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Unobserved Inputs in Household Production

Sergey Mityakov, Thomas A. Mroz ∗

March 20, 2017

Abstract

With few exceptions, empirical household production studies ignore

unobserved inputs. We demonstrate that without additional assump-

tions, the estimable impacts of the observed inputs cannot provide in-

formative estimates of their marginal products due to contaminating

variation in unobserved inputs; not even the sign of marginal impacts

can be ascertained. Instrumental variables cannot solve this problem

since every candidate for an instrument affecting an observed input,

including experimental assignments, would also affect unobserved in-

puts choices through the budget constraint, invalidating this variable

as an instrument. We show that under certain additional assumptions

an appropriately specified empirical model can provide bounds for true

marginal products. Our main point is that unless one is willing to

make assumptions of this nature, estimated effects would have no use-

ful interpretation. Almost all existing empirical studies of health, child

development, and job-training programs fail to account for this issue,

rendering their conclusions incomplete and possibly misleading.

Keywords: Household Production; Model Construction and Evaluation

∗Mityakov: Department of Economics, Clemson University, 228 Sirrine Hall, Clemson,
SC 29634. Email: smityak@clemson.edu. Mroz: Department of Economics, Andrew Young
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1 INTRODUCTION.

1 Introduction.

To make informed policy recommendations, economists need to understand

how inputs to household production functions affect measurable outcomes like

health and children’s test scores. Two key issues make this a difficult task.

First, a household’s choices of inputs likely depend on unobserved to the re-

searcher baseline characteristics and households’ unobserved abilities to make

use of the inputs. As a consequence, households’ choices of the levels of the in-

puts are likely to be statistically endogenous determinants for the estimation of

household production functions. Researchers have used a variety of approaches

to address this issue, such as better measures of productivity, experimentally

assigned inputs, instrumental variables, and natural experiments.

The second issue, which is the focus of this paper, arises because one almost

never can observe all of the inputs to production chosen by households. In gen-

eral the estimable impact of an observed input on the health outcome would

confound the true marginal effect of that observed input with the marginal

effects of unobserved inputs. Instrumental variables, experiments, or other

approaches used to solve the omitted variables problem in the case of un-

observed fixed household characteristics mentioned above will not solve the

omitted variable problem in this case. This happens because the unobserved

inputs are optimally chosen by households. Any “exogenous” variation in ob-

served inputs would be associated with changes in unobserved inputs, since the

unobserved inputs are chosen subject to the same budget constraint as the ob-

served inputs. Any exogenous or endogenous variation in any observed input

would be correlated with changes in unobserved inputs even when observed

and unobserved inputs are separable in the production function.

We use a model of utility maximization subject to a budget constraint
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1 INTRODUCTION.

in conjunction with a household production function to derive precise inter-

pretations of estimated effects of observable inputs on household’s outcomes.

The economic model provides considerable guidance for researchers about the

types of variables one needs to include in a “hybrid” household production

function in order to justify these interpretations. In general, these estimated

effects do not correspond exactly to standard ceteris paribus marginal effects

of the observed inputs in the home production. Often, however, the estimated

effects will provide a bound on the magnitude of the true marginal effect. We

also show how one can improve on those bounds by controlling for the read-

ily available but often ignored information on pure consumption goods when

estimating the hybrid production function. These bounds arise solely from a

theoretical model describing the behavior of an optimizing economic agent.

We demonstrate the potential importance of these bounds through a simple

simulation exercise.

We show that the least informative bound for the marginal product is

closely related to the “policy effect” one would estimate in an experimental

setting. In particular, if one were to randomly assign the production input

under consideration while also controlling for incomes and prices as we describe

below, then the estimated “policy effect” would be identical to the bound we

present. Averaging these conditional effects over the sample distribution of

prices and incomes would yield the simple policy effect that only examines

mean differences between the treated and untreated in the experimental study.

Given this close relationship, our bound can be used to calculate the “policy

effect” for different target populations without the need to conduct numerous

experimental studies.

While we frame our discussion in terms of health production to make the

analysis more specific, the estimation and interpretation issues we derive apply
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2 BACKGROUND

to any household maximization problem with production. This includes, for

example, estimates of the impacts of school inputs and parents’ behaviors on

children’s developmental outcomes. Given that one almost never observes all of

the relevant inputs to the household production function, our findings suggest

that most of the estimates in the literature on household production, not just

those in the health economics literature, need to be reinterpreted. Unless

researchers bring external information to bear in their analyses of household

production functions, they will be unable to validate most interpretations of

their estimates of the impacts of observed inputs as interesting technological

relationships.

2 Background

Early work on the estimation of production functions with missing inputs

mostly focused on the case where there was a fixed unobserved input that was

not varied as part of the optimization process. The motivation for these types

of formulations came from an assumption that there could be unobserved, firm

specific managerial factors affecting input choices and output levels (Hoch,

1955; Mundlak, 1961). In general, longitudinal data with firm specific fixed

effects could be used to obtain consistent estimates of the marginal impacts

of the observed inputs to the production process. More recently the indus-

trial organization literature has explored structural methods to control for

time-varying unobserved productivity shocks that could affect a firm’s input

choices.1 Such approaches, however, typically would not work in the case when

the missing input itself is a choice variable, which is the focus of this paper.

Rosenzweig and Schultz (1983) took the analysis of production functions

1Olley and Pakes(1996), Levinsohn and Petrin(2003), Ackerberg, Caves and
Frazer(2006).
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2 BACKGROUND

with missing inputs to a more fundamental level. All inputs are chosen opti-

mally as a part of a household utility maximization process, but the researcher

does not observe the chosen levels for a subset of the inputs. They discuss a

commonly used approach, the “hybrid production function,” to deal with the

unmeasured inputs. In that approach, the researcher estimates a relationship

where output is a function of the observed inputs, the prices of the unobserved

inputs, and the household’s level of exogenous income. They demonstrate that

the estimated impact of an observed input on health outcomes in this hybrid

specification does not measure the true marginal impact of the observed in-

put holding constant the levels of the other observed inputs and the levels

of the unobserved inputs. Unobserved inputs that are chosen as part of the

household’s utility maximization, subject to a budget constraint, result in con-

sequences well beyond those addressed in the early literature that only had

fixed, unobserved inputs affecting the choices of the variable inputs and output

levels.

Todd and Wolpin (2003) discuss production functions for cognitive achieve-

ment and point out that the inclusion of proxy variables like income and prices

for unobserved inputs could lead to more biased measures of the impacts of the

observable inputs than an empirical approach that excludes these proxy vari-

ables (see, also, Wolpin, 1997). They discuss various approaches one might use

when not all of the relevant inputs can be observed and assumptions needed for

these approaches to obtain asymptotically unbiased estimates of the marginal

effects of the observed inputs. A major conclusion of their study is that instru-

mental variables approaches will be unlikely to resolve problems arising from

omitted inputs in the production function. This happens because the omitted

inputs are chosen by the families and so would typically be correlated with the

observed inputs. In this situation, any instrument that has power to predict
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3 PRELIMINARY MODELING ISSUES

the observed input should also predict the unobserved inputs. It could not be

a valid instrument.

3 Preliminary Modeling Issues

A common shortcoming of the studies discussed above is their failure to pro-

vide an exact link between the theoretical model and the specification of the

empirical model. In this section we fill in that gap. In the subsequent section

we use the results from this analysis to specify and interpret feasible empir-

ical specifications of health production functions that are consistent with a

theoretical model of household utility optimization. Throughout most of the

analysis in this and the subsequent section, we assume that there are only two

purchased inputs used in the health production function, X and Z, and that

utility only depends on the amount of health produced by the household, H,

and the consumption of a composite commodity C. We extend the analysis

to the general case where the are multiple observed and unobserved inputs in

section 4.4.

Let the function H = F (X,Z) be a household’s health production func-

tion. The standard demand functions for the two health inputs are given

by X(pX , pZ , pC , I) and Z(pX , pZ , pC , I) where the p’s are the prices of the

three purchased goods and I is exogenously determined income. We assume

that one could estimate nonparametrically the two demand functions and the

health production function F (X,Z) if the health outcome H, the two inputs

X and Z, the prices of the three goods, and exogenous income I were observed

by the researcher. Since prices and incomes do not enter the production func-

tion directly, they are potential candidates to use as instrumental variables to

control for the possible endogeneity of X and Z. The problem we want to
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3 PRELIMINARY MODELING ISSUES

address is what one might be able to learn about the effect of X on H when

there is only information on H, the prices, income, and the quantity of the

input X. That is, the levels of the input Z and the consumption goods C are

not observed.

A seemingly obvious approach would be to substitute the demand function

for Z into the production function and then estimate this form of the “hybrid”

production function. This demand function, by definition, will depend on the

household’s preferences and the form of the health production function. This

approach, however, will in general result in an unidentified model2. To see this,

substitute the demand function for the unobserved input into the production

function. This yields H = F (X,Z(pX , pZ , pC , I)). When the form of the

demand function is unknown, this becomes some general function of observed

inputs, prices, and income: H = G(X, pX , pZ , pC , I).

Since X depends on exactly the same set of variables determining Z, (pX ,

pZ , pC , I), there is an exact functional relationship among the five arguments

in the function G(·). A nonparametric model for estimating the function G

could admit almost any estimate of the effect of X on H through the function

G by offsetting changes in the impacts of pX , pZ , pC , and I on H. This

nonparametric expression of an identification problem is similar to perfect

multicollinearity in a linear regression model3. Like in the linear regression

2This might not be an issue if one can impose the exact functional form of the health
production function F (X,Z) and has precise information about the functional forms for
the demand function Z(pX , pZ , pC , I). Identification here would come from functional form
assumptions.

3The function F (·) does contain some separability restrictions that are not imposed on
a general function like G(·). However, given the nonidentification result discussed above, it
will be impossible to exploit these separability restrictions to uncover the marginal effect
of X. For example, instead of the function H = F (X,Z(p, I)) one can always substitute
an observationally equivalent function H = F (X, (Z(p, I))) + φ(X) − φ(X(p, I)) for any
function φ(·), where X(p, I) is the true demand function for X. Since φ(·) is arbitrary one
can estimate any effect of X on H while satisfying the separability restrictions.
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3 PRELIMINARY MODELING ISSUES

model, this identification problem can only be overcome by the imposition of

some, hopefully valid, set of constraints. Economic theory, however, provides

little guidance for the types of constraints one might impose in order to obtain

the true marginal impact of the input X on the health outcome.

This non-identification problem is distinct from the endogeneity of inputs

issue arising from unobservable productivity in the industrial organization lit-

erature on estimating production functions. That literature explores struc-

tural approaches to control for time varying productivity differentials that are

not due to variations in optimally chosen unobserved inputs4. Here, all in-

puts, both observed and unobserved, are choice variables in the individual

optimization problem. The key issue here arises because variations in the ob-

served input X, even under random experimental assignment, typically will

be associated with variations in the choice of the unobserved input Z.

Rosenzweig and Schultz’s (1983) analysis of the hybrid production func-

tion differs from the one presented here by its exclusion of the price of the

observed input (pX) as a determinant of the health outcome. In general this

would be valid only when the unconditional demand for Z does not depend

on pX . Variations in the observed input X would then arise from variations in

pX , which would not be perfectly determined by variations in pZ , pC , and I.

The Rosenzweig and Schultz formulation for the hybrid production function

could more generally be derived when all households face the same price pX .

But in this case, there would be no variation in the input X that did not arise

from variations in pZ , pC , and I, resulting again in a non-identified specifica-

tion. Without strong and mostly ad hoc assumptions, the form of the hybrid

4The control-function approaches suggested in Olley and Pakes(1996), Levinsohn and
Petrin(2003), and Ackerberg, Caves and Frazer(2006), for example, would not be feasible
when the ”productivity shock” is itself a chosen input.
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3 PRELIMINARY MODELING ISSUES

production function discussed by Rosenzweig and Schultz cannot be derived

from a standard model of utility maximization or used to uncover empirically

the impacts of observed health inputs.

The conditional demand function approach discussed in Liu et al (2009)

can overcome the basic identification issue inherent in the unrestricted form of

the hybrid production function G. In particular, consider the demand function

for the unobserved input Z conditional on the optimally chosen level of the

observed input X. Using standard rationed demand analysis, this conditional

function can be written as Z = qz(pC , pZ , I
∗, X), where I∗ = I − pXX is the

amount of income the household has left to allocate between the consumption

good C and the unobserved input Z. In general, the conditional demand for

Z will depend on the amount of X chosen by the household even holding the

level of I∗ fixed. Substituting this constrained demand for Z into the true

production function yields H = F (X, qz(pC , pZ , I
∗, X)). Without assumptions

on the form of the function qz(·), the estimable conditional hybrid production

function becomes H = GC(X, pC , pZ , I
∗). In this situation, the effect of X

on H, through the function GC and conditional on pC , pZ , and I∗, should be

nonparametrically identified.

It is crucial that one conditions on the value of I∗ instead of its compo-

nents in order for this particular effect of X to be identified. The estimate

of the partial effect of X on H obtained through the conditional hybrid pro-

duction function GC , however, does not have a simple and straightforward

interpretation. In the next section we derive interpretations of this type of

effect.
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4 BASIC MODEL

4 Basic Model

We begin this section with a detailed analysis of the case where there is only

one observed input and one unobserved input to the household production

function. The setup, intuition and analytic derivations for this simple case

carry over to the multidimensional case. In the last subsection we extend the

analysis to situations with multiple inputs, and the appendix contains complete

derivations when there are multidimensional unobserved and observed inputs.

4.1 Preferences and Technology

Assume consumers derive utility U from health H and some other consumption

goods C. For simplicity, H and C are assumed to be one-dimensional. Health

is produced with several inputs. We denote as X inputs which are observed

and as Z the unobserved inputs. Assume preferences are given by a general

utility function

U = U(C,H; τ), (1)

where τ is an arbitrary vector of household-specific taste parameters. The

household health production is given by a function F with standard properties

H = F (X,Z; ρ), (2)

where ρ represents productivity parameters that could vary from household to

household5. The household budget constraint is:

pXX + pCC + pZZ = I. (3)

5The taste (τ) and productivity (ρ) parameters do not affect the comparative static
analysis presented below, so we often drop them in the derivations to save notation. They
are, however, crucial determinants of the household’s optimal choices. In empirical analyses
the presence of these unobserved preference and productivity parameters means that all
observed household inputs must be treated as endogenous variables.
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

Throughout we consider an interior solution and assume that the correspond-

ing second order conditions are satisfied.

As a straightforward extension, one can interpret this static optimization

formulation as part of a dynamic optimization model with two stage budgeting.

To see this explicitly, one can write the utility function as

U = U(C,H; τ) = W (Ct, Ht−1, Ht, τ1t) +
1

1 + β
V (Ht, τ2t ,Ωt) (4)

whereHt−1 is the individual’s health when entering the current period. It is not

a contemporaneous choice variable. W (.) represents the current period utility

function that depends on current consumption, the health stock inherited from

the previous period, the amount of health stock at the end of the period and

possibly a subset of the original taste parameters τ . V (.) is the expected

maximal value of future utility that the household will receive from the next

period onwards, discounted at rate β. It includes the information set available

to the household at time period t, Ωt. Income, I, in this instance should

be interpreted as the household’s optimal expenditure level in time period t.

The household’s technology parameters in the production function, ρ, can also

depend upon the the level of the inherited capital stock.

4.2 Interpreting Estimated Effects of Observed Inputs

Consider the following econometric problem. We would like to estimate the

marginal product of input X on health production: ∂F
∂X

. The information

available is structured in the following way. The levels of H and X are ob-

served; prices pX , pC , and pZ are observed. Income I is observed. The levels

of other goods C and the health input Z are not observed. Our research goal

is to understand which effects we are able to estimate and whether we can

use these to place informative bounds on the marginal effects of the observed

11



4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

health inputs.

The estimated effect of the observed input X on a health measure H when

conditioning on an arbitrary set of controls Y would measure:

dH

dX

∣∣∣∣
Y

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
Y

(5)

Here dZ
dX

∣∣
Y

is the derivative which indicates the change in the unobserved

inputs Z when X changes by dX given the set of control variables Y . We

assume that one is interested in uncovering ∂F
∂X

, so the second term ∂F
∂Z

dZ
dX

∣∣
Y

can be considered the bias in estimating the marginal effect of X when Z is

not observed.

Throughout our analysis we assume that the data are rich enough so that

individual level heterogeneity parameters that are fixed for a given individual

(denoted by ρ and τ in the previous section) can be perfectly controlled for

by an appropriate (potentially non-parametric) estimation technique. For ex-

ample, this could be the case when one has the data on the same individual

facing different prices pX and observed consuming X and X + dX. All the

results we derive here apply at each point of the individual level heterogene-

ity parameters (ρ0, τ0): e.g. in formula (5) above all partial derivatives are

evaluated at the point (X0, Z0) which is the optimal choice for the individual

with individual heterogeneity parameters (ρ0, τ0) at particular levels of prices

pX , pZ , pC and income I. With this in mind, we omit (ρ0, τ0) from all formulae

to simplify notation.6

The bias term ∂F
∂Z

dZ
dX

∣∣
Y

in (5) arises from an individual’s optimal choice of

unobserved production input Z in response to the changes in prices and income

that bring about the change in the optimal choice of observed production

6One simulation discussed in Section 7 has no unobserved heterogeneity, and it demon-
strates that the bias term is important even when one can fit perfectly all observed health
outcomes.
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

input X. Instrumental variable approaches, which are useful to deal with

unobserved heterogeneity due to omitted variables fixed at the individual level,

are likely to be invalid to deal with this bias due to the unobservability of the

optimally chosen variables Z. As we show below, any factor that changes

the optimal choice of X is likely to involve a concurrent change in unobserved

optimally chosen unobserved variables Z rendering all potential candidates for

instruments invalid.

A major issue for an empirical analysis of the effect of X on H is the

choice of an appropriate set of controls Y to minimize the “bias term” in

(5), ∂F
∂Z

dZ
dX

∣∣
Y =const

. As we argued above, using all available information Y =

(pC , pZ , pX , I) results in an unidentified model, as X itself is fully explained by

those same variables. One needs to put restrictions on the set of conditioning

variables to obtain an identified econometric model. Once effects are identified,

one can provide an economic interpretation of the estimable effect of X on H.

Using the conditional demand function for the unobserved input discussed

above, consider the following optimization problem conditional on the level of

observed input X:

max
C,Z

U(C,F (X,Z))

s.t. pCC + pZZ = I∗ ≡ I − pXX
(6)

The conditional demand function for unobserved health input Z associated

with this problem is:

Z = qZ(pC , pZ , I − pXX,X) (7)

We assume that the data are rich enough so that we observe relevant variations

in X while holding total expenditure on other goods C and unobserved input

Z, I∗ = I−pXX, constant. Then, if we regress the observed health level H on

the observed level of health input X (which does not enter the utility function

13



4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

directly) and the total expenditures on all goods other than X, I∗, (controlling

for prices pZ , pC) we would estimate the following effect7:

dH

dX

∣∣∣∣
I∗=I−pXX=const

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=I−pXX=const

(8)

The estimated effect is the sum of the effect of interest, the marginal product

of input X in health production ∂F
∂X

, as well as a bias term related to the fact

that as we change the level of input X the individual might change the level of

unobserved health input Z, even when prices pZ and pC and total expenditures

on C and Z stay constant, i.e. ∂F
∂Z

dZ
dX

∣∣
I∗=I−pXX

8.

The key question we ask is what is the direction and size of the bias. As-

suming that both the observed and unobserved inputs have positive marginal

products, the estimated effect will be biased in the direction towards zero

(negatively biased) whenever the derivative of the conditional demand for Z

with respect to the observed input X is negative. To examine whether this

would be the case, we need to compute how the unobservable input Z changes

when we change the observed input X holding the combined expenditure on Z

and C fixed, dZ
dX

∣∣
I∗=I−pXX=const

. That is, we need to understand the derivative

of the conditional demand function Z = qZ(pC , pZ , I
∗, X) with respect to the

observed input X holding I∗ fixed. Theorem 1 provides one possible answer

to this question

Theorem 1 Suppose health H and other goods C are normal goods and the

degree of complementarity in health production between the beneficial observed

input X and the beneficial unobserved input Z is sufficiently small (the cross

derivative FZX is small if positive or negative: i.e. the increase in one of the

7This effect is identified by variations in X induced by changes in px and I that leave I∗

constant.
8The set of controls Y is this case is: (pZ , pC , I

∗)
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

inputs lowers the marginal effect of the other or barely increases it).9 Then the

regression of observed health H on the observed health input X holding prices

pC and pZ and total expenditure on C and Z (I∗ = I − pXX) constant, would

underestimate the true value of the marginal product of X in health production.

The estimable effect of the productive input might even be negative.

The Appendix section 9.1 contains a complete derivation of results for a

wide set of cases and the interpretations for other effects estimated by a hybrid

production model. Here we outline the main result for Theorem 1. The key

equation describing the change in the demand for the unobserved input due

to a change in the observed input holding I∗ constant is:

Bias = Bias1 = FZ
dZ

dX
=
UHF

2
ZFX

∆

[
∂

∂H

(
log

UC

UH

)
− FZX

FZFX

]
(9)

The partial derivative with respect to H of the term in parentheses will be

positive whenever C is a normal good10, and ∆ is negative by the second

order conditions. One’s ability to unambiguously sign the overall bias therefore

depends on the substitutability of the two inputs in producing H. If both X

and Z are beneficial inputs and the two inputs are substitutes or only weak

complements, then the conditional demand for Z will fall with an increase in

X. From (8), this implies that the identified effect of X on Z will under-

estimate the true marginal impact of a beneficial input X.

9Theorem 1 considers one possible set of conditions under which we can derive an infor-
mative bound for the marginal product of an observed input X. In Theorem 2 we derive
necessary and sufficient conditions that do not require knowledge about substitutability be-
tween X and Z but instead rely upon some information about the behavior of consumption
choice C in response to a change in X.

10In particular, ∂
∂H

(
log UC

UH

)
= ηC
−ε∗CC

1−sC
H , where ε∗CC is the compensated own price

elasticity, ηC is the income elasticity of demand for good C and sC is the share of income
spent on C. This term will be large when the income elasticity for the consumption good is
high and also when the compensated own price elasticity for the C is small. See Lemma 1
in Appendix 10.2.
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

Intuitively, an increase in the observed beneficial health input X increases

the level of health H if Z is kept constant. Such an increase in H can

be thought of as an increase in health endowment in the conditional (on

X) demand system11. Since consumption is a normal good, this endow-

ment/“income” increase would tend to be partially reallocated to an increase

in consumption C, attenuating the potential increase in H12. This effect is

represented by the first term inside the brackets in equation (9).

If the change in X makes Z less productive (FZX < 0), then this reallo-

cation towards consumption would be reinforced because the shadow price of

health, pZ
FZ(X,Z)

, would rise with the increase inX. The income and substitution

effects operate in the same direction. This substitution effect is represented

by the second term inside the brackets in equation (9). In fact, if this second

term is strong enough, the beneficial input X might even appear to be harm-

ful in estimation13. When the increase in X increases the marginal product

of Z (FZX > 0), the income effect (due to higher endowment of health) and

substitution effect (due to fall in the shadow price of health) work in opposite

directions and the sign of the bias cannot be determined.

One can also sign this bias term in the case when X and/or Z are harm-

ful, but have no direct impact on utility (e.g. X may be dangerous working

conditions for which the person is compensated, so that pX < 0)14. The sign

11Due to an increase in X by dX health endowment would rise to H1 = F (X + dX,Z).
12In this case as total spending I∗ on C and Z is kept constant, an increase in C implies

a decrease in Z when pZ > 0 (and hence FZ > 0) and an increase in Z when pZ < 0 (and
hence FZ < 0). Hence the optimal choice of health would be H2 = F (X + dX,Z + dZ) <
H1 = F (X + dX,Z).

13This finding parallels the famous Peltzman (1975) argument about the impact of manda-
tory seatbelt laws on automobile accidents. In this argument, mandatory seatbelt use (an
exogenous increase in the beneficial input X) could result in a perceived, dramatic decline
in the marginal product of safe driving and lead to a decline in safe driving (unobserved Z).
That decline could be so large that the total incidence of accidents could increase after the
introduction of the law.

14However, in the case of harmful health inputs, a more relevant assumption would be that
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of this term does not depend on the sign of FZ . When the observed input X

adversely affects health then the bias will be positive provided the term FZX

FXFZ

is negative or small if positive. Thus, we establish the following:

Corollary 1 Suppose health H and other goods C are normal goods. Assume

the observed health input X and the unobserved health input Z have no direct

effect on utility. Suppose that FZX

FZFX
< 0 or small if positive. Then the re-

gression of observed health H on observed health input X holding prices pC , pZ

and total expenditure on C and Z (I∗ = I − pXX) constant, would underesti-

mate the true value of the marginal product of a beneficial health input X and

overestimate the marginal product of a harmful health input X (underestimate

the adverse impact). The bias may be large enough so that the estimated effect

would be opposite in sign to the true marginal effect of X.

The interpretation of the condition FZX

FZFX
< 0 is quite straightforward. In

the case when both X and Z are beneficial inputs it means that FZX < 0, i.e.

an increase in one of the inputs decreases the marginal effect of the other input.

The same condition holds in the case when both X and Z are harmful. The

intuitive interpretation will be different though. Suppose that X is smoking

and Z is illegal drug use, then FZX < 0 would mean that the increase in

smoking raises the marginal damage from illegal drug use. When one of the

two inputs is beneficial and the other harmful, then the relevant condition for

the bound to hold is FZX > 0, i.e., the increase in the amount of beneficial

input (e.g. jogging) decreases the marginal damage of the harmful input (e.g.

smoking).

These substitutability conditions illustrate a one possible set of sufficient

those inputs could also affect utility directly, e.g. an individual consumes alcohol because
he receives utility from it despite the fact that it is bad for her health. We discuss this
extension in the appendix.
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conditions needed to characterize the relation between the actual marginal

product and the estimable impact of observed health input. One can instead

use the budget constraint in consumer problem (6) to provide a necessary and

sufficient condition for the estimated effect to provide an informative bound

for the true marginal product of observed input X. This involves understand-

ing how consumption C changes in response to changes in X. Theorem 2

summarizes our findings:

Theorem 2 Consider the regression of observed health H on the observed

health input X holding prices pC and pZ and total expenditure on C and Z

(I∗ = I − pXX) constant.

i. Suppose in response to the increase in the observed input X the choice

of consumption good C increases: dC > 0. This is a necessary and sufficient

condition for the estimated effect of observed input X to be lower than its true

marginal product.

ii. dC < 0 is a necessary and sufficient condition for the estimated effect

of observed input X to be an upper bound for its true marginal product.

Proof: This is a special case of Theorem 5 (proved below), for the single-

dimensional X and Z case. �

This result does not depend upon substitutability patterns between ob-

served (X) and unobserved (Z) inputs, nor does it require any assumptions

about the sign of the marginal products of X or Z. Further this result does

not depend upon consumption C or health H being a normal good. This flex-

ibility comes at a cost. In Theorem 2 one imposes a restriction not on the

model fundamentals but rather on the optimal choice of an endogenous vari-

able (consumption good). From a practical perspective, however, researchers
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might find it easier to verify whether this assumption holds. Strictly speaking,

the budget constraint logic behind Theorem 2 does not require Z or X to

be single-dimensional. In section 5, where we analyze the multidimensional

inputs case, we discuss a multidimensional extension of Theorem 2.

To summarize, to obtain an identified model in the case when some in-

puts in the health production function are unobserved one can estimate the

following regression model:

H = F (X,Z(pC , pZ , I − pXX,X, ρ, τ), ρ)
≡ h(X, pC , pZ , I − pXX, ρ, τ).

(10)

As implied by economic theory, the regression function h(·) should contain all

of the observed health inputs, the prices of all the unobserved health inputs

and pure consumption goods, and the income the household has to allocate

after it purchases the observed health inputs15. Theorem 1 and Corollary 1

describe conditions when the estimated effect ∂h
∂X

is likely to be a lower bound

for the true marginal effect of the observed input X.

Unlike the attenuation bias one finds for measurement error problems in

empirical models, the attenuation bias we derive here follows solely from eco-

nomic theory. The bias arises from a researcher’s uncertainty about the actual

amount of the unobserved input Z used by the household. This theoretical

result provides a “bound” when interpreting a correctly specified hybrid pro-

duction function when one does not “include” a relevant health input but

does account for all other relevant factors, including taste and productivity

shifters. It provides the theoretical underpinnings for the specification and

interpretation of the empirical hybrid health production function.

Note that our empirical specification differs from the ones suggested in the

15Since the theoretical hybrid production function depends upon unobserved tastes and
productivities (τ and ρ), in the empirical analysis all observed household inputs should be
treated as endogenous.
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literature. Todd and Wolpin (2003) argued that including income as a proxy

for omitted inputs is likely to confound the estimates of the effects of observed

inputs. We argue, however, that a properly adjusted income measure should

always be included in the regression for the estimated effects to have meaning-

ful economic interpretations. Rosenzweig and Schultz (1983) suggest dropping

the prices of included inputs pX , but this also results in a specification incom-

patible with economic theory unless one is willing to believe quite restrictive

forms for the demand function for input Z.

4.3 Conditioning on Consumption of Non-health Inputs.

A natural question in light of the downward bias result discussed above is

whether one should control for the observable part of the consumption vector

C, which does not affect health production function per se. In the Appendix

section 10.5 we investigate this issue. Though the general direction is ambigu-

ous, one might be able to reduce the bias by controlling for such inputs in

some plausible cases. This would provide a more informative bound for the

true marginal effect. Theorem 3 summarizes this discussion:

Theorem 3 Assume that the observed health input X has no direct effect on

utility. Further assume that health H does not affect the marginal rate of

substitution between two pure consumption goods C and W : ∂
∂H

(
log UW

UC

)
= 0.

(This is true when consumption goods C and W are weakly separable from

health in the utility function). Controlling for W in the estimation of the

hybrid health production function would result in a smaller bias (in absolute

value) for the estimated marginal product of observed health input X.

Theorem 3 can provide information about the true direction of the marginal

effect of X and the type of bound one estimates. If the estimated effect is
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positive and larger than the estimate without controlling for W , then the true

impact of X is positive and one has uncovered a (more informative) lower

bound for its magnitude. Similarly, if the estimated effect is negative and

lower than the estimate without controlling for W , then the true impact is

negative and it provides a lower bound on X ′s detrimental impact. If one

has a priori information on the direction of the true marginal effect of X, the

bias reduction described in Theorem 3 can allow one to determine whether the

estimated effect is an upper or lower bound. Unlike Theorem 1, this result does

not require any knowledge about the substitution patterns in the production

function.

To see more intuitively the rationale behind this result, suppose we could

observe and control for all of the household’s pure consumption goods. Then,

all remaining income in I∗ would be spent on the unobserved input. A non-

parametric specification of the regression model would control exactly for

Z = I∗/pZ , and there would be no bias from the “omitted input” in the esti-

mation of the effect of the observed input X on health16. When we can control

for only a subset of the pure consumption goods, we are able to restrict some-

what the possible levels for the expenditure on the unobserved input. And

when the marginal rate of substitution between the two pure consumption

goods is unrelated to the level of the health output (and consequently to the

level of the observed health input), the remaining budget set shrinks without

inducing a relative shift between the two consumption goods that is related

directly to health. This allows one to obtain a tighter bound without changing

the direction of the bias.

16This is similar to an approach used in the industrial organization literature, e.g., Olley
and Pakes(1996), where one conditions on investment demand to hold constant the unob-
served firm fixed effect when estimating production function parameters.
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To summarize, one cannot estimate the true marginal product of an ob-

served health input X when some essential health inputs are unobserved.

However, one may be able to bring external information to bear and uncover

informative bounds using the approaches we outlined above as described in

Theorems 1, 2, and 3. If anything, it is crucial to include the prices of omitted

inputs and consumption goods in the regression model to obtain an econo-

metric specification consistent with economic theory. The failure to adjust

income properly and include it as a regressor in the hybrid production func-

tion makes it nearly impossible to interpret estimated effects and to assess how

they might differ from marginal effects on health production. Controlling for

the consumption of other goods (not necessarily health inputs) can reduce the

size of the bias and make the bound more informative.

4.4 Multidimensional Inputs

The extension to the case of multiple observed inputs X = (x1, ..., xN)′ with

a single unobserved input Z = (z1) is nearly identical to the analytic results

derived above. When there are multiple unobserved inputs Z = (z1, ..., zK)′,

however, an increase in an observed input xi could impact the marginal rates

of technical substitution among the unobserved inputs Z. This could lead to

increases in the demand for some of the unobserved inputs and decreases in

the demands for others. Consequently, even if all observed inputs are pairwise

substitutes with each of the unobserved inputs, there could be an increase

in the demand for some unobserved input due to an increase in an observed

input. Substitutability of the inputs in this situation would not be sufficient

for the estimable effect of the observed input to provide an informative bound.

However, if there is in addition weak separability of the unobserved inputs

in the production process, then the estimable effects do provide informative
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bounds. We summarize our findings in the following theorem.

Theorem 4 Suppose health H and other goods C are normal goods. As-

sume that unobserved health inputs Z = (z1, ..., zK)′ are weakly separable in

production from observed health inputs X = (x1, ..., xN)′: H = F (X,Z) ≡

Φ(X, g(Z)). Assume that health inputs X and Z have no direct effect on util-

ity. Consider running a regression of observed health H on the observed health

input xi holding constant other observed health inputs x−i, prices pC and pZ,

and total expenditure on C and Z (I∗ = I − p′XX).

• If the health input xi is beneficial and the degree of complementarity be-

tween xi and Z is sufficiently small (the cross derivative Φgxi
is small if

positive or negative) then the beneficial effect of xi estimated in the re-

gression above would be lower than the true value of the marginal product

of xi in health production. The estimable effect of the productive input

might even be negative.

• If the health input xi is harmful and the degree of substitutability between

xi and Z is sufficiently small (the cross derivative Φgxi
is positive or

small in absolute value if negative) then the effect of xi estimated in

the regression above would be higher than the true value of the marginal

product of xi in health production (i.e., the adverse effect of xi would be

underestimated). The estimable effect of the harmful input might even

be positive.

Proof: In the Appendix 9.1 we show that in the case when health inputs

X and Z have no direct effect on utility the total bias is given by:

Bias = UH
∂

∂H

[
log

(
UC

UH

)]
FZ′∆

−1FZFxi
− UHFZ′∆

−1FZxi
(11)
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The first term in this bias is always nonpositive since FZ′∆
−1FZ ≤ 0 due to

the second order conditions, and ∂
∂H

[
log
(

UC

UH

)]
≥ 0 whenever consumption

and health are normal goods (see Technical Lemma).

Under the separability assumption we can write the second term as:

UHFZ′∆
−1FZxi

= UHΦgΦgxi
GZ′∆

−1GZ . (12)

As before GZ′∆
−1GZ ≤ 0 since ∆ is a negative semidefinite matrix. Thus,

the contribution of this term to the bias is opposite in sign to Φgxi
. If xi is a

beneficial health input, Fxi
> 0, then the Bias will be negative provided Φgxi

is negative or positive but sufficiently small: i.e. xi and the unobserved health

inputs (in the aggregate) are substitutes or the degree of complementarity is

not strong. If xi is a detrimental health input, Fxi
< 0, then the Bias will be

positive provided Φgxi
is positive or negative but not large in absolute value. �

The intuition behind these results is nearly identical to that outlined in

the one-dimensional case in our discussions of Theorem 1 and Corollary 1.

An increase in health H due to an increase in some beneficial health input xi

can be thought of as an increase in health endowment in the conditional on

X demand framework. Facing such an increase in real income, an individual

would rationally spend some of that higher health endowment on the (normal)

consumption good C. Thus, the observed increase in health H will be lower

than suggested by the pure increase in xi, provided the increase in xi does not

reduce the shadow price of health by a large amount..
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5 Consumption behavior and sign of the bias

in the multidimensional case.

As in the single unobserved input case discussed in Theorem 2, one can use

knowledge of how consumption C would change in the conditional on X de-

mand function, in response to an increase in an observed input by the amount

dxi to establish whether or not the estimable effect of an observed input pro-

vides a directional bound on its true marginal product. The only condition we

require is that unobserved inputs Z = (z1, ..., zK) do not have direct effects on

utility (i.e., xi can affect utility directly but the zk’s cannot).

In this case consumer optimization problem (6) admits the following equiv-

alent restatement with the help of a cost function:

max
C,Z

U(C,X,H)

s.t. pCC +K(X,H) = I∗ ≡ I − p′XX
(13)

where K(X,H) is a cost function for household production holding the ob-

served inputs X fixed. It is a solution the following problem:

min
Z
p′ZZ

s.t. F (X,Z) = H
(14)

This approach allows to effectively reduce the conditional on X multidimen-

sional problem in C and Z to a two-dimensional choice of C and H (conditional

on X).

Now consider changing one of the observed health inputs xi by dxi while

holding other observed inputs x−i, prices of consumption and unobserved in-

puts (pC , pZ) and income in conditional demand problem I∗ constant. Totally
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differentiating the budget constraint we get:

pCdC +Kxi
dxi +KHdH = 0 (15)

From the envelope theorem we have that: KH = λH and Kxi
= −λHFxi

where λH > 0 is the Lagrange multiplier from the cost minimization problem.

Thus, we obtain:

Fxi
− dH

dxi
=
pC
λH

dC

dxi
(16)

This equation allows us to establish the necessary and sufficient condition on

the estimated effect of health dH
dxi

to be lower or upper bound for the true

marginal product of xi: Fxi
. This establishes the following result which is

analogous to Theorem 2 discussed in Section 3 above.

Theorem 5 Assume that observed and unobserved health inputs are multidi-

mensional. Further assume that unobserved health inputs Z have no direct

utility effects. Consider the regression of observed health H on the observed

health inputs X = (x1, ..., xN) holding prices pC and pZ and total expenditure

on C and Z (I∗ = I − p′XX) constant.

i. Suppose in response to the increase in one observed input xi, while

keeping other observed inputs x−i constant, the choice of consumption good

C increases: dC > 0. This is a necessary and sufficient condition for the

estimated effect of observed input xi to be lower than its true marginal product

Fxi
.

ii. Similarly dC < 0 is a necessary and sufficient condition for the esti-

mated effect of observed input xi to be an upper bound for its true marginal

product.

The intuition behind this result is straightforward. If consumption were to
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increase following the change dxi, then aggregate spending on the unobserved

inputs Z would decline (since I∗ is held constant):
K∑
k=1

pzkdzk < 0. The total

effect on health H from an increase in xi would be the sum of main effect

of xi, Fxi
dxi, and the combined responses due to the change in unobserved

inputs Z: dH = Fxi
dxi +

K∑
k=1

Fzkdzk. From the cost minimization problem we

know that at the optimal choice of unobserved health inputs Z their marginal

product are proportional to their prices: pzk = λHFzk ,∀k = 1, ..., K (with the

Lagrange multiplier λH being the proportionality factor). Hence lower overall

spending on Z would imply that the contribution of changes in Z to the total

effect on health H would be negative:
K∑
k=1

Fzkdzk < 0.

Note that this derivation does not require any additional assumptions on

the substitutability between X and Z, nor does it require consumption C or

health H to be normal goods. Health inputs X and Z could be either beneficial

or harmful. We do require that unobserved health inputs Z do not have direct

effects on utility, because this condition is needed to reduce a multidimensional

problem in C and Z to a choice of C and H via the cost function K(X,H).

The derivation above implicitly assumes that consumption good C is one-

dimensional. If there were multiple consumption goods C = (c1, ..., cM), one

could investigate empirically the direction of the bias under the following ad-

ditional assumption. Suppose consumption goods C are separable from the

inputs X in the utility function: U(Q(c1...cM), X,H). If the conditional de-

mand for any consumption good cm increased(decreased) in response to an

increase dxi, then the estimable effect of Xi in the hybrid health production

function would be a lower (upper) bound for its true marginal effect.

To sum up, to interpret the estimates of the hybrid production function as

relevant economic quantities a researcher must bring additional information

about the underlying economic problem. Theorem 4 in the previous section
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presents a set of conditions when one understands well the technological rela-

tions (in particular substitution patterns) between observed and unobserved

health inputs. This information, for example, might come from medical litera-

ture. In other situations the researcher might be able to justify a separability

assumption like the one just described. In that case one could rely on Theorem

5 and empirically determine whether she/he has estimated a upper or lower

bound on the true marginal effect of the observed health input by looking

at observed changes in endogenous variables (e.g. some consumption goods).

Our main point is more general than the specific assumptions we mention

in this and previous sections. A failure to impose and test these conditions,

or to establish alternative identifying assumptions of a similar nature, would

yield estimates which cannot be interpreted as the ceteris paribus effects of

household production inputs.

6 Instruments and Experimental Effects.

Suppose, for example, that one specifies the empirical health production func-

tion as only a function of a single input X. This misspecified model incorrectly

excludes all terms involving the unobserved inputs Z; these are subsumed in

the “error term.” Since the observed input X is chosen jointly with the un-

observed inputs, the error term in this specification usually will be correlated

with the observed input17. To control for endogeneity bias in the estimation

of the misspecified model, one might consider using variations in variables like

the price of the observed input or an experimental assignment as an instrumen-

tal variable. However, as noted by Todd and Wolpin (2003), any determinant

of the observed input typically will also influence the demand for the unob-

17Throughout this discussion, we assume that the unobserved taste and productivity
parameters, τ and ρ, are independent of all prices and incomes.

28



6 INSTRUMENTS AND EXPERIMENTAL EFFECTS.

served input18, violating one of the requirements for the variable to be a valid

instrument19. The marginal effect of X will not be identified.

Adding variables like household income and prices of the unobserved in-

puts typically will also fail to yield interpretable estimates of the effects of the

observed input on health. This happens for two reasons. First, the conditional

demand function for the unobserved input as described in equation (10) de-

pends on income after removing expenditures on the observed input, not total

household income. This specification issue, however, may be not too severe

provided expenditures on the observed input are small.

Second, the correct specification of the hybrid production function also in-

cludes the prices of all consumption goods. Unless consumption good prices

are independent of the health input prices and incomes, or perfectly explained

by them, the empirical model will be misspecified. If one uses an instrumen-

tal variables approach to control for the endogeneity of the observed inputs

for the estimation, with consumption good and input prices included only as

instruments, then a rejection of the overidentification restrictions would be

indicative of an incorrectly specified empirical model in this instance.

An experimental assignment of the observed input to a random sample

of households also will not provide an asymptotically unbiased estimator of

the marginal effect of X, but it can provide an estimator of the bound of the

18In some special cases the demand for Z might not depend on the price of the observed
input. Provided all the determinants of the unobserved input, including its price and house-
hold income are independent of the price of X, estimation in this instance will be quite
similar to the case of experimental assignment of the input X discussed below. To simplify
this discussion, we also assume the conditions for Theorem 1 to hold are satisfied.

19In a similar way, government policies and regulations which prescribe a certain level of
consumption of observed input X, e.g. a ban on smoking, would not be valid instruments
since a change in the amount of observed input X consumed (a reduction to zero in the
case of a ban) would, in general, also result in changes in the choices of the unobserved
inputs Z. For example, in the case of smoking ban, people might switch to other stimulants
which substitute for smoking (e.g. chewing tobacco or illegal substances); this would also
contaminate the estimation of the actual marginal effect of smoking on health.
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impact of X described in equation (8). Suppose households perfectly comply

with their experimental assignment of X, where X is provided at zero cost

and the X assignments are made independent of all other factors affecting

household decisions and outcomes (in particular pz, pc, I, and ρ and τ). Given

X, households will optimally choose the unobserved inputs Z and consumption

goods C to maximize utility, and equation (10) evaluated at px = 0 will be

the correctly specified hybrid production function.

Assume first that there is no individual level heterogeneity in preferences

and health production function (ρ and τ are the same for everybody). In this

case nonparametric regression of H on X controlling for observables (namely

pz, pc, I
20) would be able to identify exactly the same bound as presented

in equation (8). In this simplest case the choice of the input Z is exactly

determined by prices pz, pc, income I, and level of observed health input X.

But since different (assigned) values of X imply different values of Z being

chosen even for the same prices and income, the estimated effect of X on H

would be contaminated by associated changes in Z. This yields the same bias

described in Theorem 1 above21.

In the more realistic case when there is individual level heterogeneity (ρ, τ),

such a nonparametric regression would identify only some “average” of the

bounds described in (8), where the average is taken with respect to the joint

distribution of ρ and τ . In the case when estimated nonparametric regression

does not condition on prices and income, the average will be taken over the

whole joint distribution of pz, pc, I, and ρ and τ . The bound defined in

Theorems 1 and 2 is identical to the “policy effect” in Heckman(1992) and

20In this case I∗ = I since pX = 0.
21This just highlights the fact that the choice of Z depends on the experimentally assigned

value of X, Z = Z(X, I, pz, pc).
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discussed by Todd and Wolpin (2003).

In the absence of a random experimental assignment for X, the regression

model needs to include the prices of all consumption goods (not just omitted

health inputs) and the adjusted income, I∗. As a result, the estimated effect

of X will be a function of these prices and I∗. As discussed above it will be

identical to the estimate from the experimental assignment which conditions on

these variables. Experimental assignment studies usually do not condition on

these prices and incomes and thus are likely to provide estimates of limited use

outside of the population studied under the experiment. Our findings suggest

that experimental assignment estimates could be more widely applicable if one

were to condition on more prices and (adjusted) incomes.

In our simulation exercises below, we present average effects for X at each

value of the observed input X, where we average with respect to the distri-

bution of all prices and incomes that could have given rise to that particular

observed value of X. In general, these conditional distributions will vary with

the level of X, unless the input X is assigned so that it is independent of all

prices and incomes and all unobserved tastes and productivities.

7 Simulations Illustrating the Bounds

Though no finite set of simulations can provide complete information about

the consequences on the estimation of marginal products when one does not

observe all of the relevant inputs to the production function, these simulations

do demonstrate three key implications of the lack of complete information.

First, we show that the bias described in Theorem 1 could be considerable.

Second, we illustrate that including non-health related information into the

estimation of the hybrid production function has the potential to provide a
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more informative bound (Theorem 2). Third, we demonstrate that estima-

tion approaches that either ignore the missing inputs or proxy for them using

household income have the potential to provide severely biased estimates of

the impacts of the observed inputs.

We present three simulations to illustrate how the theoretical bounds on

the marginal products might work in practice. The first simulation allows

for observable heterogeneity across households arising from variations in ob-

servable prices and incomes to affect input demands as well as unobserved

to the researcher heterogeneity affecting the health production function. The

second simulation removes all unobserved heterogeneity (unobserved by the

researcher); we use it to illustrate that the biases arise even in an idealized

world. The third simulation mimics a random experimental assignment of the

observed input, where the household can alter its choice of the unobserved

input and consumption goods in response to the experimental assignment. In

each simulation we generate one million observations on prices, incomes and

heterogeneity and solve for each household’s optimal commodity and health

input demands and the resulting health outcomes. We use various approaches

for estimating the “marginal effect” of an observed health input22.

Suppose the utility function depends on two consumption goods, c1 and

c2, and health H. It has the following Stone-Geary form:

Ui = (c1i − 3).1(c2i − 4).5(Hi − 5).4 (17)

Health is produced by the CES production function

Hi = (ρix
0.75
i + z0.75

i )0.8 (18)

22These simulations cannot be representative, as alternative choices for the data gen-
erating processes and parameters described below will yield different “true” impacts and
“estimable” impacts. They only demonstrate the potential issues and solutions we discuss.
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where x and z are the two health inputs and ρi is the heterogeneity known

to the household when it makes its input choices but unmeasured by the

researcher. The budget constraint is given by

pxixi + pc1ic1i + pc2ic2i + pzizi = Ii. (19)

All prices and incomes follow uniform distributions generated from a five-

variate normal copula23 and are independent of the heterogeneity in the pro-

duction function, ρ. These functional form assumptions for the utility and

production functions correspond to those specified in Theorems 1 and 2.

When estimating the production functions and hybrid functions, we do

not impose the known functional forms imposed by the above specifications

of the utility and production functions. In all of the “estimations” with these

simulated data, we use a third degree fully-interacted polynomial in the log-

explanatory variables as the approximate functional form in the (hybrid) pro-

duction function. Any interaction term containing a choice variable we treat

as endogenous, using a fully-interacted fourth degree polynomial in the loga-

rithms of the exogenously determined prices and incomes as instruments24.

The left hand panel in Figure 1 presents the calculated partial derivative

of health with respect to a unit change in the observed health input for the

23The normal components are correlated at 0.4, except for the component used to generate
pz which has a -0.4 correlation with each of the other four components. Each of the four
prices follow a U(1,2) while incomes follow a U(50,150). The uniform random variables have
correlations of approximately +/-0.38. Unobserved heterogeneity follows a independent
uniform distribution on (1,2) when it is present; otherwise it is fixed at 1.5.

24In the simulations with no unobserved heterogeneity, for the true production function
and the correctly specified hybrid models, the R2 values are always 0.9967 or larger, re-
vealing that that the third order polynomials approximate well the true functions. For the
incorrectly specified functions, such as the regression of the observed health outcome only
on a polynomial in the observed input or only on a polynomial in the observed input and
income, the R2 values can be as low as 0.7669. The first stage regressions almost always
have reported R2 values of 1.0000 when there is no unobserved heterogeneity, indicating
that the fourth degree polynomials approximate well the true functional forms.
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estimated true production function and three of the correctly specified hybrid

production functions derived above. There is unobserved heterogeneity in

the production function; it impacts all effects presented in Figure 125. We

construct the average derivative about each value of X using the distribution

of the exogenous prices and incomes around each point26.

The two overlapping lines at the top of this panel measure the “true” aver-

age analytic derivative. One comes from evaluating the analytic formula and

the other from estimating the third order approximation when both inputs

are observed. They do not coincide exceptionally well at the lowest levels of

the observed input due to combined effect of the estimation by instrumen-

tal variables and the presence of the unobserved heterogeneity in the health

production function that households take into account when they make their

choices. These lines represent the true effects we would like to measure in an

ideal world. The lowest line in the left panel measures the average effect of X

from the correctly specified hybrid function from equation (10), and it mea-

sures the bound on the true marginal effect described in (8). It differs from the

true derivative by the term described in (9). Even though the demand for the

observed input is three times larger than the demand for the unobserved input

(average budget share of 30% versus 10%), the bias is considerable over most

of the range of the observed input27. We label this the minimum information

bound.

The line just above the lower bound reveals how the bound tightens when

25The mean effect of the observed input X on health is 0.242(sd: 0.047); the mean effect
of the unobserved input Z is 0.242 (sd:0.073); and the cross derivative is -0.0015(sd: 0.0006).

26We do this empirically; for each value of X we construct the average of the derivatives in
the range(X-0.5, X+0.5) in the one million observation data set. Since the joint distributions
of these characteristics vary with X, the slopes of the lines in the figures do not measure
how the marginal product of X varies as X increases.

27The small numbers on the horizontal axis indicate the 5th, 10th, 25th, 50th, 75th, 90th,
and 95th percentiles of the observed input.
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one controls for the demand for a consumption good as discussed in Theorem 2.

It provides a tighter bound. Since its average budget share is low (only 13%),

controlling for it provides little new information. The line closer to the true

average marginal effect line demonstrates the implication of instead controlling

for a good comprising a larger average budget share (47%). Controlling for the

good with a large budget share substantially limits the size of the remaining

budget allocated between the unobserved input and the other consumption

good. In this example it provides a substantively more precise bound.

The right panel of Figure 1 explores less theoretically motivated approaches

for estimating the impact of the observed input on health. The top two lines in

this figure repeat the true average marginal effect line and the least informa-

tive bound line from the left panel. The long dashed line measures the average

effect when the empirical production function only depends on the observed

input. Over most of the range it lies further from the true values than the

least informative bound.28 The line with short dashes provides the average

effect when one also includes the log income in the production function spec-

ification. This specification supports Todd and Wolpin’s (2003) contention

that including income to capture the missing inputs could lead to more severe

biases.

The dotted line adds the prices of the two consumption goods and the miss-

ing input to the specification. It corresponds to Rosenzweig and Schultz’s(1983)

hybrid production function. For this simulation it does yield improvements in

the estimation of the effects of the observed input over the other two misspec-

ified models, but it almost never provides a better estimated average effect

than the least informative bound that we derive. Figure A1 in the appendix

28While it consistently underestimates the true effect here, for other specifications of the
distributions of the prices and inputs it can instead overestimate the true effect.
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repeats theses graphs for the case when there is no unobserved heterogeneity

in the health production function, and nearly all of the above discussion car-

ries over to this more idealized case. The only significant exception is that the

estimate of the true marginal effect is nearly indistinguishable from the true

calculated effect. This happens because there is no unobserved heterogeneity

so all R2’s are nearly identical to 1.00. In summary, these figures reveal that

the bias due to not observing an input can be large and that the bound can be

tightened considerably by incorporating information about non-health related

expenditures. None of the less theoretically motivated estimators provide bet-

ter estimates of ”effects” than the loosest, minimum information bound model

over most of the range of the observed input.

In Figure 2 we display estimates of the estimated average impacts of the

observed input when the observed health input is experimentally assigned29.

The left hand panel displays the bounds using correctly specified hybrid mod-

els with and without controls for pure consumption goods. The results are

nearly identical to those presented in Figure 1. The amount of bias for the

estimated marginal effect can be fairly substantial and the bias can be reduced

by incorporating non-health related information. The right hand panel dis-

plays estimates using econometric models that are standard in the evaluation

of experimental effects. These are exactly the same empirical models examined

in the right hand panel of Figure 1. Because the observed input is assigned

independently of all prices, incomes, and heterogeneities, the joint distribution

of these other health determinants are independent of the assigned input level,

and all of the average effects from using different control variables are identical

at each particular value of X. As discussed in the previous section, the average

29We randomly reallocate the observed demands for the input X from the model with
heterogeneity used to produce Figure 1 to observations to make these assignments.
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effect for each of these estimators of the experimental effect are equivalent to

the minimum information bound described in equation (8).

It is crucial to recognize that the marginal effects, bounds, and experimen-

tal effects presented in Figures 1 and 2 are averages over the joint distribution

of prices and incomes about each point on the X axis. In Figure 3 we demon-

strate how these effects change when one uses the experimentally assigned

input X but only considers those individuals with incomes in the lowest quar-

tile and who face prices of the unobserved input in the highest price quartile30.

This subset of observations contains those who are least likely to choose large

values for the unobserved input. The two solid lines at the top of Figure 3

are true marginal effects calculated by using information on both the observed

and unobserved inputs. The thin solid line repeats the true average marginal

effects from Figure 2, while the thick solid line is the true average marginal

effect for those with low income and high price for the unobserved input. The

true marginal effect for the restricted sample exceeds that for the entire sample

due to the substitutability of inputs imposed by the form of the production

function and the lower choices of the unobserved input for this group. The

lowest line repeats the average minimum information lower bound from the

correctly specified hybrid production model31, which as we saw in Figure 2

equals the estimated effect obtained when one uses any of the experimental

model estimators and averages over the entire distribution of prices and in-

come.

The two dashed lines (almost completely overlapping) represent the aver-

age minimum information bound for those with low income and high prices

for the input Z and the average of the experimental effect for low income and

30The model is estimated using all observations, exactly as was done for Figure 2.
31Averaged over the entire distribution of prices and incomes at each point X.

37



8 SUMMARY

high price for Z32. The last two lines (dashes with dots) are the estimated

bounds from the correctly specified hybrid model with controls for the choice

of the second pure consumption good(c2), with the thicker line being the av-

erage bound for individuals with low income and high prices and the thinner

line averaging over the entire distribution of incomes and prices as in Figure

2. Even when focusing on this subset of low-income/high pz individuals, con-

ditioning on the “irrelevant” input c2 provides a tighter bound for the true

marginal effect than the bound obtained when one does not include c2 in the

hybrid production function.

8 Summary

This paper demonstrates how one can use economic theory to specify empiri-

cal models of household production functions and provide possibly interesting

and useful economic interpretations for effects of inputs estimated using these

correctly specified hybrid production functions. Provided observed and un-

observed inputs are not strongly complementary, theoretical analysis reveals

that the estimated effect of an observed productive input would typically yield

a lower bound on the marginal product of the observed input. For a “bad”

observed input (e.g., smoking), the estimated impact would provide a lower

bound on its true, marginal detrimental effect. We also discuss bounds on

the true ceteris paribus marginal effects that use only information on how

consumption would change with an exogenous increase in an observed input.

These bounds follow from theoretical ceteris paribus derivations; they do

not depend upon any assumptions about endogeneity of inputs or the form of

32For these two experimental effect to differ from the lowest bound estimate, it is necessary
for the estimation with the experimental data to include income and the price of Z as
regressors in the empirical model.
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a statistical model. We further show that one can improve on those bounds

by including seemingly irrelevant information about pure consumption goods,

provided particular separability assumptions for the utility function are rea-

sonable. This also allows one to establish the sign of the bias and determine

whether the estimated effect represents an upper or lower bound on the true

marginal product of the observed input. We demonstrate the potential empiri-

cal relevance of these bounds and improvements on them using data generated

by a simple simulation exercise.

The least informative bound that we identify for the marginal effect is

identical to the “policy effect” one would estimate in an experimental setting

holding prices and incomes constant. If the policy effect is the only effect of

interest, then our analysis describes how one can estimate this effect without

needing to rely upon an experimental study. Given the estimated relationship,

it would be straightforward to solve for a “policy effect” in many alternative

environments by integrating over different joint distributions of prices and

incomes. Experimental studies that ignore such characteristics in the estima-

tion would be less informative, unless other target populations face a similar

distribution of prices and incomes to that for the experimental subjects.

The least informative bound, since it is the “policy effect,” would provide

sufficient information in many situations. But a more complete understanding

of how households produce health, education, and other outputs could help

researchers uncover and develop more effective policy tools. Our derivation of

the bounds on the marginal products and how one can improve those bounds

is an essential step in this direction.

We take no stand on whether or not the specific conditions we derive are

likely to hold in practice. Our main point is that unless one is able to come

up with and justify assumptions of this or a similar nature, one cannot claim
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that the estimated effects of observed household production inputs provide

any resemblance to their marginal effects. This problem pervades all of the

existing studies of household production including health, child development,

human capital, and educational investments.

To reiterate, our main criticism of the household production literature con-

cerns the interpretation of existing estimates, not necessarily their point values.

Under some conditions33, the point estimates from correctly specified hybrid

production functions may not differ appreciably from those found in the lit-

erature. However, for these estimates to have meaningful economic content,

such as the bounds interpretation we derive, one needs to invoke and justify

additional assumptions about the substitution patterns among observed and

unobserved inputs.
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10 For Online Appendix

10.1 Derivation of the bias

In this section of the appendix we derive an expression for the bias of the

estimated marginal effect of observed inputs X in the most general case when

both X and unobserved input Z have direct effects on utility. One can derive

biases in the case when X and/or Z are affecting only health as special cases of

this problem. We consider the general case when there are multiple observed

and unobserved health inputs: i.e. X = (x1, ..., xN)′ and Z = (z1, ..., zK)′ are

vectors. However, for simplicity we assume that consumption is represented by

scalar aggregated consumption good C. The consumer’s problem (conditional

on X) in this case can be written as:

max
C,Z

U(C,X,Z, F (X,Z))

s.t. pCC + p′ZZ = I∗ = I − p′XX
(20)

where pX and pZ are vectors of prices conforming to X and Z respectively.

Expressing C from the budget constraint: C = IR−t′XX−t′ZZ, where tX =

pX
pC

, tZ = PZ

PC
, and IR = I

pC
, we can express constrained optimization problem

(20) with respect to C and Z as the following unconstrained optimization with

respect to Z only:

max
Z

U(IR − t′XX − t′ZZ,X,Z, F (X,Z)) (21)

Optimality conditions for this problem are:

−tZUC + (UHFZ + UZ) = 034 (22)

34Here and in what follows to save space we denote column vector ∂F
∂Z as FZ and row
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and the following matrix is negative semidefinite:

∆ ≡ ∂
∂Z′

(−tZUC + (UHFZ + UZ)) ≤ 0. (23)

Consider varying the observed inputX by vector dX of infinitesimal changes:

dX = (dx1, dx2, ..., dxN)′. To assess the bias, we need to determine the sign of

the change in the unobserved level of input Z, dZ. Totally differentiating first

order condition (22) we obtain:

∂
∂Z′

(−tZUC + (FZUH + UZ)) dZ + ∂
∂X′

(−tZUC + (FZUH + UZ)) dX = 0

(24)

The first term in this sum is ∆dZ where ∆ is negative semidefinite matrix

from (23). The second term can be derived from utility function in (21). Thus

we get:

∆dZ = [tZUCX′ + tZFX′UCH − UZX′ − UZHFX′−

−FZUHX′ − FZFX′UHH − UHFZX′ ]
(25)

Expressing price ratios vector tZ from the first order condition (22): tZ =

UH

UC
FZ + UZ

UC
and substituting into (25) we get:

∆dZ =
[

1
UC
UZUCX′ +

UH

UC
FZUCX′ +

UCH

UC
UZFX′ +

UCHUH

UC
FZFX′−

−UZX′ − UZHFX′ − FZUHX′ − FZFX′UHH − UHFZX′ ] dX
(26)

For the later analysis it is instructive to combine the terms in (26) as:

vector
(
∂F
∂Z

)′
as FZ′ , matrix ∂2F

∂Z∂X′ as FZX′ , etc
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B1 ≡
(

UCHUH

UC
− UHH

)
FZFX′ − UHFZX′ =

= UH
∂
∂H

[
log
(

UC

UH

)]
FZFX′ − UHFZX′

(27)

B2 ≡ UH

UC
FZUCX′ − FZUHX′ = UHFZ

∂
∂X′

[
log
(

UC

UH

)]
(28)

B3 ≡ 1
UC
UZUCX′ − UZX′ = −UC

∂
∂X′

(
UZ

UC

)
(29)

B4 ≡ UCH

UC
UZFX′ − UZHFX′ = −UC

∂
∂H

(
UZ

UC

)
FX′ (30)

When one runs a regression of health outcome H on observed health in-

puts X, the point estimate for a particular health input Xi would measure:

∂F
∂xi

+ FZ′
dZ
dxi

∣∣∣
x−i,I−p′XX

, where dZ
dxi

∣∣∣
x−i,I−p′XX

represents a vector of changes in

unobserved health inputs Z associated with a change in xi while keeping other

observed health inputs x−i fixed and total income (I − p′XX) spent on con-

sumption C and unobserved health inputs Z constant.

Using our derivation above, the change dZ can be calculated from equa-

tions (26)-(30) while setting the i-th element of dX to dxi and the remaining

elements to zero. Denote such a vector of infinitesimal changes as dXi. With

this in mind, the total bias term in this case can be written as:

BIAS = FZ′
dZ
dxi

∣∣∣
x−i,I−p′XX

= FZ′∆
−1 (B1 +B2 +B3 +B4) dXi

dxi
≡

≡ BIAS1 +BIAS2 +BIAS3 +BIAS4

(31)
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where35

BIAS1 ≡ FZ′∆
−1B1

dXi

dxi
=

= UH
∂
∂H

[
log
(

UC

UH

)]
FZ′∆

−1FZFxi
− UHFZ′∆

−1FZxi

(32)

BIAS2 ≡ FZ′∆
−1B2

dXi

dxi
= UHFZ′∆

−1FZ
∂
∂xi

[
log
(

UC

UH

)]
(33)

BIAS3 ≡ FZ′∆
−1B3

dXi

dxi
= −UCFZ′∆

−1 ∂
∂xi

(
UZ

UC

)
(34)

BIAS4 ≡ FZ′∆
−1B4

dXi

dxi
= −UCFZ′∆

−1 ∂
∂H

(
UZ

UC

)
Fxi

(35)

The first bias term, Bias1, results from the presence of X and Z in the

production function. The second term Bias2 is present when X also affects

utility function directly but Z is affecting only health production. The third

term Bias3 appears when Z has a direct impact on utility. And the fourth

term is present when both X and Z have direct impacts on utility.

In the special case when X and Z are one dimensional total bias can be

written as:

Bias = Bias1 +Bias2 +Bias3 +Bias4 =

=
UHF 2

ZFX

∆

(
∂
∂H

(
log UC

UH

)
− FZX

FZFX

)
+

UHF 2
Z

∆
∂
∂X

(
log UC

UH

)
+

+UZFXFZ

∆
∂
∂H

(
log UC

UZ

)
+ UZFZ

∆
∂
∂X

(
log UC

UZ

) (36)

10.2 Technical Lemma

Lemma 1 If C is a normal good then ∂
∂H

(
log UC

UH

)
≥ 0.

Proof: Consider an arbitrary point (C,H). Set the ratio of prices pC
pH

equal to the ratio of marginal utilities UC

UH
at this point. Then this point will

35Here we use the fact that FX′dXi = ∂F
∂xi

dxi ≡ Fxi
dxi
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be a solution to the individual utility maximization problem for income level

I = pCC + pHH at these prices.

Consider the following thought experiment: increase income I by some dI

and change the price of C by some dpC in such a way that the individual’s

choice of C does not change but the chosen level of H changes. Taking the

first differential of the demand functions for C and H yields:

0 = dC =
∂C

∂pC
dpC +

∂C

∂I
dI (37)

dH =
∂H

∂pC
dpC +

∂H

∂I
dI (38)

Solve for dI from equation (37) and substitute this into (38)

dH

dpC
=
∂H

∂pC
− ∂H

∂I

∂C
∂pC
∂C
∂I

(39)

or, equivalently
dH

dpC
=
H

pC

[
εHC − ηH

εCC

ηC

]
(40)

where the ε’s are the (uncompensated) price elasticities of demand and η are

income elasticities.

From the Cournot aggregation condition, sHεHC+sCεCC+sC = 0, where sC

and sH are the budget shares of C and H, εHC = − sC
sH

(εCC + 1). Substituting

this relation into equation (40) yields:

dH

dpC
=
H

pC

[
− sC
sH
− εCC

(
ηH
ηC

+
sC
sH

)]
(41)

Using the Engel aggregation condition, sHηH + sCηC = 1 yields:
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dH

dpC
= − H

pCsH

[
sC +

εCC

ηC

]
= − Hε∗CC

pCsHηC
(42)

where ε∗CC = εCC + sCηC is compensated own price elasticity.

In the above derivation we kept C constant allowing H to vary, hence

∂
∂H

(
log UC

UH

)
= d

dH

(
log UC

UH

)
. Since the ratio of marginal utilities equals the

price ratio at the optimal choice point we obtain:

∂

∂H

(
log

UC

UH

)
=
d(pC/pH)

dH

pH
pC

=
dpC
dHpC

=
ηC
−ε∗CC

sH
H
. (43)

Since the own price compensated elasticity, ε∗CC , is negative, the sign of the

expression above is the same as sign of ηC . When C is a normal good, this

term is always positive.

�

10.3 Health Inputs with Direct Utility Effects

In the main text we considered the case when the health inputs under con-

sideration X = (x1, ..., xN)′ had no direct impact on utility. In the empirical

analysis often one is concerned with the case when some of the health inputs

are detrimental to health, Fxi
< 0 for some i, but individuals still consume

them since they derive utility from them. In this section we allow for the

observed input to have a positive direct effect on utility while having a (po-

tentially negative) effect on health. For example, X could be smoking or binge

drinking.36

36In our derivations above we also assumed that unobserved health inputs Z = (z1, ..., zK)′

have no direct utility effects either. In this section we try to relax this assumption as well.
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An individual in this case would maximize the following utility function

U(C,X, F (X,Z; ρ); τ) (44)

subject to the same budget constrain as above. As before we are interested in

assessing the size of the bias in the estimation of the marginal effects of the

observed inputs X = (x1, ..., xN): ∂F
∂Z

dZ
dXi

∣∣∣
I∗=I−pXX=const,x−i=const

.

As we show in Appendix 10.1 in this case the bias for the estimated effect

of a particular observed health input xi could be written as:

Bias = Bias1 +Bias2 =

= UH
∂
∂H

[
log
(

UC

UH

)]
FZ′∆

−1FZFxi
− UHFZ′∆

−1FZxi
+

+UHFZ′∆
−1FZ

∂
∂xi

[
log
(

UC

UH

)] (45)

As discussed above, the first term Bias1 typically37 has the opposite sign to

∂F
∂xi

. In the case when xi is a “bad” input ( ∂F
∂xi

< 0) this term will be positive,

and the estimated marginal effect would underestimate the true detrimental

impact of xi or even cause it to appear to be a “good” input.

However, compared to the baseline case we have an additional term in the

total bias that relates to the relative substitutability of xi with pure consump-

tion goods C and health H in the utility function: ∂
∂xi

(
log UC

UH

)
.38 In general,

the sign of this term has to be assessed by the researcher on a case by case

basis.

In the case of xi being smoking, for example, the term ∂
∂xi

(
log UC

UH

)
would

37In the case when Z is one dimensional it suffices to put some restrictions on the degree of
complementarity/substitutability between xi and Z. In the multidimensional case additional
separability conditions have to be imposed to establish unambiguously the direction of the
bias. See Theorems 1 and 3 for more details.

38As before FZ′∆
−1FZ ≤ 0 due to second order conditions.
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be negative when, as people smoke more, they value health H more (at the

margin) than other consumption goods C, keeping the levels of health and

those consumption goods constant39. In this case the last term in the bias will

also be positive. The total bias will be positive for a bad input such as smoking,

and estimable effects would still provide a bound on the true marginal effect.

For the case of good input which has a direct effect on utility, the reverse

condition would be needed for the estimable effect to be a bound.

When this assumption is violated then the total bias might still be opposite

in sign to Fxi
if the contribution from this term does not dominate Bias1. In

this case the estimated upper (lower) bound for ∂F
∂xi

< 0 ( ∂F
∂xi

> 0) would be

more precise. However, in general the sign of the total bias for the estimable

effect cannot be interpreted as a bound without incorporating additional in-

formation.

In the case when both the observed and unobserved inputs have dual im-

pacts, there are two additional terms in the bias (see equations (29) and (30)

in Appendix 10.1), which relate to changes in substitutability between pure

consumption goods C and the unobserved inputs Z as consumption goods (i.e.

ignoring Z’s impact on utility through health production) when the levels of

health H and observed inputs X change. In general, the signs of those terms

have to be assessed on a case by case basis. However, if the utility function is

separable in (X,H) and (C,Z), these additional bias terms would equal zero

and the above interpretations would hold.

39I.e., when xi increases we do not take into account its impact on H through the pro-
duction function.
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10.4 Interpretation of Other Estimated Effects

In the main text we interpreted the effects of observed health input in the

correctly specified hybrid production function in equation (10). In this section

we derive interpretation for estimated “effects” of other explanatory variables,

which are included in regression (10).

The estimable effect of I∗ measures the derivative of observed health H

with respect to I − p′XX,
∂h

∂I∗
=
∂F

∂Z

∂Z

∂I∗
(46)

The effect of adjusted income I∗ is the combination of the marginal product of

missing input(s) and their (conditional on X) income effects. This effect is not

guaranteed to be positive. In fact, if missing inputs negatively affect health

(e.g. smoking) and are normal goods (conditionally on X) then the estimated

effect of I∗ might be negative.

Interpretations of the impacts of the prices of other missing inputs can be

simply derived. For example, the effect of the price pZ of unobserved health

inputs Z would measure:
∂h

∂pZ
=
∂F

∂Z

∂Z

∂pZ
(47)

The effect of the price of unobserved non-health input C would measure

∂h

∂pC
=
∂F

∂Z

∂Z

∂pC
(48)

When there is more than one missing health input then those estimable effects

would measure the sum of marginal products of all the unobserved health

inputs each weighted by the price derivative of the conditional demand for it

with respect to the corresponding price.
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10.5 Proof of Theorem 2.

In this Appendix section we investigate whether it is better to control for the

observable consumption of non-health production goods in order to minimize

the bias of the estimated marginal product of observed health inputs. For

simplicity consider first the case when the unobserved input Z has no direct

impact on utility.

In particular, we now assume that part of consumption C is observable.

Slightly abusing the notation let C be the consumption input which is not

observable and W be the consumption input which is observable. X is the

observable health input, and Z is the unobservable health input. Consider

estimating the marginal impact of the observable health input X on H con-

trolling for the value of the observable non-health input W . The bias, as

before, can be inferred from:

dH

dX

∣∣∣∣
I∗=const,W=W ∗

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=const,W=W ∗

(49)

We would like to analyze how the term ∂F
∂Z

dZ
dX

∣∣
I∗=const

changes depending on

whether or not one controls for W (with I∗ being different in those two cases).

If one does not control for W , then as X changes both dZ and dW are

potentially non-zero. When we control for W then dW = 0. Without loss of

generality we consider the bias for an arbitrary dW and zero it out as needed.

Since neither X or Z affect utility directly, the individual’s problem in this

case can be written as:

max
C,Z,W

U(C,W,F (X,Z))

s.t. pCC + pWW + pZZ = I∗ ≡ I − pXX
(50)
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To simplify the derivation normalize pC = 1. Then expressing C from the

budget constraint and substituting it into the objective function we can equiv-

alently rewrite the consumer’s optimization problem as:

max
Z,W

V (Z,W,F (X,Z); I∗) ≡ max
Z,W

U(I∗ − pWW − pZZ,W,F (X,Z)) (51)

The first order conditions can be written as usual:

VW = 0

VZ + VHFZ = 0
(52)

The second order condition in this case requires that the following matrix of

second derivatives is negative semidefinite: VWW VWZ + VWHFZ

(VWZ + VWHFZ)′ VZZ + 2VHZFZ + VHHF
2
Z + VHFZZ

 ≤ 0 (53)

Consider changing the observable health inputX by some amount dX while

keeping I∗, expenditure on other goods, constant. Totally differentiating first

order conditions yields:

VWWdW + (VWZ + VWHFZ)dZ = −VWHFXdX (54)

(VZZ + 2VZHFZ + VHHF
2
Z + VHFZZ)dZ + (VZW + VHWFZ)dW =

= −(VZHFX + VHHFXFZ + VHFZX)dX
(55)

The term in front of dZ in the previous equation is ∆22 ≤ 0 (i.e., this is the

(2, 2) element of the negative semidefinite matrix in (53)).
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From (54) we can express dW as:

dW = −VWHFXdX + (VWZ + VWHFZ)dZ

VWW

, (56)

and substituting this into (55) yields:

FZ
dZ
dX

= FZ

(VZW+VHWFZ )

VWW
VWHFX−(VZHFX+VHHFXFZ+VHFZX)

∆22−
(VZW+VHWFZ )2

VWW

. (57)

When we do control for W then we have an expression for the bias which

is similar to what we had before (modulus our new notation). In this case the

regression of health on observable health input X would estimate:

dH

dX

∣∣∣∣
I∗=const,W=const

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=const,W=const

, (58)

where dZ
dX

∣∣
I∗=const,W=const

could be derived using the same equations as above

with dW = 0. In this case, we have

FZ
dZ
dX

= FZ
−(VZHFX+VHHFXFZ+VHFZX)

∆22
(59)

In order to estimate relative magnitudes of the bias one would need to

compare expressions (57) and (59).

In the case when we do not control for W the denominator in (57) is smaller

in absolute value than the denominator in (59):

∆22 <

(
∆22 −

(VZW + VHWFZ)2

VWW

)
< 040 (60)

This effect, as it works through the denominator, tends to amplify the bias in

40Note that second order conditions imply that: VWW∆22 − (VZW + VHWFZ)2 > 0
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the case when we do not control for W .

In order to the understand total effect on the bias term we need to compare

the numerators as well. The term B1 ≡ −(VZHFX + VHHFXFZ + VHFZX)FZ

is contained in both expressions. Earlier we established that this term is likely

to be opposite in sign to FX (see Theorem 1 and Corollary 1).

In the case when we do not control for W we also have an additional term

in the bias:

B2 ≡
(VZW + VHWFZ)

VWW

VWHFXFZ (61)

This term, however, has an indeterminate sign. To further analyze this term,

it is useful to return to the original function U . Using definition (51) we find:

VZ = −pZUC

VH = UH

VW = −pWUC + UW

(62)

The first order conditions above can then be written then as:

−pWUC + UW = 0,−pZUC + UHFZ = 0 (63)

or

pW =
UW

UC

, pZ =
UHFZ

UC

(64)

Thus, we obtain:

VZW = pZpWUCC − pZUCW = UHUWFZ

UC

(
UCC

UC
− UCW

UW

)
=

= UHUWFZ

UC

∂
∂C

(
log UC

UW

) (65)
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VHW = −pWUCH + UWH = −UW

(
UCH

UC
− UWH

UW

)
=

= −UW
∂
∂H

(
log UC

UW

) (66)

Using these one can write the bias term B2 in equation (61) as:

B2 =
U2
WFXF 2

Z

VWW

∂
∂H

(
log UC

UW

) [
∂
∂H

(
log UC

UW

)
− UH

UC

∂
∂C

(
log UC

UW

)]
(67)

As before it is possible to show that ∂
∂C

(
log UW

UC

)
> 0 for a normal good

W , but the sign of the other term is indeterminate as well as the sign of the

whole term B2.

However, we can determine a sign in the following special case. Assume

that health does not affect the marginal rate of substitution between consump-

tion goods W and C: ∂
∂H

(
log UW

UC

)
= 0 (e.g. preferences are weakly separable

in health and non-health goods). Then B2 would vanish and the total bias

will be determined only by the common B1 > 0 term and the denominators in

(60). In this situation the bias will be larger (and the bound less precise) when

one does not control for the observed part of consumption W . The result is

likely to hold also when ∂
∂H

(
log UW

UC

)
is sufficiently close to zero.

The case when Z also has a direct impact on utility can be analyzed sim-

ilarly. One should define V (Z,W,H; I∗) ≡ U(I∗ − pZZ − PWW,Z,W,H)

and the derivation would go unchanged until the equation for the bias term

B2 in equation (61). The exact analogue of condition (67) is more involved

since, when Z has a direct impact on utility, as VZW has more complex form.

However, the formula for the derivative VHW will be unchanged (in terms of

partial derivatives of U), as will the first order condition with respect to W .

Hence, VHW (and hence B2) would vanish under the same condition as before,

namely, ∂
∂H

(
log UW

UC

)
= 0 and the total bias will again be larger in absolute
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value in the case when one does not control for W . Consequently, when one

estimates a home production function, controlling for the chosen amount of a

pure consumption good can result in a smaller bias and a tighter bound for the

estimated marginal product of an observed input to the production function

when not all of the chosen inputs can be observed.
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