standards to adopt mechanics to protect privacy. The recommendations are given 

keywords where 'must' is a requirement and 'should' is a recommendation as in IEEE standards: 

IEC 62541 

Rationale: For OPC-UA, machine-to-machine communications are represented by 

relations between object models. Objects can be given access, modifications, and request 

services. In part 7 of the standard, profiles for the interaction of UA Servers and Clients are 

specified which can include security protocols. Secure communications over profiles 

include sending encryption parameters, algorithm names, and public keys. 
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Recommendation: A privacy protocol must be implemented to carry the necessary inputs 

required for passing privacy parameters and handle responses. There is no need to remove 

the client-server or publisher-subscribe relationships for OPC-UA unless the privacy 

protocol requires it, such as non-cooperation for PIR. 

NIST NP-800-82 

Rationale: NIST SP-800-82 summarizes items for all security-related concerns for a wide 

variety of protocols and concepts. Both security and policy are mentioned in the guidelines 

with in-depth suggestions. If IEC 62541 adds privacy protocols, then it is necessary to 

append a correlating privacy architecture section and application section for NIST SP 800-

82. 

Recommendation: The architecture section must include key principles of privacy and a 

model of privacy-preserving systems as detailed in Section II. The application section 

should relate to the concepts of privacy described in the McCumber Cube—data 

transmission, processing, and storage. 

NISTIR 7268 

Rationale: NISTIR 7268 is a step ahead of other standards by addressing all sides of the 

McCumber Cube model, however the privacy section only focuses on protecting individual 

persons. The Smart Grid privacy archetype can be expanded to other industries that utilize 

DCS. 

Recommendation: Volume 2 of NISTIR 7268 concerning the privacy of DCS must expand 

the scope of protecting privacy to machines and devices, not only persons. Volume 2 must 

include privacy use cases as those given in Section IV. Additional discussion of privacy 

should include mention of the McCumber cube or some other framework of providing 
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privacy. In section 5.7.3 "Recommended Privacy Practices", there should be inclusion of 

the technologies given in Section 3. For differential privacy and PIR, the recommended 

titles should be similar to section 5.4 of [3] as perturbation and trusted computation, 

respectively.  

CIS CSC 13, 14 

Rationale: The CIS organization gives various compliance tools from its CSC documents. 

Providing a document and compliance tool for privacy can be included to give protections 

for DCS plants. 

Recommendation: A new CSC document must be created in order to address privacy 

concerns. This new CSC document should be titled "Data Privacy" and must include 

subcategories of the different methods of privacy protections mentioned in section 5.4 of 

[3]. 

4.2 Privacy Use Cases 

As identified by other standards such as NISTIR 7268, use cases play a pivotal role to 

attaining a possible scenario where technology can be seen as necessarily integrated factor. As 

such, we have identified some possible scenarios in which privacy can protect against adversary 

models exploiting control security faults or data privacy. 

Power Plant Load Estimation An attacker using a botnet of smart meters within the AMI 

tries to inject false data to cause the control algorithm of a power plant to overestimate the power 

consumption of several neighborhoods. Smart meters protected with differential privacy 

algorithms that fail to provide valid responses to new privacy parameters will be ousted from 

load estimation calculations. 
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 Deflagration is the simple event of heating a substance to its flash point---the temperature 

at which it ignites. Typically, fires can be contained and handled on their own, but in certain 

situations may lead to detonation of products or components in the environment with explosive 

force. In nuclear power plants, shutdown of cooling mechanisms can allow for accumulation of 

hydrogen steam within the containment vessel. With enough pressure, the cooling pipes carrying 

water can rupture and react with the hydrogen violently and lead to detonation.  

An adversary sniffing the data of sensors within the plant will be able to simulate a model 

of the plant and be able to trigger a deflagration event. A PIR scheme implemented within a 

nuclear DCS will be able to query and respond data without giving away the true output values 

necessary to simulate the plant's processes. 
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5 DISCUSSION 

 

With the realization of a general privacy framework, we can discuss the benefits, costs, and 

limitations to the amended standards and the overall goal for privacy's inclusion.  

In the event of control security failures, a DCS plant loses its integrity, and also requires all 

industrial processes to be validated in an audit for compliance, quality, and recovery. With data 

privacy protections, the process for returning to continuity of operations should be drastically 

reduced with the knowledge that the data retained in the plant has a measure of information 

assurance. 

DCS plants might also employ statistical-based Intrusion Detection Systems (IDS) to look 

for outlier behavior of operating machine. By having more statistical data to work with, an IDS 

practicing both security and privacy based protocols would have more information to make 

decisions of whether to trust values outputted from a certain machine. 

However, the costs of privacy must also be understood for practical implementation. With 

the technologies given in Section 3 there is clear research showing differential privacy costs in 

the quality of data, while private information retrieval costs in the number of queries for the data. 

We support that these costs to be acceptable for DCS. The tolerance of data changes are already 

present with the use of engineering units and models for controlling the outputs of processes for 

DCS. 

While we did not present simulations or models to gauge privacy costs, there are paths to 

simulating practical results using the technologies presented in Section 3. For the analysis of 

cybersecurity, NIST provided a testbed for design in  [17] where privacy protections could also 

be implemented. 
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However, the theoretical framework of privacy presented contributes a better, holistic view 

of protections for DCS. The current implementation of security in the standards will not be 

enough to cover the protection of data for machines, humans, and systems in DCS. We propose 

that the tools provided will be part of the answer for protecting the data in ways that do not 

compromise security, the required functions of DCS, and the business interests present.   

In future adversary models where privacy and security are acting together, we hope that it 

will be harder to gain enough information to steal process details or destroy plant equipment. 
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6 CONCLUSION 

 

In this paper, we discussed the role of privacy within DCS, examined the various 

standards that provided DCS security, and recommended privacy protections that can be 

implemented through the use of current research. By calling back to the original paper where 

security controls were discussed for security, we were able to glean information to be used in the 

discussion of creating a framework of privacy as well. We also explained the drawbacks each 

privacy-preserving technology had and the potential fixes that will be available for future 

standards. For the DCS standards, we propose these amendments that are acceptable to the other 

two sides of protecting DCS plants and compatible with current specifications. 
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