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ABSTRACT 

This study focuses on Long Pond, a groundwater-fed sinkhole lake in Georgia, which 

does not exhibit any evidence of eutrophication drivers despite high concentrations of 

sedimentary phosphorus (P) (> 3000 mg/kg P) in the recent sediment record. Chemical analyses 

have shown a strong correlation (r
2
>0.99) between P and aluminum (Al) throughout the core, 

suggesting Al plays a significant role in sequestering most of the P, and limiting its availability 

to phytoplankton, thereby inhibiting eutrophication. The purpose of this study is to decipher P 

and Al physicochemical associations in the sediments. After the samples were fractionated into 

amorphous and non-amorphous phases, the correlation was maintained in both phases. Evidence 

suggests two modes of Al-P associations : a sorption and/or co-precipitation occurring mostly in 

the amorphous phase and a mode whereby Al and P are being inputted to the lake bound 

together.  
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1 INTRODUCTION  

Eutrophication is a process whereby phytoplankton grows in abundance to the detriment of 

the health of aquatic ecosystems. The sudden, rapid increase of phytoplankton population causes 

a deficit of oxygen and light to the depths of the water. This lack of oxygen and light can then 

lead to massive death of plant and animal species that dwell below the surface (Read et al., 

2014).  Among many other factors, excess concentrations of Phosphorus (P)  in the water column 

can be one of the leading causes of eutrophication in bodies of water (Schindler, 1977; Xu et al., 

2014).   

Human activity can accelerate the process of eutrophication, as anthropogenic sources of P 

like septic tanks, waste water treatment plants, and modern agricultural practices greatly surpass 

natural processes, such as natural precipitation, by which P is immobilized (Bennett et al., 2001).  

These anthropogenic activities increase P runoff into nearby aquatic ecosystems either in the 

form of transported nanoparticulate or soluble species (National Research Council, 1993).  

Mobilization of particulate P by erosion and runoff is the dominant form of P input into bodies of 

water (Sharpley et al., 1992 , Smith et al.,1992). The amount of P that will be available to the 

surrounding solution and hence potentially to eutrophication is a function of the soil’s ability to 

retain and release P  (Busman et al., 2002; Tiessen, 1995).  

Solubility and the kinetics of P release from soil compounds are influenced by changes in 

pH, ionic strength, as well as the concentration of other anions and cations in the soil solution 

(Devau et al., 2009; Hinsinger et al.,  2009). Soluble P is usually available when the soil’s P-

adsorbing phases, such as iron (Fe), aluminum (Al) and calcium (Ca) oxides and oxyhydroxides, 

are saturated and can no longer sorb additional P (Sims et al., 1998), and Al-, Fe-, and Ca- 
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phosphates all have different solubility properties (McDowell & Sharpley, 2003). This means 

that Al, Fe, and Ca content in soil greatly contribute to the amount of soluble P.  

  However, not all soluble P will be available to the phytoplankton of a lake (Devau et al., 

2009; Kawasaki et al. 2010; Shariatmadari et 

al., 2006). P availability to phytoplankton, 

and hence the potential for eutrophication, is 

correlated to the form and speciation of P 

present in the lake. (McDowell & Sharpley, 

2003). Orthophosphates (H2PO4
 -
 and HPO4

2-

) are the forms most available for 

assimilation by phytoplankton under pH 

ranges found in natural waters (Figure 1; 

(Petergans, 2008). However, orthophosphates 

can be removed by precipitation with Al
3+

, 

Fe
3+

, and Ca
2+

 (Spikatov et al, 1999) to form amorphous and crystalline metal oxides depending 

on time and in situ chemical conditions.  

 

The presence of P in a core sample is a strong indicator of phosphorus inputs into a lake, 

which can be a driver of eutrophication (Kenney et al., 2002). P fractionation, speciation and 

how it adsorbs to oxides can yield significant  information about how P has aged within a closed 

environment, such as a shallow lake (Jalali & Ranjbar, 2010). Adsorption and transformation of 

P species is key to understanding the paleoenvironment of a lake and pinpointing the sources of 

excess P in a lake ecosystem (Aspila et al., 1976; Van Nieuwenhuyze et al., 2014).  

Figure 1: Phosphate speciation related to pH 

(Petergrans, 2008) 
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This study focuses on Long Pond, a groundwater-fed sinkhole lake in south Georgia, 

USA, which does not exhibit any evidence of eutrophication despite high concentrations of P (> 

3000 mg/kg) measured in the upper parts of its sediment record. Other lakes at similar 

concentration have usually been eutrophied (Kenney et al, 2016; Kenney et al., 2002; Waters et 

al, 2005) . The range of P concentration for a body of water  considered to be eutrophic can be as 

low as ~500 mg/kg (Hagerthey et al, 2008; L.-H. Kim et al, 2002). Evidence of abundant algae, 

phytoplankton, and diatoms in the lower depths of the core (500-300cm), suggests eutrophic 

conditions were not prominent in most of the lake’s history.  The absence of eutrophication still 

holds despite a steady increase of the P concentrations in the upper sediments of the core. 

Measured P concentrations ranged from around 200 mg/kg to > almost 3000 mg/kg (Earley, 

2015).  

Chemical analyses have shown a strong correlation (r
2
>0.99) between P and Al 

throughout the 500-cm core, and along with the absence of eutrophication, indicates that Al plays 

a significant role in sequestering available P and  potentially inhibiting eutrophication in the lake 

(Earley, 2015).  

 

1.1 Purpose of the Study  

The purpose of this study is to decipher the physicochemical associations of P and Al in 

the sediments of the Long Pond sediment core. If this Al-P relationship has existed throughout 

the history of the lake, a pertinent question to answer will be whether this signal is detrital or 

authigenic. Findings from this work will elucidate the relationship between the P and Al in Long 

Pond and help explain the lack of eutrophication. These findings will aid in understanding why 

some freshwater bodies with high levels of P experience eutrophication and others do not. 
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2     BACKGROUND 

This work examines samples taken from a sediment core of Long Pond located in the Lake 

Park, Ga. Area. The site lies with in the Coastal Plain geological province of Georgia (Figure 

2)(GeorgiaInfo, 2016), an area dominated by undeformed sedimentary formations from the Late 

Cretaceous to the present day Holocene epoch (Frazier, 2016). Long Pond and the other natural 

sinkhole lakes in this area are connected to the upper Florida Aquifer System (Hyatt & Gilbert, 

2003). Long Pond consists of 3 separate sinkhole basins. It is 2.5 km
2 

in area with an average 

depth of 4.3 m. The sediment core for this 

work was collected from the middle basin 

(Figure 3), where the maximum depth of 8 m 

can be found (Earley, 2015)  

 

Figure 3: Inset of Long Pond in Lake 

Park, Ga showing 3 sinkhole basins. 

Coring was conducted in middle basin at 

the deepest part of the lake. 

 

Figure 2: Map of Georgia with geologic 

regions. Lake Park, Ga marked with red 

star. 

Figure 2: Map of Georgia with geologic 

regions. Lake Park, Ga marked with red 

star. 

Basin 2 
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2.1 Characterization of Site Area 

2.1.1 Geological 

The site area was classified for rock type and geological formations using geological map 

data from the United States Geological Survey(USGS) (Huddlestun, 1997) (Figure 4). Study area 

specific geological maps were created using ArcGIS and USGS data.  Long Pond resides in an 

area dominated by Neogene clay 

and mud with older sand 

(Pleistocene-Pliocene) and 

Mississippian sandstone nearby. 

Long Pond itself is located in the 

Pliocene Miccosukkee Formation 

shown in Figure 4. The lithology of 

this section is mostly sand with 

thin beds of clay. Of particular note 

is the nearby Statenville formation 

member of the Miocene 

Hawthorne group, located directly 

east of Long Pond (Figure 4, in green). The lithology of the Statenville formation contains clay, 

dolostone and phosphatic rock.   

 

 

 

 

Figure 4: Geological Units of the Long Pond area. The 

Pliocene Miccosukkee Formation in pink and the 

Statenville Formation in Green (Huddlestun, 1997). 
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2.1.2 Hydrological Maps/Watershed 

Small, site area specific watersheds were 

created using ArcGIS and Digital Elevation Map 

(DEM) data from the USGS (Figure 5). Small value 

thresholds were selected for accumulation and stream 

link rasters in order to provide small watersheds 

isolated to Long Pond and the surrounding lakes in 

the area. This was done to identify possible surface 

water source inputs, particularly P and Al from 

anthropogenic sources. 

 

USGS groundwater contour data on the 

Floridian aquifer was added to a map of the site 

area to guide in the identification of possible 

groundwater sources of P and Al (Figure 6). 

Though there are other phosphate 

containing formations nearby, the Statenville 

formation is the only formation within a close 

enough proximity to provide P input to Long 

Pond.  

 

 

Figure 5: Watershed Map of Long 

Pond area. Possible sources of 

phosphorous and aluminum are 

highlighted. 

Figure 6: Groundwater contour map of Long 

Pond area with possible sources of  

aluminum and phosphorus highlighted. 
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2.1.3 Historical Divisions of Long Pond 

 Earley’s initial work included the dating of the sediment core. The core was dated by 

excess 
210

Pb and 
14

C dating analysis (Schelske et al, 1994; 

Appleby and Oldfield, 1983). Earley used K-means 

cluster analysis of nutrients, organic matter content (Loss 

on Ignition), phytoplankton primary producer abundance 

and Carbon to Nitrogen ratios to differentiate 3 different 

zones of Long Ponds limnological history (Figure 7). 

Primary producer abundance as inferred from 

measurements of photosynthetic pigments was plotted 

against depth to show relative highest and lowest points of 

phytoplankton abundance.  Earley’s work shows little 

evidence of eutrophication in Long Pond even at its 

highest point of P concentration at the top 100 cm of the 

core. 

Zone 1 covers 500 cm to ~ 300 cm of the core, and 

represents a time when the location was a shallow wetland 

dominated by highly organic, peaty sediments. Zone 1 Figure 7: Concentration of 

phytoplankton primary producers. v. 

depth. Historical boundaries marked 

with approximate age. Chart taken 

from Earley, 2015 and used with 

permission. 
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also shows the highest amount of phytoplankton evidence.   

Zone 2, ranging from ~300 cm to ~96 cm, shows a change from wetland to a transitional 

lacustrine environment. During this period, the lake would develop increased connectivity to the 

surrounding watershed resulting in increased inputs of nutrients. This corresponds to a possible 

increase in precipitation and sea level rise, or a changed in the hydrology in this area at the end 

of Zone 1’s time period (Colquhoun et al., 1995). 

Zone 3, marked as above 96 cm, indicates the period of the modern lacustrine environment 

of Long Pond. While still in Zone 3, the  ~30 cm mark is notable as an indication of increased 

anthropogenic inputs into the lake system. This depth is estimated to represent ~ 1900 AD, soon 

after the building of a nearby railroad, and during a time of general increase in more 

industrialized human activity. 

 

 

3     METHODS 

3.1 Coring 

This project was conducted in conjunction and as an extension of earlier work by Sean 

Earley, M.S. from Valdosta State University, Biology Department, under the direction of Dr. 

Matt Waters.  In December 2012, a 500-cm piston core was collected from Basin #2 of Long 

Pond, in Lake Park, GA (Earley, 2015). This site was chosen based on soft sediment survey of 

the lake, deeming it the best depositional area (Earley, 2015).   

As part of this work, an additional coring of the mud/water interface was done in January 2016 in 

the same basin to collect more sediment for additional analysis. In addition, two 10-cm soil 

samples were taken 2 meters inland from shore locations close to Lake Pond for comparison to 

lake sediments. 
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All cored samples were freeze dried and kept in plastic bags until further analysis.   

3.1.1 Sample Selection 

Freeze dried samples were chosen from depths of 4-8, 16-20, 32-36, 44-48, 150-155, 

200-205, and 475-480 cm for analysis (Table 1). These depths represent significant dating points 

and are chosen for their proximity to paleolimnological transitions in the lake as discussed 

previously in section 2.1.3.  

Table 1: Sample Selection Criteria 

Depth 

(cm) 
Zone/Boundary Represents: 

4 Top of Core Most recent, largest anthropogenic inputs 

32 1900 AD boundary Beginning of modern anthropogenic influence 

44 Zone 3 Before modern anthropogenic influence 

200 Zone 2/Zone 3 border Transition to present lacustrine system 

475 Zone 3 Early period of lake's history; Wetland 

 

 

3.2 Mineralogical Analysis 

Samples were examined for minerals using X-ray diffraction (XRD) with a Philips model 

12045 X-ray diffractometer, using Cu Kα radiation at 45kV and 40mA and filtered by a .020 

Nickel Beta-filter with a fixed, programmable 1/2° anti-scatter slit and a programmable 1/4° 

divergence slit.  Three types of samples treatments were analyzed, as described below. 
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3.2.1 Whole sample, no treatment 

Ground, freeze dried, untreated samples were examined by XRD to determine presence 

of crystalline minerals. Samples were mounted on zero background mount and scanned from 5 to 

65°2θ in continuous scan mode. 

3.2.2 Clay fraction, no treatment 

Samples were washed, sonified, and centrifuged to separate the clay fraction for further 

XRD analysis. Carbonates were removed by shaking samples in 0.5 M HCl for 1 hour, then 

centrifuged and rinsed in deionized water (Ulery and Drees, 2008).  The intent of the carbonate 

removal procedure was to reduce noise in the XRD signal observed on whole samples. Wet 

samples were mounted on glass slides, air-dried and scanned from 5 to 65°2θ in continuous scan 

mode. 

3.2.3 Carbonate and Ammonium Oxalate treatment 

Additional oven dried samples from all depths listed in Table 1 were ground, sieved with a 

number 120 sieve (125 μm), and subjected to carbonate removal by 0.5 M HCl as described 

above. These samples were subjected to ammonium oxalate dissolution in the dark procedure to 

remove amorphous metal oxides phases (Ulery and Drees, 2008). Samples were shaken in 0.2 M 

ammonium oxalate solution for 4 hours without exposure to UV light. A detailed description of 

this procedure in included in section 3.4.2.  Following the dissolution of amorphous phases, 

remaining solid samples were washed and air-dried, then examined by XRD on a continuous 

scan mode from 5 to 65°2θ in order to classify crystalline mineralogy.   
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3.3 Electron Microscopy Analysis   

Ground, freeze dried samples from the 4-8 cm, 44-48 cm, 150-155cm, 200-205 cm, and 

475-480 cm depths were chosen for analysis by electron microscopy to study the general 

morphology of the samples and possibly identify any P-containing mineral and/or biological 

phase that might be present in the sediments of significant depths. A LEO 1450vp scanning 

electron microscope (SEM) was used. Samples were mounted on aluminum stubs and sputter-

coated with carbon paint to prevent electron build up on surfaces.  Information on representative 

elemental composition from selected areas on the samples was collected using energy dispersive 

X-ray spectroscopy (EDS; Rontec X-Flash detector).  

3.4 Chemical Analysis 

3.4.1 Initial Analysis by Earley 

Earley measured the concentrations of organic matter by a loss on ignition (LOI) method 

at 550°C. For chemical elemental compositions, samples were digested using standard EPA 3050 

method and analyzed by Inductively Coupled Plasma- Atomic Emission Spectrometry (ICP-

AES) using an ARL 3560 ICP analyzer. Carbon/Nitrogen ratios were determined by a Costech 

ECS 4010 Nitrogen/Carbon analyzer after acidification by HCl vapor to remove inorganic 

carbon. Photosynthetic pigments were measured using High Performance Liquid 

Chromatography (HPLC) methods (Leavitt and Hodgson, 2001; Waters et al, 2009) to provide 

measurements of primary producer abundance during the lake’s history.  

3.4.2 Amorphous Phase Dissolution by Ammonium Oxalate 

Core sediments from all depths in Table 1 were chosen for quantification of the 

amorphous phases. Six oven-dried samples from each selected core range were subjected to 
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differential dissolution by shaking in 0.2 M ammonium oxalate solution at pH 3, for a minimum 

of 4 hours (Ulery et al., 2008). Samples were allowed to settle then centrifuged at 8500 RPM for 

approximately 45 minutes until a clear supernatant was obtained.  This dissolution was carried 

out without exposure to UV light at all stages, in order to preferentially dissolve amorphous Si, 

Fe, and Al, and preserve crystalline species of Si, Fe, and Al in the solid phase. All samples were 

kept in opaque containers and handled in labs with limited light exposure. Extra precautions 

were taken during handling and transport of samples to prevent exposure to all light.  No glass 

lab wear was used in the dissolution process to prevent any addition of Si from lab wear.  The 

clear supernatant was then vacuum filtered using a 0.35μm non-glass fiber filter.  Samples were 

carefully weighed before the procedure and again at the end after being washed and oven-dried 

in order to quantify the weight-loss attributed to the dissolution of the amorphous phases. This 

step is also a way to check the effectiveness of the ammonium oxalate dissolution procedure.  

3.4.3 Statistical analysis/ matrix of correlations of nutrient concentrations 

Using VassarStats for statistical computation (http://vassarstats.net/matrix2.html), a 

matrix of correlations for P, Al, Fe, Si and Organic Matter (by Loss on Ignition) values was 

created to check for potential correlations in each core sample depth using the concentrations 

values measured by Earley. This matrix built upon element concentration values obtained by 

Earley to provide an elemental profile related to depths of the core, and by extension its history. 

Elemental concentration values obtained from the amorphous and residual non-

amorphous fractions were similarly used to make a comparative matrix of correlations. Results 

of P v. Al, P vs. Fe, and concentrations of P, Al, and Fe against depths of the core were graphed 

and compared to the results from Earley. 
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3.5 Chemical Analysis of Amorphous and Residual Non-Amorphous Phases 

3.5.1 Amorphous phase analysis 

After ammonium oxalate treatment, the supernatant containing the dissolved amorphous 

phase from the six samples were separated into 3 10-ml aliquots and Fe, Al, and P concentrations  

measured by ICP-AES (ARL 3560 ICP analyzer).   

3.5.2 Residual Non-amorphous phase analysis 

The remaining solid phase from the above ammonium oxalate dissolutions of each 

sample was further divided into 3 individual samples of approximately 150mg each. These 

samples were digested by EPA method 3050A, and Fe, Al, and P concentrations determined by 

ICP-AES.  

3.5.3 Whole sample analysis 

An additional testing of oven-dried, carbonate removal treated samples at the same 

depths was conducted. Each depth sample was oven-dried, sieved (#120) and separated into 3 

replicates. These samples were digested identically to the non-amorphous phase samples in the 

previous section and analyzed by ICP-AES to compare against results of the amorphous and non-

amorphous dissolution analysis. 
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4 RESULTS AND DISCUSSION 

4.1 XRD 

Mineralogical analysis of the ground, freeze-dried, untreated samples by XRD revealed the 

predominant crystalline species to be kaolinite [Al2Si2O5(OH)4]  and quartz ( SiO2) (Figure 8). 

There were no characteristic peaks related to an aluminophosphate minerals detected.   However, 

the XRD signal showed a high noise-to- signal ratio, potentially masking these peaks.    

 Samples were then treated for carbonate removal and reduced to the clay fraction by 

selective centrifugation in an effort to provide a cleaner XRD analysis with less noise. Kaolinite 
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Figure 8: X-ray diffraction difractograms of whole, untreated sample showing 

Kaolinite and Quartz peaks. 
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and quartz were again found to be the predominant crystalline minerals present, and no 

aluminophosphate mineral peaks were observed.  

Following the dissolution of the amorphous phase by the ammonium oxalate procedure, 

the residual solid, non-amorphous phase was analyzed by XRD to determine whether the 

removal of amorphous phases will reveal any aluminophosphate crystalline minerals. The XRD 

results of these samples contained the least amount of noise, providing a clearer picture of the 

non-amorphous mineralogy. Again kaolinite and quartz dominated the crystalline species, and no 

aluminophosphate mineral peaks were found (figure 9). 
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Figure 9: X-ray diffraction diffractogram of non-amorphous phase 

samples (as treated by Ammonium Oxalate Dissolution in the dark 
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XRD analysis of all samples yielded similar results, with no aluminophosphate minerals 

observed.  Given the high concentration of P and Al, up to 3855 and 32845 mg/kg respectively, 

and the measured pH of the waters ranging from ~5.5 to ~7,  crystalline aluminophosphate 

phases expected would  be variscite (AlPO4· 2H2O) and wavellite [Al3(PO4)2(OH,F)3·5H2O] 

(Buanuam et al., 2006; Temporetti, et al., 2013). Due to the high amount of organic matter and 

amorphous material, the presence of these minerals may be below detection limits of XRD, 

which is ~1 to 2% weight of the sample in mixed samples (Dutrow & Clark, 2008; Moore, 1997; 

Ulery et al., 2008) .  The detection  can also be affected by particle size (Kim et al., 1996). Ideal 

particle size for detecting crystalline phases in XRD is 10-50 μm (Pecharsky & Zavalij, 2008). It 

is possible that these samples contain small crystallites of aluminophosphate minerals that are 

not large enough to be detected.  
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4.2  SEM  

Scanning electron microscopy analysis of the samples showed mostly organic matter and 

silica (Figure 10), as also indicated by the EDS analysis. 

 

Figure 10: Scanning electron micrographs and corresponding energy dispersive X-

ray spectroscopy data of top 4-8 cm. Panel A shows grain with high silica content. B 

shows organic matter with high silica content. 

A 

B 
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 Some aluminosilicate minerals were seen as well. Based on the previous XRD results and their 

morphological similarity to published specimens from the clay mineral society database (figure 

11), these were identified as kaolinite and gibbsite (Bohor & Hughes, 1970; Welton, 2003).  

 

Figure 11:  Scanning electron micrograph and energy dispersive X-ray spectroscopy 

 data showing an aluminosilicate specimen obtained from a sample taken at 4-8 cm 

 depth. 
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  From all samples viewed and spots analyzed by EDS, there was one instance where the 

presence of both P and Al was detected concurrently in the same spot from a round grain found 

in a sample taken from the top 4-8cm of the core (Figure 12). Given that SEM is mainly a 

surface technique, it is unclear at the moment whether the round grain is an aluminophosphate 

phase in its entirety or whether the Al-P phase is a coating of the mineral. The presence of the Si 

(K peak at around 1.7-1.8 keV) would suggest the concurrent presence of an aluminosilicate. It 

is also noteworthy to mention the presence of a calcium peak (K at 3.690 keV) that appears to 

be more prominent.  

 

Figure 12:  Scanning electron micrograph and energy dispersive X-ray spectroscopy 

showing a specimen containing Al and P obtained from a sample taken at 4-8 cm depth 

 

Al 
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Samples from the bottom of the core (425-430cm; Figure 13) showed a high density of 

silica bearing spicules, seemingly from a freshwater invertebrate species.  

 

Figure 13: Scanning electron micrograph and energy dispersive X-ray spectroscopy 

 data showing organic matter and silica-bearing spicules from 425-430 cm depth 
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4.3 Weight Analysis of Amorphous Dissolution by AOD 

Table 2 displays the mean weight of samples from each depth, before and after the 

dissolution of the amorphous phases was conducted. Overall samples exhibited between 11.10 %  

and 25.04 % weight loss with samples from the bottom of the core losing more mass than 

samples from the top. The mass loss is attributed to the dissolution of amorphous phases of Al, 

Fe and Si oxides. This result is to be expected, as samples from the bottom of core belonged to 

zones 1 and 2, when the lake was identified as being a wetland and transitional lacustrine 

environment and therefore could have lost some of their high organic matter and potentially 

some of the more amorphous silica bound to the much abundant invertebrate species. 

Nevertheless, these values are a bit surprising to us because it is the upper parts of the core that 

had the highest concentrations of Al and P, and since no crystalline mineral phase was detected 

by XRD, we were expecting the samples to contain a higher percentage of amorphous phases.  

 

Table 2: Mass loss due to ammonium oxalate dissolution 

 

* 
Number in parenthesis are the mean standard deviations  

±
 Values in this column are obtained by the following formula (Initial weight – final 

 weight)/initial weight  

 

A possible reason why the recovery of the amorphous phases may not be totally 

representative is the seeming ineffectiveness of the AOD dissolution method to account for the 

Depth 
Initial Weight 

 (mg) 

Final Weight 

(mg) 
% loss

± 

4 252.53 ( ± 2.3)
*
 218.87 (± 1.3)

*
 13.33 

32 252.47 (± 1.6)
*
 222.43 (± 1.1)

*
 11.90 

44 251.6 (± 1.0)
*
 223.67 (± 2.1)

*
 11.10 

150 251.97 (± 0.6)
*
 210.07 (± 1.3)

*
 16.63 

200 251.33 (± 0.9)
*
 188.4 (± 3.6)

*
 25.04 

457 251.67 (± 0.2)
*
 194.3 (± 6.4)

*
 22.80 
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high organic matter content of the samples which ranged from 30% to 79% OM by LOI. In fact, 

an attempt at mass balancing P, Al and Fe concentration between total, amorphous and residual 

or non-amorphous, returned overall low recoveries: between 71 % and 85 % for P, 51% and 68% 

for Al and 61% and 87% for Fe (appendix 1). The potential impact of OM on the fractionation 

between amorphous and non-amorphous phases can be further supported by the high negative 

correlation obtained between the concentrations of P and Al with the OM % by LOI (further 

discussed below). It is also noteworthy to mention that no correlation has been found between Fe 

and OM% and that overall the mass balance recoveries for Fe were overall better.  

With the understanding that the absolute fractionation between amorphous and non-

amorphous phases may not be totally adequate, we focus our analysis on comparative 

correlations between P and Al and P and Fe concentrations and their distributions along the core 

depths in both these fractions.  

4.4 Chemical Analysis 

4.4.1 Correlations 

Elemental concentration data from Earley’s work was plotted in a matrix of correlations 

to find possible relationships between P and other elements. Strong correlations (negative and 

positive) are highlighted in yellow (Table 3). Starting with data from Earley’s experiments, a 

strong correlation can be seen between Al and P concentrations throughout all depths of the core. 

Other statistically strong correlations were found between P and Potassium (K), P and 

Magnesium (Mg), Al and K, Al and Mg, and Fe and Zinc (Zn). There is also a strong negative 

correlation of P, Al, K, and Mg with organic matter, measured by Loss on Ignition (LOI)(Table 

3).  
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Table 3: Matrix of correlations using initial data from Earley created with Vassarstats 

statistical tools.  

 

           r P Al Fe Zn Na K Mg Ca S LOI (%) 

P 1 0.996 0.612 0.707 -0.023 0.97 0.922 -0.01 -0.722 -0.966 

Al 0.996 1 0.61 0.712 -0.036 0.975 0.928 -0.013 -0.721 -0.969 

Fe 0.612 0.61 1 0.918 0.325 0.628 0.429 0.442 0.045 -0.511 

Zn 0.707 0.712 0.918 1 0.285 0.721 0.567 0.508 -0.158 -0.575 

Na -0.023 -0.036 0.325 0.285 1 0.078 -0.17 0.289 0.155 0.116 

K 0.97 0.975 0.628 0.721 0.078 1 0.853 -0.019 -0.71 -0.948 

Mg 0.922 0.928 0.429 0.567 -0.17 0.853 1 0.003 -0.736 -0.911 

Ca -0.01 -0.013 0.442 0.508 0.289 -0.019 0.003 1 0.384 0.203 

S -0.722 -0.721 0.045 -0.158 0.155 -0.71 -0.736 0.384 1 0.756 

LOI% -0.966 -0.969 -0.511 -0.575 0.116 -0.948 -0.911 0.203 0.756 1 

VassarStats: Correlation Matrix   Number of Variables = 10   Observations per variable = 105 
    

 

Of the elements that are strongly coordinated with P, Al and Fe have the highest 

concentrations in the core, up to 28,700 mg/kg for Al and 9,074 mg/kg for Fe. In addition, Al, Fe 

and Ca are the elements considered most responsible for controlling solubility of P (Frossard  et. 

al, 2014; McDowell & Sharpley, 2003). Given the low correlation of Ca and P and the relatively 

low concentrations of Ca (3931 mg/kg at maximum), our subsequent analysis focuses on the 

correlation of P with both Al and Fe. 

Al and P concentrations from 4 sets of data were plotted to show correlations. These 4 plots are 

shown below in Figure 14.  First, initial Al and P concentrations from data from Earley were 
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chosen from 4 cm, 32 cm, 44 cm, 150 cm, 200 cm, and 475 cm and plotted to test correlation 

(Figure 14– panel A). These depths were chosen to represent the historical zones of the lake as 

shown in Table 1. Using the same depths, the Al and P concentrations from the untreated 

samples before amorphous dissolution by AOD are shown in Figure 14 – panel B. This 

represents the total Al and P concentrations in both amorphous and non-amorphous forms. 

Concentrations from the liquid phase after amorphous dissolution (Figure 14 – panel C) 

represent the Al and P measured concentrations in the amorphous phases.  The concentrations in 

solid samples remaining after amorphous dissolution by AOD are plotted in (Figure 14 – panel 

D) and represent the non-amorphous phase of these elements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Al concentration v. P concentration in (A) Original samples from 

Earley, (B) Whole, untreated samples, (C) amorphous fractions and (D) solid 

samples after Ammonium Oxalate in the dark amorphous dissolution. 
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Correlation between non-amorphous phase Al v. P concentrations shows a slightly higher R
2
 

score (0.9955) than those obtained between the total Al and P concentrations in both Earley’s 

and this study  (R
2
=0.9929/ 0.9738 respectively) and between the concentrations of Al and P in 

the amorphous phase (R
2 
score 0.905).  

The correlation of Fe to P concentrations were examined using the same depths and 

samples types used to study the  Al and P concentrations correlation plots, as described above 

and plotted to test correlation. In Figure 15, panel A represents concentrations from Earley’s 

original data. Panel B represents total concentrations in samples before amorphous dissolution by 

AOD from this study. The concentrations displayed in panel C are from the residual solid sample 

(non-amorphous) after AOD dissolution, and data in panel D are the concentrations of the 

amorphous phases recovered in the liquid supernatant.  
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Figure 15:  Fe concentration v. P concentration in (A) Original samples from Earley, (B) 

Whole, untreated samples, (C) amorphous fractions and (D) solid samples after 

Ammonium Oxalate in the dark amorphous dissolution. 

 

In the initial analysis, Fe and P were marginally correlated (R
2
=0.612). When subjected 

to amorphous dissolution by ammonium oxalate, the correlation between amorphous Fe and P 

rises to an R
2 

score of 0.7021, while the non-amorphous falls to R
2
=0.1259. This suggests that 

any correlation between the P and Fe occurs predominantly in the amorphous phase.  

Correlations between the Fe and Al to P concentrations in Earley’s work were similar to 

the correlations found in this study. The chemical analysis conducted in this study also showed 

that the strong relationship between Al and P holds when samples were subjected to amorphous 

dissolution by ammonium oxalate procedure. This suggests that Al and P could be occurring 

simultaneously and may be bound in both amorphous and non-amorphous phases. This persisting 
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correlation throughout all phases and depths also suggests that aluminophosphate species in the 

core would be detrital in nature.  

4.4.2 Depth Profiles 

Earley’s elemental depth profiles show a general trend of increasing concentrations of all 

elements in the top 30 cm. This is consistent with heavy increase of anthropogenic inputs in the 

most recent history of the lake.  After 30 cm, element concentrations decrease steadily down 

core. The organic matter content obtained by LOI shows the opposite trend with the largest 

amount found at the bottom of the core and decreasing as the core nears the surface. This trend 

reflects the paleolimnology described by Earley, as the bottom of the core represents a wetlands 

environment that would contain more organic matter.  

Concentrations of P, Al, and Fe from Earley plotted against depth of the core were 

compared to concentrations of P, Al, and Fe v. depth data from samples tested before and after 

amorphous dissolution, and shown in the figures below.  

Figure 16 shows the depth profiles of total P concentrations obtained by Earley’s study in 

panel A), and from this study in panel B. The depth profile of P concentrations in the residual 

non-amorphous solids is displayed in panel C while that of the P concentration in amorphous 

phases is in panel D.   
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 Figure 17 shows the depth profiles of Al concentrations obtained in A) Earley’s 

study (panel A) and in this work (panel B).   Panels C and D display the depth profiles of Al 

concentration in the residual solid samples (non-amorphous) retained after AOD, and liquid 

samples (amorphous) collected after AOD treatment respectively.  

Figure 16: P concentration depth profiles (A) Original samples from Earley, (B) 

Whole, untreated samples, (C) amorphous fractions and (D) solid samples after 

Ammonium Oxalate in the dark amorphous dissolution 
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Figure 17: Al concentration depth profiles (A) Original samples from Earley, (B) Whole, 

untreated samples, (C) amorphous fractions and (D) solid samples after Ammonium 

Oxalate in the dark amorphous dissolution. 
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 Figure 18 shows depth profiles of the Fe concentrations obtained in Earley’s 

study (Panel A), this study (Panel B), in residual solid samples (non-amorphous) retained after 

AOD (Panel C), and liquid samples (amorphous) collected after AOD treatment (Panel D).  

 

Figure 18: Al concentration depth profiles (A) Original samples from Earley, (B) 

Whole, untreated samples, (C) amorphous fractions and (D) solid samples after 

Ammonium Oxalate in the dark amorphous dissolution. 
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Figure 19: Depth Profiles of (A) Non-amorphous P and (B) Non-Amorphous Al. 

Profiles are congruent. 

 

 

Examination of these depth profiles shows a strong congruence between non-amorphous 

Al and non-amorphous P (Figure 19). The amorphous depth profiles of Al and P do not show the 

same congruency, particularly in the 150-200 cm section of the core (Figure 20). We interpret 

this difference as an indicator that the correlation between Al and P occur in two modes: in the 

amorphous phase where P is sorbing and potentially co-precipitating with freshly precipitated 
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amorphous aluminum hydroxides phases. 

 

Figure 20: Depth Profiles of (A) Amorphous P and (B) Amorphous Al. Profiles are 

incongruent 

This mechanism will not result in any strong congruency between the two concentrations 

but only a strong correlation as we have observed. The second mechanism is the one responsible 

for both the strong congruency and correlation that exist between Al and P in the non-amorphous 

phase and which is also the reason of the strong congruency and correlation observed in the total 

Al and P concentrations. In this case, we believe Al and P are indeed being inputted in the lake 

already bound together as a crystalline or at least non-amorphous phase. The inability of the 

XRD to detect such a phase could be related to its abundance and/or detection limit. Another 

possibility that we believe warrants further investigation in the future is the possibility that the Al 

and P correlation and depth congruency is related to the organic matter abundance and the paleo 

history of the lake. Figure 21 shows the depth profile of the organic matter in relation to Al and P 

concentrations in the original Earley’s data.  
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In an attempt to further decouple the two “signals” of Al and P correlation in relation to 

the core depth and paleohistory, we calculated the ratio of concentrations from the liquid, 

amorphous phase collected after amorphous dissolution over the concentrations from the 

remaining solid, non-amorphous phase. A ratio greater than 1 represents an area of the core 

where the concentration of the amorphous phase is greater than the non-amorphous phase.  We 

will refer to this ratio as the non-crystallinity ratio (NCR) for convenience with the 

understanding that it only represents the concentrations of these elements in these fractions and 

not a true measure of mineral crystallization.  The NCR ratios are plotted against depth and are 

Figure 21: Depth Profiles of (A) Oraganic Matter measured by Percent Loss on Ignition, (B) 

Phosphorous concentrations and (C) Aluminum concentration. The Organic matter profile 

mirrors the P and Al, suggesting strong negative correlation. (Data from Waters/Earley) 
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shown in Figure 22.

 

Figure 22:  Amorphous to Non-amorphous ratio depth profiles for (A) P, (B) Al and (C) Fe. 

Ratios determined by dividing amorphous phase by non-amorphous phase. Ratios greater 

than 1 represent dominance of amorphous phase 

 

 A closer examination of these figures shows what appear to be 4 distinct zones of NCR 

behavior. From the bottom of the core until ~200 cm, the NCRs for P, Al and Fe 

decrease steadily, marking a concentration increase in the crystalline fraction.  From ~ 200 cm to 

~ 150 cm, the three elements behavior split. For P and Al, the NCR continues to decrease but at a 

slight slope change. For Fe, the NCR increase marking a concentration decrease in a crystalline 

fraction.  From ~ 150 cm to ~50 cm, a noticeable reversal of trends is occurring. The NCR for P 

is increasing and the NCR for Al is just barely decreasing, marking what appears to be a 

significant zone of change in the chemical behavior of these elements. In that zone, the Fe NCR 

once again reverses trends and decreases.  From ~ 50 cm depth to the top, the NCR for both P 

and Al see a rapid increase and hence a significant contributions of the P and Al concentrations 

in the amorphous fractions over those in the crystalline forms.  The NCR of Fe continues to 

decrease as it proceeds upcore.  
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 This behavior of the NCR across the 4 zones is reminiscent of the paleozones established 

earlier by Earley albeit not exactly the same.  This analogous similarity suggests a potential 

impact of the shifting paleoenvironment on the physicochemical behavior of P, Al and Fe. It is 

possible that the organic matter through its high sorbing capacity and its effect on local pH 

(keeping it low) is influencing what elements remain in solution and hence precipitate when the 

pH is elevated to form the amorphous phases. In fact both Al and Fe amorphous phases are 

expected to precipitate at pHs higher than 5 (Bazilevskaya et al., 2011), often as co-precipitates 

with each other and with carbon forming assemblages with a complex behavior of chemistries 

depending on their relative solution concentrations. As these amorphous phases precipitate, they 

continue to sequester P rendering it unavailable to contribute to eutrophication.  
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SUMMARY AND CONCLUSION 

In Long Pond, a strong correlation is seen between sedimentary Al and P. This correlation 

suggests that the abundant amounts of Al sequester most or all the P, limiting its availability to 

phytoplankton in the water and thus preventing eutrophication. After the samples were 

fractionated into amorphous and non-amorphous phases by amorphous dissolution, the 

correlation was maintained in both phases. Two modes of association between P and Al are 

suggested by this evidence. The first being a sorption and/or co-precipitation taking place in 

mainly the amorphous fraction. The other mode proposes detrital inputs of Al and P bound 

together before deposition. No evidence of crystalline mineral phases was discovered by XRD or 

SEM, possibly due to quantities and size of crystals being below detection limits.  

Further investigation is needed on the role of the abundant organic matter present in the 

samples, and its effect on phosphorous and aluminum species in the lake sediments. Future study 

by a more thorough fractionation scheme that can measure the impacts of organic matter could 

provide answers.  

The role of pH as it relates to the physicochemical properties of the Al and P relationship 

should not be overlooked, though it is beyond the scope of this study. A paleolimnological 

profile of changing pH conditions through history of Long Pond would elucidate possible 

conditions in which certain aluminophosphate mineral are likely to precipitate.    
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5 APPENDICES 

Appendix A: Amorphous and Non-amorphous Phase Concentration Percentages and Mass 

Balance Recovery Calculations 

 

Depth 

(cm) 

Non-AOD P  

(μg/g) 

AOD P  

(μg/g) 

Total P 

(μg/g) 

%   Non-

AOD 
% AOD 

 

Mass 

Balance 

recovery  

%  

4 743 975 3855 19 25 
75.61 

32 939 564 2624 36 22 
76.03 

44 845 413 2419 35 17 
72.40 

150 407 171 1229 33 14 
77.60 

200 296 135 915 32 15 
71.72 

475 84 60 360 23 17 
84.93 

 

Depth 

(cm) 

Non-AOD  

Al (μg/g) 

AOD Al  

(μg/g) 

Total Al 

(μg/g) 

%   Non-

AOD 
% AOD 

Mass 

Balance 

recovery  

% 

4 8026 2932 32846 24 9 
51.49 

32 10099 2410 26816 38 9 
68.55 

44 8658 2139 25067 35 9 
64.56 

150 3659 1178 13901 26 8 
68.81 

200 2410 1211 10147 24 12 
68.40 

475 496 558 4358 11 13 
59.59 
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Depth 

(cm) 

Non-AOD Fe  

(μg/g) 

AOD Fe  

(μg/g) 

Total Fe 

(μg/g) 

%   Non-

AOD 
% AOD 

Mass 

Balance 

recovery  

% 

4 8426 2336 12621 67 19 
87.33 

32 2705 1022 6245 43 16 
60.73 

44 1297 605 4934 26 12 
68.42 

150 743 569 4484 17 13 
71.28 

200 1024 741 4844 21 15 71.38 

475 603 942 6259 10 15 78.30 
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