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ABSTRACT 

We perform a review of model selection procedures, in particular various cross validation pro-

cedures and adaptive model selection.  We cover important results for these procedures and explore 

the connections between different procedures and information criteria. 
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1 INTRODUCTION  

Model selection in statistics is the procedure of selecting the “best” model among a set of com-

peting models.  A model is judged to be “best” according to some criteria.  A common and prevailing 

approach is to balance goodness of fit with parsimony.  Goodness of fit determines how well the model 

describes the data.  However, increasingly complex models, with increasing number of parameters, are 

bound to provide better fits at the expense of fitting to the noise as well as the data.  This leads to the 

phenomenon of over-fitting: the model describes the trained data well, but fails to take into generalize 

to new data.  The principle of parsimony, related to Occam’s razor, advocates choosing simpler models, 

with fewer parameters.  By balancing model complexity with goodness of fit, we can develop models 

with lower generalization error. 

Cross validation is a method of measuring generalization error through the use of holdout data.  

There are many cross validation techniques and one of the most common is leave-one-out cross valida-

tion (LOO).  Adaptive model selection uses a generalization of penalized criteria for model selection 

where the penalty is based on the data (X. Shen & Ye, 2002).  The adaptive selection procedure has the 

advantage of performing well across a number of different modeling procedures.   

This thesis reviews selected important theory concerning these model selection procedures.  In 

this chapter, we continue with a brief sketch of important concepts.  In the remaining chapters, we re-

view cross validation procedures and adaptive model selection in greater detail and the connections be-

tween various procedures and information criteria. 

1.1 The “Best” Model 

Faced with competing models, we must first consider criteria for choosing between competing 

models.  A common refrain in statistical modeling is “all models are wrong; some are useful” and there is 
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much philosophy of science surrounding this topic.  In a statistical modeling framework, we are usually 

concerned with one of two goals for model selection: model estimation or model identification.  Model 

identification has the goal of minimizing a loss function and the desire here is for a statistically efficient 

model selection procedure.  This is commonly the goal in predictive modeling.  Model identification has 

the goal of finding the smallest optimal model describing the data, or the “true” model in this sense, and 

the desire here is for a statistically consistent model selection procedure.  This is commonly the goal in 

descriptive modeling where we seek to explain a natural or social phenomenon.   

1.2 Information Criteria 

Given that the true model is unknown to us, we try to quantify the loss of information from the 

approximate model in consideration M over the available data D .  We seek to minimize an information 

criterion GIC  with the general formulation: 

2 ( , ) | |GIC L M D Mλ= − + . 

( )L M  is the log-likelihood of the data D  given the model M  and λ  is factor controlling the 

penalty exacted for the model’s complexity.  The first term measures the goodness of fit (GOF) while the 

second term controls for model complexity.  In fitting the model, the likelihood of D  given M  is found 

by using the maximum likelihood estimates of the model parameters in M and represents an averaged 

maximized log-likelihood rather than the expected maximized log-likelihood.  Thus, the second term 

may also be interpreted as a bias estimation to correct for this fact (Sima, 2006).  This combination of 

trading between goodness of fit and complexity may also be seen as the trade-off between bias and va-

riance.   

In a classical least squares model, ignoring additive constants and multiplying through by 
2σ  re-

sults in an equivalent formulation for minimization: 

2| |GIC RSS Mλ σ= + . 
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RSS  is the residual sum of squares.  There are a number information criteria, derived from dif-

ferent theoretical considerations, each using a different penalty factor λ .  Two common criteria are the 

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion).  In AIC, 2λ =  and in BIC, 

log nλ =  where n  is the number of observations in our data.  AIC arises from information theoretic 

foundations by considering the expected Kullback-Liebler divergence between the true and approx-

imated models.  BIC arises from Bayesian decision-theoretic foundations using the Bayes factor.  The BIC 

exacts a heavier penalty than AIC for more complex models.  Very generally, the AIC is preferred for 

model estimation in predictive modeling due to its asymptotic efficiency property, while the BIC is pre-

ferred for model identification in descriptive modeling due to its asymptotic consistency property 

(Clarke, Fokoue, & H. H. Zhang, 2009).   

1.3 Adaptive Model Selection 

We consider adaptive model selection (X. Shen & Ye, 2002) because of its connection to infor-

mation criteria and important properties in controlling for model complexity.  In adaptive model selec-

tion, the λ  factor is a data-adaptive penalty derived using the generalized degrees of freedom for a giv-

en modeling procedure.  Ye defines a model selection procedure as having two parts: selection followed 

by fitting.  Consider the variable selection problem in linear regression, where a set of variables must be 

chosen from a pool of candidate variables.  The selection process results in the subset of variables in 

consideration, while the fitting process determines the goodness of fit for the given subset.  Applying 

the traditional information criteria, such as AIC or BIC, does not correct for the bias induced by the vari-

able selection process.  By considering the modeling procedure in totality, the adaptive model selection 

adjusts for the selection bias.  Specifically, it is found that the optimal λ̂ is obtained by minimizing: 

2 ( )RSS G λ+ . 

( )G λ  are the generalized degrees of freedom for the model selection procedure.   
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1.4 Cross Validation 

In addition to Information Criteria, cross validation is another popular set of techniques used in 

model selection.  The general procedure is to partition the data into subsets for training and testing.  

Training is the process of fitting a model while testing is the process of validating the fitted model 

through measuring the prediction error.  The training and test sets are disjoint so the testing data for 

model evaluation are not used in model fitting.  Cross validation is used across a range of areas such as 

parameter selection, density estimation, classification and stopping criteria in neural networks.  Cross 

validation is not an information criterion in the sense that it does not penalize a goodness of fit meas-

ure.  However, there exist asymptotic equivalences between cross-validation techniques and some in-

formation criteria.   

1.5 Overview of the Remainder 

There are a variety of model selection procedures in the statistical literature and the foregoing 

highlights some of the commonly used procedures.  In the subsequent chapters, we review cross valida-

tion and adaptive model selection in greater detail.  Information criteria are not considered in great 

depth since these are covered in various statistics classes; the introduction above serves as a summary 

for exploring connections between information criteria and the procedures we will review.  In general, 

we will examine the procedures and their properties in the context of linear models of the form: 

'Y X β= + ε . 

It is understood that Y  is a 1n×  vector for n  observations, X  is a n p× vector of observed 

values for p  variables, ε  is a 1n× vector with ( )20, Iσ∼ε N  and β  is an unknown 1p× vector of 

coefficients to be estimated.  In some cases, we denote f  as the function to be estimated through the 

regression coefficients.  In this context, the modeling selection problem is to select a k -subset of va-
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riables and estimate an optimal model ˆ
kM  with cardinality | |M k= .  However, many of the selection 

procedures reviewed are more generally applicable.  
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2 CROSS VALIDATION 

Suppose a dataset {( , ), 1, , }i iD y i n= =x … and we wish to assess a regression model M  to 

arrive at a corresponding set of predicted values 1,ˆ , ,i iy n= … .  We can partition the dataset D  into 

two sets: 1 2D D D= ∪ , with k  data in 1D  and n k−  data in 2D .  We fit the model M  using the data-

set 2D ; this is also known as training the model and 2D  as the training set. We then use the trained 

model M  to obtain predictions for observations 
1

ˆ
DY given

1D
X ; this is also known as testing the model 

and 1D  as the test set.  There are 
n

k

 
 
 

possible partitions of the data and this process can be repeated 

multiple times.  The CV estimate of error is the average prediction error over test sets used and this is 

estimation of the average generalization error from applying our fitted function to an independent test 

sample (Clarke, Fokoue, & H. H. Zhang, 2009). 

2.1 Leave-One-Out Cross Validation 

When 1k =  is used in the above formulation, the process is called leave-one-out cross valida-

tion (LOOCV), which we review in some depth because of a number of important connections.  In this 

case, our test set always has cardinality 1, and each of the 1, ,i n= … possible partitions are used to train 

and test the model.  For each i , let ˆ i
y

−
 denote the predicted value of left-out observation.  The leave-

one-out cross validation estimate of error is: 

2

1

1
( )

n
i

i i

i

LOOCV y y
n

−

=

−= ∑
.

 

The general idea of leave-one-out cross validation appears to have been known for a while, 

though the earliest “official” statement by Mosteller and Tukey who mentioned that this process ex-
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tracts all information from given data without further justification.  In linear regression, the LOOCV es-

timate is known as the PRESS (prediction sum of squares) statistic.   

2.1.1 Leaving-one-out lemma 

For large samples, the LOOCV estimate seems to have a heavy computational cost requiring n  

model fits.  An interesting result obviates this requirement for certain modeling procedures which are 

linear in the observations, withŶ Y= H , H  being the influence or hat matrix, and requires only one fit 

over the entire dataset D .  In this case, let iih  denote the diagonal entries of H , then the statistic is cal-

culated as: 

2

1

1

ˆ

1

i i

ii

n

LOOCV
n

i

y y

h
=

=

−

−

 
∑ 
  .

 

This result holds for linear regression models and cubic smoothing splines, among other procedures, 

which satisfy the leaving-one-out lemma (Wahba, 1990) stated below.   

Denote ɶ 1 1 1
ˆ( , , , , , , )

i i

i i i ny y y y y y
−

− += … …  as the consequence of replacing i th component of 

Y  with ɵ
i

i
y

−

, and denote �
i

f
−

as the estimate of our fitting function f  given data ɶ
i

y .  The leaving-one-

lemma states (Wahba, 1990): 

� �( ) ( ), 1, ,
ii

i if x f x i n
−−

= = …
.
 

The geometric interpretation here is that adding a new point exactly on the surface of �
i

f
−

leaves the fitted regression unaltered in the given system (Clarke, Fokoue, & H. H. Zhang, 2009).  Since 

our system is linear in the observations with ( )X=H H , we have: 

� ɵ ɵ

1

ˆ ( ) ( ) ( )
n n i ii

i i ij j ij j ii ii ii i

j j i

f x f x h y h y h y h y y
− −−

= ≠

 
− = + + = − 

 
∑ ∑

.
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Applying the leave-one-out lemma, we obtain: 

� � ɵ

ɵ

ɵ

ˆ ˆ( ) ( ) ( ) ( ) ( )

1

i ii

i i i i ii i i

i i
iii

i i

f x f x f x f x h y y

y y
h

y y

− −−

−

− = − = −

−
⇒ = −

−
.

 

Using this expression in the original LOOCV equation leads to the revised equation.  Since the 

revised form requires only one model fit over the entire data, the computational savings are considera-

ble.  We will exploit this connection further when we consider an analogous criterion for adaptive model 

selection. 

2.2 Generalized Cross Validation  

The generalized cross validation criterion (GCV) (Wahba, 1990) is an approximation to the 

LOOCV and follows from noting that 
1

tr( )
n

ii

i

h
=

=∑H followed by the approximation:
1

( )iih tr
n

≈ H .  This 

is generally applicable when fitting linear methods with quadratic loss function and is a good approxima-

tion provided , 1, ,iih i n= …  are not very different (Wahba, 1990).  The generalized cross validation sta-

tistic becomes: 

2

1

ˆ1

1
1 ( )

n
i i

i

y y
GCV

n
tr

n
=

 
 −

=  
 −
 

∑
H

.

 

If the leaving-one-out lemma holds, then the generalized cross validation criterion may provide 

further computational savings since it requires finding the trace rather than the individual diagonal en-

tries of the hat matrix.   
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2.2.1 Asymptotic Equivalence with AIC 

The generalized cross validation statistic as an approximation to the leave-one-out statistic is al-

so useful for examining analytic properties.  Here we use the approximation to show the asymptotic 

equivalence of leave-one-out cross validation to the AIC (Clarke, Fokoue, & H. H. Zhang, 2009).  Consider 

variable selection in a linear regression mode M  where we evaluate a fixed subset of variables of size 

| |M .  Since ( ) | |tr M=H  in linear regression, and noting that
2ˆ( ( )) i iRSS M y y= −∑ , we have: 

2

1 ( )
( )

(1 | | / )

RSS M
GCV M

n M n
=

− .

 

For large n, when | | /M n  is small, we can apply a Taylor expansion, 
2(1 | | / ) 1 2 | | /M n M n

− ≈− + to 

arrive at: 

( ) ( ) | |
( ) 2

RSS M RSS M M
GCV M

n n n
≈ +

.
 

Further note that as n → ∞ , 
2( ) /RSS M n σ→ and rewriting the above expression as: 

�
2( ) | |

( ) 2
RSS M M

GCV M
n n

σ≈ +
.
 

We see that minimizing the GCV is equivalent to minimizing AIC.  Note that the connection to Mallow’s 

p
C  in linear regression is more apparent here and, in fact, AIC is equivalent to Mallow’s 

p
C in linear 

regression.  Another point we can note is that although the estimate of the variance in linear regression, 

and consequently Mallow’s 
p

C is based on ( )n p−  degrees of freedom, our substitution above is valid 

asymptotically.   

2.2.2 Further Note on the AIC/LOO Connection 

The above is not a real proof of equivalence but simply suggestive of the connection between 

LOOCV and AIC and the real proof is due to (Stone, 1977).  Stone’s proof relies on a likelihood analysis 
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and is not limited to linear models.  Consequently, the log-likelihood of the data can be approximated 

through the likelihood based LOOCV, or comparisons can be made based on LOOCV error statistic.  This 

becomes useful when faced with models where the likelihood is analytically difficult to compute.  

Stone’s proof also holds for the Takeuchi Information Criterion (TIC), a general form of the AIC, which 

involves computing the trace of a product involving the Fisher information matrix and the score function 

(Lee, 2007).  This trace reduces to the number of parameters in the case of exponential family of distri-

butions, but not generally.  The asymptotic connection to the LOOCV may then be useful as an alterna-

tive to analytically difficult computations.  However, the LOOCV carries its own computational cost and 

can be an expensive procedure when the GCV approximation does not hold. 

We can also try to gain an intuitive understanding of the asymptotic equivalence by noting that 

the AIC minimizes the KL divergence between the approximate model and the true model.  The KL diver-

gence is not a distance measure between distributions, but really a measure of the information loss 

when the approximate model is used to model the ground reality.  Leave-one-out cross validation uses a 

maximal amount of data for training to make a prediction for one observation.  That is, 1n − observa-

tions as stand-ins for the approximate model relative to the single observation representing “reality”.  

We can think of this as learning the maximal amount of information that can be gained from the data in 

estimating loss.  Given independent and identically distributed observations, performing this over n  

possible validation sets leads to an asymptotically unbiased estimate.   

The LOOCV method shares similar statistical properties with AIC: it provides asymptotically un-

biased result for the true prediction error by trading off with variance. 

2.3 Leave-K-Out Cross Validation 

In the formulation at the start of this chapter, leave-k-out cross validation (LKOCV) is the general 

case where the size of the test set 1| |D k= .  As mentioned earlier, this procedure carries considerable 
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computational expense due to the 
n

k

 
 
 

possible partitions that must be left-out and is rarely used in 

practice (Sylvain & Celisse, 2010).   

2.4 K-Fold Cross Validation 

An alternative procedure is K-fold cross validation and this procedure was motivated by compu-

tational expense of the leave-one-out procedure (Geisser, 1975).  The K-fold procedure is attractive be-

cause it balances computational cost with an increase in the estimation bias.  In this procedure, the da-

taset D is divided into K  partitions of roughly equal size,
1

K

k

k

D D
=

=∪ , and each partition is termed a 

“fold” of the dataset (thus there are K folds).  The procedure may be understood as a leave-one-fold-

out procedure in analogy to the leave-one-out procedure.  The model is trained on 1K −  folds and the 

K th fold is used for testing (Clarke, Fokoue, & H. H. Zhang, 2009).  This is repeated K  times such that 

each fold is used for testing exactly once.  Setting K n=  leads to leave-one-out cross validation. 

Define an index function :{1, , } {1, , }n Kκ … → … as a scheme to randomly assign the i th da-

tum to a fold.  Leaving out the k th fold for testing and fitting the model on the remaining 1k − folds, 

results in estimated model function
( )ˆ if κ−

.  The cross validation statistic for prediction error is then 

(Hastie, Tibshirani, & Friedman, 2001): 

( )

1

21
ˆ ) ( i

i

n

i

KCV y y
n

κ−

=

= −∑
.

 

The k-fold cross validation procedure is often applied to choose a model specific parameter.  

Suppose that the models are indexed by parameter λ ∈Λ  with corresponding estimated model func-

tion 
( )ˆ i

f
κ

λ
−

to be evaluated on the k th fold.  The optimal λ̂  is chosen as (Hastie, Tibshirani, & Fried-

man, 2001): 
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ɵ ( ) 2

1

1
ˆarg min ( ) arg min ( )i

i

n

i

KCV y y
n

κ
λ

λ λ

λ λ −

=

= = −∑
.

 

The final model is trained with the optimal parameter over the entire data, with the KCV statistic re-

ported as the cross validation prediction error.  In general, the recommended values for K are 5 or 10 . 

2.5 Choosing a Cross Validation Method 

As with any model selection procedure, the bias and variance tradeoff influences the choice of 

cross validation procedure. LOOCV is asymptotically unbiased as mentioned earlier.  The choice of train-

ing set size influences our decision due to some important results in (Shao, 1993).   

In general, choosing LOOCV or KCV with small size for the testing set results in an overestima-

tion of the variance, but relatively small bias.  When the goal is model estimation, and the sample has 

low variance, a smaller bias is preferred.  Thus the recommendation is to opt for LOOCV or KCV with rel-

atively small folds.  The smallest bias is obtained when the training set size approaches the sample size, 

i.e. ( )n k n− → as in LOOCV.  The goal of model identification requires that a larger bias is induced since 

consistency results require the training set size to be much smaller than the sample size (Sylvain & Ce-

lisse, 2010).   

It is found that small variance in the CV statistic generally leads to optimal model selection per-

formance.  In the cross validation cases covered here, the number of folds K  is linked to the size of the 

training set.  In this case, it has been found that the variance of the CV statistic must be quantified pre-

cisely and this varies with the specific procedure being used (Sylvain & Celisse, 2010). 
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3 ADAPTIVE MODEL SELECTION 

Minimizing information criteria are a popular choice of model selection.  As reviewed above, for 

model M  these take the general form: 

2 ( ) | |l M Mλ− + . 

( )l M  is the maximum log-likelihood of the model M ; | |M  is the cardinality of the model; and λ is a 

fixed penalty factor depending on the criterion.  In linear regression, this is equivalent to minimizing the 

form: 

( ) | |RSS M Mλ+ . 

( )RSS M  is the residual sum of squares from fitting the model.   

One problem with such criteria is none of them perform uniformly well across a variety of situa-

tions.  AIC, with penalty 2λ = , performs well when the size of the true model is large but yields sub-

stantial bias when the model size is small.  BIC, with a heavier penalty log( )nλ = , performs well when 

the size of the true model is small, but yields substantial selection bias with large models (B. Zhang, 

2010).  The motivation for an adaptive model selection procedure (X. Shen & Ye, 2002) is to produce a 

data-adaptive penalty that reduces the selection bias across the range of situations.  The basis for the 

data-adaptive penalty is the generalized degrees of freedom (Ye, 1998). 

3.1 Degrees of Freedom 

In linear regression, the degrees of freedom are best understood through geometric considera-

tion and may be defined as the dimension of the estimation subspace (Walker, 1940).  In the simplest 

case of a linear system with p  independent variables per observation, we seek the least squares projec-

tion of the n -dimensional observation vector Y  in a p -dimensional estimation subspace.  There are 

p  degrees of freedom available for estimation of the p -coordinate vector of Y  and this resolves to 
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the number of independent parameters in our system.  The system is linear in the observations through 

the projection matrix ( )X=H H , also known as the hat matrix.  Increasing the dimension of our esti-

mation subspace reduces the least squares distance between Y  and its projection �Y Y= H  at the cost 

of introducing a more complex structure for our estimation subspace.  Thus the degrees of freedom are 

a measure of model complexity and this is the term penalized by the various information criteria. 

A similar notion extends to systems outside the least squares class as long as they are linear in 

the observations, i.e. with �Y Y= H .  In such cases, a variety of definitions exist for different systems as 

the effective degrees of freedom, usually the trace of some function d  of the hat matrix: ( ( ))tr d H .  In 

linear regression, the degrees of freedom are equivalent to
ɵ

( ) i
ii

i

y
tr H h

y

∂
= =

∂
∑ ∑ , “the sum of the 

sensitivities of the fitted values with respect to the observed response values” (Ye, 1998). 

3.2 Generalized Degrees of Freedom 

The generalized degrees of freedom (GDF) is a generalization of the concepts of degrees of free-

dom mentioned above.  In addition, the observation, given above, of degrees of freedom as the sum of 

sensitivities of fitted to response values motivates Ye’s definition of GDF in linear models (Ye, 1998): 

� � �

� �

0
1 1

2 2
1 1

( ) ( )E ( )
( ) lim E

E ( )( ) cov( ( ), )

n n
i ii i

i ii

n n
i ii i i i

i i

GDF M

y y

δ

µ δ µµ

µ δ

µ µ µ µ

σ σ

→
= =

= =

 + −∂
= =  

∂   

− −
= =

∑ ∑

∑ ∑

Y e YY

Y Y

.

 

The GDF is defined as the “sum of average sensitivities of the fitted value ˆ ( )iµ Y  to a small 

change in iy ”.  It is a measure of the flexibility of the modeling procedure $M$.  In the same that the 

degrees of freedom enable us to consider the complexity of the modeling space and the tendency to 
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overfit, the GDF enables us to consider the complexity of the modeling procedure and its tendency to 

overfit.  In this way, the GDF depend on the “true” model and modeling procedure. 

The notion of GDF was extended to a general class of modeling procedures using an optimal loss 

formulation which is consistent with the GDF definition given above (Xiaotong Shen & Huang, 2006). 

3.3 Adaptive Model Selection Procedure 

The adaptive selection criterion takes the form: 

ɵ( ) | |RSS M Mλ+ . 

λ̂  is the data-adaptive penalty in the sense that it grows when the size of the true model is small, and 

shrinks when the size of the true model is large.  It also adapts in the sense of approximating optimal 

performance over the class of information criteria.  It is found that the optimal penalty is obtained by 

when the following expression is minimized, which coincides with the GDF as previously stated: 

ɵ �arg min 2 ( ), (0, )RSS G
λ

λ λ λ= + ∈ ∞
.
 

For variable selection in linear models over a class of models ( )M λ , the procedure is as follows.  

ɵλ  is determined by minimizing the above expression.  For each fixed λ , we determine the least squares 

fit for ( )M λ .  �( )G λ  is found by using a Monte Carlo regression procedure (X. Shen & Ye, 2002): 

• Sample 
j

δ  from n -dimensional 
2(0, )N τ I  where 0.5τ σ= . 

• Compute the ˆ ( )
ˆ ( ), 1, ,

jM
y j T

λ
µ δ+ = …

.
 

• Compute the regression slope ɵ
ˆ ( )

ˆ ( ) , 1, ,ij jiM
y a j T

λ
µ δ λ δ+ = + = …

.
 

o �

1

ˆ( )
n

i

iG λ λ
=

=∑
.
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3.4 GCV Analog 

Ye defines a GDF analog (Ye, 1998) to the GCV criterion for model M  as 

2

( )
( )

( ( ))

RSS M
GCV M

n GDF M
=

− .

 

Given the GCV derivation from the previous chapter, we show how this is derived.  Recall that after ap-

plying the leaving-one-out lemma is satisfied, we have: 

� � ɵ

ɵ ɵ

ɵ

ɵ �

ˆ ˆ( ) ( ) ( ) ( ) ( )
i ii

i i i i ii i i

i

i i i i
ii i

i i
i i

f x f x f x f x h y y

y y y
h

y yy y

µ

− −−

−

−

− = − = −

− ∆ ∂
⇒ = = ≈

∆ ∂−
.

 

Using this in the expression for the LOOCV, with the approximation
�

( )i
ii

i

h GDF M
y

µ∂
= =

∂
∑ ∑ , we 

arrive at: 

2

( )
( )

(1 ( ) / )

RSS M
GCV M

GDF M n
=

− .

 

Minimizing this expression is equivalent to minimizing the one given by Ye. 
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4 SIMULATION 

4.1 Adaptive Model Selection 

We reproduce one of the simulations performed by Ye to better understand the adaptive model 

selection procedure through implementation.  The code in the R language is provided in the appendix.   

The chart below shows the MSE values for different model selection procedures against the 

number of true variables in the model.  Our results are comparable to those of the paper.  Note that in 

the legend, “AMS” refers to “Adaptive Model Selection” and K refers to the number of non-zero va-

riables in the true model. 
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Figure 4.1 MSE from simulations for 3 procedures 
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The next figure shows the average number of variables selected by the different procedures for 

given number of non-zero variables in the true model.

 

Figure 4.2 Number of variables selected by the different procedures 
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6 APPENDICES  

Appendix A 

rm(list=ls()) 

 

if (.Platform$OS.type == 'unix') { 

    require(doMC) 

    registerDoMC() 

}  

else if (.Platform$OS.type == 'windows') { 

    require(doSNOW) 

    .clusters <- makeCluster(2, type='SOCK') 

    registerDoSNOW(.clusters) 

} 

 

require(MASS) 

require(DAAG) 

require(leaps) 

require(foreach) 

 

cat('getDoParWorkers', getDoParWorkers(), '\n') 

cat('--- Start script:', date(), '\n') 

start <- Sys.time() 

 

#-------------------------------------------- 

# utils 

#-------------------------------------------- 

 

# return px1 B such that theoretical R.sq = r.sq 

# p must be multiple of 5 

# k: num non-zero coefs per 5-vector subset 

find.beta <- function(x, n, p, k, r.sq) { 

 k.max <- 10 

 if (k == 0) { 

  B <- rep(0, p) 

 } else { 

        bk <- rep(c(1, 0), c(k, k.max-k)) 

        b <- rep(bk, p/k.max) 

        xx <- t(x) %*% x 

        B.k.sq <- (r.sq * n) / ( (1 - r.sq) * (t(b) %*% xx %*% b) ) 

        B <- sqrt(B.k.sq[1]) * b 

    } 

    array(B, dim=c(p, 1), dimnames=list(paste('b', 1:p, sep=''))) 

} 

 

gen.x <- function(n, p, x.Sigma) { 

    require(mvtnorm) 

    x <- rmvnorm(n, mean=rep(0, p), sigma=x.Sigma) 

 colnames(x) <- paste('x', 1:p, sep='') 

 x 

} 
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gen.vars <- function(n, p, k, r.sq, x.Sigma, y.sigma) { 

 x <- gen.x(n, p, x.Sigma) 

 

    b <- find.beta(x, n, p, k, r.sq) 

    mu <- x %*% b 

 

    y <- mu + array(rnorm(n, mean=0, sd=y.sigma), dim=c(n, 1)) 

    colnames(y) <- 'y' 

 

    fo.full <- formula(paste('y~0+', paste('x', 1:p, sep='', collapse='+'))) 

 

    list(y=y, x=x, b=b, mu=mu, fo.full=fo.full) 

} 

 

fit.step <- function(lambda, data) { 

 fit.lower <- lm(y ~ 0, data=data) 

 fit <- stepAIC(fit.lower, scope=form.upper, k=lambda, direc-

tion='forward', trace=FALSE) 

 fit 

} 

 

adaptive <- function(y, x, p) { 

 data <- as.data.frame(cbind(y, x)) 

 pert <- replicate(pert.T, rnorm(n, mean=0, sd=pert.tau)) 

 pert.y <- pert + matrix(y, nrow=n, ncol=pert.T, byrow=FALSE) 

 

 pert.subs <- foreach(j=1:pert.T, .packages=c('leaps')) %dopar% { 

  subs <- regsubsets(x, pert.y[ , j], method='forward', nvmax=p,  

         intercept=FALSE, really.big=TRUE)  

  summary(subs) 

 } 

 

 cache.g <- cache.G <- cache.lam <- c() 

 f.g <- function(lambda) { 

  lam <- round(lambda, 2) 

   

  pkg <- c('leaps') 

  expt <- c('pert.subs', 'x', 'p') 

  pert.mu <- foreach(j=1:pert.T, .combine=cbind, .export=expt, 

.packages=pkg) %dopar% { 

   ye.ic <- pert.subs[[j]]$rss + lam * (1:p) 

   model.idx <- which.min(ye.ic) 

   coef.idx <- pert.subs[[j]]$which[model.idx, ] 

 

   b <- rep(0, p) 

   b[coef.idx] <- coef(pert.subs[[j]]$obj, model.idx) 

   bb <- matrix(b, nrow=50, ncol=1) 

   fit <- x %*% b 

   fit 

  } 

 

  g0 <- foreach(i=1:n, .combine=sum, .export=c('pert')) %dopar% { 

   fit.sens <- lm(pert.mu[i, ] ~ pert[i, ]) 

   coef(fit.sens)[2] 

  } 
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  return( g0 ) 

 } 

 

 f.G <- function(lambda) { 

  lam <- round(lambda, 2) 

  if (any(cache.lam == lam)) { 

   return( cache.G[which(cache.lam == lam)] ) 

  }  

 

  g0 <- f.g(lam) 

  fit <- fit.step(lam, data) 

  G <- sum( resid(fit)^2 ) + g0 

 

  cache.lam <<- c(cache.lam, lam) 

  cache.g <<- c(cache.g, g0) 

  cache.G <<- c(cache.G, G) 

 

  return( G ) 

 } 

 

 res <- optimize(f.G, interval=c(0, 20)) 

 lambda.hat <- round(res$minimum, 2) 

 g0 <- cache.g[which(cache.lam == lambda.hat)] 

 return( list(lam=lambda.hat, gdf=g0/2) ) 

} 

 

 

#-------------------------------------------- 

# constants 

#-------------------------------------------- 

p <- 50 

n <- 200 

ks <- c(0, 3, 7, 10) 

#ks <- c(1, 2, 4, 5, 6, 8, 9) 

nsims <- 50 

 

r.sq <- 0.75 

y.sigma <- 1 

x.Sigma <- diag(p) 

 

pert.T <- n + 20 

pert.tau <- 0.5 

 

# full model as upper bound for stepwise selection 

form.upper <- formula(paste('~0+', paste('x', 1:p, sep='', collapse='+'))) 

 

cat('p:', p, 'n:', n, 'nsims:', nsims, 'pert.T:', pert.T, '\n') 

 

 

k.results <- list() 

for (k in ks) { 

 cat('  k', k, date(), '\n') 

 s1 <- Sys.time() 
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 coln <- c('mse.aic', 'mse.bic', 'mse.lam', 'p0.aic', 'p0.bic', 'p0.lam',  

     'gdf', 'lambda', 'k', 'p', 'n') 

 sim.results <- array(NA, dim=c(nsims, 11), dimnames=list(sim=1:nsims, 

coln)) 

 

 for (isim in 1:nsims) { 

  cat('    isim', isim, date(), '\n') 

  s2 <- Sys.time() 

 

  vars <- gen.vars(n, p, k, r.sq, x.Sigma, y.sigma) 

 

  res <- adaptive(vars$y, vars$x, p) 

  cat('      lambda:', res$lam, ', gdf:', res$gdf, '\n') 

 

  data <- as.data.frame(cbind(vars$y, vars$x)) 

  pkg <- c('MASS') 

  penalties <- c(aic=2, bic=log(n), lam=res$lam) 

  res.fits <- foreach(pen=penalties, .combine=cbind, .packages=pkg) 

%dopar% { 

   fit <- fit.step(pen, data) 

   p0 <- length(coef(fit)) 

   mse <- sum( (vars$mu - fitted(fit))^2 ) 

   c(mse=mse, p0=p0) 

  } 

  colnames(res.fits) <- names(res.fits) 

  print(res.fits) 

 

  sim.results[isim, ] <- c(res.fits[1, ], res.fits[2, ], 

gdf=res$gdf, lambda=res$lam,  

         k=k, p=p, n=n) 

  fname <- paste('sim-k', k, 's', nsims, 'Rd', sep='.') 

  save(sim.results, file=fname) 

 

  f2 <- Sys.time() 

  runt <- as.numeric(difftime(f2, s2, units='secs')) 

  cat('    time:', runt, 'secs,', round(runt/60, 1), 'mins',  

   round(runt/60/60, 2), 'hours', '\n') 

 } 

 

 k.results[[as.character(k)]] <- sim.results 

 fname <- paste('k-k', k, 'ns', nsims, 'Rd', sep='.') 

 save(k.results, file=fname) 

 

 f1 <- Sys.time() 

 runt <- as.numeric(difftime(f1, s1, units='secs')) 

 cat('  time:', runt, 'secs,', round(runt/60, 1), 'mins',  

  round(runt/60/60, 2), 'hours', '\n') 

} 

 

 

 

 

cat('--- End script:', date(), '\n') 

end <- Sys.time() 

runtime <- as.numeric(difftime(end, start, units='secs')) 
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cat('Run time:', runtime, 'secs,', round(runtime/60, 1), 'mins',  

 round(runtime/60/60, 2), 'hours', '\n') 

 

if (.Platform$OS.type == 'windows') { 

    stopCluster(.clusters) 

} 
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