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An Approach for Empirical Work in Spatial Dynamics

Kyle Mangum∗

March 2017

Abstract

This paper illustrates how to incorporate forward-looking behavior into empirical spatial
equilibrium models with locational heterogeneity. The main insight is that the standard
spatial equilibrium already embeds a natural starting point for dynamics: the presence of
spatial indifference conditions can dramatically simplify the state space of forward-looking
agents. One needs to know how utility evolves with the variables in the system, but
not every individual state, effectively side-stepping the curse of dimensionality. Standard
numerical rational expectations methods can be applied to derive approximate solutions to
the full dynamic specification. The paper uses an example model of landowners exercising
real options in construction of housing to show how the approximation’s errors are negligibly
small, and importantly, much smaller than the differences between dynamic and myopic
specifications of the same model.

Keywords. spatial equilibrium; spatial dynamics; rational expectations; housing supply

JEL codes: R13, C63, D58, R31

1 Introduction

Spatial indifference is the hallmark of the classical spatial equilibrium model. In the typical

model, free mobility among a sufficiently large number of agents ensures equal utility at all

points in space, else someone would move. This, when combined with other conditions specific

to the context, pins down the endogenous variables of the system (e.g. wages, rents, travel costs,

proximity to employment or amenities, etc.) because the particular source(s) of the utility flow

can vary over space. The literature leveraging these models, whether within-city models like the

monocentric city model and its variants (Alonso (1964), Mills (1967), Muth (1969), summarized

in Brueckner (1987)), or the between-city regional model of Roback (1982), is voluminous.

The nature of these models is fundamentally static: indifference at a given moment. But cities

are full of durable elements, from geographic features to evolving capital stocks to municipal

∗Department of Economics, Georgia State University. Correspondence to: kmangum@gsu.edu. I thank the
participants of the conference on Advances and Applications of Spatial Equilibrium, sponsored by Economic
Research Initiatives at Duke (ERID). I also thank the Duke Urban-Environmental Working Group for access and
hosting of data. Errors are my own.
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boundaries and policy regimes, meaning a static model with myopic agents is a major simplifica-

tion. The dynamic spatial equilibrium model has made limited inroads to the literature in urban

and regional economics. While there are many conceptual reasons for forward-looking behavior,

there are also many practical reasons to avoid it, as state spaces in spatial models, where location

itself is a form of heterogeneity, quickly suffer from the curse of dimensionality. Yet, there are

reasons to believe that dynamic and myopic models can deliver substantially different results,

so eschewing a dynamic approach in the interest of convenience may be consequential.

This paper suggests a readily feasible method for incorporating forward-looking behavior into

a standard class of spatial equilibrium models. The goal is to make dynamic versions of such

models easy to implement empirically for simulation and estimation. The basic insight is that the

classic spatial equilibrium model already contains a natural structure for incorporating dynamics.

In models with conditions for spatial indifference, forward-looking agents need not keep track of

all states in the economy–which can balloon out of control in a model of heterogenous spaces–but

rather track only how they expect the utility condition to evolve. The evolution of this utility

condition could be endogenously subject to the actions of the other agents in the economy,

meaning a rational expectations equilibrium will be obtained when agents correctly predict (in

expectation) the evolution of the utility condition factoring in the responses of other agents, who

in turn factor in their expectations of other agents’ reactions, and so on. This approach combines

components of standard spatial equilibrium and dynamic optimization models: a free mobility

condition pinning down utility, but durable features evolving under the control of forward looking

agents. It then borrows intuition from the well-known literature on rational expectations models

with heterogenous agents, where certain variables evolve under endogenously determined laws of

motion.1 The paper illustrates the logical progression from a single agent dynamic model with

exogenous variables describing the aggregate economy to a dynamic equilibrium version with an

endogenous transition of those aggregate variables.

The approach is designed for empirical models (i.e. those to be estimated and simulated) and

relies on a numerical implementation. It is an approximation to the fully specified (infeasible)

equilibrium when agents are heterogenous, because their reactions may depend on their own

features and the sources of utility. That is, an agent may know the aggregate state and forecast

utility to evolve to a certain point, but deviations from the rule could result from dependence

on the distribution of shocks across agents.2 For example, consider a set of local markets of

varying supply elasticity for some consumption good. Conditioning on aggregate demand, if a

local relative demand shock occurs in a market with more elastic supply, a higher quantity of the

1For a textbook treatment of rational expectations models, see Ljungdvist and Sargent (2001). The numerical
approach is based on Krusell and Smith (1998), although applications with finite numbers of agents, such as this
paper’s, are also comparable to Weintraub et al. (2008).

2Identical agents are a special case in which this approach is not an approximation, but also one in which the
curse of dimensionality may not be present.
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good would result in equilibrium than if the relative demand shock occurred in an low supply

elasticity local market.

It is effectively impossible to know exactly how much error is in the approximation relative to

the fully specified equilibrium because solution of the full model is utterly infeasible, but features

of the underlying model give insight as to how much heterogeneity is being smoothed away with

aggregate laws of motion. The paper uses an example model to show that the perturbations

to an agent’s policy function are small, and importantly, much smaller than the differences

between dynamic and myopic models. In general, the approach performs better as the number

of agents in the economy grows, because laws of large numbers apply to the shocks across agents.

Thus, in many cases, using this approach for a dynamic model is preferable to assuming away

dynamics altogether, and it performs better just as the dynamics would be increasingly difficult

to incorporate.

The relevant environment is one in which mobility of some factor(s) can enforce a no arbi-

trage/equal utility condition, but there exist agents that are heterogenous and fixed in place, live

for more than one unit of time, and face constraints or frictions that introduce state variables

to their problem. Obvious applications for the forward-looking agents are landowners and local

or regional governments.3

The number of forward-looking agents is of practical importance. On one extreme, in a

two-agent model (like a two region economy), each agent has one response function to consider,

so it is feasible to track all agents state spaces, meaning no approximation is necessary.4 At the

other extreme of an infinite number of agents, and the approach is essentially that of Krusell

and Smith (1998) in a uniquely spatial context. This paper will illustrate the in-between cases,

where the number of forward-looking agents is finite but there are too many to compute full

solutions.5 These cases naturally correspond to many empirically relevant contexts, like cities

in a national economy, states in a federation, or neighborhoods in a metropolitan area.6

The context illustrated here is one of capital construction in heterogenous spaces; specifically,

housing construction across metropolitan areas in the U.S. In this context, the population of

housing consumers enforces a spatial equilibrium utility condition across cities, but the land-

controlling agents in the cities must decide how much durable and irreversible housing to add

3The equal utility condition is of course a common assumption in urban models, but some recent island
economies models, discussed below, seek to relax it.

4Certain small spatial economy models can get complicated when considering multiple person types and
sectors, but different solution approaches apply. See also footnote 1.

5An infinite number of a discrete type of agents resembles a weighted version of the example of this paper.
Indeed, in that the evolution of Ū in this model hinges on a continuous variable that is affected by agents of
different sizes, it is essentially a share-weighted aggregation of discrete types.

6The focus here is on a fixed number of locations, not an endogenously determined number as encountered
in systems of cities models (Henderson (1974), Black and Henderson (1999)). This is not consequential, since
a suitably defined partitioning of land would deliver a fixed number of agents, and nothing about the method
imposes size or density restrictions on land partitions. In fact, the method could be useful in analyzing the
dynamics of lands at different levels of development.
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in a given period, knowing that construction exercises a real option over its land inputs and can

affect future prices and costs. The model features forward-looking agents in heterogeneous spaces

with continuous choice variables (land and capital inputs). Housing construction is a natural

place to exhibit the approach because it is emblematic of conditions that make dynamic models

both desirable and difficult. The literature has shown renewed interest in understanding housing

construction, but has yet to incorporate forward-looking behavior into an equilibrium setting.7

This is despite a history of theoretical and empirical research on housing developers exercising

real options on land.8 The paper closes with examples of policy simulations for dynamic and

myopic versions of the model, demonstrating where the specifications depart from each other.

The differences between models can be complex and nuanced, dependent on situations in the

economy and attributes of the heterogeneous agents. The lesson is that researchers may not

know just how different the empirical results can be until both specifications are used. It is the

goal of this paper to make feasible the dynamically-specified alternative.

As Desmet and Rossi-Hansberg (2010) describe, the literature on spatial dynamics is still

relatively small, with few papers incorporating dynamics into environments with rich spatial

heterogeneity. The current paper relates to three strands of work at the frontier of spatial

dynamics. One strand uses evolving static equilibria, in which states of the economy change but

agents solve static problems (e.g. Nieuwerburgh and Weill (2010), Glaeser et al. (2014), Morten

and Bryan (2015), Morten and Oliveira (2016), Diamond (2016)). Sometimes these models

are augmented with “adjustment costs” which impose frictions in any given period but do not

alter the agent’s decision horizon. While these can be useful tools, they are not fully specified

internally consistent models, since we must impose some naivete on the agents–they are always

surprised to wake up tomorrow. As the paper shows below, the out-of-sample predictions of

myopic and forward-looking agents can be materially different.

Another strand concerns endogenous growth and spatial development (e.g. Black and Hen-

derson (1999), Quah (2002), Rossi-Hansberg and Wright (2007), Desmet and Rossi-Hansberg

(2010), Desmet and Rossi-Hansberg (2014), Desmet et al. (2015)). These models tend to be

very rich and complicated, but have features such that in equilibrium the spatial heterogeneities

disappear and/or the dynamics reduce to simple time-invariant conditions, like balanced growth

paths.9 This paper resembles these approaches in that it reduces the state space to be a function

of aggregate state variables, but the rational expectations approach here need not be restricted

7Recent comparative studies of regional housing supply in spatial equilibrium include Saiz (2010), Glaeser et al.
(2014), and Albouy and Ehrlich (2016). Housing supply models with forward-looking agents include Paciorek
(2013) and Murphy (2013). These are partial equilibrium settings.

8For theoretical treatments, see Arnott and Lewis (1979), Titman (1985), Capozza and Helsley (1990),
Capozza and Li (1994), Capozza and Li (2002), Novy-Marx (2007) . For empirical evidence, see Cunningham
(2006), Cunningham (2007), Bulan et al. (2009).

9The richest model of spatial dynamics to my knowledge appears in Desmet and Rossi-Hansberg (2014) and
Desmet et al. (2015). There, particular assumptions on free entry of firms and diffusion of knowledge allow for
the solution of static problems instead of dynamic programs.
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to steady states or balanced growth paths, allowing for analysis of shocks or policies at any point

in the state space, including transitional paths. However, this paper envisions applications of

policy analysis near observed equilibria, and is not designed to study endogenous growth, and

therefore these are complementary works for different types of questions.

A third related strand studies population dynamics in island economies models (see Rap-

paport (2004), Rappaport (2005) for neoclassical growth models with labor mobility, and see

Davis et al. (2013), Yoon (2014), Nenov (2015), Mangum (2015) for dynamic island economies

settings). These models incorporate sticky features like moving costs, housing, or physical and

human capital accumulation, and in so doing abandon the standard spatial equilibrium frame-

work of no arbitrage in utility. Different equilibrium concepts apply. Yoon (2014) in particular

is related because it also uses a forecasting rule to approximate rational expectations equilibria,

although in Yoon (2014), the state space complexity comes from multiple types of people and

sectors in a two-region economy.10

Comparing to the existing literature, the approach suggested here rigorously incorporates

dynamics and does not avoid forward-looking behavior, but by offering a modification of a

common setting, provides a convenient starting point for practitioners. The analyses can be

conducted using standard equilibrium concepts and dynamic optimization techniques.

The paper proceeds in six parts. Section 2 introduces a partial equilibrium model of a

forward-looking agent deciding whether and when to develop housing on vacant land. Dynamic

and myopic versions are compared. The following section expands the model to a general equi-

librium setting of a collection of forward-looking agents and proposes an approximated solution

method. Section 4 evaluates the performance of the approximation method in the context of the

example model. Section 5 provides a brief overview of estimation of the housing construction

model; details are relegated to appendix section A. Section 6 compares the results for dynamic

and myopic specifications in fit, estimation, and counterfactual simulations. Section 7 concludes.

Appendix B provides details on the computation of the dynamic model.

2 Models With Forward-Looking Agents

The paper will illustrate the intuition of the approach to solving dynamic spatial equilibrium

models by using a running example of housing suppliers across heterogeneous locations in a

closed economy. I introduce the essentials of the model in this section. Construction is a natural

10Given the different environment, Yoon (2014) is more related to Lee (2005) and Lee and Wolpin (2006).
These estimate models of worker sectoral mobility (discrete choice) with iterative rational expectations routines
to determine the endogenous sectoral skill prices. These also adopt forecasting rules to approximate rational
expectations equilibria, though the aggregation is over a large number of individual agents in a small number of
sectors. The current model has single agents in a large number of locations (parallel to sectors), which is more
similar to a dynamic game with many players.

5



context for an example since the capital is durable and development involves the exercise of real

options. With that said, the point here is not to argue whether all housing models should be

dynamic, but rather admit the possibility that some models should be. Nor is this the only

type of application envisioned for the techniques, but merely a relevant example. I illustrate

the differences in behavioral predictions in myopic and dynamic models and offer suggestions

for their tractable implementation when appropriate.

Before proceeding, notice that there are multiple senses of the word “dynamic.” One is that

the economy has durable features (i.e. state variables) that transition over time. Another sense

is that the agents of the economy are aware of the durability and live long enough to be impacted

by it. The former contrasts a dynamic environment versus a static (or malleable) one, while

the latter concerns forward-looking versus myopic agents. In terms of solving and implementing

models, it is clearly the horizon of the agent that matters most. Dynamic optimization models

can be substantially harder to solve, estimate, and simulate than myopic ones. As described in

the introduction, dynamics have been introduced to spatial models via myopic agents solving

static problems under evolving conditions. This is fundamentally not the same as modeling

behavior of an agent who knows s/he lives for more than an instant of time and that future out-

comes will depend in part on current decisions. The behavior of that agent may be substantially

different. I will refer to the two models as “dynamic” and “myopic” to emphasize the difference

is in the decision horizon, while both versions have evolution of state variables.

First I consider whether the myopic and dynamic versions of this model are materially dif-

ferent in partial equilibrium; that is, with the agent capable of altering his own states but not

affecting prices or the utility level of the economy.

2.1 A Model of Housing Supply in Heterogeneous Locations

An economy consists of a finite number of locations J which offer unique bundles of income,

housing, and amenities to consumers. Each location consists of one agent responsible for housing

supply; consider one of these agents. The housing supplier is profit maximizing, lives infinitely

over discrete periods, and discounts future profits at rate β. The agent is endowed with ownership

of undeveloped land and decides whether and when to convert vacant land into housing, which

can be sold (including its underlying land input) to consumers; hence, I will refer to this agent

as “the builder.” There is a stock of housing H built atop a stock of land area A, and stocks

depreciate at rate δ. The builder can add to the stock but cannot intentionally remove it. It

is this irreversibility which makes the builder’s problem dynamic: vacant land has continuation

value, so its development exercises a real option.11

11The assumptions of infinite life and complete irreversibility are not necessary for imposing dynamics. Any
nonzero removal cost would also impose a dynamic externality over multiple periods of life. The point is that the
builder lives for multiple periods and something about the stock is durable, i.e. “putty-clay,” not “putty-putty”
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The builder’s problem is written recursively as

V (X) = maxx[π(X, x) + βE(V (X ′|X, x))] (1)

where V is the value function for behaving optimally (“Bellman”), π() represents flow profits,

X are state variables, x are choice variables, and E() is the expectation taken over future states.

Note the expectation is conditional on (i) current states, so there may be persistence, and (ii)

current period choices, so decisions may affect the evolution of states (in particular, the builder’s

stock variables).

2.1.1 Production and Input Factors

The builder makes housing services by combining land and capital. The production function is

given by

i = F (a, k, φ, α) (2)

where i is housing services added to stock, a is land input, k is capital, and φ and α are parameters

governing housing productivity and the elasticity of substitution between inputs, respectively.

In the empirics below, I use the standard Cobb-Douglas production function, i = φaαk1−α.12

The builder decides how much of each input to use each period. He adds to the housing

stock according to (2), and the relative quantities of k and a determine density of building. A

unit of capital comes at cost κ. This represents materials (wood, brick, glass, etc.) and the

labor and equipment costs of their installation. A unit of land comes at cost ρ. This represents

the cost of converting virgin land to suitability for building.13 Additionally, the builder faces

a cost convex c(·) in the amount of housing added in one period. This cost captures anything

inelastically supplied in the city in a short time horizon (frictions in procuring new land, delays

at the permit office, opposition to “excessive” new building, etc.). For exposition, I refer to it as

the land assembly cost (i.e. the difficulty of getting all the housing together at the same point

in time). Convexity is mathematically important as well because it ensures a finite solution.

Also, convexity effectively allows for within-city heterogeneity in costs and returns obscured by

a single builder, meaning that under reasonable parameterizations, there is nonzero construction

flow in each period, which is always a feature of the data for wide enough geographies (e.g. U.S.

counties or larger).

and rebuilt each period (see also Rossi-Hansberg and Wright (2007)).
12Recent work on the housing production function has found a constant returns to scale Cobb-Douglas function

to be a reasonably good approximation. See Epple et al. (2010), Combes et al. (2012), Ahfeldt and McMillen
(2014), Albouy and Ehrlich (2016).

13Recall that the builder already owns the land and resells it in post-production form. Any land costs are
therefore in the acquisition, holding, and conversion of land, not its market value.
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The housing services output is sold at a price R to be explained below. The builder’s flow

profits are

π = Ri− κk − ρa− c(·)
1 + ν

i1+ν

where ν ≥ 0 governs the extent of the convexity. Within a small area like a city, land is in

limited supply. To reflect the exhaustibility of land,14 I specify the land assembly cost function

to be increasing with the amount of land already employed, c = c(A), c′(A) ≥ 0.15 This means

that the cost of adding more housing within a period is increasing in the amount of land already

used up; or in other words, the short run elasticity is decreasing as land disappears. Intuitively,

this could reflect increasing difficulty in land assembly, or greater likelihood of facing opposition

from existing residents. Empirically, many large U.S. cities have seen housing prices increase

faster than construction flows, indicative of decreasing price elasticity.

Assuming differentiability of the value function allows for the derivation of analytical first

order conditions for optimization.16 Taking first order conditions yields, after some manipulation,

Fa
Fk

=
ρ− βVA

κ
(3)

For example, if F is Cobb-Douglas,

Fa
Fk

=
φαaα−1k1−α

φ(1− α)aαk−α
=⇒ k

a
=

1− α
α

ρ− βVA
κ

(4)

which provides a condition for the demand for capital as a function of land (or vice versa). Using

∆ = ρ−βVA
κ

, the production function becomes

i = φ(∆a)1−αaα = φ(
1− α
α

∆)1−αa (5)

which shows that the density of construction depends on the production function parameters

and the relative costs of land and capital, ∆. The important point to note is that the cost of

land includes its shadow price, VA, the effect it has on continuation value, which will be negative

since land is exhaustible (so −VA is positive, like a cost). Otherwise (3) and (4) are typical

expressions of the rate of factor substitution. When the shadow value is larger in magnitude,

because, say, land is near its exhaustion or future demand is expected to be high, builders will

14I use the term “exhaustible” for exposition, though technically I am not imposing a maximum amount of
land available. This is consistent with standard models of urban areas that often endogenize the city boundary.

15This is not the only way to capture exhaustibility, but one specification which I found to be consistent with
the data.

16The flow profit function is smooth and continuously differentiable, so the value function should inherit these
properties (Stokey et al. (1989), Thm. 9.10). The policy function may be discontinuous at a threshold; at low
enough output prices, the builder can decide to construct zero.
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choose denser construction (more capital per unit of land) in order to conserve land.17

The factor demand condition allows for the re-expression of (1) as a continuous choice of a

single input. Using Φ = φ(1−α
α

∆)1−α,

V (X) = maxa[RΦa− (Φκ+ ρ)a− c(A)

1 + ν
(Φa)1+ν + βE(V (X ′|X, a))]

Maintaining the assumption of the differentiability of V , the above yields an analytical ex-

pression for the policy functions.

a =
(RΦ− (Φκ+ ρ) + β(VHΦ + VA)

c(A)Φ1+ν

) 1
ν (6a)

i =Φa (6b)

From the upper expression, (6a), we can see that the amount of land exercised depends positively

on the price of the output, and negatively on current costs, densities, and shadow costs. The

shadow price of additional housing stock itself, VH , independent of the land, is present in this

expression. This will become important in the general equilibrium version of the model, but will

be zero under the assumption that the solitary builder has no effects on prices.

Consider how two locations with heterogeneity in primitives might have different policy

functions. Higher land or capital costs will cause one to build less than another. Higher land

costs relative to capital will result in greater density through factor substitution. Higher assembly

costs have the direct effect of less building, mitigated by the fact that these also increase density

through the shadow value of land. Similarly, a greater shadow value of land results in less land

exercised, partly through increased density and partly through greater reluctance to build at all.

2.1.2 Output Prices

Local utility, from consumption of numeraire goods n, housing h, and amenities µ, equals a

reservation utility offered by the economy. The between-city condition is

u(n, h, µ) = Ū

I am treating Ū as exogenous in this section, but later consider it determined by spatial equi-

librium conditions throughout the economy.

Within cities, utility maximizing consumers tradeoff between the consumption of numeraire

goods and housing services, subject to a budget constraint determined by the city’s income.

Housing services are rented for one period at rate r. Consumers are freely mobile and do not

17Additions to the housing stock may also have a shadow cost, VH , which can affect the total amount of
building, but this drops out of the relative first order conditions determining density.
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have assets, so they solve a static problem. For example, if consumers have a standard log

Cobb-Douglas utility function, u = ln(n) + γln(h) + µ, the intra-location first order condition

for optimization combined with the budget constraint y = n+ rh yields

r =
γ

1 + γ

y

h
(7)

for a given stock of housing, H, in the location. If the stock of housing is divided equally among

the population of residents in the location, p, then h = H
p

. The population–and hence, the rental

rate and housing services per person–is pinned down by the reservation utility condition

ln
H

p
= Ū − ln(

1

1 + γ
y)− µ (8)

Intuitively, (8) shows that consumers are willing to suffer less housing when local income

and/or amenities are greater (when rents are higher). Moreover, combining (7) and (8) shows

that rents will be lower, ceteris paribus, when the outside option is higher (when other places

are relatively more attractive to consumers).

Consumers rent housing each period but builders sell it after construction. I want the model

to focus on the builder’s real options problem, not an asset pricing problem. Hence, I model the

construction decision only, not a landlord’s problem of renting existing stock to consumers. A

modeling device for this is to assume the builder sells the stock to risk neutral middlemen who

in turn rent it to residents. The price of this transaction should be determined as the present

value of the future stream of rents. For simplicity, I assume risk neutrality and that incomes are

a random walk, so the price is the discounted sum of current rents, inclusive of depreciation of

the stock.18

R =
1

1− δβ
r (9)

2.1.3 The Builder’s Solution

The state variables for the partial equilibrium version of the model are local income, y, land

already used, A, and the reservation utility. I will assume for simplicity that local amenities do

not evolve, though this is not necessary for any results. Housing stock itself is not a state variable

in partial equilibrium (seen by combining (7) and (8)), but will be in general equilibrium. The

partial equilibrium builder’s problem is written as

V (y, A, Ū) = maxa[π(y, A, Ū , a) + βE(y′, A′, Ū ′|y, A, Ū ; a)] (10)

18A practical issue for empirical implementation is that the builders either need to cover their cash cost of
physical materials or have access to a financing market, and the latter would greatly complicate the model without
much value added.
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This is solved by (6a) and (6b) given laws of motions for the exogenous states y and Ū . The

endogenous state evolves according to A′ = (1− δ)A+ a.

2.2 Dynamic and Myopic Versions of the Model

Consider two versions of the above model: one in which the builder is forward looking, and

another in which he is not, though the states evolve as specified in the dynamic version. The

latter case is a myopic model, in that the builder is unaware of effects his actions have on future

states.19 The above derivations would apply, except that any shadow values would no longer be

relevant–the VA, VH terms drop out. How different might these be?

The next exercise gives an empirical comparison of these specifications for reasonable cali-

brations some (imaginary) U.S. metro areas.

2.2.1 Comparing Policy Functions

I consider a generic location with attributes of a typical large U.S. metro area: a population

of 2.5 million residents, and housing services per person of 511 sqf. at a floor area ratio of

0.053 (which determines the land employed). The mean per capita income set to the national

average of $28,500. The builder in the location may face high (+1sd), medium (±0sd), and

low (−1sd) demand states of income and national utility, for a matrix of nine potential demand

states. These yield output prices of (9) via (7), (8), and then choices according to (6a),(6b)

after solving (10).20 I calculate the elasticity of each of these policy functions relative to the

medium-medium demand state. I do this at high and low values of parameters on assembly cost

(using c(A) = cA, c = 100±50, ν = 1) and housing productivity (using φ = .05± .025), for each

specification of the model, to see how the elasticities might vary with local attributes. Using the

elasticity relative to the midpoint abstracts from level differences between cities with different

attributes. I emphasize that all other variables of the model are the same, so that this exercise

illustrates the impact of time horizon in a ceteris paribus setting.

Table 1 reports the percentage changes in policy functions for each type of model. (I will

loosely use the term “elasticity” to describe the percentage changes.) The upper panel reports

the percentage difference for land employed, while the lower panel reports housing services. The

table is read in three-by-three blocks; for example, in the first block of numbers in the table,

corresponding to the myopic model of the low cost, low productivity city, it shows that land

developed is 10 percent lower in the low income, low national utility state than in medium

19This could be naivete or because the builder lives for only one period. A short decision horizon is unappealing
here because the “builder” is really the landowner/custodian–not a fly-by-night construction firm–which is meant
to capture real options for profit maximizing entities as well as constraints imposed by local governments who
care about future externalities.

20I take the observed AR1 transition of local incomes y and Ū from the data described in appendix A.
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income, medium utility state. (The middle entry of each block is zero by construction.) Recall

that national utility, i.e. the value of the outside option, has an inverse effect on local demand,

so that the lower left corner is the highest demand scenario for each city (high local income and

low outside option), and the upper right the lowest (vice versa). For example, land added is 59

percent higher in high income, low national utility, and 49 percent lower for low income, high

utility in the myopic, low cost, low productivity city.

The point of this table is to compare the myopic and forward looking agents. They are facing

exactly the same states and parameters and differ only in the ability to project the future and

internalize dynamic externalities. As the table shows, this difference is not trivial. The forward-

looking agent is considerably more responsive to the various demand scenarios. For example,

in the low cost, low productivity city, the forward-looking agent adds 86 percent more land in

high income, low utility state instead of the 59 percent difference by the myopic agent. Why?

Intuitively, the forward-looking agent expects the especially high demand states to be temporary

and uses more of his exhaustible resource in the current opportunity. Likewise, he withholds

more land in the low income, high utility demand state than does the myopic agent (-67 percent

compared to -49). This is essentially intertemporal substitution in the timing development of

the exhaustible resource, which the myopic agent cannot do.

Furthermore, heterogeneity in the builder’s primitives matters in the comparison of myopic

and forward looking agents. For a high cost, high productivity city, the gaps between the

agents are smaller (52.6 compared to 43.9, and -41.9 compared to -36.6), because with higher

costs, (i) the agent is more restricted within a single period, and (ii) his continuation value is

lower, diminishing incentives for intertemporal substitution. Thus, the degree of misspecification

could vary by attributes of the agent. Notice also that the myopic agent does not distinguish

between the high and low cost regimes: the upper two blocks and lower two blocks of the panel

are the same for the myopic agent. (There are level differences, but recall the table reports

elasticities abstracting from levels.) Without his internalizing the rising cost, he makes the same

proportional response to changing demand conditions. In contrast, costs affect the forward-

looking agent’s ability to substitute over time, and hence he is more sensitive in the low cost

regime.

The lower panel, exhibiting the elasticities of housing services added (i.e. land plus capi-

tal), shows a similar pattern, but another dimension of comparison arises between myopic and

forward-looking agents. The forward-looking agent is even more sensitive to changing demand

conditions, choosing not only to add more land in good states and withhold in bad, but also

to build more capital-intensively in the good states. This mitigates the burden on future costs

while allowing him to reap the current period’s profits. The myopic agent, however, is too naive

to make the substitution and chooses inputs according to current prices alone; hence, the upper

and lower panels are the same for the myopic agent.

12



Table 1: Comparison of Models: Elasticity of Policy Function With Respect to States

Policy Function: Land

Location Parameter States \Model Myopic Dynamic

c φ Res. Utility: Low Med High Low Med High
Income

Low Low Low -10.02 -30.79 -49.52 -2.89 -36.79 -67.07
Med 24.48 0.00 -22.08 40.65 0.00 -36.41
High 59.29 31.06 5.61 86.25 38.87 -3.65

Low High Low -7.42 -22.79 -36.66 -0.64 -27.80 -52.01
Med 18.13 0.00 -16.35 32.75 0.00 -29.30
High 43.90 23.00 4.15 68.40 30.12 -4.20

High Low Low -10.02 -30.79 -49.52 -7.03 -32.36 -55.12
Med 24.48 0.00 -22.08 30.06 0.00 -27.03
High 59.29 31.06 5.61 67.94 33.13 1.80

High High Low -7.42 -22.79 -36.66 -4.23 -24.11 -41.95
Med 18.13 0.00 -16.35 23.68 0.00 -21.28
High 43.90 23.00 4.15 52.61 25.13 0.41

Policy Function: Housing

Location Parameter States \Model Myopic Dynamic

c φ Res. Utility: Low Med High Low Med High
Income

Low Low Low -10.02 -30.79 -49.52 -11.40 -43.26 -70.93
Med 24.48 0.00 -22.08 42.50 0.00 -37.26
High 59.29 31.06 5.61 105.79 51.75 4.11

Low High Low -7.42 -22.79 -36.66 -12.21 -37.65 -59.53
Med 18.13 0.00 -16.35 35.04 0.00 -30.54
High 43.90 23.00 4.15 91.18 45.72 5.79

High Low Low -10.02 -30.79 -49.52 -12.66 -37.04 -58.62
Med 24.48 0.00 -22.08 31.10 0.00 -27.62
High 59.29 31.06 5.61 80.08 41.74 7.62

High High Low -7.42 -22.79 -36.66 -14.82 -33.67 -50.18
Med 18.13 0.00 -16.35 25.36 0.00 -22.36
High 43.90 23.00 4.15 71.53 39.12 10.40

NOTES: The table reports the percent change in the land (upper panel) and housing (lower panel) policy functions (see (6a), (6b)) with respect to
changes in demand conditions for each time-horizon specification of the model. The location/agent is four versions of a generic city, as described in the
main text. There are two demand states, local income and the economy’s reservation utility level, structured in a 3x3 matrix of low/medium/high
states; the differences are taken with respect to the center cells (medium/medium).

13



In summary, whether an agent is forward looking or not has consequences for his state-

dependent actions, and in heterogeneous ways depending on the agent’s characteristics. This

serves as motivation for a dynamic model with forward-looking agents. So far, I have regarded

only a partial equilibrium setting. The next section introduces a spatial equilibrium version of

the model of forward-looking agents and discusses associated empirical challenges.

3 The Dynamic Equilibrium Model

I now extend the model to a dynamic spatial equilibrium by relaxing the assumption of an

exogenously fixed reservation utility. In the canonical Roback (1982) model, the level of utility

in the economy, Ū , is enforced by the free mobility of a sufficiently large set of agents–here, the

consumers/residents–though the source of utility can vary by location (the relative amounts of

consumer goods, housing goods, amenities, etc. in the bundle). The Roback model and many

recent applications of it21 occur in the cross section, in single or repeated snapshots of time.

Yet I suggest that this spatial equilibrium condition is a natural place to incorporate dynamics.

The model above featured a dynamic optimization problem solved by an agent taking Ū as

transitioning by some exogenous law of motion. An equilibrium version of this model is one

in which Ū is determined endogenously, perhaps with the single agent having non-negligible

effects on its evolution, but otherwise with a very similar structure. Of course, one needs to

know how the reservation utility evolves over time with states of the economy. I now define the

type of equilibrium the model readily accommodates, and discuss the challenges of empirical

implementation.

3.1 The Equilibrium Definition

Consider the individual agent’s optimization problem rewritten as

Vυ̃(Ū ,X) = maxx[π(Ū ,X, x) + βE(Vυ̃(Ū
′, X ′|Ū ,X, x))]

Ū ′ = υ(Ū , x(υ̃), x−i(υ̃), θ)

X ′ = F (X, x(υ̃), θ)

(11)

where I have split out the notation on the equilibrium object Ū from the agent’s own state

variables X and defined generic laws of motion for these states. The reservation utility transition

may depend on the agent’s action x and the actions of other agents, x−i, and possibly other

features of the environment collected in θ. Notice that the agents’ actions depend on their belief

21Notably, the Roback model has been extended in various ways by David Albouy and coauthors in Albouy
(2009), Albouy (2012), Albouy and Stuart (2014), Albouy and Ehrlich (2016), Albouy (2016).
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of the law of motion for Ū . For a rational expectations equilibrium to hold, the actions of

the individual agents must deliver the law motion for Ū that the agents expect. The rational

expectations equilibrium is

Vυ(Ū ,X) = maxx[π(Ū ,X, x) + βE(Vυ(Ū
′, X ′|Ū ,X, x))]

Ū ′ = υ(Ū , x(υ), x−i(υ), θ)

X ′ = F (X, x(υ), θ)

(12)

The difference between (11) and (12) is that in the latter, the rule the agents use corresponds

to the actual rule, υ̃ = υ. Hereafter, I refer to this as the rational expectations rule, “RER.”

3.2 The Challenge in Practice

The principle is simple enough, but in practice it can be very hard to derive conditions for

the RER, much less the rule itself, especially when agents are heterogeneous and representative

agent techniques would not apply. In spatial contexts, location itself is a form of heterogeneity,

so the difficult cases are hard to avoid.

On the other hand, the spatial equilibrium model is already far simpler than a dynamic game

with the same numbers of agents. Condensing the equilibrium object to a single reservation

utility helps to avoid the intractable curse of dimensionality in a dynamic game in which every

state of every agent enters the value function of each agent. For a large number of agents, such

would be intractable to solve even once for one agent, much less jointly many times for all agents.

Thus, the first insight this paper offers is that the classic spatial equilibrium model is a special

case of dynamic heterogenous agent models where empirics are made feasible by inherent model

conditions.

Still, the model can be troublesome to apply empirically. Consider an economy consisting of

J heterogeneous agents, like the model above. The transition of Ū will depend on the individual

actions of all the J agents in the economy, which means that J value functions have to be solved

jointly, and the RER υ updated accordingly.22 How does one do this?

Here, I turn to the suggestion of Krusell and Smith (1998): guess a RER, see if it fits, update

that rule until it produces the joint conditions of (12). That is, iterate over functional forms and

parameters until agents acting according to the RER generate the RER they condition upon.

The approximated RER is written as

S(X, θ) ≈ υ(X, θ) (13)

22Even if estimation may be able to avoid full solution of the model, simulation for the purpose of policy
evaluation would require model solution.
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This is a numerical approximation to the “true” solution, much as a discretized or projected

value function iteration is an approximation to the underlying functional equation. But note that

the approximation is not the normalization itself, but its transition. The spatial equilibrium’s

provision of reservation utility is the exact condition for agents in the economy at a point in

time. But, the transition of Ū could depend on precisely how economic activity is distributed

over the locations–i.e. which agents are facing which states. Hence, using some S in (13) is an

approximation to the true υ, while Ū is actually the true reservation utility of the model.

In summary, there are two insights. First, by conditioning on no-arbitrage in utility, the

spatial equilibrium model naturally embeds a simplified approach for dynamics. One needs to

be able to solve for the transition of the economy’s utility condition, not a high-dimensional

set of best response functions. The second insight is that well-established numerical techniques

allow one to find the necessary transition rules, to an approximation. The remainder of the

paper will demonstrate an application of this method to the housing builder problem and show

that it is an attractive and reasonable way to incorporate dynamics into empirical applications.

3.3 Application to the Builder’s Problem

I return to the builder’s problem of section 2, but now allowing the reservation utility to be

determined endogenously. The environment is as before, but I must specify how a reservation

utility across locations is obtained.

3.3.1 Defining Reservation Utility

The closed economy of J heterogeneous locations has an aggregate population of P , which

for simplicity will evolve exogenously. In the model’s environment, consumers get utility from

consumption goods, housing and amenities, with budget determined by local income. The stocks

of land and housing and the budget constraints of the various locations evolve over time, and the

suppliers of housing are forward looking about their durable stock. Housing evolves endogenously

and income exogenously, and amenities are assumed fixed.23

The first step in turning the model into a general equilibrium setup is to define how the

reservation utility is determined. The interest of this paper is that the utility comes from within

the closed economy of J locations, and is not determined by, say, some unchanging hinterland

(Glaeser et al. (2014)). This is the more difficult case, as the latter could reduce to a static

condition. I will specify the level of utility offered by the economy to be at the national average

housing services per capita and consumption occurring at the intratemporal optimum for a

consumer at this level of housing, with national amenities are normalized to be zero. That is,

23Amenities need not be fixed, but the model already contains the features essential for the point of this paper.
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Ū = ln(
1

1 + γ
Y ) + γln(

HN

P
)

where Y is national average income per capita, HN is the level of housing stock nationally, and

P is national population. The reservation utility contains features evolving both exogenously

(Y, P ) and endogenously (HN). To be clear, this is not the only way to impose no spatial

arbitrage, merely one that is empirically convenient.24 Some normalization is necessary, but this

particular one is not.

National utility rises in income and housing stock and falls with population. For an individual

builder in some location j, the price of his housing services output has the following properties.
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Thus, rents are affected by demand, rising with local income and population but falling in

national average income (because the outside option is higher), and supply, falling with existing

aggregate housing stock. The local housing stock is a component of housing supply, so that

adding housing locally lowers future prices (hence, local stock has a shadow value), but at the

same time, housing added by suppliers in other locations also suppress prices, ceteris paribus.

Individual state variables are the local income and land employed in housing stock. The

economy’s utility evolves according to the transition of national income, population, and the

stock of housing. I assume these are known by the builders of each location, with income and

population following exogenous rules. It will be necessary to find a RER because housing stock

24One obvious alternative would be some reference location, perhaps some amalgamation of regions like rural
lands, small cities collectively, and so on. These and others could serve as suitable normalizations, so long as
one can characterize their evolution. An advantage of using national averages in the closed economy is that local
population shares and rents are defined in closed form as ratios relative to national averages. These are
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evolves endogenously. With state variables now specified, the builder’s problem is written as

V (y, A, Y, P,HN) = maxa[π(y, A, Y, P,HN , a) + βE(y′, A′, Y ′, P ′, H ′N |y, A, Y, P,HN ; a)]

A′ = (1− δ)A+ a

y′ = fy(y, θy)

Y ′ = fY (~y, ~θy)

P ′ = fP (P, θP )

H
′

N = (1− δ)HN + S(Y,HN , P, θH)

(14)

where fy, fY , fP are functions denoting the exogenous laws of motion for incomes and population.

(National income is a function of the vector of local states and laws of motion.) In (14), the

transition functions are general, and functions appropriate to the context can be applied in

practice. The RER is then found using repeated simulation of the model.

3.3.2 Finding the RER

The algorithm for finding the approximated RER S is

1. Start with an initial guess for S0

2. Solve the value functions for each location’s agent conditioning on this guess, obtaining

policy functions ij = Φj(S0) · a(X,S0)

3. Use these policy functions to generate a new law of motion for the endogenous aggregate

state, H
′
N − (1− δ)HN =

∑
j ij(X,S0)

4. Update the RER to S1 ≈
∑

j ij(X,S0)

5. Repeat until convergence in S, i.e. when ‖Sr+1 − Sr‖ < ε for some sufficiently small ε

Using this algorithm involves first selecting a suitable function for S. Like many numerical

methods, this process takes some trial and error, involving iteration over functional form in

addition to parameters. There are two general guidelines. One is that the enlisted RER have

“small” errors, and the other is simply that the simulated equilibrium matches the data well.

Another possible guideline, of course, is that simplicity is preferred.

The simplest starting point is a linear-in-parameters function which can be easily updated

within a simulation routine. In this environment, the relevant variables are national demand

states (population and income), and national supply (the stock of housing services).25 After

25More variables–say, to account individually for demand states in certain particular locations–can in principle
be included, although these would come at the cost of additional variables in the agent’s state space.
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some specification testing, I found a very simple functional form, S ≡ υ0 + υ1Y + υ2
HN
P

satisfies

each of the guidelines. The predictive power is high, with R2 values in excess of 0.98, and the

model fits well, as will be shown below.

Several methods are available for solving the value functions. Projection methods were

convenient in this case. Computation time was not burdensome. More details are available in

appendix section B.

4 Approximation Quality

An obvious question is then, how bad is the approximation? This question is not easy to answer

completely. The point of the approximation is not merely to speed up computation, but to make

it feasible in the first place. The “true” dynamic equilibrium, where the transition rule depends

on every state of every agent in the economy, is effectively unknowable for all but small collections

of locations. So one cannot simply compare the full and approximate solutions once and proceed

with empirics when the approximation is sufficiently close. However, the approximation quality

can be evaluated to some degree.

There is, first, a conceptual argument for an approximation. Like Krusell and Smith (1998)

and Weintraub et al. (2008), I consider S under a notion of bounded rationality. The full solution

of the model–i.e. solving it like a dynamic game with each agent considering the individual

strategies of all other agents–is not necessarily the most realistic characterization of the way

agents behave. It is not a stretch to believe agents are forward looking, trying to predict future

prices and the impact these have on current actions; however, tracking the states of each player

and trying to anticipate their individual actions is a complicated information problem, even

for sophisticated agents–one they probably not actually doing in the real world. Thus, the full

solution could be more of a red herring than gold standard. The approximation may be closer

to the “truth” in terms of modeling economic behavior.

With that said, I proceed to an quantitative exercise to evaluate how serious is the error

imposed by the approximation. Recall the manner in which condensing of the information in a

spatial equilibrium model is an approximation. In the current period, the aggregate states are

actually what determine prices, so there is no loss of information in their summary. However,

the evolution of these states will depend on how the components are distributed over space. For

example, if there is income growth in a low cost location, the housing stock would grow larger

than if the income shock had occurred in a high cost location. Thus, it is the laws of motion

that contain approximation error.
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4.1 In a Generic Economy

To get a sense of how much error this approximation imposes on an agent’s current period policy

function, I run a series of simulations which hold fixed the aggregate states but perturb their

distribution over space. Agents will choose policies based on their rational expectations law of

motion, and then I compare what their optimal policy would have been had they known exactly

what the next period states would be. The idea is to measure how ignorance of the particular

spatial distribution of the states imposes variance to policy functions.

I first do this in the generic model in order to work in a controlled environment. The agent of

interest is the builder in the generic location, with population of 2.5 million residents and mean

housing services per person of 511 sqf., mean per capita income set to the national average of $

28,500, and parameters of c(A) = 2000A, µ = 0, and φ = 0.0385. The rest of the economy is

drawn to have high and low income (± 25 % of mean), large and small size (50% smaller and

100 % larger), and elastic or inelastic housing supply (c(A) = (2000 ± 100)A). The interaction

of these attributes yields 23 = 8 locations. Another residual location is included to absorb

perturbations to states in order to obtain the same national average; this residual otherwise has

the attributes of the first generic location, and brings the total locations in the economy to ten.

Another economy adds a high and low amenity dimension (µ = ± 0.025), yielding a total of

1 + 24 + 1 = 18 locations in that scenario.

The perturbation exercise varies which of the other locations gets an income shock, but

maintains the same level of national income; that is, it fixes the information that is known

within the approximation, but varies the detail that is lost by not tracking each agent’s states

individually. Measuring the variance in the policy functions is one way to quantify how greatly

the approximation could mischaracterize economic behavior relative to the full model.26

The perturbation exercise proceeds as follows. First I simulate the economy to yield a

baseline rational expectations law of motion for the aggregate endogenous state H. Next, I

find the policy functions for all locations at the mean states. Then, I impose a positive income

shock of size q ∈ {5%, 10%, 25%} to the income of one of the locations, maintaining the national

average by subtracting an appropriately weighted amount of income from the last (10th or 18th)

location, and leaving all other locations at their means. I then evaluate the policy functions at

the perturbation, which may yield an evolution of H different from that expected using the RER.

Finally, I return to the first location to evaluate its policy function had it known the aggregate

state with perfect foresight, having not thrown away information on which location had received

the income shock. The comparison of the two policy functions, i(E(Yt+1), E(Ht+1(S))) versus

26Note that this is a first order perturbation only. That is, the other locations are still operating under the
RER, S. This seems the most appropriate test, as to go further in allowing other locations to behave according
to different rules would require updating the law of motion, which would return the simulation to another slightly
different RER; this would be a comparison of two RERs, not a RER to a non-approximated law of motion.
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i(E(Yt+1), Ht+1), helps to quantify how great is the change in behavior as a function of the lost

information.

Table 2 reports the results of the exercise for the economies of ten and 18 locations for

income shocks of 5%, 10%, and 25%. For brevity, I summarize the differences by groupings of

the locations receiving the income shocks. For example, the first row of the table reports the

mean absolute percentage difference in the policy function when the small, low income locations

(of any elasticity or amenity value) receive the income shock. The lower panel groups by elasticity

and amenity, summarizing over size and income. In the first column of 5% income shocks, the

table shows that the approximated rational expectations policy function and the perfect foresight

policy vary by 0.04 to 0.14 percent, with the larger differences sensibly coming when the large

and elastic locations are recipients of the shock. The differences grow roughly proportionally

with the size of the shocks. When the economy expands to 18 locations, the differences drop

considerably–falling more than 50 percent–because each individual location contributes less to

the aggregate law of motion. This highlights that the approximation should perform better as

the number of locations grows.

Comparing this table with Table 1, one can see that the potential error introduced by the ap-

proximation is orders of magnitude smaller than the differences between the static and dynamic

models. The static and dynamic models in Table 1 are in many cases 20-40 percentage points

apart, while in Table 2, the differences are less than a percentage point. This suggests there is

far more potential for model bias in assuming myopia than forward-looking bounded rationality.

Moreover, the issue of forward-looking behavior versus myopia is present in a single agent model

and does not dissipate with more agents, whereas the errors of the dynamic approximation do

dissipate as the number of locations grows.

4.2 Using U.S. Data

Continuing in this line of thinking, I also conduct perturbation exercises in a more realistic

setting, using the economy on which the model is estimated. The data and estimation routine

are described in the next section and appendix A. For now, it suffices to state that the model is

estimated using the 49 largest metro areas in the U.S., with all other smaller metros aggregated

into a residual fiftieth location.

As in Table 2, I evaluate the policy function at the mean of the states in the data as well as

at perturbations of those states, constrained so that the national aggregates remain fixed, and

then compare the policy functions. Instead of using the controlled environment of one income

shock shock to one city at a time, I draw a full set of income shocks, positive and negative in the

bounds [−q, q], to J − 2 cities. The left out cities are the location of interest (i.e. the one whose

policy function I am comparing) and the residual location, which absorbs the net change to the

national aggregate. This more directly corresponds to the performance of the approximation
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Table 2: Approximation Error in a Generic Model: Mean Absolute Percentage Differences to
Policy Functions, by Location Receiving the Shock (%)

Economy: Ten Locations 18 Locations

Perturb. Size: 0.05 0.10 0.25 0.05 0.10 0.25
Attributes of
Perturbed Location
Size Income
Small Low 0.098 0.203 0.562 0.017 0.036 0.098
Small High 0.044 0.093 0.262 0.020 0.040 0.103
Large Low 0.110 0.227 0.608 0.023 0.047 0.123
Large High 0.140 0.105 0.268 0.017 0.041 0.103

Supply Amenity
Elastic Low 0.109 0.137 0.390 0.023 0.053 0.139
Elastic High - - - 0.023 0.046 0.119
Inelastic Low 0.087 0.177 0.460 0.011 0.023 0.061
Inelastic High - - - 0.021 0.042 0.109

NOTES: The table reports the percent deviation in the policy functions between that using the approximated rational expectations equilibrium and the
perfect foresight outcome. The economies are organized of generic locations as described in the main text, with two size economies present. The
experiment changes which underlying receives a positive demand shock, holding fixed the aggregate states, and the table reports means over collections
of recipient locations.

in an actual empirical setting, where there would be various shocks to many locations at once,

while the agent continues to track only the aggregates.

The perturbation performed many times in loops: 100 perturbations for each of the J − 1

locations of interest (the residual locale is omitted from study), for both income shocks and

changes to the distribution of the housing stock. I report the mean absolute percentage difference

over the 100 perturbation draws for each location and state variable. The complete list of

locations is reported in appendix Table C1, but for brevity, I summarize by location type in

Table 3.

There are some mildly interesting differences between types of locations–for instance, large

and elastic locations are more sensitive to the approximation error–but the punchline of the

table is in the units themselves. The average differences between the approximation and perfect

foresight policy functions are of the order 10−6 percentage points. While the errors from Table

2 were small, these are many times smaller yet because of the greater number of locations (50,

instead of 18 or ten), and the fact that the simultaneous local shocks cancel out each other. In

other words, for every elastically supplied city with a positive income shock, there is another

with a negative shock, and the RER performs well on average.27

In summary, while using the RER approximation introduces some potential for error, the

differences are much smaller than those between dynamic and myopic specifications. Moreover,

the approximation performs better and better as the number of locations grows, just as the

27To this point, notice that the variance of the shock draws is nearly irrelevant.
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Table 3: Approximation Error in The Estimated Model: Mean Absolute Percentage Differences
to Policy Functions, by Location of Interest (% 10−6)

Perturb. State: Income Housing Stock

Perturb. Size: 0.05 0.10 0.25 0.05 0.10 0.25
Attributes of
Interest Location
All All 0.523 0.530 0.554 0.276 0.276 0.277

Size Income
Small Low 0.338 0.342 0.358 0.178 0.178 0.179
Small High 0.473 0.479 0.502 0.250 0.250 0.250
Large Low 0.240 0.244 0.255 0.127 0.127 0.127
Large High 0.812 0.823 0.859 0.429 0.429 0.429

Supply Amenity
Elastic Low 0.317 0.355 0.370 0.185 0.185 0.185
Elastic High 0.543 0.530 0.553 0.276 0.276 0.276
Inelastic Low 0.618 0.698 0.730 0.363 0.364 0.364
Inelastic High 0.530 0.512 0.536 0.267 0.267 0.267

NOTES: The table reports the average percent deviation in the policy functions between that using the approximated rational expectations equilibrium
and the perfect foresight outcome. The economy is the 50 location U.S. metro area model deriving from actual data. The experiment holds fixed the
aggregate states and then randomly draws shocks to the distribution of the states across locations. The simulation takes means over 100 independent
draws for each city, and the table reports means over groups of city types. The full results for each city are available in appendix Table C1.

full solution would be getting harder. In contrast, the concerns over model specification would

be present even in a one-agent partial equilibrium model. Thus, a dynamic model with an

approximate numerical solution is not only feasible, but desirable.

5 Estimation Overview

This section briefly describes the input data and how the example model is solved and estimated.

While the details are important the estimation of this particular model, they are not essential

to the general point of how to implement dynamic spatial equilibrium models of this class, so

the detailed discussion is relegated to appendix section A. Here I provide a brief overview to fix

ideas, and explain where the routine for solving the rational expectations equilibrium enters.

5.1 Data

The level of geography is the metropolitan area as given by the U.S. Census definition of Core-

Based Statistical Area (CBSA). I focus on the 49 largest CBSAs by 2000 Census population and

aggregate all others into a single residual location.28 Identified cities comprise approximately

28Fifty is an arbitrary number of locations that seemed a reasonably large cross section without beginning
to confront data availability issues in smaller cities. Estimation need not be constrained to 50. The smallest
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two-thirds the national urban population, and the residual the remaining third. Key pieces of

data are unavailable for rural areas, so these are excluded.

Data on housing stock, construction, and population comes from the U.S. Census, focusing

on the period 1980-2011. Information on local incomes derive from the Bureau of Economic

Analysis. Materials costs for home construction are obtained from the RS Means Company, a

construction data analytics firm.

An important component of the data concerns the relative factor intensities for land and

capital. These derive from detailed microdata on the stock of housing in U.S. metro areas as of

2012. County tax assessor records list the living area, lot size, and year of construction of every

single family home in metropolitan counties, so I can measure densities by location and vintage.

5.2 Estimation

Some parameters can be calibrated outside the model, including the transitions of income and

national population, and the utility parameters γ and µ which can be derived from the model’s

spatial equilibrium conditions. The discount rate β is set to 0.95 and the depreciation parameter

δ comes from an autoregression using the time series of housing stocks in the U.S.

The primitive cost parameters are estimated using simulation of the model, targeting moment

conditions for each city derived from the living area/lot size data. Intuitively, the assembly cost

parameters are identified from the level of land exercised in a period conditional on output

prices (i.e. observed supply elasticity), and parameters governing input factor intensities from

the density of construction, which is observed to vary with prices and land stocks. The most

flexible, well-identified function for cost parameters set the convexity parameter ν = 1, and

estimated two parameters of c(A) = c1 + c2Ajt,which are constrained to be nonnegative. The

housing production TFP parameter φ is estimated, setting ρ and κ a priori (more details available

in appendix A).

The estimation begins with the RER as measured from the time series in the data, and then

updates internally. In the first iteration, I use S0 from the data, estimate the parameters for each

location, and then simulate the model to general a new aggregate series. I then run a regression

to update the parameters of the RER to S1, re-estimate the model for each city, and repeat

until the parameters of the locations’ primitives and the RER can no longer be updated. Since

this is a numerical technique, there is no general proof of convergence or uniqueness, but the

model has properties indicating it will indeed converge, namely that more housing supply reduces

continuation value (VH < 0). In words, the routine converges because if the RER predicts more

housing services added, the individual locations add less, which will decrease the next iteration’s

specified cities in my data are Salt Lake City, UT and Rochester, NY; the largest to be aggregated to the residual
location are Bridgeport, CT and Tulsa, OK. New Orleans, LA is excluded because of the disruption to housing
stock and construction caused by Hurricane Katrina.
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predicted housing services in RER, which will increase the individual agents’ construction, and

so on until these balance in equilibrium.

5.3 The Myopic Model

Estimation of the myopic model proceeds much like the dynamic, of course without the steps

related to solving the value functions. There is still an equilibrium that needs to be solved for,

in that the myopic builders must agree on the stock of housing services at any point in time.

The simulated model must deliver the predicted sequence of housing services, period by period.

6 Comparing Model Specifications

6.1 Model Fit

One immediate way to compare two models is to “horserace” them and evaluate their ability

to fit the observed data. The following subsection briefly compares the ability of each model to

match data. Fit is certainly an important evaluation of any model, but it turns out not to be

the major distinction between the myopic and dynamic model.

Figure 1 presents a series of plots measuring the fit of each model. The top panel contains

scatter plots (a and b) for the choice variables of interest, land inputs and housing services

(living area). On the horizontal axis are the actual values of land and housing added for each

city in the estimation period, and the vertical plots the models’ predicted values, with dynamic

model values denoted with a circle and the myopic an “×.” All values line up very nearly along

the diagonal, indicating that both models are capable of matching the ample cross-sectional

variation in the level of construction. Note that this happens independently for housing services

and land. In the middle panel, plot c shows their ratio (the density of construction) is also fit

well within each model. The ability of the models to fit these moments is not surprising given

the large degree of flexibility and locational heterogeneity present in both.

A difference between models emerges, however, when considering the change in density within

each city over time. In most locations, construction density increased from the 1980s to 2000s.

The dynamic model naturally embeds a mechanism for this: as the option value of land increases,

builders use less of it for a given amount of housing. Hence, densities rise when demand is

anticipated to be high (e.g. income growth) or when land costs rise (e.g. land is exhausted).

Plot d shows the dynamic model’s land/capital tradeoff within a given city is consistent with

the data, if a bit understated on average. The myopic model contains no such mechanism, and

therefore has constant density throughout, missing this feature of the data.

The bottom panel plots the distribution of the estimator’s objective function, mean squared

error in housing construction and density, across locations. As the top panel suggested, the two
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Figure 1: Comparison of Models’ Fit to Data

NOTES: The figure displays several plots evaluating the fit of the myopic and dynamic specifications of the housing construction model. Plots a− d
plot actual versus model-predicted values of the land and housing services policies. Plots e, f show the distribution of the objective functions across
locations.

models are similar in terms of ability to fit total housing construction, and also their respective

“misses” (instances of higher error) are similar. The dynamic model does better in fitting the

density distribution for the reasons just mentioned.

In summary, each model is flexible enough to match data. Though the myopic model misses

a key feature of the evolution of density, this difference need not be too alarming on its own. If a

researcher were concerned about this moment but nothing else about forward-looking behavior,

some ad hoc adjustment to the myopic model could be made by, say, adding a density parameter

as a function of states or time, φ(A, t, Y ) etc. Interpretation of parameters and counterfactual

simulation, discussed next, are more fundamental concerns.
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6.2 Estimates

Difference in fit is likely a surmountable concern, especially in a flexible model that can target

several moments in the data. A deeper question is whether the parameters are the “right” ones,

which obviously is especially important if one takes the parameters themselves seriously–to

do, say, interpretation of the coefficients and conduct counterfactual exercises. Recent literature

comparing dynamic and static/myopic models has focused on proper interpretation of coefficients

(see Murphy and Bishop (2016), Bishop (2008), Ma (2016)).

In this case, though the models may both target the same moments and succeed similarly in

fitting the data, they do so at different parameters values. Table 4 reports coefficient estimates,

city-by-city, in the dynamic and myopic specifications, with means and medians across cities

in the bottom rows. (Appendix Table C2 reports the coefficient estimates with their standard

errors.) There are too many parameters to discuss everything, but some patterns are worth

highlighting. First, the myopic model is far more likely to arrive at the zero constraint for the

c2 parameters that governs how assembly costs change with used land stock. This is sensible

because it is that parameter is most sensitive to decision horizon. In a dynamic model, expec-

tations of future costs affect land developed in all states of the world, affecting construction

densities and levels and their variance with local prices, so that many locations are permitted

to exhibit fluctuations in land developed (through density or withholding of options). Only

characteristically elastic markets in the central U.S. and some low demand Rust Belt cities ar-

rive at the zero constraint for this parameter. In the myopic model, in contrast, the parameter

only has bite in locations where housing service supply elasticities appear to be declining with

urban growth (some characteristically constrained coastal markets). Second, this difference in

finding c2 has effects on the estimated levels of TFP (φ), as average productivity estimates

must be higher to rationalize density without an option value to land. Third, the two sets of

estimates differ in their average levels. A simple way to see this is to compare the sum of the

mean c1, c2 parameters. The myopic model on average needs higher cost parameters to arrive at

the appropriate level of construction activity because it lacks an option value component that

rationalizes retention of land; with myopia, all reluctance is ascribed to current period costs. If

one were trying to interpret these coefficients as indicative of underlying cost mechanisms–for

instance, land use or building regulations or geographic constraints–these differences in model

specification could alter the conclusions about the import of these mechanisms on costs.

Thus, one’s assumptions about model horizon could impact interpretation of parameters

estimates, which can matter because it can affect prediction within and outside the model’s

environment. I proceed to a comparison of the model’s elasticity estimates within the regime on

which the models are estimated, and then close the section by looking at counterfactual policy

scenarios.
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Table 4: Parameter Estimates, Dynamic and Myopic Model

Dynamic Myopic

Location c1 c2 φ c1 c2 φ
Residual 50.65 0.00 0.036 61.74 0.00 0.035
New York, NY 391.86 272.71 0.051 384.60 594.43 0.102
Los Angeles, CA 791.63 404.24 0.119 1,302.84 0.00 0.207
Chicago, IL 1,210.51 66.39 0.090 1,323.06 0.00 0.103
Philadelphia, PA 1,504.18 1,080.85 0.048 2,422.37 823.78 0.099
Dallas, TX 867.75 0.00 0.109 897.40 0.00 0.120
Miami, FL 1,938.75 379.63 0.131 2,464.88 0.00 0.205
Washington, DC 1,908.93 574.73 0.043 2,871.82 0.00 0.069
Houston, TX 1,030.19 0.00 0.129 1,068.06 0.00 0.148
Detroit, MI 1,679.75 195.16 0.055 1,946.13 0.00 0.060
Boston, MA 820.90 532.67 0.030 680.14 1,560.40 0.047
Atlanta, GA 569.81 118.65 0.045 790.05 0.00 0.054
San Francisco, CA 3,327.91 767.47 0.120 3,103.85 1,425.82 0.262
Riverside, CA 1,119.79 99.62 0.137 1,250.38 0.00 0.156
Phoenix, AZ 1,069.66 54.71 0.157 1,164.79 0.00 0.188
Seattle, WA 1,427.67 684.99 0.053 2,633.32 0.00 0.091
Minneapolis, MN 1,985.25 514.14 0.028 2,365.39 545.44 0.034
San Diego, CA 3,434.07 0.00 0.061 3,352.63 0.00 0.055
St Louis, MO 1,849.55 494.53 0.040 2,595.67 0.00 0.047
Baltimore, MD 5,439.27 1,540.71 0.046 6,163.50 1,959.02 0.083
Pittsburgh, PA 1,696.63 617.02 0.039 1,974.76 925.10 0.051
Tampa, FL 1,810.58 409.94 0.104 2,447.20 0.00 0.153
Denver, CO 3,063.77 252.02 0.071 3,586.74 0.00 0.094
Cleveland, OH 3,086.83 0.00 0.061 3,175.75 0.00 0.065
Cincinnati, OH 2,042.03 270.32 0.043 2,580.14 0.00 0.050
Portland, OR 1,634.19 388.27 0.074 2,499.14 0.00 0.111
Kansas City, MO 1,827.31 306.40 0.082 2,287.92 0.00 0.097
Sacramento, CA 1,574.20 808.76 0.079 2,675.79 0.00 0.116
San Jose, CA 3,619.89 6,497.68 0.073 0.00 13,457.61 0.240
San Antonio, TX 2,331.34 0.00 0.077 2,380.11 0.00 0.082
Orlando, FL 2,053.09 160.92 0.103 2,358.31 0.00 0.129
Columbus, OH 3,567.07 0.00 0.052 3,661.03 0.00 0.055
Providence, RI 1,505.23 518.74 0.034 756.20 2,255.66 0.042
Norfolk, VA 3,662.13 0.00 0.086 3,752.58 0.00 0.096
Indianapolis, IN 1,961.37 517.60 0.055 2,844.66 0.00 0.069
Milwaukee, WI 8,425.35 0.00 0.102 8,642.09 0.00 0.118
Las Vegas, NV 2,463.65 198.66 0.199 2,762.52 0.00 0.281
Charlotte, NC 1,546.42 826.09 0.054 2,784.16 0.00 0.074
Nashville, TN 1,504.63 508.62 0.028 2,658.72 0.00 0.034
Austin, TX 2,752.60 0.00 0.098 2,768.05 0.00 0.100
Memphis, TN 3,304.04 0.00 0.042 3,454.39 0.00 0.044
Buffalo, NY 4,933.48 0.00 0.035 4,995.04 0.00 0.035
Louisville, KY 2,276.97 0.00 0.017 2,183.32 0.00 0.017
Hartford, CT 3,657.74 716.66 0.035 4,992.54 0.00 0.040
Jacksonville, FL 3,683.06 831.22 0.087 4,962.18 0.00 0.125
Richmond, VA 3,456.80 0.00 0.034 3,386.32 0.00 0.033
Oklahoma City, OK 3,712.27 0.00 0.043 3,761.60 0.00 0.043
Birmingham, AL 1,367.04 518.63 0.020 3,498.89 0.00 0.023
Rochester, NY 7,866.75 0.00 0.027 7,924.39 0.00 0.027
Salt Lake City, UT 10,271.21 48.11 0.138 10,289.71 0.00 0.138

Mean 2,581.51 443.54 0.070 2,897.74 470.95 0.095
Median 1,950.06 261.17 0.055 2,614.49 0.00 0.082

NOTES: The table reports the parameter estimates for each location under the dynamic and myopic specifications of the model. The full description of
the data and estimation routine are in appendix A. Appendix Table C2 reports the coefficients with standard errors.
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6.3 Predicted Elasticities

Table 5 repeats the exercise of Table 1, comparing the policy functions of myopic and dynamic

models in response to changes in demand. The three-by-three block structure of the table is

as before, reporting elasticities to the demand shocks, which here are one standard deviation

changes to local and national income. All other states held at their means, and the center cell

is zero by construction. Note there are a few differences in context from the initial table. The

model is now in general equilibrium, and the parameters are the estimates for actual cities as

reported in Table 4. For brevity, I highlight just a few example cities, San Francisco, New York,

Boston, and Austin, TX.

In both types of models, construction and land exercised respond to the changes in demand,

with the high local income, low national income case being the greatest increase to local relative

demand. Naturally, elasticities are larger in more elastically supplied (lower c1, c2) locations.

However, the models differ in their predictions on the the size of the response–and in which

dimension–depending on the conditions of the city in question. San Francisco, with high assembly

costs but relatively high productivity (as governed by φ), shows large differences between myopic

and dynamic models in predictions on the amount of land used; in the dynamic model, the

response to higher demand comes at greater density, as scarce land is withheld for future use. In

Boston, with lower housing productivity but lower assembly costs, the gaps in land use are small

but differences in construction amounts are large. In New York, there are some of both effects.

The sizes can be as large as 10 percentage points despite differing only in the model’s specified

horizon, which I emphasize again is many orders of magnitude larger than approximation errors

found in Table 3. Now, in Austin, the two model’s predictions are quite similar. There, the two

models have very similar parameters, including the estimated change in land costs parameter,

c2, approaching the zero constraint. Thus, the dynamic model is nearly the same as the static,

and the models deliver similar predictions for that city.

These are a few examples, and differences across cities run the gamut.29 As before, the

takeaway is that the differences in prediction and the potential misspecification can vary with

attributes of the agents. Researchers must be especially cautious of time horizon assumptions

in models with rich spatial heterogeneity, where the biases imposed in one place may not apply

to the same extent in another.

6.4 Simulations

Often, models of this class are used to evaluate hypothetical policy regimes and states of the

world. The potentially most serious difference between dynamic and myopic models comes in

29It is not the case, for example, that all large, or elastic, or productive cities respond the same way. There
are other central U.S. cities (including Texas) with nontrivial differences between myopic and dynamic models.
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Table 5: Comparison of Models: Elasticity of Policy Function in Estimated Model

Policy Function: Land

States \Model Myopic Dynamic

City Params. Natl Inc.: Low Med High Low Med High
(dynamic) Local Inc.

San Francisco c1 = 3, 327.91 Low -20.69 -21.70 -22.56 -11.70 -13.02 -14.15
c2 = 767.47 Med 1.21 0.00 -1.03 1.39 0.00 -1.20
φ = 0.1198 High 23.30 21.89 20.70 13.32 11.85 10.58

Boston c1 = 820.90 Low -27.18 -28.50 -29.62 -29.18 -31.29 -33.08
c2 = 532.67 Med 1.58 0.00 -1.35 2.33 0.00 -1.99
φ = 0.0297 High 30.59 28.75 27.18 30.83 28.28 26.11

New York c1 = 391.86 Low -25.23 -26.47 -27.51 -22.18 -23.88 -25.31
c2 = 272.71 Med 1.49 0.00 -1.26 1.89 0.00 -1.58
φ = 0.0510 High 28.47 26.71 25.23 23.40 21.32 19.59

Austin c1 = 2, 752.60 Low -24.02 -25.18 -26.18 -24.18 -25.30 -26.25
c2 ≈ 0 Med 1.38 0.00 -1.19 1.33 0.00 -1.13
φ = 0.0984 High 27.01 25.40 24.02 27.10 25.56 24.24

Policy Function: Housing

States \Model Myopic Dynamic

City Params. Natl Inc.: Low Med High Low Med High
(dynamic) Local Inc.

San Francisco c1 = 3, 327.91 Low -20.69 -21.70 -22.56 -21.30 -22.40 -23.34
c2 = 767.47 Med 1.21 0.00 -1.03 1.32 0.00 -1.12
φ = 0.1198 High 23.30 21.89 20.70 24.27 22.73 21.42

Boston c1 = 820.90 Low -27.18 -28.50 -29.62 -34.54 -36.49 -38.16
c2 = 532.67 Med 1.58 0.00 -1.35 2.35 0.00 -2.00
φ = 0.0297 High 30.59 28.75 27.18 40.06 37.31 34.98

New York c1 = 391.86 Low -25.23 -26.47 -27.51 -29.52 -31.11 -32.45
c2 = 272.71 Med 1.49 0.00 -1.26 1.95 0.00 -1.64
φ = 0.0510 High 28.47 26.71 25.23 34.17 31.84 29.90

Austin c1 = 2, 752.60 Low -24.02 -25.18 -26.18 -24.08 -25.24 -26.23
c2 ≈ 0 Med 1.38 0.00 -1.19 1.38 0.00 -1.18
φ = 0.0984 High 27.01 25.40 24.02 27.06 25.46 24.08

NOTES: The table reports the percent change in the land (upper panel) and housing (lower panel) policy functions (see (6a), (6b)) with respect to
changes in demand conditions for each time-horizon specification of the model. Unlike Table 1, these are derived from the equilibrium model (not single
agent) using estimates from actual U.S. data. There are four example locations reported; more results available upon request. There are two demand
states, local and national income, structured in a 3x3 matrix of low/medium/high states; the differences are taken with respect to the center cells
(medium/medium).
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counterfactual simulation, when the researcher must put more faith in the quality of the model

and has less discipline from actual data. This section demonstrates the differences between

the dynamic and myopic models in various policy scenarios. The point of these exercises is to

illustrate how the models differ and when and how severely using the wrong model will affect the

predicted answer. The simulations are examples of the types of policies that might be evaluated

with a model like this, but do not attempt seriously to answer any specific policy questions.

Each simulation will compare policy functions from the counterfactual scenario to a baseline

using the estimated parameters (and RER for the dynamic model) from the data. For the

dynamic model, a new RER and associated value functions must be found for the new policy

regime. The simulations begin with all locations at their mean states (Aj, Hj, y,HN , Y ) and then

simulate forward for ten periods (years). Each simulation produces a lot of data, so for brevity

I present the results for some archetypal cities. The results present, heuristically speaking, a

difference-in-difference evaluation of the models: the difference between models in the difference

within the models’ baseline and counterfactual simulations. The question is, how do the models

predict changes in the agents’ behaviors as their environments change?

6.4.1 A Tax on Housing Output

The first simulation is a tax on new housing services constructed by the builder. That is, the

builder’s return function becomes (1−τ)Rtji. This could represent an actual tax on revenues, or

an implicit one, such as a regulation that builders set aside some portion of their new construction

to be sold below market value, in that the supplier adds some quantity of housing services i but

receives only a fraction 1 − τ of the revenue.30 The tax is assumed the same magnitude in all

locations for simplicity of exposition, and is set to τ = 0.1.

Figure 2 displays the results for a selection of locations: a large, high rent, and inelastically

supplied market, New York, and a smaller one, San Francisco, and a large, low rent, elastically

supplied market, Atlanta, and a smaller one, Nashville. The figure displays the relative policy

function under the counterfactual scenario plotted over the ten years of simulation; for example,

a position of -0.1 indicates that there is ten percent less construction under the counterfactual

than in the baseline. The upper panel plots housing services added, and the lower plots land

used in construction of those housing services. The dynamic model is plotted in a blue solid line

and the myopic in a green dashed line.

The direct effect of the policy is obvious–all locations build less in all periods. The initial

impact is slightly larger than ten percent, with larger effects in the more elastic markets where

densities are lower and materials are a higher share of costs.31 As time progresses, each market

30This simulation is intended to mimic in a generic way an “affordable housing” policy imposed on builders.

31This can be seen by comparing the analytical relative policy functions,
(1−τ)R−cc− c

φ̃
+ ∂V
∂h

R−cc− c
φ̃
+ ∂V
∂h

. Of course, prices

and continuation values change between the counterfactual and baseline.
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“bounces back” to some degree, since relatively higher housing prices result from the reduced

supply remaining from initial construction levels. (Both dynamic and myopic specifications are

equilibrium models, after all.) The bounce-back is larger in the more elastic markets.

Qualitatively, these effects are by design common to the myopic and dynamic models, though

quantitative differences emerge in heterogeneous ways across markets. First, there are large

differences between the models in the amount of land employed, seen in a comparison of the

upper and lower panels of the figure. In the myopic model, the reduction is proportional to the

change in housing services. In the dynamic model, the reduction is much smaller because the tax

reduces option values, and land becomes less dear, so more is used than would be in the no-tax

baseline; so, buildings are less dense. The gap between models is greatest in the most land

constrained markets, where land option values have larger import (greater VA) for the policy

functions. The second difference (a by-product of the first) is that the counterfactual affects

housing services less severely in the dynamic model. The direct effect is to build less, but the

indirect effect is that land is less valuable, so more is used, causing a rebound in housing services

offered. This rebound effect is more pronounced in the more elastic markets, where the builders’

value functions are higher since the flow of future dividends is larger (through higher quantities

and lower costs, not higher prices).32 Hence the gap between the myopic and dynamic models

in housing services is larger for the more elastic markets. In San Francisco, the housing service

policies are effectively overlapped, though with the intercept gap in the land policy functions.

In Atlanta and Nashville, the difference in slope between models drives the predicted housing

services policies apart.

The takeaway is that though the policy’s direction of impact is clear, empirical predictions

can depend on which type of model is used. The dynamic and myopic models can differ in the

effect on choice variables (factor intensities) and their indirect effects of construction levels, but

in ways that are heterogeneous between markets and over time.33

6.4.2 An Increase to Regulatory Burden

The next example simulation returns to a no-tax regime but considers an increase in the per

period cost to housing construction, the assembly cost parameters c1, c2. This reduces supply

elasticity by making it more difficult to add housing in a given period, and is intended to

represent, for instance, larger regulatory burdens on construction. Again for simplicity I use a

common magnitude of ten percent increase across all locations.

Figure 3 uses the same organization and archetypal cities as the last simulation. In the

32That value functions are lower in places with high rents may be counterintuitive. This is a consequence of
modeling the agent as a developer-builder, and a single entity per metro area, not separate agents controlling
individual parcels. It is better to be the developer of all of Atlanta than all of San Francisco, since the new
market size is greater.

33Of course, a heterogeneous policy like taxes that vary between markets would only complicate things further.
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Figure 2: Changes to Policy Function in Builder Tax Simulation: Dynamic and Myopic Models
(proportional differences over t periods)

Housing

Land

NOTES: The figure plots policy function responses to a uniform housing tax on builders under both the dynamic and model specifications of the
model. The vertical axis reports the proportional change (e.g. −0.1 = 10% lower) and the horizontal is the time elapsed since the change was
instituted. Separate panels report the land and housing policy responses. See the main text for details of the simulation. Four example
locations/agents are reported, and more results are available upon request.
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myopic model, the cost increase has identical initial impact across cities and factor inputs. The

degree of bounce back (from low initial supply leading to housing price increases in later periods)

is similar across cities, but to a slightly steeper degree in larger and more elastic places. The

dynamic model shows greater richness in the effects. As in the housing tax simulation, the impact

on land is smaller, since the option value is lower and therefore the builders are less apt to retain

it. The gap between models in land used is larger in the land constrained cities (New York,

San Francisco). The greater willingness to use land, the indirect effect, means that the impact

on housing is smaller in the dynamic model than in the static, though the gap between models

can vary significantly based on density; the higher housing TFP places (e.g. San Francisco)

have less gap than lower TFP (e.g. Nashville), since using relatively more land does not lead

to that much more housing in San Francisco, while it does in Nashville. The dynamic model

also exhibits heterogeneity between cities in the degree of bounce back over time, depending

on the contribution of the land stock-dependent element c2 versus c1 parameter to per-period

assembly costs (see values in Table 4). Those with more land stock dependence of costs (New

York, Nashville) react more to the lower levels of stock in later periods.

In summary, like the tax simulation, the direction of the effect on housing services is obvious

and qualitatively similar between the two models, but quantitative differences emerge in ways

heterogeneous between locations.

6.4.3 A Change in Location Amenities

The next simulation looks at altering location demand by changing the relative amenity param-

eters µj. Specifically, I reduce the amenity parameter of each city located on an ocean coast

(Atlantic, Pacific, or Gulf of Mexico) by one standard deviation of 0.0276. This could represent

a world in which coastal location is relatively less attractive because of, say, increased risk of

storms or flooding brought on by climate change.

Like the previous simulations, this change to primitives requires a new solution of value

functions and finding the associated RER. Unlike previous simulations, the change in parameters

applies to only a subset of locations, though each will be affected in equilibrium. The simulation

again starts from the mean values of location’s states and walks forward ten periods. I swap

out two archetypal cities in order to display a high rent, inelastically supplied coastal location

(New York), and a low rent, elastically supplied one (Jacksonville, FL), and then a high rent,

inelastically supplied inland city (Chicago) and low rent, elastically supplied one (Atlanta).

Figure 4 displays the results. Reduced demand for coastal locations leads to lower construc-

tion there. In equilibrium, inland locations see an increase in residual demand, so construction

increases there. In the myopic model, the changes to housing and land employed are the same,

whereas in the dynamic model, we again see the effect of option values–the changes to land

employed are smaller in magnitude than housing. This can have varied indirect effects on hous-
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Figure 3: Changes to Policy Function in Regulatory Burden Simulation: Dynamic and Myopic
Models (proportional differences over t periods)

Housing

Land

NOTES: The figure plots policy function responses to an increase to the assembly cost parameters (c1, c2) under both the dynamic and model
specifications of the model. The vertical axis reports the proportional change (e.g. −0.1 = 10% lower) and the horizontal is the time elapsed since the
change was instituted. Separate panels report the land and housing policy responses. See the main text for details of the simulation. Four example
locations/agents are reported, and more results are available upon request.
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ing construction, depending on the location’s parameters. In the elastic locations (Jacksonville

and Atlanta), the land effect mitigates the changes to housing. In the inelastic ones (New York

and Chicago), the changes to building density actually amplify (to a small degree) the effect on

housing.

Like the supply side interventions above, the qualitative effects are mechanically similar

between the two models, but the quantitative effects can in some instances be quite different.

The dynamic model exhibits a richness the myopic one lacks when the general equilibrium

imposes substitution effects from dynamic externalities.

6.4.4 A Change in Location Housing Stocks

The final simulation is the most simple. The thought experiment is a sudden loss of housing

stock in eastern coastal locations,34 resulting from, say, a catastrophic event like a hurricane. For

simplicity, I use the same ten percent loss in all East Coast locations.35 To make ceteris paribus

comparisons, I assume the loss in stock does not affect the primitive cost of land assembly

nor demand for the locations through, for instance, the amenity parameters or total urban

population. Thus, instead of changing parameters or other primitives, this simulation merely

changes state variables, so the value functions and RER need not be updated. Therefore, the

housing and land effects are identical within the dynamic model as well as the myopic, so I only

report the results for housing services. The initial states are at the means, except for the loss of

housing stock in affected cities.

Figure 5 reports the results for two directly affected cities, New York and Boston, and two

unaffected, San Francisco and Atlanta. There is nationally a rebuilding effort since demand for

housing remains, so all places see an uptick in construction that wanes over time as stock returns.

The rebuilding is greatest in the coastal locations which have newly available land. However,

this newly available land comes with newly available option value which mutes the rebuilding

response. Thus, the rebuilding under the dynamic model is less than the myopic model, where

it is effectively proportional to the loss. This insight highlights the potential importance of path

persistence in models with durable capital that myopic specifications do not capture.

7 Conclusion

This paper suggests a path forward for incorporating dynamics into empirical spatial equilib-

rium models. The main insight is that models with spatial indifference already embed a natural

starting point for incorporating dynamics: the level of reservation utility can be treated as a

34Results for other coasts and catastrophes are available upon request for those feeling dismal.
35These are, by size: New York, Philadelphia, Washington DC, Boston, Baltimore, Providence, Norfolk, and

Jacksonville.
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Figure 4: Changes to Policy Function in Coastal Amenity Simulation: Dynamic and Myopic
Models (proportional differences over t periods)

Housing

Land

NOTES: The figure plots policy function responses after a change to the amenity value of coastal located cities under both the dynamic and model
specifications of the model. The vertical axis reports the proportional change (e.g. −0.1 = 10% lower) and the horizontal is the time elapsed since the
change was instituted. Separate panels report the land and housing policy responses. See the main text for details of the simulation. Four example
locations/agents are reported, and more results are available upon request.
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Figure 5: Changes to Policy Function in Coastal Stock Loss Simulation: Dynamic and Myopic
Models (proportional differences over t periods)

Housing

NOTES: The figure plots policy function responses to a capital loss in east coast cities under both the dynamic and model specifications of the model.
The vertical axis reports the proportional change (e.g. −0.1 = 10% lower) and the horizontal is the time elapsed since the change was instituted. See
the main text for details of the simulation. Four example locations/agents are reported, and more results are available upon request.

state variable. This evades a potentially very complicated curse of dimensionality in spatial

models with heterogeneity. The second insight is that existing techniques for solving rational

expectations models can be readily applied to empirically implement dynamic spatial equilib-

rium models. The paper demonstrates the techniques on a relevant example of an economy

of interrelated heterogeneous housing suppliers, showing that approximation errors are small

and illustrating how dynamic and myopic specifications of the same model can depart from one

another.

It would be nice if researchers had some rule of thumb that a dynamic model will always have,

say, effects ten percent larger or smaller, etc., but it is clear that no such rule exists in general.

The gap between model specifications can vary by context, by the attributes of the agent in

question, and over time as the states evolve. Thus, researchers are left to do the hard work of

solving dynamic equilibrium models in order to have confidence in the empirical predictions.

This paper aims to offer good news in this regard. While full solutions for economies of

heterogeneous markets may quickly become infeasible, approximation techniques are readily

available and likely introduce minimal error. This paper illustrates a numerical method for

solving models of this class. It cannot rule out in general that there exists some model for which

this approximation performs poorly, but it at least offers opportunity for researchers to test and

experiment. By suggesting a path forward, these methods could be the next step in empirical

spatial equilibrium models, making dynamics more attainable than is apparent at first glance.
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A Data and Estimation Details

A.1 Housing Stocks and Flows

I use annual county population estimates from the Census, 1980-2011, aggregated to CBSAs to

measure city size and national (urban) population. To measure the housing stock for each metro

area over time, I use single family housing units by county from the decennial Censuses of 1980,

1990, 2000, and 2010, aggregated to the CBSA level. For intercensal years, I allocate the decadal

change in the housing stock by the level of building permit activity in the CBSA, as collected

by the Census and provided by Housing and Urban Development’s State of the Cities Database

(SOCD). As in Glaeser et al. (2014), I use permitting activity as an index because these are a

noisy estimate of actual building activity, and do not necessarily sum to the change in housing

stock. The index allocates permits by their expected arrival to the inventory of housing, which

may vary spatially and temporally, using annual regional summaries of permit-to-completion

rates and times from the Census. The allocated units comprise “construction” by city-year.

To measure input factor intensities, I use detailed data on home size and lot size by location

and vintage year of construction. This information comes from microdata of U.S. county tax

assessor records compiled by real estate data firm Dataquick/Corelogic. The tax assessor files

are a single cross section of urban counties from 2011 to 2012, but the property records contain

year of construction. Thus, I can measure the housing and land intensity per unit by the place

and time of entry into the housing stock. The measure of housing-to-land density is the actual

flooring area ratio (FAR), living area to lot size, for a particular structure. Unfortunately, these

data are not available for multi-unit buildings, so throughout I focus on single family homes.36

Populations are scaled by the fraction of the metro area living in single-family homes taken from

a five percent subsample of the decennial census (Ruggles et al. (2015)).

Then, to get the total stock of living area H and land employed in housing, A, I multiply

the number of units added each city and year by the living area and lot sizes measured from the

tax assessor records for that city and year of construction:

Hjt = (1− δ)Hj,t−1 + unitsj,t · liv areaj,t , Ajt = (1− δ)Aj,t−1 + unitsj,t · lotsizej,t

where j indexes locations and t time. δ is a depreciation rate to be calibrated below. I treat

stock in 1980 as the initial condition because it is the first year of permitting data available in

the SOCD. The estimation will target the policy functions for each location, ijt = Hjt − (1 −
δ)Hj,t−1, ajt = Ajt − (1− δ)Aj,t−1.

The capital component of costs, cc, is obtained using physical construction cost data from

36Construction activity data also tend to be more precise for single family than multifamily, as there is less
measurement error in the counting of units.
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the RS Means Company. The data report material with installation (labor and equipment) cost,

on the basis of square foot of living area, annually by city for 1988-2013. Below I described how

I map these costs to capital costs of the model.

A.2 Calibrations

Some preliminaries are calibrated outside the model. The data come at annual frequency, and

transition processes are set accordingly. The builders’ common discount rate is set to β = 0.95.

Local per capita income is taken from the regional economic accounts data by the Bureau of

Economic Analysis. The cities’ annual income processes are found to have unit roots, and I take

the empirical distribution of annual differences to be the shock distribution.

To connect a flow cost of residential housing to sales values available to a builder, I use the

commonly known user cost method (see e.g. Poterba (1992)). I find the implied rental rate,

r = uc · v, where uc is the user cost rate and v is the house value. Poterba (1992) suggests the

user cost formula uc = [(1−κt)(m+κp) +ψ+ νr]− νg, where κt is the income tax rate, m is the

nominal mortgage rate, κp is the property tax rate, ψ is maintenance cost and depreciation, νr

is the risk premium associated with housing, and νg is expected inflation. Calibration of these

follows Poterba (1992), Albouy (2009), and my own estimate of average appreciation by market.

Housing values are set by the sales of newly constructed homes using the Dataquick/Corelogic

microdata on deed transactions. For most counties of the metro areas in the data, transaction

registers from deeds records can be matched to the assessor records using a unique property

identifier. Then, I obtain home values per square foot by averaging transaction prices from 2004

and 2005 sales of newly constructed homes as identified by the year built field. In counties for

which no transactions data were available, I used median value for homes built 2005 or later in

the 2008-2010 American Community Survey (ACS). The values were converted to 2000 dollars

using the Consumer Price Index (less housing) and averaged to the CBSA using housing units by

county as weights. Values over time are pegged to the Federal Housing Finance Administration’s

(FHFA) all-transactions housing price index for the CBSA. Finally, the user cost method is

applied to yield rjt = ucjvjt on a per square foot basis.

The model implies in (7) that housing expenditure constitutes a constant fraction of income,

so that the utility parameter γ can be calibrated from expenditures on housing. Davis and

Ortalo-Magne (2011) have shown using microdata on incomes and rents that average housing

expenditures are remarkably consistent across metro areas, lending direct support for this type of

utility function. However, the utility function has been challenged for its failure to hold across the

income distribution (Black et al. (2014), Broxterman and Yezer (2015)). Considering the current

model focuses on across city differences and uses homogenous agents, the functional specification

seems appropriate for the context. Moreover, the analytical expressions for population and rent

that Cobb-Douglas utility delivers are very convenient, not a trivial consideration for equations
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that might otherwise need to be solved numerically millions of times during estimation. Using

the mean expenditure share of 0.19 (s.d. of 0.03), γ is set to 0.23.

With rents, incomes, population and housing stocks, I turn to the utility conditions of the

model to derive the city-specific amenity value. To recover these, I run the regression

1

γ
ln
yj
yY

+ ln
hj
hN

= D′jµ+ σln
yj
yN

where hN is the national average housing services per person and Dj is a matrix of indicator

variables for each city. The extra parameter σ comes from specifying the amenities in units of

income and relaxes the assumption that population elasticity with respect to income be 1
γ
, which

is empirically far too high.

The depreciation parameter, δ, is calibrated using a regression of the national time series of

housing stock and permits HN,t − in,t−1 = (1 − δ)Hn,t−1; I use the national series (not metros)

because it is longer (1947 using the Statistical Abstract of the United States) and the permits

data are less subject to measurement error. Note that this measures stock depreciation, not

value depreciation. I find 1 − δ = 0.989, indicating that about one percent of the single family

housing stock is destroyed each year.

A.3 Estimation Routine

Having obtained parameters general to all locations and the amenity terms, I turn to estimation

of the cost parameters for the builders in each metro area. While the housing construction data

are detailed, they are actually insufficient to separately identify all the parameters specified in

the general formulation of the model. Estimation will therefore normalize some parameters in

such a way as to maintain the major dimensions of heterogeneity between cities.

First consider the relative factor intensities. Intuitively, these are identified by the building

densities observed in the data. Equation (4) is the model’s density condition. The first challenge

with this condition is that true capital is not actually observed (or easily defined, for that

matter). The RS Means data provide the materials and installation cost for a square unit of

finished housing; this is the bundled k component of i, but not units of k. The observable

density condition is (5), housing services per unit of land. Hence, I set κ = 1 and subtract the

capital cost component from the output price, so that (9) become 1
1−δβ r − cc, where cc is the

construction cost from RS Means.37

37There is significant spatial heterogeneity in the costs, but virtually no evidence that costs fluctuated with the
level of building activity. The finding that construction labor and materials are elastically supplied is common
(see Gyourko and Saiz (2006), Wheaton and Simonton (2007)), but costs vary spatially and temporally with
construction sector wages (the “installation” component). Discussions with data engineers at RS Means indicated
the labor component determines fluctuations. To measure the correlation of construction costs with income, I
run a regression of ccjt on yjt, pooling the data across cities and including city fixed effects: ccjt = cc0,j + ccyyjt,
for which I find ccy = 0.6142 (s.e. 0.0388).
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The second challenge is that the parameters determining density–the TFP φ, the elasticity of

substitution parameter α, and land cost ρ–are in practice difficult to identify.38 The important

feature to maintain is locational heterogeneity in the capital/land ratio, and in the dynamic

model, its evolution with other state variables like output prices and land in use. Thus, I elect

to set ρ = 1, α = 0.5 for all locations, and estimate φ. The restrictive implication of this

assumption is that densities rise faster with VA in ceteris paribus dense places, but this feature

is satisfied in the data.

Next consider the assembly costs. Intuitively, these are identified by level and elasticity

of building activity (conditional on the density and construction material costs). The model’s

condition is (6a). I first need to specify the functional form for c(A), which I set to be 1
1+ν

(c1 +

c2
Ajt

Âj
)i1+ν subject to the constraints c1 ≥ 0, c2 ≥ 0. This form allows but does not impose that

the assembly costs increase in the amount of land already in use (Âj is the average land stock in

the data, a normalization to make the parameters comparable across cities of different physical

size). In practice, it was difficult to separately identify the scale and convexity parameters, so

I set ν = 1 (making costs quadratic), which allows heterogeneity in elasticity to come through

the c1, c2 parameters.

After reducing the estimable parameters, the policy function has become

a =
((R− cc)Φ− 1 + β(VHΦ + VA)

c1 + c2
Ajt
Āj

Φ2

)
(15a)

i

a
=Φ = φ(1− βVA)0.5 (15b)

These form the joint moment conditions in the estimation of φ, c1, c2 for each city. The

objective function is a vector of squared residuals for each city’s T observations,

M =
T∑
t=1

( (
(̂ijt(c1, c2, φ, υ)− ijt)/ijt

)2(
(
îjt(c1,c2,φ,υ)

âjt(c1,c2,φ,υ)
− ijt

ajt
)/

ijt
ajt

)2

)
(16)

where the errors are in percentages. The density moments can be noisy in some locations, so

the residuals are weighted by a Gaussian kernel on their distance away from a quadratic trend.

The estimates are then
(
ĉ1, ĉ2, ˆphi

)
= argminM . In practice, I find the parameters by first

conducting a coarse grid search over a wide guess of values, and then a standard simplex-based

minimization routine using the grid search outcome as starting values. This reduces concerns

over finding local minima. Following Wooldridge (2002) on M-estimators, standard errors are

calculated using numerical first and second derivatives to find the score and Hessian matrix for

38The functional form causes the parameters have slightly different implications for density to exploit, but in
city level data, there are simply not enough data points to distinguish these.
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the objective function (16).

B Solution of the Value Function

B.1 Method

Any standard method for solving the agents’ value functions can apply. For this model, I

use projection methods to approximate the the value function in (14). This choice was the

result of two considerations. First, projections tend to be computationally faster since they can

be updated by a simple matrix operation, and there is a preference for speed since the value

functions must be solved many times in estimation. Second, this particular model has closed

form solutions for policy functions if one can evaluate the derivatives of the function functions

(VA, VH in (6a), (6b)). With a linear-in-parameters value function, these are known in closed

form, so the policy step is trivial.

The value function approximation is specified as

V (X) ≈
∑
k

λkFk(x) (17)

where Fk(x) are polynomial functions of the state space and λk are the parameters on these poly-

nomial terms. After much specification testing, I found the polynomial with linear terms, second

order interactions, and the square of the local income state to be a very good approximation.

Adding more terms did not improve the fit of the function.

The projections are evaluated on a randomly drawn sample of state space basis points. For

each location, I use 1000 basis points in total, 500 each from draws of a uniform distribution

with bounds 25 percent outside those of the data, and the empirical distribution of the data.

This evaluates the value function at points outside the areas observed in the data (which may

be relevant for counterfactuals), but makes the basis thick in the neighborhood of the data.

Updating the value function is a computationally inexpensive step of finding

λk = [F (X)− βE(F (X)]−1π(X) (18)

.

which can be evaluated by a regression. This does however require an evaluation of the ex-

pected polynomial terms, although when using linear-in-parameters projections, these can be

pre-computed.
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The derivative of the value function is readily obtained by

VA ≈
∑
k

λk
∂Fk(x)

∂A
; VH ≈

∑
k

λk
∂Fk(x)

∂H
(19)

B.2 Computation Time

Computational times will of course vary with machines, software, and code structure, but I

report my experience with computation for reference. I used a dual eight core workstation with

8mb of memory per core.

Computer time is not unduly burdensome. Projection methods have the disadvantage of not

guaranteeing convergence–and hence, the researcher might spend time experimenting to find

reasonable functions–but with linearity, they can be very fast. As noted, the value function

evaluation is a simple matrix problem and policy step is a closed form under the approximation.

Conditional on a RER, the individual agent’s problem is effectively a single agent problem.

A single solution of the value function problem took one to two seconds on the 1,000 basis

point state space. Evaluation of the integral over future states, E(F (X)), by Monte Carlo

integration can be somewhat expensive, lasting up to three minutes with 5,000 draws over 50

locations. However, Monte Carlo integration can be easily parallelized, cutting times to about

one minute with pre-packaged Matlab parallelization (over 12 cores). Moreover, the matrix can

be precomputed so it is not embedded in the value function iteration. (It does, however, have

to be reevaluated for each iteration of the RER.)

Nested fixed point estimation of one location takes a few thousand iterations from grid

search to minimization routine. With integration, value function iteration, and evaluation of the

objective function, with steps parallelized when possible, estimation of the 50 locations takes

about three hours. The RER had to be updated about a dozen times, so complete estimation

took about two days run time.

For the counterfactual simulations, the RER has to be updated a from few up to a few dozen

times, depending on how different is the counterfactual from the baseline. The housing tax and

assembly cost simulations take about ten minutes. The coastal amenity simulation takes about

eight minutes. The housing stock destruction simulation takes about four minutes.

C Additional Exhibits
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Table C1: Approximation Error in The Estimated Model: Mean Policy Function Percentage
Differences by Location (10−6)

Perturbation To: Income Housing Stock

City / Perturb. Size: 0.05 0.10 0.25 0.05 0.10 0.25
New York, NY 0.2251 0.2280 0.2379 0.1184 0.1184 0.1187
Los Angeles, CA 0.0772 0.0781 0.0813 0.0409 0.0409 0.0409
Chicago, IL 0.1293 0.1307 0.1357 0.0684 0.0684 0.0685
Philadelphia, PA 0.1008 0.1018 0.1057 0.0533 0.0532 0.0529
Dallas, TX 0.0478 0.0484 0.0506 0.0253 0.0254 0.0254
Miami, FL 0.0517 0.0524 0.0545 0.0274 0.0274 0.0274
Washington, DC 0.0006 0.0006 0.0007 0.0004 0.0004 0.0004
Houston, TX 0.0329 0.0333 0.0349 0.0174 0.0174 0.0174
Detroit, MI 0.1034 0.1047 0.1095 0.0545 0.0546 0.0546
Boston, MA 0.0964 0.0978 0.1023 0.0509 0.0509 0.0510
Atlanta, GA 0.2012 0.2040 0.2133 0.1062 0.1062 0.1064
San Francisco, CA 0.0891 0.0902 0.0940 0.0471 0.0471 0.0471
Riverside, CA 0.0545 0.0552 0.0577 0.0286 0.0286 0.0287
Phoenix, AZ 0.0399 0.0404 0.0423 0.0211 0.0211 0.0211
Seattle, WA 0.0873 0.0885 0.0924 0.0461 0.0462 0.0463
Minneapolis, MN 0.0724 0.0735 0.0771 0.0382 0.0382 0.0383
San Diego, CA 0.0113 0.0115 0.0120 0.0060 0.0060 0.0060
St Louis, MO 0.0929 0.0942 0.0986 0.0490 0.0490 0.0491
Baltimore, MD 0.0365 0.0371 0.0389 0.0193 0.0193 0.0194
Pittsburgh, PA 0.0960 0.0974 0.1019 0.0506 0.0507 0.0507
Tampa, FL 0.0241 0.0244 0.0255 0.0127 0.0128 0.0128
Denver, CO 0.0042 0.0042 0.0044 0.0022 0.0022 0.0022
Cleveland, OH 0.0808 0.0819 0.0858 0.0426 0.0426 0.0426
Cincinnati, OH 0.0220 0.0223 0.0234 0.0117 0.0117 0.0117
Portland, OR 0.0302 0.0306 0.0320 0.0160 0.0160 0.0160
Kansas City, MO 0.0383 0.0388 0.0406 0.0202 0.0203 0.0203
Sacramento, CA 0.0075 0.0076 0.0080 0.0040 0.0040 0.0040
San Jose, CA 0.0472 0.0479 0.0502 0.0249 0.0249 0.0249
San Antonio, TX 0.0271 0.0275 0.0287 0.0142 0.0142 0.0143
Orlando, FL 0.0132 0.0134 0.0140 0.0070 0.0070 0.0070
Columbus, OH 0.0249 0.0252 0.0264 0.0131 0.0132 0.0132
Providence, RI 0.0184 0.0186 0.0195 0.0098 0.0098 0.0098
Norfolk, VA 0.0321 0.0326 0.0341 0.0169 0.0169 0.0170
Indianapolis, IN 0.0502 0.0509 0.0532 0.0265 0.0265 0.0266
Milwaukee, WI 0.0141 0.0143 0.0150 0.0075 0.0075 0.0075
Las Vegas, NV 0.0788 0.0799 0.0836 0.0415 0.0415 0.0416
Charlotte, NC 0.0128 0.0130 0.0136 0.0068 0.0068 0.0068
Nashville, TN 0.1061 0.1075 0.1125 0.0560 0.0560 0.0561
Austin, TX 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002
Memphis, TN 0.0049 0.0050 0.0052 0.0026 0.0026 0.0026
Buffalo, NY 0.0101 0.0102 0.0107 0.0054 0.0054 0.0054
Louisville, KY 0.1165 0.1181 0.1236 0.0614 0.0615 0.0615
Hartford, CT 0.0128 0.0130 0.0136 0.0067 0.0067 0.0067
Jacksonville, FL 0.0205 0.0208 0.0217 0.0108 0.0108 0.0108
Richmond, VA 0.0033 0.0033 0.0035 0.0018 0.0018 0.0018
Oklahoma City, OK 0.0129 0.0131 0.0137 0.0068 0.0068 0.0068
Birmingham, AL 0.0993 0.1007 0.1055 0.0524 0.0525 0.0525
Rochester, NY 0.0041 0.0041 0.0043 0.0021 0.0021 0.0021
Salt Lake City, UT 0.0016 0.0017 0.0017 0.0009 0.0009 0.0009

NOTES: The table reports the average percent deviation in the policy functions between that using the approximated rational expectations equilibrium
and the perfect foresight outcome. The economy is the 50 location U.S. metro area model deriving from actual data. The experiment holds fixed the
aggregate states and then randomly draws shocks to the distribution of the states across locations. The table reports means over 100 independent
draws for each city. Summaries by city type appear in the main Table 3.
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