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ABSTRACT 

For viral outbreaks like the recent COVID-19 outbreak, medical professionals in many areas 

require to know who infected whom, which variants are drug resistant and what therapy should be 

selected. To answer these questions, it is necessary to identify viral variants (haplotypes and 

SNP’s) in patients. A haplotype refers to a combination of alleles or a set of single nucleotide 

polymorphisms (SNPs) found on the same chromosome. This thesis describes the development 

and assessment of several pipelines and tools for viral NGS and read data analysis and the effect 

on the accuracy of the haplotype identification.  
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1 INTRODUCTION  

Medical professionals need information about infection direction, drug resistance, and therapy 

selection for viral outbreaks. All of these require knowledge of viral variants in patients. Viral 

variants are usually described by haplotypes. A haplotype refers to a combination of alleles or to 

a set of single nucleotide polymorphisms (SNPs) found on the same chromosome. This thesis 

describes the work on three pipelines to improve the accuracy of the haplotypes with different 

methods for cleaning the raw data, aligning the data, processing the data. 

The below sections describe Next Generation Sequencing and some of its methods, RNA 

viruses and quasispecies.  

1.1 Next Generation Sequencing 

DNA sequencing is the process of determining the sequence of nucleotides in a section of DNA. 

Next-generation sequencing (NGS) refers to the deep, high-throughput, in-parallel DNA 

sequencing technologies developed a few decades after the Sanger DNA sequencing method. The 

NGS technologies are different from the Sanger method in that they provide massively parallel 

analysis, extremely high-throughput from multiple samples at much reduced cost. Millions to 

billions of DNA nucleotides can be sequenced in parallel, yielding substantially more throughput 

and minimizing the need for the fragment-cloning methods that were used with Sanger sequencing. 

The second-generation sequencing methods are characterized by the need to prepare amplified 

sequencing libraries before undertaking sequencing of the amplified DNA clones, whereas third-

generation single molecular sequencing can be done without the need for creating the time-

consuming and costly amplification libraries. The parallelization of a high number of sequencing 

reactions by NGS was achieved by the miniaturization of sequencing reactions. The time needed 
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to generate the gigabase sized sequences by NGS was reduced from many years to only a few days 

or hours, with an accompanying massive price reduction. 

The massively parallel sequencing technology known as next-generation sequencing 

(NGS) has revolutionized the biological sciences. With its ultra-high throughput, scalability, and 

speed, NGS enables researchers to perform a wide variety of applications and study biological 

systems at a level never before possible. 

Today's complex genomic research questions demand a depth of information beyond the 

capacity of traditional DNA sequencing technologies. Next-generation sequencing has filled that 

gap and become an everyday research tool to address these questions. 

Using capillary electrophoresis-based Sanger sequencing, the Human Genome Project took 

over 10 years and cost nearly $3 billion. Next-generation sequencing, in contrast, makes large-

scale whole-genome sequencing (WGS) accessible and practical for the average researcher. It 

enables scientists to analyze the entire human genome in a single sequencing experiment, or 

sequence thousands to tens of thousands of genomes in one year. 

NGS-based RNA-Seq is a powerful method that enables researchers to break through the 

inefficiency and expense of legacy technologies such as microarrays. Microarray gene expression 

measurement is limited by noise at the low end and signal saturation at the high end. In contrast, 

next-gen sequencing quantifies discrete, digital sequencing read counts, offering a broader 

dynamic range. Below paragraphs describes some of the types of next generation sequencing. 

Illumina sequencing works by simultaneously identifying DNA bases, as each base emits 

a unique fluorescent signal, and adding them to a nucleic acid chain. This sequencing method is 

based on reversible dye-terminators that enable the identification of single bases as they are 

introduced into DNA strands. 
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PacBio sequencing captures sequence information during the replication process of the 

target DNA molecule. The template, called a SMRTbell, is a closed, single-stranded circular DNA 

that is created by ligating hairpin adaptors to both ends of a target double-stranded DNA molecule. 

Roche 454 sequencing method is based on pyrosequencing, a technique which detects 

pyrophosphate release, again using fluorescence, after nucleotides are incorporated by polymerase 

to a new strand of DNA. Roche 454 sequencing can sequence much longer reads than Illumina. 

Like Illumina, it does this by sequencing multiple reads at once by reading optical signals as bases 

are added. 

Ion Torrent sequencing measures the direct release of H+ (protons) from the incorporation 

of individual bases by DNA polymerase and therefore differs from the previous two methods as it 

does not measure light. 

Nanopore sequencing is a unique, scalable technology that enables direct, real-time 

analysis of long DNA or RNA fragments. It works by monitoring changes to an electrical current 

as nucleic acids are passed through a protein nanopore. The resulting signal is decoded to provide 

the specific DNA or RNA sequence. 

1.2 RNA Viruses and Quasispecies 

1.2.1 RNA Viruses 

An RNA virus[15] is a virus that has RNA as its genetic material.  This nucleic acid is 

usually single-stranded RNA but may also be double-stranded RNA. Human diseases causing 

RNA viruses include Orthomyxoviruses, Hepatitis C Virus (HCV), Ebola disease, SARS, 

influenza, polio measles and human immunodeficiency virus (HIV) etc.  Viruses may exploit the 

presence of RNA-dependent RNA polymerases for replication of their genomes or, in retroviruses, 
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with two copies of single strand RNA genomes, reverse transcriptase produces viral DNA which 

can be integrated into the host DNA under its integrase function. Among human retroviruses, HIV-

1 is a lentivirus with an RNA genome formed by two copies of a single-stranded, positive-sense 

RNA.  Upon entry into the target cell, the viral RNA genome is reverse transcribed into double-

stranded DNA by a virally encoded reverse transcriptase that is transported along with the viral 

genome into the virus particle. The viral DNA is imported into the cell nucleus and integrated into 

the cellular DNA by a virally encoded integrase and host co-factors. Once integrated, the virus 

may become latent, or may be transcribed, producing new RNA genomes and viral proteins that 

are packaged and released from the infected cell as new virus particles that will infect other cells 

to begin the new replication cycle. Many aspects of the life cycle of retroviruses are intimately 

linked to the functions of cellular proteins and RNAs.  

1.2.2 Quasispecies 

A viral quasispecies is a population structure of viruses with many variant 

genomes. Quasispecies result from high mutation rates as mutants arise continually and change in 

relative frequency as viral replication and selection proceeds. Viral quasispecies are the mutant 

distributions (also termed mutant swarms or clouds) that are generated upon replication of RNA 

viruses, and some DNA viruses in infected cells and organisms. The quasispecies concept 

originated in a theoretical formulation of molecular evolution that emphasized error-prone 

replication of simple RNA or RNA-like replicons as an essential feature of self-organization and 

adaptability of primitive life forms. An important aspect of the quasispecies concept is that the 

large size of virus populations enables positive and negative interactions between individual 

viruses to establish a quasi-equilibrium of the variant proportions. Genetic variation is generated 



5 

by the accumulation of mutations during replication and their re-arrangement by genetic 

recombination, and genome segment reassortment in the case of segmented genomes. 

1.2.3 Haplotypes 

 

A haplotype is a group of genes within an organism that was inherited together from a 

single parent. The word "haplotype" is derived from the word "haploid," which describes cells 

with only one set of chromosomes, and from the word "genotype," which refers to the genetic 

makeup of an organism. 

Biologists, immunologists, epidemiologists, pharmacologists, bio-medical specialists need 

information like who infected whom and how are they related, drug resistant variants, therapy 

selection. All of them require knowledge of haplotypes. Information about haplotypes is used to 

investigate the influence of genes on disease. Knowledge of the haplotype structure would 

therefore make it possible to type the minimum number of SNPs that would be needed to uniquely 

tag all the haplotypes to search for disease mutations. 

Haplotypes are an allelic configuration of multiple markers that are present on a single 

chromosome of a given individual. Recombination will break up haplotypes when they are passed 

on to the subsequent generation. The size of ancestral haplotypes will therefore have been reduced 

considerably after many generations. However, if recombinations are more likely at specific 

locations or recombination hotspots, a block structure will arise. If within a block there have been 

no or few recombinations, variations within blocks will mainly be caused by mutation. As a result, 

it will be possible to characterize a large percentage of the subjects by a few common haplotypes 

which are parts of ancestral haplotypes that are conserved in the general population. 
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1.3 Contribution 

Our contributions include: 

1) Developed the three pipelines for haplotype construction 

a. Pipeline 1: includes BWA aligner and CliqueSNV 

b. Pipeline 2: includes BWA aligner, BBduk to trim the reads below a certain quality 

value and CliqueSNV 

c. Pipeline 3: includes BWA aligner, BBduk, Shiver to map reads to a constructed 

reference and CliqueSNV 

More about the pipelines, tools used in pipelines, input data, intermediate data is 

described the sections later. 

2) Run the tools with the NGS read samples from CDC on the 3 pipelines. 

3) Assess the haplotypes using metrics like Earth Mover’s Distance (EMD), the edit distance 

to the closest predicted variant (ECP), the frequency of the closest predicted variant (FCP) 

and the explanation error of T (EEV).  

1.4 Problem Formulation 

Given: NGS read samples collected from CDC. 

Assess: This thesis describes and assess more accurate procedure for finding the haplotypes and 

the three pipelines for haplotype reconstruction from the given NGS read samples from CDC. The 

tools used in the three pipelines and the steps in these pipelines are described in the following 

sections. 



7 

1.5 RoadMap 

This section describes the roadmap of this report. Section 2 describes software tools used in the 3 

pipelines for NGS reads data analysis. Section 3, the experimental design describes the 3 pipelines 

and the steps in each pipeline, the input for each pipeline and the intermediate input for each step 

in the pipeline and the output obtained from the pipelines. The metrics section describes several 

metrics used to validate reconstructed haplotypes from the three pipelines. 
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2 REVIEW OF SOFTWARE TOOLS 

2.1 CliqueSNV 

CliqueSNV [14], is a novel reference-based method for reconstruction of viral variants from NGS 

data. It efficiently constructs an allele graph based on linkage between single nucleotide variations 

and identifies true viral variants by merging cliques of that graph using combinatorial optimization 

techniques. CliqueSNV outperforms existing methods in both accuracy and running time on 

experimental and simulated NGS data for titrated levels of known viral variants. 

CliqueSNV eliminates the need for preliminary error correction and assembly and infers 

haplotypes from patterns in distributions of SNVs in sequencing reads. It is suitable for long single-

molecule reads (PacBio) as well as short paired reads (Illumina). CliqueSNV uses linkage between 

single nucleotide variations (SNVs) to distinguish them from sequencing errors efficiently. It 

constructs an allele graph with edges connecting linked SNVs and identifies true viral variants by 

merging cliques of that graph using combinatorial optimization techniques. 

Previous tools such as V-phaser [3], V-phaser2 [4] and CoVaMa [5] exploited linkage of 

nucleotide variants, but they did not take into account sequencing errors when deciding whether 

two variants are linked. Results of these tools show that they were unable to reliably detect variants 

of frequency even higher than the error rate of sequencing.  

The 2SNV algorithm [6] accommodated errors in links and was the first such tool to be able 

to detect haplotypes with a frequency below the error rate correctly. CliqueSNV method keeps the 

basic idea of 2SNV linkage analysis but develops a novel approach for collecting multiple SNV’s 

and inference of true haplotypes. Unlike 2SNV, which hierarchically clusters together reads 

containing pairs of linked SNVs, CliqueSNV identifies true viral variants in a single clustering 

using an efficient merging of cliques of the allele graph. 2SNV is designed only for single amplicon 
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data whereas CliqueSNV can handle short paired reads from shotgun experiments. Finally, 

CliqueSNV identifies linked SNVs and constructs allele graphs using highly efficient data 

structures. As a result, CliqueSNV is more accurate and significantly faster than 2SNV and capable 

of rapidly handling millions of reads in of minutes. 

CliqueSNV was validated on simulated and experimental data and compared with Savage, 

PredictHaplo, aBayesQR and 2SNV tools. The tools are benchmarked using the results of a PacBio 

sequencing experiment on a sample containing a titrated level of known Influenza A (IAV) viral 

variants, on similar data sets for experimental HIV-1 single-read and paired-end Illumina data and 

simulated Illumina HIV-1 and IAV data. In addition to standard algorithm performance measures, 

the CliqueSNV method developers used a new measure based on earth mover’s distance between 

real and reconstructed haplotype distributions. In this validation study, CliqueSNV significantly 

outperformed these other methods in both accuracy and running time. 

CliqueSNV algorithm consists of the following six steps: 

1. Finding linked SNV pairs 

2. Constructing the allele graph 

3. Finding maximal cliques in the allele graph 

4. Merging cliques in the clique graph 

5. Finding consensus viral variants for merged cliques 

6. Estimating frequencies of the viral variants. 
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2.2 BWA 

BWA is a software package for mapping low-divergent sequences against a large reference 

genome, such as the human genome. BWA aligner is used to align forward reads and reverse reads 

of the data. The reason why we need aligner is, in conventional paired-end sequencing, we simply 

sequence using the adapter for one end, and then once you’re done you start over sequencing using 

the adapter for the other end. This means the two reads are the reverse complement of each other. 

This is how the forward read and reverse read are represented. 

 

Figure 1 Forward and reverse reads representation 

  

Therefore when you open your FASTQ files and look at a pair of reads, the sequences you see are, 

conceptually, pointing towards each other on opposite strands.  When you align them to the 

genome, one read should align to the forward strand, and the other should align to the reverse 

strand, at a higher base pair position than the first one so that they are pointed towards one 

another.  This is known as an “FR” read – forward/reverse read, in that order. 

 

 

 

 

http://en.wikipedia.org/wiki/FASTQ_format
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2.3 BBduk 

BBDuk [13] is a fast and accurate tool for trimming and filtering sequencing data that is part of 

the BBTools package. BBduk stands for decontamination using kmers. BBDuk was developed 

to combine most common data-quality-related trimming, filtering, and masking operations into a 

single high-performance tool. It is capable of quality-trimming and filtering, adapter-trimming, 

contaminant-filtering via kmer matching, sequence masking, length filtering, entropy-filtering, 

format conversion, histogram generation, subsampling, quality-score recalibration, kmer 

cardinality estimation, and various other operations in a single pass. 

Each sequence read in FASTQ file is associated with a quality score. Using BBduk we can 

trim the reads below a quality score we want to define. 
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2.4 Shiver 

Shiver [7] is a tool for mapping paired-end short reads to a custom reference sequence constructed 

using do novo assembled contigs, in order to minimize the biased loss of information that occurs 

from mapping to a reference that differs from the sample.  

 Paired-end short reads and contigs assembled from those reads are required as input for 

each sample; also required is a set of existing reference genomes, chosen by the user. This thesis 

uses HXB2. HXB2 is a subtype B HIV-1 isolate used as the reference strain for aligning and 

numbering HIV-1 sequences. 

 
 

Figure 2: Figure explaining the flow of shiver process 

 

 

2.4.1 Contig Flow 

The first step is to find contigs using IVA. IVA is explained below. 

2.4.1.1 IVA 

IVA [8] is a de novo assembler designed to assemble virus genomes that have no repeat 

sequences, using Illumina read pairs sequenced from mixed populations at extremely high and 
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variable depth. IVA approach is similar to that of PRICE [9] one of the few assemblers designed 

for viral data in which the aligning process begins with seed sequences, which are iteratively 

extended by generating new sequence from local assemblies of reads at contig ends. But in IVA 

they extend contigs more conservatively using consensus kmers from the reads instead of using 

local assemblies. Also, IVA (Iterative Virus Assembler), is a completely de novo assembler, 

whereas PRICE must be provided with seed sequences to be extended into contigs.  

Before assembling, adapter sequences are removed from the reads using Trimmomatic [10] 

followed by the trimming of polymerase chain reaction primer sequences. After trimming the 

reads, the most abundant kmer among the reads is found using kmc. This short seed kmer is 

iteratively extended into a contig using reads that have a perfect match to that kmer, treating the 

reads as unpaired. A list of all possible extension sequences is made (one sequence per overhanging 

read). IVA identifies the kmer of length k among prefixes of the possible extension sequences, for 

largest possible k, such that the kmer appears at least 10 times and is at least four times as abundant 

as the next most common kmer of length k. In this way, the seed is iteratively extended until its 

length reaches the insert size of the read pairs. 

Contigs are extended in a similar manner to that of seed kmers. Instead of using perfect 

string matches, reads are mapped to the contigs with SMALT. During mapping, IVA also uses 

SAMtools [11]. Reads mapped as part of a perfect pair (in the correct orientation and separated by 

the correct distance) and hang off a contig end are used to extend the contig. The sequence added 

to a contig end is constructed using the method described above for kmer extensions. 

When no more contigs can be extended, they are cleaned as follows before generating a new 

seed. Contig ends are trimmed for quality and overlapping contigs are merged based on sequence 
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similarity found at their ends using nucmer [12]. Assembly stops either when a pre-defined 

maximum contig number is reached or no new seeds can be made. 

2.4.2 Read Flow 

Before mapping, reads are trimmed for low-quality bases, adapter and primer sequences using 

Trimmomatic and fastaq. Contaminant read pairs are diagnosed as those matching contaminant 

contigs more closely than the tailored reference and are removed. The remaining reads are mapped 

to the tailored reference. By default shiver does mapping using smalt with a minimum read identity 

(the fractional agreement between a read and the reference to be considered mapped) of 70%, 

independent mapping of mates in a pair, a maximum insert size of 2,000 bp, and discarding 

improperly paired reads. 

 Following mapping, each position in the genome is considered in turn using SAMtools to 

find the frequencies of different bases. At positions where some reads have deletions relative to 

the mapping reference, it counts the frequency of the gap character together with actual bases. At 

positions where some reads have insertions relative to the mapping reference, for the consensus it 

uses the most common insertion size (which may be 0, i.e. no insertion). By default, the most 

common base is called to give the consensus; optionally ambiguity codes can be used more readily, 

when the frequency of the most common base(s) is below a threshold. A consensus base is only 

called if the coverage equals or exceeds a minimum threshold specified by the user, to protect 

against the effect of residual low-coverage contaminant reads in genomic regions lacking genuine 

HIV reads. By default this is 15, but this is likely to need adjusting for different datasets. A tool 

contained in shiver helps the user to explore appropriate values. 
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 By default, once the consensus is called, the cleaned reads are re-mapped to it (with any 

missing coverage in the consensus filled in with the corresponding part of the original tailored 

reference) for a second iteration of calling the base frequencies and the consensus. shiver also 

produces a ‘global alignment’ of all consensuses it generates by coordinate translation, without 

need for an alignment algorithm.  

 Shiver tool was developed to preprocess and map reads from each sample to a custom 

reference, constructed using de novo assembled contigs supplemented by existing reference 

genomes. Tailoring the reference to be as close as possible to the expected consensus before 

mapping maximises the accuracy of the mapping, and therefore of the resulting consensus. shiver’s 

identification, ranking, and use of the closest existing references to fill in gaps between contigs 

boosts data recovery for samples with amplification failure or assembly failure. Such partial-

genome samples, which are inevitable in large diverse data sets, are processed with exactly the 

same two commands; this simplifies scripted application of shiver to all samples in a data 

set. shiver also produces a global alignment containing all of the consensuses separately generated 

for each sample, which is usually required for comparative analysis of the sequences such as for 

phylogenetics. 

Mapping to shiver’s constructed reference instead of mapping the same reads to the closest 

identified real reference gives a median increase in consensus sequence length of 205 bp, with 

thirteen of the original bases called differently and more accurately. This shows the importance of 

tailoring the reference to the sample before mapping. shiver’s consensus, obtained by mapping 

reads to a reference constructed from the contigs, has a median of 7 bases called differently from 
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the contigs even after correcting structural problems in the contigs and trimming suspicious 

sequence from their ends. This illustrates the need for mapping in addition to assembly. 
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3 EXPERIMENTAL DESIGN 

3.1 Metrics 

Validation of different haplotype reconstruction methods should simultaneously answer two 

general questions: (i) how close are the reconstructed and true variants and (ii) how narrow is the 

reconstructed and true variant frequency distribution. Previous studies report high variation in 

results addressing these questions likely due to the challenge of simultaneously addressing them. 

This thesis uses the Earth Mover’s Distance (EMD) as a distance measure for populations, which 

generalizes edit distances between genomes of individual variants.  

3.1.1 Earth Movers Distance 

Let  be the true viral population, where Ti is the ith true variant with 

frequency ti, and let  be the predicted viral population, where Pj is 

the jth predicted variant with frequency pj. Let dij = d(Ti, Pj) be the edit distance between 

variants Ti and Pj. The EMD measures the total error of explaining true variants with predicted 

variants. If we decide to explain fij copies of Ti with fij copies of Pj then we will make an error 

of fijdij. The total error of explaining  with  equals Σi,j fijdij. Of course, the total amount 

of Pj used cannot exceed available pj, Σi fij ≤ pj, and all the amount ti of Ti should be explained, 

i.e. Σj fij = ti. EMD (i.e., the minimum explanation error) could be efficiently computed as an 

instance of the transportation problem using network flows. We can also compute the explanation 

error for any particular true variant Ti which is defined as EEV (Ti) = (Σi,j fijdij)/ti. Note that EMD 

equals to the sum of frequency-weighted explanation 

errors: .  
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3.2 Pipelines and Results 

3.2.1 Pipeline1 

Raw reads are aligned using BWA aligner. Alignment gives sam file. Running CliqueSNV 

on this sam file with different t and tf values gives the output haplotypes. 

 

Figure 3: Figure explaining steps in pipeline 1 

The sample reads are fastq files with two files the forward read and the reverse read. BWA 

aligner aligns the forward read and reverse read and gives output a sam file which contains the 

reads after alignment using the reference read. The reference read used is HXB2.  The sam file 

obtained with aligned reads is the input for CliqueSNV. CliqueSNV is run on the aligned reads 

with different parameter values. It is run with 2 parameters, t and tf. 

 t is the minimum threshold for O22 value. Default is 100 (only for Illumina reads). tf is 

minimum threshold for 022 frequency relative to the reads coverage. Default value is 0.003%. For 

more sensitive algorithm work decrease this parameter (may significantly increase runtime for 

diverse samples). 

3.2.1.1 Results 

Comparison in done between the three pipelines i.e cliqueSNV, BBduk + cliqueSNV and BBduk 

+ shiver + cliqueSNV. All the methods are run on Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz 

with 16 cores and 2 threads per core. The maximum speed of CPU is 2800 MHz and minimum 

speed of CPU is 1200 MHz. The sample of data to be compared is a mixture data taken from CDC. 
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It contains 9 true variants. The true variants are named A, B, C, D, E, F, G, H, J and the frequencies 

of the true variants are: 50%, 25%, 12.5%, 6.3%, 3.2%, 1.6%, 0.8%, 0.4%, 0.2% respectively. 

Table 1: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline1 

  

  
CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50  0 8.46 4 

B 25 1 7.72 4.15 

C 12.5 2 0.85 3.4 

D 6.3 1 3.22 1 

E 3.2 1 2.18 1.33 

F 1.6 5 0.35 6.49 

G 0.8 1 1.8 1 

H 0.4 1 0.71 1 

J 0.2 4 0.28 4 

EMD 
 

3.694 

  
CliqueSNV_MIX1_t_100_tf_1 

Variant frequency ECP FCP% EEV 

A 50 1 5.94 3.8 

B 25 1 10.46 4.12 

C 12.5 0 11.42 0.32 

D 6.3 1 15.68 1 

E 3.2 1 1.91 2 

F 1.6 7 11.42 11 

G 0.8 1 2.68 1 

H 0.4 2 1.56 2 

J 0.2 8 3.01 8 

EMD 
 

3.307 
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Table 3: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline1 

  

  

CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 0 27.13 2.54 

B 25 1 13.9 4.1 

C 12.5 0 25.7 0 

D 6.3 1 15.8 1 

E 3.2 2 5.3 2 

F 1.6 7 25.7 7 

G 0.8 2 2.8 2 

H 0.4 4 27.1 5 

J 0.2 8 5.3 9 

EMD 
 

2.591 

  
CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 0 31.3 1.9 

B 25 1 14.4 3.9 

C 12.5 0 30.1 0 

D 6.3 1 15.7 1 

E 3.2 3 31.3 5 

F 1.6 7 30.1 7 

G 0.8 6 30.1 6 

H 0.4 4 31.3 14 

J 0.2 9 8.3 9 

EMD 
 

2.4 
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3.2.2 Pipeline2 

  Raw reads are aligned using BWA aligner. BBduk is run on aligned reads to trim off the 

reads below a certain quality. This gives the trimmed reads. CliqueSNV is run on these trimmed 

reads gives the haplotypes. 

 
Figure 4: Figure explaining steps in pipeline 2 

The sample reads are fastq files with two files the forward read, and the reverse read. BWA 

aligner aligns the forward read and reverse read and gives output a sam file which contains the 

reads after alignment using the reference read. The reference read used is HXB2.  The sam file 

obtained with aligned reads is the input for BBduk. BBduk trims the reads below a certain quality 

value we define while running the tool from the command prompt. In this thesis the BBduk is run 

with three different quality values 20,25 and 30. CliqueSNV is run on the trimmed reads to get the 

haplotypes. CliqueSNV is run with different t and tf values (CliqueSNV parameters). 
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Table 5: Number of aligned reads after BBduk trimming with different quality trimming values of 

20,25 and 30. 

 Number of reads 

Original file 5,604,910 

Quality trim = 20 2,682,384 

Quality trim = 25 1,048,476 

Quality trim = 30 220,542 

 

3.2.2.1 Results 

 

 

 

 

 

Table 6: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% by 

running pipeline 2 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
bbduk_qtrim20_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 1 0.14 3.9 

B 25 1 5.3 3.5 

C 12.5 0 9.6 0.36 

D 6.3 0 9.1 0 

E 3.2 1 1.2 1 

F 1.6 4 0.1 6.86 

G 0.8 1 1.6 1 

H 0.4 1 0.7 1 

J 0.2 1 0.6 1 

EMD 
 

3.09 



23 

 

 

Table 7: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 2 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 2 with quality trim 20 

 

 

 

 

 

 

 

 

 

  

  
bbduk_qtrim20_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 1 0.5 3.2 

B 25 1 12.5 4.7 

C 12.5 0 20.3 0 

D 6.3 1 0.5 1 

E 3.2 1 1.4 1.5 

F 1.6 6 0.9 6 

G 0.8 3 4.3 3 

H 0.4 0 0.8 0 

J 0.2 0 0.7 0 

EMD 
 

3.03 

  
bbduk_qtrim20_CliqueSNV_MIX1_t_100_tf_1 

variant frequency ECP FCP% EEV 

A 50 2 3.3 4.3 

B 25 1 14.3 3.9 

C 12.5 0 26.7 0 

D 6.3 1 23.4 1 

E 3.2 1 3.3 1 

F 1.6 7 26.7 7 

G 0.8 1 4.2 1 

H 0.4 5 12.5 14 

J 0.2 8 12.5 9 

EMD 
 

3.44 
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Table 9: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 2 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 2 with quality trim 20 

  

  
bbduk_qtrim20_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 0 26.08 2.6 

B 25 1 13.7 4.14 

C 12.5 0 26.7 0 

D 6.3 1 15.3 1 

E 3.2 2 4.9 2 

F 1.6 7 26.7 7 

G 0.8 1 3.3 1 

H 0.4 4 26.08 5 

J 0.2 8 4.9 9 

EMD 
 

2.666 

  
bbduk_qtrim20_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 0 30.9 2.1 

B 25 1 14.1 1.04 

C 12.5 0 31.5 0 

D 6.3 1 15.2 1 

E 3.2 3 30.9 5 

F 1.6 7 31.5 7 

G 0.8 6 31.5 6 

H 0.4 4 30.9 14 

J 0.2 9 8.1 9 

EMD 2.55 
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Table 11: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% by 

running pipeline 2 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 2 with quality trim 20 

  

  
bbduk_qtrim25_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 0 1.1 3.3 

B 25 1 6.4 4.5 

C 12.5 3 8.2 3.06 

D 6.3 0 13.4 0 

E 3.2 0 1.3 2.06 

F 1.6 3 0.5 8.05 

G 0.8 3 1.5 3 

H 0.4 1 0.8 1 

J 0.2 3 0.6 3 

EMD 3.43 

  
bbduk_qtrim25_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 2 4.07 4.23 

B 25 1 9.7 3.56 

C 12.5 0 11.09 3.52 

D 6.3 0 12.2 4 

E 3.2 0 7.3 0 

F 1.6 5 0.6 7.3 

G 0.8 4 2.03 4 

H 0.4 1 2.6 1 

J 0.2 3 0.4 3 

EMD 3.464 
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Table 13: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 2 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 2 with quality trim 25 

 

  

  
bbduk_qtrim25_CliqueSNV_MIX1_t_100_tf_1 

variant frequency ECP FCP% EEV 

A 50 1 3.06 2.61 

B 25 2 11.3 5.1 

C 12.5 3 11.5 3.13 

D 6.3 0 14.4 0 

E 3.2 2 0.42 2 

F 1.6 9 14.1 9 

G 0.8 4 14.1 4 

H 0.4 1 2.3 1 

J 0.2 7 1.8 8 

EMD 3.735 

  
bbduk_qtrim25_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 2 13.7 3.8 

B 25 1 12.9 4.6 

C 12.5 0 23.1 0 

D 6.3 0 19.8 0 

E 3.2 1 13.7 1 

F 1.6 6 1.9 6 

G 0.8 1 3.3 1 

H 0.4 5 5.5 8 

J 0.2 8 1.1 9 

EMD 3.245 
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Table 15: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 2 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% 

by running pipeline 2 with quality trim 30 

 

 

  

  
bbduk_qtrim25_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 2 27.2 3.78 

B 25 1 14.1 3.6 

C 12.5 1 27.4 1 

D 6.3 0 27.2 0 

E 3.2 5 20.8 8.25 

F 1.6 8 27.4 8 

G 0.8 7 27.4 7 

H 0.4 6 27.2 7 

J 0.2 8 27.4 8 

EMD 3.411 

  
bbduk_qtrim30_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 0 13.8 3.3 

B 25 2 10.7 4.88 

C 12.5 3 10.6 3.8 

D 6.3 0 10.3 0 

E 3.2 2 0.92 3.8 

F 1.6 6 5.06 6 

G 0.8 3 6.9 3 

H 0.4 4 2.7 4 

J 0.2 3 0.58 3 

EMD 3.66 
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Table 17: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 2 with quality trim 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 2 with quality trim 30 

 

 

  

  
bbduk_qtrim30_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 0 10.7 3.34 

B 25 1 3.6 3.39 

C 12.5 3 3.1 3.5 

D 6.3 0 13.5 0 

E 3.2 2 3.1 3.19 

F 1.6 4 0.5 7.83 

G 0.8 0 2.5 0 

H 0.4 4 2.5 4 

J 0.2 3 0.56 3 

EMD 3.211 

  
bbduk_qtrim30_CliqueSNV_MIX1_t_100_tf_1 

variant frequency ECP FCP% EEV 

A 50 0 13.03 3.34 

B 25 1 10.4 3.11 

C 12.5 3 12.7 3.17 

D 6.3 0 13.6 0 

E 3.2 3 7.6 3.8 

F 1.6 8 12.7 8 

G 0.8 3 12.7 3 

H 0.4 4 13.03 6 

J 0.2 7 1.7 7 

EMD 3.156 
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Table 19: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 2 with quality trim 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 20: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 2 with quality trim 30 

 

 

  

  
bbduk_qtrim30_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 1 2.9 3.74 

B 25 1 12.1 4.5 

C 12.5 0 27.2 0 

D 6.3 0 15.1 0 

E 3.2 2 1.2 2 

F 1.6 7 27.2 8.9 

G 0.8 1 2.3 1 

H 0.4 4 12.7 11 

J 0.2 7 5.9 9 

EMD 3.299 

  
bbduk_qtrim30_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 2 22.7 4.1 

B 25 1 14.8 2.3 

C 12.5 3 23.07 3 

D 6.3 0 22.7 0 

E 3.2 5 22.7 10 

F 1.6 10 23.07 10 

G 0.8 9 23.07 9 

H 0.4 6 22.7 8 

J 0.2 8 23.07 8 

EMD 3.654 
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3.2.3 Pipeline3 

Raw reads are aligned with BWA aligner using the reference read. Mapping gives aligned 

sam files. Running BBduk on these sam files with a quality barrier drops the reads below a 

specified quality barrier. Shiver is run on these trimmed reads. It has 2 Steps.  The first step is to 

get contigs and the second step is to map the reads to the constructed reference. Running CliqueSnv 

on these mapped reads with different t and tf values gives the haplotypes. 

 

Figure 5: Figure explaining steps in pipeline 3 

Table 21: Number of aligned reads after BBduk trimming and after shiver, with different quality 

trimming values of 20,25 and 30. 

 

 

Number of reads 

in sam file 

 

Number of reads 

after running 

shiver 

 

Without BBduk 

quality trim 

 

5,604,910 

 

- 

Quality trim = 20 2,682,384 

 

2,431,605 

 

Quality trim = 25 1,048,476 

 

957,537 

 

Quality trim = 30 

 

220,542 

 

197,949 

 

 

The sample reads are fastq files with two files the forward read, and the reverse read. BWA 

aligner aligns the forward read and reverse read and gives output a sam file which contains the 

reads after alignment using the reference read. The reference read used is HXB2.  The sam file 
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obtained with aligned reads is the input for BBduk. BBduk trims the reads below a certain quality 

value we define while running the tool from the command prompt. In this thesis the BBduk is run 

with three different quality values 20,25 and 30. Shiver takes the trimmed reads i.e input from 

BBduk and gives the bam file of mapped reads to the constructed reads as output. The bam is 

converted to sam as input for CliqueSNV, with t and tf values, gives the haplotypes. 

3.2.3.1 Results 

 

Table 22: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% 

by running pipeline 3 with quality trim 20 

 

 

 

 

 

  
bbduk_qtrim20_shiver_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 1 5.01 3.3 

B 25 1 11.6 1.06 

C 12.5 0 16.8 0 

D 6.3 1 5.01 1 

E 3.2 1 1.76 1 

F 1.6 3 0.4 5.6 

G 0.8 3 3.3 3 

H 0.4 1 1.1 1 

J 0.2 1 1.1 1 

EMD 2.93 
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Table 23: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 3 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 24: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 3 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
bbduk_qtrim20_shiver_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 2 3.7 4.6 

B 25 1 14.4 3.95 

C 12.5 0 21.8 0 

D 6.3 1 22.6 1 

E 3.2 1 3.7 1 

F 1.6 6 1.4 6.08 

G 0.8 3 4.4 3 

H 0.4 0 1.3 0 

J 0.2 1 1.8 1 

EMD 3.545 

  
bbduk_qtrim20_shiver_CliqueSNV_MIX1_t_100_tf_1 

variant Frequency ECP FCP% EEV 

A 50 0 26.08 2.9 

B 25 1 13.8 4.12 

C 12.5 0 28.7 0 

D 6.3 1 15.3 1 

E 3.2 2 4.7 2 

F 1.6 7 28.7 7 

G 0.8 1 4.1 1 

H 0.4 4 26.8 5 

J 0.2 8 4.7 9 

EMD 2.765 
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Table 25: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 3 with quality trim 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 26: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 3 with quality trim 20 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  
bbduk_qtrim20_shiver_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 0 26.03 2.8 

B 25 1 13.8 4.11 

C 12.5 0 27.2 0 

D 6.3 1 15.35 1 

E 3.2 2 4.7 2 

F 1.6 7 27.2 7 

G 0.8 1 3.1 1 

H 0.4 4 26.03 5 

J 0.2 8 4.7 9 

EMD 2.727 

  
bbduk_qtrim20_shiver_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 0 30.6 2.32 

B 25 1 14.2 4.02 

C 12.5 0 32.3 0 

D 6.3 1 15.3 1 

E 3.2 3 30.6 5 

F 1.6 7 32.3 7 

G 0.8 6 32.3 6 

H 0.4 4 30.6 14 

J 0.2 9 7.4 9 

EMD 2.625 
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Table 27: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% 

by running pipeline 3 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 28: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 3 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
bbduk_qtrim25_shiver_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 2 13.4 4.5 

B 25 2 9.1 4.6 

C 12.5 3 0.7 3.1 

D 6.3 0 13.4 0 

E 3.2 0 3.2 0 

F 1.6 4 0.5 8.6 

G 0.8 1 2.1 1 

H 0.4 1 2.6 1 

J 0.2 3 0.62 3 

EMD 3.984 

  
bbduk_qtrim25_shiver_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 2 14.5 4.7 

B 25 2 9.5 4.4 

C 12.5 1 1 3 

D 6.3 0 14.5 0 

E 3.2 0 3.03 0.2 

F 1.6 5 0.9 7.4 

G 0.8 1 2.4 1 

H 0.4 1 2.5 1 

J 0.2 3 0.6 3 

EMD 3.98 
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Table 29: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 3 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 30: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 3 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
bbduk_qtrim25_shiver_CliqueSNV_MIX1_t_100_tf_1 

variant frequency ECP FCP% EEV 

A 50 1 13.5 4.3 

B 25 1 10.7 3.24 

C 12.5 3 9.7 3.25 

D 6.3 0 15.1 0 

E 3.2 1 3.3 1 

F 1.6 10 4.02 10 

G 0.8 3 4.02 3 

H 0.4 1 2.9 1 

J 0.2 8 5.4 8 

EMD 3.617 

  
bbduk_qtrim25_shiver_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 1 19.1 3.8 

B 25 1 10.6 2.66 

C 12.5 0 22.04 0 

D 6.3 0 18.7 0 

E 3.2 2 19.1 8.2 

F 1.6 7 22.04 7 

G 0.8 3 2.1 3 

H 0.4 5 19.1 11 

J 0.2 8 1.8 9 

EMD 3.049 
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Table 31: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 3 with quality trim 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 32: ECP, FCP, EEV, EMD values for sample mixture data set with t=10 and tf=0.033% 

by running pipeline 3 with quality trim 30 

 

  

  
bbduk_qtrim25_shiver_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 2 25.2 4.5 

B 25 1 10.6 3.15 

C 12.5 0 24.05 0 

D 6.3 0 25.26 0 

E 3.2 5 25.26 10 

F 1.6 7 24.05 7 

G 0.8 6 24.05 6 

H 0.4 6 25.26 11 

J 0.2 7 10.61 9 

EMD 3.601 

  
bbduk_qtrim30_shiver_CliqueSNV_MIX1_t_10_tf_0.033 

variant frequency ECP FCP% EEV 

A 50 0 11.77 3.75 

B 25 2 1.6 4.16 

C 12.5 2 0.5 3.04 

D 6.3 0 11.9 0 

E 3.2 2 4.2 6.25 

F 1.6 5 0.6 8.32 

G 0.8 1 1.6 1 

H 0.4 3 2.09 3 

J 0.2 4 0.35 4 

EMD 3.659 
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Table 33: ECP, FCP, EEV, EMD values for sample mixture data set with t=50 and tf=0.5% by 

running pipeline 3 with quality trim 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 34: ECP, FCP, EEV, EMD values for sample mixture data set with t=100 and tf=1% by 

running pipeline 3 with quality trim 30 

 

 

 

 

 

 

 

 

 

 

 

  

  
bbduk_qtrim30_shiver_CliqueSNV_MIX1_t_50_tf_0.5 

variant frequency ECP FCP% EEV 

A 50 1 12.3 4.38 

B 25 2 0.36 3.44 

C 12.5 2 3.37 3.6 

D 6.3 1 12.01 1 

E 3.2 1 2.65 1.34 

F 1.6 5 0.85 6.39 

G 0.8 2 1.9 2 

H 0.4 3 2.3 3 

J 0.2 4 0.61 4 

EMD 3.757 

  
bbduk_qtrim30_shiver_CliqueSNV_MIX1_t_100_tf_1 

variant frequency ECP FCP% EEV 

A 50 0 3.8 4.49 

B 25 2 3.9 3.06 

C 12.5 2 4.2 3.95 

D 6.3 1 12.01 1 

E 3.2 1 2.5 1.94 

F 1.6 9 4.2 11.32 

G 0.8 1 1.8 1 

H 0.4 1 0.77 1 

J 0.2 8 3.8 8 

EMD 3.84 
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Table 35: ECP, FCP, EEV, EMD values for sample mixture data set with t=200 and tf=2% by 

running pipeline 3 with quality trim 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 36: ECP, FCP, EEV, EMD values for sample mixture data set with t=500 and tf=5% by 

running pipeline 3 with quality trim 30 

  
bbduk_qtrim30_shiver_CliqueSNV_MIX1_t_200_tf_2 

variant frequency ECP FCP% EEV 

A 50 1 0.21 3.72 

B 25 1 10.4 4.2 

C 12.5 0 22.2 0 

D 6.3 0 13.8 0 

E 3.2 2 0.21 3 

F 1.6 7 22.2 8.9 

G 0.8 2 1.8 2 

H 0.4 4 11.9 11 

J 0.2 8 1.3 8 

EMD 3.23 

  
bbduk_qtrim30_shiver_CliqueSNV_MIX1_t_500_tf_5 

variant frequency ECP FCP% EEV 

A 50 2 20.5 4.14 

B 25 1 13.8 2.33 

C 12.5 5 30.1 5 

D 6.3 0 20.5 0 

E 3.2 5 20.5 8 

F 1.6 12 30.1 12 

G 0.8 9 30.1 9 

H 0.4 6 20.5 6 

J 0.2 8 30.1 8 

EMD 3.84 
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4 CONCLUSIONS 

This thesis developed 3 pipelines for inference of rare genetically-related viral variants, which 

allows for accurate haplotyping in the presence of high sequencing error rates and which is also 

suitable for both single-molecule and short-read sequencing. Using experimental data, CliqueSNV 

demonstrates that CliqueSNV can detect haplotypes with frequencies as low as 0.1%, which is 

comparable to the sensitivity of many deep sequencing-based point mutation detection methods. 

CliqueSNV has its limitations. For example, with large number of reads cliqueSNV doesn’t run 

with default parameters. It throws memory out of bounds exception. The processing speeds of the 

CliqueSNV can be increased by adding BBduk and shiver to its pipeline. The results shoe that with 

BBduk quality parameter of 20 pipeline 3 is shown to produce more accurate haplotypes. Future 

work might include adding the pipelines to galaxy. 
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