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A NEW JACKKNIFE EMPIRICAL LIKELIHOOD METHOD FOR

U-STATISTICS

by

ZHENGBO MA

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

U-statistics generalizes the concept of mean of independent identically distributed

(i.i.d.) random variables and is widely utilized in many estimating and testing prob-

lems. The standard empirical likelihood (EL) for U-statistics is computationally ex-

pensive because of its nonlinear constraint. The jackknife empirical likelihood method

largely relieves computation burden by circumventing the construction of the nonlin-

ear constraint. In this thesis, we adopt a new jackknife empirical likelihood method

to make inference for the general volume under the ROC surface (VUS), which is one

typical kind of U-statistics. Monte Carlo simulations are conducted to show that the

EL confidence intervals perform well in terms of the coverage probability and average

length for various sample sizes.
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Chapter 1

INTRODUCTION

1.1 Empirical Likelihood

Empirical likelihood approach was first introduced by Owen (1988) to construct

confidence regions for the mean of a random vector. It is an effective and flexible

nonparametric method based on a data-driven likelihood ratio function, rather than

a assumption that the whole data come from a known family of distributions. The

empirical likelihood method enjoys the advantages of both nonparametric method

and likelihood ratio function, such as producing confidence regions whose shape and

orientation are determined completely and automatically by the data. It also has

better asymptotic power properties and small sample performance.

After Owen’s proposed his pioneering work, much attention has been attracted by

the properties of the empirical likelihood approach. The empirical likelihood approach

has been extended and applied in many different fields such as the work of Chen and

Hall (1993), Qin and Lawless (1994) on estimating equations and the work of Ren

(2008) and Keziou and Leoni (2008) on the two-sample problem. We refer to the

bibliography of Owen (2001) for more extensive references.

In the following, we will give a brief description of the procedure of empirical

likelihood for population mean. Let F (x) be a common distribution function and

{X1, ..., Xn} be independent and identically distributed (i.i.d.) sample from this dis-
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tribution and θ is the population mean, which is also the parameter of interest. In the

framework of empirical likelihood approach, we will replace the real distribution F (x)

by the weighted empirical distribution with such form of:
n∑

i=1

piI(Xi ≤ x), where I(·)

is the indicator function and {pi} satisfies that
n∑

i=1

pi = 1 and pi ≥ 0 (i = 1, ..., n).

Then, the mean of this weighted empirical distribution is: θ0 =
n∑

i=1

piXi.

The empirical likelihood function for θ, evaluated at θ = θ0, is defined to be:

n∏
i=1

pi,

n∑
i=1

pi = 1, pi ≥ 0,
n∑

i=1

piXi = θ0 (1.1)

Define the empirical likelihood ratio basing on the above definition:

sup{
n∏

i=1

npi,
n∑

i=1

pi = 1, pi ≥ 0,
n∑

i=1

piXi = θ0}, (1.2)

and its log-form, i.e. the log-empirical likelihood ratio is:

sup{
n∑

i=1

log(npi),
n∑

i=1

pi = 1, pi ≥ 0,
n∑

i=1

piXi = θ0}. (1.3)

To optimize (1.3), the Lagrange multiplier method is applied. Let γ be the

lagrangian multiplier. Then, we have:

pi =
1

n

1

1 + γ(Xi − θ0)
i = 1, ..., n,

where the lagrangian multiplier γ satisfies:

n∑
i=1

Xi − θ0
1 + γ(Xi − θ0)

= 0
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By the expression of pi (i = 1, ..., n), the log-empirical likelihood ratio is:

−
n∑

i=1

log(1 + γ(Xi − θ0)). (1.4)

Let l(θ0) denote this log-empirical likelihood ratio. By the work of Owen, −2l(θ0)
converges to χ2

1 in distribution by central limit theorem. This conclusion makes it

possible to construct an (1− α) level confidence region for θ as:

{θ : −2l(θ) ≤ a},

where a is chosen to satisfy P{χ2
1 ≤ a} = 1− α.

1.2 U-statistics

The U-statistics, introduced by Halmos (1946) and Hoeffding (1948), is impor-

tant in statistical practice. Considering K i.i.d. samples of random vectors, yk,i

(1 ≤ i ≤ nk, 1 ≤ k ≤ K), the general U-statistics Un with kernel function h of

mk arguments for the kth sample is defined as:

Un =

[
K∏
k=1

(
nk
mk

)]−1 K∑
k=1

∑
(i1,...,imk

)∈Cnk
mk

h(y1,i1 , ...y1,im1
; ...; yK,i1 , ..., yK,imK

)

which is an unbiased estimation of E(h).

The class of U-statistics includes many statistics in common use. Its consisten-

cy and asymptotic normality were proved in Hoeffding (1948). The distributional

properties and its simple structure make them ideal for studying many estimating

and testing problem. Thus, one useful application of U-statistics is to generate new

statistics in practical cases. In the recent years, the research interest in this subject
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has been constantly increasing and led many academic works. One can refer to Lee

(1990), and Koroljuk and Borovskich (1994) for detailed expositions of U-statistics.

1.3 Standard Empirical Likelihood for U-statistics

For doing inference for the expectations, one may attempt to apply the stan-

dard empirical likelihood method to U-statistics. Following the standard procedure,

confidence intervals for the parameter of interest might be constructed by deriving

asymptotic distribution for the empirical log-likelihood ratio of U-statistics. However,

there will be heavy computation burdens since we need to solve several simultaneous

nonlinear constraints. This question regarding the presence of nonlinear constraints

was also explored by Wood et al. (1996). Let us take one-sample U-statistics with

2 degrees for example. Let X1, ..., Xn are independent and identically distributed

(i.i.d.) random variables with common distribution function F (x) and φ is the kernel

function. Then the U-statistic is defined to be:

Wn =

(
n

2

)−1 ∑
1≤i<j≤n

φ(Xi, Xj),

where θ = E(φ(Xi, Xj)) is the parameter of interest.

By Wood’s definition for Wn, the empirical likelihood and the log-empirical like-

lihood ratio should be:

n∏
i=1

pi,
n∑

i=1

pi = 1, pi ≥ 0,

(
n

2

)−1 ∑
1≤i<j≤n

n2pipjφ(Xi, Xj) = θ0 (1.5)

sup

{
n∑

i=1

log(npi),
n∑

i=1

pi = 1, pi ≥ 0,

(
n

2

)−1 ∑
1≤i<j≤n

n2pipjφ(Xi, Xj) = θ0

}
.

(1.6)
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We can obtain the empirical likelihood ratio for Wn By solving (1.6). Howev-

er,there is no simple way available for such optimization problem involving n variables

p1, ..., pn with the nonlinear constraints. The numerical methods can give an approx-

imate solution, but it has no help on deriving asymptotic distribution of the result

from (1.6). One can refer to Jing et al. (2009) for excellent interpretations.

1.4 Jackknife Empirical Likelihood for U-statistics

To cope with the computational difficulty arising in the above section, an modi-

fied empirical likelihood approach is proposed by Jing et al. (2009) and Wang (2010),

called as jackknife empirical likelihood.

Let’s continue the above example of Wn to briefly describe the JEL procedure.

Applying the standard jackknife method to Wn, we obtain the jackknife pseudo-

values :

Ṽs = nWn − (n− 1)W−s
n−1, (s = 1, ..., n)

where W−s
n−1 is the U-statistic after removing Xs. It is obvious that EṼs = θ0 due to

the unbiasedness of U-statistics. For this pseudo sample, we can still construct one

weighted empirical distribution with the probability vector P = {p1, ..., pn}, and write

its mean as:
n∑

s=1

psṼs. Applying the idea of standard empirical likelihood approach to

the pseudo sample, we can define the jackknife empirical likelihood at θ0 as:

n∏
s=1

ps,
n∑

s=1

ps = 1, ps ≥ 0,
n∑

s=1

psṼs = θ0

Hence, the corresponding jackknife empirical likelihood ratio and its log-form are:

sup{
n∏

s=1

(nps),
n∑

s=1

ps = 1, ps ≥ 0,
n∑

s=1

psṼs = θ0}
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sup{
n∑

s=1

log(nps),
n∑

s=1

ps = 1, ps ≥ 0,
n∑

s=1

psṼs = θ0}

By the Lagrange multiplier method, the jackknife empirical log-likelihood ratio at θ0

can be rewritten as:

l(θ0) = −
n∑

s=1

log(1 + γ(Ṽs − θ0)),

where γ satisfies the equation:

n∑
s=1

Ṽs − θ0

1 + γ(Ṽs − θ0)
= 0.

Jing et al. (2009) and Wang (2010) has proven the asymptotic distribution of

−2l(θ0) is χ2
1. By this conclusion, the (1 − α)-level confidence interval for θ0 can be

constructed. Since circumvent the nonlinear constraint of optimization problem, the

advantage of jackknife empirical likelihood on computation is apparent.

1.5 Motivation of the Thesis

Receiver operating characteristic (ROC) curve has been developed as an impor-

tant tool to distinguish the quality of given classifier in diagnostic tests in decades.

The area under the ROC curve (AUC) is a related topic for evaluating the accuracy of

diagnostic tests of two-category classification data. Bamber (1975) shows that AUC

is exactly P (X < Y ), the probability that a randomly selected observation from one

population scores less than that from another population, which is the most commonly

used measure of diagnostic accuracy for a continuous-scale diagnostic test. Howev-

er, most of ROC analysis and AUC have been restricted to a classifier with just two

classes. However, many real applications involve more than two classes and demand a

methodology expansion. Mossman (1999) extended such three-class problems to the
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volume under the ROC surface (VUS). However, the multi-class problem obviously is

more complex than the two-class one, because at least d(d− 1) dimensional variable

for d classes are needed for obtaining their volumes, which is trivial when d = 2. The

increase on dimensions can be seen as the costs for the various misclassifications. If

we ignore the misclassifications, i.e., no specificities are concerned, then the VUS can

be expressed simply as, see Nakas and Yiannoutsos (2004): V US = P (X < Y < Z).

Most recently, Li (2009) also proposed a generalization of VUS for ordered multi-class

problem, which is the linear combination of probabilities of the possible inequality

relations between the three random variables X, Y , Z:

V US ′ =
(

a2
a2 + a3

P (Y < Z) +
a3

2(a2 + a3)

)(
a2

a2 + a1
P (X < Y ) +

a1
2(a2 + a1)

)
P (X < Z),

where a1 + a2 + a3 = 1, a1 ≥ 0, a2 ≥ 0 and a3 ≥ 0.

In this thesis, we apply the JEL approach to make statistical inference for the

simple form of VUS, P (X < Y < Z) and its generalization respectively. The asymp-

totic distribution theory on the JEL statistics is also provided.

1.6 Structure

The rest of the thesis is organized as follows. In chapter 2, the jackknife empirical

likelihood ratio statistic is constructed, the limiting distribution of the statistic is

given, and the jackknife empirical likelihood based confidence interval for the U-

statistics is constructed. In chapter 3, we report that the results of a simulation study

on the finite sample performance of jackknife empirical likelihood based confidence

interval on parameter of interest. The conclusion is given in chapter 4, and all the

technical derivations are provided in the Appendix A.
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Chapter 2

INFERENCE PROCEDURE

2.1 Multi-sample U-statistics and VUS

Consider independent samples, X1, X2, ..., Xn1 from F1(x); Y1, Y2, ..., Yn2 from

F2(y) and Z1, Z2, ..., Zn3 from F3(z). Let the indicator function h(x, y, z) = I(x < y <

z) be a kernel function, and denote θ0 by the parameter of interest: P (X < Y < Z),

the most simple form of VUS. Then, it is trivial that θ0 = P (X < Y < Z) = E{I(x <
y < z)}. By the definition in section 1.2, we can construct a U-statistic of degree

(1,1,1) with the indicator kernel I(x < y < z) in the form of:

Un =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(Xi < Yj < Zk), (2.1)

which is a consistent and unbiased estimator of the parameter θ0 = P (X < Y <

Z). Similarly, for the generalized form of VUS, we can use the kernel function:

h(x, y, z) =
(

a2
a2+a3

I(y < z) + a3
2(a2+a3)

)(
a2

a2+a1
I(x < y) + a1

2(a2+a1)

)
I(x < z), where

a1 + a2 + a3 = 1, a1 ≥ 0, a2 ≥ 0 and a3 ≥ 0, to construct a U-statistic in the form of:

Un =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

h(Xi, Yj, Zk), (2.2)



9

2.2 Jackknife Empirical Likelihood for VUS

The jackknife empirical likelihood (JEL) approach for multi-sample U-statistics

is the extension of the JEL approach for one-sample U-statistics corresponding to

the pooled sample of the multi-sample case. The pooled sample is (T1, T2, ..., Tn) =

(X1, X2, ..., Xn1 , Y1, Y2, ..., Yn2 , Z1, Z2, ..., Zn3), where n = n1+n2+n3. For the simple

form of VUS, P (X < Y < Z), the corresponding U-statistics is:

Ũn =

(
n

3

)−1 ∑
1≤i<j<k≤n

n(n− 1)(n− 2)

6n1n2n3

I(Xi < Yj < Zk)I(1 ≤ i ≤ n1 < j ≤ n1+n2 < k ≤ n),

(2.3)

where the function n(n−1)(n−2)
6n1n2n3

I(Xi < Yj < Zk)I(1 ≤ i ≤ n1 < j ≤ n1+n2 < k ≤ n) is

also a function with respect to the sample sizes: n1, n2, n3. Similar to the simple form,

for the generalized form of VUS,
(

a2
a2+a3

P (Y < Z) + a3
2(a2+a3)

)(
a2

a2+a1
P (X < Y ) + a1

2(a2+a1)

)
P (X < Z), (a1 + a2 + a3 = 1), the corresponding U-statistics is:

Ũn =

(
n

3

)−1 ∑
1≤i<j<k≤n

n(n− 1)(n− 2)

6n1n2n3

h(Xi, Yj, Zk)I(1 ≤ i ≤ n1 < j ≤ n1+n2 < k ≤ n),

(2.4)

where h(Xi, Yj, Zk) =
(

a2
a2+a3

I(Yj < Zk) +
a3

2(a2+a3)

)(
a2

a2+a1
I(Xi < Yj) +

a1
2(a2+a1)

)
I(Xi <

Zk), and the product of the above kernel and indicator is also a function with respect

to the sample sizes: n1, n2, n3.

By the idea of jackknife U-statistics, let Ũ−in−1 denote the U-statistic with respect

to the sample deleting ith observation and the jackknife pseudo-value for such sample

deleting ith observation be V̂i = nŨn − (n− 1)Ũ−in−1. Note that Ũn = Un. It is trivial

that Un = 1
n

n∑
i=1

V̂i.

Let U0
n1,n2,n3

= Un be the original U-statistics;

U−i,0,0n1−1,n2,n3
= 1

(n1−1)n2n3

n1∑
i′=1,i′ �=i

n2∑
j′=1

n3∑
k′=1

h(Xi′ < Yj′ < Zk′), which is the U-statistics
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after deleting Xi;

U0,−j,0
n1,n2−1,n3

= 1
n1(n2−1)n3

n1∑
i′=1

n2∑
j′=1,j′ �=j

n3∑
k′=1

h(Xi′ < Yj′ < Zk′), which is the U-statistics

after deleting Yj;

U0,0,−k
n1,n2,n3−1 = 1

n1n2(n3−1)
n1∑
i′=1

n2∑
j′=1

n3∑
k′=1,k′ �=k

h(Xi′ < Yj′ < Zk′), which is the U-statistics

after deleting Zk.

Let Vi,0,0 = n1U
0
n1,n2,n3

− (n1 − 1)U−i,0,0n1−1,n2,n3
, V0,j,0 = n2U

0
n1,n2,n3

− (n2 − 1)U0,−j,0
n1,n2−1,n3

,

and V0,0,k = n3U
0
n1,n2,n3

− (n3 − 1)U0,0,−k
n1,n2,n3−1.

Further, it can be shown easily that:

V̂i =Un +
n− 1

n1 − 1
(Vi,0,0 − Un)I(1 ≤ i ≤ n1) +

n− 1

n2 − 1
(V0,j,0 − Un)I(n1 + 1 ≤ i ≤ n1 + n2)

+
n− 1

n3 − 1
(V0,0,k − Un)I(n1 + n2 + 1 ≤ i ≤ n),

(2.5)

and all expectations of V̂i are the same: EV̂i = θ0, (1 ≤ i ≤ n).

Based on the pseudo sample of {V̂i}n1 , which is asymptotically independent (Shao

and Tu, 1995), let us apply usual empirical likelihood approach to estimate θ0, the

parameter of interest. Let {pi}ni=1 satisfy that:
n∑
i

pi = 1 and pi ≤ 0, (1 ≤ i ≤ n).

The jackknife empirical likelihood (JEL) function for a estimated parameter θ0, is

evaluated as:

L(θ0) = sup{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piV̂i = θ0}, (2.6)

and the corresponding JEL ratio is:

R(θ0) = sup{
n∏

i=1

npi :
n∑

i=1

pi = 1,
n∑

i=1

piV̂i = θ0}. (2.7)

If the condition: min
1≤i≤n

V̂i < θ0 < max
1≤i≤n

V̂i holds, then the solution to the above optimal
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problem is:

pi =
1

n

1

1 + γ(V̂i − θ0)
, (2.8)

where γ satisfies

1

n

n∑
i=1

V̂i

1 + γ(V̂i − θ0)
= θ0. (2.9)

By (2.8), we can rewrite the jackknife empirical likelihood ratio as:

R(θ0) =
n∏

i=1

1

1 + γ(V̂i − θ0)
, (2.10)

and the jackknife empirical log-likelihood ratio is:

logR(θ0) = −
n∑

i=1

log(1 + γ(V̂i − θ0)). (2.11)

The following theorem 1 states that the the asymptotic distribution of the jack-

knife empirical log-likelihood ratio statistic still follows Wilks’ theorem. Its proof is

given in Appendix A.

Theorem 1. Let σ2
1,0,0 = V ar(E(h(X, Y, Z)|X)), σ2

0,1,0 = V ar(E(h(X, Y, Z)|Y )),

σ2
0,0,1 = V ar(E(h(X, Y, Z)|Z)). Assume that: σ2

1,0,0 > 0, σ2
0,1,0 > 0 and σ2

0,0,1 >

0; 0 < limn→∞
n1

n2
≤ limn→∞ n1

n2
< ∞, 0 < limn→∞

n2

n3
≤ limn→∞ n2

n3
< ∞; and

Eh2(X, Y, Z) <∞. Then, as min(n1, n2, n3)→∞, at the true value θ0, we have:

−2logR(θ0) d−→ χ2
1. (2.12)

By theorem 1, an approximate (1 − α) level confidence interval for θ0 can be

constructed as:
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Θc = {θ : −2logR(θ) ≤ c}, (2.13)

where c is chosen to satisfy P (χ2
1 ≤ c) = 1− α.
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Chapter 3

NUMERICAL STUDIES

3.1 Monte Carlo Simulation

In this section, based on the theorems of the Jackknife Empirical likelihood

(JEL), extensive simulation studies are conducted to explore the performance of the

confidence intervals from this procedure for the generalized and simple VUS. We

compare the coverage accuracy of the proposed modified jackknife empirical likelihood

method (mJEL) with the original jackknife empirical likelihood method (JEl) in Wang

(2010) and the empirical likelihood method (EL) in Li (2009). We consider four cases:

the first two cases are the generalized forms of VUS and the last two case are the

simple forms of VUS.

Firstly, in the simulation studies on generalized VUS, we choose: case (1), F1 =

N(1, 0.5), F2 = N(2, 0.5) and F3 = N(3, 0.5); case (2), F1 = N(1, 3), F2 = N(2, 3)

and F3 = N(3, 3). We generate 10,000 random samples from the above cases with

sample sizes (16, 8, 16), (40, 20, 40) and (60, 30, 60). The coefficients are fixed as

a1 : a2 : a3 = 2 : 1 : 2.

Secondly, in the simulation studies on simple VUS, we choose: case (3), F1 =

N(0, 1), F2 = N(1, 1) and F3 = N(1, 2); case (4), F1 = exp(8), F2 = exp(1) and

F3 = exp(1/4).We generate 10,000 random samples from the above cases with sample

sizes (15, 15, 15), (30, 30, 30) and (50, 50, 50).



14

In addition, one case about the small sample performance and calibration of

the jackknife empirical likelihood is studied. An adjusted empirical likelihood (AEL)

method proposed by Chen (2008) is applied to JEL procedure, trying to promote

the coverage probability. we choose: case (5), F1 = N(−3, 1), F2 = exp(1) and

F3 = Cauchy(6, 1).We generate 5,000 random samples from the above cases with

sample sizes (6, 6, 6).



15

Table 3.1. Confidence intervals for Normal distribution cases:

mJEL JEL EL

Sample size C.L. C.P. A.L. C.P. A.L. C.P. A.L.

(16, 8, 16) 0.90 0.9019 0.0593 0.9019 0.0593 0.8712 0.0515
0.95 0.9416 0.0721 0.9416 0.0721 0.9200 0.0626
0.99 0.9871 0.0978 0.9871 0.0978 0.9554 0.0849

(40, 20 ,40) 0.90 0.8983 0.0399 0.8983 0.0399 0.8697 0.0346
0.95 0.9470 0.0493 0.9470 0.0493 0.9252 0.0427
0.99 0.9895 0.0711 0.9895 0.0711 0.9679 0.0617

(60, 30, 60) 0.90 0.9003 0.0283 0.9003 0.0283 0.8710 0.0244
0.95 0.9506 0.0345 0.9506 0.0345 0.9279 0.0306
0.99 0.9897 0.0458 0.9897 0.0458 0.9749 0.0407

NOTE:
The three distributions are N(1, 0.5), N(2, 0.5) and N(3, 0.5).
a1 : a2 : a3 = 2 : 1 : 2.
The true value of the parameter of interest is: 0.4124.
C.L. is confidence level,
C.P. is coverage probability,
A.L. is the average length of the interval.
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Table 3.2. Confidence intervals for Normal distribution cases:

mJEL JEL EL

Sample size C.L. C.P. A.L. C.P. A.L. C.P. A.L.

(16, 8, 16) 0.90 0.9019 0.0929 0.9019 0.0929 0.8692 0.0901
0.95 0.9526 0.1211 0.9526 0.1211 0.9176 0.1103
0.99 0.9871 0.1597 0.9871 0.1597 0.9554 0.1498

(40, 20 ,40) 0.90 0.9083 0.0899 0.9113 0.0908 0.8697 0.0726
0.95 0.9577 0.1042 0.9591 0.1056 0.9279 0.0867
0.99 0.9885 0.1305 0.9898 0.1324 0.9699 0.1041

(60, 30, 60) 0.90 0.8973 0.0833 0.8989 0.0836 0.8761 0.0694
0.95 0.9502 0.0990 0.9511 0.0995 0.9339 0.0863
0.99 0.9908 0.1258 0.9914 0.1270 0.9608 0.1173

NOTE:
The three distributions are N(1, 3), N(2, 3) and N(3, 3).
a1 : a2 : a3 = 2 : 1 : 2.
The true value of the parameter of interest is: 0.2159.
C.L. is confidence level,
C.P. is coverage probability,
A.L. is the average length of the interval.
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Table 3.3. Confidence intervals for Normal distribution cases:

mJEL JEL EL

Sample size C.L. C.P. A.L. C.P. A.L. C.P. A.L.

(15, 15, 15) 0.90 0.9085 0.2968 0.9085 0.2968 0.8786 0.2675
0.95 0.9532 0.3553 0.9532 0.3553 0.9317 0.3119
0.99 0.9891 0.4693 0.9891 0.4693 0.9664 0.4128

(30, 30 ,30) 0.90 0.8949 0.2025 0.8949 0.2025 0.8743 0.1756
0.95 0.9442 0.2417 0.9442 0.2417 0.9227 0.2108
0.99 0.9895 0.3193 0.9895 0.3193 0.9669 0.277

(50, 50, 50) 0.90 0.8888 0.1548 0.8888 0.1548 0.8631 0.1336
0.95 0.9402 0.1846 0.9402 0.1846 0.9193 0.1603
0.99 0.9865 0.2458 0.9865 0.2458 0.9648 0.2113

NOTE:
The three distributions are N(0, 1), N(1, 1) and N(1, 2).
The true value of the parameter of interest is: 0.3407.
C.L. is confidence level,
C.P. is coverage probability,
A.L. is the average length of the interval.
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Table 3.4. Confidence intervals for Exponential distribution cases:

mJEL JEL EL

Sample size C.l. C.P. A.L. C.P. A.L. C.P. A.L.

(15, 15, 15) 0.90 0.9152 0.3052 0.9152 0.3052 0.8946 0.2652
0.95 0.9563 0.3659 0.9563 0.3659 0.9351 0.3171
0.99 0.9895 0.4871 0.9895 0.4871 0.9688 0.4238

(30, 30 ,30) 0.90 0.9077 0.2075 0.9077 0.2075 0.8874 0.1805
0.95 0.9559 0.2491 0.9559 0.2491 0.9341 0.2162
0.99 0.9918 0.3293 0.9918 0.3293 0.9694 0.2378

(50, 50, 50) 0.90 0.9075 0.1586 0.9075 0.1586 0.8863 0.1376
0.95 0.9552 0.1894 0.9552 0.1894 0.9333 0.1643
0.99 0.9911 0.2498 0.9911 0.2498 0.9684 0.2173

NOTE:
The three distributions are Exp(8), Exp(1) and Exp(1/4).
The true value of the parameter of interest is: 0.6919.
C.L. is confidence level,
C.P. is coverage probability,
A.L. is the average length of the interval.
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Table 3.5. Confidence intervals for three different distributions cases:

mJEL JEL AEL

Sample size C.l. C.P. A.L. C.P. A.L. C.P. A.L.

(6, 6, 6) 0.90 0.4488 0.2198 0.4488 0.2198 0.4505 0.2421
0.95 0.4489 0.2646 0.4489 0.2646 0.4492 0.2936
0.99 0.4492 0.3591 0.4492 0.3591 0.4492 0.4117

NOTE:
The three distributions are N(−3, 1), Exp(1) and Cauchy(6, 1).
The true value of the parameter of interest is: 0.9317.
C.L. is confidence level,
C.P. is coverage probability,
A.L. is the average length of the interval.
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Chapter 4

SUMMARY AND FUTURE WORK

4.1 Summary

In this thesis, a new jackknife empirical likelihood method is proposed to con-

struct the confidence intervals for VUS in the simple and generalized forms. The

jackknife empirical likelihood ratio statistic can be proved to converge to the chi-

square distribution asymptotically.

First, the proposed JEL method runs faster than the other traditional method

as observed in simulation studies. And the simulation studies evaluate the finite

sample numerical performance of the inference. The results from the new JEL and

the original JEL are almost the same. All coverage probabilities of JEL are close

to the corresponding nominal levels of 90%, 95% and 99%; and the larger sample

sizes lead to more accurate coverage probabilities and smaller average length of the

confidence intervals as well. However, with the accurate coverage probabilities, the

average lengths of confidence intervals of JEL are larger than the average lengths

from the traditional EL method.

For the small sample case, Chen’s aEL is a useful method to promote the cov-

erage probability for traditional empirical likelihood procedure. However, in the JEL

case, this method seems not to work well. The coverage probabilities from the three

methods are close to each other and the average length of the confidence intervals
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from Chen’s method is significantly larger than the lengthes from the other naive

methods.

4.2 Future Work

In the future, we can continue the study in more than one way.

First, real data sets can be applied to testify the performance of the proposed method.

Second, to obtain a more efficient confidence interval, we can try to plug the bootstrap

or other calibration methods into the procedure. Third, we will try this JEL procedure

to deal with the missing data problem of VUS.

In summary, the research of VUS can be further investigated in many different

aspects.



22

REFERENCES

[1] Bamber, D., The area above the ordinal dominance graph and the area below
the receiver operating characteristic graph, Journal of Mathematical Psychology,
Vol. 4, pp. 941-953, 1975.

[2] Chen, J. and Rao, J. N. K., Asymptotic normality under two-phase sampling
designs, Statistica Sinica, Vol. 17, pp. 1047-1064, 2007.

[3] Chen, S. X. and Hall, P., Smoothed empirical likelihood confidence intervals for
quantiles, The Annals of Statistics, Vol. 21, pp 1166-1181, 1993.

[4] Halmos, P. R., The theory of unbiased estimation, Annals of Mathematical S-
tatistics,, Vol. 17, pp. 34-43, 1946.

[5] Hoeffding, W., A class of statistics with asymptotically normal distribution, An-
nals of Mathematical Statistics,, Vol. 19, pp. 293-325, 1948.

[6] Hsieh, F. and Turnbull, B. W., Nonparametric and semiparametric estimation
of the receiver operating characteristic curve, The Annals of Statistics, Vol. 24,
pp. 25-40, 1996.

[7] Jing, B. Y., Yuan, J. Q. and Zhou, W., Jackknife empirical likelihood, Journal
of the American Statistical Association, Vol. 104, pp. 1224-1232, 2009.

[8] Keziou, A. and Leoni-Aubin, S., On empirical likelihood for semiparametric two-
sample density ratio models, J. Statist. Plann. Inference, Vol. 138, pp. 915C928,
2008.

[9] Koroljuk, V. S. and Borovskich, Yu. V., Theory of U-statistics, Mathematics and
Its Applications, Vol. 273, Kluwer Academic Publishers, 1994.

[10] Lehmann, E. L., Consistency and unbiasedness of certain nonparametric tests,
Ann. Math. Statistics, Vol. 22, pp. 165C179, 1951.

[11] Lee, A. J., U-statistics, Theory and Practice, New York: Marcel Dekker,Inc.,
1990.

[12] Li, Y., A generalization of AUC to an ordered multi-class diagnosis and applica-
tion to longitudinal data analysis on intellectual outcome in pediatric braintumor
patients, Ph. D. Thesis, Georgia State University, 2009.

[13] Mossman,D., Three-way ROCs, Medical Decision Making, Vol. 19, pp. 78-89,
1999.



23

[14] Nakas,C. T. and Yiannoutsos,C. T., Ordered multiple-class ROC analysis with
continuous measurements, Statistics in Medicine, Vol. 23, pp. 3437-3449, 2004.

[15] Owen, A. B., Empirical likelihood ratio confidence intervals for a single function-
al, Biometrika, Vol. 75, pp. 237-249, 1988.

[16] Owen, A. B., Empirical likelihood ratio confidence regions. The Annals of Statis-
tics, Biometrika, Vol. 18, pp. 90-120, 1990.

[17] Pepe, M. S., The Statistical Evaluation of Medical Tests for Classification and
Prediction, Oxford: Oxford University Press.

[18] Qin, J. and Lawless, J., Empirical likelihood and general estimating equations,
The Annals of Statistics, Vol. 22, pp. 300-325, 1994.

[19] Ren, J., Weighted empirical likelihood in some two-sample semiparametric mod-
els with various types of censored data, Annals of Statistics, Vol. 36, pp. 147-166,
2008.

[20] Shao, J. and Tu, D., The Jackknife and Bootstrap, Springer-Verlag, 1995.

[21] Su, H., Qin, Y. and Liang, H., Empirical Likelihood-Based Confidence Interval
of ROC Curves, Statistics in Biopharmaceutical Research, Vol. 1, pp. 407-414,
2009.

[22] Wang, X., Empirical likelihoood with applications, Ph. D. Thesis, National U-
niversity of Singapore, 2010.

[23] Wood, A.T.A., Do, K.A. and Broom, N.M., Sequential linearization of empirical
likelihood constraints with application to U-statistics, J. Comput. Graph. Stat.,
Vol. 5, pp. 365-385, 1996.

[24] Zou, K. H., Hall, W. J. and Shapiro, D. E. , Smooth non-parametric receiver
operating characteristic (ROC) curves for continuous diagnostic tests, Statistics
in Medicine, Vol. 16, pp. 2143-2156, 1997.





25

Un − θ

Sn1,n2,n3

d−→ N(0, 1), asmin(n1, n2, n3)→∞, (1)

and

σ̂2 − S2
n1,n2,n3

= op((min(n1, n2, n3))
−1). (2)

To prove the main theorem, we need some additional lemmas. Without loss of

generality, we always suppose that n1 ≤ n2 ≤ n3.

Lemma 3. Let Sn = 1
n

n∑
i=1

(V̂i−θ0)2. Under the conditions of lemma1, as min(n1, n2, n3)→
∞, Sn = nS2

n1,n2,n3
+ o(1) a.s..

Proof of Lemma 3. Let ξni
= ψ(V̂i− θ0), where ψ(x) is nondecreasing, twice differen-

tiable with bounded first and second derivatives such that:

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0

a(x) if 0 < x < δ

1 if x ≥ δ

with 0 < a(x) < 1 for 0 < x < δ.

For 1 ≤ i ≤ n1, by the definition of pseudo value V̂i, we have:

V̂i − θ0 = (Un − θ0) +
n− 1

n1 − 1
(Vi,0,0 − Un)I(1 ≤ i ≤ n1) +

n− 1

n2 − 1
(V0,j,0 − Un)I(n1 + 1 ≤ i ≤ n1 + n2)

+
n− 1

n3 − 1
(V0,0,k − Un)I(n1 + n2 + 1 ≤ i ≤ n),
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Then by lemma 2, we have:

Sn =
1

n

n∑
i=1

(V̂i − θ0)
2

=
(n− 1)2

n
[

1

(n1 − 1)2

n1∑
i=1

(V̂i,0,0 − Un)
2 +

1

(n2 − 1)2

n1+n2∑
j=n1+1

(V̂0,j,0 − Un)
2

+
1

(n3 − 1)2

n∑
i=n1+n2+1

(V̂0,0,k − Un)
2] + (Un − θ0)

2

= nσ̂2 + o(1) a.s.

= nS2
n1,n2,n3

+ o(1) a.s.

Lemma 4. Let Hn = max
1≤i≤n1<j≤n1+n2<k≤n

|h(Xi, Yj, Zk)|. Under the conditions of

lemma 1, we have Hn = o(n1/2) a.s.

Proof of Lemma 4.

Hn = max
1≤i≤n1<j≤n1+n2<k≤n

|h(Xi, Yj, Zk)|

= n−1/2 max
1≤i<j<k≤n

|h(Xi, Yj−n1 , Zk−n1−n2)I(1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n)|.

where I(1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n) is an indicator function. By the above

equation, we can consider of another form of the maximum:

Hn = max
1≤i<j<k≤n

|h̃(Xi, Yj, Zk)|,

where h̃(Xi, Yj, Zk) = h(Xi, Yj−n1 , Zk−n1−n2)I(1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n).

Then, for any two integers n′ and n
′′
satisfying 1 < n′ < n

′′ ≤ n, by Markov’s
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inequality and Borel-Cantelli Lemma,

n′−1/2 max
1≤i<n′

|h̃(Xi, Yn′ , Zn′′ )| → 0 a.s..

Since

n−1/2 max
1≤i<j<k≤n

|h̃(Xi, Yj, Zk)|

=n−1/2 max
1<k≤n

{max
j<k
{max

i<j
|h̃(Xi, Yj, Zk)|}}

≤ max
1<k≤n

{k−1/2 max
j<k
{max

i<j
|h̃(Xi, Yj, Zk)|}}

≤ max
1<k≤n

{max
j<k
{j−1/2 max

i<j
|h̃(Xi, Yj, Zk)|}}.

Then, the two above statement implies that n−1/2 max
1≤i<j<k≤n

|h̃(Xi, Yj, Zk)| → 0 a.s.,

which completes the proof.

Lemma 5. Let Kn = max
1≤i≤n

|V̂i− θ0|. Under the conditions of lemma 1, Kn = o(n1/2)

a.s. and 1
n

n∑
i=1

|V̂i − θ0|3 = o(n1/2) a.s..

Proof of Lemma 5. By the definition of the pseudo sample {V̂i}ni=1,

|V̂i − θ0| ≤ (2C − 1)Hn + |θ0|, (1 ≤ i ≤ n)

where C satisfies that max( n−1
n1−1 ,

n−1
n2−1 ,

n−1
n3−1) ≤ C <∞. Since Hn = o(n1/2), then

Kn = o(n1/2)a.s. (3)
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By lemma 3 and under the conditions in this lemma:

1

n

n∑
i=1

|V̂i − θ0|3 ≤ 1

n

n∑
i=1

|V̂i − θ0|2Kn

= SnKn

≤ C ′(σ2
1,0,0 + σ2

0,1,0 + σ2
0,0,1)o(n

1/2)

= o(n1/2).

where C ′ satisfies that max( n
n1
, n
n2
, n
n3
) ≤ C ′ <∞. Then, the proof is completed.

Proof of Theorem 1. By (2.9), we have:

0 =

∣∣∣∣∣ 1n
n∑

i=1

V̂i − θ0

1 + γ(V̂i − θ0)

∣∣∣∣∣
=

1

n

∣∣∣∣∣
n∑

i=1

(V̂i − θ0)− γ
(V̂i − θ0)

2

1 + γ(V̂i − θ0)

∣∣∣∣∣
≥ |γ|Sn

1 + |γ|Kn

− |Un − θ0|

By lemma 2, |Un − θ0| = Op(n
−1/2). By lemma 3 and lemma 5, it follows that

|γ|
1 + |γ|Kn

= Op(n
−1/2),

|γ| = Op(n
−1/2).

For convenience, if let ηi = γ(V̂i − θ0), then

max
1≤i≤n

|ηi| = |γ|Kn

= Op(n
−1/2)o(n1/2)

= op(1).

(4)
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Plugging this estimator of ηi back into (2.9), we have

0 = Un − θ0 − γSn +
1

n

n∑
i=1

(V̂i − θ0)ηi
1 + ηi

.

Since

1

n

n∑
i=1

(V̂i − θ0)ηi
1 + ηi

= o(n1/2)Op(n
−1)Op(1) = op(n

−1/2),

then

γ =
Un − θ0
Sn

+ β, (5)

where β = op(n
−1/2). By Taylor expansion, we have log(1 + ηi) = ηi − η2i

2
+ ζi, where

as n→∞ P{|ζi| ≤ C|ηi|3, 1 ≤ i ≤ n} → 1 for a number C (0 < C <∞).

Similar to the proof of Theorem 1 in Owen (1990), it can be shown that

−2 logR(θ0) = 2
n∑

i=1

log(1 + ηi)

=
n(Un − θ0)

2

Sn
− nSnβ

2 + 2
n∑

i=1

ζi.

Since

|nSnβ2| = n(nS2
n1,n2,n3

+ o(1))op(n−1) = op(1),

|2
n∑

i=1

ζi| ≤ C|γ|3
n∑

i=1

|V̂i − θ|3 = Op(n
−3/2)o(n3/2) = op(1),

and by lemma 2 and lemma 3, as min(n1, n2, n3)→∞,

n(Un − θ0)
2

Sn

d−→ χ2
1.

Then, by Slutsky’s theorem, we have −2 logR(θ0) d−→ χ2
1, which completes the proof.
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Appendix B: Matlab Code for the Simulation Study

function [fres rres]=jel_conf_o(x,y,z,alpha);

v_hat=psuedo(x,y,z);

[fres rres]=confint(v_hat,alpha);

function [lend rend]=confint(V,alpha);

epsilon=10^(-4);

tAlpha=chi2inv(alpha,1);

theta=mean(V);

delta=1;

deltaR=theta;

while pandingzhi(V,deltaR)<tAlpha

deltaR=deltaR+abs(delta);

end

deltaRL=theta;

deltaRR=deltaR;

while abs(deltaRL-deltaRR)>2*epsilon

deltaRM=(deltaRL+deltaRR)/2;

if (pandingzhi(V,deltaRR)-tAlpha)*(pandingzhi(V,deltaRM)-tAlpha)<0

deltaRL=deltaRM;

elseif (pandingzhi(V,deltaRL)-tAlpha)*(pandingzhi(V,deltaRM)-tAlpha)<0

deltaRR=deltaRM;

else

break

end

end

deltaRM=(deltaRL+deltaRR)/2;

deltaL=theta;

while pandingzhi(V,deltaL)<tAlpha

deltaL=deltaL-abs(delta);

end
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deltaLR=theta;

deltaLL=deltaL;

while abs(deltaLR-deltaLL)>2*epsilon

deltaLM=(deltaLL+deltaLR)/2;

if (pandingzhi(V,deltaLL)-tAlpha)*(pandingzhi(V,deltaLM)-tAlpha)<0

deltaLR=deltaLM;

elseif (pandingzhi(V,deltaLR)-tAlpha)*(pandingzhi(V,deltaLM)-tAlpha)<0

deltaLL=deltaLM;

else

break

end

end

deltaLM=(deltaLL+deltaLR)/2;

lend=deltaLM;

rend=deltaRM;

function t=pandingzhi(V,theta)

t=-2*elm(V’, theta);

function pseudovalue=psuedo(x,y,z)

nx=length(x);

ny=length(y);

nz=length(z);

n=nx+ny+nz;

totalsum=0;

for i=1:nx;

for j=1:ny;

for k=1:nz;

totalsum=totalsum+kernel(x(i),y(j),z(k));

end;

end;

end;

for index=1:n;

if index<nx+1;

partialsum=0;

i=index;

for j=1:ny;
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for k=1:nz;

partialsum=partialsum+kernel(x(i),y(j),z(k));

end;

end;

pseudovalue(index)=(1-(n-1)/(nx-1))*(totalsum/(nx*ny*nz))+((n-1)/(nx-1))*

(partialsum/(ny*nz));

elseif index>nx & index<nx+ny+1;

partialsum=0;

j=index-nx;

for i=1:nx;

for k=1:nz;

partialsum=partialsum+kernel(x(i),y(j),z(k));

end;

end;

pseudovalue(index)=(1-(n-1)/(ny-1))*(totalsum/(nx*ny*nz))+((n-1)/(ny-1))*

(partialsum/(nx*nz));

elseif index>nx+ny;

partialsum=0;

k=index-nx-ny;

for i=1:nx;

for j=1:ny;

partialsum=partialsum+kernel(x(i),y(j),z(k));

end;

end;

pseudovalue(index)=(1-(n-1)/(nz-1))*(totalsum/(nx*ny*nz))+((n-1)/(nz-1))*

(partialsum/(ny*nx));

end;

end;

function result=kernel(x,y,z)

if x<y &y<z;

kernel1=1;

else kernel1=0;

end;

result=kernel1;
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